human/dist/human.js

7653 lines
1.6 MiB

"use strict";/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var zf=Object.defineProperty;var GR=Object.getOwnPropertyDescriptor;var HR=Object.getOwnPropertyNames;var jR=Object.prototype.hasOwnProperty;var qR=(e,t,n)=>t in e?zf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ia=(e,t)=>{for(var n in t)zf(e,n,{get:t[n],enumerable:!0})},XR=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of HR(t))!jR.call(e,r)&&r!==n&&zf(e,r,{get:()=>t[r],enumerable:!(s=GR(t,r))||s.enumerable});return e};var KR=e=>XR(zf({},"__esModule",{value:!0}),e);var me=(e,t,n)=>(qR(e,typeof t!="symbol"?t+"":t,n),n),lv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Zd=(e,t,n)=>(lv(e,t,"read from private field"),n?n.call(e):t.get(e)),Yd=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Jd=(e,t,n,s)=>(lv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Exe={};ia(Exe,{Human:()=>B4,default:()=>B4,defaults:()=>Ba,draw:()=>$4,env:()=>fe,match:()=>L4,models:()=>m1});function ie(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function uv(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var ue=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function t3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")t3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ie("invalid configuration",s),s}function Xt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Xt(a,o):n[r]=o}),n),{})}var Ba={backend:"",modelBasePath:"",cacheModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var je={};ia(je,{Abs:()=>il,Acos:()=>pc,Acosh:()=>hc,AdadeltaOptimizer:()=>j0,AdagradOptimizer:()=>q0,AdamOptimizer:()=>X0,AdamaxOptimizer:()=>K0,Add:()=>xa,AddN:()=>po,All:()=>fc,Any:()=>mc,ArgMax:()=>ho,ArgMin:()=>gc,Asin:()=>yc,Asinh:()=>Ac,Atan:()=>xc,Atan2:()=>vc,Atanh:()=>bc,AvgPool:()=>fo,AvgPool3D:()=>zp,AvgPool3DGrad:()=>Hm,AvgPoolGrad:()=>Gm,BackendWasm:()=>WC,BatchMatMul:()=>mo,BatchToSpaceND:()=>ll,Bincount:()=>jm,BroadcastArgs:()=>qm,BroadcastTo:()=>c6,Callback:()=>kk,CallbackList:()=>T8,Cast:()=>go,Ceil:()=>yo,ClipByValue:()=>ba,Complex:()=>Lp,ComplexAbs:()=>Bp,Concat:()=>ul,Conv2D:()=>Ao,Conv2DBackpropFilter:()=>Xm,Conv2DBackpropInput:()=>xo,Conv3D:()=>Wp,Conv3DBackpropFilterV2:()=>Km,Conv3DBackpropInputV2:()=>Zm,Cos:()=>bo,Cosh:()=>vo,CropAndResize:()=>dl,Cumprod:()=>cl,Cumsum:()=>wo,CustomCallback:()=>E8,DataStorage:()=>Mp,DenseBincount:()=>Ym,DepthToSpace:()=>pl,DepthwiseConv2dNative:()=>ko,DepthwiseConv2dNativeBackpropFilter:()=>Jm,DepthwiseConv2dNativeBackpropInput:()=>Qm,Diag:()=>e0,Dilation2D:()=>Vp,Dilation2DBackpropFilter:()=>hm,Dilation2DBackpropInput:()=>pm,ENV:()=>$r,EarlyStopping:()=>Ik,Einsum:()=>Up,Elu:()=>So,EluGrad:()=>t0,Environment:()=>l6,Equal:()=>hl,Erf:()=>wc,Exp:()=>Co,ExpandDims:()=>fl,Expm1:()=>ml,FFT:()=>n0,Fill:()=>kc,FlipLeftRight:()=>gl,Floor:()=>To,FloorDiv:()=>No,FromPixels:()=>bp,FusedBatchNorm:()=>Eo,FusedConv2D:()=>Qa,FusedDepthwiseConv2D:()=>eo,GPGPUContext:()=>ju,GatherNd:()=>Al,GatherV2:()=>yl,GraphModel:()=>$h,Greater:()=>xl,GreaterEqual:()=>Ro,History:()=>N8,IFFT:()=>s0,Identity:()=>_o,Imag:()=>Gp,InputSpec:()=>rn,IsFinite:()=>Ic,IsInf:()=>Sc,IsNan:()=>Cc,KernelBackend:()=>cc,LRN:()=>Hp,LRNGrad:()=>a0,LayerVariable:()=>b8,LayersModel:()=>ha,LeakyRelu:()=>Do,Less:()=>bl,LessEqual:()=>vl,LinSpace:()=>r0,Log:()=>$o,Log1p:()=>Tc,LogSoftmax:()=>p6,LogicalAnd:()=>wl,LogicalNot:()=>kl,LogicalOr:()=>Nc,LogicalXor:()=>d6,LowerBound:()=>B_,MathBackendWebGL:()=>id,Max:()=>Po,MaxPool:()=>Oo,MaxPool3D:()=>jp,MaxPool3DGrad:()=>i0,MaxPoolGrad:()=>o0,MaxPoolWithArgmax:()=>l0,Maximum:()=>Fo,Mean:()=>Mo,Min:()=>zo,Minimum:()=>Lo,MirrorPad:()=>Bo,Mod:()=>Ec,MomentumOptimizer:()=>Z0,Multinomial:()=>u0,Multiply:()=>Wo,Neg:()=>Il,NonMaxSuppressionV3:()=>Cl,NonMaxSuppressionV4:()=>Rc,NonMaxSuppressionV5:()=>Tl,NotEqual:()=>Sl,OP_SCOPE_SUFFIX:()=>Cy,OneHot:()=>El,OnesLike:()=>Nl,Optimizer:()=>ka,OptimizerConstructors:()=>Wa,Pack:()=>Rl,PadV2:()=>Vo,Pool:()=>W_,Pow:()=>Uo,Prelu:()=>Go,Prod:()=>Ho,RMSPropOptimizer:()=>Y0,RNN:()=>Qr,Range:()=>_c,Rank:()=>A3,Real:()=>qp,RealDiv:()=>Io,Reciprocal:()=>Dc,Reduction:()=>Yn,Relu:()=>jo,Relu6:()=>Ko,Reshape:()=>_l,ResizeBilinear:()=>Xo,ResizeBilinearGrad:()=>d0,ResizeNearestNeighbor:()=>qo,ResizeNearestNeighborGrad:()=>c0,Reverse:()=>Dl,RotateWithOffset:()=>jl,Round:()=>$l,Rsqrt:()=>Zo,SGDOptimizer:()=>vh,ScatterNd:()=>Pl,SearchSorted:()=>p0,Select:()=>Fl,Selu:()=>$c,Sequential:()=>sc,Sigmoid:()=>Jo,Sign:()=>Pc,Sin:()=>Yo,Sinh:()=>Ml,Slice:()=>Ol,Softmax:()=>ti,Softplus:()=>Fc,SpaceToBatchND:()=>zl,SparseFillEmptyRows:()=>Xp,SparseReshape:()=>Oc,SparseSegmentMean:()=>Kp,SparseSegmentSum:()=>Zp,SparseToDense:()=>Yp,SplitV:()=>Ll,Sqrt:()=>Qo,Square:()=>Mc,SquaredDifference:()=>ni,Step:()=>ai,StridedSlice:()=>Bl,StringNGrams:()=>zc,StringSplit:()=>Jp,StringToHashBucketFast:()=>Qp,Sub:()=>si,Sum:()=>ei,SymbolicTensor:()=>Cr,Tan:()=>Wl,Tanh:()=>ri,Tensor:()=>tt,TensorBuffer:()=>fn,Tile:()=>va,TopK:()=>Vl,Transform:()=>Ul,Transpose:()=>Hr,Unique:()=>h0,Unpack:()=>Gl,UnsortedSegmentSum:()=>eh,UpperBound:()=>V_,Variable:()=>kp,ZerosLike:()=>Hl,_FusedMatMul:()=>Ja,abs:()=>tn,acos:()=>Hy,acosh:()=>jy,add:()=>ce,addN:()=>m0,all:()=>g0,any:()=>Cp,argMax:()=>Es,argMin:()=>qy,asin:()=>Xy,asinh:()=>Ky,atan:()=>Zy,atan2:()=>Yy,atanh:()=>Jy,avgPool:()=>lh,avgPool3d:()=>eA,backend:()=>Zs,backend_util:()=>C,basicLSTMCell:()=>sw,batchNorm:()=>Wc,batchNorm2d:()=>tA,batchNorm3d:()=>nA,batchNorm4d:()=>sA,batchToSpaceND:()=>uh,bincount:()=>rA,booleanMaskAsync:()=>zw,broadcastArgs:()=>rw,broadcastTo:()=>Gu,broadcast_util:()=>Xl,browser:()=>Ys,buffer:()=>Le,callbacks:()=>jH,cast:()=>ge,ceil:()=>aA,clipByValue:()=>fs,clone:()=>Fn,complex:()=>fa,concat:()=>Ct,concat1d:()=>oA,concat2d:()=>Kl,concat3d:()=>iA,concat4d:()=>lA,constraints:()=>k8,conv1d:()=>y0,conv2d:()=>ma,conv2dTranspose:()=>A0,conv3d:()=>cA,conv3dTranspose:()=>dA,copyRegisteredKernels:()=>j_,cos:()=>ch,cosh:()=>x0,cosineWindow:()=>W0,cumprod:()=>Tp,cumsum:()=>b0,customGrad:()=>Kr,data:()=>Xk,denseBincount:()=>ow,deprecationWarn:()=>Py,depthToSpace:()=>pA,depthwiseConv2d:()=>Vc,deregisterOp:()=>KH,device_util:()=>rh,diag:()=>iw,dilation2d:()=>hA,disableDeprecationWarnings:()=>x$,dispose:()=>ne,disposeVariables:()=>b$,div:()=>pe,divNoNan:()=>fA,dot:()=>mA,dropout:()=>WA,einsum:()=>lw,elu:()=>Uc,enableDebugMode:()=>A$,enableProdMode:()=>$y,enclosingPowerOfTwo:()=>VA,engine:()=>sn,env:()=>Z,equal:()=>Rs,erf:()=>gA,euclideanNorm:()=>xA,exp:()=>_s,expandDims:()=>Kt,expm1:()=>bA,eye:()=>v0,fft:()=>xh,fill:()=>Hc,findBackend:()=>Oy,findBackendFactory:()=>I$,floor:()=>jc,floorDiv:()=>Bc,forceHalfFloat:()=>i9,fused:()=>ec,gather:()=>qc,gatherND:()=>Vw,gather_util:()=>zy,getBackend:()=>ss,getGradient:()=>g3,getKernel:()=>fm,getKernelsForBackend:()=>qr,getThreadsCount:()=>vme,gpgpu_util:()=>LS,grad:()=>HF,grads:()=>jF,greater:()=>ys,greaterEqual:()=>li,ifft:()=>Qu,imag:()=>oh,image:()=>Ne,inTopKAsync:()=>Uw,initializers:()=>I8,input:()=>U8,io:()=>Ts,irfft:()=>M0,isFinite:()=>vA,isInf:()=>wA,isNaN:()=>kA,keep:()=>bn,kernel_impls:()=>dr,layers:()=>S8,leakyRelu:()=>dh,less:()=>w0,lessEqual:()=>ui,linalg:()=>HA,linspace:()=>hw,loadGraphModel:()=>Jj,loadGraphModelSync:()=>Qj,loadLayersModel:()=>nG,localResponseNormalization:()=>IA,log:()=>Ds,log1p:()=>ph,logSigmoid:()=>SA,logSoftmax:()=>I0,logSumExp:()=>S0,logicalAnd:()=>lr,logicalNot:()=>hh,logicalOr:()=>C0,logicalXor:()=>CA,losses:()=>t8,lowerBound:()=>mw,matMul:()=>Qe,math:()=>O6,max:()=>mn,maxPool:()=>fh,maxPool3d:()=>TA,maxPoolWithArgmax:()=>gw,maximum:()=>Jr,mean:()=>Bt,memory:()=>ym,meshgrid:()=>yw,metrics:()=>bk,min:()=>ga,minimum:()=>Xc,mirrorPad:()=>NA,mod:()=>Yl,model:()=>eG,models:()=>vk,moments:()=>mh,movingAverage:()=>Lw,mul:()=>L,multiRNNCell:()=>Aw,multinomial:()=>xw,neg:()=>Dt,nextFrame:()=>jA,norm:()=>Gc,notEqual:()=>Qi,oneHot:()=>Zu,ones:()=>Ns,onesLike:()=>$s,op:()=>V,outerProduct:()=>bw,pad:()=>Js,pad1d:()=>vw,pad2d:()=>ww,pad3d:()=>kw,pad4d:()=>Iw,pool:()=>EA,pow:()=>ya,prelu:()=>yh,print:()=>Ry,prod:()=>RA,profile:()=>v$,rand:()=>Sw,randomGamma:()=>Cw,randomNormal:()=>N0,randomStandardNormal:()=>Tw,randomUniform:()=>Kc,range:()=>Ju,ready:()=>Lc,real:()=>Yu,reciprocal:()=>$A,registerBackend:()=>ql,registerCallbackConstructor:()=>sG,registerGradient:()=>h6,registerKernel:()=>cr,registerOp:()=>XH,regularizers:()=>wk,relu:()=>Pr,relu6:()=>E0,removeBackend:()=>k$,reshape:()=>U,reverse:()=>Ks,reverse1d:()=>Nw,reverse2d:()=>Ew,reverse3d:()=>Rw,reverse4d:()=>_w,rfft:()=>bh,round:()=>R0,rsqrt:()=>_0,scalar:()=>Se,scatterND:()=>Bw,scatter_util:()=>Ly,searchSorted:()=>T0,selu:()=>D0,separableConv2d:()=>$0,sequential:()=>tG,serialization:()=>de,setBackend:()=>Fy,setPlatform:()=>S$,setThreadsCount:()=>bme,setWasmPath:()=>xme,setWasmPaths:()=>tb,setWebGLContext:()=>x2,setdiff1dAsync:()=>Dw,sigmoid:()=>Cn,sign:()=>PA,signal:()=>e8,sin:()=>P0,sinh:()=>F0,slice:()=>Oe,slice1d:()=>Ah,slice2d:()=>O0,slice3d:()=>ci,slice4d:()=>no,slice_util:()=>Ut,softmax:()=>Jl,softplus:()=>Zl,spaceToBatchND:()=>gh,sparse:()=>n8,sparseToDense:()=>Ww,spectral:()=>Qw,split:()=>Zt,sqrt:()=>Nn,square:()=>vt,squaredDifference:()=>z0,squeeze:()=>rt,stack:()=>on,step:()=>Ql,stridedSlice:()=>FA,string:()=>s8,sub:()=>he,sum:()=>ke,sumOutType:()=>sh,tan:()=>OA,tanh:()=>Yi,tensor:()=>ft,tensor1d:()=>Ft,tensor2d:()=>or,tensor3d:()=>My,tensor4d:()=>$w,tensor5d:()=>Pw,tensor6d:()=>Fw,tensor_util:()=>Tr,test_util:()=>Y6,tidy:()=>J,tile:()=>js,time:()=>w$,topk:()=>MA,train:()=>Fi,transpose:()=>st,truncatedNormal:()=>L0,unique:()=>zA,unregisterGradient:()=>H_,unregisterKernel:()=>G_,unsortedSegmentSum:()=>B0,unstack:()=>es,upcastType:()=>On,upperBound:()=>Ow,util:()=>v,valueAndGrad:()=>qF,valueAndGrads:()=>XF,variable:()=>LA,variableGrads:()=>fw,version:()=>Uh,version_converter:()=>tq,version_core:()=>Gy,version_layers:()=>f5,version_wasm:()=>wme,version_webgl:()=>gne,webgl:()=>yne,webgl_util:()=>uS,webgpu:()=>fT,where:()=>Mn,whereAsync:()=>BA,zeros:()=>Wt,zerosLike:()=>it});var ZR=Object.create,Ay=Object.defineProperty,YR=Object.getOwnPropertyDescriptor,Z7=Object.getOwnPropertyNames,JR=Object.getPrototypeOf,QR=Object.prototype.hasOwnProperty,ln=(e,t)=>function(){return t||(0,e[Z7(e)[0]])((t={exports:{}}).exports,t),t.exports},Ve=(e,t)=>{for(var n in t)Ay(e,n,{get:t[n],enumerable:!0})},e_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Z7(t))!QR.call(e,r)&&r!==n&&Ay(e,r,{get:()=>t[r],enumerable:!(s=YR(t,r))||s.enumerable});return e},uo=(e,t,n)=>(n=e!=null?ZR(JR(e)):{},e_(t||!e||!e.__esModule?Ay(n,"default",{value:e,enumerable:!0}):n,e)),t_=ln({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch($){}function s($,T,F){this.low=$|0,this.high=T|0,this.unsigned=!!F}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r($){return($&&$.__isLong__)===!0}s.isLong=r;var a={},o={};function i($,T){var F,G,q;return T?($>>>=0,(q=0<=$&&$<256)&&(G=o[$],G)?G:(F=u($,($|0)<0?-1:0,!0),q&&(o[$]=F),F)):($|=0,(q=-128<=$&&$<128)&&(G=a[$],G)?G:(F=u($,$<0?-1:0,!1),q&&(a[$]=F),F))}s.fromInt=i;function l($,T){if(isNaN($))return T?b:A;if(T){if($<0)return b;if($>=g)return R}else{if($<=-y)return P;if($+1>=y)return E}return $<0?l(-$,T).neg():u($%m|0,$/m|0,T)}s.fromNumber=l;function u($,T,F){return new s($,T,F)}s.fromBits=u;var c=Math.pow;function p($,T,F){if($.length===0)throw Error("empty string");if($==="NaN"||$==="Infinity"||$==="+Infinity"||$==="-Infinity")return A;if(typeof T=="number"?(F=T,T=!1):T=!!T,F=F||10,F<2||36<F)throw RangeError("radix");var G;if((G=$.indexOf("-"))>0)throw Error("interior hyphen");if(G===0)return p($.substring(1),T,F).neg();for(var q=l(c(F,8)),z=A,K=0;K<$.length;K+=8){var B=Math.min(8,$.length-K),ee=parseInt($.substring(K,K+B),F);if(B<8){var Q=l(c(F,B));z=z.mul(Q).add(l(ee))}else z=z.mul(q),z=z.add(l(ee))}return z.unsigned=T,z}s.fromString=p;function d($,T){return typeof $=="number"?l($,T):typeof $=="string"?p($,T):u($.low,$.high,typeof T=="boolean"?T:$.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var S=i(-1);s.NEG_ONE=S;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var R=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=R;var P=u(0,-2147483648,!1);s.MIN_VALUE=P;var _=s.prototype;_.toInt=function(){return this.unsigned?this.low>>>0:this.low},_.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},_.toString=function(T){if(T=T||10,T<2||36<T)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(P)){var F=l(T),G=this.div(F),q=G.mul(F).sub(this);return G.toString(T)+q.toInt().toString(T)}else return"-"+this.neg().toString(T);for(var z=l(c(T,6),this.unsigned),K=this,B="";;){var ee=K.div(z),Q=K.sub(ee.mul(z)).toInt()>>>0,oe=Q.toString(T);if(K=ee,K.isZero())return oe+B;for(;oe.length<6;)oe="0"+oe;B=""+oe+B}},_.getHighBits=function(){return this.high},_.getHighBitsUnsigned=function(){return this.high>>>0},_.getLowBits=function(){return this.low},_.getLowBitsUnsigned=function(){return this.low>>>0},_.getNumBitsAbs=function(){if(this.isNegative())return this.eq(P)?64:this.neg().getNumBitsAbs();for(var T=this.high!=0?this.high:this.low,F=31;F>0&&(T&1<<F)==0;F--);return this.high!=0?F+33:F+1},_.isZero=function(){return this.high===0&&this.low===0},_.eqz=_.isZero,_.isNegative=function(){return!this.unsigned&&this.high<0},_.isPositive=function(){return this.unsigned||this.high>=0},_.isOdd=function(){return(this.low&1)===1},_.isEven=function(){return(this.low&1)===0},_.equals=function(T){return r(T)||(T=d(T)),this.unsigned!==T.unsigned&&this.high>>>31===1&&T.high>>>31===1?!1:this.high===T.high&&this.low===T.low},_.eq=_.equals,_.notEquals=function(T){return!this.eq(T)},_.neq=_.notEquals,_.ne=_.notEquals,_.lessThan=function(T){return this.comp(T)<0},_.lt=_.lessThan,_.lessThanOrEqual=function(T){return this.comp(T)<=0},_.lte=_.lessThanOrEqual,_.le=_.lessThanOrEqual,_.greaterThan=function(T){return this.comp(T)>0},_.gt=_.greaterThan,_.greaterThanOrEqual=function(T){return this.comp(T)>=0},_.gte=_.greaterThanOrEqual,_.ge=_.greaterThanOrEqual,_.compare=function(T){if(r(T)||(T=d(T)),this.eq(T))return 0;var F=this.isNegative(),G=T.isNegative();return F&&!G?-1:!F&&G?1:this.unsigned?T.high>>>0>this.high>>>0||T.high===this.high&&T.low>>>0>this.low>>>0?-1:1:this.sub(T).isNegative()?-1:1},_.comp=_.compare,_.negate=function(){return!this.unsigned&&this.eq(P)?P:this.not().add(w)},_.neg=_.negate,_.add=function(T){r(T)||(T=d(T));var F=this.high>>>16,G=this.high&65535,q=this.low>>>16,z=this.low&65535,K=T.high>>>16,B=T.high&65535,ee=T.low>>>16,Q=T.low&65535,oe=0,Y=0,ae=0,le=0;return le+=z+Q,ae+=le>>>16,le&=65535,ae+=q+ee,Y+=ae>>>16,ae&=65535,Y+=G+B,oe+=Y>>>16,Y&=65535,oe+=F+K,oe&=65535,u(ae<<16|le,oe<<16|Y,this.unsigned)},_.subtract=function(T){return r(T)||(T=d(T)),this.add(T.neg())},_.sub=_.subtract,_.multiply=function(T){if(this.isZero())return A;if(r(T)||(T=d(T)),n){var F=n.mul(this.low,this.high,T.low,T.high);return u(F,n.get_high(),this.unsigned)}if(T.isZero())return A;if(this.eq(P))return T.isOdd()?P:A;if(T.eq(P))return this.isOdd()?P:A;if(this.isNegative())return T.isNegative()?this.neg().mul(T.neg()):this.neg().mul(T).neg();if(T.isNegative())return this.mul(T.neg()).neg();if(this.lt(x)&&T.lt(x))return l(this.toNumber()*T.toNumber(),this.unsigned);var G=this.high>>>16,q=this.high&65535,z=this.low>>>16,K=this.low&65535,B=T.high>>>16,ee=T.high&65535,Q=T.low>>>16,oe=T.low&65535,Y=0,ae=0,le=0,ye=0;return ye+=K*oe,le+=ye>>>16,ye&=65535,le+=z*oe,ae+=le>>>16,le&=65535,le+=K*Q,ae+=le>>>16,le&=65535,ae+=q*oe,Y+=ae>>>16,ae&=65535,ae+=z*Q,Y+=ae>>>16,ae&=65535,ae+=K*ee,Y+=ae>>>16,ae&=65535,Y+=G*oe+q*Q+z*ee+K*B,Y&=65535,u(le<<16|ye,Y<<16|ae,this.unsigned)},_.mul=_.multiply,_.divide=function(T){if(r(T)||(T=d(T)),T.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&T.low===-1&&T.high===-1)return this;var F=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,T.low,T.high);return u(F,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var G,q,z;if(this.unsigned){if(T.unsigned||(T=T.toUnsigned()),T.gt(this))return b;if(T.gt(this.shru(1)))return k;z=b}else{if(this.eq(P)){if(T.eq(w)||T.eq(S))return P;if(T.eq(P))return w;var K=this.shr(1);return G=K.div(T).shl(1),G.eq(A)?T.isNegative()?w:S:(q=this.sub(T.mul(G)),z=G.add(q.div(T)),z)}else if(T.eq(P))return this.unsigned?b:A;if(this.isNegative())return T.isNegative()?this.neg().div(T.neg()):this.neg().div(T).neg();if(T.isNegative())return this.div(T.neg()).neg();z=A}for(q=this;q.gte(T);){G=Math.max(1,Math.floor(q.toNumber()/T.toNumber()));for(var B=Math.ceil(Math.log(G)/Math.LN2),ee=B<=48?1:c(2,B-48),Q=l(G),oe=Q.mul(T);oe.isNegative()||oe.gt(q);)G-=ee,Q=l(G,this.unsigned),oe=Q.mul(T);Q.isZero()&&(Q=w),z=z.add(Q),q=q.sub(oe)}return z},_.div=_.divide,_.modulo=function(T){if(r(T)||(T=d(T)),n){var F=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,T.low,T.high);return u(F,n.get_high(),this.unsigned)}return this.sub(this.div(T).mul(T))},_.mod=_.modulo,_.rem=_.modulo,_.not=function(){return u(~this.low,~this.high,this.unsigned)},_.and=function(T){return r(T)||(T=d(T)),u(this.low&T.low,this.high&T.high,this.unsigned)},_.or=function(T){return r(T)||(T=d(T)),u(this.low|T.low,this.high|T.high,this.unsigned)},_.xor=function(T){return r(T)||(T=d(T)),u(this.low^T.low,this.high^T.high,this.unsigned)},_.shiftLeft=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low<<T,this.high<<T|this.low>>>32-T,this.unsigned):u(0,this.low<<T-32,this.unsigned)},_.shl=_.shiftLeft,_.shiftRight=function(T){return r(T)&&(T=T.toInt()),(T&=63)===0?this:T<32?u(this.low>>>T|this.high<<32-T,this.high>>T,this.unsigned):u(this.high>>T-32,this.high>=0?0:-1,this.unsigned)},_.shr=_.shiftRight,_.shiftRightUnsigned=function(T){if(r(T)&&(T=T.toInt()),T&=63,T===0)return this;var F=this.high;if(T<32){var G=this.low;return u(G>>>T|F<<32-T,F>>>T,this.unsigned)}else return T===32?u(F,0,this.unsigned):u(F>>>T-32,0,this.unsigned)},_.shru=_.shiftRightUnsigned,_.shr_u=_.shiftRightUnsigned,_.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},_.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},_.toBytes=function(T){return T?this.toBytesLE():this.toBytesBE()},_.toBytesLE=function(){var T=this.high,F=this.low;return[F&255,F>>>8&255,F>>>16&255,F>>>24,T&255,T>>>8&255,T>>>16&255,T>>>24]},_.toBytesBE=function(){var T=this.high,F=this.low;return[T>>>24,T>>>16&255,T>>>8&255,T&255,F>>>24,F>>>16&255,F>>>8&255,F&255]},s.fromBytes=function(T,F,G){return G?s.fromBytesLE(T,F):s.fromBytesBE(T,F)},s.fromBytesLE=function(T,F){return new s(T[0]|T[1]<<8|T[2]<<16|T[3]<<24,T[4]|T[5]<<8|T[6]<<16|T[7]<<24,F)},s.fromBytesBE=function(T,F){return new s(T[4]<<24|T[5]<<16|T[6]<<8|T[7],T[0]<<24|T[1]<<16|T[2]<<8|T[3],F)}}}),n_=ln({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),s_=ln({"(disabled):util"(){}}),r_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),a_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),o_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),i_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),l_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),u_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),c_=ln({"(disabled):crypto"(){}}),d_=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,k,S){var E=[];k=k==!0?{entropy:!0}:k||{};var R=x(y(k.entropy?[w,b(s)]:w==null?A():w,3),E),P=new m(E),_=function(){for(var $=P.g(o),T=u,F=0;$<c;)$=($+F)*a,T*=a,F=P.g(1);for(;$>=p;)$/=2,T/=2,F>>>=1;return($+F)/T};return _.int32=function(){return P.g(4)|0},_.quick=function(){return P.g(4)/4294967296},_.double=_,x(b(P.S),s),(k.pass||S||function($,T,F,G){return G&&(G.S&&g(G,P),$.state=function(){return g(P,{})}),F?(r[l]=$,T):$})(_,R,"global"in k?k.global:this==r,k.state)}function m(w){var k,S=w.length,E=this,R=0,P=E.i=E.j=0,_=E.S=[];for(S||(w=[S++]);R<a;)_[R]=R++;for(R=0;R<a;R++)_[R]=_[P=d&P+w[R%S]+(k=_[R])],_[P]=k;(E.g=function($){for(var T,F=0,G=E.i,q=E.j,z=E.S;$--;)T=z[G=d&G+1],F=F*a+z[d&(z[G]=z[q=d&q+T])+(z[q]=T)];return E.i=G,E.j=q,F})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var S=[],E=typeof w,R;if(k&&E=="object")for(R in w)try{S.push(y(w[R],k-1))}catch(P){}return S.length?S:E=="string"?w:w+"\0"}function x(w,k){for(var S=w+"",E,R=0;R<S.length;)k[d&R]=d&(E^=k[d&R]*19)+S.charCodeAt(R++);return b(k)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var k=n.navigator,S=k&&k.plugins;return[+new Date,n,S,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=c_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Wm=ln({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=r_(),s=a_(),r=o_(),a=i_(),o=l_(),i=u_(),l=d_();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),Y7=ln({"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js"(){}}),xy=ln({"(disabled):fs"(){}}),um=ln({"(disabled):path"(){}}),p_=ln({"(disabled):worker_threads"(){}}),h_=ln({"(disabled):perf_hooks"(){}}),f_=ln({"(disabled):os"(){}}),m_=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return $e.buffer!=jn&&yr($e.buffer),sf}function o(){return $e.buffer!=jn&&yr($e.buffer),rf}function i(){return $e.buffer!=jn&&yr($e.buffer),zd}function l(){return $e.buffer!=jn&&yr($e.buffer),af}function u(){return $e.buffer!=jn&&yr($e.buffer),of}function c(){return $e.buffer!=jn&&yr($e.buffer),lf}function p(){return $e.buffer!=jn&&yr($e.buffer),uf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,O){h=N,f=O});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,O)=>{throw O},b=typeof window=="object",w=typeof importScripts=="function",k=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",S=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function R(N){return d.locateFile?d.locateFile(N,E):E+N}var P,_,$,T;function F(N){if(N instanceof Xd)return;Q("exiting due to exception: "+N)}var G,q,z;if(k){w?E=um().dirname(E)+"/":E=__dirname+"/",z=()=>{q||(G=xy(),q=um())},P=function(H,te){return z(),H=q.normalize(H),G.readFileSync(H,te?void 0:"utf8")},$=O=>{var H=P(O,!0);return H.buffer||(H=new Uint8Array(H)),H},_=(O,H,te)=>{z(),O=q.normalize(O),G.readFile(O,function(Ae,ve){Ae?te(Ae):H(ve.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(O){if(!(O instanceof Xd))throw O}),process.on("unhandledRejection",function(O){throw O}),A=(O,H)=>{if(Ti())throw process.exitCode=O,H;F(H),process.exit(O)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=p_()}catch(O){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),O}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",k||(P=N=>{var O=new XMLHttpRequest;return O.open("GET",N,!1),O.send(null),O.responseText},w&&($=N=>{var O=new XMLHttpRequest;return O.open("GET",N,!1),O.responseType="arraybuffer",O.send(null),new Uint8Array(O.response)}),_=(N,O,H)=>{var te=new XMLHttpRequest;te.open("GET",N,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){O(te.response);return}H()},te.onerror=H,te.send(null)}),T=N=>document.title=N);k&&typeof performance=="undefined"&&(global.performance=h_().performance);var K=console.log.bind(console),B=console.warn.bind(console);k&&(z(),K=N=>G.writeSync(1,N+`
`),B=N=>G.writeSync(2,N+`
`));var ee=d.print||K,Q=d.printErr||B;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var oe=4;function Y(N){Y.shown||(Y.shown={}),Y.shown[N]||(Y.shown[N]=1,Q(N))}function ae(N,O){if(typeof WebAssembly.Function=="function"){for(var H={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:O[0]=="v"?[]:[H[O[0]]]},Ae=1;Ae<O.length;++Ae)te.parameters.push(H[O[Ae]]);return new WebAssembly.Function(te,N)}var ve=[1,0,1,96],Te=O.slice(0,1),Me=O.slice(1),Lt={i:127,j:126,f:125,d:124};ve.push(Me.length);for(var Ae=0;Ae<Me.length;++Ae)ve.push(Lt[Me[Ae]]);Te=="v"?ve.push(0):ve=ve.concat([1,Lt[Te]]),ve[1]=ve.length-2;var vr=new Uint8Array([0,97,115,109,1,0,0,0].concat(ve,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),wr=new WebAssembly.Module(vr),Mf=new WebAssembly.Instance(wr,{e:{f:N}}),Kd=Mf.exports.f;return Kd}var le=[],ye;function we(){if(le.length)return le.pop();try{Us.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return Us.length-1}function Re(N,O){for(var H=N;H<N+O;H++){var te=Su(H);te&&ye.set(te,H)}}var _e=0,Be=N=>{_e=N},Ge=Atomics.load,ot=Atomics.store,dt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var At=d.noExitRuntime||!0;typeof WebAssembly!="object"&&wu("no native wasm support detected");var $e,Tt,It=!1,Un;function Qt(N,O){N||wu(O)}function bs(N){var O=d["_"+N];return O}function pn(N,O,H,te,Ae){var ve={string:function(ks){var Du=0;if(ks!=null&&ks!==0){var iv=(ks.length<<2)+1;Du=_u(iv),aa(ks,Du,iv)}return Du},array:function(ks){var Du=_u(ks.length);return oa(ks,Du),Du}};function Te(ks){return O==="string"?Hn(ks):O==="boolean"?Boolean(ks):ks}var Me=bs(N),Lt=[],vr=0;if(te)for(var wr=0;wr<te.length;wr++){var Mf=ve[H[wr]];Mf?(vr===0&&(vr=Qg()),Lt[wr]=Mf(te[wr])):Lt[wr]=te[wr]}var Kd=Me.apply(null,Lt);function UR(ks){return vr!==0&&$f(vr),Te(ks)}return Kd=UR(Kd),Kd}function Gn(N,O,H,te){H=H||[];var Ae=H.every(function(Te){return Te==="number"}),ve=O!=="string";return ve&&Ae&&!te?bs(N):function(){return pn(N,O,H,arguments,te)}}var vs=1;function ws(N){var O=new TextDecoder(N);this.decode=H=>(H.buffer instanceof SharedArrayBuffer&&(H=new Uint8Array(H)),O.decode.call(O,H))}var $n=typeof TextDecoder!="undefined"?new ws("utf8"):void 0;function Vs(N,O,H){for(var te=O+H,Ae=O;N[Ae]&&!(Ae>=te);)++Ae;if(Ae-O>16&&N.subarray&&$n)return $n.decode(N.subarray(O,Ae));for(var ve="";O<Ae;){var Te=N[O++];if(!(Te&128)){ve+=String.fromCharCode(Te);continue}var Me=N[O++]&63;if((Te&224)==192){ve+=String.fromCharCode((Te&31)<<6|Me);continue}var Lt=N[O++]&63;if((Te&240)==224?Te=(Te&15)<<12|Me<<6|Lt:Te=(Te&7)<<18|Me<<12|Lt<<6|N[O++]&63,Te<65536)ve+=String.fromCharCode(Te);else{var vr=Te-65536;ve+=String.fromCharCode(55296|vr>>10,56320|vr&1023)}}return ve}function Hn(N,O){return N?Vs(o(),N,O):""}function ra(N,O,H,te){if(!(te>0))return 0;for(var Ae=H,ve=H+te-1,Te=0;Te<N.length;++Te){var Me=N.charCodeAt(Te);if(Me>=55296&&Me<=57343){var Lt=N.charCodeAt(++Te);Me=65536+((Me&1023)<<10)|Lt&1023}if(Me<=127){if(H>=ve)break;O[H++]=Me}else if(Me<=2047){if(H+1>=ve)break;O[H++]=192|Me>>6,O[H++]=128|Me&63}else if(Me<=65535){if(H+2>=ve)break;O[H++]=224|Me>>12,O[H++]=128|Me>>6&63,O[H++]=128|Me&63}else{if(H+3>=ve)break;O[H++]=240|Me>>18,O[H++]=128|Me>>12&63,O[H++]=128|Me>>6&63,O[H++]=128|Me&63}}return O[H]=0,H-Ae}function aa(N,O,H){return ra(N,o(),O,H)}function xu(N){for(var O=0,H=0;H<N.length;++H){var te=N.charCodeAt(H);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|N.charCodeAt(++H)&1023),te<=127?++O:te<=2047?O+=2:te<=65535?O+=3:O+=4}return O}var Oa=typeof TextDecoder!="undefined"?new ws("utf-16le"):void 0;function oa(N,O){a().set(N,O)}function Md(N,O,H){for(var te=0;te<N.length;++te)a()[O++>>0]=N.charCodeAt(te);H||(a()[O>>0]=0)}function bu(N,O){return N%O>0&&(N+=O-N%O),N}var jn,sf,rf,zd,af,of,W4,lf,uf;S&&(jn=d.buffer);function yr(N){jn=N,d.HEAP8=sf=new Int8Array(N),d.HEAP16=zd=new Int16Array(N),d.HEAP32=of=new Int32Array(N),d.HEAPU8=rf=new Uint8Array(N),d.HEAPU16=af=new Uint16Array(N),d.HEAPU32=W4=new Uint32Array(N),d.HEAPF32=lf=new Float32Array(N),d.HEAPF64=uf=new Float64Array(N)}var cf=d.INITIAL_MEMORY||16777216;if(S)$e=d.wasmMemory,jn=d.buffer;else if(d.wasmMemory)$e=d.wasmMemory;else if($e=new WebAssembly.Memory({initial:cf/65536,maximum:32768,shared:!0}),!($e.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),k&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");$e&&(jn=$e.buffer),cf=jn.byteLength,yr(jn);var Us,vu=[],Ma=[],b1=[],df=[],Ci=!1,v1=!1,pf=0;function Ti(){return At||pf>0}function qn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)V4(d.preRun.shift());gf(vu)}function Ld(){Ci=!0,!S&&gf(Ma)}function w1(){S||(ze.terminateAllThreads(),v1=!0)}function k1(){if(!S){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)Bd(d.postRun.shift());gf(df)}}function V4(N){vu.unshift(N)}function U4(N){Ma.unshift(N)}function Bd(N){df.unshift(N)}var za=0,hf=null,Ar=null;function Wd(N){za++,d.monitorRunDependencies&&d.monitorRunDependencies(za)}function G4(N){if(za--,d.monitorRunDependencies&&d.monitorRunDependencies(za),za==0&&(hf!==null&&(clearInterval(hf),hf=null),Ar)){var O=Ar;Ar=null,O()}}d.preloadedImages={},d.preloadedAudios={};function wu(N){S?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",Q(N),It=!0,Un=1,N+=". Build with -s ASSERTIONS=1 for more info.";var O=new WebAssembly.RuntimeError(N);throw f(O),O}var I1="data:application/octet-stream;base64,";function Vd(N){return N.startsWith(I1)}function ff(N){return N.startsWith("file://")}var Xn;Xn="tfjs-backend-wasm-threaded-simd.wasm",Vd(Xn)||(Xn=R(Xn));function mf(N){try{if(N==Xn&&pt)return new Uint8Array(pt);if($)return $(N);throw"both async and sync fetching of the wasm failed"}catch(O){wu(O)}}function ku(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!ff(Xn))return fetch(Xn,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+Xn+"'";return N.arrayBuffer()}).catch(function(){return mf(Xn)});if(_)return new Promise(function(N,O){_(Xn,function(H){N(new Uint8Array(H))},O)})}return Promise.resolve().then(function(){return mf(Xn)})}function S1(){var N={env:Nf,wasi_snapshot_preview1:Nf};function O(Te,Me){var Lt=Te.exports;if(d.asm=Lt,D1(d.asm.emscripten_tls_init),Us=d.asm.__indirect_function_table,U4(d.asm.__wasm_call_ctors),Tt=Me,!S){var vr=ze.unusedWorkers.length;ze.unusedWorkers.forEach(function(wr){ze.loadWasmModuleToWorker(wr,function(){--vr||G4("wasm-instantiate")})})}}S||Wd("wasm-instantiate");function H(Te){O(Te.instance,Te.module)}function te(Te){return ku().then(function(Me){return WebAssembly.instantiate(Me,N)}).then(function(Me){return Me}).then(Te,function(Me){Q("failed to asynchronously prepare wasm: "+Me),wu(Me)})}function Ae(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Vd(Xn)&&!ff(Xn)&&typeof fetch=="function"?fetch(Xn,{credentials:"same-origin"}).then(function(Te){var Me=WebAssembly.instantiateStreaming(Te,N);return Me.then(H,function(Lt){return Q("wasm streaming compile failed: "+Lt),Q("falling back to ArrayBuffer instantiation"),te(H)})}):te(H)}if(d.instantiateWasm)try{var ve=d.instantiateWasm(N,O);return ve}catch(Te){return Q("Module.instantiateWasm callback failed with error: "+Te),!1}return Ae().catch(f),{}}var H4,j4,C1={};function gf(N){for(;N.length>0;){var O=N.shift();if(typeof O=="function"){O(d);continue}var H=O.func;typeof H=="number"?O.arg===void 0?Su(H)():Su(H)(O.arg):H(O.arg===void 0?null:O.arg)}}function Iu(N){var O=Qg(),H=N();return $f(O),H}function YE(N){return N}function q4(N){var O=/\b_Z[\w\d_]+/g;return N.replace(O,function(H){var te=H;return H===te?H:te+" ["+H+"]"})}function T1(N){u()[N>>2]=0;var O=ze.pthreads[N];delete ze.pthreads[N],O.worker.terminate(),Jg(N),ze.runningWorkers.splice(ze.runningWorkers.indexOf(O.worker),1),O.worker.pthread=void 0}function N1(N){var O=ze.pthreads[N];O.worker.postMessage({cmd:"cancel"})}function yf(N){var O=ze.pthreads[N];if(O){u()[N>>2]=0;var H=O.worker;ze.returnWorkerToPool(H)}}function Af(N){BR(N)}function E1(N){if(N instanceof Xd||N=="unwind")return Un;A(1,N)}var ze={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){S?ze.initWorker():ze.initMainThread()},initMainThread:function(){for(var N=8,O=0;O<N;++O)ze.allocateUnusedWorker()},initWorker:function(){At=!1},pthreads:{},setExitStatus:function(N){Un=N},terminateAllThreads:function(){for(var N in ze.pthreads){var O=ze.pthreads[N];O&&O.worker&&ze.returnWorkerToPool(O.worker)}for(var H=0;H<ze.unusedWorkers.length;++H){var te=ze.unusedWorkers[H];te.terminate()}ze.unusedWorkers=[]},returnWorkerToPool:function(N){ze.runWithoutMainThreadQueuedCalls(function(){delete ze.pthreads[N.pthread.threadInfoStruct],ze.unusedWorkers.push(N),ze.runningWorkers.splice(ze.runningWorkers.indexOf(N),1),Jg(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[ov>>2]=0;try{N()}finally{u()[ov>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in ze.tlsInitFunctions)ze.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,O){N.onmessage=H=>{var te=H.data,Ae=te.cmd;if(N.pthread&&(ze.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Df()){var ve=ze.pthreads[te.targetThread];ve?ve.worker.postMessage(te,te.transferList):Q('Internal error! Worker sent a message "'+Ae+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),ze.currentProxiedOperationCallerThread=void 0;return}Ae==="processQueuedMainThreadWork"?tv():Ae==="spawnThread"?bf(te):Ae==="cleanupThread"?yf(te.thread):Ae==="killThread"?T1(te.thread):Ae==="cancelThread"?N1(te.thread):Ae==="loaded"?(N.loaded=!0,O&&O(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):Ae==="print"?ee("Thread "+te.threadId+": "+te.text):Ae==="printErr"?Q("Thread "+te.threadId+": "+te.text):Ae==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?N.postMessage(te):Ae==="onAbort"?d.onAbort&&d.onAbort(te.arg):Q("worker sent an unknown command "+Ae),ze.currentProxiedOperationCallerThread=void 0},N.onerror=H=>{var te="worker sent an error!";throw Q(te+" "+H.filename+":"+H.lineno+": "+H.message),H},k&&(N.on("message",function(H){N.onmessage({data:H})}),N.on("error",function(H){N.onerror(H)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:$e,wasmModule:Tt})},allocateUnusedWorker:function(){var N=R("tfjs-backend-wasm-threaded-simd.worker.js");ze.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return ze.unusedWorkers.length==0&&(ze.allocateUnusedWorker(),ze.loadWasmModuleToWorker(ze.unusedWorkers[0])),ze.unusedWorkers.pop()}};function R1(){var N=Df(),O=u()[N+44>>2],H=u()[N+48>>2],te=O-H;av(O,te),$f(O)}d.establishStackSpace=R1;function xf(N){if(S)return Ri(1,0,N);try{Af(N)}catch(O){E1(O)}}var Ni=[];function Su(N){var O=Ni[N];return O||(N>=Ni.length&&(Ni.length=N+1),Ni[N]=O=Us.get(N)),O}function _1(N,O){return Su(N)(O)}d.invokeEntryPoint=_1;function X4(){var N=new Error;if(!N.stack){try{throw new Error}catch(O){N=O}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function D1(N,O,H){ze.tlsInitFunctions.push(N)}function K4(N,O){Us.set(N,O),Ni[N]=O}var Ei;k?Ei=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:S?Ei=()=>performance.now()-d.__performance_now_clock_drift:Ei=()=>performance.now();var $1=!0;function P1(N){return u()[ev()>>2]=N,N}function F1(N,O){var H;if(N===0)H=Date.now();else if((N===1||N===4)&&$1)H=Ei();else return P1(28),-1;return u()[O>>2]=H/1e3|0,u()[O+4>>2]=H%1e3*1e3*1e3|0,0}function O1(N,O){return F1(N,O)}function M1(N){nv(N,!w,1,!b),ze.threadInit()}function z1(N){S?postMessage({cmd:"cleanupThread",thread:N}):yf(N)}function bf(N){var O=ze.getNewWorker();if(!O)return 6;ze.runningWorkers.push(O);var H=ze.pthreads[N.pthread_ptr]={worker:O,threadInfoStruct:N.pthread_ptr};O.pthread=H;var te={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return O.runPthread=()=>{te.time=performance.now(),O.postMessage(te,N.transferList)},O.loaded&&(O.runPthread(),delete O.runPthread),0}function L1(N,O,H,te){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var Ae=[],ve=0;if(S&&(Ae.length===0||ve))return sv(687865856,N,O,H,te);if(ve)return ve;var Te={startRoutine:H,pthread_ptr:N,arg:te,transferList:Ae};return S?(Te.cmd="spawnThread",postMessage(Te,Ae),0):bf(Te)}function B1(){return 2097152}function W1(N,O){if(N==O)postMessage({cmd:"processQueuedMainThreadWork"});else if(S)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var H=ze.pthreads[N],te=H&&H.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function V1(){wu("")}function U1(){k||w||Y("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function vf(){return 2147483648}function G1(N,O,H){o().copyWithin(N,O,O+H)}function H1(){return k?f_().cpus().length:navigator.hardwareConcurrency}function Ri(N,O){var H=arguments.length-2,te=arguments;return Iu(function(){for(var Ae=H,ve=_u(Ae*8),Te=ve>>3,Me=0;Me<H;Me++){var Lt=te[2+Me];p()[Te+Me]=Lt}return rv(N,Ae,ve,O)})}var Ud=[];function j1(N,O,H){Ud.length=O;for(var te=H>>3,Ae=0;Ae<O;Ae++)Ud[Ae]=p()[te+Ae];var ve=N<0,Te=ve?C1[-N-1]:dg[N];return Te.apply(null,Ud)}function q1(N){try{return $e.grow(N-jn.byteLength+65535>>>16),yr($e.buffer),1}catch(O){}}function X1(N){var O=o().length;if(N=N>>>0,N<=O)return!1;var H=vf();if(N>H)return!1;for(var te=1;te<=4;te*=2){var Ae=O*(1+.2/te);Ae=Math.min(Ae,N+100663296);var ve=Math.min(H,bu(Math.max(N,Ae),65536)),Te=q1(ve);if(Te)return!0}return!1}var Je={inEventHandler:0,removeAllEventListeners:function(){for(var N=Je.eventHandlers.length-1;N>=0;--N)Je._removeHandler(N);Je.eventHandlers=[],Je.deferredCalls=[]},registerRemoveEventListeners:function(){Je.removeEventListenersRegistered||(b1.push(Je.removeAllEventListeners),Je.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,O,H){function te(Te,Me){if(Te.length!=Me.length)return!1;for(var Lt in Te)if(Te[Lt]!=Me[Lt])return!1;return!0}for(var Ae in Je.deferredCalls){var ve=Je.deferredCalls[Ae];if(ve.targetFunction==N&&te(ve.argsList,H))return}Je.deferredCalls.push({targetFunction:N,precedence:O,argsList:H}),Je.deferredCalls.sort(function(Te,Me){return Te.precedence<Me.precedence})},removeDeferredCalls:function(N){for(var O=0;O<Je.deferredCalls.length;++O)Je.deferredCalls[O].targetFunction==N&&(Je.deferredCalls.splice(O,1),--O)},canPerformEventHandlerRequests:function(){return Je.inEventHandler&&Je.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Je.canPerformEventHandlerRequests())for(var N=0;N<Je.deferredCalls.length;++N){var O=Je.deferredCalls[N];Je.deferredCalls.splice(N,1),--N,O.targetFunction.apply(null,O.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,O){for(var H=0;H<Je.eventHandlers.length;++H)Je.eventHandlers[H].target==N&&(!O||O==Je.eventHandlers[H].eventTypeString)&&Je._removeHandler(H--)},_removeHandler:function(N){var O=Je.eventHandlers[N];O.target.removeEventListener(O.eventTypeString,O.eventListenerFunc,O.useCapture),Je.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var O=function(Ae){++Je.inEventHandler,Je.currentEventHandler=N,Je.runDeferredCalls(),N.handlerFunc(Ae),Je.runDeferredCalls(),--Je.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=O,N.target.addEventListener(N.eventTypeString,O,N.useCapture),Je.eventHandlers.push(N),Je.registerRemoveEventListeners();else for(var H=0;H<Je.eventHandlers.length;++H)Je.eventHandlers[H].target==N.target&&Je.eventHandlers[H].eventTypeString==N.eventTypeString&&Je._removeHandler(H--)},queueEventHandlerOnThread_iiii:function(N,O,H,te,Ae){Iu(function(){var ve=_u(12);u()[ve>>2]=H,u()[ve+4>>2]=te,u()[ve+8>>2]=Ae,Yg(N,637534208,O,te,ve)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return ze.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function K1(N){var O=xu(N)+1,H=Zg(O);return aa(N,H,O),H}function Z1(N,O,H,te){Iu(function(){var Ae=_u(12),ve=0;O&&(ve=K1(O)),u()[Ae>>2]=ve,u()[Ae+4>>2]=H,u()[Ae+8>>2]=te,Yg(N,657457152,0,ve,Ae)})}function Y1(N,O,H,te){O=O?Hn(O):"",Z1(N,O,H,te)}function J1(N){return N>2?Hn(N):N}var Q1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function eg(N){N=J1(N);var O=Q1[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return O}function Gd(N){return eg(N)}function wf(N,O,H){var te=Gd(N);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=O,u()[te.canvasSharedPtr+4>>2]=H),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var Ae=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var ve=te.GLctxObject.GLctx.getParameter(2978);Ae=ve[0]===0&&ve[1]===0&&ve[2]===te.width&&ve[3]===te.height}te.width=O,te.height=H,Ae&&te.GLctxObject.GLctx.viewport(0,0,O,H)}else if(te.canvasSharedPtr){var Te=u()[te.canvasSharedPtr+8>>2];return Y1(Te,N,O,H),1}else return-4;return 0}function kf(N,O,H){return S?Ri(2,1,N,O,H):wf(N,O,H)}function tg(N,O,H){var te=Gd(N);return te?wf(N,O,H):kf(N,O,H)}function ng(){throw"unwind"}function sg(N){var O=N.getExtension("ANGLE_instanced_arrays");if(O)return N.vertexAttribDivisor=function(H,te){O.vertexAttribDivisorANGLE(H,te)},N.drawArraysInstanced=function(H,te,Ae,ve){O.drawArraysInstancedANGLE(H,te,Ae,ve)},N.drawElementsInstanced=function(H,te,Ae,ve,Te){O.drawElementsInstancedANGLE(H,te,Ae,ve,Te)},1}function rg(N){var O=N.getExtension("OES_vertex_array_object");if(O)return N.createVertexArray=function(){return O.createVertexArrayOES()},N.deleteVertexArray=function(H){O.deleteVertexArrayOES(H)},N.bindVertexArray=function(H){O.bindVertexArrayOES(H)},N.isVertexArray=function(H){return O.isVertexArrayOES(H)},1}function ag(N){var O=N.getExtension("WEBGL_draw_buffers");if(O)return N.drawBuffers=function(H,te){O.drawBuffersWEBGL(H,te)},1}function og(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var zt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(O){zt.lastError||(zt.lastError=O)},getNewId:function(N){for(var O=zt.counter++,H=N.length;H<O;H++)N[H]=null;return O},getSource:function(N,O,H,te){for(var Ae="",ve=0;ve<O;++ve){var Te=te?u()[te+ve*4>>2]:-1;Ae+=Hn(u()[H+ve*4>>2],Te<0?void 0:Te)}return Ae},createContext:function(N,O){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(Ae,ve){var Te=N.getContextSafariWebGL2Fixed(Ae,ve);return Ae=="webgl"==Te instanceof WebGLRenderingContext?Te:null});var H=N.getContext("webgl",O);if(!H)return 0;var te=zt.registerContext(H,O);return te},registerContext:function(N,O){var H=Zg(8);u()[H+4>>2]=Df();var te={handle:H,attributes:O,version:O.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=te),zt.contexts[H]=te,(typeof O.enableExtensionsByDefault=="undefined"||O.enableExtensionsByDefault)&&zt.initExtensions(te),H},makeContextCurrent:function(N){return zt.currentContext=zt.contexts[N],d.ctx=Tf=zt.currentContext&&zt.currentContext.GLctx,!(N&&!Tf)},getContext:function(N){return zt.contexts[N]},deleteContext:function(N){zt.currentContext===zt.contexts[N]&&(zt.currentContext=null),typeof Je=="object"&&Je.removeAllHandlersOnTarget(zt.contexts[N].GLctx.canvas),zt.contexts[N]&&zt.contexts[N].GLctx.canvas&&(zt.contexts[N].GLctx.canvas.GLctxObject=void 0),Q4(zt.contexts[N].handle),zt.contexts[N]=null},initExtensions:function(N){if(N||(N=zt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var O=N.GLctx;sg(O),rg(O),ag(O),O.disjointTimerQueryExt=O.getExtension("EXT_disjoint_timer_query"),og(O);var H=O.getSupportedExtensions()||[];H.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&O.getExtension(te)})}}},ig=["default","low-power","high-performance"];function lg(N,O){var H=O>>2,te=u()[H+6],Ae={alpha:!!u()[H+0],depth:!!u()[H+1],stencil:!!u()[H+2],antialias:!!u()[H+3],premultipliedAlpha:!!u()[H+4],preserveDrawingBuffer:!!u()[H+5],powerPreference:ig[te],failIfMajorPerformanceCaveat:!!u()[H+7],majorVersion:u()[H+8],minorVersion:u()[H+9],enableExtensionsByDefault:u()[H+10],explicitSwapControl:u()[H+11],proxyContextToMainThread:u()[H+12],renderViaOffscreenBackBuffer:u()[H+13]},ve=Gd(N);if(!ve||Ae.explicitSwapControl)return 0;var Te=zt.createContext(ve,Ae);return Te}function ug(N,O){return lg(N,O)}var Cu={mappings:{},buffers:[null,[],[]],printChar:function(N,O){var H=Cu.buffers[N];O===0||O===10?((N===1?ee:Q)(Vs(H,0)),H.length=0):H.push(O)},varargs:void 0,get:function(){Cu.varargs+=4;var N=u()[Cu.varargs-4>>2];return N},getStr:function(N){var O=Hn(N);return O},get64:function(N,O){return N}};function If(N){return S?Ri(3,1,N):0}function Sf(N,O,H,te,Ae){if(S)return Ri(4,1,N,O,H,te,Ae)}function Cf(N,O,H,te){if(S)return Ri(5,1,N,O,H,te);for(var Ae=0,ve=0;ve<H;ve++){var Te=u()[O>>2],Me=u()[O+4>>2];O+=8;for(var Lt=0;Lt<Me;Lt++)Cu.printChar(N,o()[Te+Lt]);Ae+=Me}return u()[te>>2]=Ae,0}function cg(N){Be(N)}ze.init();var Tf,dg=[null,xf,kf,If,Sf,Cf],Z4=!1,Nf={__clock_gettime:O1,__emscripten_init_main_thread_js:M1,__emscripten_thread_cleanup:z1,__pthread_create_js:L1,_emscripten_default_pthread_stack_size:B1,_emscripten_notify_thread_queue:W1,abort:V1,emscripten_check_blocking_allowed:U1,emscripten_get_heap_max:vf,emscripten_get_now:Ei,emscripten_memcpy_big:G1,emscripten_num_logical_cores:H1,emscripten_receive_on_main_thread_js:j1,emscripten_resize_heap:X1,emscripten_set_canvas_element_size:tg,emscripten_unwind_to_js_event_loop:ng,emscripten_webgl_create_context:ug,exit:Af,fd_close:If,fd_seek:Sf,fd_write:Cf,memory:$e||d.wasmMemory,setTempRet0:cg},Y4=S1(),pg=d.___wasm_call_ctors=function(){return(pg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},hg=d._init=function(){return(hg=d._init=d.asm.init).apply(null,arguments)},fg=d._init_with_threads_count=function(){return(fg=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},mg=d._get_threads_count=function(){return(mg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},gg=d._register_tensor=function(){return(gg=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},yg=d._dispose_data=function(){return(yg=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Ag=d._dispose=function(){return(Ag=d._dispose=d.asm.dispose).apply(null,arguments)},xg=d._Abs=function(){return(xg=d._Abs=d.asm.Abs).apply(null,arguments)},bg=d._Add=function(){return(bg=d._Add=d.asm.Add).apply(null,arguments)},vg=d._AddN=function(){return(vg=d._AddN=d.asm.AddN).apply(null,arguments)},wg=d._All=function(){return(wg=d._All=d.asm.All).apply(null,arguments)},kg=d._Any=function(){return(kg=d._Any=d.asm.Any).apply(null,arguments)},Ig=d._ArgMax=function(){return(Ig=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Sg=d._AvgPool=function(){return(Sg=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Cg=d._BatchMatMul=function(){return(Cg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},Tg=d._Ceil=function(){return(Tg=d._Ceil=d.asm.Ceil).apply(null,arguments)},Ng=d._ClipByValue=function(){return(Ng=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Eg=d._Conv2D=function(){return(Eg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Rg=d._Conv2DBackpropInput=function(){return(Rg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},_g=d._Cos=function(){return(_g=d._Cos=d.asm.Cos).apply(null,arguments)},Dg=d._Cosh=function(){return(Dg=d._Cosh=d.asm.Cosh).apply(null,arguments)},$g=d._CropAndResize=function(){return($g=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Pg=d._Cumprod=function(){return(Pg=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},Fg=d._Cumsum=function(){return(Fg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},Og=d._DepthToSpace=function(){return(Og=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Mg=d._DepthwiseConv2dNative=function(){return(Mg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},zg=d._Elu=function(){return(zg=d._Elu=d.asm.Elu).apply(null,arguments)},Lg=d._Equal=function(){return(Lg=d._Equal=d.asm.Equal).apply(null,arguments)},Bg=d._Exp=function(){return(Bg=d._Exp=d.asm.Exp).apply(null,arguments)},Wg=d._FlipLeftRight=function(){return(Wg=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Vg=d._Floor=function(){return(Vg=d._Floor=d.asm.Floor).apply(null,arguments)},Ug=d._FloorDiv=function(){return(Ug=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},Gg=d._FusedBatchNorm=function(){return(Gg=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},Hg=d._FusedConv2D=function(){return(Hg=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Ef=d._FusedDepthwiseConv2D=function(){return(Ef=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Rf=d._Gather=function(){return(Rf=d._Gather=d.asm.Gather).apply(null,arguments)},Hd=d._GatherNd=function(){return(Hd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},jg=d._Greater=function(){return(jg=d._Greater=d.asm.Greater).apply(null,arguments)},qg=d._GreaterEqual=function(){return(qg=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Tu=d._LeakyRelu=function(){return(Tu=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},jd=d._Less=function(){return(jd=d._Less=d.asm.Less).apply(null,arguments)},qd=d._LessEqual=function(){return(qd=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},J4=d._Log=function(){return(J4=d._Log=d.asm.Log).apply(null,arguments)},Nu=d._LogicalAnd=function(){return(Nu=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},Eu=d._LogicalNot=function(){return(Eu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},Xg=d._LogicalOr=function(){return(Xg=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},X=d._LogicalXor=function(){return(X=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},se=d._Max=function(){return(se=d._Max=d.asm.Max).apply(null,arguments)},xe=d._MaxPool=function(){return(xe=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},De=d._Maximum=function(){return(De=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},yt=d._Min=function(){return(yt=d._Min=d.asm.Min).apply(null,arguments)},et=d._Minimum=function(){return(et=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ze=d._MirrorPad=function(){return(Ze=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},en=d._Multiply=function(){return(en=d._Multiply=d.asm.Multiply).apply(null,arguments)},xr=d._Neg=function(){return(xr=d._Neg=d.asm.Neg).apply(null,arguments)},br=d._NonMaxSuppressionV3=function(){return(br=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Ru=d._NonMaxSuppressionV4=function(){return(Ru=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},_i=d._NonMaxSuppressionV5=function(){return(_i=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},Kg=d._NotEqual=function(){return(Kg=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},Kn=d._OneHot=function(){return(Kn=d._OneHot=d.asm.OneHot).apply(null,arguments)},La=d._PadV2=function(){return(La=d._PadV2=d.asm.PadV2).apply(null,arguments)},_f=d._Pow=function(){return(_f=d._Pow=d.asm.Pow).apply(null,arguments)},JE=d._Prelu=function(){return(JE=d._Prelu=d.asm.Prelu).apply(null,arguments)},QE=d._Prod=function(){return(QE=d._Prod=d.asm.Prod).apply(null,arguments)},eR=d._RealDiv=function(){return(eR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},tR=d._Relu=function(){return(tR=d._Relu=d.asm.Relu).apply(null,arguments)},nR=d._Relu6=function(){return(nR=d._Relu6=d.asm.Relu6).apply(null,arguments)},sR=d._ResizeBilinear=function(){return(sR=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},rR=d._ResizeNearestNeighbor=function(){return(rR=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},aR=d._Reverse=function(){return(aR=d._Reverse=d.asm.Reverse).apply(null,arguments)},oR=d._RotateWithOffset=function(){return(oR=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},iR=d._Round=function(){return(iR=d._Round=d.asm.Round).apply(null,arguments)},lR=d._Rsqrt=function(){return(lR=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},uR=d._ScatterNd=function(){return(uR=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},cR=d._SelectV2=function(){return(cR=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},dR=d._Sigmoid=function(){return(dR=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},pR=d._Sin=function(){return(pR=d._Sin=d.asm.Sin).apply(null,arguments)},hR=d._Softmax=function(){return(hR=d._Softmax=d.asm.Softmax).apply(null,arguments)},fR=d._SparseFillEmptyRows=function(){return(fR=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},mR=d._SparseReshape=function(){return(mR=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},gR=d._SparseSegmentReduction=function(){return(gR=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},yR=d._Sqrt=function(){return(yR=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},AR=d._Square=function(){return(AR=d._Square=d.asm.Square).apply(null,arguments)},xR=d._SquaredDifference=function(){return(xR=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},bR=d._Step=function(){return(bR=d._Step=d.asm.Step).apply(null,arguments)},vR=d._StridedSlice=function(){return(vR=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},wR=d._Sub=function(){return(wR=d._Sub=d.asm.Sub).apply(null,arguments)},kR=d._Sum=function(){return(kR=d._Sum=d.asm.Sum).apply(null,arguments)},IR=d._Tan=function(){return(IR=d._Tan=d.asm.Tan).apply(null,arguments)},SR=d._Tanh=function(){return(SR=d._Tanh=d.asm.Tanh).apply(null,arguments)},CR=d._Tile=function(){return(CR=d._Tile=d.asm.Tile).apply(null,arguments)},TR=d._TopK=function(){return(TR=d._TopK=d.asm.TopK).apply(null,arguments)},NR=d._Transform=function(){return(NR=d._Transform=d.asm.Transform).apply(null,arguments)},ER=d._Transpose=function(){return(ER=d._Transpose=d.asm.Transpose).apply(null,arguments)},RR=d.__FusedMatMul=function(){return(RR=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},Zg=d._malloc=function(){return(Zg=d._malloc=d.asm.malloc).apply(null,arguments)},Q4=d._free=function(){return(Q4=d._free=d.asm.free).apply(null,arguments)},_R=d._emscripten_tls_init=function(){return(_R=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},ev=d.___errno_location=function(){return(ev=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Df=d._pthread_self=function(){return(Df=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},tv=d._emscripten_main_thread_process_queued_calls=function(){return(tv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},DR=d.__emscripten_thread_crashed=function(){return(DR=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},nv=d.__emscripten_thread_init=function(){return(nv=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},$R=d._emscripten_current_thread_process_queued_calls=function(){return($R=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},PR=d._emscripten_main_browser_thread_id=function(){return(PR=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},FR=d._emscripten_sync_run_in_main_thread_2=function(){return(FR=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},sv=d._emscripten_sync_run_in_main_thread_4=function(){return(sv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},rv=d._emscripten_run_in_main_runtime_thread_js=function(){return(rv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},Yg=d._emscripten_dispatch_to_thread_=function(){return(Yg=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},Jg=d.__emscripten_thread_free_data=function(){return(Jg=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},OR=d.__emscripten_thread_exit=function(){return(OR=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},MR=d._memalign=function(){return(MR=d._memalign=d.asm.memalign).apply(null,arguments)},av=d._emscripten_stack_set_limits=function(){return(av=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},Qg=d.stackSave=function(){return(Qg=d.stackSave=d.asm.stackSave).apply(null,arguments)},$f=d.stackRestore=function(){return($f=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},_u=d.stackAlloc=function(){return(_u=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},zR=d.dynCall_iijjiiii=function(){return(zR=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},LR=d.dynCall_jiji=function(){return(LR=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},ov=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=Gn,d.keepRuntimeAlive=Ti,d.PThread=ze,d.PThread=ze,d.wasmMemory=$e,d.ExitStatus=Xd;var Pf;function Xd(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Ar=function N(){Pf||e3(),Pf||(Ar=N)};function e3(N){if(N=N||y,za>0)return;if(S){h(d),Ld(),postMessage({cmd:"loaded"});return}if(qn(),za>0)return;function O(){Pf||(Pf=!0,d.calledRun=!0,!It&&(Ld(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),k1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),O()},1)):O()}d.run=e3;function BR(N,O){if(Un=N,!O&&S)throw xf(N),"unwind";Ti()||w1(),WR(N)}function WR(N){Un=N,Ti()||(ze.terminateAllThreads(),d.onExit&&d.onExit(N),It=!0),A(N,new Xd(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();e3();var Ff;m&&(Ff={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var Of;if(typeof WasmBackendModule!="undefined")Of=WasmBackendModule;else if(typeof r!="undefined")Of=r;else throw new Error("Could not find wasm module in post.js");if(Ff){var VR=Of._dispose;Of._dispose=function(){VR(),Ff.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Ff.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),g_=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),y_=ln({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.19.0_hek32lflchivueqv5i4vgonghu/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(X,se){o=X,i=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(X,se)=>{throw se},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(X){return a.locateFile?a.locateFile(X,g):g+X}var x,A,b,w;function k(X){if(X instanceof jd)return;_("exiting due to exception: "+X)}var S,E,R;m?(f?g=um().dirname(g)+"/":g=__dirname+"/",R=()=>{E||(S=xy(),E=um())},x=function(se,xe){return R(),se=E.normalize(se),S.readFileSync(se,xe?void 0:"utf8")},b=X=>{var se=x(X,!0);return se.buffer||(se=new Uint8Array(se)),se},A=(X,se,xe)=>{R(),X=E.normalize(X),S.readFile(X,function(De,ht){De?xe(De):se(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof jd))throw X}),process.on("unhandledRejection",function(X){throw X}),d=(X,se)=>{if(zd())throw process.exitCode=X,se;k(se),process.exit(X)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},f&&(b=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),A=(X,se,xe)=>{var De=new XMLHttpRequest;De.open("GET",X,!0),De.responseType="arraybuffer",De.onload=()=>{if(De.status==200||De.status==0&&De.response){se(De.response);return}xe()},De.onerror=xe,De.send(null)},w=X=>document.title=X);var P=a.print||console.log.bind(console),_=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var $=4;function T(X){T.shown||(T.shown={}),T.shown[X]||(T.shown[X]=1,_(X))}function F(X,se){if(typeof WebAssembly.Function=="function"){for(var xe={i:"i32",j:"i64",f:"f32",d:"f64"},De={parameters:[],results:se[0]=="v"?[]:[xe[se[0]]]},ht=1;ht<se.length;++ht)De.parameters.push(xe[se[ht]]);return new WebAssembly.Function(De,X)}var yt=[1,0,1,96],et=se.slice(0,1),Ze=se.slice(1),en={i:127,j:126,f:125,d:124};yt.push(Ze.length);for(var ht=0;ht<Ze.length;++ht)yt.push(en[Ze[ht]]);et=="v"?yt.push(0):yt=yt.concat([1,en[et]]),yt[1]=yt.length-2;var xr=new Uint8Array([0,97,115,109,1,0,0,0].concat(yt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),br=new WebAssembly.Module(xr),Ru=new WebAssembly.Instance(br,{e:{f:X}}),_i=Ru.exports.f;return _i}var G=[],q;function z(){if(G.length)return G.pop();try{Oa.grow(1)}catch(X){throw X instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":X}return Oa.length-1}function K(X,se){for(var xe=X;xe<X+se;xe++){var De=Wd(xe);De&&q.set(De,xe)}}var B=0,ee=X=>{B=X},Q;a.wasmBinary&&(Q=a.wasmBinary);var oe=a.noExitRuntime||!0;typeof WebAssembly!="object"&&Ci("no native wasm support detected");var Y,ae=!1,le;function ye(X,se){X||Ci(se)}function we(X){var se=a["_"+X];return se}function Re(X,se,xe,De,ht){var yt={string:function(Kn){var La=0;if(Kn!=null&&Kn!==0){var _f=(Kn.length<<2)+1;La=Hd(_f),At(Kn,La,_f)}return La},array:function(Kn){var La=Hd(Kn.length);return It(Kn,La),La}};function et(Kn){return se==="string"?dt(Kn):se==="boolean"?Boolean(Kn):Kn}var Ze=we(X),en=[],xr=0;if(De)for(var br=0;br<De.length;br++){var Ru=yt[xe[br]];Ru?(xr===0&&(xr=Ef()),en[br]=Ru(De[br])):en[br]=De[br]}var _i=Ze.apply(null,en);function Kg(Kn){return xr!==0&&Rf(xr),et(Kn)}return _i=Kg(_i),_i}function _e(X,se,xe,De){xe=xe||[];var ht=xe.every(function(et){return et==="number"}),yt=se!=="string";return yt&&ht&&!De?we(X):function(){return Re(X,se,xe,arguments,De)}}var Be=1,Ge=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ot(X,se,xe){for(var De=se+xe,ht=se;X[ht]&&!(ht>=De);)++ht;if(ht-se>16&&X.subarray&&Ge)return Ge.decode(X.subarray(se,ht));for(var yt="";se<ht;){var et=X[se++];if(!(et&128)){yt+=String.fromCharCode(et);continue}var Ze=X[se++]&63;if((et&224)==192){yt+=String.fromCharCode((et&31)<<6|Ze);continue}var en=X[se++]&63;if((et&240)==224?et=(et&15)<<12|Ze<<6|en:et=(et&7)<<18|Ze<<12|en<<6|X[se++]&63,et<65536)yt+=String.fromCharCode(et);else{var xr=et-65536;yt+=String.fromCharCode(55296|xr>>10,56320|xr&1023)}}return yt}function dt(X,se){return X?ot(Gn,X,se):""}function pt(X,se,xe,De){if(!(De>0))return 0;for(var ht=xe,yt=xe+De-1,et=0;et<X.length;++et){var Ze=X.charCodeAt(et);if(Ze>=55296&&Ze<=57343){var en=X.charCodeAt(++et);Ze=65536+((Ze&1023)<<10)|en&1023}if(Ze<=127){if(xe>=yt)break;se[xe++]=Ze}else if(Ze<=2047){if(xe+1>=yt)break;se[xe++]=192|Ze>>6,se[xe++]=128|Ze&63}else if(Ze<=65535){if(xe+2>=yt)break;se[xe++]=224|Ze>>12,se[xe++]=128|Ze>>6&63,se[xe++]=128|Ze&63}else{if(xe+3>=yt)break;se[xe++]=240|Ze>>18,se[xe++]=128|Ze>>12&63,se[xe++]=128|Ze>>6&63,se[xe++]=128|Ze&63}}return se[xe]=0,xe-ht}function At(X,se,xe){return pt(X,Gn,se,xe)}function $e(X){for(var se=0,xe=0;xe<X.length;++xe){var De=X.charCodeAt(xe);De>=55296&&De<=57343&&(De=65536+((De&1023)<<10)|X.charCodeAt(++xe)&1023),De<=127?++se:De<=2047?se+=2:De<=65535?se+=3:se+=4}return se}var Tt=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function It(X,se){pn.set(X,se)}function Un(X,se,xe){for(var De=0;De<X.length;++De)pn[se++>>0]=X.charCodeAt(De);xe||(pn[se>>0]=0)}function Qt(X,se){return X%se>0&&(X+=se-X%se),X}var bs,pn,Gn,vs,ws,$n,Vs,Hn,ra;function aa(X){bs=X,a.HEAP8=pn=new Int8Array(X),a.HEAP16=vs=new Int16Array(X),a.HEAP32=$n=new Int32Array(X),a.HEAPU8=Gn=new Uint8Array(X),a.HEAPU16=ws=new Uint16Array(X),a.HEAPU32=Vs=new Uint32Array(X),a.HEAPF32=Hn=new Float32Array(X),a.HEAPF64=ra=new Float64Array(X)}var xu=a.INITIAL_MEMORY||16777216,Oa,oa=[],Md=[],bu=[],jn=!1,sf=!1,rf=0;function zd(){return oe||rf>0}function af(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)uf(a.preRun.shift());Bd(oa)}function of(){jn=!0,Bd(Md)}function W4(){sf=!0}function lf(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)cf(a.postRun.shift());Bd(bu)}function uf(X){oa.unshift(X)}function yr(X){Md.unshift(X)}function cf(X){bu.unshift(X)}var Us=0,vu=null,Ma=null;function b1(X){Us++,a.monitorRunDependencies&&a.monitorRunDependencies(Us)}function df(X){if(Us--,a.monitorRunDependencies&&a.monitorRunDependencies(Us),Us==0&&(vu!==null&&(clearInterval(vu),vu=null),Ma)){var se=Ma;Ma=null,se()}}a.preloadedImages={},a.preloadedAudios={};function Ci(X){a.onAbort&&a.onAbort(X),X="Aborted("+X+")",_(X),ae=!0,le=1,X+=". Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(X);throw i(se),se}var v1="data:application/octet-stream;base64,";function pf(X){return X.startsWith(v1)}function Ti(X){return X.startsWith("file://")}var qn;qn="tfjs-backend-wasm.wasm",pf(qn)||(qn=y(qn));function Ld(X){try{if(X==qn&&Q)return new Uint8Array(Q);if(b)return b(X);throw"both async and sync fetching of the wasm failed"}catch(se){Ci(se)}}function w1(){if(!Q&&(h||f)){if(typeof fetch=="function"&&!Ti(qn))return fetch(qn,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+qn+"'";return X.arrayBuffer()}).catch(function(){return Ld(qn)});if(A)return new Promise(function(X,se){A(qn,function(xe){X(new Uint8Array(xe))},se)})}return Promise.resolve().then(function(){return Ld(qn)})}function k1(){var X={env:Iu,wasi_snapshot_preview1:Iu};function se(et,Ze){var en=et.exports;a.asm=en,Y=a.asm.memory,aa(Y.buffer),Oa=a.asm.__indirect_function_table,yr(a.asm.__wasm_call_ctors),df("wasm-instantiate")}b1("wasm-instantiate");function xe(et){se(et.instance)}function De(et){return w1().then(function(Ze){return WebAssembly.instantiate(Ze,X)}).then(function(Ze){return Ze}).then(et,function(Ze){_("failed to asynchronously prepare wasm: "+Ze),Ci(Ze)})}function ht(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!pf(qn)&&!Ti(qn)&&typeof fetch=="function"?fetch(qn,{credentials:"same-origin"}).then(function(et){var Ze=WebAssembly.instantiateStreaming(et,X);return Ze.then(xe,function(en){return _("wasm streaming compile failed: "+en),_("falling back to ArrayBuffer instantiation"),De(xe)})}):De(xe)}if(a.instantiateWasm)try{var yt=a.instantiateWasm(X,se);return yt}catch(et){return _("Module.instantiateWasm callback failed with error: "+et),!1}return ht().catch(i),{}}var V4,U4;function Bd(X){for(;X.length>0;){var se=X.shift();if(typeof se=="function"){se(a);continue}var xe=se.func;typeof xe=="number"?se.arg===void 0?Wd(xe)():Wd(xe)(se.arg):xe(se.arg===void 0?null:se.arg)}}function za(X){return X}function hf(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(xe){var De=xe;return xe===De?xe:De+" ["+xe+"]"})}var Ar=[];function Wd(X){var se=Ar[X];return se||(X>=Ar.length&&(Ar.length=X+1),Ar[X]=se=Oa.get(X)),se}function G4(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function wu(X,se){Oa.set(X,se),Ar[X]=se}function I1(){Ci("")}function Vd(){return 2147483648}function ff(X,se,xe){Gn.copyWithin(X,se,se+xe)}function Xn(X){try{return Y.grow(X-bs.byteLength+65535>>>16),aa(Y.buffer),1}catch(se){}}function mf(X){var se=Gn.length;X=X>>>0;var xe=Vd();if(X>xe)return!1;for(var De=1;De<=4;De*=2){var ht=se*(1+.2/De);ht=Math.min(ht,X+100663296);var yt=Math.min(xe,Qt(Math.max(X,ht),65536)),et=Xn(yt);if(et)return!0}return!1}var ku={mappings:{},buffers:[null,[],[]],printChar:function(X,se){var xe=ku.buffers[X];se===0||se===10?((X===1?P:_)(ot(xe,0)),xe.length=0):xe.push(se)},varargs:void 0,get:function(){ku.varargs+=4;var X=$n[ku.varargs-4>>2];return X},getStr:function(X){var se=dt(X);return se},get64:function(X,se){return X}};function S1(X){return 0}function H4(X,se,xe,De,ht){}function j4(X,se,xe,De){for(var ht=0,yt=0;yt<xe;yt++){var et=$n[se>>2],Ze=$n[se+4>>2];se+=8;for(var en=0;en<Ze;en++)ku.printChar(X,Gn[et+en]);ht+=Ze}return $n[De>>2]=ht,0}function C1(X){ee(X)}var gf=!1,Iu={abort:I1,emscripten_get_heap_max:Vd,emscripten_memcpy_big:ff,emscripten_resize_heap:mf,fd_close:S1,fd_seek:H4,fd_write:j4,setTempRet0:C1},YE=k1(),q4=a.___wasm_call_ctors=function(){return(q4=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},T1=a._init=function(){return(T1=a._init=a.asm.init).apply(null,arguments)},N1=a._init_with_threads_count=function(){return(N1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},yf=a._get_threads_count=function(){return(yf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Af=a._register_tensor=function(){return(Af=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},E1=a._dispose_data=function(){return(E1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},ze=a._dispose=function(){return(ze=a._dispose=a.asm.dispose).apply(null,arguments)},R1=a._Abs=function(){return(R1=a._Abs=a.asm.Abs).apply(null,arguments)},xf=a._Add=function(){return(xf=a._Add=a.asm.Add).apply(null,arguments)},Ni=a._AddN=function(){return(Ni=a._AddN=a.asm.AddN).apply(null,arguments)},Su=a._All=function(){return(Su=a._All=a.asm.All).apply(null,arguments)},_1=a._Any=function(){return(_1=a._Any=a.asm.Any).apply(null,arguments)},X4=a._ArgMax=function(){return(X4=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},D1=a._AvgPool=function(){return(D1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},K4=a._BatchMatMul=function(){return(K4=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Ei=a._Ceil=function(){return(Ei=a._Ceil=a.asm.Ceil).apply(null,arguments)},$1=a._ClipByValue=function(){return($1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},P1=a._Conv2D=function(){return(P1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},F1=a._Conv2DBackpropInput=function(){return(F1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},O1=a._Cos=function(){return(O1=a._Cos=a.asm.Cos).apply(null,arguments)},M1=a._Cosh=function(){return(M1=a._Cosh=a.asm.Cosh).apply(null,arguments)},z1=a._CropAndResize=function(){return(z1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},bf=a._Cumprod=function(){return(bf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},L1=a._Cumsum=function(){return(L1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},B1=a._DepthToSpace=function(){return(B1=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},W1=a._DepthwiseConv2dNative=function(){return(W1=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},V1=a._Elu=function(){return(V1=a._Elu=a.asm.Elu).apply(null,arguments)},U1=a._Equal=function(){return(U1=a._Equal=a.asm.Equal).apply(null,arguments)},vf=a._Exp=function(){return(vf=a._Exp=a.asm.Exp).apply(null,arguments)},G1=a._FlipLeftRight=function(){return(G1=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},H1=a._Floor=function(){return(H1=a._Floor=a.asm.Floor).apply(null,arguments)},Ri=a._FloorDiv=function(){return(Ri=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Ud=a._FusedBatchNorm=function(){return(Ud=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},j1=a._FusedConv2D=function(){return(j1=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},q1=a._FusedDepthwiseConv2D=function(){return(q1=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},X1=a._Gather=function(){return(X1=a._Gather=a.asm.Gather).apply(null,arguments)},Je=a._GatherNd=function(){return(Je=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},K1=a._Greater=function(){return(K1=a._Greater=a.asm.Greater).apply(null,arguments)},Z1=a._GreaterEqual=function(){return(Z1=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},Y1=a._LeakyRelu=function(){return(Y1=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},J1=a._Less=function(){return(J1=a._Less=a.asm.Less).apply(null,arguments)},Q1=a._LessEqual=function(){return(Q1=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},eg=a._Log=function(){return(eg=a._Log=a.asm.Log).apply(null,arguments)},Gd=a._LogicalAnd=function(){return(Gd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},wf=a._LogicalNot=function(){return(wf=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},kf=a._LogicalOr=function(){return(kf=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},tg=a._LogicalXor=function(){return(tg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},ng=a._Max=function(){return(ng=a._Max=a.asm.Max).apply(null,arguments)},sg=a._MaxPool=function(){return(sg=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},rg=a._Maximum=function(){return(rg=a._Maximum=a.asm.Maximum).apply(null,arguments)},ag=a._Mean=function(){return(ag=a._Mean=a.asm.Mean).apply(null,arguments)},og=a._Min=function(){return(og=a._Min=a.asm.Min).apply(null,arguments)},zt=a._Minimum=function(){return(zt=a._Minimum=a.asm.Minimum).apply(null,arguments)},ig=a._MirrorPad=function(){return(ig=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},lg=a._Multiply=function(){return(lg=a._Multiply=a.asm.Multiply).apply(null,arguments)},ug=a._Neg=function(){return(ug=a._Neg=a.asm.Neg).apply(null,arguments)},Cu=a._NonMaxSuppressionV3=function(){return(Cu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},If=a._NonMaxSuppressionV4=function(){return(If=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Sf=a._NonMaxSuppressionV5=function(){return(Sf=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Cf=a._NotEqual=function(){return(Cf=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},cg=a._OneHot=function(){return(cg=a._OneHot=a.asm.OneHot).apply(null,arguments)},Tf=a._PadV2=function(){return(Tf=a._PadV2=a.asm.PadV2).apply(null,arguments)},dg=a._Pow=function(){return(dg=a._Pow=a.asm.Pow).apply(null,arguments)},Z4=a._Prelu=function(){return(Z4=a._Prelu=a.asm.Prelu).apply(null,arguments)},Nf=a._Prod=function(){return(Nf=a._Prod=a.asm.Prod).apply(null,arguments)},Y4=a._RealDiv=function(){return(Y4=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},pg=a._Relu=function(){return(pg=a._Relu=a.asm.Relu).apply(null,arguments)},hg=a._Relu6=function(){return(hg=a._Relu6=a.asm.Relu6).apply(null,arguments)},fg=a._ResizeBilinear=function(){return(fg=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},mg=a._ResizeNearestNeighbor=function(){return(mg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},gg=a._Reverse=function(){return(gg=a._Reverse=a.asm.Reverse).apply(null,arguments)},yg=a._RotateWithOffset=function(){return(yg=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Ag=a._Round=function(){return(Ag=a._Round=a.asm.Round).apply(null,arguments)},xg=a._Rsqrt=function(){return(xg=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},bg=a._ScatterNd=function(){return(bg=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},vg=a._SelectV2=function(){return(vg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},wg=a._Sigmoid=function(){return(wg=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},kg=a._Sin=function(){return(kg=a._Sin=a.asm.Sin).apply(null,arguments)},Ig=a._Softmax=function(){return(Ig=a._Softmax=a.asm.Softmax).apply(null,arguments)},Sg=a._SparseFillEmptyRows=function(){return(Sg=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Cg=a._SparseReshape=function(){return(Cg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},Tg=a._SparseSegmentReduction=function(){return(Tg=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Ng=a._Sqrt=function(){return(Ng=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},Eg=a._Square=function(){return(Eg=a._Square=a.asm.Square).apply(null,arguments)},Rg=a._SquaredDifference=function(){return(Rg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},_g=a._Step=function(){return(_g=a._Step=a.asm.Step).apply(null,arguments)},Dg=a._StridedSlice=function(){return(Dg=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},$g=a._Sub=function(){return($g=a._Sub=a.asm.Sub).apply(null,arguments)},Pg=a._Sum=function(){return(Pg=a._Sum=a.asm.Sum).apply(null,arguments)},Fg=a._Tan=function(){return(Fg=a._Tan=a.asm.Tan).apply(null,arguments)},Og=a._Tanh=function(){return(Og=a._Tanh=a.asm.Tanh).apply(null,arguments)},Mg=a._Tile=function(){return(Mg=a._Tile=a.asm.Tile).apply(null,arguments)},zg=a._TopK=function(){return(zg=a._TopK=a.asm.TopK).apply(null,arguments)},Lg=a._Transform=function(){return(Lg=a._Transform=a.asm.Transform).apply(null,arguments)},Bg=a._Transpose=function(){return(Bg=a._Transpose=a.asm.Transpose).apply(null,arguments)},Wg=a.__FusedMatMul=function(){return(Wg=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},Vg=a._malloc=function(){return(Vg=a._malloc=a.asm.malloc).apply(null,arguments)},Ug=a._free=function(){return(Ug=a._free=a.asm.free).apply(null,arguments)},Gg=a.___errno_location=function(){return(Gg=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},Hg=a._emscripten_main_thread_process_queued_calls=function(){return(Hg=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Ef=a.stackSave=function(){return(Ef=a.stackSave=a.asm.stackSave).apply(null,arguments)},Rf=a.stackRestore=function(){return(Rf=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Hd=a.stackAlloc=function(){return(Hd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},jg=a.dynCall_iijjiiii=function(){return(jg=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},qg=a.dynCall_jiji=function(){return(qg=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Tu;function jd(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}Ma=function X(){Tu||qd(),Tu||(Ma=X)};function qd(X){if(X=X||c,Us>0||(af(),Us>0))return;function se(){Tu||(Tu=!0,a.calledRun=!0,!ae&&(of(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),lf()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),se()},1)):se()}a.run=qd;function J4(X){le=X,zd()||(a.onExit&&a.onExit(X),ae=!0),d(X,new jd(X))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();qd();var Nu;l&&(Nu={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Eu;if(typeof r!="undefined")Eu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Eu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Nu){var Xg=Eu._dispose;Eu._dispose=function(){Xg(),Nu.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Nu.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),A_=1e-7,x_=1e-4,Mp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},cc=class{refCount(e){return Gs("refCount")}incRef(e){return Gs("incRef")}timerAvailable(){return!0}time(e){return Gs("time")}read(e){return Gs("read")}readSync(e){return Gs("readSync")}readToGPU(e,t){return Gs("readToGPU")}numDataIds(){return Gs("numDataIds")}disposeData(e,t){return Gs("disposeData")}write(e,t,n){return Gs("write")}move(e,t,n,s,r){return Gs("move")}memory(){return Gs("memory")}floatPrecision(){return Gs("floatPrecision")}epsilon(){return this.floatPrecision()===32?A_:x_}dispose(){return Gs("dispose")}};function Gs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function J7(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,cm(e,t,n)}function b_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,cm(e,n,s),cm(t,n,s)}function xp(e,t,n){return Math.max(e,Math.min(t,n))}function v_(e){return e%2===0?e:e+1}function cm(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function w_(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function k_(e,t){let n=Math.random();return t*n+(1-n)*e}function I_(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function M(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ns(e,t,n=""){M(co(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ol(e){M(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function Xi(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Pn(e)&&!n)for(let s=0;s<e.length;++s)Xi(e[s],t,n);else t.push(e);return t}function Et(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function S_(e){return e.length===0}function co(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function qu(e){return e%1===0}function C_(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function T_(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function N_(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return J7(t),t}function fp(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function E_(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function R_(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function ur(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),M(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),M(e.every(s=>qu(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function Q7(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:ur(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function e6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function t6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function n6(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function s6(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function __(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Pn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function m3(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function r6(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ga(e){return typeof e=="string"||e instanceof String}function a6(e){return typeof e=="boolean"}function o6(e){return typeof e=="number"}function Vm(e){return Array.isArray(e)?Vm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":o6(e)?"float32":Ga(e)?"string":a6(e)?"bool":"float32"}function Ya(e){return!!(e&&e.constructor&&e.call&&e.apply)}function dm(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function dc(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function i6(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=i6(e+l*i,o,n,s)}return r}function Wu(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return i6(0,e,t,n)}function by(e,t){let n=Um(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function Um(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function D_(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return Wu(e,new Float32Array(n));if(t==="int32")return Wu(e,new Int32Array(n));if(t==="bool")return Wu(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function vy(e){e.forEach(t=>{M(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function $_(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function P_(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function wy(e){return e&&e.then&&typeof e.then=="function"}var cv="tfjsflags",l6=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=F_,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(wy(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);cv in e&&e[cv].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=M_(s,r)})}};function F_(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(O_(t,s[0],s[1]),s.join("="))),t}function O_(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function M_(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function Z(){return $r}var $r=null;function z_(e){$r=e}var n3;function u6(){if(n3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");n3=e}return n3}function L_(){let e=u6();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function ky(e,t){let n=L_();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var il="Abs",pc="Acos",hc="Acosh",xa="Add",po="AddN",fc="All",mc="Any",ho="ArgMax",gc="ArgMin",yc="Asin",Ac="Asinh",xc="Atan",bc="Atanh",vc="Atan2",fo="AvgPool",Gm="AvgPoolGrad",zp="AvgPool3D",Hm="AvgPool3DGrad",mo="BatchMatMul",ll="BatchToSpaceND",jm="Bincount",c6="BroadcastTo",qm="BroadcastArgs",go="Cast",yo="Ceil",ba="ClipByValue",Lp="Complex",Bp="ComplexAbs",ul="Concat",Ao="Conv2D",Xm="Conv2DBackpropFilter",xo="Conv2DBackpropInput",Wp="Conv3D",Km="Conv3DBackpropFilterV2",Zm="Conv3DBackpropInputV2",bo="Cos",vo="Cosh",cl="Cumprod",wo="Cumsum",dl="CropAndResize",Ym="DenseBincount",pl="DepthToSpace",ko="DepthwiseConv2dNative",Jm="DepthwiseConv2dNativeBackpropFilter",Qm="DepthwiseConv2dNativeBackpropInput",e0="Diag",Vp="Dilation2D",pm="Dilation2DBackpropInput",hm="Dilation2DBackpropFilter",Io="RealDiv",Up="Einsum",So="Elu",t0="EluGrad",wc="Erf",hl="Equal",Co="Exp",fl="ExpandDims",ml="Expm1",n0="FFT",kc="Fill",gl="FlipLeftRight",To="Floor",No="FloorDiv",Eo="FusedBatchNorm",yl="GatherV2",Al="GatherNd",xl="Greater",Ro="GreaterEqual",_o="Identity",s0="IFFT",Gp="Imag",Ic="IsFinite",Sc="IsInf",Cc="IsNan",Do="LeakyRelu",bl="Less",vl="LessEqual",r0="LinSpace",$o="Log",Tc="Log1p",wl="LogicalAnd",kl="LogicalNot",Nc="LogicalOr",d6="LogicalXor",p6="LogSoftmax",B_="LowerBound",Hp="LRN",a0="LRNGrad",Po="Max",Fo="Maximum",Oo="MaxPool",o0="MaxPoolGrad",jp="MaxPool3D",i0="MaxPool3DGrad",l0="MaxPoolWithArgmax",Mo="Mean",zo="Min",Lo="Minimum",Bo="MirrorPad",Ec="Mod",u0="Multinomial",Wo="Multiply",Il="Neg",Sl="NotEqual",Cl="NonMaxSuppressionV3",Rc="NonMaxSuppressionV4",Tl="NonMaxSuppressionV5",Nl="OnesLike",El="OneHot",Rl="Pack",Vo="PadV2",W_="Pool",Uo="Pow",Go="Prelu",Ho="Prod",_c="Range",qp="Real",Dc="Reciprocal",jo="Relu",_l="Reshape",qo="ResizeNearestNeighbor",c0="ResizeNearestNeighborGrad",Xo="ResizeBilinear",d0="ResizeBilinearGrad",Ko="Relu6",Dl="Reverse",$l="Round",Zo="Rsqrt",Pl="ScatterNd",p0="SearchSorted",Fl="Select",$c="Selu",Ol="Slice",Yo="Sin",Ml="Sinh",Pc="Sign",Jo="Sigmoid",Fc="Softplus",Qo="Sqrt",ei="Sum",zl="SpaceToBatchND",Ll="SplitV",ti="Softmax",Xp="SparseFillEmptyRows",Oc="SparseReshape",Kp="SparseSegmentMean",Zp="SparseSegmentSum",Yp="SparseToDense",ni="SquaredDifference",Mc="Square",Bl="StridedSlice",zc="StringNGrams",Jp="StringSplit",Qp="StringToHashBucketFast",si="Sub",Wl="Tan",ri="Tanh",va="Tile",Vl="TopK",Ul="Transform",Hr="Transpose",h0="Unique",Gl="Unpack",eh="UnsortedSegmentSum",V_="UpperBound",Hl="ZerosLike",ai="Step",bp="FromPixels",jl="RotateWithOffset",Ja="_FusedMatMul",Qa="FusedConv2D",eo="FusedDepthwiseConv2D";function Ua(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.warn(...e)}function U_(...e){Z().getBool("IS_TEST")||Z().getBool("PROD")||console.log(...e)}var Xu=ky("kernelRegistry",()=>new Map),vp=ky("gradRegistry",()=>new Map);function fm(e,t){let n=Iy(e,t);return Xu.get(n)}function g3(e){return vp.get(e)}function qr(e){let t=Xu.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function cr(e){let{kernelName:t,backendName:n}=e,s=Iy(t,n);Xu.has(s)&&Ua(`The kernel '${t}' for backend '${n}' is already registered`),Xu.set(s,e)}function h6(e){let{kernelName:t}=e;vp.has(t)&&Z().getBool("DEBUG")&&Ua(`Overriding the gradient for '${t}'`),vp.set(t,e)}function G_(e,t){let n=Iy(e,t);if(!Xu.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);Xu.delete(n)}function H_(e){if(!vp.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);vp.delete(e)}function j_(e,t){qr(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});cr(r)})}function Iy(e,t){return`${t}_${e}`}var v={};Ve(v,{arraysEqual:()=>co,assert:()=>M,assertNonNegativeIntegerDimensions:()=>vy,assertNonNull:()=>ol,assertShapesMatch:()=>ns,bytesFromStringArray:()=>r6,bytesPerElement:()=>m3,checkConversionForErrors:()=>n6,clamp:()=>xp,computeStrides:()=>dc,createScalarValue:()=>J_,createShuffledIndices:()=>N_,decodeString:()=>mm,distSquared:()=>I_,encodeString:()=>nh,fetch:()=>eD,fingerPrint64:()=>Y_,flatten:()=>Xi,getArrayFromDType:()=>t6,getTypedArrayFromDType:()=>e6,hasEncodingLoss:()=>__,hexToLong:()=>th,indexToLoc:()=>P_,inferDtype:()=>Vm,inferFromImplicitShape:()=>R_,isBoolean:()=>a6,isFunction:()=>Ya,isInt:()=>qu,isNumber:()=>o6,isPromise:()=>wy,isScalarShape:()=>S_,isString:()=>Ga,isTypedArray:()=>Pn,isValidDtype:()=>s6,locToIndex:()=>$_,makeOnesTypedArray:()=>by,makeZerosNestedTypedArray:()=>D_,makeZerosTypedArray:()=>Um,nearestDivisor:()=>dm,nearestLargerEven:()=>v_,now:()=>wp,parseAxisParam:()=>ur,randUniform:()=>k_,repeatedTry:()=>E_,rightPad:()=>fp,shuffle:()=>J7,shuffleCombo:()=>b_,sizeFromShape:()=>Et,sizeToSquarishShape:()=>T_,squeezeShape:()=>Q7,sum:()=>w_,swap:()=>cm,tanh:()=>C_,toNestedArray:()=>Wu,toTypedArray:()=>f0});var dv=uo(t_()),Mi=dv.default||dv;function th(e){return Mi.fromString(e,!0,16)}var f6=th("c3a5c85c97cb3127"),Pi=th("b492b66fbe98f273"),Zn=th("9ae16a3b2f90404f");function y3(e){return e.xor(e.shru(47))}function m6(e,t,n){let s=e.slice(t,t+n);return Mi.fromBytes(Array.from(s),!0,!0)}function Nt(e,t){return m6(e,t,8)}function pv(e,t){return m6(e,t,4)}function xn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function qa(e,t,n=th("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function q_(e,t,n,s,r,a){r=r.add(e),a=xn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(xn(r,44)),[r.add(s),a.add(o)]}function Lf(e,t,n,s){return q_(Nt(e,t),Nt(e,t+8),Nt(e,t+16),Nt(e,t+24),n,s)}function X_(e,t=e.length){if(t>=8){let n=Zn.add(t*2),s=Nt(e,0).add(Zn),r=Nt(e,t-8),a=xn(r,37).mul(n).add(s),o=xn(s,25).add(r).mul(n);return qa(a,o,n)}if(t>=4){let n=Zn.add(t*2),s=pv(e,0);return qa(s.shl(3).add(t),pv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return y3(Zn.mul(a).xor(f6.mul(o))).mul(Zn)}return Zn}function K_(e,t=e.length){let n=Zn.add(t*2),s=Nt(e,0).mul(Pi),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(Zn);return qa(xn(s.add(r),43).add(xn(a,30)).add(o),s.add(xn(r.add(Zn),18)).add(a),n)}function Z_(e,t=e.length){let n=Zn.add(t*2),s=Nt(e,0).mul(Zn),r=Nt(e,8),a=Nt(e,t-8).mul(n),o=Nt(e,t-16).mul(Zn),i=xn(s.add(r),43).add(xn(a,30)).add(o),l=qa(i,s.add(xn(r.add(Zn),18)).add(a),n),u=Nt(e,16).mul(n),c=Nt(e,24),p=i.add(Nt(e,t-32)).mul(n),d=l.add(Nt(e,t-24)).mul(n);return qa(xn(u.add(c),43).add(xn(p,30)).add(d),u.add(xn(c.add(s),18)).add(p),n)}function Y_(e,t=e.length){let n=Mi.fromNumber(81,!0);if(t<=32)return t<=16?X_(e,t):K_(e,t);if(t<=64)return Z_(e,t);let s=n,r=n.mul(Pi).add(113),a=y3(r.mul(Zn).add(113)).mul(Zn),o=[Mi.UZERO,Mi.UZERO],i=[Mi.UZERO,Mi.UZERO];s=s.mul(Zn).add(Nt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=xn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(Pi),r=xn(r.add(o[1]).add(Nt(e,l+48)),42).mul(Pi),s=s.xor(i[1]),r=r.add(o[0]).add(Nt(e,l+40)),a=xn(a.add(i[0]),33).mul(Pi),o=Lf(e,l,o[1].mul(Pi),s.add(i[0])),i=Lf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=Pi.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=xn(s.add(r).add(o[0]).add(Nt(e,l+8)),37).mul(p),r=xn(r.add(o[1]).add(Nt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Nt(e,l+40))),a=xn(a.add(i[0]),33).mul(p),o=Lf(e,l,o[1].mul(p),s.add(i[0])),i=Lf(e,l+32,a.add(i[1]),r.add(Nt(e,l+16))),[a,s]=[s,a],qa(qa(o[0],i[0],p).add(y3(r).mul(f6)).add(a),qa(o[1],i[1],p).add(s),p)}function J_(e,t){return t==="string"?nh(e):f0([e],t)}function Q_(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function f0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=Xi(e)),Z().getBool("DEBUG")&&n6(e,t),Q_(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function wp(){return Z().platform.now()}function eD(e,t){return Z().platform.fetch(e,t)}function nh(e,t="utf-8"){return t=t||"utf-8",Z().platform.encode(e,t)}function mm(e,t="utf-8"){return t=t||"utf-8",Z().platform.decode(e,t)}var tD=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new sD)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=wp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:wp()-o})}if(Z().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{nD(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function nD(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var sD=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?fp(`${s}ms`,9):s.error,i=fp(e,25),l=t.rank,u=t.size,c=fp(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function rD(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function aD(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!co(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var hv=20,Qd=3,s3=7;function oD(e,t,n,s){let r=dc(t),a=iD(e,t,n,r),o=t.length,i=Qf(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function iD(e,t,n,s){let r=Et(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?rp(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],sp(l[c+p],0,n).length)}return o}function sp(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(s3))} + ${parseFloat(e[1].toFixed(s3))}j`:Ga(e)?s=`'${e}'`:n==="bool"?s=g6(e):s=parseFloat(e.toFixed(s3)).toString(),fp(s,t)}function g6(e){return e===0?"false":"true"}function Qf(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=rp(e);return[sp(m[0],0,n)]}return n==="bool"?[g6(e[0])]:[e[0].toString()]}if(l===1){if(i>hv){let g=Qd*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-Qd)*o,i*o));return n==="complex64"&&(y=rp(y),x=rp(x)),["["+y.map((A,b)=>sp(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>sp(A,r[i-Qd+b],n)).join(", ")+"]"]}let m=n==="complex64"?rp(e):Array.from(e);return["["+m.map((g,y)=>sp(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>hv){for(let m=0;m<Qd;m++){let g=m*p,y=g+p;d.push(...Qf(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-Qd;m<i;m++){let g=m*p,y=g+p;d.push(...Qf(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...Qf(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function rp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var fn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Et(e),n!=null){let s=n.length;M(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||t6(t,this.size),this.strides=dc(e)}set(e,...t){t.length===0&&(t=[0]),M(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return kr().makeTensor(this.values,this.shape,this.dtype)}},kr=null,zu=null,lD=null;function uD(e){kr=e}function cD(e){zu=e}function dD(e){lD=e}var tt=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Et(e),this.strides=dc(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return zu.buffer(this.shape,this.dtype,e)}bufferSync(){return zu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return Wu(this.shape,e,this.dtype==="complex64")}arraySync(){return Wu(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=kr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>mm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),kr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=kr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>mm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await kr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(kr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return zu.print(this,e)}clone(){return this.throwIfDisposed(),zu.clone(this)}toString(e=!1){let t=this.dataSync();return oD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),zu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),kr().makeVariable(this,e,t,n)}};Object.defineProperty(tt,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function re(){return ky("Tensor",()=>tt)}re();var kp=class extends tt{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!co(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);kr().disposeTensor(this),this.dataId=e.dataId,kr().incRef(this,null)}dispose(){kr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(kp,Symbol.hasInstance,{value:e=>e instanceof tt&&e.assign!=null&&e.assign instanceof Function});var Tr={};Ve(Tr,{assertTypesMatch:()=>y6,getTensorsInContainer:()=>Sy,isTensorInList:()=>hD,makeTypesMatch:()=>Gt});var A3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(A3||(A3={}));var x3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(x3||(x3={}));var b3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(b3||(b3={}));var v3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(v3||(v3={}));var w3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(w3||(w3={}));var pD={float32:v3,int32:x3,bool:b3,complex64:w3};function On(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return pD[e][t]}function sh(e){return On(e,"int32")}function Gt(e,t){if(e.dtype===t.dtype)return[e,t];let n=On(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function y6(e,t){M(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function hD(e,t){return t.some(n=>n.id===e.id)}function Sy(e){let t=[];return A6(e,t,new Set),t}function A6(e,t,n){if(e==null)return;if(e instanceof tt){t.push(e);return}if(!fD(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),A6(a,t,n))}}function fD(e){return Array.isArray(e)||typeof e=="object"}function r3(e){return e.kernelName!=null}var fv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ip=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new fv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(Ua(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new tD(this.backendInstance),!0}setupRegisteredKernels(){qr(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){qr(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof cc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,Ua(`Initialization of backend ${e} failed`),Ua(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return Ua(`Initialization of backend ${e} failed`),Ua(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Ip.nextTensorId++}nextVariableId(){return Ip.nextVariableId++}clone(e){let t=W.runKernel(_o,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return W.runKernel(go,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(fm(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=r3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(r3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=fm(h,this.backendName);M(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=r3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=g3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(M(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Ga(e[0])&&(r=e.map(i=>nh(i)));let a=s.write(r,t,n),o=new tt(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=r6(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new tt(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new kp(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*m3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof kp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*m3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=g3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=Um(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Sy(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(M(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));M(r instanceof tt,()=>"The result y returned by f() must be a tensor.");let a=rD(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?mD(r.shape):n,aD(o,a,l=>this.tidy(l),gD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return M(Ya(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{M(t.every(o=>o instanceof tt),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),M(n.value instanceof tt,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),M(Ya(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];M(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),M(u.every(p=>p instanceof tt),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=wp(),n=await this.backend.time(e);return n.wallMs=wp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new fv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Ip.nextTensorId=0;Ip.nextVariableId=0;function mD(e){let t=by(Et(e),"float32");return W.makeTensor(t,e,"float32")}function x6(){let e=u6();if(e._tfengine==null){let t=new l6(e);e._tfengine=new Ip(t)}return z_(e._tfengine.ENV),uD(()=>e._tfengine),e._tfengine}var W=x6();function gD(e,t){let n={a:e,b:t};return W.runKernel(xa,n)}var rh={};Ve(rh,{isBrowser:()=>b6,isMobile:()=>xD,mockIsMobile:()=>AD});function yD(){return typeof navigator!="undefined"&&navigator!=null}var k3;function AD(e){k3=e}function xD(e){if(k3!==void 0)return k3;if(e||yD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function b6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ir=Z();ir.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ir.registerFlag("IS_BROWSER",()=>b6());ir.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ir.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ir.registerFlag("PROD",()=>!1);ir.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ir.getBool("DEBUG"));ir.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ir.registerFlag("IS_TEST",()=>!1);ir.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ir.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);ir.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);function Xr(e,t){let n=e;if(Pn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Pn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&Z().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&v6(e,s,[]),s}function v6(e,t,n){if(n=n||[],!Array.isArray(e)&&!Pn(e)){M(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}M(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),M(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)v6(e[r],s,n.concat(r))}function mv(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof tt)return mv(s,e.dtype,t,n),e;let r=Vm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),mv(s,r,t,n),e==null||!Pn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=Xr(e,r);!Pn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?f0(e,r):Xi(e,[],!0);return W.makeTensor(i,a,r)}function Sp(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var Cy="__op";function V(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Cy;let r=(...a)=>{W.startScope(n);try{let o=s(...a);return wy(o)&&console.error("Cannot return a Promise inside of tidy."),W.endScope(o),o}catch(o){throw W.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function bD(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");ns(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return W.runKernel(Lp,r)}var fa=V({complex_:bD});function oi(e,t,n,s){if(s==null&&(s=Vm(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Pn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){vy(t);let r=Et(t),a=Et(n);M(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Et(t.slice(o)):!0;M(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Pn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?f0(e,s):Xi(e,[],!0),W.makeTensor(e,t,s)}function ft(e,t,n){let s=Xr(e,n);return oi(e,t,s,n)}var I3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},gm=4;async function vD(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+gm*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=gm,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:wD(a),specs:n}}function w6(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Et(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=I3[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=ND()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Et(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+gm))[0];r+=gm;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=I3[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=ft(h,l,"float32"),g=ft(f,l,"float32");n[o]=fa(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=ft(c,l,i))}return n}function wD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Ty=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function gv(e){return Ty?Buffer.byteLength(e):new Blob([e]).size}function kD(e){if(Ty)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function ID(e){if(Ty){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Ny(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function yv(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function k6(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Ey(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function ah(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:gv(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:gv(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function SD(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function CD(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function TD(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function ND(){let e=SD(),t=CD(),n=TD();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var qt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return qt.instance==null&&(qt.instance=new qt),qt.instance}static registerSaveRouter(e){qt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){qt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return qt.getHandlers(e,"save")}static getLoadHandlers(e,t){return qt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?qt.getInstance().loadRouters:qt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},ED=e=>qt.registerSaveRouter(e),RD=e=>qt.registerLoadRouter(e),_D=e=>qt.getSaveHandlers(e),DD=(e,t)=>qt.getLoadHandlers(e,t),S3="tensorflowjs",C3=1,Wi="models_store",Ha="model_info_store";function I6(){if(!Z().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function T3(e){let t=e.result;t.createObjectStore(Wi,{keyPath:"modelPath"}),t.createObjectStore(Ha,{keyPath:"modelPath"})}var Ki=class{constructor(e){if(this.indexedDB=I6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(S3,C3);r.onupgradeneeded=()=>T3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Wi,"readonly"),l=o.objectStore(Wi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=ah(t),i=a.transaction(Ha,"readwrite"),l=i.objectStore(Ha),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Wi,"readwrite");let d=c.objectStore(Wi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Ha);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};Ki.URL_SCHEME="indexeddb://";var S6=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ki.URL_SCHEME)?$D(e.slice(Ki.URL_SCHEME.length)):null;qt.registerSaveRouter(S6);qt.registerLoadRouter(S6);function $D(e){return new Ki(e)}function PD(e){return e.startsWith(Ki.URL_SCHEME)?e.slice(Ki.URL_SCHEME.length):e}var FD=class{constructor(){this.indexedDB=I6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(S3,C3);n.onupgradeneeded=()=>T3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Ha,"readonly"),o=r.objectStore(Ha).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=PD(e),new Promise((t,n)=>{let s=this.indexedDB.open(S3,C3);s.onupgradeneeded=()=>T3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Ha,"readwrite"),o=a.objectStore(Ha),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Wi,"readwrite");let d=l.objectStore(Wi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},da="/",Lu="tensorflowjs_models",C6="info",OD="model_topology",MD="weight_specs",zD="weight_data",LD="model_metadata";function T6(e){return{info:[Lu,e,C6].join(da),topology:[Lu,e,OD].join(da),weightSpecs:[Lu,e,MD].join(da),weightData:[Lu,e,zD].join(da),modelMetadata:[Lu,e,LD].join(da)}}function N6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function BD(e){let t=e.split(da);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(da)}function WD(e){return e.startsWith(Zi.URL_SCHEME)?e.slice(Zi.URL_SCHEME.length):e}var Zi=class{constructor(e){if(!Z().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=T6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=ah(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,kD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw N6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=ID(a),t}};Zi.URL_SCHEME="localstorage://";var E6=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Zi.URL_SCHEME)?VD(e.slice(Zi.URL_SCHEME.length)):null;qt.registerSaveRouter(E6);qt.registerLoadRouter(E6);function VD(e){return new Zi(e)}var UD=class{constructor(){M(Z().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),M(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Lu+da,n=da+C6;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=BD(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=WD(e);let t=T6(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return N6(t),n}},Vu="://",ds=class{constructor(){this.managers={}}static getInstance(){return ds.instance==null&&(ds.instance=new ds),ds.instance}static registerManager(e,t){M(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(Vu)&&(e=e.slice(0,e.indexOf(Vu))),M(e.length>0,()=>"scheme must not be an empty string.");let n=ds.getInstance();M(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=ds.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(ds.getInstance().managers)}};function em(e){if(e.indexOf(Vu)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ds.getSchemes().join(",")}`);return{scheme:e.split(Vu)[0],path:e.split(Vu)[1]}}async function R6(e,t,n=!1){M(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=qt.getLoadHandlers(e);M(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),M(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=qt.getSaveHandlers(t);M(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),M(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=em(e).scheme,l=em(e).path,u=i===em(e).scheme,c=await r.load();n&&u&&await ds.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await ds.getManager(i).removeModel(l),p.modelArtifactsInfo}async function GD(){let e=ds.getSchemes(),t={};for(let n of e){let s=await ds.getManager(n).listModels();for(let r in s){let a=n+Vu+r;t[a]=s[r]}}return t}async function HD(e){let t=em(e);return ds.getManager(t.scheme).removeModel(t.path)}async function jD(e,t){return R6(e,t,!1)}async function qD(e,t){return R6(e,t,!0)}var XD=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(Z().get("IS_BROWSER")){Z().setPlatform("browser",new XD);try{ds.registerManager(Zi.URL_SCHEME,new UD)}catch(e){}try{ds.registerManager(Ki.URL_SCHEME,new FD)}catch(e){}}var KD={importFetch:()=>n_()},a3,ZD=class{constructor(){this.util=s_(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return Z().global.fetch!=null?Z().global.fetch(e,t):(a3==null&&(a3=KD.importFetch()),a3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};Z().get("IS_NODE")&&!Z().get("IS_BROWSER")&&Z().setPlatform("node",new ZD);function Le(e,t="float32",n){return t=t||"float32",vy(e),new fn(e,t,n)}function YD(e,t){let n=D(e,"x","cast");if(!s6(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return W.runKernel(go,s,r)}var ge=V({cast_:YD});function JD(e){let n={x:D(e,"x","clone","string_or_numeric")};return W.runKernel(_o,n)}var Fn=V({clone_:JD});function Ry(e,t=!1){console.log(e.toString(t))}x6();var QD={buffer:Le,cast:ge,clone:Fn,print:Ry};cD(QD);var Ts={};Ve(Ts,{browserFiles:()=>o$,browserHTTPRequest:()=>d$,concatenateArrayBuffers:()=>Ny,copyModel:()=>jD,decodeWeights:()=>w6,encodeWeights:()=>vD,fromMemory:()=>h$,fromMemorySync:()=>F6,getLoadHandlers:()=>DD,getModelArtifactsForJSON:()=>Ey,getModelArtifactsInfoForJSON:()=>ah,getSaveHandlers:()=>_D,http:()=>Dy,isHTTPScheme:()=>N3,listModels:()=>GD,loadWeights:()=>i$,moveModel:()=>qD,registerLoadRouter:()=>RD,registerSaveRouter:()=>ED,removeModel:()=>HD,weightsLoaderFactory:()=>D6,withSaveHandler:()=>f$,withSaveHandlerSync:()=>m$});var e$="model",t$=".json",n$=".weights.bin";function Av(e){return new Promise(t=>setTimeout(t)).then(e)}var Ku=class{constructor(e){if(!Z().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(Ku.URL_SCHEME)&&(e=e.slice(Ku.URL_SCHEME.length)),(e==null||e.length===0)&&(e=e$),this.modelJsonFileName=e+t$,this.weightDataFileName=e+n$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=k6(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Av(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Av(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ah(e)}}}};Ku.URL_SCHEME="downloads://";var s$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Ey(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Ny(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>yv(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=yv(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},r$=e=>Z().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(Ku.URL_SCHEME)?a$(e.slice(Ku.URL_SCHEME.length)):null;qt.registerSaveRouter(r$);function a$(e="model"){return new Ku(e)}function o$(e){return new s$(e)}function xv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){M(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){M(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),M(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),M(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function _6(e,t){t==null&&(t={});let n=t.fetchFunc==null?Z().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await xv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await xv(i,t.onProgress,l,u)}async function i$(e,t="",n,s){return D6(o=>_6(o,{requestInit:s}))(e,t,n)}function D6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=I3[y]*Et(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=w6(w,[b.manifestEntry]);for(let S in k)p[S]=k[S]}),d+=f}),p}}var l$="application/octet-stream",u$="application/json",_y=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(M(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=Z().platform.fetch,M(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&M(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=k6(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:u$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:l$}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:ah(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Ey(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=c$(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await _6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Ny(l)]}};_y.URL_SCHEME_REGEX=/^https?:\/\//;function c$(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function N3(e){return e.match(_y.URL_SCHEME_REGEX)!=null}var $6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>N3(s)):n=N3(e),n)return Dy(e,t)}return null};qt.registerSaveRouter($6);qt.registerLoadRouter($6);function Dy(e,t){return new _y(e,t)}function d$(e,t){return Dy(e,t)}var o3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},P6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},p$=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function h$(e,t,n,s){let r=arguments;return new p$(F6(...r))}function F6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new o3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new o3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new o3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function f$(e){return new P6(e)}function m$(e){return new P6(e)}var O6={};Ve(O6,{confusionMatrix:()=>_$});function g$(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=Gt(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return W.runKernel(mo,o,i)}var Qe=V({matMul_:g$});function y$(e,t,n=1,s=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:D(e,"indices","oneHot","int32")},o={depth:t,onValue:n,offValue:s};return W.runKernel(El,a,o)}var Zu=V({oneHot_:y$});function $y(){Z().set("PROD",!0)}function A$(){Z().set("DEBUG",!0)}function x$(){Z().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Py(e){Z().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}dD(Py);function b$(){W.disposeVariables()}function sn(){return W}function ym(){return W.memory()}function v$(e){return W.profile(e)}function J(e,t){return W.tidy(e,t)}function ne(e){Sy(e).forEach(n=>n.dispose())}function bn(e){return W.keep(e)}function w$(e){return W.time(e)}function Fy(e){return W.setBackend(e)}function Lc(){return W.ready()}function ss(){return W.backendName}function k$(e){W.removeBackend(e)}function Oy(e){return W.findBackend(e)}function I$(e){return W.findBackendFactory(e)}function ql(e,t,n=1){return W.registerBackend(e,t,n)}function Zs(){return W.backend}function S$(e,t){Z().setPlatform(e,t)}function C$(e){let n={input:D(e,"input","imag")};return W.runKernel(Gp,n)}var oh=V({imag_:C$});function T$(e){let n={x:D(e,"x","neg")};return W.runKernel(Il,n)}var Dt=V({neg_:T$});function N$(e){let n={input:D(e,"input","real")};return W.runKernel(qp,n)}var Yu=V({real_:N$});function E$(e,t,n){let s=D(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),M(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{M(o>=0&&o<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?J(()=>{let o=Yu(s),i=oh(s);return o=W.runKernel(Hr,{x:o},a),i=W.runKernel(Hr,{x:i},a),n&&(i=Dt(i)),fa(o,i)}):W.runKernel(Hr,r,a)}var st=V({transpose_:E$});function R$(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");M(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),M(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),M(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),M(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),M(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=Zu(ge(s,"int32"),n),o=Zu(ge(r,"int32"),n),i=st(a),l=Qe(i,o);return ge(l,"int32")}var _$=V({confusionMatrix_:R$}),Xl={};Ve(Xl,{assertAndGetBroadcastShape:()=>kt,getBroadcastDims:()=>M6,getReductionAxes:()=>an});function M6(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function an(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function kt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var Ys={};Ve(Ys,{fromPixels:()=>z$,fromPixelsAsync:()=>O$,toPixels:()=>M$});function My(e,t,n){if(ol(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=Xr(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return oi(e,t,s,n)}var Di;function z6(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r&&r&&e.readyState<2)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");if(fm(bp,W.backendName)!=null){let f={pixels:e},m={numChannels:t};return W.runKernel(bp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Di==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Di=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Di=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Di.canvas.width=u,Di.canvas.height=c,Di.drawImage(e,0,0,u,c),p=Di.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return My(d,[c,u,t],"int32")}function D$(e){return e!=null&&e.data instanceof Uint8Array}function $$(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function P$(e){return e!=null&&e.width!==0&&e.height!==0}function F$(e){return $$()&&!(e instanceof ImageBitmap)&&P$(e)&&!D$(e)}async function O$(e,t=3){let n=null;if(Z().getBool("WRAP_TO_IMAGEBITMAP")&&F$(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return z6(n,t)}async function M$(e,t){let n=D(e,"img","toPixels");if(!(e instanceof tt)){let u=n;n=ge(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var z$=V({fromPixels_:z6}),zy={};Ve(zy,{prepareAndValidate:()=>L6});function L6(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Et(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...dc(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var Ly={};Ve(Ly,{calculateShapes:()=>B6,validateInput:()=>Wy,validateUpdateShape:()=>By});function By(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function Wy(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}By(n,t,e)}function B6(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Et(t.shape)/i,u=[...dc(n.slice(0,r)),1],c=Et(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Ut={};Ve(Ut,{assertParamsValid:()=>B$,computeFlatOffset:()=>H$,computeOutShape:()=>V$,getNormalizedAxes:()=>U$,isSliceContinous:()=>G$,maskToAxes:()=>W$,parseSliceParams:()=>K6,sliceInfo:()=>j$,startForAxis:()=>q6,startIndicesWithElidedDims:()=>G6,stopForAxis:()=>X6,stopIndicesWithElidedDims:()=>H6,stridesForAxis:()=>j6,stridesWithElidedDims:()=>W6});var E3=-2,L$=-1;function B$(e,t,n){let s=e.shape.length;M(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),M(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)M(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function W$(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function V$(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function W6(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function V6(e,t,n){return n<=e?n:n-(t-1)}function U6(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function U$(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=G6(o,h,f,s,e),p=H6(i,h,f,r,e),d=W6(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=q6(o,s,a,e,h,l),p[h]=X6(i,r,a,e,h,l),d[h]=j6(a,h,l);return{begin:c,end:p,strides:d}}function G6(e,t,n,s,r){let a=[...r],o=U6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=V6(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function H6(e,t,n,s,r){let a=[...r],o=U6(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=V6(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=xp(0,a[i],r[i])}return a}function j6(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function q6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=xp(0,o,l-1),o}function X6(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=xp(0,o,l):o=xp(-1,o,l-1),o}function G$(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function H$(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function K6(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{M(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(M(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function j$(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};q$(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let k=[d.beginMask&1<<A,d.endMask&1<<A],S=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let $=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=$,d.end[A]=d.begin[A]+1,$<0||$>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=bv(d.begin[A],0,d.strides[A],w,k,S),d.end[A]=bv(d.end[A],1,d.strides[A],w,k,S);let _=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&_,f=f&&(A===0&&d.strides[A]===1||_)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let R,P=!1;if(d.beginValid&&d.endValid?(R=d.end[A]-d.begin[A],P=!0):b?(R=1,P=!0):E&&w>=0&&(d.strides[A]<0?R=-w:R=w,P=!0),P){let _;R===0||R<0!=d.strides[A]<0?_=0:_=Math.trunc(R/d.strides[A])+(R%d.strides[A]!==0?1:0),g.push(_)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===E3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==E3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function q$(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(E3),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(L$),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function bv(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var de={};Ve(de,{Serializable:()=>Z6,SerializationMap:()=>zi,registerClass:()=>ii});var Z6=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},zi=class{constructor(){this.classNameMap={}}static getMap(){return zi.instance==null&&(zi.instance=new zi),zi.instance}static register(e){zi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ii(e){M(e.className!=null,()=>"Class being registered does not have the static className property defined."),M(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),M(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),zi.register(e)}var Y6={};Ve(Y6,{TEST_EPSILON_FLOAT16:()=>J6,encodeStrings:()=>Q6,expectArrayBuffersEqual:()=>eP,expectArraysClose:()=>K$,expectArraysEqual:()=>Y$,expectNumbersClose:()=>J$,expectPromiseToFail:()=>Z$,expectValuesInRange:()=>Q$,testEpsilon:()=>Vy});var X$=.001,J6=.1;function K$(e,t,n){return n==null&&(n=Vy()),R3(e,t,(s,r)=>Uy(s,r,n))}function Vy(){return W.backend.floatPrecision()===32?X$:J6}function R3(e,t,n){let s=!0;if((Pn(e)||Pn(t))&&(s=!1),Pn(e)&&Pn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=Xr(e),i=Xr(t);if(!co(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Pn(e)?e:Xi(e),a=Pn(t)?t:Xi(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}}function Z$(e,t){e().then(()=>t.fail(),()=>t())}function Y$(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ga(e)||Ga(e[0])||Ga(t)||Ga(t[0])?R3(e,n,(s,r)=>s==r):R3(e,t,(s,r)=>Uy(s,r,0))}function J$(e,t,n){if(n==null&&(n=Vy()),!Uy(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Uy(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function Q$(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function eP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function Q6(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Q6(n):e[t]=nh(n)}return e}var Gy="3.19.0";function tP(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(xa,r)}var ce=V({add_:tP});function nP(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(No,r)}var Bc=V({floorDiv_:nP});function sP(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=Gt(n,s),n.dtype==="int32"&&s.dtype==="int32")return Bc(n,s);let r={a:n,b:s},a={};return W.runKernel(Io,r,a)}var pe=V({div_:sP});function rP(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(Wo,r)}var L=V({mul_:rP});function aP(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return W.runKernel(Bp,n)}else{let n={x:t};return W.runKernel(il,n)}}var tn=V({abs_:aP});function oP(e){let n={x:D(e,"x","acos")};return W.runKernel(pc,n)}var Hy=V({acos_:oP});function iP(e){let n={x:D(e,"x","acosh")};return W.runKernel(hc,n)}var jy=V({acosh_:iP});function lP(e){M(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),M(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!co(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return W.runKernel(po,s)}var m0=V({addN_:lP});function uP(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return W.runKernel(fc,r,a)}var g0=V({all_:uP});function cP(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return W.runKernel(mc,r,a)}var Cp=V({any_:cP});function dP(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return W.runKernel(ho,s,r)}var Es=V({argMax_:dP});function pP(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return W.runKernel(gc,s,r)}var qy=V({argMin_:pP});function hP(e){let n={x:D(e,"x","asin")};return W.runKernel(yc,n)}var Xy=V({asin_:hP});function fP(e){let n={x:D(e,"x","asinh")};return W.runKernel(Ac,n)}var Ky=V({asinh_:fP});function mP(e){let n={x:D(e,"x","atan")};return W.runKernel(xc,n)}var Zy=V({atan_:mP});function gP(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(vc,r)}var Yy=V({atan2_:gP});function yP(e){let n={x:D(e,"x","atanh")};return W.runKernel(bc,n)}var Jy=V({atanh_:yP});function AP(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=nw(r);return ih(e,i,n,a,s,null,null,l)}function ew(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Am(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return ih(e,u,n,s,r,a,!1,o)}function xP(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=_3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return tw(e,c,n,s,r,!1,p,a)}function ih(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Am(n),[y,x]=Am(s),A=Uu(d,y),b=Uu(h,x),{padInfo:w,outHeight:k,outWidth:S}=wP(r,u,c,m,g,A,b,a,i),E=o?f*p:f,R;return i==="channelsFirst"?R=[l,E,k,S]:i==="channelsLast"&&(R=[l,k,S,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:k,outWidth:S,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:R,filterShape:t}}function tw(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=_3(n),[b,w,k]=_3(s),S=Uu(h,b),E=Uu(f,w),R=Uu(m,k),{padInfo:P,outDepth:_,outHeight:$,outWidth:T}=kP(r,u,c,p,y,x,A,S,E,R,i),F=a?g*d:g,G;return o==="channelsFirst"?G=[l,F,_,$,T]:o==="channelsLast"&&(G=[l,_,$,T,F]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:_,outHeight:$,outWidth:T,outChannels:F,padInfo:P,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:S,effectiveFilterHeight:E,effectiveFilterWidth:R,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:G,filterShape:t}}function bP(e,t,n,s,r){s==null&&(s=Qy(e,t,n));let a=e[0],o=e[1],i=Gi((a-t+2*s)/n+1,r),l=Gi((o-t+2*s)/n+1,r);return[i,l]}function vP(e,t,n,s,r,a){r==null&&(r=Qy(e,t,s));let o=e[0],i=e[1],l=e[2],u=Gi((o-t+2*r)/s+1,a),c=Gi((i-t+2*r)/s+1,a),p=Gi((l-t+2*r)/s+1,a);return[u,c,p,n]}function Qy(e,t,n,s=1){let r=Uu(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Am(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function _3(e){return typeof e=="number"?[e,e,e]:e}function Uu(e,t){return t<=1?e:e+(e-1)*(t-1)}function wP(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=bP([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Gi((t-a+d+h)/s+1,i),p=Gi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function kP(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=vP([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(y/2),S=y-k;p={top:b,bottom:w,left:k,right:S,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function Gi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function to(e){let[t,n,s]=Am(e);return t===1&&n===1&&s===1}function Yr(e,t){return to(e)||to(t)}function nw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function rs(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")M(qu(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{M(qu(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function IP(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return W.runKernel(_l,s,r)}var U=V({reshape_:IP});function SP(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;M(Yr(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),rs("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=W.runKernel(fo,u,c);return p=ge(p,a.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var lh=V({avgPool_:SP});function CP(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),rs("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=W.runKernel(zp,u,c);return p=ge(p,i.dtype),l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var eA=V({avgPool3d_:CP});function TP(e,t=0){M(e.length>=1,()=>"Pass at least one tensor to concat");let n=Sp(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Fn(n[0]);let s=n,r={axis:t};return W.runKernel(ul,s,r)}var Ct=V({concat_:TP});function NP(e){let n={x:D(e,"x","sigmoid","float32")};return W.runKernel(Jo,n)}var Cn=V({sigmoid_:NP});function EP(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return W.runKernel(Ol,r,a)}var Oe=V({slice_:EP});function RP(e){let n={x:D(e,"x","tanh","float32")};return W.runKernel(ri,n)}var Yi=V({tanh_:RP});function _P(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),u=D(s,"data","basicLSTMCell"),c=D(r,"c","basicLSTMCell"),p=D(a,"h","basicLSTMCell"),d=Ct([u,p],1),h=Qe(d,i),f=ce(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=Oe(f,[0,0],y),A=Oe(f,[0,g],y),b=Oe(f,[0,g*2],y),w=Oe(f,[0,g*3],y),k=ce(L(Cn(x),Yi(A)),L(c,Cn(ce(o,b)))),S=L(Yi(k),Cn(w));return[k,S]}var sw=V({basicLSTMCell_:_P});function DP(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);M(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),M(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),M(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return W.runKernel(ll,a,o)}var uh=V({batchToSpaceND_:DP});function $P(e){let t;return e.rank===0||e.rank===1?t=U(e,[1,1,1,e.size]):e.rank===2?t=U(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function PP(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;s!=null&&(c=D(s,"offset","batchNorm")),M(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),M(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),M(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:$P(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=W.runKernel(Eo,d,h);return U(f,o.shape)}var Wc=V({batchNorm_:PP});function FP(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),M(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),M(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Wc(o,i,l,c,u,a)}var tA=V({batchNorm2d_:FP});function OP(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),M(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),M(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Wc(o,i,l,c,u,a)}var nA=V({batchNorm3d_:OP});function MP(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),M(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),M(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),M(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&M(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&M(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Wc(o,i,l,c,u,a)}var sA=V({batchNorm4d_:MP});function zP(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");M(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return W.runKernel(jm,a,o)}var rA=V({bincount_:zP});function LP(e,t){let n=D(e,"s0","broadcastArgs","int32"),s=D(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return W.runKernel(qm,r)}var rw=V({broadcastArgs_:LP});function BP(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=U(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Fn(n);let i={x:n},l={reps:a};return W.runKernel(va,i,l)}var Gu=V({broadcastTo_:BP});function WP(e){let n={x:D(e,"x","ceil","float32")};return W.runKernel(yo,n)}var aA=V({ceil_:WP});function VP(e,t,n){let s=D(e,"x","clipByValue");M(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return W.runKernel(ba,r,a)}var fs=V({clipByValue_:VP});function UP(e){return Ct(e,0)}var oA=V({concat1d_:UP});function GP(e,t){return Ct(e,t)}var Kl=V({concat2d_:GP});function HP(e,t){return Ct(e,t)}var iA=V({concat3d_:HP});function jP(e,t){return Ct(e,t)}var lA=V({concat4d_:jP});function qP(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d","float32"),l=D(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),rs("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];M(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),M(Yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(Ao,d,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ma=V({conv2d_:qP});function XP(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1]])),M(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),M(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),rs("conv1d",s,o),M(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),M(Yr(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),M(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=U(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=U(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=ma(d,p,[1,n],s,"NHWC",[1,a],o);return c?U(g,[g.shape[2],g.shape[3]]):U(g,[g.shape[0],g.shape[2],g.shape[3]])}var y0=V({conv1d_:XP});function KP(e,t,n,s,r,a="NHWC",o){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),M(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),M(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),M(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];M(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),M(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),rs("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=W.runKernel(xo,d,h);return u?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var uA=V({conv2DBackpropInput_:KP});function ZP(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return uA(n,o,i,s,r,"NHWC",a)}var A0=V({conv2dTranspose_:ZP});function YP(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),M(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),M(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),M(Yr(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),M(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=W.runKernel(Wp,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var cA=V({conv3d_:YP});function JP(e,t,n,s,r){M(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];M(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),M(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),M(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),M(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),M(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=W.runKernel(Zm,c,p);return i?U(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var aw=V({conv3DBackpropInput_:JP});function QP(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return aw(n,a,o,s,r)}var dA=V({conv3dTranspose_:QP});function eF(e){let n={x:D(e,"x","cos","float32")};return W.runKernel(bo,n)}var ch=V({cos_:eF});function tF(e){let n={x:D(e,"x","cosh","float32")};return W.runKernel(vo,n)}var x0=V({cosh_:tF});function nF(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(cl,a,o)}var Tp=V({cumprod_:nF});function sF(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return W.runKernel(wo,a,o)}var b0=V({cumsum_:sF});function rF(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");M(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),M(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),M(n>=0,()=>`size must be non-negative, but got ${n}.`),M(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return W.runKernel(Ym,o,i)}var ow=V({denseBincount_:rF});function aF(e,t,n="NHWC"){let s=D(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];M(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),M(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),M(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),M(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return W.runKernel(pl,i,l)}var pA=V({depthToSpace_:aF});function oF(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d","float32"),l=D(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),M(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];M(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),rs("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=W.runKernel(ko,d,h);return c?U(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Vc=V({depthwiseConv2d_:oF});function iF(e){let n={x:D(e,"x","diag")};return W.runKernel(e0,n)}var iw=V({diag_:iF});function lF(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");M(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),M(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),M(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=W.runKernel(Vp,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var hA=V({dilation2d_:lF});function uF(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(hl,r)}var Rs=V({equal_:uF});function cF(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=kt(kt(a.shape,s.shape),r.shape),i=Gu(a,o),l=Gu(s,o),u=Gu(r,o),c={condition:i,t:l,e:u};return W.runKernel(Fl,c)}var Mn=V({where_:cF});function dF(e){let n={x:D(e,"x","zerosLike")};return W.runKernel(Hl,n)}var it=V({zerosLike_:dF});function pF(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=Gt(n,s);let r=pe(n,s),a=it(r),o=Rs(s,a);return Mn(o,a,r)}var fA=V({divNoNan_:pF});function hF(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");M((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(M(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=U(n,[1,-1]),i=U(s,[-1,1]),l=Qe(o,i);return U(l,[])}else if(n.rank===1&&s.rank===2){let o=U(n,[1,-1]),i=U(s,[s.shape[0],s.shape[1]]),l=Qe(o,i);return U(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=U(s,[-1,1]),i=Qe(n,o);return U(i,[i.size])}else{let o=U(s,[s.shape[0],s.shape[1]]);return Qe(n,o)}}var mA=V({dot_:hF});function fF(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return W.runKernel(Up,n,s)}var lw=V({einsum_:fF});function mF(e){let n={x:D(e,"x","elu","float32")};return W.runKernel(So,n)}var Uc=V({elu_:mF});function gF(e){let t=D(e,"x","erf");M(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return W.runKernel(wc,n)}var gA=V({erf_:gF});function yA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function uw(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function cw(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function Ji(e,t){let n=t.map(s=>1);return uw(e,n,t)}function yF(e,t,n){M(yA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function dw(e,t){if(yA(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function AA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function AF(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function xF(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return W.runKernel(Po,r,a)}var mn=V({max_:xF});function bF(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return W.runKernel(zo,r,a)}var ga=V({min_:bF});function vF(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(Uo,r)}var ya=V({pow_:vF});function Se(e,t){if((Pn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Pn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return oi(e,[],[],t)}function wF(e){let n={x:D(e,"x","sqrt","float32")};return W.runKernel(Qo,n)}var Nn=V({sqrt_:wF});function kF(e){let t=D(e,"x","square"),n={};return W.runKernel("Square",{x:t},n)}var vt=V({square_:kF});function IF(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(ei,r,a)}var ke=V({sum_:IF});function SF(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=pw(e,t,n),a=r.shape;if(s){let o=ur(n,e.shape);a=Ji(r.shape,o)}return U(r,a)}function pw(e,t,n=null){if(e.rank===0)return tn(e);if(e.rank!==1&&n===null)return pw(U(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(tn(e),n);if(t===1/0)return mn(tn(e),n);if(t===-1/0)return ga(tn(e),n);if(t==="euclidean"||t===2)return Nn(ke(ya(tn(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return mn(ke(tn(e),n[0]),n[1]-1);if(t===1/0)return mn(ke(tn(e),n[1]),n[0]);if(t===-1/0)return ga(ke(tn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Nn(ke(vt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Gc=V({norm_:SF});function CF(e,t=null,n=!1){return Gc(e,"euclidean",t,n)}var xA=V({euclideanNorm_:CF});function TF(e){let n={x:D(e,"x","exp")};return W.runKernel(Co,n)}var _s=V({exp_:TF});function NF(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");M(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return W.runKernel(fl,s,r)}var Kt=V({expandDims_:NF});function EF(e){let n={x:D(e,"x","expm1")};return W.runKernel(ml,n)}var bA=V({expm1_:EF});function RF(e,t){let n=D(e,"x","tile","string_or_numeric");M(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return W.runKernel(va,s,r)}var js=V({tile_:RF});function _F(e,t,n,s="float32"){t==null&&(t=e);let r=Le([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=U(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return js(Kt(o,0),[n[0],1,1]);if(n.length===2)return js(Kt(Kt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return js(Kt(Kt(Kt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var v0=V({eye_:_F});function Hc(e,t,n){let s={shape:e,value:t,dtype:n};return W.runKernel(kc,{},s)}function DF(e){let n={x:D(e,"x","floor","float32")};return W.runKernel(To,n)}var jc=V({floor_:DF});function $F(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return W.runKernel(yl,o,i)}var qc=V({gather_:$F});function PF(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(xl,r)}var ys=V({greater_:PF});function FF(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Ro,r)}var li=V({greaterEqual_:FF});function OF(e){let n={x:D(e,"x","isFinite")};return W.runKernel(Ic,n)}var vA=V({isFinite_:OF});function MF(e){let n={x:D(e,"x","isInf")};return W.runKernel(Sc,n)}var wA=V({isInf_:MF});function zF(e){let n={x:D(e,"x","isNaN")};return W.runKernel(Cc,n)}var kA=V({isNaN_:zF});function LF(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return W.runKernel(Do,s,r)}var dh=V({leakyRelu_:LF});function BF(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(bl,r)}var w0=V({less_:BF});function WF(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(vl,r)}var ui=V({lessEqual_:WF});function hw(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return W.runKernel(r0,{},s)}function VF(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");M(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),M(qu(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=U(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=W.runKernel(Hp,l,u);return i?U(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var IA=V({localResponseNormalization_:VF});function UF(e){let n={x:D(e,"x","log","float32")};return W.runKernel($o,n)}var Ds=V({log_:UF});function GF(e){let n={x:D(e,"x","log1p")};return W.runKernel(Tc,n)}var ph=V({log1p_:GF});function HF(e){return M(Ya(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(s),[s],r);return r!=null&&ns(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),k0(o),o[0]})}}function jF(e){return M(Ya(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{M(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Sp(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return W.tidy(()=>{let{value:a,grads:o}=W.gradients(()=>e(...s),s,r);return r!=null&&ns(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),k0(o),o})}}function qF(e){return M(Ya(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{M(t instanceof tt,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=W.gradients(()=>e(t),[t],n);return k0(s),{grad:s[0],value:r}}}function XF(e){return M(Ya(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{M(Array.isArray(t)&&t.every(r=>r instanceof tt),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),M(n==null||n instanceof tt,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=W.gradients(()=>e(...t),t,n);return n!=null&&ns(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),k0(s.grads),s}}function fw(e,t){M(Ya(e),()=>"The f passed in variableGrads(f) must be a function"),M(t==null||Array.isArray(t)&&t.every(u=>u instanceof kp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in W.registeredVariables)t.push(W.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),M(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=W.gradients(e,t,null,a);M(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),M(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function Kr(e){return W.customGrad(e)}function k0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function KF(e){let n={x:D(e,"x","softplus")};return W.runKernel(Fc,n)}var Zl=V({softplus_:KF});function ZF(e){let t=D(e,"x","logSigmoid");return Kr(s=>({value:Dt(Zl(Dt(s))),gradFunc:o=>L(o,Cn(Dt(s)))}))(t)}var SA=V({logSigmoid_:ZF});function YF(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(si,r)}var he=V({sub_:YF});function JF(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Kr((r,a)=>{let i=mn(r,t,!0),l=he(r,i),u=he(ge(l,"float32"),Ds(ke(_s(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=_s(h);return he(p,L(ke(p,t,f),m))}}})(n)}var I0=V({logSoftmax_:JF});function QF(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=ur(t,s.shape),a=mn(s,r,!0),o=he(s,a),i=_s(o),l=ke(i,r),u=Ds(l),c=ce(U(a,u.shape),u);if(n){let p=Ji(c.shape,r);return U(c,p)}return c}var S0=V({logSumExp_:QF});function eO(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(wl,r)}var lr=V({logicalAnd_:eO});function tO(e){let n={x:D(e,"x","logicalNot","bool")};return W.runKernel(kl,n)}var hh=V({logicalNot_:tO});function nO(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Nc,r)}var C0=V({logicalOr_:nO});function sO(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return kt(n.shape,s.shape),lr(C0(e,t),hh(lr(e,t)))}var CA=V({logicalXor_:sO}),Bf=2147483648;function rO(e,t,n="left"){let s=D(e,"sortedSequence","searchSorted"),r=D(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=U(s,[-1,a]),l=U(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Et(l.shape)>=Bf)throw new Error(`values tensor size must less than ${Bf}`);if(i.shape[1]>=Bf)throw new Error(`trailing dim_size must less than ${Bf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return W.runKernel(p0,u,c)}var T0=V({searchSorted_:rO});function mw(e,t){return T0(e,t,"left")}function aO(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),M(Yr(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),rs("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=W.runKernel(Oo,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var fh=V({maxPool_:aO});function oO(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),M(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),M(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),rs("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=W.runKernel(jp,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var TA=V({maxPool3d_:oO});function iO(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=W.runKernel(l0,o,i);return{result:l[0],indexes:l[1]}}var gw=V({maxPoolWithArgmax_:iO});function lO(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Fo,r)}var Jr=V({maximum_:lO});function uO(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return W.runKernel(Mo,r,a)}var Bt=V({mean_:uO});function Wt(e,t="float32"){if(t==="complex64"){let s=Wt(e,"float32"),r=Wt(e,"float32");return fa(s,r)}let n=Um(Et(e),t);return W.makeTensor(n,e,t)}function Ns(e,t="float32"){if(t==="complex64"){let s=Ns(e,"float32"),r=Wt(e,"float32");return fa(s,r)}let n=by(Et(e),t);return W.makeTensor(n,e,t)}function yw(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof tt?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof tt?t.dtype:"float32"),a=Et(s.shape),o=Et(r.shape);return n==="xy"?(s=U(s,[1,-1]),r=U(r,[-1,1]),[Qe(Ns([o,1],s.dtype),s),Qe(r,Ns([1,a],r.dtype))]):(s=U(s,[-1,1]),r=U(r,[1,-1]),[Qe(s,Ns([1,o],s.dtype)),Qe(Ns([a,1],r.dtype),r)])}function cO(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=Gt(n,s),n.dtype==="bool"&&(n=ge(n,"int32"),s=ge(s,"int32")),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Lo,r)}var Xc=V({minimum_:cO});function dO(e,t,n){M(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");M(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)M(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),M(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return W.runKernel(Bo,o,a)}var NA=V({mirrorPad_:dO});function pO(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=Gt(n,s);let r={a:n,b:s};return W.runKernel(Ec,r)}var Yl=V({mod_:pO});function hO(e,t=null,n=!1){e=D(e,"x","moments");let s=ur(t,e.shape),r=Bt(e,s,n),a=r.shape;n||(a=Ji(r.shape,s));let o=vt(he(ge(e,"float32"),U(r,a))),i=Bt(o,s,n);return{mean:r,variance:i}}var mh=V({moments_:hO});function fO(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=Sp(n,"c","multiRNNCell"),o=Sp(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var Aw=V({multiRNNCell_:fO});function mO(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?U(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=W.runKernel(u0,l,u);return o===1?U(c,[c.size]):c}var xw=V({multinomial_:mO});function gO(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s};return W.runKernel(Sl,r)}var Qi=V({notEqual_:gO});function yO(e){let n={x:D(e,"x","onesLike")};return W.runKernel(Nl,n)}var $s=V({onesLike_:yO});function AO(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");M(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=U(n,[-1,1]),a=U(s,[1,-1]);return Qe(r,a)}var bw=V({outerProduct_:AO});function xO(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return W.runKernel(Vo,a,r)}var Js=V({pad_:xO});function bO(e,t,n=0){return M(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),Js(e,[t],n)}var vw=V({pad1d_:bO});function vO(e,t,n=0){return M(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Js(e,t,n)}var ww=V({pad2d_:vO});function wO(e,t,n=0){return M(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Js(e,t,n)}var kw=V({pad3d_:wO});function kO(e,t,n=0){return M(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),Js(e,t,n)}var Iw=V({pad4d_:kO});function IO(e,t,n){let s=D(e,"x","spaceToBatchND");M(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),M(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),M(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return W.runKernel(zl,r,a)}var gh=V({spaceToBatchND_:IO});function SO(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=D(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),M(Yr(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=ew(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=TO([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=CO([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:gh(l,p,f),A=(n==="avg"?()=>lh(y,t,a,g,o):()=>fh(y,t,a,g,o))(),b=h?A:uh(A,p,m);return u?U(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function CO(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function TO(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var EA=V({pool_:SO});function NO(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return W.runKernel(Go,r)}var yh=V({prelu_:NO});function EO(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=ge(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return W.runKernel(Ho,r,a)}var RA=V({prod_:EO});function RO(e,t,n){let s=Et(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return W.makeTensor(r,e,n)}var Sw=V({rand_:RO}),_A=uo(Wm()),DA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=_A.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},_O=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=_A.alea(r.toString()),this.randn=new DA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},DO=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=_A.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function $O(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new _O(t,n,s,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Cw=V({randomGamma_:$O});function PO(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new DA(t,n,s,!1,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var N0=V({randomNormal_:PO});function FO(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return N0(e,0,1,t,n)}var Tw=V({randomStandardNormal_:FO});function OO(e,t=0,n=1,s="float32",r){let a=Le(e,s),o=new DO(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var Kc=V({randomUniform_:OO});function Ju(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return W.runKernel(_c,{},r)}function MO(e){let n={x:D(e,"x","reciprocal")};return W.runKernel(Dc,n)}var $A=V({reciprocal_:MO});function zO(e){let n={x:D(e,"x","relu")};return W.runKernel(jo,n)}var Pr=V({relu_:zO});function LO(e){let n={x:D(e,"x","relu6")};return W.runKernel(Ko,n)}var E0=V({relu6_:LO});function BO(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return W.runKernel(Dl,s,r)}var Ks=V({reverse_:BO});function WO(e){let t=D(e,"x","reverse");return M(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ks(t,0)}var Nw=V({reverse1d_:WO});function VO(e,t){let n=D(e,"x","reverse");return M(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ks(n,t)}var Ew=V({reverse2d_:VO});function UO(e,t){let n=D(e,"x","reverse");return M(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ks(n,t)}var Rw=V({reverse3d_:UO});function GO(e,t){let n=D(e,"x","reverse");return M(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ks(n,t)}var _w=V({reverse4d_:GO});function HO(e){let n={x:D(e,"x","round")};return W.runKernel($l,n)}var R0=V({round_:HO});function jO(e){let n={x:D(e,"x","rsqrt","float32")};return W.runKernel(Zo,n)}var _0=V({rsqrt_:jO});function qO(e){let n={x:D(e,"x","selu")};return W.runKernel($c,n)}var D0=V({selu_:qO});function XO(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),u=D(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");M(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),M(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),M(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),M(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];M(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=Vc(c,l,s,r,o,a),g=ma(f,u,1,"valid",o);return p?U(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var $0=V({separableConv2d_:XO});async function KO(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");M(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),M(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),M(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new fn([i],n.dtype),u=new fn([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Dw=KO;function ZO(e){let n={x:D(e,"x","sign")};return W.runKernel(Pc,n)}var PA=V({sign_:ZO});function YO(e){let n={x:D(e,"x","sin","float32")};return W.runKernel(Yo,n)}var P0=V({sin_:YO});function JO(e){let n={x:D(e,"x","sinh")};return W.runKernel(Ml,n)}var F0=V({sinh_:JO});function QO(e,t,n){let s=D(e,"x","slice1d");return M(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),Oe(s,[t],[n])}var Ah=V({slice1d_:QO});function eM(e,t,n){let s=D(e,"x","slice2d");return M(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var O0=V({slice2d_:eM});function tM(e,t,n){let s=D(e,"x","slice3d");return M(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var ci=V({slice3d_:tM});function nM(e,t,n){let s=D(e,"x","slice4d");return M(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),Oe(s,t,n)}var no=V({slice4d_:nM});function sM(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return W.runKernel(ti,s,r)}var Jl=V({softmax_:sM});function rM(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(n0,t)}var xh=V({fft_:rM});function aM(e){M(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return W.runKernel(s0,t)}var Qu=V({ifft_:aM});function oM(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=U(e,[n,t]);s=Qu(r)}else{let r=[n,2*(t-1)],a=U(Yu(e),[n,t]),o=U(oh(e),[n,t]),i=Ks(Oe(a,[0,1],[n,t-2]),1),l=L(Ks(Oe(o,[0,1],[n,t-2]),1),Se(-1)),u=Ct([a,i],1),c=Ct([o,l],1),p=U(fa(u,c),[r[0],r[1]]);s=Qu(p)}if(s=Yu(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=U(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var M0=V({irfft_:oM});function iM(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return W.runKernel(Ll,r,a)}var Zt=V({split_:iM});function lM(e,t){M(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=Oe(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=Ct([e,Wt(f)],e.shape.length-1),n=t}else r=e;let a=it(r),o=U(fa(r,a),[s,n]),i=xh(o),l=Math.floor(n/2)+1,u=Yu(i),c=oh(i),p=Zt(u,[l,n-l],u.shape.length-1),d=Zt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,U(fa(p[0],d[0]),h)}var bh=V({rfft_:lM});function uM(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=Gt(n,s),kt(n.shape,s.shape);let r={a:n,b:s},a={};return W.runKernel(ni,r,a)}var z0=V({squaredDifference_:uM});function cM(e,t){let n=D(e,"x","squeeze","string_or_numeric");return U(n,Q7(n.shape,t).newShape)}var rt=V({squeeze_:cM});function dM(e,t=0){let n=Sp(e,"tensors","stack","string_or_numeric");M(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&M(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return W.runKernel(Rl,s,r)}var on=V({stack_:dM});function pM(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return W.runKernel(ai,s,r)}var Ql=V({step_:pM});function hM(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:D(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return W.runKernel(Bl,c,p)}var FA=V({stridedSlice_:hM});function fM(e){let n={x:D(e,"x","tan","float32")};return W.runKernel(Wl,n)}var OA=V({tan_:fM});function Ft(e,t){ol(e);let n=Xr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return oi(e,null,n,t)}function or(e,t,n){if(ol(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=Xr(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return oi(e,t,s,n)}function $w(e,t,n){if(ol(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=Xr(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return oi(e,t,s,n)}function Pw(e,t,n){if(ol(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=Xr(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return oi(e,t,s,n)}function Fw(e,t,n){if(ol(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=Xr(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,oi(e,t,s,n)}function mM(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=W.runKernel(Vl,a,o);return{values:i,indices:l}}var MA=V({topk_:mM});function gM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new DA(t,n,s,!0,r),o=Le(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var L0=V({truncatedNormal_:gM});function yM(e,t=0){let n=D(e,"x","unique","string_or_numeric");M(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=W.runKernel(h0,s,r);return{values:a,indices:o}}var zA=V({unique_:yM});function AM(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");M(qu(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return W.runKernel(eh,a,o)}var B0=V({unsortedSegmentSum_:AM});function xM(e,t=0){let n=D(e,"x","unstack","string_or_numeric");M(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return W.runKernel(Gl,s,r)}var es=V({unstack_:xM});function Ow(e,t){return T0(e,t,"right")}function LA(e,t=!0,n,s){return W.makeVariable(e,t,n,s)}function Mw(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=Le(e,"int32"),r=Le([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function bM(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=Mw(t.shape,n);return e!==t&&t.dispose(),s}var BA=bM;async function vM(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;M(o>0,()=>"mask cannot be scalar"),ns(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=U(s,u),p=U(r,[-1]),d=await BA(p),h=rt(d,[1]),f=qc(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var zw=vM;function wM(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");y6(a,o),M(co(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Se(1),u=he(l,i),c=L(he(o,a),u);if(r){M(s!=null,()=>"When using zeroDebias: true, step is required.");let p=D(s,"step","movingAverage");c=pe(c,he(l,ya(i,p)))}return ce(a,c)}var Lw=V({movingAverage_:wM});function kM(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");Wy(r,s,n);let a={indices:s,updates:r},o={shape:n};return W.runKernel(Pl,a,o)}var Bw=V({scatterND_:kM});function IM(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function SM(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense","string_or_numeric"),o=D(s,"defaultValue","sparseToDense",a.dtype);IM(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return W.runKernel(Yp,i,l)}var Ww=V({sparseToDense_:SM});function CM(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return W.runKernel(Al,r)}var Vw=V({gatherND_:CM});function TM(e,t){if(t==null)return e.shape.slice();if(co(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function NM(e,t,n,s){let r=D(e,"x","dropout");if(M(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),M(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof tt?r.clone():r;let a=TM(r,n),o=1-t,i=pe(jc(ce(Kc(a,0,1,"float32",s),o)),o);return L(r,i)}var WA=V({dropout_:NM});function VA(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function W0(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Ft(r,"float32")}async function EM(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");M(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),M(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),ns(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];M(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=e6("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ft(c,r.shape,"bool")}var Uw=EM,ec={};Ve(ec,{conv2d:()=>DM,depthwiseConv2d:()=>OM,matMul:()=>zM});function RM(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]])),M(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),M(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),M(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];M(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),M(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),rs("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return W.runKernel(Xm,p,d)}var UA=V({conv2DBackpropFilter_:RM});function V0(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return L(e,Ql(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function U0(e,t){let n=t,s=an(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),U(n,e.shape)}function G0(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Pr(e);if(t==="elu")return Uc(e);if(t==="relu6")return E0(e);if(t==="prelu")return yh(e,n);if(t==="leakyrelu")return dh(e,s);if(t==="sigmoid")return Cn(e);throw new Error(`Unknown fused activation ${t}.`)}var H0=(e,t)=>!(e>0)||t==="linear";function _M({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",H0(W.state.gradientDepth,l)===!1){M(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let k=ma(e,t,n,s,r,a,o);return i!=null&&(k=ce(k,i)),G0(k,l,u,c)}let p=D(e,"x","conv2d","float32"),d=D(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),rs("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];M(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),M(Yr(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=ih(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=D(i,"bias","fused conv2d"),[y]=Gt(y,p),r==="NHWC"?kt(g.outShape,y.shape):(M(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),M(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let k=u.shape;if(M(k.length<=1||k.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${k.length}.`),k.length===1)M(k[0]===1||k[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the number of output channels (${g.outChannels}).`);else if(k.length===3)try{kt(k,g.outShape)}catch(S){let E=`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=D(u,"prelu weights","fused conv2d")}let A=(k,S)=>{M(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,R,P,_]=S,$=V0(k,P,l);M(to(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let T=uA(R.shape,$,E,n,s),F=UA(R,$,E.shape,n,s),G=[T,F];if(_!=null){let q=U0(_,$);G.push(q)}return G},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Kr((S,E,R)=>{let P=W.runKernel(Qa,b,w);return R([E,S,P]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:A}})(h,d):Kr((S,E,R,P)=>{let _=W.runKernel(Qa,b,w);return P([E,S,_,R]),f&&(_=U(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:A}})(h,d,y)}var DM=V({fusedConv2d_:_M});function $M(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=U(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return W.runKernel(Jm,u,c)}var Gw=V({depthwiseConv2dNativeBackpropFilter_:$M});function PM(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=U(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=W.runKernel(Qm,u,c);return l?U(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Hw=V({depthwiseConv2dNativeBackpropInput_:PM});function FM({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(H0(W.state.gradientDepth,l)===!1){let w=Vc(e,t,n,s,r,a,o);return i!=null&&(w=ce(w,i)),G0(w,l,u,c)}let p=D(e,"x","depthwiseConv2d","float32"),d=D(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=U(p,[1,p.shape[0],p.shape[1],p.shape[2]])),M(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),M(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),M(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),M(Yr(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),rs("fused depthwiseConv2d",s,o);let m=ih(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Gt(g,p),kt(m.outShape,g.shape));let y;u!=null&&(y=D(u,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{M(to(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[S,E,R,P]=k,_=V0(w,R,l),$=Hw(E.shape,_,S,n,s,a,o),T=Gw(E,_,S.shape,n,s,a,o);if(P!=null){let F=U0(g,_);return[$,T,F]}return[$,T]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?Kr((k,S,E)=>{let R=W.runKernel(eo,A,b);return E([S,k,R]),f&&(R=U(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:x}})(h,d):Kr((k,S,E,R)=>{let P=W.runKernel(eo,A,b);return R([S,k,P,E]),f&&(P=U(P,[P.shape[1],P.shape[2],P.shape[3]])),{value:P,gradFunc:x}})(h,d,g)}var OM=V({fusedDepthwiseConv2d_:FM});function MM({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(H0(W.state.gradientDepth,a)===!1){let _=Qe(e,t,n,s);return r!=null&&(_=ce(_,r)),G0(_,a,o,i)}let l=D(e,"a","fused matMul"),u=D(t,"b","fused matMul");[l,u]=Gt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Et(f),y=Et(m);M(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=kt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?U(l,[g,c,d]):U(l,[g,d,c]),w=s?U(u,[y,h,p]):U(u,[y,p,h]),k;r!=null&&(k=D(r,"bias","fused matMul"),[k]=Gt(k,l),kt(A,k.shape));let S;o!=null&&(S=D(o,"prelu weights","fused matMul"));let E=(_,$)=>{let[T,F,G,q]=$,z=V0(U(_,G.shape),G,a),K,B;if(!n&&!s?(K=Qe(z,F,!1,!0),B=Qe(T,z,!0,!1)):!n&&s?(K=Qe(z,F,!1,!1),B=Qe(z,T,!0,!1)):n&&!s?(K=Qe(F,z,!1,!0),B=Qe(T,z,!1,!1)):(K=Qe(F,z,!0,!0),B=Qe(z,T,!0,!0)),r!=null){let ee=U0(q,z);return[K,B,ee]}else return[K,B]},R={a:b,b:w,bias:k,preluActivationWeights:S},P={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?Kr(($,T,F)=>{let G=W.runKernel(Ja,R,P);return F([$,T,G]),{value:U(G,A),gradFunc:E}})(b,w):Kr(($,T,F,G)=>{let q=W.runKernel(Ja,R,P);return G([$,T,q,F]),{value:U(q,A),gradFunc:E}})(b,w,k)}var zM=V({fusedMatMul_:MM});function LM(e){return W0(e,.54,.46)}var BM=V({hammingWindow_:LM});function WM(e){return W0(e,.5,.5)}var jw=V({hannWindow_:WM});function VM(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(Oe(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=Ct([Oe(e,a,t-i),Hc([i],r)]);o.push(l),a+=n}return o.length===0?or([],[0,t]):U(Ct(o),[o.length,t])}var qw=V({frame_:VM});function UM(e,t,n,s,r=jw){s==null&&(s=VA(t));let a=qw(e,t,n),o=L(a,r(t));return bh(o,s)}var GM=V({stft_:UM});function HM(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),u=i.shape[0];M(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),M(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),M(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),M(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),M(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return W.runKernel(dl,c,p)}var jM=V({cropAndResize_:HM});function qM(e){let t=D(e,"image","flipLeftRight","float32");M(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return W.runKernel(gl,n,{})}var XM=V({flipLeftRight_:qM});function KM(e){let t=D(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];M(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),M(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,js(t,r)}var ZM=V({grayscaleToRGB_:KM});function YM(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");M(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return W.runKernel(jl,a,o)}var JM=V({rotateWithOffset_:YM});function Zc(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),M(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),M(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),M(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),M(t.rank===1,()=>"scores must be a 1D tensor"),M(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),M(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function QM(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression","float32"),o=D(t,"scores","nonMaxSuppression","float32"),i=Zc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return W.runKernel(Cl,{boxes:a,scores:o},l)}var ez=V({nonMaxSuppression_:QM});function tz(e,t,n){let s=nz(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function nz(e,t,n){return rz(e,t,n||sz)}function sz(e,t){return e>t?1:e<t?-1:0}function rz(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function Xw(e,t,n,s,r){return GA(e,t,n,s,r,0)}function Kw(e,t,n,s,r,a){return GA(e,t,n,s,r,0,!1,a,!0)}function Zw(e,t,n,s,r,a){return GA(e,t,n,s,r,a,!0)}function GA(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(vv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let k=az(e,x,p[w]);if(k>=s){b=!0;break}if(g.score=g.score*oz(s,c,k),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&tz(u,g,vv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function az(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function oz(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function vv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function iz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=Zc(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=Xw(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Ft(p,"int32")}var lz=iz;function uz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Zc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=W.runKernel(Tl,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var cz=V({nonMaxSuppressionWithScore_:uz});async function dz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Zc(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=Zw(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(d,"int32"),selectedScores:Ft(h)}}var pz=dz;function hz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=Zc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=W.runKernel(Rc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var fz=V({nonMaxSuppressionPadded_:hz});async function mz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=Zc(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=Kw(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Ft(f,"int32"),validOutputs:Se(m,"int32")}}var gz=mz;function yz(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");M(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),M(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=W.runKernel(Xo,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Yw=V({resizeBilinear_:yz});function Az(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");M(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),M(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),M(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),M(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=U(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=W.runKernel(qo,i,l);return o?U(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var Jw=V({resizeNearestNeighbor_:Az});function xz(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=L(Ft([s]),255),c,p,d,h;if(M(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),M(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),M(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),M(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Zt(r,[1,1,1],-1);let g=L(c,a),y=L(p,o),x=L(d,i);h=ce(ce(g,y),x)}else h=e;if(t==="otsu"){let g=rA(ge(R0(h),"int32"),ft([]),256);u=bz(g,l)}let f=n?ui(h,u):ys(h,u);return ge(L(f,255),"int32")}function bz(e,t){let n=Ft([-1]),s=Ft([0]),r=Ft([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=Oe(e,0,p+1),o=Oe(e,p+1),u=pe(ke(a),t),c=pe(ke(o),t);let d=ke(L(a,Ju(0,a.size)));i=pe(d,ke(a));let h=Hc(o.shape,a.size),f=ce(Ju(0,o.size),h),m=L(o,f);l=pe(ke(m),ke(o));let g=he(i,l),y=he(i,l),x=L(u,c);r=L(L(x,g),y);let A=ys(r,s);s=Mn(A,r,s),n=Mn(A,Ft([p]),n)}return n}var vz=V({threshold_:xz});function wz(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");M(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),M(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),M(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return W.runKernel(Ul,l,u)}var kz=V({transform_:wz});function Iz(e,t,n){M(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),M(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");M(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=U(Ju(0,a,1,"int32"),[-1,1]),l=Ju(0,o,1,"int32"),u=he(i,l),c=lr(ui(u,Se(+t,"int32")),li(u,Se(-n,"int32"))),p=Wt([a,o],s.dtype);return U(on(es(U(s,[-1,a,o])).map(d=>Mn(c,d,p))),r)}var Sz=V({bandPart_:Iz});function Cz(e){let t;if(Array.isArray(e)){t=!1,M(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)M(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Zt(e,e.shape[0],0).map(r=>rt(r,[0]));M(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(W.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=L(ke(L(n[o],a)),n[o]);a=he(a,i)}return pe(a,Gc(a,"euclidean"))}));return t?on(n,0):n}var Tz=V({gramSchmidt_:Cz});function Nz(e,t=!1){if(M(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return wv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=es(U(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=wv(l,t);r.push(u),a.push(c)});let o=U(on(r,0),e.shape),i=U(on(a,0),e.shape);return[o,i]}}function wv(e,t=!1){return W.tidy(()=>{M(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=v0(n),a=Fn(e),o=or([[1]],[1,1]),i=Fn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=W.tidy(()=>{let h=Oe(a,[u,u],[n-u,1]),f=Gc(h),m=Oe(a,[u,u],[1,1]),g=Mn(ys(m,0),or([[-1]]),or([[1]])),y=he(m,L(g,f)),x=pe(h,y);x.shape[0]===1?i=Fn(o):i=Ct([o,Oe(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=Dt(pe(Qe(g,y),f)),b=Oe(a,[u,0],[n-u,s]),w=L(A,i),k=st(i);if(u===0)a=he(b,Qe(w,Qe(k,b)));else{let R=he(b,Qe(w,Qe(k,b)));a=Ct([Oe(a,[0,0],[u,s]),R],0)}let S=st(w),E=Oe(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=he(E,Qe(Qe(E,i),S));else{let R=he(E,Qe(Qe(E,i),S));r=Ct([Oe(r,[0,0],[n,u]),R],1)}return[i,a,r]}),ne([c,p,d])}return!t&&n>s&&(r=Oe(r,[0,0],[n,s]),a=Oe(a,[0,0],[s,s])),[r,a]})}var Ez=V({qr_:Nz}),Yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(Yn||(Yn={}));function Rz(e,t,n=Yn.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:L(s,r);if(n===Yn.NONE)return a;if(n===Yn.SUM)return ke(a);if(n===Yn.MEAN){if(r==null)return Bt(a);{let o=s.size/r.size,i=pe(ke(a),ke(r));return o>1?pe(i,Se(o)):i}}if(n===Yn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return pe(ke(a),Se(s.size));{let o=L(r,Ns(s.shape)),i=ge(ke(Qi(o,Se(0))),"float32");return pe(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var wa=V({computeWeightedLoss_:Rz});function _z(e,t,n,s=Yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),ns(r.shape,a.shape,"Error in absoluteDifference: ");let i=tn(he(r,a));return wa(i,o,s)}var Dz=V({absoluteDifference_:_z});function $z(e,t,n,s,r=Yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),ns(a.shape,o.shape,"Error in cosineDistance: ");let l=Se(1),u=he(l,ke(L(a,o),n,!0));return wa(u,i,r)}var Pz=V({cosineDistance_:$z});function Fz(e,t,n,s=Yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),ns(r.shape,a.shape,"Error in hingeLoss: ");let i=Se(1);r=he(L(Se(2),r),i);let l=Pr(he(i,L(r,a)));return wa(l,o,s)}var Oz=V({hingeLoss_:Fz});function Mz(e,t,n,s=1,r=Yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),ns(a.shape,o.shape,"Error in huberLoss: ");let l=Se(s),u=tn(he(o,a)),c=Xc(u,l),p=he(u,c),d=ce(L(Se(.5),vt(c)),L(l,p));return wa(d,i,r)}var zz=V({huberLoss_:Mz});function Lz(e,t,n,s=1e-7,r=Yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),ns(a.shape,o.shape,"Error in logLoss: ");let l=Se(1),u=Se(s),c=Dt(L(a,Ds(ce(o,u)))),p=L(he(l,a),Ds(ce(he(l,o),u))),d=he(c,p);return wa(d,i,r)}var Bz=V({logLoss_:Lz});function Wz(e,t,n,s=Yn.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),ns(r.shape,a.shape,"Error in meanSquaredError: ");let i=z0(r,a);return wa(i,o,s)}var Vz=V({meanSquaredError_:Wz});function Uz(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");ns(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Pr(s),a=L(s,n),o=ph(_s(Dt(tn(s))));return ce(he(r,a),o)}function Gz(e,t,n,s=0,r=Yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),ns(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Se(s),c=Se(1),p=Se(.5);a=ce(L(a,he(c,u)),L(p,u))}let l=Uz(a,o);return wa(l,i,r)}var Hz=V({sigmoidCrossEntropy_:Gz});function jz(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Kr((r,a,o)=>{let l=S0(a,[n],!0),u=he(ge(a,"float32"),l);o([r,u]);let c=Dt(L(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=Ji(h.shape,[n]);return[L(U(h,y),he(ge(m,"float32"),_s(g))),L(U(h,y),he(_s(g),ge(m,"float32")))]}}})(e,t)}function qz(e,t,n,s=0,r=Yn.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),ns(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Se(s),c=Se(1),p=Se(a.shape[1]);a=ce(L(a,he(c,u)),pe(u,p))}let l=jz(a,o);return wa(l,i,r)}var Xz=V({softmaxCrossEntropy_:qz});function Kz(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows","int32"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows","int32"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=W.runKernel(Xp,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var Zz=V({sparseFillEmptyRows_:Kz});function Yz(e,t,n){let s=D(e,"inputIndices","sparseReshape","int32"),r=D(t,"inputShape","sparseReshape","int32"),a=D(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=W.runKernel(Oc,o);return{outputIndices:i[0],outputShape:i[1]}}var Jz=V({sparseReshape_:Yz});function Qz(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean","int32"),a=D(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Kp,o)}var eL=V({sparseSegmentMean_:Qz});function tL(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum","int32"),a=D(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return W.runKernel(Zp,o)}var nL=V({sparseSegmentSum_:tL});function sL(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=D(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=W.runKernel(zc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var rL=V({stringNGrams_:sL});function aL(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=W.runKernel(Jp,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var oL=V({stringSplit_:aL});function iL(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return W.runKernel(Qp,r,s)}var lL=V({stringToHashBucketFast_:iL}),Qw={fft:xh,ifft:Qu,rfft:bh,irfft:M0},e8={hammingWindow:BM,hannWindow:jw,frame:qw,stft:GM},Ne={flipLeftRight:XM,grayscaleToRGB:ZM,resizeNearestNeighbor:Jw,resizeBilinear:Yw,rotateWithOffset:JM,cropAndResize:jM,nonMaxSuppression:ez,nonMaxSuppressionAsync:lz,nonMaxSuppressionWithScore:cz,nonMaxSuppressionWithScoreAsync:pz,nonMaxSuppressionPadded:fz,nonMaxSuppressionPaddedAsync:gz,threshold:vz,transform:kz},HA={bandPart:Sz,gramSchmidt:Tz,qr:Ez},t8={absoluteDifference:Dz,computeWeightedLoss:wa,cosineDistance:Pz,hingeLoss:Oz,huberLoss:zz,logLoss:Bz,meanSquaredError:Vz,sigmoidCrossEntropy:Hz,softmaxCrossEntropy:Xz},n8={sparseFillEmptyRows:Zz,sparseReshape:Jz,sparseSegmentMean:eL,sparseSegmentSum:nL},s8={stringNGrams:rL,stringSplit:oL,stringToHashBucketFast:lL},ka=class extends Z6{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ne(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return fw(e,t)}dispose(){this.iterations_!=null&&ne(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(ka,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var j0=class extends ka{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:J(()=>it(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:J(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;J(()=>{let u=ce(L(i,this.rho),L(vt(o),1-this.rho)),c=L(pe(Nn(ce(l,this.epsilon)),Nn(ce(i,this.epsilon))),o),p=ce(L(l,this.rho),L(vt(c),1-this.rho));i.assign(u),l.assign(p);let d=ce(L(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ne(this.accumulatedGrads.map(e=>e.variable)),ne(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};j0.className="Adadelta";ii(j0);var q0=class extends ka{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:J(()=>Hc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;J(()=>{let i=ce(o,vt(a));o.assign(i);let l=ce(L(pe(a,Nn(ce(i,W.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ne(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};q0.className="Adagrad";ii(q0);var X0=class extends ka{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],J(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);J(()=>{let n=he(1,this.accBeta1),s=he(1,this.accBeta2);t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:J(()=>it(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:J(()=>it(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ce(L(u,this.beta1),L(l,1-this.beta1)),d=ce(L(c,this.beta2),L(vt(l),1-this.beta2)),h=pe(p,n),f=pe(d,s);u.assign(p),c.assign(d);let m=ce(L(pe(h,ce(Nn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(L(this.accBeta1,this.beta1)),this.accBeta2.assign(L(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ne(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),J(()=>{this.accBeta1.assign(ya(this.beta1,this.iterations_+1)),this.accBeta2.assign(ya(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};X0.className="Adam";ii(X0);var K0=class extends ka{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],J(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),s==null&&(this.epsilon=W.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);J(()=>{let n=he(1,this.accBeta1),s=pe(-this.learningRate,ce(L(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=W.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:it(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:it(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ce(L(u,this.beta1),L(l,1-this.beta1)),d=L(c,this.beta2),h=tn(l),f=Jr(d,h);u.assign(p),c.assign(f);let m=ce(L(pe(s,n),pe(p,ce(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ce(this.iteration,1)),this.accBeta1.assign(L(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ne(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ne(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};K0.className="Adamax";ii(K0);var vh=class extends ka{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=W.registeredVariables[n];J(()=>{let o=ce(L(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=bn(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};vh.className="SGD";ii(vh);var Z0=class extends vh{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:J(()=>it(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&J(()=>{let i,l=ce(L(this.m,a),o);this.useNesterov?i=ce(L(this.c,ce(o,L(l,this.m))),r):i=ce(L(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ne(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Z0.className="Momentum";ii(Z0);var Y0=class extends ka{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=W.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=W.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:J(()=>it(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:J(()=>it(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:J(()=>it(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;J(()=>{let u=ce(L(i,this.decay),L(vt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ce(L(c,this.decay),L(o,1-this.decay)),d=pe(L(o,this.learningRate),Nn(he(u,ce(vt(p),this.epsilon)))),h=ce(L(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=he(r,h);r.assign(f)}else{let c=ce(L(i,this.decay),L(vt(o),1-this.decay)),p=ce(L(l,this.momentum),pe(L(o,this.learningRate),Nn(ce(c,this.epsilon))));i.assign(c),l.assign(p);let d=he(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ne(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ne(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ne(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Y0.className="RMSProp";ii(Y0);var Wa=class{static sgd(e){return new vh(e)}static momentum(e,t,n=!1){return new Z0(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new Y0(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new X0(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new j0(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new K0(e,t,n,s,r)}static adagrad(e,t=.1){return new q0(e,t)}},Fi={sgd:Wa.sgd,momentum:Wa.momentum,adadelta:Wa.adadelta,adagrad:Wa.adagrad,rmsprop:Wa.rmsprop,adamax:Wa.adamax,adam:Wa.adam},uL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function jA(){return new Promise(e=>uL(()=>e()))}var C={};Ve(C,{ERF_A1:()=>bL,ERF_A2:()=>vL,ERF_A3:()=>wL,ERF_A4:()=>kL,ERF_A5:()=>IL,ERF_P:()=>xL,PARALLELIZE_THRESHOLD:()=>qA,SELU_SCALE:()=>a8,SELU_SCALEALPHA:()=>r8,applyActivation:()=>G0,assertAndGetBroadcastShape:()=>kt,assertAxesAreInnerMostDims:()=>yF,assertParamsConsistent:()=>cL,assignToTypedArray:()=>RL,axesAreInnerMostDims:()=>yA,calculateShapes:()=>B6,checkEinsumDimSizes:()=>OL,checkPadOnDimRoundingMode:()=>rs,combineLocations:()=>uw,complexWithEvenIndex:()=>TL,complexWithOddIndex:()=>NL,computeConv2DInfo:()=>ih,computeConv3DInfo:()=>tw,computeDefaultPad:()=>Qy,computeDilation2DInfo:()=>AP,computeOptimalWindowSize:()=>pL,computeOutAndReduceShapes:()=>cw,computeOutShape:()=>dL,computePool2DInfo:()=>ew,computePool3DInfo:()=>xP,convertConv2DDataFormat:()=>nw,decodeEinsumEquation:()=>PL,eitherStridesOrDilationsAreOne:()=>Yr,expandShapeToKeepDim:()=>Ji,exponent:()=>DL,exponents:()=>_L,fromStringArrayToUint8:()=>sB,fromUint8ToStringArray:()=>nB,getAxesPermutation:()=>dw,getBroadcastDims:()=>M6,getComplexWithIndex:()=>EL,getEinsumComputePath:()=>ML,getEinsumPermutation:()=>FL,getFusedBiasGradient:()=>U0,getFusedDyActivation:()=>V0,getImageCenter:()=>hL,getInnerMostAxes:()=>AF,getPermuted:()=>mL,getReductionAxes:()=>an,getReshaped:()=>fL,getReshapedPermuted:()=>gL,getSliceBeginCoords:()=>yL,getSliceSize:()=>AL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>WL,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>VL,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>UL,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>jL,getSparseReshapeInputOutputMismatchErrorMessage:()=>XL,getSparseReshapeInputOutputMultipleErrorMessage:()=>qL,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>GL,getSparseReshapeNegativeOutputDimErrorMessage:()=>HL,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>JL,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>KL,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>ZL,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>YL,getUndoAxesPermutation:()=>AA,isIdentityPermutation:()=>zL,log:()=>U_,mergeRealAndImagArrays:()=>SL,prepareAndValidate:()=>L6,prepareSplitSize:()=>BL,segment_util:()=>o8,shouldFuse:()=>H0,slice_util:()=>Ut,splitRealAndImagArrays:()=>CL,tupleValuesAreOne:()=>to,upcastType:()=>On,validateInput:()=>Wy,validateUpdateShape:()=>By,warn:()=>Ua});function cL(e,t){let n=e[0].length;e.forEach((r,a)=>{M(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),M(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)M(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function dL(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var qA=30;function pL(e){return e<=qA?e:dm(e,Math.floor(Math.sqrt(e)))}function hL(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function fL(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function mL(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function gL(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function yL(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function AL(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var r8=1.7580993408473768,a8=1.0507009873554805,xL=.3275911,bL=.254829592,vL=-.284496736,wL=1.421413741,kL=-1.453152027,IL=1.061405429;function SL(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function CL(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function TL(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function NL(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function EL(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function RL(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function _L(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function DL(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var i3="->",$L=/->/g,kv=",",Iv="...";function PL(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace($L,"").length)/i3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${i3}").`);let[s,r]=e.split(i3);M(s.indexOf(Iv)===-1,()=>`The ellipsis notation ("${Iv}") is not supported yet.`);let a=s.split(kv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==kv&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function FL(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function OL(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:M(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function ML(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=LL(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function zL(e){return e.every((t,n)=>t===n)}function LL(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function BL(e,t,n=0){let s=[];if(typeof t=="number")M(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);M(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}M(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function WL(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function VL(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function UL(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function GL(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function HL(e,t){return`size ${e} must be non-negative, not ${t}`}function jL(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function qL(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function XL(e,t){let n=Et(e),s=Et(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function KL(){return"segment ids must be >= 0"}function ZL(){return"segment ids are not increasing"}function YL(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function JL(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var o8={};Ve(o8,{collectGatherOpShapeInfo:()=>tB,computeOutShape:()=>eB,segOpComputeOptimalWindowSize:()=>QL});function QL(e,t){let n=!1,s;for(e<=qA?(s=e,n=!0):s=dm(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=dm(e,s+1);return s}function eB(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function tB(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function nB(e){try{return e.map(t=>mm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function sB(e){return e.map(t=>nh(t))}var dr={};Ve(dr,{nonMaxSuppressionV3Impl:()=>Xw,nonMaxSuppressionV4Impl:()=>Kw,nonMaxSuppressionV5Impl:()=>Zw,whereImpl:()=>Mw});var i8={kernelName:il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Ql(ge(n,"float32"),-1))}}},rB={kernelName:pc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=vt(ge(n,"float32")),r=Nn(he(Se(1),s));return Dt(pe(e,r))}}}},aB={kernelName:hc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Nn(he(vt(ge(n,"float32")),1));return pe(e,s)}}}},oB={kernelName:xa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=ke(i,l)),U(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=ke(i,l)),U(i,s.shape)}}}},iB={kernelName:po,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},lB={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},uB={kernelName:gc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>it(n)}}},cB={kernelName:yc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Nn(he(Se(1),vt(ge(n,"float32")))))}}},dB={kernelName:Ac,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Nn(ce(Se(1),vt(ge(n,"float32"))));return pe(e,s)}}}},pB={kernelName:vc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=ce(vt(n),vt(s)),l=L(e,pe(s,i)),u=an(n.shape,r);return u.length>0&&(l=ke(l,u)),U(l,n.shape)},b:()=>{let i=ce(vt(n),vt(s)),l=Dt(L(e,pe(n,i))),u=an(s.shape,r);return u.length>0&&(l=ke(l,u)),U(l,s.shape)}}}},hB={kernelName:xc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ce(vt(ge(n,"float32")),1))}}},fB={kernelName:bc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,he(Se(1),vt(ge(n,"float32"))))}}};function mB(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=U(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),M(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),M(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),rs("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=W.runKernel(Hm,p,d);return c?U(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var gB=V({avgPool3dGrad_:mB}),yB={kernelName:zp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>gB(e,s,r,a,o,i)}}};function AB(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");M(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=U(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=U(a,[1,a.shape[0],a.shape[1],a.shape[2]])),M(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),M(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=W.runKernel(Gm,c,p);return u?U(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var xB=V({avgPoolGrad_:AB}),bB={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>xB(e,s,r,a,o)}}},vB={kernelName:mo,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>Qe(e,r,!1,!0),b:()=>Qe(s,e,!0,!1)}:!a&&o?{a:()=>Qe(e,r,!1,!1),b:()=>Qe(e,s,!0,!1)}:a&&!o?{a:()=>Qe(r,e,!1,!0),b:()=>Qe(s,e,!1,!1)}:{a:()=>Qe(r,e,!0,!0),b:()=>Qe(e,s,!0,!0)}}},wB={kernelName:ll,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>gh(e,s,r)}}},kB={kernelName:c6,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},IB={kernelName:go,gradFunc:e=>({x:()=>e.clone()})},SB={kernelName:yo,gradFunc:e=>({x:()=>it(e)})},CB={kernelName:ba,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Mn(lr(li(s,r),ui(s,a)),e,it(e))}}},TB={kernelName:Bp,inputsToSave:["x"],gradFunc:i8.gradFunc},NB={kernelName:ul,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=ur(r,t[0].shape)[0],o=s.map(l=>l[a]);return Zt(e,o,a).map(l=>()=>l)}},EB={kernelName:Ao,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return M(to(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>uA(s.shape,e,r,o,i,l),filter:()=>UA(s,e,r.shape,o,i,l)}}},RB={kernelName:xo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>ma(e,r,a,o,i,1,l),filter:()=>UA(e,s,r.shape,a,o,i,l)}}};function _B(e,t,n,s,r){let a=e;e.rank===4&&(a=U(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=U(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),M(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),M(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),M(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),M(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),M(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return W.runKernel(Km,i,l)}var DB=V({conv3DBackpropFilter_:_B}),$B={kernelName:Wp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;M(to(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>aw(o.shape,e,i,r,a),filter:()=>DB(o,e,i.shape,r,a)}}},PB={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(Dt(P0(ge(n,"float32"))),e)}}},FB={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(F0(ge(n,"float32")),e)}}},OB={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=dw([r],s.rank),l=b0(e,r,a,!o);return i!=null&&(l=st(l,i)),l}}}},MB={kernelName:ko,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;M(to(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return M(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),M(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),M(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),M(Yr(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),rs("depthwiseConv2d",a,o),{x:()=>Hw(l.shape,e,u,r,a,i,o),filter:()=>Gw(l,e,u.shape,r,a,i,o)}}},zB={kernelName:Vp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>W.runKernel(pm,a,n),filter:()=>W.runKernel(hm,o,n)}}},LB={kernelName:So,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>W.runKernel(t0,s)}}},BB={kernelName:wc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(_s(Dt(vt(n))),2/Math.sqrt(Math.PI));return{x:()=>L(e,s)}}},WB={kernelName:Co,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,n)}}},VB={kernelName:fl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>U(e,n.shape)}}},UB={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,_s(n))}}},GB={kernelName:To,gradFunc:e=>({x:()=>it(e)})},HB={kernelName:No,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=pe(e,ge(s,"float32")),l=an(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=an(s.shape,r);l.length>0&&(i=U(ke(i,l),s.shape));let u=vt(s);return Dt(pe(i,ge(u,"float32")))}}}},jB={kernelName:Eo,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Se(1):i,u=an(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=he(r,a),d=L(e,l),h=_0(ce(o,Se(s))),f=L(L(L(h,h),h),Se(-.5));return{x:()=>a.rank===1?U(L(L(e,js(U(h,[1,1,1,a.shape[0]]),c)),l),r.shape):U(L(L(e,h),l),r.shape),mean:()=>{let b=L(L(h,Se(-1)),d);return a.rank===1&&(b=ke(b,u)),U(b,a.shape)},variance:()=>{let b=L(L(f,p),d);return a.rank===1&&(b=ke(b,u)),U(b,a.shape)},scale:()=>{let b=L(p,h),w=L(e,b);return a.rank===1&&(w=ke(w,u)),U(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),U(b,a.shape)}}}},qB={kernelName:yl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=ur(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=Sv(0,p),m=Sv(p+1,p+1+h),g=Cv([c,[u],d]),y=U(e,g),x=U(r,[u]),A=Cv([[p],f,m]),b=st(y,A),w=B0(b,x,s.shape[o]),k=AA(A);return w=st(w,k),w},indices:()=>r}}};function Sv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Cv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var XB={kernelName:Ro,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>it(n),b:()=>it(s)}}},KB={kernelName:_o,gradFunc:e=>({x:()=>ge(e,"float32")})},ZB={kernelName:Ic,gradFunc:e=>({x:()=>it(e)})},YB={kernelName:Sc,gradFunc:e=>({x:()=>it(e)})},JB={kernelName:Cc,gradFunc:e=>({x:()=>it(e)})},QB={kernelName:Do,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=ys(s,0);return{x:()=>Mn(a,e,L(e,r))}}},eW={kernelName:Tc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ce(n,1))}}},tW={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,ge(n,"float32"))}}},nW={kernelName:p6,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=_s(s);return he(e,L(ke(e,r,!0),o))}}}};function sW(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return W.runKernel(a0,i,l)}var rW=V({localResponseNormalizationBackprop_:sW}),aW={kernelName:Hp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>rW(s,r,e,a,o,i,l)}}};function l8(e,t,n,s){return t.rank<n.rank&&(t=U(t,Ji(t.shape,s))),e.rank<n.rank&&(e=U(e,Ji(e.shape,s))),{x:()=>L(e,ge(Rs(n,t),e.dtype))}}var Tv={kernelName:Po,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=ur(r,a.shape),l=l8(e,o,a,i);return{x:()=>l.x()}}},oW={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(li(n,s),"float32")),b:()=>L(e,ge(w0(n,s),"float32"))}}};function iW(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),u=D(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=U(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=U(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=U(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),M(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),M(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),M(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),rs("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=W.runKernel(i0,f,m);return h?U(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var lW=V({maxPool3dGrad_:iW}),uW={kernelName:jp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>lW(e,s,r,a,o,i,l)}}};function cW(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),u=D(n,"output","maxPoolGrad");M(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),M(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),M(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),rs("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return W.runKernel(o0,c,p)}var dW=V({maxPoolGrad_:cW}),pW={kernelName:Oo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>dW(e,s,r,a,o,i)}}},hW={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=ur(r,s.shape),i=cw(s.shape,a)[1],l=Et(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=U(e,c);return pe(L(p,Ns(s.shape,"float32")),l)}}}},fW={kernelName:zo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=ur(r,a.shape),l=l8(e,o,a,i);return{x:()=>l.x()}}},mW={kernelName:Lo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>L(e,ge(ui(n,s),"float32")),b:()=>L(e,ge(ys(n,s),"float32"))}}},gW={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Oe(e,a,s.shape)}}},yW={kernelName:Ec,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=an(n.shape,r);return i.length>0?U(ke(e,i),n.shape):e},b:()=>{let i=L(e,Dt(jc(pe(n,s)))),l=an(s.shape,r);return l.length>0?U(ke(i,l),s.shape):i}}}},AW={kernelName:Wo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=L(e,ge(s,"float32")),l=an(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=an(s.shape,r);return l.length>0?U(ke(i,l),s.shape):i}}}},xW={kernelName:Il,gradFunc:e=>({x:()=>Dt(e)})},bW={kernelName:El,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Wt(n.shape,"float32")}}},vW={kernelName:Nl,gradFunc:e=>({x:()=>it(e)})},wW={kernelName:Rl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return es(e,s).map(a=>()=>a)}},Nv={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>Oe(e,a,s.shape)}}},kW={kernelName:Uo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=kt(a.shape,o.shape);return{a:()=>{let c=ge(o,"float32"),p=L(e,L(c,ya(a,he(c,Se(1))))),d=an(a.shape,i);return d.length>0&&(p=ke(p,d)),U(p,a.shape)},b:()=>{let c=ys(a,0),p=Mn(c,Ds(a),it(a)),d=L(e,L(r,p)),h=an(o.shape,i);return h.length>0&&(d=ke(d,h)),U(d,o.shape)}}}},IW={kernelName:Go,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=ys(n,0);return{x:()=>Mn(r,e,L(e,s)),alpha:()=>{let a=Mn(r,it(e),L(e,n)),o=an(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),U(a,s.shape)}}}};function SW(e,t,n){let s=e.shape.slice();s[n]=1;let r=U(t,s),a=Tp(e,n,!0,!1),o=Tp(e,n,!0,!0),i=L(a,o);return L(r,i)}function CW(e,t,n){let s=e.shape.length,r=s-n.length,a=C.getAxesPermutation(n,s),o=e;a!=null&&(o=st(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=SW(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=C.getUndoAxesPermutation(a);p=st(p,d)}return p}var TW={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>CW(s,e,a)}}},NW={kernelName:Io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=pe(e,ge(s,"float32")),l=an(n.shape,r);return l.length>0?U(ke(i,l),n.shape):i},b:()=>{let i=L(e,ge(n,"float32")),l=an(s.shape,r);l.length>0&&(i=U(ke(i,l),s.shape));let u=vt(s);return Dt(pe(i,ge(u,"float32")))}}}},EW={kernelName:Dc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,Dt(vt(n)))}}},RW={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=L(ui(n,6),Ql(n));return{x:()=>L(e,ge(s,"float32"))}}},_W={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,ge(Ql(n),"float32"))}}},DW={kernelName:_l,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>U(e,n.shape)}}},$W={kernelName:Xo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(d0,r,n)}}},PW={kernelName:qo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>W.runKernel(c0,r,n)}}},FW={kernelName:Dl,gradFunc:(e,t,n)=>{let{dims:s}=n,r=ur(s,e.shape);return{x:()=>Ks(e,r)}}},OW={kernelName:$l,gradFunc:e=>({x:()=>it(e)})},MW={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Dt(pe(e,L(ya(n,1.5),2)))}}},zW={kernelName:Fl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(it(n),"float32"),t:()=>L(e,ge(n,e.dtype)),e:()=>L(e,ge(hh(n),e.dtype))}}},LW={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=ys(n,Se(0)),r=Se(r8),a=Se(a8),o=L(e,a),i=L(L(e,r),_s(ge(n,"float32")));return Mn(s,o,i)}}}},BW={kernelName:Jo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(n,he(Se(1),n)))}}},WW={kernelName:Pc,gradFunc:e=>({x:()=>it(e)})},VW={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(ch(ge(n,"float32")),e)}}},UW={kernelName:Ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(x0(ge(n,"float32")),e)}}},GW={kernelName:Ol,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=K6(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>Js(e,u)}}},HW={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=L(e,s);return{logits:()=>he(o,L(ke(o,[r],a),s))}}},jW={kernelName:Fc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,Cn(n))}}},Ev={kernelName:zl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>uh(e,s,r)}}},Rv={kernelName:Ll,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>Ct(e,s)}}},qW={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,L(Nn(ge(n,"float32")),2))}}},XW={kernelName:Mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(e,L(ge(n,"float32"),2))}}},KW={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Se(2);return{a:()=>L(e,L(r,he(n,s))),b:()=>L(e,L(r,he(s,n)))}}},ZW={kernelName:ai,gradFunc:e=>({x:()=>it(e)})},YW={kernelName:si,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=kt(n.shape,s.shape);return{a:()=>{let i=e,l=an(n.shape,r);return l.length>0&&(i=ke(i,l)),U(i,n.shape)},b:()=>{let i=e,l=an(s.shape,r);return l.length>0&&(i=ke(i,l)),U(Dt(i),s.shape)}}}},JW={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;ur(a,s.shape).forEach(u=>{r[u]=1});let i=U(e,r),l=L(i,Ns(s.shape,"float32"));return{x:()=>l}}},QW={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>pe(e,vt(ch(n)))}}},eV={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>L(he(Se(1),vt(n)),e)}}},tV={kernelName:va,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=it(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ce(o,Oe(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ce(o,Oe(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},nV={kernelName:Hr,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=AA(r);return{x:()=>st(e,a)}}},sV={kernelName:Gl,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>on(e,r)}}},rV={kernelName:eh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>aV(e,n)}}};function aV(e,t){let n=Jr(t,it(t)),s=qc(e,n),r=li(t,Se(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Kt(r,i+1);r=lr(r,Ns(s.shape,"bool"));let o=it(s);return Mn(r,s,o)}var oV={kernelName:Hl,gradFunc:e=>({x:()=>it(e)})},iV=[i8,rB,aB,oB,iB,lB,uB,cB,dB,pB,hB,fB,yB,bB,vB,wB,kB,IB,SB,CB,TB,NB,RB,EB,$B,PB,FB,OB,MB,zB,NW,LB,BB,WB,VB,UB,HB,GB,jB,qB,XB,KB,ZB,YB,JB,QB,eW,tW,nW,aW,Tv,Tv,oW,uW,pW,hW,fW,mW,gW,yW,AW,xW,bW,vW,wW,Nv,Nv,kW,IW,TW,EW,RW,_W,DW,$W,PW,FW,OW,MW,zW,LW,BW,WW,VW,UW,GW,HW,jW,Ev,Ev,Rv,Rv,qW,KW,XW,ZW,YW,JW,QW,eV,tV,nV,sV,rV,oV];for(let e of iV)h6(e);re().prototype.abs=function(){return this.throwIfDisposed(),tn(this)};re().prototype.acos=function(){return this.throwIfDisposed(),Hy(this)};re().prototype.acosh=function(){return this.throwIfDisposed(),jy(this)};re().prototype.add=function(e){return this.throwIfDisposed(),ce(this,e)};re().prototype.all=function(e,t){return this.throwIfDisposed(),g0(this,e,t)};re().prototype.any=function(e,t){return this.throwIfDisposed(),Cp(this,e,t)};re().prototype.argMax=function(e){return this.throwIfDisposed(),Es(this,e)};re().prototype.argMin=function(e){return this.throwIfDisposed(),qy(this,e)};re().prototype.asScalar=function(){return this.throwIfDisposed(),M(this.size===1,()=>"The array must have only 1 element."),U(this,[])};re().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};re().prototype.as1D=function(){return this.throwIfDisposed(),U(this,[this.size])};re().prototype.as2D=function(e,t){return this.throwIfDisposed(),U(this,[e,t])};re().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),U(this,[e,t,n])};re().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),U(this,[e,t,n,s])};re().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),U(this,[e,t,n,s,r])};re().prototype.asin=function(){return this.throwIfDisposed(),Xy(this)};re().prototype.asinh=function(){return this.throwIfDisposed(),Ky(this)};re().prototype.atan=function(){return this.throwIfDisposed(),Zy(this)};re().prototype.atan2=function(e){return this.throwIfDisposed(),Yy(this,e)};re().prototype.atanh=function(){return this.throwIfDisposed(),Jy(this)};re().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),lh(this,e,t,n,s)};re().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),uh(this,e,t)};re().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Wc(this,e,t,n,s,r)};re().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Gu(this,e)};re().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};re().prototype.ceil=function(){return this.throwIfDisposed(),aA(this)};re().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),fs(this,e,t)};re().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof tt&&(e=[e]),Ct([this,...e],t)};re().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),y0(this,e,t,n,s,r,a)};re().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),A0(this,e,t,n,s,r)};re().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),ma(this,e,t,n,s,r,a)};re().prototype.cos=function(){return this.throwIfDisposed(),ch(this)};re().prototype.cosh=function(){return this.throwIfDisposed(),x0(this)};re().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),Tp(this,e,t,n)};re().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),b0(this,e,t,n)};re().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),pA(this,e,t)};re().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Vc(this,e,t,n,s,r,a)};re().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),hA(this,e,t,n,s,r)};re().prototype.divNoNan=function(e){return this.throwIfDisposed(),fA(this,e)};re().prototype.div=function(e){return this.throwIfDisposed(),pe(this,e)};re().prototype.dot=function(e){return this.throwIfDisposed(),mA(this,e)};re().prototype.elu=function(){return this.throwIfDisposed(),Uc(this)};re().prototype.equal=function(e){return this.throwIfDisposed(),Rs(this,e)};re().prototype.erf=function(){return this.throwIfDisposed(),gA(this)};re().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),xA(this,e,t)};re().prototype.exp=function(){return this.throwIfDisposed(),_s(this)};re().prototype.expandDims=function(e){return this.throwIfDisposed(),Kt(this,e)};re().prototype.expm1=function(){return this.throwIfDisposed(),bA(this)};re().prototype.fft=function(){return this.throwIfDisposed(),xh(this)};re().prototype.flatten=function(){return this.throwIfDisposed(),U(this,[this.size])};re().prototype.floor=function(){return this.throwIfDisposed(),jc(this)};re().prototype.floorDiv=function(e){return this.throwIfDisposed(),Bc(this,e)};re().prototype.gather=function(e,t){return this.throwIfDisposed(),qc(this,e,t)};re().prototype.greaterEqual=function(e){return this.throwIfDisposed(),li(this,e)};re().prototype.greater=function(e){return this.throwIfDisposed(),ys(this,e)};re().prototype.ifft=function(){return this.throwIfDisposed(),Qu(this)};re().prototype.irfft=function(){return this.throwIfDisposed(),M0(this)};re().prototype.isFinite=function(){return this.throwIfDisposed(),vA(this)};re().prototype.isInf=function(){return this.throwIfDisposed(),wA(this)};re().prototype.isNaN=function(){return this.throwIfDisposed(),kA(this)};re().prototype.leakyRelu=function(e){return this.throwIfDisposed(),dh(this,e)};re().prototype.lessEqual=function(e){return this.throwIfDisposed(),ui(this,e)};re().prototype.less=function(e){return this.throwIfDisposed(),w0(this,e)};re().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),IA(this,e,t,n,s)};re().prototype.logSigmoid=function(){return this.throwIfDisposed(),SA(this)};re().prototype.logSoftmax=function(e){return this.throwIfDisposed(),I0(this,e)};re().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),S0(this,e,t)};re().prototype.log=function(){return this.throwIfDisposed(),Ds(this)};re().prototype.log1p=function(){return this.throwIfDisposed(),ph(this)};re().prototype.logicalAnd=function(e){return this.throwIfDisposed(),lr(this,e)};re().prototype.logicalNot=function(){return this.throwIfDisposed(),hh(this)};re().prototype.logicalOr=function(e){return this.throwIfDisposed(),C0(this,e)};re().prototype.logicalXor=function(e){return this.throwIfDisposed(),CA(this,e)};re().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Qe(this,e,t,n)};re().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),fh(this,e,t,n,s)};re().prototype.max=function(e,t){return this.throwIfDisposed(),mn(this,e,t)};re().prototype.maximum=function(e){return this.throwIfDisposed(),Jr(this,e)};re().prototype.mean=function(e,t){return this.throwIfDisposed(),Bt(this,e,t)};re().prototype.min=function(e,t){return this.throwIfDisposed(),ga(this,e,t)};re().prototype.minimum=function(e){return this.throwIfDisposed(),Xc(this,e)};re().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),NA(this,e,t)};re().prototype.mod=function(e){return this.throwIfDisposed(),Yl(this,e)};re().prototype.mul=function(e){return this.throwIfDisposed(),L(this,e)};re().prototype.neg=function(){return this.throwIfDisposed(),Dt(this)};re().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Gc(this,e,t,n)};re().prototype.notEqual=function(e){return this.throwIfDisposed(),Qi(this,e)};re().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),Zu(this,e,t,n)};re().prototype.onesLike=function(){return this.throwIfDisposed(),$s(this)};re().prototype.pad=function(e,t){return this.throwIfDisposed(),Js(this,e,t)};re().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),EA(this,e,t,n,s,r,a)};re().prototype.pow=function(e){return this.throwIfDisposed(),ya(this,e)};re().prototype.prelu=function(e){return this.throwIfDisposed(),yh(this,e)};re().prototype.prod=function(e,t){return this.throwIfDisposed(),RA(this,e,t)};re().prototype.reciprocal=function(){return this.throwIfDisposed(),$A(this)};re().prototype.relu=function(){return this.throwIfDisposed(),Pr(this)};re().prototype.relu6=function(){return this.throwIfDisposed(),E0(this)};re().prototype.reshapeAs=function(e){return this.throwIfDisposed(),U(this,e.shape)};re().prototype.reshape=function(e){return this.throwIfDisposed(),U(this,e)};re().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),Yw(this,e,t,n)};re().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),Jw(this,e,t,n)};re().prototype.reverse=function(e){return this.throwIfDisposed(),Ks(this,e)};re().prototype.rfft=function(){return this.throwIfDisposed(),bh(this)};re().prototype.round=function(){return this.throwIfDisposed(),R0(this)};re().prototype.rsqrt=function(){return this.throwIfDisposed(),_0(this)};re().prototype.selu=function(){return this.throwIfDisposed(),D0(this)};re().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),$0(this,e,t,n,s,r,a)};re().prototype.sigmoid=function(){return this.throwIfDisposed(),Cn(this)};re().prototype.sign=function(){return this.throwIfDisposed(),PA(this)};re().prototype.sin=function(){return this.throwIfDisposed(),P0(this)};re().prototype.sinh=function(){return this.throwIfDisposed(),F0(this)};re().prototype.slice=function(e,t){return this.throwIfDisposed(),Oe(this,e,t)};re().prototype.softmax=function(e){return this.throwIfDisposed(),Jl(this,e)};re().prototype.softplus=function(){return this.throwIfDisposed(),Zl(this)};re().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),gh(this,e,t)};re().prototype.split=function(e,t){return this.throwIfDisposed(),Zt(this,e,t)};re().prototype.sqrt=function(){return this.throwIfDisposed(),Nn(this)};re().prototype.square=function(){return this.throwIfDisposed(),vt(this)};re().prototype.squaredDifference=function(e){return this.throwIfDisposed(),z0(this,e)};re().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};re().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof tt?[this,e]:[this,...e];return on(n,t)};re().prototype.step=function(e){return this.throwIfDisposed(),Ql(this,e)};re().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),FA(this,e,t,n,s,r,a,o,i)};re().prototype.sub=function(e){return this.throwIfDisposed(),he(this,e)};re().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};re().prototype.tan=function(){return this.throwIfDisposed(),OA(this)};re().prototype.tanh=function(){return this.throwIfDisposed(),Yi(this)};re().prototype.tile=function(e){return this.throwIfDisposed(),js(this,e)};re().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};re().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};re().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};re().prototype.topk=function(e,t){return this.throwIfDisposed(),MA(this,e,t)};re().prototype.transpose=function(e){return this.throwIfDisposed(),st(this,e)};re().prototype.unique=function(e){return this.throwIfDisposed(),zA(this,e)};re().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),B0(this,e,t)};re().prototype.unstack=function(e){return this.throwIfDisposed(),es(this,e)};re().prototype.where=function(e,t){return this.throwIfDisposed(),Mn(e,this,t)};re().prototype.zerosLike=function(){return this.throwIfDisposed(),it(this)};var la=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,la.prototype)}},Sr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Sr.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},He=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,He.prototype)}},u8=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,u8.prototype)}},c8=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function el(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Vr(e,t){if(!e)throw new u8(t)}function _v(e,t){let n=0;for(let s of e)s===t&&n++;return n}function ps(e){return e.length===1?e[0]:e}function _t(e){return Array.isArray(e)?e:[e]}function ua(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function Li(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var nr={};function XA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function D3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>D3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:D3(s))}}}function wh(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in nr)o=nr[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in nr?[i,l]=nr.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(nr))u[h]=nr[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},nr);for(let h of Object.keys(n))nr[h]=n[h];D3(a.config);let d=l(i,a.config,n,r);return nr=Object.assign({},p),d}else{let u=Object.assign({},nr);for(let p of Object.keys(n))nr[p]=n[p];let c=new i(a.config);return nr=Object.assign({},u),c}}}function lV(e,t){return e<t?-1:e>t?1:0}function Wf(e,t){return-1*lV(e,t)}function Xa(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function uV(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function eu(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function KA(e,t,n=0,s=1/0){return Vr(n>=0),Vr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function vn(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>vn(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${d8(e)}.`)}function d8(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>d8(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function cV(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function p8(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var dV=0;function h8(){return dV++}var Vf={};function J0(e=""){return e in Vf||(Vf[e]=0),Vf[e]+=1,e+Vf[e].toString()}var pV=["channelsFirst","channelsLast"],hV=["nearest","bilinear"],fV=["valid","same","causal"],mV=["max","avg"],gV=["sum","mul","concat","ave"],$u=new Map;function Yt(e){eu(pV,"DataFormat",e)}function yV(e){eu(hV,"InterpolationFormat",e)}function Qs(e){eu(fV,"PaddingMode",e)}function f8(e){eu(mV,"PoolMode",e)}var mp=[],Dv="/";function Hi(e,t){mp.push(e);try{let n=t();return mp.pop(),n}catch(n){throw mp.pop(),n}}function AV(){return mp.length===0?"":mp.join(Dv)+Dv}function m8(e){if(!y8(e))throw new Error("Not a valid tensor name: '"+e+"'");return AV()+e}function g8(e){if(!y8(e))throw new Error("Not a valid tensor name: '"+e+"'");$u.has(e)||$u.set(e,0);let t=$u.get(e);if($u.set(e,$u.get(e)+1),t>0){let n=`${e}_${t}`;return $u.set(n,1),n}else return e}var xV=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function y8(e){return!!e.match(xV)}function bV(e){return e===parseInt(e.toString(),10)}function Ka(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function tc(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function so(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Rr(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var l3;function hn(){return l3==null&&(l3=Zs().epsilon()),l3}function _r(){return"channelsLast"}function Q0(e,t){return ge(e,t)}function kh(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),U(e,n)}function vV(e,t){return J(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=kh(e,1);return $3(n,[1,t,1])})}function wV(e){let t=[Ka(e.shape)];return U(e,t)}function kV(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ka(e.shape,1)];return U(e,t)}function ji(e,t,n){return J(()=>{switch(e.rank){case 1:return Ah(e,t,n);case 2:return O0(e,[t,0],[n,e.shape[1]]);case 3:return ci(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return no(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Oe(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Oe(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function u3(e,t,n){return J(()=>{switch(e.rank){case 1:return Ah(e,t,n);case 2:return O0(e,[0,t],[e.shape[0],n]);case 3:return ci(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return no(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Uf(e,t,n,s){return J(()=>{switch(e.rank){case 1:return Ah(e,t,n);case 2:switch(s){case 1:return ji(e,t,n);case 2:return u3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return ji(e,t,n);case 2:return ci(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return u3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return ji(e,t,n);case 2:return no(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return no(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return u3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function ZA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),Ct(e,t)}function $v(e,t){switch(e.rank){case 1:return oA([e,t]);case 2:return Kl([e,t],0);case 3:return iA([e,t],0);case 4:return lA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function $3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return js(e,t)}function e2(e,t=0,n=1,s,r){return N0(e,t,n,s,r)}function jr(e,t,n,s){if(e.rank<2||t.rank<2)throw new He(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new He(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return ec.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?P3(e.rank,s,_r()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=U(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=U(st(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return U(ec.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?P3(e.rank,s,_r()):null,activation:n}),p)}}function A8(e,t,n){return J(()=>(Array.isArray(t)?t=Ft(t,"int32"):t=ge(t,"int32"),qc(e,t,n)))}function Ih(e){return L(e,e)}function P3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1,1]):U(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1,1]):U(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,1,s[0]]):U(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?U(t,[1,s[0],1]):U(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?U(t,[1,1,s[0]]):U(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Fr(e,t,n){return J(()=>(n==null&&(n=_r()),Yt(n),ce(e,P3(e.rank,t,n))))}function IV(e,t=1){if(t!==1)throw new He(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Uc(e)}function SV(e){return J(()=>pe(e,ce(tn(e),1)))}function x8(e,t,n,s){return J(()=>WA(e,t,n,s))}function CV(e){return J(()=>{let t=ce(.5,L(.2,e));return fs(t,0,1)})}function Sh(e,t,n=!1){return n?e():t()}var TV=["fanIn","fanOut","fanAvg"],NV=["normal","uniform","truncatedNormal"];function EV(e){eu(TV,"FanMode",e)}function RV(e){eu(NV,"Distribution",e)}var pr=class extends de.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},YA=class extends pr{apply(e,t){return Wt(e,t)}};YA.className="Zeros";de.registerClass(YA);var t2=class extends pr{apply(e,t){return Ns(e,t)}};t2.className="Ones";de.registerClass(t2);var JA=class extends pr{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return J(()=>L(Se(this.value),Ns(e,t)))}getConfig(){return{value:this.value}}};JA.className="Constant";de.registerClass(JA);var QA=class extends pr{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Kc(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};QA.className="RandomUniform";de.registerClass(QA);var e5=class extends pr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`randomNormal does not support dType ${t}.`);return e2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};e5.className="RandomNormal";de.registerClass(e5);var t5=class extends pr{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`truncatedNormal does not support dType ${t}.`);return L0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};t5.className="TruncatedNormal";de.registerClass(t5);var n5=class extends pr{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return J(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return L(this.gain,v0(e[0]))})}getConfig(){return{gain:this.gain}}};n5.className="Identity";de.registerClass(n5);function _V(e,t="channelsLast"){let n,s;if(Yt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Ka(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Ka(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Ka(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var ms=class extends pr{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,EV(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,RV(this.distribution),this.seed=e.seed}apply(e,t){let n=_V(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new He(`${this.getClassName()} does not support dType ${t}.`);return L0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return Kc(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};ms.className="VarianceScaling";de.registerClass(ms);var n2=class extends ms{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ms.className}};n2.className="GlorotUniform";de.registerClass(n2);var s2=class extends ms{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ms.className}};s2.className="GlorotNormal";de.registerClass(s2);var r2=class extends ms{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ms.className}};r2.className="HeNormal";de.registerClass(r2);var a2=class extends ms{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ms.className}};a2.className="HeUniform";de.registerClass(a2);var o2=class extends ms{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return ms.className}};o2.className="LeCunNormal";de.registerClass(o2);var i2=class extends ms{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return ms.className}};i2.className="LeCunNormal";de.registerClass(i2);var s5=class extends pr{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new He("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return J(()=>{if(e.length<2)throw new He("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=e2(n,0,1,"float32"),r=HA.gramSchmidt(s);return e[0]>e[1]&&(r=st(r)),L(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};s5.className="Orthogonal";de.registerClass(s5);var Pv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Fv(e,t={}){return wh(e,de.SerializationMap.getMap().classNameMap,t,"initializer")}function Vt(e){return XA(e)}function Ot(e){if(typeof e=="string"){let t=e in Pv?Pv[e]:e;if(t==="GlorotNormal")return new s2;if(t==="GlorotUniform")return new n2;if(t==="HeNormal")return new r2;if(t==="HeUniform")return new a2;if(t==="LeCunNormal")return new o2;if(t==="LeCunUniform")return new i2;{let n={};return n.className=t,n.config={},Fv(n)}}else return e instanceof pr?e:Fv(e)}function F3(e){return Array.isArray(e)&&Array.isArray(e[0])}function xm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Xe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function xt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function bm(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Ov="Variable",b8=class{constructor(e,t="float32",n=Ov,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=h8(),n=n==null?Ov:n,this.originalName=m8(n),this.name=g8(this.originalName),this.trainable_=s,this.constraint=r,this.val=LA(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),DV(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function DV(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function O3(e){return e.map(t=>t.read())}function r5(e){e.forEach(t=>{t[0].write(t[1])})}var rn=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Cr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=h8(),a!=null&&(this.originalName=m8(a),this.name=g8(this.originalName)),this.rank=t.length}},$V=0,l2=class{constructor(e,t){this.callArgs=t,this.id=$V++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},PV=0,ut=class extends de.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=PV++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ua(n)+"_"+J0(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Sr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return ps(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return ps(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new la(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new la(`Layer ${this.name} is not connected, no input to return.`);return ps(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new la(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new la(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return ps(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=_t(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=_t(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=_t(e),s=!0;for(let a of n)if(!(a instanceof Cr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Cr){r=!1;break}if(s===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Hi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of _t(e))a.push(o.shape);this.build(ps(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=_t(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=ps(i),this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=FV(e),o=this.computeOutputShape(a),i,l=OV(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Cr(l,u,this,_t(e),t,this.name,c)):i=new Cr(l,o,this,_t(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new He("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new la(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new la(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Sr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return bm(this.weights)}build(e){this.built=!0}getWeights(e=!1){return O3(e?this.trainableWeights:this.weights)}setWeights(e){J(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=O3(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new j(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}r5(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Ot("zeros"));let l=s.apply(t,n),u=new b8(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=_t(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=_t(e);t=_t(t),n=_t(n),s=_t(s),r=xm(r),a=xm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new l2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function FV(e){e=_t(e);let t=[];for(let n of e)t.push(n.shape);return ps(t)}function OV(e){return"float32"}function v8(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=v8(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var Yc=class extends ut{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:J0("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Cr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new l2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Yc.className="InputLayer";de.registerClass(Yc);function w8(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Yc({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function MV(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ge(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Vi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Vi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=MV(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Cr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Cr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ne(this.id2Mask)}},vm=new c8,wm=new c8;function zV(e){vm!=null&&vm.setMaxEntries(e),wm!=null&&wm.setMaxEntries(e)}function ap(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=vm.get(c),d;if(p==null){let f=LV(o,t);p=f.sorted,d=f.recipientCounts,vm.put(c,p),wm.put(c,d)}d={},r||Object.assign(d,wm.get(c));let h=new Vi(t);for(let f=0;f<p.length;++f){if(s!=null){let R=ym().numTensors;R>s.maxNumTensors&&(s.maxNumTensors=R),R<s.minNumTensors&&(s.minNumTensors=R)}let m=p[f],g=m.sourceLayer;if(g instanceof Yc)continue;let y=[],x=[],A=[],b=!1;for(let R of m.inputs){let P=h.getValue(R),_=h.getMask(R);y.push(P),x.push(_),_!=null&&(b=!0),r||(d[R.name]--,d[R.name]===0&&!t.hasKey(R)&&i.indexOf(R.name)===-1&&!P.isDisposed&&R.sourceLayer.stateful!==!0&&A.push(P))}b&&(n=n||{},n.mask=x[0]);let w=_t(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,x));let S=WV(m),E=Array.isArray(S)?S:[S];for(let R=0;R<E.length;++R){h.hasKey(E[R])||h.add(E[R],w[R],Array.isArray(k)?k[0]:k);let P=i.indexOf(E[R].name);P!==-1&&(l[P]=w[R])}r||ne(A)}return h.disposeMasks(),a?l:l[0]}function LV(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Mv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Mv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:BV(s)}}function BV(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Mv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function WV(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var VV=Z();VV.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,zV);var k8={};Ve(k8,{maxNorm:()=>UV,minMaxNorm:()=>jV,nonNeg:()=>HV,unitNorm:()=>GV});function a5(e,t){return J(()=>Nn(ke(L(e,e),t,!0)))}var Ch=class extends de.Serializable{getConfig(){return{}}},o5=class extends Ch{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return J(()=>{let t=a5(e,this.axis),n=fs(t,0,this.maxValue);return L(e,pe(n,ce(hn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};o5.className="MaxNorm";de.registerClass(o5);var i5=class extends Ch{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return J(()=>pe(e,ce(hn(),a5(e,this.axis))))}getConfig(){return{axis:this.axis}}};i5.className="UnitNorm";de.registerClass(i5);var l5=class extends Ch{apply(e){return Pr(e)}};l5.className="NonNeg";de.registerClass(l5);var u5=class extends Ch{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return J(()=>{let t=a5(e,this.axis),n=ce(L(this.rate,fs(t,this.minValue,this.maxValue)),L(1-this.rate,t));return L(e,pe(n,ce(hn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};u5.className="MinMaxNorm";de.registerClass(u5);var zv={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function gn(e){return XA(e)}function Lv(e,t={}){return wh(e,de.SerializationMap.getMap().classNameMap,t,"constraint")}function yn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in zv?zv[e]:e,config:{}};return Lv(n)}else return e instanceof Ch?e:Lv(e)}function UV(e){return new o5(e)}function GV(e){return new i5(e)}function HV(){return new l5}function jV(e){return new u5(e)}var I8={};Ve(I8,{constant:()=>KV,glorotNormal:()=>nU,glorotUniform:()=>tU,heNormal:()=>sU,heUniform:()=>rU,identity:()=>QV,leCunNormal:()=>aU,leCunUniform:()=>oU,ones:()=>XV,orthogonal:()=>iU,randomNormal:()=>YV,randomUniform:()=>ZV,truncatedNormal:()=>JV,varianceScaling:()=>eU,zeros:()=>qV});function qV(){return new YA}function XV(){return new t2}function KV(e){return new JA(e)}function ZV(e){return new QA(e)}function YV(e){return new e5(e)}function JV(e){return new t5(e)}function QV(e){return new n5(e)}function eU(e){return new ms(e)}function tU(e){return new n2(e)}function nU(e){return new s2(e)}function sU(e){return new r2(e)}function rU(e){return new a2(e)}function aU(e){return new o2(e)}function oU(e){return new i2(e)}function iU(e){return new s5(e)}var S8={};Ve(S8,{Layer:()=>ut,RNN:()=>Qr,RNNCell:()=>_h,activation:()=>$G,add:()=>VG,alphaDropout:()=>SH,average:()=>UG,averagePooling1d:()=>gx,averagePooling2d:()=>yx,averagePooling3d:()=>Ax,avgPool1d:()=>JG,avgPool2d:()=>eH,avgPool3d:()=>nH,avgPooling1d:()=>QG,avgPooling2d:()=>tH,avgPooling3d:()=>sH,batchNormalization:()=>KG,bidirectional:()=>yH,concatenate:()=>GG,conv1d:()=>IG,conv2d:()=>SG,conv2dTranspose:()=>CG,conv3d:()=>TG,conv3dTranspose:()=>NG,convLstm2d:()=>hH,convLstm2dCell:()=>fH,cropping2D:()=>RG,dense:()=>PG,depthwiseConv2d:()=>DG,dot:()=>XG,dropout:()=>FG,elu:()=>AG,embedding:()=>WG,flatten:()=>MG,gaussianDropout:()=>IH,gaussianNoise:()=>kH,globalAveragePooling1d:()=>rH,globalAveragePooling2d:()=>aH,globalMaxPool1d:()=>xH,globalMaxPool2d:()=>bH,globalMaxPooling1d:()=>gk,globalMaxPooling2d:()=>yk,gru:()=>iH,gruCell:()=>lH,input:()=>U8,inputLayer:()=>yG,layerNormalization:()=>ZG,leakyReLU:()=>bG,lstm:()=>uH,lstmCell:()=>cH,masking:()=>CH,maxPool1d:()=>vH,maxPool2d:()=>wH,maxPooling1d:()=>Ak,maxPooling2d:()=>xk,maxPooling3d:()=>oH,maximum:()=>HG,minimum:()=>jG,multiply:()=>qG,permute:()=>BG,prelu:()=>vG,reLU:()=>xG,repeatVector:()=>zG,reshape:()=>LG,rnn:()=>mH,separableConv2d:()=>EG,simpleRNN:()=>dH,simpleRNNCell:()=>pH,softmax:()=>wG,spatialDropout1d:()=>OG,stackedRNNCells:()=>gH,thresholdedReLU:()=>kG,timeDistributed:()=>AH,upSampling2d:()=>_G,zeroPadding2d:()=>YG});async function Va(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ne(s)}}function C8(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Bv;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Bv||(Bv={}));var lU=125,nc=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},T8=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},uU=class extends nc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=J(()=>ce(this.totals[s],L(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:J(()=>{let s=L(pe(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),bn(t[n])}))}},N8=class extends nc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},E8=class extends nc{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||jA,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=lU),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=cV(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await Va(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Va(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Va(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Va(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Va(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Va(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Va(e),await this.trainEnd(e))}};function R8(e,t){return e==null&&(e={}),e instanceof nc?[e]:Array.isArray(e)&&e[0]instanceof nc?e:_t(e).map(s=>new E8(s,t))}var rr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),rr.checkForDuplicate(t),rr.constructors[e]==null&&(rr.constructors[e]=[]),rr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in rr.constructors)rr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){rr.constructors={}}static createCallbacks(e){let t=[];for(let n in rr.constructors){let s=+n;e>=s&&t.push(...rr.constructors[s])}return t.map(n=>new n)}};rr.constructors={};function _8(e,t,n,s,r,a,o,i,l){let u=new N8,c=[new uU,...rr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new T8(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Nr(e,t={},n=!1){return wh(e,de.SerializationMap.getMap().classNameMap,t,"layer",n)}function km(e,t){return J(()=>{e.dtype!=="float32"&&(e=ge(e,"float32"));let n=ke(Ih(e),t,!0),s=Hc(n.shape,hn()),r=Nn(Jr(n,s));return pe(e,r)})}function tu(e,t){return J(()=>Bt(Ih(he(t,e)),-1))}function u2(e,t){return J(()=>Bt(tn(he(t,e)),-1))}function Jc(e,t){return J(()=>{let n=he(e,t),s=fs(tn(e),hn(),Number.MAX_VALUE),r=tn(pe(n,s));return L(100,Bt(r,-1))})}function cU(e,t){return J(()=>{let n=fs(t,hn(),Number.MAX_VALUE),s=Ds(ce(1,n)),r=fs(e,hn(),Number.MAX_VALUE),a=Ds(ce(1,r));return Bt(Ih(he(s,a)),-1)})}function dU(e,t){return J(()=>{let n=Jr(0,he(1,L(e,t)));return Bt(Ih(n),-1)})}function pU(e,t){return J(()=>{let n=Jr(0,he(1,L(e,t)));return Bt(n,-1)})}function hU(e,t){return J(()=>{let n=ke(L(e,t),-1),s=mn(L(he(1,e),t),-1);return Jr(0,ce(1,he(s,n)))})}function fU(e,t){return J(()=>{let n=Math.log(2),s=he(t,e),r=he(ce(s,Zl(L(-2,s))),n);return Bt(r,-1)})}function Np(e,t,n=!1){return J(()=>{if(n)t=Jl(t);else{let s=ke(t,t.shape.length-1,!0);t=pe(t,s)}return t=fs(t,hn(),1-hn()),Dt(ke(L(ge(e,"float32"),Ds(t)),t.shape.length-1))})}function Im(e,t,n=!1){return J(()=>{let s=ge(jc(wV(e)),"int32");t=fs(t,hn(),1-hn());let r=t.shape,a=U(Zu(s,r[r.length-1]),r);return Np(a,t,n)})}function mU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return J(()=>{let n=Pr(t),s=Dt(tn(t));return ce(he(n,L(t,e)),ph(_s(s)))})}function c2(e,t){return J(()=>{let n;return n=fs(t,hn(),1-hn()),n=Ds(pe(n,he(1,n))),Bt(mU(e,n),-1)})}function gU(e,t){return J(()=>{let n=fs(e,hn(),1),s=fs(t,hn(),1);return ke(L(e,Ds(pe(n,s))),-1)})}function yU(e,t){return J(()=>{let n=Ds(ce(hn(),t));return Bt(he(t,L(e,n)),-1)})}function c5(e,t){return J(()=>{let n=km(e,-1),s=km(t,-1),r=L(n,s);return Dt(ke(r,-1))})}var Sm={meanSquaredError:tu,meanAbsoluteError:u2,meanAbsolutePercentageError:Jc,meanSquaredLogarithmicError:cU,squaredHinge:dU,hinge:pU,categoricalHinge:hU,logcosh:fU,categoricalCrossentropy:Np,sparseCategoricalCrossentropy:Im,binaryCrossentropy:c2,kullbackLeiblerDivergence:gU,poisson:yU,cosineProximity:c5};function c3(e){if(typeof e=="string"){if(e in Sm)return Sm[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function d5(e,t){return J(()=>{let n=L(.5,$s(t)),s=Q0(ys(t,n),e.dtype);return Bt(Rs(e,s),-1)})}function p5(e,t){return J(()=>Q0(Rs(Es(e,-1),Es(t,-1)),"float32"))}function D8(e,t){return J(()=>ge(ke(lr(Rs(e,1),Rs(t,1))),"float32"))}function AU(e,t){return J(()=>ge(ke(lr(Rs(e,1),Rs(t,0))),"float32"))}function xU(e,t){return J(()=>ge(ke(lr(Rs(e,0),Rs(t,1))),"float32"))}function $8(e,t){return J(()=>{let n=D8(e,t),s=xU(e,t),r=ce(n,s);return ge(Mn(ys(r,0),pe(n,r),0),"float32")})}function bU(e,t){return J(()=>{let n=D8(e,t),s=AU(e,t),r=ce(n,s);return ge(Mn(ys(r,0),pe(n,r),0),"float32")})}function P8(e,t){return c2(e,t)}function F8(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=Es(t,-1),t.dtype!==e.dtype&&(t=ge(t,e.dtype)),ge(Rs(e,t),"float32")}var vU=tu,wU=tu,kU=u2,IU=u2,SU=Jc,CU=Jc,h5=Np,TU=c5,O8=Im,Cm={binaryAccuracy:d5,categoricalAccuracy:p5,precision:$8,categoricalCrossentropy:h5,sparseCategoricalCrossentropy:O8,mse:vU,MSE:wU,mae:kU,MAE:IU,mape:SU,MAPE:CU,cosine:TU};function NU(e){if(typeof e=="string"&&e in Cm)return Cm[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function Gf(e){if(Vr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Sm))if(Sm[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Cm))if(Cm[n]===e){t=n;break}return t!==void 0?t:e.name}}function EU(e){let t={Adagrad:()=>Fi.adagrad(.01),Adadelta:()=>Fi.adadelta(1,.95,hn()),Adam:()=>Fi.adam(.001,.9,.999,hn()),Adamax:()=>Fi.adamax(.002,.9,.999,hn(),0),RMSProp:()=>Fi.rmsprop(.001,.9,0,hn()),SGD:()=>Fi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var Wv=1*1024*1024;function Vv(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!M3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>Wv&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${Wv}.`)}}function M3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!M3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!M3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function RU(e,t,n,s=console.log){let r=DU(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),Tm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?$U(i[c],n,s):PU(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=_U(e),u=bm(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function _U(e){let t;return e.collectedTrainableWeights!=null?t=bm(e.collectedTrainableWeights):t=bm(e.trainableWeights),t}function DU(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function Tm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function $U(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];Tm(i,t,n)}function PU(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];Tm(c,t,s);for(let p=1;p<o.length;++p)Tm(["","","","",o[p]],t,s)}function M8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Ep(e,t){if(e===null)return null;if(typeof e=="string")return Li(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];M8(t,r,a)?n.push(a):n.push(Ep(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=Li(s);n[a]=Ep(r,a)}}return n}}function z3(e,t){if(e==null)return null;if(typeof e=="string")return ua(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];M8(t,r,a)?n.push(a):n.push(z3(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ua(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=z3(r,s)}return n}}var f5="3.19.0",Wr=class extends ut{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=J0(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Xa(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Xa(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Vr(A===0,"input layer has >1 nodes"),Vr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof Yc))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,k)=>{(b==null||w==null||k==null)&&(b=y.sourceLayer,w=y.nodeIndex,k=y.tensorIndex);let S=b.inboundNodes[w];if(A.indexOf(S)!==-1)throw new Sr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(S)!==-1)return;this.containerNodes.add(Wr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(S)===-1&&A.push(S);let E=S.inboundLayers.length;for(let R=0;R<E;R++){let P=S.inputTensors[R],_=S.inboundLayers[R],$=S.nodeIndices[R],T=S.tensorIndices[R];i(P,x,A,_,$,T)}for(x.push(S);A.indexOf(S)>=0;)A.splice(A.indexOf(S),1);o.push(S)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],k=y.nodeIndices[b],S=w.inboundNodes[k],E=t[S.id]==null?0:t[S.id];t[S.id]=Math.max(x+1,E),n[S.id]=S}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Wf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let A of x)A instanceof Wr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Wf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Sr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new Sr(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new l2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}r5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${f5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=z3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return J(()=>{e=_t(e);let n=new Vi;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return ap(this.outputs,n,t)})}computeMask(e,t){return J(()=>{e=_t(e);let n;return t==null?n=el(null,e.length):n=_t(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=xm(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Wf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(ps(c)),d=xm(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Vr(i in n),r.push(n[i])}return ps(r)}runInternalGraph(e,t){t==null&&(t=el(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Wf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=_t(c.call(A,f)),x=_t(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=_t(c.call(m,f)),x=_t(c.computeMask(m,g));if(c.activityRegularizer)throw new He("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],k=x[A];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Vr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Wr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Wr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return J(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Wr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Wr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=Wr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Wr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Wr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],k=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let S=r[b];if(S.inboundNodes.length<=w){o(m,g);return}let E=S.inboundNodes[w];y.push(E.outputTensors[k])}y.length>0&&m.apply(ps(y),x)}function l(m){let g=m.name,y=Nr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!uV(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Vr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Vr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){J(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function FU(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function z8(e,t){return FU(e,t,"classWeight")}async function L8(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=J(()=>{if(e.shape.length===1)return Fn(e);if(e.shape.length===2){if(e.shape[1]>1)return Es(e,1);if(e.shape[1]===1)return U(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ne(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Ft(o,"float32")}else return null}function OU(e,t){return L(e,t)}var MU=32;function B8(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=Uv("input",e.inputNames,n),o=Uv("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function Uv(e,t,n){if(n instanceof tt)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function zU(e){if(e.length===3)throw new He("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function LU(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(Gv(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=zU(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=R8(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=_8(c,p,n.epochs,null,null,BU(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=B8(e,A.value),k={};k.batch=x,k.size=b[0].shape[0],await d.onBatchBegin(x,k);let S=[];if(n.classWeight!=null){let P=z8(n.classWeight,e.outputNames);for(let _=0;_<P.length;++_)S.push(await L8(w[_],null,P[_]))}let E=b.concat(w).concat(S),R=i(E);ne(E);for(let P=0;P<l.length;++P){let _=l[P],$=R[P];k[_]=$,bn($)}await d.onBatchEnd(x,k),C8(k),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;Gv(n.validationData)?b=_t(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=_t(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?MU:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function BU(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Gv(e){return typeof e.iterator=="function"}function WU(e){return typeof e.next=="function"}async function VU(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new He("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=WU(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=J(()=>{if(u.value){let{xs:c,ys:p}=B8(e,u.value),d=c.concat(p),h=J(()=>r(d));if(ne(d),l===0)for(let m=0;m<h.length;++m)a.push(Se(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=J(()=>ce(a[m],L(f,g))),l>0&&ne(y)}ne(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=pe(a[u],i),ne(c)}return ps(a)}function L3(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function op(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>ji(s,t,n-t)):ji(e,t,n-t)}function m5(e,t){return J(()=>e==null?null:Array.isArray(e)?e.map(n=>m5(n,t)):A8(e,t.dtype==="int32"?t:ge(t,"int32")))}function B3(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function UU(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Rr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=_8(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new He("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new He("batch shuffling is not implemneted yet");c&&v.shuffle(y);let k=Ft(y),S=B3(g,r);for(let E=0;E<S.length;++E){let R={};if(await x.onBatchBegin(E,R),J(()=>{let P=S[E][0],_=S[E][1],$=ji(k,P,_-P);R.batch=E,R.size=_-P;let T=m5(n,$),F=t(T);for(let G=0;G<s.length;++G){let q=s[G],z=F[G];R[q]=z,bn(z)}if(E===S.length-1&&m){let G=e.testLoop(l,u,r);for(let q=0;q<s.length;++q){let z=s[q],K=G[q];bn(K),w["val_"+z]=K}}}),await x.onBatchEnd(E,R),C8(R),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function GU(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;L3(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new He("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let R=!0,P=await e.standardizeUserData(l,u,null,null,R,h);c=P[0],p=P[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let R=Math.floor(r[0].shape[0]*(1-s.validationSplit)),P=r[0].shape[0];c=op(r,R,P),o=r,r=op(r,0,R),p=op(a,R,P),i=a,a=op(a,0,R),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,k;g?(e.makeTestFunction(),w=e.testFunction,k=b.slice().concat(b.map(R=>"val_"+R))):(w=null,y=[],k=b.slice());let S=R8(s.callbacks,s.yieldEvery);return await UU(e,A,x,b,h,s.epochs,s.verbose,S,w,y,s.shuffle,k,s.initialEpoch,null,null)}finally{e.isTraining=!1,Ir(r,t),Ir(a,n),Ir(o,t),Ir(i,n),Ir(c,l),Ir(p,u),d!=null&&ne(d)}}function W8(e){let t=[];e instanceof tt&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(kh(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function Ir(e,t){if(e==null)return;let n=[];if(t instanceof tt)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof tt)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function HU(e){return e instanceof tt}function W3(e){return Array.isArray(e)}function Hv(e){return!HU(e)&&!W3(e)}function jv(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(W3(e)&&e.length>0)o=!0;else if(Hv(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(Hv(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(W3(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=W8(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function jU(e,t,n){let s=Xa(e.map(a=>a.shape[0]));s.sort();let r=Xa(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function qU(e,t,n){let s=[tu,c2,Np];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Np&&a.shape[a.shape.length-1]===1)throw new j(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new j(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function qv(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new j(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function XU(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var KU="layers-model",ha=class extends Wr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");RU(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=EU(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof ka))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(c3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>c3(o))}else{let a=c3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Hi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=XU(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Hi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===c2?["accuracy","acc"].indexOf(h)!==-1?p=d5:["crossentropy","ce"].indexOf(h)!==-1&&(p=P8):this.lossFunctions[a]===Im?["accuracy","acc"].indexOf(h)!==-1?p=F8:["crossentropy","ce"].indexOf(h)!==-1&&(p=O8):["accuracy","acc"].indexOf(h)!==-1?p=p5:["crossentropy","ce"].indexOf(h)!==-1&&(p=h5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=NU(h),c=u+Gf(h);let f;Hi(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;L3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return ps(l)}finally{Ir(a[0],e),Ir(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),VU(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Vi;if(e instanceof tt&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new j(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=ap(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=el(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return J(()=>{let s=this.checkNumSamples(e);if(n)throw new He("Verbose predictLoop() is not implemented yet.");let r=B3(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)J(()=>{let l=r[o][0],u=r[o][1],c=op(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new Vi(p);return ap(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return ps(a.map(o=>Ct(o,0)))})}predict(e,t={}){let n=W8(e);qv(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return L3(s),this.predictLoop(n,s)}finally{Ir(n,e)}}predictOnBatch(e){qv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Sr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Im?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=jv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=jv(t,this.feedOutputNames,r,!1,"target"),jU(e,t,null),qU(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=z8(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await L8(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return J(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new He("Verbose mode is not implemented yet.");if(r!=null)throw new He("steps mode in testLoop() is not implemented yet");{let i=B3(a,n),l=Ft(Rr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=ji(l,c,p-c),h=m5(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Se(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ce(o[m],L(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=pe(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;_v(e,s)>1&&(r+=`_${_v(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new Vi(c),d=ap(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let m=this.lossFunctions[f],g=m(s[f],d[f]);r[f]!=null&&(g=OU(g,r[f]));let y=Bt(g);t.push(y),f===0?h=g:h=ce(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Bt(g(s[y],d[y]))}bn(m),a.push(m)}return h=Bt(h),this.calculateLosses().forEach(f=>{h=ce(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>J(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new Vi(a),i=ap(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Bt(u(r[l],i[l]));l===0?n=c:n=ce(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Bt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return GU(this,e,t,n)}async fitDataset(e,t){return LU(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return ne(o),Ir(n[0],e),Ir(n[1],t),ps(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=ym().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-ym().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ua(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ua(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ua(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ua(Gf(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ua(Gf(e)));{let e={};for(let t in this.metrics)e[t]=ua(Gf(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Ep(e.optimizer_config),n=Nr(t),s;if(typeof e.loss=="string")s=Li(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>Li(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=Li(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>Li(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=Li(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=Ts.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Ts.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:KU,generatedBy:`TensorFlow.js tfjs-layers v${f5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await Ts.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=Ts.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(Vv(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){Vv(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ha.className="Model";de.registerClass(ha);var V8=class extends ha{};V8.className="Functional";de.registerClass(V8);async function ZU(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=Ep(n),r=Nr(s,t);if(e.weightsManifest!=null){let a=await Ts.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ne(a)}return r}async function YU(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Ts.getLoadHandlers(e,t);if(n.length===0)n.push(Ts.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return JU(e,void 0,t)}async function JU(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Nr(Ep(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=QU(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),ne(u),ne(c.map(p=>p.tensor))}return i}function QU(e,t){let n=Ts.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var sc=class extends ha{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:J0("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof sc||e instanceof ha,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=w8({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=v8(this.outputs[0])}this.inboundNodes=[],new l2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:el(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(xt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ha({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Sr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Sr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Sr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Sr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof sc))throw new He(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Nr(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};sc.className="Sequential";de.registerClass(sc);function eG(e){return new ha(e)}function tG(e){return new sc(e)}function nG(e,t){return t==null&&(t={}),YU(e,t)}function U8(e){return w8(e)}function sG(e,t){rr.registerCallbackConstructor(e,t)}var As=class extends de.Serializable{getConfig(){return{}}},G8=class extends As{apply(e,t=1){return IV(e,t)}};G8.className="elu";de.registerClass(G8);var H8=class extends As{apply(e){return D0(e)}};H8.className="selu";de.registerClass(H8);var j8=class extends As{apply(e){return Pr(e)}};j8.className="relu";de.registerClass(j8);var q8=class extends As{apply(e){return J(()=>Xc(6,Pr(e)))}};q8.className="relu6";de.registerClass(q8);var X8=class extends As{apply(e){return e}};X8.className="linear";de.registerClass(X8);var K8=class extends As{apply(e){return Cn(e)}};K8.className="sigmoid";de.registerClass(K8);var Z8=class extends As{apply(e){return CV(e)}};Z8.className="hardSigmoid";de.registerClass(Z8);var Y8=class extends As{apply(e){return Zl(e)}};Y8.className="softplus";de.registerClass(Y8);var J8=class extends As{apply(e){return SV(e)}};J8.className="softsign";de.registerClass(J8);var Q8=class extends As{apply(e){return Yi(e)}};Q8.className="tanh";de.registerClass(Q8);var g5=class extends As{apply(e,t=-1){return Jl(e,t)}};g5.className="softmax";de.registerClass(g5);var ek=class extends As{apply(e,t=-1){return I0(e,t)}};ek.className="logSoftmax";de.registerClass(ek);var tk=class extends As{apply(e,t=1){return J(()=>L(Cn(L(e,t)),e))}};tk.className="swish";de.registerClass(tk);var nk=class extends As{apply(e){return J(()=>L(e,Yi(Zl(e))))}};nk.className="mish";de.registerClass(nk);function ro(e){return e.getClassName()}function d3(e,t={}){return wh(e,de.SerializationMap.getMap().classNameMap,t,"activation")}function ao(e){if(e==null){let t={};return t.className="linear",t.config={},d3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},d3(t)}else return e instanceof As?e:d3(e)}function y5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var sk=class extends de.Serializable{},Th=class extends sk{constructor(e){super(),y5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return J(()=>{let t=Wt([1]);return this.hasL1&&(t=ce(t,ke(L(this.l1,tn(e))))),this.hasL2&&(t=ce(t,ke(L(this.l2,Ih(e))))),U(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Th.className="L1L2";de.registerClass(Th);function rG(e){return y5(e),new Th({l1:e!=null?e.l1:null,l2:0})}function aG(e){return y5(e),new Th({l2:e!=null?e.l2:null,l1:0})}var Xv={l1l2:"L1L2"};function St(e){return XA(e)}function Kv(e,t={}){return wh(e,de.SerializationMap.getMap().classNameMap,t,"regularizer")}function Mt(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in Xv?Xv[e]:e,config:{}};return Kv(n)}else return e instanceof sk?e:Kv(e)}var A5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Xe(e);let n=Pr(e);return this.maxValue!=null&&(n=fs(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};A5.className="ReLU";de.registerClass(A5);var x5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Xe(e);return dh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};x5.className="LeakyReLU";de.registerClass(x5);var b5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ot(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Mt(e.alphaRegularizer),this.alphaConstraint=yn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=xt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new rn({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Xe(e),yh(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Vt(this.alphaInitializer),alphaRegularizer:St(this.alphaRegularizer),alphaConstraint:gn(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};b5.className="PReLU";de.registerClass(b5);var v5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new He(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Xe(e);return Uc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};v5.className="ELU";de.registerClass(v5);var w5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Xe(e);return L(n,ge(ys(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};w5.className="ThresholdedReLU";de.registerClass(w5);var k5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new g5().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Xe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};k5.className="Softmax";de.registerClass(k5);function Hu(e,t,n){if(typeof e=="number")return el(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!bV(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Er(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Ur(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+so([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function I5(e,t){return J(()=>(Yt(t),t==="channelsFirst"?st(e,[0,2,3,1]):e))}function rk(e,t){return J(()=>(Yt(t),t==="channelsFirst"?st(e,[0,2,3,4,1]):e))}function oG(e,t,n,s=1,r="valid",a,o=1){return J(()=>{if(a==null&&(a=_r()),Yt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=st(e,[0,2,1])),r==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=y0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Fr(i,n)),i})}function Zv(e,t,n,s=[1,1],r="valid",a,o,i=null){return J(()=>{if(a==null&&(a=_r()),Yt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=I5(e,a);if(r==="causal")throw new He("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=ec.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=st(l,[0,3,1,2])),l})}function iG(e,t,n,s=[1,1,1],r="valid",a,o){return J(()=>{if(a==null&&(a=_r()),Yt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=rk(e,a);if(r==="causal")throw new He("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=cA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Fr(i,n)),a==="channelsFirst"&&(i=st(i,[0,4,1,2,3])),i})}var S5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",S5.verifyArgs(t),this.rank=e,vn(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new He(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Hu(t.kernelSize,e,"kernelSize"),this.strides=Hu(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Qs(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Yt(this.dataFormat),this.activation=ao(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ot(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=yn(t.biasConstraint),this.biasRegularizer=Mt(t.biasRegularizer),this.activityRegularizer=Mt(t.activityRegularizer),this.dilationRate=Hu(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Vr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:ro(this.activation),useBias:this.useBias,biasInitializer:Vt(this.biasInitializer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),biasConstraint:gn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Nh=class extends S5{constructor(e,t){super(e,t),this.kernel=null,Nh.verifyArgs(t),this.filters=t.filters,vn(this.filters,"filters"),this.kernelInitializer=Ot(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=yn(t.kernelConstraint),this.kernelRegularizer=Mt(t.kernelRegularizer)}build(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return J(()=>{e=Xe(e);let n,s=this.bias==null?null:this.bias.read(),r=p8(this.activation.getClassName());if(r!=null&&this.rank===2)n=Zv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=oG(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=Zv(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=iG(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new He("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=xt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=Er(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Vt(this.kernelInitializer),kernelRegularizer:St(this.kernelRegularizer),kernelConstraint:gn(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Eh=class extends Nh{constructor(e){super(2,e),Eh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Eh.className="Conv2D";de.registerClass(Eh);var Rh=class extends Nh{constructor(e){super(3,e),Rh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Rh.className="Conv3D";de.registerClass(Rh);var C5=class extends Eh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=xt(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return J(()=>{let n=Xe(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Ur(i,p,u,this.padding),f=Ur(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,1]));let g=A0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=st(g,[0,3,1,2])),this.bias!=null&&(g=Fr(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=xt(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Ur(t[s],i,a,this.padding),t[r]=Ur(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};C5.className="Conv2DTranspose";de.registerClass(C5);var T5=class extends Rh{constructor(e){if(super(e),this.inputSpec=[new rn({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=xt(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new rn({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return J(()=>{let n=Xe(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Ur(l,f,p,this.padding),x=Ur(u,m,d,this.padding),A=Ur(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=st(n,[0,2,3,4,1]));let w=dA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=st(w,[0,4,1,2,3])),this.bias!==null&&(w=Fr(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=xt(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Ur(t[s],u,o,this.padding),t[r]=Ur(t[r],c,i,this.padding),t[a]=Ur(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};T5.className="Conv3DTranspose";de.registerClass(T5);var ak=class extends Nh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Mt(t.depthwiseRegularizer),this.depthwiseConstraint=yn(t.depthwiseConstraint),this.pointwiseInitializer=Ot(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Mt(t.pointwiseRegularizer),this.pointwiseConstraint=yn(t.pointwiseConstraint)}build(e){if(e=xt(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new rn({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return J(()=>{e=Xe(e);let n;if(this.rank===1)throw new He("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=st(e,[0,2,3,1])),n=$0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Fr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=st(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Vt(this.depthwiseInitializer),e.pointwiseInitializer=Vt(this.pointwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.pointwiseRegularizer=St(this.pointwiseRegularizer),e.depthwiseConstraint=gn(this.depthwiseConstraint),e.pointwiseConstraint=gn(this.pointwiseConstraint),e}};ak.className="SeparableConv";var N5=class extends ak{constructor(e){super(2,e)}};N5.className="SeparableConv2D";de.registerClass(N5);var d2=class extends Nh{constructor(e){super(1,e),d2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!KA(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};d2.className="Conv1D";de.registerClass(d2);var E5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return J(()=>{if(e=Xe(e),this.dataFormat==="channelsLast"){let n=Uf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Uf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Uf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Uf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};E5.className="Cropping2D";de.registerClass(E5);var R5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,yV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return J(()=>{let n=Xe(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=st(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Ne.resizeNearestNeighbor(n,[r,a]):Ne.resizeBilinear(n,[r,a]);return st(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Ne.resizeNearestNeighbor(n,[r,a]):Ne.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};R5.className="UpSampling2D";de.registerClass(R5);function lG(e,t,n=[1,1],s="valid",r,a){return J(()=>{r==null&&(r=_r()),Yt(r);let o=I5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Vc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}var _5=class extends S5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ot(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=yn(e.depthwiseConstraint),this.depthwiseRegularizer=Mt(e.depthwiseRegularizer)}build(e){if(e=xt(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return J(()=>{e=Xe(e);let n=lG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Fr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Er(t,this.kernelSize[0],this.padding,this.strides[0]),a=Er(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Vt(this.depthwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.depthwiseConstraint=gn(this.depthwiseRegularizer),e}};_5.className="DepthwiseConv2D";de.registerClass(_5);function ok(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function ik(e,t,n,s=!1,r,a,o=!1,i=!1){return J(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Rr(2,l));if(t=st(t,u),a!=null)throw new He("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ge(ge(r,"bool"),"float32"),r.rank===l-1&&(r=Kt(r,-1)),r=st(r,u)),s&&(t=Ks(t,0),r!=null&&(r=Ks(r,0)));let c=[],p,d=n,h=t.shape[0],f=es(t),m;r!=null&&(m=es(r));for(let y=0;y<h;++y){let x=f[y],A=J(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=J(()=>{let w=m[y],k=he($s(w),w),S=ce(L(A[0],w),L(d[0],k)),E=d.map((R,P)=>ce(L(A[1][P],w),L(R,k)));return{output:S,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=on(c,1)),[p,g,d]})}var Qr=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new f2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new rn({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Rr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){F3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return J(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new He("Constants support is not implemented in RNN yet.");F3(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new rn({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new rn({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){J(()=>{if(!this.stateful)throw new la("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Wt([n,s])):this.states_=[Wt([n,this.cell.stateSize])];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Wt([n,s])):this.states_[0]=Wt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>bn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=ok(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new rn({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Cr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return J(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Xe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=ik((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return J(()=>{let t=Wt(e.shape);return t=ke(t,[1,2]),t=kh(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?$3(t,[1,n]):t):this.cell.stateSize>1?[$3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Qr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Nr(s,n);return new e(Object.assign(t,{cell:r}))}};Qr.className="RNN";de.registerClass(Qr);var _h=class extends ut{},p2=class extends _h{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,vn(this.units,"units"),this.activation=ao(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=tc([1,so([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,so([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=xt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return J(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=oo({ones:()=>$s(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=oo({ones:()=>$s(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=jr(L(e,a),this.kernel.read()):r=jr(e,this.kernel.read()),this.bias!=null&&(r=Fr(r,this.bias.read())),o!=null&&(n=L(n,o));let i=ce(r,jr(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ro(this.activation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};p2.className="SimpleRNNCell";de.registerClass(p2);var D5=class extends Qr{constructor(e){e.cell=new p2(e),super(e)}call(e,t){return J(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};D5.className="SimpleRNN";de.registerClass(D5);var h2=class extends _h{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,vn(this.units,"units"),this.activation=ao(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ao(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=tc([1,so([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,so([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=xt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return J(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=oo({ones:()=>$s(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=oo({ones:()=>$s(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=L(e,r[0]));let u=jr(e,this.kernel.read());this.useBias&&(u=Fr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Zt(c,[2*this.units,this.units],c.rank-1),h=jr(s,p),[f,m,g]=Zt(u,3,u.rank-1),[y,x]=Zt(h,2,h.rank-1);o=this.recurrentActivation.apply(ce(f,y)),i=this.recurrentActivation.apply(ce(m,x));let A=jr(L(i,s),d);l=this.activation.apply(ce(g,A));let b=ce(L(o,s),L(ce(1,Dt(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ro(this.activation),recurrentActivation:ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};h2.className="GRUCell";de.registerClass(h2);var $5=class extends Qr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new h2(e),super(e)}call(e,t){return J(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$5.className="GRU";de.registerClass($5);var Dh=class extends _h{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,vn(this.units,"units"),this.activation=ao(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ao(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ot(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Mt(e.kernelRegularizer),this.recurrentRegularizer=Mt(e.recurrentRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.kernelConstraint=yn(e.kernelConstraint),this.recurrentConstraint=yn(e.recurrentConstraint),this.biasConstraint=yn(e.biasConstraint),this.dropout=tc([1,so([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=tc([1,so([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=xt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends pr{apply(i,l){let u=r.apply([a]),c=new t2().apply([a]),p=r.apply([a*2]);return $v($v(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return J(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=oo({ones:()=>$s(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=oo({ones:()=>$s(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=L(e,a[0]));let p=jr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=L(s,o[0])),p=ce(p,jr(s,this.recurrentKernel.read())),this.useBias&&(p=Fr(p,this.bias.read()));let[d,h,f,m]=Zt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ce(L(l,r),L(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=L(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:ro(this.activation),recurrentActivation:ro(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),recurrentInitializer:Vt(this.recurrentInitializer),biasInitializer:Vt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),recurrentConstraint:gn(this.recurrentConstraint),biasConstraint:gn(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Dh.className="LSTMCell";de.registerClass(Dh);var P5=class extends Qr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Dh(e),super(e)}call(e,t){return J(()=>{this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};P5.className="LSTM";de.registerClass(P5);var f2=class extends _h{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return J(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){F3(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Hi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Nr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return O3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}r5(t)}};f2.className="StackedRNNCells";de.registerClass(f2);function oo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):x8(t(),n),i=()=>Sh(o,t,s);return!r||r<=1?bn(i().clone()):Array(r).fill(void 0).map(i).map(u=>bn(u.clone()))}var uG=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},lk=class extends Qr{constructor(e){if(e.unroll)throw new He("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new He("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new rn({ndim:5})]}call(e,t){return J(()=>{if(this.cell.dropoutMask!=null&&(ne(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ne(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return J(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Wt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){J(()=>{if(!this.stateful)throw new la("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(r)):this.states_=[Wt(r)];else if(e==null)ne(this.states_),this.keptStates!=null&&(ne(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Wt(r)):this.states_[0]=Wt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ne(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new j(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>bn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=Er(l,s[0],r,a[0],o[0]),p=Er(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};lk.className="ConvRNN2D";var m2=class extends Dh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,vn(this.filters,"filters"),this.kernelSize=Hu(n,2,"kernelSize"),this.kernelSize.forEach(i=>vn(i,"kernelSize")),this.strides=Hu(s||1,2,"strides"),this.strides.forEach(i=>vn(i,"strides")),this.padding=r||"valid",Qs(this.padding),this.dataFormat=a||"channelsLast",Yt(this.dataFormat),this.dilationRate=Hu(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>vn(i,"dilationRate"))}build(e){var t;e=xt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends pr{apply(p,d){let h=l.apply([u]),f=Ns([u]),m=l.apply([u*2]);return ZA([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return J(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=oo({ones:()=>$s(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(B,ee,Q)=>!ee||!ee[Q]?B:L(ee[Q],B),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=oo({ones:()=>$s(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,k]=Zt(this.kernel.read(),o,x),[S,E,R,P]=this.useBias?Zt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,S,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,R,this.padding),d=this.inputConv(d,k,P,this.padding);let[_,$,T,F]=Zt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,_),m=this.recurrentConv(m,$),g=this.recurrentConv(g,T),y=this.recurrentConv(y,F);let G=this.recurrentActivation.apply(ce(u,f)),q=this.recurrentActivation.apply(ce(c,m)),z=ce(L(q,a),L(G,this.activation.apply(ce(p,g)))),K=L(this.recurrentActivation.apply(ce(d,y)),this.activation.apply(z));return[K,K,z]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=uG(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=ma(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Fr(r,n,this.dataFormat):r}recurrentConv(e,t){return ma(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};m2.className="ConvLSTM2DCell";de.registerClass(m2);var F5=class extends lk{constructor(e){let t=new m2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};F5.className="ConvLSTM2D";de.registerClass(F5);var g2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Sh(()=>x8(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};g2.className="Dropout";de.registerClass(g2);var O5=class extends g2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};O5.className="SpatialDropout1D";de.registerClass(O5);var M5=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,vn(this.units,"units"),this.activation=ao(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ot(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ot(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=yn(e.kernelConstraint),this.biasConstraint=yn(e.biasConstraint),this.kernelRegularizer=Mt(e.kernelRegularizer),this.biasRegularizer=Mt(e.biasRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=xt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=xt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=p8(this.activation.getClassName()),r;return s!=null?r=jr(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=jr(n,this.kernel.read()),this.bias!=null&&(r=Fr(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:ro(this.activation),useBias:this.useBias,kernelInitializer:Vt(this.kernelInitializer),biasInitializer:Vt(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:gn(this.kernelConstraint),biasConstraint:gn(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};M5.className="Dense";de.registerClass(M5);var z5=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=xt(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ka(e,1)]}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=st(n,s)}return kV(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};z5.className="Flatten";de.registerClass(z5);var L5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.activation=ao(e.activation)}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);return this.activation.apply(n)})}getConfig(){let e={activation:ro(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};L5.className="Activation";de.registerClass(L5);var B5=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return J(()=>(e=Xe(e),vV(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};B5.className="RepeatVector";de.registerClass(B5);var W5=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let o=Ka(e);if(a!==null){if(r===0||o%r!==0)throw new j(n);s[a]=o/r}else if(o!==r)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return U(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};W5.className="Reshape";de.registerClass(W5);var V5=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Rr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new rn({ndim:this.dims.length+1})]}computeOutputShape(e){e=xt(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return st(Xe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};V5.className="Permute";de.registerClass(V5);var U5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Xe(e),s=-1;return Cp(Qi(n,this.maskValue),s)}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e),s=-1,r=!0,a=Cp(Qi(n,this.maskValue),s,r);return L(n,ge(a,n.dtype))})}};U5.className="Masking";de.registerClass(U5);var G5=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(_t(e.inputLength))}this.inputDim=e.inputDim,vn(this.inputDim,"inputDim"),this.outputDim=e.outputDim,vn(this.outputDim,"outputDim"),this.embeddingsInitializer=Ot(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Mt(e.embeddingsRegularizer),this.activityRegularizer=Mt(e.activityRegularizer),this.embeddingsConstraint=yn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return J(()=>this.maskZero?(e=Xe(e),Qi(e,it(e))):null)}computeOutputShape(e){if(e=xt(e),this.inputLength==null)return[...e,this.outputDim];let t=_t(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);n.dtype!=="int32"&&(n=Q0(n,"int32"));let s=A8(this.embeddings.read(),U(n,[n.size]));return U(s,xt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Vt(this.embeddingsInitializer),embeddingsRegularizer:St(this.embeddingsRegularizer),activityRegularizer:St(this.activityRegularizer),embeddingsConstraint:gn(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};G5.className="Embedding";de.registerClass(G5);var nu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new He}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[xt(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Xa(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Xa(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return J(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=so(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=kh(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=U(i,[c].concat(Ka(u.slice(1))));d=st(d,[1,0]),d=U(d,p),n.push(d),r=!0}else if(l>1){let u=Rr(1,l).concat([0]);n.push(st(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=U(st(U(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Rr(0,o-1));a=st(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Xa(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return J(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Kt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=lr(n,t[s]);return n})}},H5=class extends nu{constructor(e){super(e)}mergeFunction(e){return J(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return t})}};H5.className="Add";de.registerClass(H5);var j5=class extends nu{constructor(e){super(e)}mergeFunction(e){return J(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=L(t,e[n]);return t})}};j5.className="Multiply";de.registerClass(j5);var q5=class extends nu{constructor(e){super(e)}mergeFunction(e){return J(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return L(1/e.length,t)})}};q5.className="Average";de.registerClass(q5);var X5=class extends nu{constructor(e){super(e)}mergeFunction(e){return J(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Jr(t,e[n]);return t})}};X5.className="Maximum";de.registerClass(X5);var K5=class extends nu{constructor(e){super(e)}mergeFunction(e){return J(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Xc(t,e[n]);return t})}};K5.className="Minimum";de.registerClass(K5);var Z5=class extends nu{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return J(()=>ZA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return J(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ge($s(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Kt(t[a],-1)):s.push(t[a]);let r=Ct(s,this.axis);return g0(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Z5.className="Concatenate";de.registerClass(Z5);function ep(e,t){for(;e<0;)e+=t;return e}function cG(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new He("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new He("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return J(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=U(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=U(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(L(e,t),a[0]):i=ke(L(st(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=Qe(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=rt(i,u)}return i.shape.length===1&&(i=Kt(i,1)),i})}var Y5=class extends nu{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>ep(r,e[a].shape.length)):s=[ep(this.axes,t.shape.length),ep(this.axes,n.shape.length)],this.normalize&&(t=km(t,s[0]),n=km(n,s[1])),cG(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[ep(this.axes,e.length),ep(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new He("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Y5.className="Dot";de.registerClass(Y5);var J5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);return Sh(()=>ce(e2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};J5.className="GaussianNoise";de.registerClass(J5);var Q5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return J(()=>{this.invokeCallHook(e,t);let n=Xe(e);return this.rate>0&&this.rate<1?Sh(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return L(n,e2(n.shape,1,r))},()=>n,t.training||!1):n})}};Q5.className="GaussianDropout";de.registerClass(Q5);var ex=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Xe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return J(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Sh(()=>{let r=Xe(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=li(Kc(n),this.rate);l=Q0(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ce(L(r,l),L(ce(l,-1),i));return ce(L(p,u),c)},()=>Xe(e),t.training||!1)}return e})}};ex.className="AlphaDropout";de.registerClass(ex);function Rp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=tA(e,t,n,s,r,a);else if(e.rank===3)o=nA(e,t,n,s,r,a);else if(e.rank===4)o=sA(e,t,n,s,r,a);else throw new He(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function dG(e,t,n,s,r=.001){return J(()=>{let a=mh(e,s),o=a.mean,i=a.variance;return[Rp(e,o,i,n,t,r),o,i]})}function pG(e,t,n,s,r=.001){return J(()=>{let a=mh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Rr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=U(o,l),c=U(i,l),p=t==null?null:U(t,l),d=n==null?null:U(n,l);return[Rp(e,u,c,d,p,r),o,i]})}function hG(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),Rr(0,e.rank-1))?dG(e,t,n,s,r):pG(e,t,n,s,r)}var tx=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ot(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ot(e.movingVarianceInitializer||"ones"),this.betaConstraint=yn(e.betaConstraint),this.gammaConstraint=yn(e.gammaConstraint),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer)}build(e){e=xt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new rn({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return J(()=>{let n=t.training==null?!1:t.training,s=Xe(e),r=s.shape,a=r.length,o=Rr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=el(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,Rr(0,a).slice(0,a-1)),p=()=>{if(c){let y=U(this.movingMean.read(),l),x=U(this.movingVariance.read(),l),A=this.center?U(this.beta.read(),l):null,b=this.scale?U(this.gamma.read(),l):null;return Rp(s,y,x,A,b,this.epsilon)}else return Rp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=hG(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{J(()=>{let b=1-A,w=y.read(),k=L(he(w,x),b);y.write(he(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Vt(this.betaInitializer),gammaInitializer:Vt(this.gammaInitializer),movingMeanInitializer:Vt(this.movingMeanInitializer),movingVarianceInitializer:Vt(this.movingVarianceInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer),betaConstraint:gn(this.betaConstraint),gammaConstraint:gn(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};tx.className="BatchNormalization";de.registerClass(tx);var nx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ot(e.betaInitializer||"zeros"),this.gammaInitializer=Ot(e.gammaInitializer||"ones"),this.betaRegularizer=Mt(e.betaRegularizer),this.gammaRegularizer=Mt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=xt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Xa(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Xe(e),s=n.shape,r=s.length;return J(()=>{let{mean:o,variance:i}=mh(n,this.axis,!0),l=el(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?U(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=js(o,d),i=js(i,d),c!=null&&(c=js(c,h)),p!=null&&(p=js(p,h)),Rp(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Vt(this.betaInitializer),gammaInitializer:Vt(this.gammaInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};nx.className="LayerNormalization";de.registerClass(nx);function fG(e,t,n){return J(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=_r()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],Js(e,s)})}var sx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?_r():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=xt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return J(()=>fG(Xe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};sx.className="ZeroPadding2D";de.registerClass(sx);function y2(e,t,n,s,r,a){return J(()=>{Yt(r),f8(a),Qs(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=_r()),a==null&&(a="max"),e=I5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=fh(e,t,n,i):o=lh(e,t,n,i),r==="channelsFirst"&&(o=st(o,[0,3,1,2])),o})}function uk(e,t,n,s,r,a){return J(()=>{Yt(r),f8(a),Qs(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=_r()),a==null&&(a="max"),e=rk(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=TA(e,t,n,i):o=eA(e,t,n,i),r==="channelsFirst"&&(o=st(o,[0,4,1,2,3])),o})}var ck=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(vn(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Qs(this.padding),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){e=xt(e);let t=Er(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return J(()=>{this.invokeCallHook(e,t),e=kh(Xe(e),2);let n=this.poolingFunction(Xe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},rx=class extends ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),y2(e,t,n,s,r,"max")}};rx.className="MaxPooling1D";de.registerClass(rx);var ax=class extends ck{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),y2(e,t,n,s,r,"avg")}};ax.className="AveragePooling1D";de.registerClass(ax);var dk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];vn(this.poolSize,"poolSize"),vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Qs(this.padding),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Er(t,this.poolSize[0],this.padding,this.strides[0]),n=Er(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return J(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},ox=class extends dk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),y2(e,t,n,s,r,"max")}};ox.className="MaxPooling2D";de.registerClass(ox);var ix=class extends dk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),y2(e,t,n,s,r,"avg")}};ix.className="AveragePooling2D";de.registerClass(ix);var pk=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];vn(this.poolSize,"poolSize"),vn(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),Qs(this.padding),this.inputSpec=[new rn({ndim:5})]}computeOutputShape(e){e=xt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Er(t,this.poolSize[0],this.padding,this.strides[0]),n=Er(n,this.poolSize[1],this.padding,this.strides[1]),s=Er(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return J(()=>(this.invokeCallHook(e,t),this.poolingFunction(Xe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},lx=class extends pk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),uk(e,t,n,s,r,"max")}};lx.className="MaxPooling3D";de.registerClass(lx);var ux=class extends pk{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Yt(r),Qs(s),uk(e,t,n,s,r,"avg")}};ux.className="AveragePooling3D";de.registerClass(ux);var hk=class extends ut{constructor(e){super(e),this.inputSpec=[new rn({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new He}},cx=class extends hk{constructor(e){super(e||{})}call(e,t){return J(()=>{let n=Xe(e);return Bt(n,1)})}};cx.className="GlobalAveragePooling1D";de.registerClass(cx);var dx=class extends hk{constructor(e){super(e||{})}call(e,t){return J(()=>{let n=Xe(e);return mn(n,1)})}};dx.className="GlobalMaxPooling1D";de.registerClass(dx);var fk=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Yt(this.dataFormat),this.inputSpec=[new rn({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new He}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},px=class extends fk{call(e,t){return J(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?Bt(n,[1,2]):Bt(n,[2,3])})}};px.className="GlobalAveragePooling2D";de.registerClass(px);var hx=class extends fk{call(e,t){return J(()=>{let n=Xe(e);return this.dataFormat==="channelsLast"?mn(n,[1,2]):mn(n,[2,3])})}};hx.className="GlobalMaxPooling2D";de.registerClass(hx);var mk=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Nr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},fx=class extends mk{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=xt(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=xt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return J(()=>(e=Xe(e),ik((a,o)=>[Xe(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};fx.className="TimeDistributed";de.registerClass(fx);function mG(e){eu(gV,"BidirectionalMergeMode",e)}var gG="concat",mx=class extends mk{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Nr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Nr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?gG:e.mergeMode,mG(this.mergeMode),e.weights)throw new He("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):ps(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=ok(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new rn({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new He("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Cr;for(let l of a)if(l instanceof Cr!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return J(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Ks(r,1));let o;return this.mergeMode==="concat"?o=ZA([s,r]):this.mergeMode==="sum"?o=ce(s,r):this.mergeMode==="ave"?o=L(.5,ce(s,r)):this.mergeMode==="mul"?o=L(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Hi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Hi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Nr(t.layer);if(delete t.layer,t.numConstants!=null)throw new He("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};mx.className="Bidirectional";de.registerClass(mx);function yG(e){return new Yc(e)}function AG(e){return new v5(e)}function xG(e){return new A5(e)}function bG(e){return new x5(e)}function vG(e){return new b5(e)}function wG(e){return new k5(e)}function kG(e){return new w5(e)}function IG(e){return new d2(e)}function SG(e){return new Eh(e)}function CG(e){return new C5(e)}function TG(e){return new Rh(e)}function NG(e){return new T5(e)}function EG(e){return new N5(e)}function RG(e){return new E5(e)}function _G(e){return new R5(e)}function DG(e){return new _5(e)}function $G(e){return new L5(e)}function PG(e){return new M5(e)}function FG(e){return new g2(e)}function OG(e){return new O5(e)}function MG(e){return new z5(e)}function zG(e){return new B5(e)}function LG(e){return new W5(e)}function BG(e){return new V5(e)}function WG(e){return new G5(e)}function VG(e){return new H5(e)}function UG(e){return new q5(e)}function GG(e){return new Z5(e)}function HG(e){return new X5(e)}function jG(e){return new K5(e)}function qG(e){return new j5(e)}function XG(e){return new Y5(e)}function KG(e){return new tx(e)}function ZG(e){return new nx(e)}function YG(e){return new sx(e)}function gx(e){return new ax(e)}function JG(e){return gx(e)}function QG(e){return gx(e)}function yx(e){return new ix(e)}function eH(e){return yx(e)}function tH(e){return yx(e)}function Ax(e){return new ux(e)}function nH(e){return Ax(e)}function sH(e){return Ax(e)}function rH(e){return new cx(e)}function aH(e){return new px(e)}function gk(e){return new dx(e)}function yk(e){return new hx(e)}function Ak(e){return new rx(e)}function xk(e){return new ox(e)}function oH(e){return new lx(e)}function iH(e){return new $5(e)}function lH(e){return new h2(e)}function uH(e){return new P5(e)}function cH(e){return new Dh(e)}function dH(e){return new D5(e)}function pH(e){return new p2(e)}function hH(e){return new F5(e)}function fH(e){return new m2(e)}function mH(e){return new Qr(e)}function gH(e){return new f2(e)}function yH(e){return new mx(e)}function AH(e){return new fx(e)}var xH=gk,bH=yk,vH=Ak,wH=xk;function kH(e){return new J5(e)}function IH(e){return new Q5(e)}function SH(e){return new ex(e)}function CH(e){return new U5(e)}var bk={};Ve(bk,{MAPE:()=>MH,MSE:()=>BH,binaryAccuracy:()=>TH,binaryCrossentropy:()=>NH,categoricalAccuracy:()=>RH,categoricalCrossentropy:()=>_H,cosineProximity:()=>PH,mape:()=>zH,meanAbsoluteError:()=>FH,meanAbsolutePercentageError:()=>OH,meanSquaredError:()=>LH,mse:()=>WH,precision:()=>DH,recall:()=>$H,sparseCategoricalAccuracy:()=>EH});function TH(e,t){return d5(e,t)}function NH(e,t){return P8(e,t)}function EH(e,t){return F8(e,t)}function RH(e,t){return p5(e,t)}function _H(e,t){return h5(e,t)}function DH(e,t){return $8(e,t)}function $H(e,t){return bU(e,t)}function PH(e,t){return c5(e,t)}function FH(e,t){return u2(e,t)}function OH(e,t){return Jc(e,t)}function MH(e,t){return Jc(e,t)}function zH(e,t){return Jc(e,t)}function LH(e,t){return tu(e,t)}function BH(e,t){return tu(e,t)}function WH(e,t){return tu(e,t)}var vk={};Ve(vk,{modelFromJSON:()=>ZU});var wk={};Ve(wk,{l1:()=>UH,l1l2:()=>VH,l2:()=>GH});function VH(e){return new Th(e)}function UH(e){return rG(e)}function GH(e){return aG(e)}var kk=class extends nc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof ha))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function Hf(e,t){return e<t}function Yv(e,t){return e>t}var Ik=class extends kk{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new He("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=Hf:this.mode==="max"?this.monitorFunc=Yv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Yv:this.monitorFunc=Hf,this.monitorFunc===Hf&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===Hf?1/0:-1/0}async onEpochEnd(e,t){await Va(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function HH(e){return new Ik(e)}var jH={earlyStopping:HH},qH=Z();qH.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var sr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(sr||(sr={}));var Jv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Jv||(Jv={}));var xx={};function XH(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};xx[e]=n}function Sk(e){return xx[e]}function KH(e){delete xx[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return Jn(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>Jn(d,n,s,r));let u=Jn(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function Jn(e,t,n,s){let[r,a]=Ss(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Nm(r,i)]);return o!==void 0?t[Nm(r,o)][a]:void 0}function ZH(e,t,n){return t[Nm(e,n.currentContextId)]}function Gr(e,t){let[n,s,r]=Ss(e);return[Nm(n,t&&t.currentContextId),s,r]}function Nm(e,t){return t?`${e}-${t}`:e}function Ss(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function tm(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function ca(e){return e.kept?e:Fn(e)}var Ck={};Ve(Ck,{json:()=>YH});var YH=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Tk={};Ve(Tk,{json:()=>JH});var JH=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Nk={};Ve(Nk,{json:()=>QH});var QH=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],Ek={};Ve(Ek,{json:()=>ej});var ej=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],Rk={};Ve(Rk,{json:()=>tj});var tj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],_k={};Ve(_k,{json:()=>nj});var nj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Dk={};Ve(Dk,{json:()=>sj});var sj=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],$k={};Ve($k,{json:()=>rj});var rj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Pk={};Ve(Pk,{json:()=>aj});var aj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Fk={};Ve(Fk,{json:()=>oj});var oj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],Ok={};Ve(Ok,{json:()=>ij});var ij=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Mk={};Ve(Mk,{json:()=>lj});var lj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],zk={};Ve(zk,{json:()=>uj});var uj=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],Lk={};Ve(Lk,{json:()=>cj});var cj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],Bk={};Ve(Bk,{json:()=>dj});var dj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Wk={};Ve(Wk,{json:()=>pj});var pj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],Vk={};Ve(Vk,{json:()=>hj});var hj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Uk={};Ve(Uk,{json:()=>fj});var fj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],Gk={};Ve(Gk,{json:()=>mj});var mj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],Qv=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Ck,Tk,Nk,Ek,Rk,_k,Dk,$k,Pk,Fk,Ok,Mk,zk,Lk,Bk,Wk,Vk,Uk,Gk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Gr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let k=`${x}:${w}`;m.inputNames[y]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Gr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Gr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Sk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=V3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=V3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=K3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=K3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=G3(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=G3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=X3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=X3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=U3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=U3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=Y3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Y3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=q3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=q3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=Z3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=Z3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=H3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=H3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=j3(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=j3(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=e7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=e7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Gr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:bx(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Gr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Gr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function gj(e){let t=Z().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Hk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):gj(e);return t?n:n.toLowerCase()}function V3(e,t,n,s=!1){let r=e[t];return r!=null?Hk(r.s,s):n}function U3(e,t,n){let s=e[t];return s?s.b:n}function G3(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function bx(e){switch(typeof e=="string"&&(e=sr[e]),e){case sr.DT_FLOAT:case sr.DT_HALF:return"float32";case sr.DT_INT32:case sr.DT_INT64:case sr.DT_INT8:case sr.DT_UINT8:return"int32";case sr.DT_BOOL:return"bool";case sr.DT_DOUBLE:return"float32";case sr.DT_STRING:return"string";default:return null}}function e7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function H3(e,t,n){let s=e[t];return s&&s.type?bx(s.type):n}function j3(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>bx(r)):n}function jk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function q3(e,t,n){let s=e[t];return s&&s.shape?jk(s.shape):n}function X3(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function K3(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>Hk(a,s)):n}function Z3(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>jk(r)):n}function Y3(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var yj=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return Jn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return Jn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return G3(this.node.rawAttrs,e,t);if(n.s!=null)return V3(this.node.rawAttrs,e,t);if(n.b!=null)return U3(this.node.rawAttrs,e,t);if(n.shape!=null)return q3(this.node.rawAttrs,e,t);if(n.type!=null)return H3(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return X3(this.node.rawAttrs,e,t);if(n.list.s!=null)return K3(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Z3(this.node.rawAttrs,e,t);if(n.list.b!=null)return Y3(this.node.rawAttrs,e,t);if(n.list.type!=null)return j3(this.node.rawAttrs,e,t)}return t}},En={};Ve(En,{OP_SCOPE_SUFFIX:()=>Cy,abs:()=>tn,acos:()=>Hy,acosh:()=>jy,add:()=>ce,addN:()=>m0,all:()=>g0,any:()=>Cp,argMax:()=>Es,argMin:()=>qy,asin:()=>Xy,asinh:()=>Ky,atan:()=>Zy,atan2:()=>Yy,atanh:()=>Jy,avgPool:()=>lh,avgPool3d:()=>eA,basicLSTMCell:()=>sw,batchNorm:()=>Wc,batchNorm2d:()=>tA,batchNorm3d:()=>nA,batchNorm4d:()=>sA,batchToSpaceND:()=>uh,bincount:()=>rA,booleanMaskAsync:()=>zw,broadcastArgs:()=>rw,broadcastTo:()=>Gu,buffer:()=>Le,cast:()=>ge,ceil:()=>aA,clipByValue:()=>fs,clone:()=>Fn,complex:()=>fa,concat:()=>Ct,concat1d:()=>oA,concat2d:()=>Kl,concat3d:()=>iA,concat4d:()=>lA,conv1d:()=>y0,conv2d:()=>ma,conv2dTranspose:()=>A0,conv3d:()=>cA,conv3dTranspose:()=>dA,cos:()=>ch,cosh:()=>x0,cosineWindow:()=>W0,cumprod:()=>Tp,cumsum:()=>b0,denseBincount:()=>ow,depthToSpace:()=>pA,depthwiseConv2d:()=>Vc,diag:()=>iw,dilation2d:()=>hA,div:()=>pe,divNoNan:()=>fA,dot:()=>mA,dropout:()=>WA,einsum:()=>lw,elu:()=>Uc,enclosingPowerOfTwo:()=>VA,equal:()=>Rs,erf:()=>gA,euclideanNorm:()=>xA,exp:()=>_s,expandDims:()=>Kt,expm1:()=>bA,eye:()=>v0,fft:()=>xh,fill:()=>Hc,floor:()=>jc,floorDiv:()=>Bc,fused:()=>ec,gather:()=>qc,gatherND:()=>Vw,greater:()=>ys,greaterEqual:()=>li,ifft:()=>Qu,imag:()=>oh,image:()=>Ne,inTopKAsync:()=>Uw,irfft:()=>M0,isFinite:()=>vA,isInf:()=>wA,isNaN:()=>kA,leakyRelu:()=>dh,less:()=>w0,lessEqual:()=>ui,linalg:()=>HA,linspace:()=>hw,localResponseNormalization:()=>IA,log:()=>Ds,log1p:()=>ph,logSigmoid:()=>SA,logSoftmax:()=>I0,logSumExp:()=>S0,logicalAnd:()=>lr,logicalNot:()=>hh,logicalOr:()=>C0,logicalXor:()=>CA,losses:()=>t8,lowerBound:()=>mw,matMul:()=>Qe,max:()=>mn,maxPool:()=>fh,maxPool3d:()=>TA,maxPoolWithArgmax:()=>gw,maximum:()=>Jr,mean:()=>Bt,meshgrid:()=>yw,min:()=>ga,minimum:()=>Xc,mirrorPad:()=>NA,mod:()=>Yl,moments:()=>mh,movingAverage:()=>Lw,mul:()=>L,multiRNNCell:()=>Aw,multinomial:()=>xw,neg:()=>Dt,norm:()=>Gc,notEqual:()=>Qi,oneHot:()=>Zu,ones:()=>Ns,onesLike:()=>$s,op:()=>V,outerProduct:()=>bw,pad:()=>Js,pad1d:()=>vw,pad2d:()=>ww,pad3d:()=>kw,pad4d:()=>Iw,pool:()=>EA,pow:()=>ya,prelu:()=>yh,print:()=>Ry,prod:()=>RA,rand:()=>Sw,randomGamma:()=>Cw,randomNormal:()=>N0,randomStandardNormal:()=>Tw,randomUniform:()=>Kc,range:()=>Ju,real:()=>Yu,reciprocal:()=>$A,relu:()=>Pr,relu6:()=>E0,reshape:()=>U,reverse:()=>Ks,reverse1d:()=>Nw,reverse2d:()=>Ew,reverse3d:()=>Rw,reverse4d:()=>_w,rfft:()=>bh,round:()=>R0,rsqrt:()=>_0,scalar:()=>Se,scatterND:()=>Bw,searchSorted:()=>T0,selu:()=>D0,separableConv2d:()=>$0,setdiff1dAsync:()=>Dw,sigmoid:()=>Cn,sign:()=>PA,signal:()=>e8,sin:()=>P0,sinh:()=>F0,slice:()=>Oe,slice1d:()=>Ah,slice2d:()=>O0,slice3d:()=>ci,slice4d:()=>no,softmax:()=>Jl,softplus:()=>Zl,spaceToBatchND:()=>gh,sparse:()=>n8,sparseToDense:()=>Ww,spectral:()=>Qw,split:()=>Zt,sqrt:()=>Nn,square:()=>vt,squaredDifference:()=>z0,squeeze:()=>rt,stack:()=>on,step:()=>Ql,stridedSlice:()=>FA,string:()=>s8,sub:()=>he,sum:()=>ke,tan:()=>OA,tanh:()=>Yi,tensor:()=>ft,tensor1d:()=>Ft,tensor2d:()=>or,tensor3d:()=>My,tensor4d:()=>$w,tensor5d:()=>Pw,tensor6d:()=>Fw,tile:()=>js,topk:()=>MA,transpose:()=>st,truncatedNormal:()=>L0,unique:()=>zA,unsortedSegmentSum:()=>B0,unstack:()=>es,upperBound:()=>Ow,variable:()=>LA,where:()=>Mn,whereAsync:()=>BA,zeros:()=>Wt,zerosLike:()=>it});var Aj=(e,t,n,s=En)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[s.addN(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[s.mul(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[s.div(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[s.divNoNan(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[s.floorDiv(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[s.sub(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[s.minimum(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[s.maximum(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[s.pow(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xj=(e,t,n,s=En)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(I("x",e,t,n))];case"Acos":return[s.acos(I("x",e,t,n))];case"Acosh":return[s.acosh(I("x",e,t,n))];case"Asin":return[s.asin(I("x",e,t,n))];case"Asinh":return[s.asinh(I("x",e,t,n))];case"Atan":return[s.atan(I("x",e,t,n))];case"Atan2":return[s.atan2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[s.atanh(I("x",e,t,n))];case"Ceil":return[s.ceil(I("x",e,t,n))];case"Complex":return[s.complex(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[s.cos(I("x",e,t,n))];case"Cosh":return[s.cosh(I("x",e,t,n))];case"Elu":return[s.elu(I("x",e,t,n))];case"Erf":return[s.erf(I("x",e,t,n))];case"Exp":return[s.exp(I("x",e,t,n))];case"Expm1":return[s.expm1(I("x",e,t,n))];case"Floor":return[s.floor(I("x",e,t,n))];case"Log":return[s.log(I("x",e,t,n))];case"Log1p":return[s.log1p(I("x",e,t,n))];case"Imag":return[s.imag(I("x",e,t,n))];case"Neg":return[s.neg(I("x",e,t,n))];case"Reciprocal":return[s.reciprocal(I("x",e,t,n))];case"Real":return[s.real(I("x",e,t,n))];case"Relu":return[s.relu(I("x",e,t,n))];case"Round":return[s.round(I("x",e,t,n))];case"Selu":return[s.selu(I("x",e,t,n))];case"Sigmoid":return[s.sigmoid(I("x",e,t,n))];case"Sin":return[s.sin(I("x",e,t,n))];case"Sign":return[s.sign(I("x",e,t,n))];case"Sinh":return[s.sinh(I("x",e,t,n))];case"Softplus":return[s.softplus(I("x",e,t,n))];case"Sqrt":return[s.sqrt(I("x",e,t,n))];case"Square":return[s.square(I("x",e,t,n))];case"Tanh":return[s.tanh(I("x",e,t,n))];case"Tan":return[s.tan(I("x",e,t,n))];case"ClipByValue":return[s.clipByValue(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(I("x",e,t,n))];case"Rsqrt":return[s.rsqrt(Jn(e.inputNames[0],t,n))];case"Prod":return[s.prod(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[s.prelu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[s.isNaN(Jn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ar(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function t7(e){return!(typeof e=="number"||e.some(t=>t<0))}function tp(e,t,n){let s=J3(e,n),r=!t7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=J3(a.shape,s)}),!t7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function J3(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var bj=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),bn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ar(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,bn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ft([],[0].concat(this.elementShape));let n=this.readMany(e);return ar(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),on(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ft([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return ar(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),Ct(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,es(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];J(()=>{t=U(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=U(Oe(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},rc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ar(t,r.shape,"TensorList shape mismatch: "),bn(r)}),this.idTensor=Se(0),this.maxNumElements=s,bn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new rc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ar(e,this.elementShape,"TensorList shape mismatch: ");let s=tp(this.elementShape,this.tensors,e);return J(()=>{let r=this.tensors.map(a=>U(a,s));return on(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=tp(this.elementShape,this.tensors,e),s=this.tensors.pop();return ar(s.shape,e,"TensorList shape mismatch: "),U(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ar(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");bn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new rc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ar(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=tp(this.elementShape,this.tensors,t);return U(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ar(this.elementShape,t.shape,"TensorList shape mismatch: "),bn(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ar(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=tp(this.elementShape,this.tensors,n);return e.length===0?ft([],[0].concat(s)):J(()=>{let r=e.map(a=>U(this.tensors[a],s));return on(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ar(this.elementShape,t,"TensorList shape mismatch: ");let n=tp(this.elementShape,this.tensors,t);return this.size()===0?ft([],[0].concat(n)):J(()=>{let s=this.tensors.map(r=>U(r,n));return Ct(s,0)})}};function vj(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ar(r,t,"TensorList shape mismatch: ");let a=es(e);return new rc(a,t,s)}function wj(e,t,n,s){return new rc([],e,t,s)}function kj(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new rc([],n,e.dtype,s),o=es(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function Ij(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=J3(a,n),i=s===0?0:e.size/s,l=J(()=>{let c=[];e=U(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=U(Oe(e,h,f),o)}return e.dispose(),c}),u=new rc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var Sj=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[ca(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=ca(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>Jn(r,t,n)!==void 0);if(s){let r=Jn(s,t,n);return[ca(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[ca(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[ca(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[ca(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new bj(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Se(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=kj(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=wj(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=vj(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=Ij(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Se(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function n7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=tm(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var Cj=(e,t,n,s=En)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[s.conv1d(I("x",e,t,n),I("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=tm(e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv2d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=n7(e,t,n);return[s.fused.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=n7(e,t,n);return[s.fused.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),o=tm(e,t,n);return[s.conv2dTranspose(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=tm(e,t,n),o=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv3d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(I("x",e,t,n),I("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tj=(e,t,n,s=En)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),o=I("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),o=I("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),o=I("onValue",e,t,n),i=I("offValue",e,t,n);return[s.oneHot(r,a,o,i)]}case"Ones":return[s.ones(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[s.onesLike(I("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(I("shape",e,t,n),I("dtype",e,t,n),I("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("step",e,t,n);return[s.range(r,a,o,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),o=I("stdDev",e,t,n),i=I("seed",e,t,n);return[s.truncatedNormal(r,a,o,I("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function p3(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var Nj=async(e,t,n,s,r=En)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=p3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=p3(e,t,n),c=I("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=p3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(I("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ej=(e,t,n,s=En)=>{switch(e.op){case"LowerBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),o=I("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=I("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rj=(e,t,n,s=En)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[Jn(e.name,t,n)||r];case"Placeholder":return[Jn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[ca(c)]}case"IdentityN":return I("x",e,t,n).map(c=>ca(c));case"Snapshot":let a=I("x",e,t,n);return[ca(a)];case"Shape":return[s.tensor1d(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(I("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(I("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=I("x",e,t,n),i=I("data",e,t,n),l=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,u));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},_j=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,bn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),J(()=>{let s=es(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];bn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return J(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return on(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Dj=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new _j(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$j=(e,t,n,s=En)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),o=I("boxInd",e,t,n),i=I("cropSize",e,t,n),l=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=I("images",e,t,n),a=I("transforms",e,t,n),o=I("outputShape",e,t,n),i=I("fillValue",e,t,n),l=I("interpolation",e,t,n),u=I("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pj=(e,t,n,s=En)=>{switch(e.op){case"Equal":return[s.equal(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[s.notEqual(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[s.greater(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(I("a",e,t,n),I("b",e,t,n))];case"Less":return[s.less(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[s.lessEqual(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[s.logicalNot(I("a",e,t,n))];case"LogicalOr":return[s.logicalOr(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[s.where(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Fj=(e,t,n,s=En)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[s.einsum(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[s.transpose(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=I("args",e,t,n);return[s.fused.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Oj=(e,t,n,s=En)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[s.softmax(I("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(I("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mj=(e,t,n,s=En)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.max(I("x",e,t,n),i,l)]}case"Mean":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.mean(I("x",e,t,n),i,l)]}case"Min":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.min(I("x",e,t,n),i,l)]}case"Sum":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.sum(I("x",e,t,n),i,l)]}case"All":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.all(I("x",e,t,n),i,l)]}case"Any":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.any(I("x",e,t,n),i,l)]}case"ArgMax":{let i=I("axis",e,t,n);return[s.argMax(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[s.argMin(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.prod(I("x",e,t,n),i,l)]}case"Cumprod":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumprod(I("x",e,t,n),i,l,u)]}case"Cumsum":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumsum(I("x",e,t,n),i,l,u)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),o=I("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=I("x",e,t,n),l=I("weights",e,t,n),u=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zj=(e,t,n,s=En)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),o=I("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),o=I("x",e,t,n),i=I("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let o=I("x",e,t,n);return[s.reverse(o,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[s.reverse(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[s.slice(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),o=I("strides",e,t,n),i=I("beginMask",e,t,n),l=I("endMask",e,t,n),u=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[s.stridedSlice(d,r,a,o,i,l,u,c,p)]}case"Pack":return J(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=I("reps",e,t,n);return[s.tile(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),o=I("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),o=I("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),o=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Lj=(e,t,n,s=En)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bj=(e,t,n,s=En)=>{switch(e.op){case"FFT":return[s.fft(I("x",e,t,n))];case"IFFT":return[s.ifft(I("x",e,t,n))];case"RFFT":return[s.rfft(I("x",e,t,n))];case"IRFFT":return[s.irfft(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wj=(e,t,n,s=En)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vj=(e,t,n,s=En)=>{switch(e.op){case"Cast":return[s.cast(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[s.expandDims(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[s.squeeze(I("x",e,t,n),r)]}case"Reshape":return[s.reshape(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[s.spaceToBatchND(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[s.batchToSpaceND(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(I("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function s7(e,t,n,s,r=J){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Aj(o,i,l));case"basic_math":return r(()=>xj(o,i,l));case"control":return Sj(o,i,l);case"convolution":return r(()=>Cj(o,i,l));case"creation":return r(()=>Tj(o,i,l));case"dynamic":return Nj(o,i,l);case"evaluation":return r(()=>Ej(o,i,l));case"image":return r(()=>$j(o,i,l));case"graph":return r(()=>Rj(o,i,l));case"logical":return r(()=>Pj(o,i,l));case"matrices":return r(()=>Fj(o,i,l));case"normalization":return r(()=>Oj(o,i,l));case"reduction":return r(()=>Mj(o,i,l));case"slice_join":return r(()=>zj(o,i,l));case"sparse":return r(()=>Lj(o,i,l));case"spectral":return r(()=>Bj(o,i,l));case"string":return r(()=>Wj(o,i,l));case"transformation":return r(()=>Vj(o,i,l));case"hash_table":return Dj(o,i,l,s);case"custom":let u=Sk(o.op);if(u&&u.customExecutor)return u.customExecutor(new yj(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var r7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function a7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Ss(d)[0]),c=[];s!=null&&(c=s.map(d=>Ss(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((qk(d)||qj(d)||Xj(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function Uj(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Ss(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var Gj=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Hj=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],jj=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function qk(e){return Gj.indexOf(e.op)>=0}function qj(e){return Hj.indexOf(e.op)>=0}function Xj(e){return jj.indexOf(e.op)>=0}var Q3=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Q3(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=a7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return Uj(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Ss(c)[0]]),r=t.map(c=>Ss(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return J(()=>{let c=new r7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Ss(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=s7(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>Jn(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=ZH(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Gr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=Z().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new r7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>Jn(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Ss(x)[0]]),o=n.map(x=>Ss(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=a7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Ss(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!qk(x)&&!Jn(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Gr(c.node.name,n)),s[c.node.name]==null){let d=s7(c.node,s,n,this._resourceManager);p||([p]=Gr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Gr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!Jn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!Jn(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Ss(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Ss(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ss(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Kj=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Zj="?tfjs-format=file",Yj="model.json",$h=class{constructor(e,t={},n=Ts){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new Kj}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Q3(Qv.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=Qv.Instance.transformGraph(e.modelInitializer);this.initializer=new Q3(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof tt?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof tt)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Jj(e,t={},n=Ts){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=eq(e));let s=new $h(e,t,n);return await s.load(),s}function Qj(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new $h(e);return t.load(),t}function eq(e){return e.endsWith("/")||(e=e+"/"),`${e}${Yj}${Zj}`}var tq="3.19.0",Xk={};Ve(Xk,{CSVDataset:()=>sI,Dataset:()=>Qc,FileDataSource:()=>cI,TextLineDataset:()=>nI,URLDataSource:()=>dI,array:()=>Iq,csv:()=>Fq,func:()=>Oq,generator:()=>Mq,microphone:()=>Lq,version_data:()=>Bq,webcam:()=>zq,zip:()=>Sq});var nq=uo(Wm()),sq=uo(Wm());function rq(e,t){return Em(e,t)}function Em(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(ac(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Em(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function aq(e,t=Zk){return Kk(e,t)}function Kk(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(ac(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=Kk(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function Zk(e){return e===null?null:ac(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function Yk(e,t){let n=new Map;Em(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Em(e,t,n)}function ac(e){let t=!1;if(Z().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=Y7();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof tt)&&!(e instanceof Promise)&&!t)}function oq(e){return e==null||iq(e)||Array.isArray(e)||typeof e=="object"&&e instanceof tt||v.isTypedArray(e)}function iq(e){return e===null||typeof e!="object"&&typeof e!="function"}function lq(e){return rq(e,uq)}function uq(e){return e instanceof tt?{value:e.clone(),recurse:!1}:ac(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var Jk=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},vx=class extends Jk{constructor(){super(vx.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};vx.INITIAL_CAPACITY=32;function Qk(e){return new pq(e)}function wx(e){return new hq(e)}function cq(e,t){return new eI(e,t)}function dq(e,t=ja.FAIL){return new wq(e,t)}var wn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new bq(this,e)}filter(e){return new Aq(this,e)}map(e){return new xq(this,e)}mapAsync(e){return new o7(this,e)}serialMapAsync(e){return new o7(this,e).serial()}flatmap(e){return new vq(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new yq(this,e,t)}columnMajorBatch(e,t=!0,n=Zk){return this.rowMajorBatch(e,t).map(r=>aq(r,n))}concatenate(e,t){return new eI(Qk([this,e]),t)}take(e){return e<0||e==null?this:new gq(this,e)}skip(e){return e<0||e==null?this:new mq(this,e)}prefetch(e){return new tI(this,e)}shuffle(e,t){return new kq(this,e,t)}serial(){return new fq(this)}},pq=class extends wn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:lq(e),done:!1}}},hq=class extends wn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},fq=class extends wn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},mq=class extends wn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ne(e.value)}return this.upstream.next()}},gq=class extends wn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},yq=class extends wn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Aq=class extends wn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ne(e.value)}}},xq=class extends wn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Tr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Tr.getTensorsInContainer(n);for(let r of t)Tr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},bq=class extends wn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},o7=class extends wn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Tr.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Tr.getTensorsInContainer(n);for(let r of t)Tr.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},kx=class extends wn{constructor(){super(),this.outputQueue=new vx,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},vq=class extends kx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Tr.getTensorsInContainer(e.value),n=this.transform(e.value),s=Tr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Tr.isTensorInList(r,s)||r.dispose();return!0}},eI=class extends wn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ja;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ja||(ja={}));var wq=class extends wn{constructor(e,t=ja.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof wn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await Yk(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ja.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ja.SHORTEST:return{value:null,done:!0};case ja.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},tI=class extends wn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new Jk(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},kq=class extends tI{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=sq.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Qc=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Is(async()=>(await n.iterator()).columnMajorBatch(e,t,Cq),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Is(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Is(async()=>(await t.iterator()).filter(s=>J(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Is(async()=>(await t.iterator()).map(n=>J(()=>e(n))),this.size)}mapAsync(e){let t=this;return Is(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Is(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Is(async()=>{let s=wx(async()=>({value:await t.iterator(),done:!1}));return cq(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Is(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=nq.alea(t||v.now().toString());return Is(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Is(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Qc.MAX_BUFFER_SIZE=1e4;function Is(e,t=null){return new class extends Qc{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function Iq(e){return Is(async()=>Qk(e),e.length)}function Sq(e){if(!ac(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Is(async()=>{let n=await Yk(e,s=>{if(s instanceof Qc)return{value:s.iterator(),recurse:!1};if(ac(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return dq(n,ja.SHORTEST)},t)}function Cq(e){if(e===null)return null;let t=e[0];return oq(t)?{value:Tq(e),recurse:!1}:{value:null,recurse:!0}}function Tq(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof tt?on(e):ft(e)}var nI=class extends Qc{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},jf='"',np=Symbol("out"),i7=Symbol("field"),qf=Symbol("quote"),h3=Symbol("quoteafterquote"),l7=Symbol("quoteinquote"),sI=class extends Qc{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new nI(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=np;for(let o=0;o<r;o++)switch(a){case np:switch(e.charAt(o)){case jf:s=o+1,a=qf;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=np;break;default:a=i7,s=o;break}break;case i7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=np,s=o+1;break;default:}break;case qf:switch(e.charAt(o)){case jf:a=h3;break;default:}break;case h3:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=np,s=o+1;break;case jf:a=qf;break;default:a=l7;break}break;case l7:switch(e.charAt(o)){case jf:a=qf;break;default:}break;default:}if(a===h3?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},rI=class extends wn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!Z().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new rI(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ft(n,t)}},aI=class extends wn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Ft([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=or([a,r,i,o],[1,4])}else this.cropBox=or([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!Z().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new aI(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=Ys.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return J(()=>{let t=Kt(ge(e,"float32"),0),n;n=Ne.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return U(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},oI=class{},iI=class extends wn{split(e){return new Nq(this,e)}},Nq=class extends iI{constructor(e,t){super(),this.upstream=e,this.impl=new Eq(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Eq=class extends kx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Rq=class extends wn{decodeUTF8(){return new _q(this)}},_q=class extends iI{constructor(e){super(),this.upstream=e,this.impl=new Dq(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Dq=class extends kx{constructor(e){if(super(),this.upstream=e,Z().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Y7();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return Z().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},lI=class extends Rq{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(Z().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function $q(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=Pq(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new lI(o,t)}else throw new Error(a.statusText)}var Pq=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function uI(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var cI=class extends oI{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(uI(this.input)&&Z().get("IS_NODE")){let e=xy();this.input=e.readFileSync(this.input.slice(7))}return new lI(this.input,this.options)}},dI=class extends oI{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return uI(this.url)?new cI(this.url,this.fileOptions).iterator():$q(this.url,this.fileOptions)}};function Fq(e,t={}){return new sI(new dI(e),t)}function Oq(e){let t=wx(e);return Is(async()=>t)}function Mq(e){return Is(async()=>{let t=await e();return wx(()=>t.next())})}async function zq(e,t){return aI.create(e,t)}async function Lq(e){return rI.create(e)}var Bq="3.19.0";function Ce(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var Wq=dr.whereImpl,Ix=class extends cc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Mp(this,sn())}nextDataId(){return Ix.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,Z().get("IS_NODE")&&C.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ce([e],"where");let t=this.readSync(e.dataId);return Wq(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Ix.nextDataId=0;var Sx={};Ve(Sx,{addImpl:()=>hI,bincountImpl:()=>Tx,bincountReduceImpl:()=>fI,ceilImpl:()=>mI,concatImpl:()=>Nx,equalImpl:()=>gI,expImpl:()=>AI,expm1Impl:()=>bI,floorImpl:()=>vI,gatherNdImpl:()=>wI,gatherV2Impl:()=>kI,greaterEqualImpl:()=>SI,greaterImpl:()=>II,lessEqualImpl:()=>TI,lessImpl:()=>CI,linSpaceImpl:()=>NI,logImpl:()=>EI,maxImpl:()=>RI,maximumImpl:()=>_I,minimumImpl:()=>DI,multiplyImpl:()=>Ex,negImpl:()=>$I,notEqualImpl:()=>PI,prodImpl:()=>FI,rangeImpl:()=>_x,rsqrtImpl:()=>OI,scatterImpl:()=>Bu,sigmoidImpl:()=>EX,simpleAbsImpl:()=>pI,sliceImpl:()=>_m,sparseFillEmptyRowsImpl:()=>zI,sparseReshapeImpl:()=>LI,sparseSegmentReductionImpl:()=>Dx,sqrtImpl:()=>DX,squaredDifferenceImpl:()=>BI,stridedSliceImpl:()=>WI,stringNGramsImpl:()=>$x,stringSplitImpl:()=>Px,stringToHashBucketFastImpl:()=>Fx,subImpl:()=>VI,tileImpl:()=>UI,topKImpl:()=>HI,transposeImpl:()=>Rx,uniqueImpl:()=>jI});function pI(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var Vq=e=>{let{x:t}=e.inputs,n=e.backend;Ce(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=pI(r),n.makeOutput(s,t.shape,t.dtype)},Uq={kernelName:il,backendName:"cpu",kernelFunc:Vq};function un(e){return(t,n,s,r,a)=>{let o=C.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=C.getBroadcastDims(t,o),g=C.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(S=>A[S]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(S=>w[S]=0);let k=v.locToIndex(w,d,f);c[y]=e(s[b],r[k])}return[c,o]}}function Cs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var Gq={kernelName:Lp,backendName:"cpu",kernelFunc:Cs};function Rm(e,t,n="float32"){if(n==="complex64"){let r=Rm(e,t,"float32"),a=Rm(e,t,"float32");return Cs({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function Zr(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Hq={kernelName:_o,backendName:"cpu",kernelFunc:Zr};function tl(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var jq={kernelName:qp,backendName:"cpu",kernelFunc:tl};function io(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Zr({inputs:{x:r},backend:n});let o=Rm(n,r.shape,r.dtype),i=io({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Cs({inputs:{real:i,imag:o},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=tl({inputs:{input:r},backend:n}),i=io({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Zr({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32"){let o=n.data.get(r.dataId).values,i=Int32Array.from(o);return n.makeTensorInfo(r.shape,"int32",i)}if(a==="bool"){let o=n.data.get(r.dataId).values,i=v.toTypedArray([0],r.dtype),[l,u]=un((c,p)=>c!==p?1:0)(r.shape,[],o,i,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var qq={kernelName:go,backendName:"cpu",kernelFunc:io};function kn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Ce([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?C.fromUint8ToStringArray(u):u,d=o.dtype==="string"?C.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=io({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=io({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,k,S]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(S,"float32",w),R=l.makeTensorInfo(S,"float32",k),P=Cs({inputs:{real:E,imag:R},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(R),P}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Cx(e){return(t,n,s,r,a,o)=>{let i=C.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,i),f=C.getBroadcastDims(n,i),m=C.mergeRealAndImagArrays(s,r),g=C.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let k=w%m.length,S=w%g.length,E=e(m[k*2],m[k*2+1],g[S*2],g[S*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let k=v.indexToLoc(w,u,c),S=k.slice(-y);h.forEach($=>S[$]=0);let E=v.locToIndex(S,y,x),R=k.slice(-A);f.forEach($=>R[$]=0);let P=v.locToIndex(R,A,b),_=e(m[E*2],m[E*2+1],g[P*2],g[P*2+1]);p[w]=_.real,d[w]=_.imag}return[p,d,i]}}var hI=un((e,t)=>e+t),Xq=Cx((e,t,n,s)=>({real:e+n,imag:t+s})),oc=kn(xa,hI,Xq),Kq={kernelName:xa,backendName:"cpu",kernelFunc:oc};function Tx(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function fI(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=Le([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function di(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function bt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ce(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function ed(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Ce(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var mI=di(e=>Math.ceil(e)),Zq=ed(yo,mI),Yq={kernelName:yo,backendName:"cpu",kernelFunc:Zq};function Nx(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?C.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var gI=un((e,t)=>e===t?1:0),yI=kn(hl,gI,null,"bool"),Jq={kernelName:hl,backendName:"cpu",kernelFunc:yI},AI=di(e=>Math.exp(e)),xI=ed(Co,AI,"float32"),Qq={kernelName:Co,backendName:"cpu",kernelFunc:xI},bI=di(e=>Math.expm1(e)),eX=ed(ml,bI),tX={kernelName:ml,backendName:"cpu",kernelFunc:eX},vI=di(e=>Math.floor(e)),nX=ed(To,vI),sX={kernelName:To,backendName:"cpu",kernelFunc:nX};function wI(e,t,n,s,r,a,o,i,l){let u=Le([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function kI(e,t,n){let s=Le(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var II=un((e,t)=>e>t?1:0),rX=kn(xl,II,null,"bool"),aX={kernelName:xl,backendName:"cpu",kernelFunc:rX},SI=un((e,t)=>e>=t?1:0),oX=kn(Ro,SI,null,"bool"),iX={kernelName:Ro,backendName:"cpu",kernelFunc:oX},CI=un((e,t)=>e<t?1:0),lX=kn(bl,CI,null,"bool"),uX={kernelName:bl,backendName:"cpu",kernelFunc:lX},TI=un((e,t)=>e<=t?1:0),cX=kn(vl,TI,null,"bool"),dX={kernelName:vl,backendName:"cpu",kernelFunc:cX};function NI(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var EI=di(e=>Math.log(e)),pX=ed($o,EI),hX={kernelName:$o,backendName:"cpu",kernelFunc:pX};function RI(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var _I=un((e,t)=>Math.max(e,t)),fX=kn(Fo,_I),mX={kernelName:Fo,backendName:"cpu",kernelFunc:fX},DI=un((e,t)=>Math.min(e,t)),gX=kn(Lo,DI),yX={kernelName:Lo,backendName:"cpu",kernelFunc:gX},Ex=un((e,t)=>e*t),AX=Cx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),A2=kn(Wo,Ex,AX),xX={kernelName:Wo,backendName:"cpu",kernelFunc:A2};function $I(e,t,n){let s=v.createScalarValue(-1,n);return Ex([],t,s,e,n)}function bX(e){let{inputs:t,backend:n}=e,{x:s}=t;Ce(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=$I(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var vX={kernelName:Il,backendName:"cpu",kernelFunc:bX},PI=un((e,t)=>e!==t?1:0),wX=kn(Sl,PI,null,"bool"),kX={kernelName:Sl,backendName:"cpu",kernelFunc:wX};function Rx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function gs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Ce(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=Rx(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var IX={kernelName:Hr,backendName:"cpu",kernelFunc:gs};function FI(e,t,n,s){let[r,a]=C.computeOutAndReduceShapes(e,s),o=On(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function SX(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=C.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=gs({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=C.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=FI(p.shape,p.dtype,h,c),y=m;return o&&(y=C.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var CX={kernelName:Ho,backendName:"cpu",kernelFunc:SX};function _x(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var OI=di(e=>1/Math.sqrt(e)),TX=ed(Zo,OI),NX={kernelName:Zo,backendName:"cpu",kernelFunc:TX};function Bu(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return Le(n,t.dtype);let h=Le(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var EX=di(e=>1/(1+Math.exp(-e))),MI=bt(Jo,e=>1/(1+Math.exp(-e))),RX={kernelName:Jo,backendName:"cpu",kernelFunc:MI};function _m(e,t,n,s,r){let a=Ut.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Ut.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?C.fromUint8ToStringArray(e):e,u=Le(s,r,l),c=Le(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?C.fromStringArrayToUint8(c.values):c.values}function nl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Ce(r,"slice");let[i,l]=Ut.parseSliceParams(r,a,o);Ut.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=_m(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var _X={kernelName:Ol,backendName:"cpu",kernelFunc:nl};function zI(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(C.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],k=A[w],S=(w===0?0:f[w-1])+k;A[w]++;for(let E=0;E<p;++E)y[S*p+E]=e[b*p+E];x[S]=s[b],c[b]=S}for(let b=0;b<l;++b)if(A[b]===0){let k=b===0?0:f[b-1];y[k*p+0]=b;for(let S=1;S<p;++S)y[k*p+S]=0;x[k]=o}return[y,[g,p],x,u,c]}}function LI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(C.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(C.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(C.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function Dx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let k=0;k<u;k++)f[x*u+k]+=e[w*u+k]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var DX=di(e=>Math.sqrt(e)),$X=bt(Qo,e=>Math.sqrt(e)),PX={kernelName:Qo,backendName:"cpu",kernelFunc:$X},BI=un((e,t)=>{let n=e-t;return n*n}),FX=kn(ni,BI),OX={kernelName:ni,backendName:"cpu",kernelFunc:FX};function WI(e,t,n,s){let r=Le(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var MX=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function $x(e,t,n,s,r,a,o,i){return new MX(n,s,r,a,o,i).compute(e,t)}function zX(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Px(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;zX(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function Fx(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var VI=un((e,t)=>e-t),LX=Cx((e,t,n,s)=>({real:e-n,imag:t-s})),Ox=kn(si,VI,LX),BX={kernelName:si,backendName:"cpu",kernelFunc:Ox};function UI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=Le(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var ip=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function GI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));GI(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),ip(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;ip(e[a],r)<0;)a=a+1;for(;ip(e[o],r)>0;)o=o-1}ip(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function HI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(GI(f,s),f=f.slice(0,s)),r&&f.sort(ip);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[Le(c,n,l),Le(c,"int32",u)]}function jI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new fn(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new fn(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}ql("cpu",()=>new Ix,1);var qI=bt(So,e=>e>=0?e:Math.exp(e)-1),WX={kernelName:So,backendName:"cpu",kernelFunc:qI};function XI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Ce([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var VX={kernelName:Do,backendName:"cpu",kernelFunc:XI},UX=un((e,t)=>e<0?t*e:e);function KI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Ce([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=UX(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var GX={kernelName:Go,backendName:"cpu",kernelFunc:KI},ZI=bt(jo,e=>Math.max(0,e)),HX={kernelName:jo,backendName:"cpu",kernelFunc:ZI},YI=bt(Ko,e=>Math.min(Math.max(0,e),6)),jX={kernelName:Ko,backendName:"cpu",kernelFunc:YI};function Dm(e,t,n,s,r){if(n==="linear")return Zr({inputs:{x:t},backend:e});if(n==="relu")return ZI({inputs:{x:t},backend:e});if(n==="elu")return qI({inputs:{x:t},backend:e});if(n==="relu6")return YI({inputs:{x:t},backend:e});if(n==="prelu")return KI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return XI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return MI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Rt(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var qX={kernelName:_l,backendName:"cpu",kernelFunc:Rt};function JI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Ce([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=Xl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=Rt({inputs:{x:r},backend:n,attrs:{shape:b}}),S=Rt({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?k.shape[1]:k.shape[2],R=o?k.shape[2]:k.shape[1],P=i?S.shape[1]:S.shape[2],_=Math.max(g,y),$=n.data.get(k.dataId).values,T=n.data.get(S.dataId).values,F=v.computeStrides(k.shape),G=v.computeStrides(S.shape),[q,z,K]=o?[F[0],1,F[1]]:[F[0],F[1],1],[B,ee,Q]=i?[1,G[1],G[0]]:[G[1],1,G[0]],oe=R*P,Y=Le([_,R,P],k.dtype),ae=Y.values,le=n.blockSize;for(let ye=0;ye<_;ye++)for(let we=0;we<R;we+=le)for(let Re=0;Re<P;Re+=le)for(let _e=0;_e<E;_e+=le){let Be=Math.min(we+le,R),Ge=Math.min(Re+le,P),ot=Math.min(_e+le,E);for(let dt=we;dt<Be;dt++)for(let pt=Re;pt<Ge;pt++){let At=0;for(let $e=_e;$e<ot;$e++){let Tt=Math.min(ye,g-1)*q,It=Math.min(ye,y-1)*Q,Un=$[Tt+dt*z+$e*K],Qt=T[$e*B+pt*ee+It];At+=Un*Qt}ae[ye*oe+(dt*P+pt)]+=At}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(S),n.makeTensorInfo(A,Y.dtype,Y.values)}var XX={kernelName:mo,backendName:"cpu",kernelFunc:JI};function KX(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=JI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=oc({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=Dm(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var ZX={kernelName:Ja,backendName:"cpu",kernelFunc:KX},YX=bt(pc,e=>Math.acos(e)),JX={kernelName:pc,backendName:"cpu",kernelFunc:YX},QX=bt(hc,e=>Math.acosh(e)),eK={kernelName:hc,backendName:"cpu",kernelFunc:QX};function tK(e){let{inputs:t,backend:n}=e,s=t;Ce(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=Le(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var nK={kernelName:po,backendName:"cpu",kernelFunc:tK};function sK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=gs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var rK={kernelName:fc,backendName:"cpu",kernelFunc:sK};function aK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=gs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var oK={kernelName:mc,backendName:"cpu",kernelFunc:aK};function iK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ce(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=gs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var lK={kernelName:ho,backendName:"cpu",kernelFunc:iK};function uK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Ce(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=gs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],C.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=C.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var cK={kernelName:gc,backendName:"cpu",kernelFunc:uK},dK=bt(yc,e=>Math.asin(e)),pK={kernelName:yc,backendName:"cpu",kernelFunc:dK},hK=bt(Ac,e=>Math.asinh(e)),fK={kernelName:Ac,backendName:"cpu",kernelFunc:hK},mK=bt(xc,e=>Math.atan(e)),gK={kernelName:xc,backendName:"cpu",kernelFunc:mK},yK=un((e,t)=>Math.atan2(e,t)),AK=kn(vc,yK),xK={kernelName:vc,backendName:"cpu",kernelFunc:AK},bK=bt(bc,e=>Math.atanh(e)),vK={kernelName:bc,backendName:"cpu",kernelFunc:bK};function Mx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Le(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,k=b*s[0];for(let S=0;S<r.inChannels;++S)for(let E=0;E<r.outHeight;++E){let R=E*o-d,P=Math.max(0,R),_=Math.min(r.inHeight,c+R),$=w+E*x;for(let T=0;T<r.outWidth;++T){let F=T*i-h,G=Math.max(0,F),q=Math.min(r.inWidth,p+F),z=f,K=0,B=0;for(let Q=P;Q<_;Q+=l){let oe=k+Q*s[1];for(let Y=G;Y<q;Y+=u){let ae=oe+Y*s[2],le=e[ae+S];a==="max"&&le>z?z=le:a==="avg"&&(K+=le,B++)}if(isNaN(z))break}let ee=$+T*A+S;g[ee]=a==="avg"?K/B:z}}}return m}function QI(e,t,n,s,r=!1,a=!1){let o=Le(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=Le(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let k=0;k<s.outWidth;++k){let S=k*l-f,E=S;for(;E<0;)E+=c;let R=Math.min(s.inWidth,d+S),P=Number.NEGATIVE_INFINITY,_=-1;for(let $=b;$<w;$+=u){let T=$-A;for(let F=E;F<R;F+=c){let G=F-S,q=m.get(g,$,F,y);q>P&&(P=q,r?_=a?((g*s.inHeight+$)*s.inWidth+F)*s.inChannels+y:($*s.inWidth+F)*s.inChannels+y:_=T*d+G)}}o.set(_,g,x,k,y)}}return o}function eS(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=Le(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],S=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let R=0;R<r.batchSize;++R){let P=R*w,_=R*s[0];for(let $=0;$<r.inChannels;++$)for(let T=0;T<r.outDepth;++T){let F=T*o-m,G=F;for(;G<0;)G+=u;let q=Math.min(r.inDepth,d+F),z=P+T*k;for(let K=0;K<r.outHeight;++K){let B=K*i-g,ee=B;for(;ee<0;)ee+=c;let Q=Math.min(r.inHeight,h+B),oe=z+K*S;for(let Y=0;Y<r.outWidth;++Y){let ae=Y*l-y,le=ae;for(;le<0;)le+=p;let ye=Math.min(r.inWidth,f+ae),we=oe+Y*E,Re=x,_e=0,Be=0;for(let ot=G;ot<q;ot+=u){let dt=_+ot*s[1];for(let pt=ee;pt<Q;pt+=c){let At=dt+pt*s[2];for(let $e=le;$e<ye;$e+=p){let Tt=At+$e*s[3],It=e[Tt+$];if(a==="max"&&It>Re?Re=It:a==="avg"&&(_e+=It,Be++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Ge=we+$;b[Ge]=a==="avg"?_e/Be:Re}}}}return A}function wK(e,t){let n=Le(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,S=k;for(;S<0;)S+=i;let E=Math.min(t.inHeight,c+k);for(let R=0;R<t.outWidth;++R){let P=R*a-f,_=P;for(;_<0;)_+=l;let $=Math.min(t.inWidth,p+P),T=Number.NEGATIVE_INFINITY,F=-1;for(let G=A;G<b;G+=o){let q=G-x;for(let z=S;z<E;z+=i){let K=z-k;for(let B=_;B<$;B+=l){let ee=B-P,Q=e.get(m,G,z,B,g);Q>=T&&(T=Q,F=q*c*p+K*c+ee)}}}n.set(F,m,y,w,R,g)}}}return n}function kK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ce(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Mx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var IK={kernelName:fo,backendName:"cpu",kernelFunc:kK};function SK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ce(r,"avgPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=eS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var CK={kernelName:zp,backendName:"cpu",kernelFunc:SK};function TK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ce([r,a],"avgPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,k=c.effectiveFilterWidth,S=b-1-c.padInfo.front,E=k-1-c.padInfo.left,R=w-1-c.padInfo.top,P=Le(a.shape,"float32"),_=1/(f*m*g),$=n.bufferSync(r);for(let T=0;T<c.batchSize;++T)for(let F=0;F<c.inChannels;++F)for(let G=0;G<c.inDepth;++G)for(let q=0;q<c.inHeight;++q)for(let z=0;z<c.inWidth;++z){let K=G-S,B=q-R,ee=z-E,Q=0;for(let oe=0;oe<b;oe+=y){let Y=(K+oe)/p;if(!(Y<0||Y>=c.outDepth||Math.floor(Y)!==Y))for(let ae=0;ae<w;ae+=x){let le=(B+ae)/d;if(!(le<0||le>=c.outHeight||Math.floor(le)!==le))for(let ye=0;ye<k;ye+=A){let we=(ee+ye)/h;if(we<0||we>=c.outWidth||Math.floor(we)!==we)continue;Q+=$.get(T,Y,le,we,F)}}}P.set(Q*_,T,G,q,z,F)}return n.makeTensorInfo(P.shape,P.dtype,P.values)}var NK={kernelName:Hm,backendName:"cpu",kernelFunc:TK};function EK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Ce([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=Le(o.shape,"float32"),k=1/(h*f),S=n.data.get(r.dataId).values,E=Le(r.shape,"float32",S);for(let R=0;R<c.batchSize;++R)for(let P=0;P<c.inChannels;++P)for(let _=0;_<c.inHeight;++_)for(let $=0;$<c.inWidth;++$){let T=_-b,F=$-A,G=0;for(let q=0;q<y;q+=m){let z=(T+q)/p;if(!(z<0||z>=c.outHeight||Math.floor(z)!==z))for(let K=0;K<x;K+=g){let B=(F+K)/d;if(B<0||B>=c.outWidth||Math.floor(B)!==B)continue;G+=E.get(R,z,B,P)}}w.set(G*k,R,_,$,P)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var RK={kernelName:Gm,backendName:"cpu",kernelFunc:EK};function _K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ce([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,k=0,S=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[k++]/Math.sqrt(d[S++]+u),b>=g&&(b=0),w>=A&&(w=0),k>=y&&(k=0),S>=x&&(S=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var DK={kernelName:Eo,backendName:"cpu",kernelFunc:_K};function $K(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Ce([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=Rt({inputs:{x:r},backend:n,attrs:{shape:l}}),f=gs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=nl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var PK={kernelName:ll,backendName:"cpu",kernelFunc:$K};function FK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Tx(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var OK={kernelName:jm,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var zK={kernelName:qm,backendName:"cpu",kernelFunc:MK},LK=bt(ba,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),BK={kernelName:ba,backendName:"cpu",kernelFunc:LK},WK=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},VK={kernelName:Bp,backendName:"cpu",kernelFunc:WK};function ic(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var UK={kernelName:Gp,backendName:"cpu",kernelFunc:ic};function lc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return Zr({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(C.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>tl({inputs:{input:b},backend:n})),g=i.map(b=>ic({inputs:{input:b},backend:n})),y=lc({inputs:m,backend:n,attrs:{axis:a}}),x=lc({inputs:g,backend:n,attrs:{axis:a}}),A=Cs({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Rt({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=C.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Nx(c,o,t[0].dtype,p),h=C.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var GK={kernelName:ul,backendName:"cpu",kernelFunc:lc};function tS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Ce([r,a],"conv2d");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new fn(d.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),S=w[0],E=A?w[1]:w[2],R=A?w[2]:1,P=A?1:w[1],_=b.strides[0],$=A?b.strides[1]:b.strides[2],T=A?b.strides[2]:1,F=A?1:b.strides[1],G=n.data.get(r.dataId).values,q=n.data.get(a.dataId).values,z=b.values;for(let K=0;K<d.batchSize;++K){let B=K*S,ee=K*_;for(let Q=0;Q<d.outHeight;++Q){let oe=ee+Q*$,Y=Q*d.strideHeight-x;for(let ae=0;ae<h;++ae){let le=Y+ae*m;if(le<0||le>=d.inHeight)continue;let ye=ae*k[0],we=B+le*E;for(let Re=0;Re<d.outWidth;++Re){let _e=oe+Re*T,Be=Re*d.strideWidth-y;for(let Ge=0;Ge<f;++Ge){let ot=Be+Ge*g;if(ot<0||ot>=d.inWidth)continue;let dt=ye+Ge*k[1],pt=we+ot*R,At=dt;for(let $e=0;$e<d.inChannels;++$e){let Tt=G[pt+$e*P];for(let It=0;It<d.outChannels;++It)z[_e+It*F]+=Tt*q[At+It];At+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,z)}var HK={kernelName:Ao,backendName:"cpu",kernelFunc:tS};function jK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Ce([r,a],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new fn(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=new fn(r.shape,r.dtype,w),E=new fn(a.shape,a.dtype,k);for(let R=0;R<m;++R){let P=Math.max(0,Math.ceil((b-R)/h)),_=Math.min(d.outHeight,(d.inHeight+b-R)/h);for(let $=0;$<g;++$){let T=Math.max(0,Math.ceil((A-$)/f)),F=Math.min(d.outWidth,(d.inWidth+A-$)/f);for(let G=0;G<d.inChannels;++G)for(let q=0;q<d.outChannels;++q){let z=0;for(let K=0;K<d.batchSize;++K)for(let B=P;B<_;++B){let ee=R+B*h-b;for(let Q=T;Q<F;++Q){let oe=$+Q*f-A;y?z+=S.get(K,ee,oe,G)*E.get(K,B,Q,q):z+=S.get(K,G,ee,oe)*E.get(K,q,B,Q)}}x.set(z,R,$,G,q)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var qK={kernelName:Xm,backendName:"cpu",kernelFunc:jK};function XK(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Ce([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=C.convertConv2DDataFormat(u),f=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new fn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:k,filterHeight:S,filterWidth:E,inChannels:R,inHeight:P,inWidth:_,outChannels:$,outHeight:T,outWidth:F,strideHeight:G,strideWidth:q}=f;h=f.dataFormat;let z=S-1-f.padInfo.top,K=E-1-f.padInfo.left,B=h==="channelsLast",ee=m.strides[0],Q=B?m.strides[1]:m.strides[2],oe=B?m.strides[2]:1,Y=B?1:m.strides[1],ae=d[0],le=B?d[1]:d[2],ye=B?d[2]:1,we=B?1:d[1];for(let Re=0;Re<k;++Re)for(let _e=0;_e<R;++_e)for(let Be=0;Be<P;++Be){let Ge=Be-z,ot=Math.max(0,Math.ceil(Ge/G)),dt=Math.min(T,(S+Ge)/G);for(let pt=0;pt<_;++pt){let At=pt-K,$e=Math.max(0,Math.ceil(At/q)),Tt=Math.min(F,(E+At)/q),It=0;for(let Qt=ot;Qt<dt;++Qt){let bs=Qt*G-Ge;for(let pn=$e;pn<Tt;++pn){let Gn=pn*q-At,vs=ae*Re+le*Qt+ye*pn,ws=A*(S-1-bs)+b*(E-1-Gn)+w*_e;for(let $n=0;$n<$;++$n){let Vs=y[vs+we*$n],Hn=x[ws+$n];It+=Vs*Hn}}}let Un=ee*Re+Q*Be+oe*pt+Y*_e;g[Un]=It}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var KK={kernelName:xo,backendName:"cpu",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Ce([r,a],"conv3d");let u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new fn(u.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,S=b.values,E=v.computeStrides(r.shape),R=v.computeStrides(a.shape);for(let P=0;P<u.batchSize;++P){let _=P*E[0],$=P*b.strides[0];for(let T=0;T<u.outDepth;++T){let F=$+T*b.strides[1],G=T*u.strideDepth-y;for(let q=0;q<c;++q){let z=G+q*h;if(z<0||z>=u.inDepth)continue;let K=q*R[0],B=_+z*E[1];for(let ee=0;ee<u.outHeight;++ee){let Q=F+ee*b.strides[2],oe=ee*u.strideHeight-A;for(let Y=0;Y<p;++Y){let ae=oe+Y*f;if(ae<0||ae>=u.inHeight)continue;let le=K+Y*R[1],ye=B+ae*E[2];for(let we=0;we<u.outWidth;++we){let Re=Q+we*u.outChannels,_e=we*u.strideWidth-x;for(let Be=0;Be<d;++Be){let Ge=_e+Be*m;if(Ge<0||Ge>=u.inWidth)continue;let ot=le+Be*R[2],dt=ye+Ge*u.inChannels,pt=ot;for(let At=0;At<u.inChannels;++At){let $e=w[dt+At];for(let Tt=0;Tt<u.outChannels;++Tt)S[Re+Tt]+=$e*k[pt+Tt];pt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var YK={kernelName:Wp,backendName:"cpu",kernelFunc:ZK};function JK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Ce([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new fn(p.filterShape,"float32"),A=x.values,[b,w,k,S]=x.strides,E=n.data.get(a.dataId).values,[R,P,_,$]=c,T=n.data.get(r.dataId).values,[F,G,q,z]=u,K=p.padInfo.front,B=p.padInfo.left,ee=p.padInfo.top;for(let Q=0;Q<m;++Q){let oe=Math.max(0,Math.ceil((K-Q)/d)),Y=Math.min(p.outDepth,(p.inDepth+K-Q)/d),ae=Q*b;for(let le=0;le<g;++le){let ye=Math.max(0,Math.ceil((ee-le)/h)),we=Math.min(p.outHeight,(p.inHeight+ee-le)/h),Re=le*w+ae;for(let _e=0;_e<y;++_e){let Be=Math.max(0,Math.ceil((B-_e)/f)),Ge=Math.min(p.outWidth,(p.inWidth+B-_e)/f),ot=_e*k+Re;for(let dt=0;dt<p.inChannels;++dt){let pt=dt*S+ot;for(let At=0;At<p.outChannels;++At){let $e=0;for(let Tt=0;Tt<p.batchSize;++Tt){let It=Tt*F,Un=Tt*R;for(let Qt=oe;Qt<Y;++Qt){let pn=(Q+Qt*d-K)*G+It,Gn=Qt*P+Un;for(let vs=ye;vs<we;++vs){let $n=(le+vs*h-ee)*q+pn,Vs=vs*_+Gn;for(let Hn=Be;Hn<Ge;++Hn){let aa=(_e+Hn*f-B)*z+$n,xu=Hn*$+Vs;$e+=T[aa+dt]*E[xu+At]}}}}A[pt+At]=$e}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var QK={kernelName:Km,backendName:"cpu",kernelFunc:JK};function eZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Ce([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=C.computeConv3DInfo(l,a.shape,i,1,o),d=new fn(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,k]=u,S=n.data.get(a.dataId).values,[E,R,P,_]=c,{batchSize:$,filterDepth:T,filterHeight:F,filterWidth:G,inChannels:q,inDepth:z,inHeight:K,inWidth:B,outChannels:ee,outDepth:Q,outHeight:oe,outWidth:Y,strideDepth:ae,strideHeight:le,strideWidth:ye}=p,we=T-1-p.padInfo.front,Re=F-1-p.padInfo.top,_e=G-1-p.padInfo.left;for(let Be=0;Be<$;++Be)for(let Ge=0;Ge<q;++Ge)for(let ot=0;ot<z;++ot){let dt=ot-we,pt=Math.max(0,Math.ceil(dt/ae)),At=Math.min(Q,(T+dt)/ae);for(let $e=0;$e<K;++$e){let Tt=$e-Re,It=Math.max(0,Math.ceil(Tt/le)),Un=Math.min(oe,(F+Tt)/le);for(let Qt=0;Qt<B;++Qt){let bs=Qt-_e,pn=Math.max(0,Math.ceil(bs/ye)),Gn=Math.min(Y,(G+bs)/ye),vs=0;for(let ws=pt;ws<At;++ws){let $n=ws*ae-dt;for(let Vs=It;Vs<Un;++Vs){let Hn=Vs*le-Tt;for(let ra=pn;ra<Gn;++ra){let aa=ra*ye-bs,xu=A*Be+b*ws+w*Vs+k*ra,Oa=E*(T-1-$n)+R*(F-1-Hn)+P*(G-1-aa)+_*Ge;for(let oa=0;oa<ee;++oa){let Md=x[xu+oa],bu=S[Oa+oa];vs+=Md*bu}}}}h[f*Be+m*ot+g*$e+y*Qt+Ge]=vs}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var tZ={kernelName:Zm,backendName:"cpu",kernelFunc:eZ},nZ=bt(bo,e=>Math.cos(e)),sZ={kernelName:bo,backendName:"cpu",kernelFunc:nZ},rZ=bt(vo,e=>Math.cosh(e)),aZ={kernelName:vo,backendName:"cpu",kernelFunc:rZ};function oZ(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=Le([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(y.shape);for(let S=0;S<f;S++){let E=S*4,R=x[E],P=x[E+1],_=x[E+2],$=x[E+3],T=A[S];if(T>=c)continue;let F=m>1?(_-R)*(p-1)/(m-1):0,G=g>1?($-P)*(d-1)/(g-1):0;for(let q=0;q<m;q++){let z=m>1?R*(p-1)+q*F:.5*(R+_)*(p-1);if(z<0||z>p-1){for(let K=0;K<g;K++)for(let B=0;B<h;B++){let ee=B+K*k[2]+q*k[1]+S*k[0];y.values[ee]=u}continue}if(l==="bilinear"){let K=Math.floor(z),B=Math.ceil(z),ee=z-K;for(let Q=0;Q<g;Q++){let oe=g>1?P*(d-1)+Q*G:.5*(P+$)*(d-1);if(oe<0||oe>d-1){for(let ye=0;ye<h;ye++){let we=ye+Q*k[2]+q*k[1]+S*k[0];y.values[we]=u}continue}let Y=Math.floor(oe),ae=Math.ceil(oe),le=oe-Y;for(let ye=0;ye<h;ye++){let we=ye+Y*w[2]+K*w[1]+T*w[0],Re=b[we];we=ye+ae*w[2]+K*w[1]+T*w[0];let _e=b[we];we=ye+Y*w[2]+B*w[1]+T*w[0];let Be=b[we];we=ye+ae*w[2]+B*w[1]+T*w[0];let Ge=b[we],ot=Re+(_e-Re)*le,dt=Be+(Ge-Be)*le;we=ye+Q*k[2]+q*k[1]+S*k[0],y.values[we]=ot+(dt-ot)*ee}}}else for(let K=0;K<g;++K){let B=g>1?P*(d-1)+K*G:.5*(P+$)*(d-1);if(B<0||B>d-1){for(let oe=0;oe<h;oe++){let Y=oe+K*k[2]+q*k[1]+S*k[0];y.values[Y]=u}continue}let ee=Math.round(B),Q=Math.round(z);for(let oe=0;oe<h;oe++){let Y=oe+ee*w[2]+Q*w[1]+T*w[0],ae=oe+K*k[2]+q*k[1]+S*k[0];y.values[ae]=b[Y]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var iZ={kernelName:dl,backendName:"cpu",kernelFunc:oZ};function lZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ce(r,"cumprod");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=gs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=On(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=gs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var uZ={kernelName:cl,backendName:"cpu",kernelFunc:lZ};function cZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Ce(r,"cumsum");let l=C.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=gs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=C.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=On(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=C.getUndoAxesPermutation(l),x=gs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var dZ={kernelName:wo,backendName:"cpu",kernelFunc:cZ};function pZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Tx(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=fI(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var hZ={kernelName:Ym,backendName:"cpu",kernelFunc:pZ};function fZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let k=Math.floor(w/a),S=w%a,E=(b*a+S)*h;for(let R=0;R<h;++R){let _=R+E+c*(k+u*(A+l*y));m[g++]=f[_]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var mZ={kernelName:pl,backendName:"cpu",kernelFunc:fZ};function nS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Ce([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new fn(h.outShape,r.dtype),S=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,R=k.values;for(let P=0;P<h.batchSize;++P){let _=P*c[0],$=P*k.strides[0];for(let T=0;T<h.outHeight;++T){let F=$+T*k.strides[1],G=T*h.strideHeight-b;for(let q=0;q<f;++q){let z=G+q*g;if(z<0||z>=h.inHeight)continue;let K=q*p[0],B=_+z*c[1];for(let ee=0;ee<h.outWidth;++ee){let Q=F+ee*k.strides[2],oe=ee*h.strideWidth-A;for(let Y=0;Y<m;++Y){let ae=oe+Y*y;if(ae<0||ae>=h.inWidth)continue;let le=K+Y*p[1],ye=B+ae*h.inChannels,we=Q,Re=le;for(let _e=0;_e<h.inChannels;++_e){let Be=S[ye+_e];for(let Ge=0;Ge<w;++Ge)R[we+Ge]+=Be*E[Re+Ge];we+=w,Re+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var gZ={kernelName:ko,backendName:"cpu",kernelFunc:nS};function yZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Ce([r,a],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new fn(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new fn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,S=new fn(a.shape,a.dtype,k);for(let E=0;E<f;++E){let R=Math.max(0,Math.ceil((x-E)/d)),P=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((y-_)/h)),T=Math.min(p.outWidth,(p.inWidth+y-_)/h);for(let F=0;F<p.outChannels;++F){let G=Math.trunc(F/A),q=F%A,z=0;for(let K=0;K<p.batchSize;++K)for(let B=R;B<P;++B){let ee=E+B*d-x;for(let Q=$;Q<T;++Q){let oe=_+Q*h-y;z+=w.get(K,ee,oe,G)*S.get(K,B,Q,F)}}g.set(z,E,_,G,q)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var AZ={kernelName:Jm,backendName:"cpu",kernelFunc:yZ};function xZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Ce([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new fn(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,k]=p,S=n.data.get(a.dataId).values,[E,R,P]=d,{batchSize:_,filterHeight:$,filterWidth:T,inChannels:F,inHeight:G,inWidth:q,outChannels:z,outHeight:K,outWidth:B,strideHeight:ee,strideWidth:Q}=h,oe=$-1-h.padInfo.top,Y=T-1-h.padInfo.left,ae=z/F;for(let le=0;le<_;++le)for(let ye=0;ye<F;++ye)for(let we=0;we<G;++we){let Re=we-oe,_e=Math.max(0,Math.ceil(Re/ee)),Be=Math.min(K,($+Re)/ee);for(let Ge=0;Ge<q;++Ge){let ot=Ge-Y,dt=Math.max(0,Math.ceil(ot/Q)),pt=Math.min(B,(T+ot)/Q),At=0;for(let $e=_e;$e<Be;++$e){let Tt=$e*ee-Re;for(let It=dt;It<pt;++It){let Un=It*Q-ot,Qt=b*le+w*$e+k*It,bs=E*($-1-Tt)+R*(T-1-Un)+P*ye;for(let pn=0;pn<ae;++pn){let Gn=ye*ae+pn,vs=A[Qt+Gn],ws=S[bs+pn];At+=vs*ws}}}m[g*le+y*we+x*Ge+ye]=At}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var bZ={kernelName:Qm,backendName:"cpu",kernelFunc:xZ};function vZ(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=Le([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var wZ={kernelName:e0,backendName:"cpu",kernelFunc:vZ},kZ={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:S,dilationHeight:E,dilationWidth:R,outShape:P}=C.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),_=v.sizeFromShape(P),$=P.length,T=v.getArrayFromDType(s.dtype,_);for(let G=0;G<h;++G)for(let q=0;q<y;++q){let z=q*b-A.top;for(let K=0;K<x;++K){let B=K*w-A.left;for(let ee=0;ee<g;++ee){let Q=Number.MIN_SAFE_INTEGER;for(let Y=0;Y<k;++Y){let ae=z+Y*E;if(ae>=0&&ae<f)for(let le=0;le<S;++le){let ye=B+le*R;if(ye>=0&&ye<m){let we=v.locToIndex([G,ae,ye,ee],c,v.computeStrides(s.shape)),Re=v.locToIndex([Y,le,ee],d,v.computeStrides(r.shape)),_e=u[we]+p[Re];_e>Q&&(Q=_e)}}}let oe=v.locToIndex([G,q,K,ee],$,v.computeStrides(P));T[oe]=Q}}}return{dataId:l.write(v.toTypedArray(T,s.dtype),P,s.dtype),shape:P,dtype:s.dtype}}},IZ={kernelName:hm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${hm}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let T=0;T<d;++T)for(let F=0;F<g;++F){let G=F*A-x.top;for(let q=0;q<y;++q){let z=q*b-x.left;for(let K=0;K<m;++K){let B=Number.MIN_SAFE_INTEGER,ee=0,Q=0;for(let oe=0;oe<w;++oe){let Y=G+oe*S;if(Y>=0&&Y<h)for(let ae=0;ae<k;++ae){let le=z+ae*E;if(le>=0&&le<f){let ye=c[T][Y][le][K]+p[oe][ae][K];ye>B&&(B=ye,ee=oe,Q=ae)}}}_[ee][Q][K]+=P[T][F][q][K]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},SZ={kernelName:pm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:S,dilationWidth:E,outShape:R}=C.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===R.length,()=>`Error in ${pm}, dy must have the same rank as output ${R.length}, but got ${a.rank}`);let P=v.toNestedArray(R,u.data.get(a.dataId).values),_=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let T=0;T<d;++T)for(let F=0;F<g;++F){let G=F*A-x.top;for(let q=0;q<y;++q){let z=q*b-x.left;for(let K=0;K<m;++K){let B=Number.MIN_SAFE_INTEGER,ee=G<0?0:G,Q=z<0?0:z;for(let oe=0;oe<w;++oe){let Y=G+oe*S;if(Y>=0&&Y<h)for(let ae=0;ae<k;++ae){let le=z+ae*E;if(le>=0&&le<f){let ye=c[T][Y][le][K]+p[oe][ae][K];ye>B&&(B=ye,ee=Y,Q=le)}}}_[T][ee][Q][K]+=P[T][F][q][K]}}}return{dataId:u.write(v.toTypedArray(_,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Ph(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"sum");let i;r.dtype==="bool"?i=io({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=Zr({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=C.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=gs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=C.computeOutAndReduceShapes(d.shape,p),m=C.upcastType(d.dtype,"int32"),g=Rm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,k=0;for(let S=0;S<y;++S)k+=A[w+S];x[b]=k}if(o){let b=C.expandShapeToKeepDim(g.shape,u),w=g;g=Rt({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var CZ={kernelName:ei,backendName:"cpu",kernelFunc:Ph};function TZ(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=gs({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Rt({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=A2({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Ph({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var NZ={kernelName:Up,backendName:"cpu",kernelFunc:TZ};function EZ(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Ce([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var RZ={kernelName:t0,backendName:"cpu",kernelFunc:EZ},_Z=C.ERF_P,DZ=C.ERF_A1,$Z=C.ERF_A2,PZ=C.ERF_A3,FZ=C.ERF_A4,OZ=C.ERF_A5,MZ=bt(wc,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+_Z*n);return t*(1-((((OZ*s+FZ)*s+PZ)*s+$Z)*s+DZ)*s*Math.exp(-n*n))}),zZ={kernelName:wc,backendName:"cpu",kernelFunc:MZ};function $m(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Rt({inputs:{x:r},backend:n,attrs:{shape:i}})}var LZ={kernelName:fl,backendName:"cpu",kernelFunc:$m},BZ=un((e,t)=>e/t),zx=kn(Io,BZ),ey={kernelName:Io,backendName:"cpu",kernelFunc:zx};function sS(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=nl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=nl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=Cs({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=WZ(A,t,n),k=C.mergeRealAndImagArrays(b,w);for(let S=0;S<a;S++){let E=C.getComplexWithIndex(k,S);p[g*a+S]=E.real,d[g*a+S]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=Cs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function WZ(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(VZ(s)){let i=ty(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=Zr({inputs:{x:p},backend:n}),h=ey.kernelFunc({inputs:{a:u,b:p},backend:n}),f=ey.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=C.mergeRealAndImagArrays(a,o),l=UZ(i,s,t);return C.splitRealAndImagArrays(l)}}function VZ(e){return(e&e-1)===0}function ty(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=C.mergeRealAndImagArrays(e,t),o=n/2,i=C.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=Cs({inputs:{real:p,imag:d},backend:r}),f=C.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=Cs({inputs:{real:x,imag:A},backend:r}),w=ty(l,u,o,s,r),k=w.real,S=w.imag,E=[k.length],R=r.makeTensorInfo(E,"float32",k),P=r.makeTensorInfo(E,"float32",S),_=Cs({inputs:{real:R,imag:P},backend:r}),$=ty(m,g,o,s,r),T=$.real,F=$.imag,G=[T.length],q=r.makeTensorInfo(G,"float32",T),z=r.makeTensorInfo(G,"float32",F),K=Cs({inputs:{real:q,imag:z},backend:r}),B=C.exponents(n,s),ee=[B.real.length],Q=r.makeTensorInfo(ee,"float32",B.real),oe=r.makeTensorInfo(ee,"float32",B.imag),Y=Cs({inputs:{real:Q,imag:oe},backend:r}),ae=A2({inputs:{a:Y,b:K},backend:r}),le=oc({inputs:{a:_,b:ae},backend:r}),ye=Ox({inputs:{a:_,b:ae},backend:r}),we=tl({inputs:{input:le},backend:r}),Re=tl({inputs:{input:ye},backend:r}),_e=ic({inputs:{input:le},backend:r}),Be=ic({inputs:{input:ye},backend:r}),Ge=lc({inputs:[we,Re],backend:r,attrs:{axis:0}}),ot=lc({inputs:[_e,Be],backend:r,attrs:{axis:0}}),dt=r.data.get(Ge.dataId).values,pt=r.data.get(ot.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(P),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(Y),r.disposeIntermediateTensorInfo(ae),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(we),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Be),r.disposeIntermediateTensorInfo(Ge),r.disposeIntermediateTensorInfo(ot),{real:dt,imag:pt}}function UZ(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=C.exponent(r*i,t,n),u=C.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),C.assignToTypedArray(s,a,o,r)}return s}function GZ(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=sS(i,!1,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var HZ={kernelName:n0,backendName:"cpu",kernelFunc:GZ};function Lx(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return qZ(i,r,o),t.makeTensorInfo(s,o,i)}var jZ={kernelName:kc,backendName:"cpu",kernelFunc:Lx};function qZ(e,t,n){e.fill(t)}var XZ={kernelName:gl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let k=A*u,S=h+m+k+x;w=c[S]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},KZ=un((e,t)=>Math.floor(e/t)),ZZ=kn(No,KZ,null,"int32"),YZ={kernelName:No,backendName:"cpu",kernelFunc:ZZ};function JZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=tS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Rt({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=oc({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=oc({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Rt({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Dm(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Dm(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var QZ={kernelName:Qa,backendName:"cpu",kernelFunc:JZ};function eY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=nS({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=oc({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Dm(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var tY={kernelName:eo,backendName:"cpu",kernelFunc:eY};function nY(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=C.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=wI(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var sY={kernelName:Al,backendName:"cpu",kernelFunc:nY};function rY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Ce([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=C.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Rt({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Rt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=kI(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var aY={kernelName:yl,backendName:"cpu",kernelFunc:rY};function oY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Rt({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=sS(i,!0,n),u=Rt({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var iY={kernelName:s0,backendName:"cpu",kernelFunc:oY},lY=bt(Ic,e=>Number.isFinite(e)?1:0,"bool"),uY={kernelName:Ic,backendName:"cpu",kernelFunc:lY},cY=bt(Sc,e=>Math.abs(e)===1/0?1:0,"bool"),dY={kernelName:Sc,backendName:"cpu",kernelFunc:cY},pY=bt(Cc,e=>Number.isNaN(e)?1:0,"bool"),hY={kernelName:Cc,backendName:"cpu",kernelFunc:pY};function fY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=NI(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var mY={kernelName:r0,backendName:"cpu",kernelFunc:fY},gY=bt(Tc,e=>Math.log1p(e)),yY={kernelName:Tc,backendName:"cpu",kernelFunc:gY},AY=un((e,t)=>e&&t),xY=kn(wl,AY,null,"bool"),bY={kernelName:wl,backendName:"cpu",kernelFunc:xY},vY=bt(kl,e=>e?0:1,"bool"),wY={kernelName:kl,backendName:"cpu",kernelFunc:vY},kY=un((e,t)=>e||t),IY=kn(Nc,kY,null,"bool"),SY={kernelName:Nc,backendName:"cpu",kernelFunc:IY};function CY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Ce(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var TY={kernelName:Hp,backendName:"cpu",kernelFunc:CY};function NY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Ce(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),k=0;for(let S=b;S<w;S++)k+=Math.pow(f[S],2);k=u*k+l;for(let S=b;S<w;S++){let E=-2*u*c*f[S]*m[x]/k;x===S&&(E+=Math.pow(k,-c)),E*=h[x],g[S]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var EY={kernelName:a0,backendName:"cpu",kernelFunc:NY};function rS(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=C.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=Rx(h,l,r.dtype,d,b),p=C.getInnerMostAxes(p.length,u),l=b}Ce(r,"max"),C.assertAxesAreInnerMostDims("max",p,u);let[f,m]=C.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=RI(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=C.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var RY={kernelName:Po,backendName:"cpu",kernelFunc:rS};function _Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Ce(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=Zr({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Mx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var DY={kernelName:Oo,backendName:"cpu",kernelFunc:_Y};function $Y(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Ce(r,"maxPool3d");let c=C.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=eS(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var PY={kernelName:jp,backendName:"cpu",kernelFunc:$Y};function FY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Ce([r,a],"maxPool3DGrad");let c=C.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=wK(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,k=A-1-c.padInfo.front,S=w-1-c.padInfo.left,E=b-1-c.padInfo.top,R=Le(a.shape,"float32"),P=n.bufferSync(r);for(let _=0;_<c.batchSize;++_)for(let $=0;$<c.inChannels;++$)for(let T=0;T<c.inDepth;++T)for(let F=0;F<c.inHeight;++F)for(let G=0;G<c.inWidth;++G){let q=T-k,z=F-E,K=G-S,B=0;for(let ee=0;ee<A;ee+=g){let Q=(q+ee)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let oe=0;oe<b;oe+=y){let Y=(z+oe)/f;if(!(Y<0||Y>=c.outHeight||Math.floor(Y)!==Y))for(let ae=0;ae<w;ae+=x){let le=(K+ae)/m;if(le<0||le>=c.outWidth||Math.floor(le)!==le)continue;let ye=A*b*w-1-d.get(_,Q,Y,le,$),we=ee*b*w+oe*w+ae,Re=ye===we?1:0;if(Re===0)continue;B+=P.get(_,Q,Y,le,$)*Re}}}R.set(B,_,T,F,G,$)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var OY={kernelName:i0,backendName:"cpu",kernelFunc:FY};function MY(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Ce([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=Le(d.outShape,i.dtype,QI(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,k=A-1-d.padInfo.top,S=Le(i.shape,"float32"),E=n.data.get(r.dataId).values,R=Le(r.shape,"float32",E);for(let P=0;P<d.batchSize;++P)for(let _=0;_<d.inChannels;++_)for(let $=0;$<d.inHeight;++$)for(let T=0;T<d.inWidth;++T){let F=$-k,G=T-w,q=0;for(let z=0;z<A;z+=y){let K=(F+z)/m;if(!(K<0||K>=d.outHeight||Math.floor(K)!==K))for(let B=0;B<b;B+=x){let ee=(G+B)/g;if(ee<0||ee>=d.outWidth||Math.floor(ee)!==ee)continue;let Q=A*b-1-f.get(P,K,ee,_),oe=z*b+B,Y=Q===oe?1:0;if(Y===0)continue;q+=R.get(P,K,ee,_)*Y}}S.set(q,P,$,T,_)}return n.makeTensorInfo(S.shape,S.dtype,S.values)}var zY={kernelName:o0,backendName:"cpu",kernelFunc:MY};function LY(e,t,n,s,r){let a=v.computeStrides(t),o=Mx(e,t,n,a,r,"max"),i=QI(e,t,n,r,!0,s);return[o.values,i.values]}var BY={kernelName:l0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Ce(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=C.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=LY(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function WY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=C.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=io({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=zx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Ph({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var VY={kernelName:Mo,backendName:"cpu",kernelFunc:WY};function UY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Ce(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=C.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=gs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=C.expandShapeToKeepDim(p,i),x=Rt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var GY={kernelName:zo,backendName:"cpu",kernelFunc:UY};function HY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Ce(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,S)=>k-l[S]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var jY={kernelName:Bo,backendName:"cpu",kernelFunc:HY},qY=un((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),XY=kn(Ec,qY),KY={kernelName:Ec,backendName:"cpu",kernelFunc:XY},ZY=uo(Wm());function aS(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=rS({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=C.expandShapeToKeepDim(u.shape,l),p=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Ox({inputs:{a:r,b:p},backend:n}),h=xI({inputs:{x:d},backend:n}),f=Ph({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Rt({inputs:{x:f},backend:n,attrs:{shape:c}}),g=zx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var YY={kernelName:ti,backendName:"cpu",kernelFunc:aS};function JY(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Ce(r,"multinomial");let l=i?r:aS({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=ZY.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var QY={kernelName:u0,backendName:"cpu",kernelFunc:JY},eJ=dr.nonMaxSuppressionV3Impl;function tJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Ce(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=eJ(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var nJ={kernelName:Cl,backendName:"cpu",kernelFunc:tJ},sJ=dr.nonMaxSuppressionV4Impl;function rJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Ce(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=sJ(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var aJ={kernelName:Rc,backendName:"cpu",kernelFunc:rJ},oJ=dr.nonMaxSuppressionV5Impl;function iJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Ce(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=oJ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var lJ={kernelName:Tl,backendName:"cpu",kernelFunc:iJ};function uJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s;Ce(r,"oneHot");let l=v.sizeFromShape(r.shape),u=new Float32Array(l*a);u.fill(i);let c=n.data.get(r.dataId).values;for(let p=0;p<l;++p)c[p]>=0&&c[p]<a&&(u[p*a+c[p]]=o);return n.makeTensorInfo([...r.shape,a],"int32",u)}var cJ={kernelName:El,backendName:"cpu",kernelFunc:uJ};function Pm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=tl({inputs:{input:s},backend:n}),a=Pm({inputs:{x:r},backend:n}),o=ic({inputs:{input:s},backend:n}),i=Pm({inputs:{x:o},backend:n}),l=Cs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Lx({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var dJ={kernelName:Hl,backendName:"cpu",kernelFunc:Pm};function oS(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=tl({inputs:{input:s},backend:n}),a=oS({inputs:{x:r},backend:n}),o=ic({inputs:{input:s},backend:n}),i=Pm({inputs:{x:o},backend:n}),l=Cs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Lx({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var pJ={kernelName:Nl,backendName:"cpu",kernelFunc:oS};function iS(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return $m({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=$m({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=lc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var hJ={kernelName:Rl,backendName:"cpu",kernelFunc:iS};function fJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Ce(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((k,S)=>k+l[S]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var lS={kernelName:Vo,backendName:"cpu",kernelFunc:fJ},mJ=un((e,t)=>Math.pow(e,t)),gJ=kn(Uo,mJ),yJ={kernelName:Uo,backendName:"cpu",kernelFunc:gJ};function AJ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=_x(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var xJ={kernelName:_c,backendName:"cpu",kernelFunc:AJ},bJ=bt(Dc,e=>1/e),vJ={kernelName:Dc,backendName:"cpu",kernelFunc:bJ};function wJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ce(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let k=0;k<p;k++)for(let S=0;S<u;S++){let E;o?E=b*(S+.5)-.5:E=b*S;let R=Math.max(0,Math.floor(E)),P=E-R,_=Math.min(d-1,Math.ceil(E)),$=k*l[0]+R*l[1],T=k*l[0]+_*l[1];for(let F=0;F<c;F++){let G;o?G=w*(F+.5)-.5:G=w*F;let q=Math.max(0,Math.floor(G)),z=G-q,K=Math.min(h-1,Math.ceil(G)),B=$+q*l[2],ee=T+q*l[2],Q=$+K*l[2],oe=T+K*l[2];for(let Y=0;Y<f;Y++){let ae=m[B+Y],le=m[ee+Y],ye=m[Q+Y],we=m[oe+Y],Re=ae+(ye-ae)*z,_e=le+(we-le)*z,Be=Re+(_e-Re)*P;g[A++]=Be}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var kJ={kernelName:Xo,backendName:"cpu",kernelFunc:wJ};function IJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ce([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let S=0;S<d;S++){let E=S*y,R=Math.floor(E),P=Math.min(Math.ceil(E),u-1),_=k+R*i[1],$=k+P*i[1],T=E-R,F=1-T;for(let G=0;G<h;G++){let q=G*x,z=Math.floor(q),K=Math.min(Math.ceil(q),c-1),B=q-z,ee=1-B,Q=_+z*i[2],oe=_+K*i[2],Y=$+z*i[2],ae=$+K*i[2],le=F*ee,ye=F*B,we=T*ee,Re=T*B;for(let _e=0;_e<p;_e++){let Be=A[b++];f[Q+_e]+=Be*le,f[oe+_e]+=Be*ye,f[Y+_e]+=Be*we,f[ae+_e]+=Be*Re}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var SJ={kernelName:d0,backendName:"cpu",kernelFunc:IJ};function CJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Ce(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let k=0;k<p;k++){let S=k*l[0];for(let E=0;E<u;E++){let R=o?A*(E+.5):A*E,P=Math.min(d-1,a?Math.round(R):Math.floor(R));o&&(P=Math.max(0,P));let _=S+P*l[1];for(let $=0;$<c;$++){let T=o?b*($+.5):b*$,F=Math.min(h-1,a?Math.round(T):Math.floor(T));o&&(F=Math.max(0,F));let G=_+F*l[2];for(let q=0;q<f;q++){let z=m[G+q];g[w++]=z}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var TJ={kernelName:qo,backendName:"cpu",kernelFunc:CJ};function NJ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Ce([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,k=1/b,S=Math.ceil(w)*2+2,E=Math.ceil(k)*2+2;for(let R=0;R<u;R++){let P=R*i[0];for(let _=0;_<c;_++){let $=P+_*i[1],T=Math.floor(_*w),F=Math.floor(T-S/2);for(let G=0;G<p;G++){let q=$+G*i[2],z=Math.floor(G*k),K=Math.floor(z-E/2);for(let B=0;B<d;B++){let ee=0;for(let Q=0;Q<S;Q++){let oe=Q+F;if(oe<0||oe>=h)continue;let Y=P+oe*l[1],ae=oe*A,le=Math.min(c-1,o?Math.round(ae):Math.floor(ae));if(_===le)for(let ye=0;ye<E;ye++){let we=ye+K;if(we<0||we>=f)continue;let Re=Y+we*l[2],_e=we*b,Be=Math.min(p-1,o?Math.round(_e):Math.floor(_e));G===Be&&(ee+=g[Re+B])}}m[q+B]=ee}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var EJ={kernelName:c0,backendName:"cpu",kernelFunc:NJ};function RJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Ce(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Zr({inputs:{x:r},backend:n});let l=new fn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var _J={kernelName:Dl,backendName:"cpu",kernelFunc:RJ},DJ={kernelName:jl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=C.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let k=0;k<c;k++){let S=k*(p*d);for(let E=0;E<p;E++){let R=E*d;for(let P=0;P<d;P++){let _=[u,k,E,P],$=_[2],T=_[1],F=($-h)*y-(T-f)*g,G=($-h)*g+(T-f)*y;F=Math.round(F+h),G=Math.round(G+f);let q=a;if(typeof a!="number"&&(P===3?q=m:q=a[P]),F>=0&&F<p&&G>=0&&G<c){let K=G*(p*d),B=F*d,ee=w+K+B+P;q=x[ee]}let z=w+S+R+P;l[z]=q}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},$J=bt($l,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),PJ={kernelName:$l,backendName:"cpu",kernelFunc:$J};function FJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Bu(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var OJ={kernelName:Pl,backendName:"cpu",kernelFunc:FJ};function MJ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function zJ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function LJ(e,t,n,s,r,a){let o=v.getArrayFromDType("int32",n*r);for(let i=0;i<n;++i){let l=e.slice(i*s,(i+1)*s),u=i*r;for(let c=0;c<r;++c)o[u+c]=a==="left"?MJ(l,t[c+u]):zJ(l,t[c+u])}return o}function BJ(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=LJ(i,l,r.shape[0],r.shape[1],a.shape[1],o);return n.makeTensorInfo(a.shape,"int32",u)}var WJ={kernelName:p0,backendName:"cpu",kernelFunc:BJ};function VJ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Ce([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=On(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var UJ={kernelName:Fl,backendName:"cpu",kernelFunc:VJ},GJ=C.SELU_SCALEALPHA,HJ=C.SELU_SCALE,jJ=bt($c,e=>e>=0?HJ*e:GJ*(Math.exp(e)-1)),qJ={kernelName:$c,backendName:"cpu",kernelFunc:jJ},XJ=bt(Pc,e=>e<0?-1:e>0?1:0),KJ={kernelName:Pc,backendName:"cpu",kernelFunc:XJ},ZJ=bt(Yo,e=>Math.sin(e)),YJ={kernelName:Yo,backendName:"cpu",kernelFunc:ZJ},JJ=bt(Ml,e=>Math.sinh(e)),QJ={kernelName:Ml,backendName:"cpu",kernelFunc:JJ},eQ=11920928955078125e-23,u7=Math.log(eQ)+2,tQ=bt(Fc,e=>{let t=e>-u7,n=e<u7,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),nQ={kernelName:Fc,backendName:"cpu",kernelFunc:tQ};function sQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Ce([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=lS.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=Rt({inputs:{x:u},backend:n,attrs:{shape:c}}),x=gs({inputs:{x:m},backend:n,attrs:{perm:p}}),w=Rt({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var rQ={kernelName:zl,backendName:"cpu",kernelFunc:sQ};function aQ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=zI(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var oQ={kernelName:Xp,backendName:"cpu",kernelFunc:aQ};function iQ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=LI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var lQ={kernelName:Oc,backendName:"cpu",kernelFunc:iQ};function uQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Dx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var cQ={kernelName:Kp,backendName:"cpu",kernelFunc:uQ};function dQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=Dx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var pQ={kernelName:Zp,backendName:"cpu",kernelFunc:dQ};function hQ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Bu(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Bu(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Bu(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Bu(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var fQ={kernelName:Yp,backendName:"cpu",kernelFunc:hQ};function mQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=nl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var gQ={kernelName:Ll,backendName:"cpu",kernelFunc:mQ},yQ={kernelName:Mc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Ce(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},AQ=bt(ai,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),xQ={kernelName:ai,backendName:"cpu",kernelFunc:AQ};function bQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Ce(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ut.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Rt({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ut.computeOutShape(x,A,b),S=nl({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Rt({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(S)}else{let k=n.bufferSync(r),S=WI(h,k,b,x);w=n.makeTensorInfo(f,S.dtype,S.values)}return w}var vQ={kernelName:Bl,backendName:"cpu",kernelFunc:bQ};function wQ(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=$x(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var kQ={kernelName:zc,backendName:"cpu",kernelFunc:wQ};function IQ(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=Px(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var SQ={kernelName:Jp,backendName:"cpu",kernelFunc:IQ};function CQ(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Fx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var TQ={kernelName:Qp,backendName:"cpu",kernelFunc:CQ},NQ=bt(Wl,e=>Math.tan(e)),EQ={kernelName:Wl,backendName:"cpu",kernelFunc:NQ},RQ=bt(ri,e=>Math.tanh(e)),_Q={kernelName:ri,backendName:"cpu",kernelFunc:RQ};function DQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Ce(r,"tile");let o=UI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var $Q={kernelName:va,backendName:"cpu",kernelFunc:DQ};function PQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Ce(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=HI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var FQ={kernelName:Vl,backendName:"cpu",kernelFunc:PQ};function OQ(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));w.fill(l);let k=s.data.get(r.dataId).values,S=s.data.get(a.dataId).values;for(let R=0;R<c;++R){let P=a.shape[0]===1?S:S.subarray(R*8,R*8+8);for(let _=0;_<f;++_)for(let $=0;$<m;++$)for(let T=0;T<h;++T){let F,G=P[6]*$+P[7]*_+1;if(G===0)continue;let q=(P[0]*$+P[1]*_+P[2])/G,z=(P[3]*$+P[4]*_+P[5])/G,K=c7(q,d,i),B=c7(z,p,i);switch(o){case"nearest":F=VQ(k,p,d,x,A,b,R,B,K,T,l);break;case"bilinear":F=UQ(k,p,d,x,A,b,R,B,K,T,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let ee=R*x+_*A+$*b+T;w[ee]=F}return s.makeTensorInfo(g,r.dtype,w)}return{dataId:s.write(w,g,r.dtype),shape:r.shape,dtype:r.dtype}}var MQ={kernelName:Ul,backendName:"cpu",kernelFunc:OQ};function c7(e,t,n){switch(n){case"reflect":return zQ(e,t);case"wrap":return LQ(e,t);case"nearest":return WQ(e,t);case"constant":default:return BQ(e,t)}}function zQ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function LQ(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function BQ(e,t){return e}function WQ(e,t){return v.clamp(0,e,t-1)}function lp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function VQ(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return lp(e,t,n,s,r,a,o,p,d,u,c)}function UQ(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*lp(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*lp(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*lp(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*lp(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function GQ(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Ce(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=jI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var HQ={kernelName:h0,backendName:"cpu",kernelFunc:GQ};function jQ(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=nl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=Rt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var qQ={kernelName:Gl,backendName:"cpu",kernelFunc:jQ};function XQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Ce(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=$m({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=yI({inputs:{a:g,b:d},backend:n}),x=io({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=A2({inputs:{a:x,b:r},backend:n}),b=Ph({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=iS({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var KQ={kernelName:eh,backendName:"cpu",kernelFunc:XQ},ZQ=[ZX,Uq,JX,eK,Kq,nK,rK,oK,lK,cK,pK,fK,gK,xK,vK,IK,CK,NK,RK,XX,DK,PK,OK,zK,qq,Yq,BK,Gq,VK,GK,HK,qK,KK,YK,QK,tZ,sZ,aZ,iZ,uZ,dZ,hZ,mZ,gZ,AZ,bZ,wZ,kZ,IZ,SZ,NZ,WX,RZ,Jq,zZ,Qq,LZ,tX,HZ,jZ,XZ,sX,YZ,QZ,tY,sY,aY,aX,iX,Hq,iY,UK,uY,dY,hY,VX,uX,dX,mY,hX,yY,bY,wY,SY,TY,EY,RY,mX,DY,PY,OY,zY,BY,VY,GY,yX,jY,KY,QY,xX,vX,nJ,aJ,lJ,kX,cJ,pJ,hJ,lS,yJ,GX,CX,xJ,jq,ey,vJ,HX,jX,qX,kJ,SJ,TJ,EJ,_J,DJ,PJ,NX,OJ,WJ,UJ,qJ,RX,KJ,YJ,QJ,_X,YY,nQ,rQ,oQ,lQ,cQ,pQ,fQ,gQ,PX,yQ,OX,xQ,vQ,kQ,SQ,TQ,BX,CZ,EQ,_Q,$Q,FQ,MQ,IX,HQ,qQ,KQ,dJ];for(let e of ZQ)cr(e);var uS={};Ve(uS,{assertNotComplex:()=>nd,bindCanvasToFramebuffer:()=>iee,bindColorTextureToFramebuffer:()=>sm,bindTextureToProgramUniformSampler:()=>IS,bindTextureUnit:()=>vS,bindVertexBufferToProgramAttribute:()=>ny,callAndCheck:()=>Ie,canBeRepresented:()=>cS,createFragmentShader:()=>hS,createFramebuffer:()=>bS,createProgram:()=>fS,createStaticIndexBuffer:()=>yS,createStaticVertexBuffer:()=>gS,createTexture:()=>AS,createVertexShader:()=>pS,getBatchDim:()=>sl,getExtensionOrThrow:()=>up,getFramebufferErrorMessage:()=>SS,getMaxTexturesInShader:()=>ES,getNumChannels:()=>aee,getProgramUniformLocation:()=>kS,getProgramUniformLocationOrThrow:()=>wS,getRowsCols:()=>rl,getShapeAs3D:()=>rm,getTextureShapeFromLogicalShape:()=>TS,getWebGLDisjointQueryTimerVersion:()=>RS,getWebGLErrorMessage:()=>dS,getWebGLMaxTextureSize:()=>NS,hasExtension:()=>Xs,isCapableOfRenderingToFloatTexture:()=>_S,isDownloadFloatTextureEnabled:()=>DS,isReshapeFree:()=>Dp,isWebGLFenceEnabled:()=>$S,isWebGLVersionEnabled:()=>ry,linkProgram:()=>mS,logShaderSourceAndInfoLog:()=>Wx,resetMaxTextureSize:()=>lee,resetMaxTexturesInShader:()=>uee,unbindColorTextureFromFramebuffer:()=>sy,unbindTextureUnit:()=>oee,validateFramebuffer:()=>cp,validateProgram:()=>nm,validateTextureSize:()=>xS});var Bi={},f3={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function x2(e,t){Bi[e]=t}function Dr(e,t){if(!(e in Bi)||t!=null){let s=JQ(e,t);if(s!==null)Bi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=Bi[e];return n==null||n.isContextLost()?(delete Bi[e],Dr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),Bi[e])}function YQ(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function JQ(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?YQ(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete Bi[e]},!1),e===1?n.getContext("webgl",f3)||n.getContext("experimental-webgl",f3):n.getContext("webgl2",f3)}var _p;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(_p||(_p={}));var qs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(qs||(qs={}));var Sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Sn||(Sn={}));function Fh(e,t){return[t,e]}function QQ(e,t){return e*t}function Xf(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function td(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function eee(e,t){let[n,s]=td(e,t);return n*s*4}function Bx(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return Z().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Ie(e,t){let n=t();return Z().getBool("DEBUG")&&tee(e),n}function tee(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+dS(e,t))}var nee=596e-10,see=65504;function cS(e){return!!(Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||nee<Math.abs(e)&&Math.abs(e)<see)}function dS(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function up(e,t){return Ia(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function pS(e,t){let n=Ia(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function hS(e,t){let n=Ia(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Ie(e,()=>e.shaderSource(n,t)),Ie(e,()=>e.compileShader(n)),Z().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Wx(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var ree=/ERROR: [0-9]+:([0-9]+):/g;function Wx(e,t){let n=ree.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function fS(e){return Ia(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function mS(e,t){if(Ie(e,()=>e.linkProgram(t)),!Z().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function nm(e,t){if(Ie(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function gS(e,t){let n=Ia(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function yS(e,t){let n=Ia(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Ie(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function aee(){return Z().getNumber("WEBGL_VERSION")===2?1:4}function AS(e){return Ia(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function xS(e,t){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function bS(e){return Ia(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function ny(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Ie(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Ie(e,()=>e.enableVertexAttribArray(i)),!0)}function vS(e,t,n){CS(e,n),Ie(e,()=>e.activeTexture(e.TEXTURE0+n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function oee(e,t){CS(e,t),Ie(e,()=>e.activeTexture(e.TEXTURE0+t)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function wS(e,t,n){return Ia(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function kS(e,t,n){return e.getUniformLocation(t,n)}function IS(e,t,n,s){Ie(e,()=>vS(e,t,s)),Ie(e,()=>e.uniform1i(n,s))}function iee(e){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Ie(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function sm(e,t,n){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function sy(e,t){Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Ie(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function cp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+SS(e,t))}function SS(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function Ia(e,t,n){let s=Ie(e,()=>t());if(s==null)throw new Error(n);return s}function CS(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function sl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function rl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function rm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[sl(e),...rl(e)]),t}function TS(e,t=!1){let n=Z().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=sl(e),a=2,o=2;return e.length&&([a,o]=rl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function Kf(e){return e%2===0}function Dp(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||Kf(n)&&Kf(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Kf(e[0])&&Kf(t[0])}var am,om;function NS(e){if(am==null){let t=Dr(e);am=t.getParameter(t.MAX_TEXTURE_SIZE)}return am}function lee(){am=null}function uee(){om=null}function ES(e){if(om==null){let t=Dr(e);om=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,om)}function RS(e){if(e===0)return 0;let t,n=Dr(e);return Xs(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Xs(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Xs(e,t){return e.getExtension(t)!=null}function ry(e){try{if(Dr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function _S(e){if(e===0)return!1;let t=Dr(e);if(e===1){if(!Xs(t,"OES_texture_float"))return!1}else if(!Xs(t,"EXT_color_buffer_float"))return!1;return ay(t)}function DS(e){if(e===0)return!1;let t=Dr(e);if(e===1){if(!Xs(t,"OES_texture_float")||!Xs(t,"WEBGL_color_buffer_float"))return!1}else{if(Xs(t,"EXT_color_buffer_float"))return ay(t);let s="EXT_color_buffer_half_float";if(Xs(t,s)){let r=t.getExtension(s);return cee(t,r)}return!1}return ay(t)}function ay(e){let t=Bx(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function cee(e,t){let n=Bx(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function $S(e){return e!==2?!1:Dr(e).fenceSync!=null}function nd(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Pe=Z();Pe.registerFlag("HAS_WEBGL",()=>Pe.getNumber("WEBGL_VERSION")>0);Pe.registerFlag("WEBGL_VERSION",()=>ry(2)?2:ry(1)?1:0);Pe.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Pe.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Pe.get("WEBGL_VERSION")===2);Pe.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Pe.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Pe.registerFlag("WEBGL_PACK",()=>Pe.getBool("HAS_WEBGL"));Pe.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_CLIP",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_PACK_REDUCE",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_LAZILY_UNPACK",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_CONV_IM2COL",()=>Pe.getBool("WEBGL_PACK"));Pe.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>NS(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>ES(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Pe.getNumber("WEBGL_VERSION");return e===0?0:RS(e)});Pe.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Pe.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!rh.isMobile());Pe.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>_S(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Pe.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Pe.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Pe.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>DS(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_FENCE_API_ENABLED",()=>$S(Pe.getNumber("WEBGL_VERSION")));Pe.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Pe.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Pe.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Pe.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>rh.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Pe.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);Pe.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);Pe.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);Pe.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);function as(){let e,t,n,s,r,a,o,i,l,u;return Z().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function su(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function b2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function dee(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function pee(e,t,n="index"){let s=e.map((a,o)=>o),r=dee(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function Vx(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function Ux(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var PS=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:FS}=C;function hee(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=Gx(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>fee(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=as(),l=yee(i),u,c,p=bee(i);return t.isPacked?(u=mee(t.logicalShape,o,n.enableShapeUniforms),c=xee(i)):(u=gee(t.logicalShape,o,n.enableShapeUniforms),c=Aee(i)),n.packedInputs&&(p+=Iee),[p,l,c,r,u,a,n.userCode].join(`
`)}function sd(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Oee(e,t);case 1:return zee(e,t);case 2:return Bee(e,t);case 3:return Vee(e,t);case 4:return Gee(e,t);case 5:return Hee(e);case 6:return jee(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function OS(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return Fee(e);case 1:return Mee(e,t);case 2:return Lee(e,t);case 3:return Wee(e,t);default:return Uee(e,t)}}function fee(e,t,n=!1,s){let r="";n?r+=OS(e,s):r+=sd(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=qee(e,t):r+=Xee(e,t)),r}function mee(e,t,n){switch(e.length){case 0:return MS();case 1:return See(e,t,n);case 2:return $ee(e,t,n);case 3:return Tee(e,t,n);default:return Eee(e,t,n)}}function gee(e,t,n){switch(e.length){case 0:return MS();case 1:return Cee(e,t,n);case 2:return Pee(e,t,n);case 3:return Nee(e,t,n);case 4:return Ree(e,t,n);case 5:return _ee(e,t);case 6:return Dee(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function yee(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function Aee(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function xee(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function bee(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${vee}
${wee}
${kee}
`}var vee=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,wee=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,kee=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,Iee=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function MS(){return`
int getOutputCoords() {
return 0;
}
`}function See(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function Cee(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function Tee(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function Nee(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${b2(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=su(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function Eee(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
int b${u} = index / ${o};
index -= b${u} * ${o};
`+i,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function Ree(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${b2(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=su(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function _ee(e,t){let n=su(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function Dee(e,t){let n=su(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function $ee(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function Pee(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function ru(e){return`offset${e}`}function Fee(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=as();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function Oee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=ru(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function Mee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=as();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function zee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${rd(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=ru(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function Lee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=as();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function Bee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let d=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=ad(e,l),h=["row","col"];return`
${sd(d,t)}
float ${r}(int row, int col) {
return ${r}(${od(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${rd(e)}
}
`;let u=a[0],c=a[1],p=ru(s);return c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${s}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${p};
vec2 uv = uvFromFlat(${u}, ${c}, index);
return sampleTexture(${s}, uv);
}
`}function Wee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=ad(e,d),m=["b","row","col"];return`
${OS(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${od(m,h)});
}
`}let i=as();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${p}, ${c}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function Vee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=ad(e,u),g=["row","col","depth"];return`
${sd(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${od(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${rd(e)}
}
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(d===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let f=ru(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${p}, ${d}, index);
return sampleTexture(${s}, uv);
}
`}function Uee(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=as();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function Gee(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=ad(e,l),A=["row","col","depth","depth2"];return`
${sd(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${od(A,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${rd(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let y=ru(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
return sampleTexture(${s}, uv);
}
`}function Hee(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=ad(e,l),g=["row","col","depth","depth2","depth3"];return`
${sd(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${od(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${rd(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=ru(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function jee(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=ad(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${sd(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${od(y,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${rd(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=ru(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function rd(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function qee(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=FS(e.shapeInfo.logicalShape,t.logicalShape),l=wt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!y)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${s}(${d});
${h}
}
`}function Xee(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=wt(l),c=FS(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${d}
return get${s}(${f});
}
`}function wt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Gx(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function ad(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function od(e,t){return t.map(n=>e[n]).join(", ")}function Kee(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=hee(r,o,t),l=hS(e.gl,i),u=e.createProgram(l);return Z().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},zS(e,t,u))}function zS(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),Z().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function d7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Zee(e,t,n,s,r){t.program.enableShapeUniforms||(d7(t.inShapeInfos,n),d7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),Z().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=Gx(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function Yee(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=Gx(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=C.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${Z().getNumber("WEBGL_VERSION")}`,a}function xs(e){return Z().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Jee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=_p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=as();this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?b2(["r","c","d"],e):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},Qee=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=_p.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=as();this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?b2(["r","c","d"],e):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},ete=class{constructor(e){this.variableNames=["A"],this.outTexUsage=qs.DOWNLOAD;let t=as();this.outputShape=e,this.userCode=`
${PS}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},tte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=qs.DOWNLOAD;let t=as();this.outputShape=e,this.userCode=`
${PS}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},nte=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=as();this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?Ux():Vx(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},ste=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=as();this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?Ux():Vx(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},LS={};Ve(LS,{bindVertexProgramAttributeStreams:()=>XS,createBufferFromOutputTexture:()=>YS,createFloat16MatrixTexture:()=>GS,createFloat16PackedMatrixTexture:()=>qS,createFloat32MatrixTexture:()=>US,createIndexBuffer:()=>VS,createPackedMatrixTexture:()=>jS,createUnsignedBytesMatrixTexture:()=>HS,createVertexBuffer:()=>WS,createVertexShader:()=>BS,downloadByteEncodedFloatMatrixFromOutputTexture:()=>QS,downloadFloat32MatrixFromBuffer:()=>JS,downloadMatrixFromPackedOutputTexture:()=>t9,downloadPackedMatrixFromBuffer:()=>e9,getInternalFormatForFloat16MatrixTexture:()=>jx,getInternalFormatForFloat16PackedMatrixTexture:()=>Kx,getInternalFormatForFloat32MatrixTexture:()=>Hx,getInternalFormatForPackedMatrixTexture:()=>Xx,getInternalFormatForUnsignedBytesMatrixTexture:()=>qx,uploadDenseMatrixToTexture:()=>KS,uploadPixelDataToTexture:()=>ZS});function BS(e){let t=as(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return pS(e,n)}function WS(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return gS(e,t)}function VS(e){let t=new Uint16Array([0,1,2,2,1,3]);return yS(e,t)}function Oh(e,t,n,s,r,a){xS(t,n);let o=AS(e),i=e.TEXTURE_2D;return Ie(e,()=>e.bindTexture(i,o)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Ie(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),Z().getNumber("WEBGL_VERSION")===1?Ie(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Ie(e,()=>e.texStorage2D(i,1,s,t,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function Hx(e){return e.internalFormatFloat}function US(e,t,n,s){let[r,a]=Fh(t,n);return Oh(e,r,a,Hx(s),s.textureFormatFloat,e.FLOAT)}function jx(e){return e.internalFormatHalfFloat}function GS(e,t,n,s){let[r,a]=Fh(t,n);return Oh(e,r,a,jx(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function qx(e){return e.downloadTextureFormat}function HS(e,t,n,s){let[r,a]=Fh(t,n);return Oh(e,r,a,qx(s),e.RGBA,e.UNSIGNED_BYTE)}function Xx(e){return e.internalFormatPackedFloat}function jS(e,t,n,s){let[r,a]=td(t,n);return Oh(e,r,a,Xx(s),e.RGBA,e.FLOAT)}function Kx(e){return e.internalFormatPackedHalfFloat}function qS(e,t,n,s){let[r,a]=td(t,n);return Oh(e,r,a,Kx(s),e.RGBA,s.textureTypeHalfFloat)}function XS(e,t,n){return Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ny(e,t,"clipSpacePos",n,3,20,0)&&ny(e,t,"uv",n,2,20,12)}function KS(e,t,n,s,r,a){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),Z().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ZS(e,t,n){Ie(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?Z().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):Z().getNumber("WEBGL_VERSION")===2?Ie(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Ie(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Ie(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function YS(e,t,n,s){let r=e.createBuffer();Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Ie(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Ie(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function JS(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function QS(e,t,n,s){let[r,a]=Fh(t,n),o=4,i=new Uint8Array(QQ(t*n,o));return Ie(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function e9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(eee(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function t9(e,t,n){let s=new Float32Array(t*n*4);return Ie(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var ju=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=Z().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,x2(t,e)):this.gl=Dr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),Z().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=up(this.gl,r),Xs(this.gl,a))this.textureHalfFloatExtension=up(this.gl,a);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Xs(this.gl,s))this.colorBufferHalfFloatExtension=up(this.gl,s);else if(Z().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Xs(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Xs(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=WS(this.gl),this.indexBuffer=VS(this.gl),this.framebuffer=bS(this.gl),this.textureConfig=Bx(this.gl,this.textureHalfFloatExtension)}get debug(){return Z().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Ie(e,()=>e.finish()),Ie(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Ie(e,()=>e.deleteFramebuffer(this.framebuffer)),Ie(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Ie(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Ie(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),US(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),GS(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),HS(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),ZS(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),KS(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),qS(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),jS(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(sy(this.gl,this.framebuffer),this.outputTexture=null),Ie(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>QS(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return e9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return JS(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=YS(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(Z().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>t9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=BS(t));let n=fS(t);return Ie(t,()=>t.attachShader(n,this.vertexShader)),Ie(t,()=>t.attachShader(n,e)),mS(t,n),this.debug&&nm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=XS(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Ie(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&nm(this.gl,this.program),Ie(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?wS(this.gl,e,t):kS(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Ie(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),IS(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=td(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&nm(this.gl,this.program),cp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Ie(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=up(this.gl,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=rte(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),sm(this.gl,e,this.framebuffer),this.debug&&cp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(sm(this.gl,this.outputTexture,this.framebuffer),this.debug&&cp(this.gl)):sy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;sm(s,e,this.framebuffer),this.debug&&cp(s),this.outputTexture=e,Ie(s,()=>s.viewport(0,0,t,n)),Ie(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Ie(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function rte(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:ate,bincountImpl:n9,bincountReduceImpl:ote,ceilImpl:ite,concatImpl:lte,equalImpl:ute,expImpl:cte,expm1Impl:dte,floorImpl:pte,gatherNdImpl:hte,gatherV2Impl:fte,greaterImpl:mte,greaterEqualImpl:gte,lessImpl:yte,lessEqualImpl:Ate,linSpaceImpl:xte,logImpl:bte,maxImpl:vte,maximumImpl:wte,minimumImpl:kte,multiplyImpl:Ite,negImpl:Ste,notEqualImpl:Cte,prodImpl:Tte,rangeImpl:Nte,rsqrtImpl:Ete,scatterImpl:Rte,sigmoidImpl:_te,simpleAbsImpl:s9,sliceImpl:Dte,sparseFillEmptyRowsImpl:$te,sparseReshapeImpl:Pte,sparseSegmentReductionImpl:r9,sqrtImpl:Fte,stridedSliceImpl:Ote,stringNGramsImpl:Mte,stringSplitImpl:zte,stringToHashBucketFastImpl:Lte,subImpl:Bte,tileImpl:Wte,topKImpl:Vte,transposeImpl:Zx,uniqueImpl:Ute}=Sx;function a9(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function Qn(e,t){return t===1?[e]:a9(e,t)}function Gte(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var Hte=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=xs(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=Qn("rc",this.rank),n=wt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${a}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${s};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},o9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${jte(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?Ux():Vx(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function jte(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?pee(["r","c","d"],"inputShape"):su(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var qte=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=h7(t,n),r=f7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=p7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Sn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Sn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Sn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Sn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=h7(n,s),a=f7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=p7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=Z().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Xte(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function p7(e,t,n,s,r){let a=Kte(t,s),o;if(r){let[l,u]=td(e[0],e[1]);o=l*u}else{let[l,u]=Fh(e[0],e[1]);o=l*u}let i=Xte(n,a);return o*i}function Kte(e,t){switch(e){case Sn.PACKED_2X2_FLOAT32:return Xx(t);case Sn.PACKED_2X2_FLOAT16:return Kx(t);case Sn.UNPACKED_FLOAT32:return Hx(t);case Sn.UNPACKED_FLOAT16:return jx(t);case Sn.PACKED_4X1_UNSIGNED_BYTE:return qx(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Zte(e){return Z().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Sn.PACKED_2X2_FLOAT32:Sn.UNPACKED_FLOAT32:e?Sn.PACKED_2X2_FLOAT16:Sn.UNPACKED_FLOAT16}function h7(e,t){if(e===qs.UPLOAD)return Sn.PACKED_2X2_FLOAT32;if(e===qs.RENDER||e==null)return Zte(t);if(e===qs.DOWNLOAD||e===qs.PIXELS)return Sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function f7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var pa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},hr="if (isnan(x)) return x;",Yte="return x;",m7="return abs(x);",Jte="return (x >= 0.0) ? x : (exp(x) - 1.0);",Qte=hr+`
return (x < 0.0) ? 0.0 : x;
`,ene=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Pu="return x;",tne="return 1.0 / (1.0 + exp(-1.0 * x));",nne="return x;",sne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,rne=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,ane=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,one="return 1.0 / (1.0 + exp(-1.0 * x));",Ui=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},ine=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length);let t=e.length,n=Qn("rc",t),s=wt(t),r=Gte(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},lne=dr.whereImpl,une=1e-7,cne=1e-4,Zf={};function dne(e){return e in Zf||(Zf[e]={}),Zf[e]}var pne=Z().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),hne=600;function fne(){return Z().global.screen==null?1024:Z().global.screen.height*Z().global.screen.width*window.devicePixelRatio*hne/1024/1024}var id=class extends cc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!Z().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof ju)t=e;else{let n=Dr(Z().getNumber("WEBGL_VERSION"),e);t=new ju(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Dr(Z().getNumber("WEBGL_VERSION"));t=new ju(n),this.binaryCache=dne(Z().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new qte(this.gpgpu),this.numMBBeforeWarning=fne(),this.texData=new Mp(this,sn())}nextDataId(){return id.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((Z().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||Z().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:qs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(Z().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:qs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new Ui(o,Pu):p=new pa(o,Pu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=C.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Ui(s,Pu):h=new pa(s,Pu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(Z().getBool("DEBUG")&&!Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&Z().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&Z().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...Xf(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=C.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Ie(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&sn().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new Ui(r,Pu):d=new pa(r,Pu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=sn().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!cS(n))throw Z().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(Z().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...Xf(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=Z().getBool("WEBGL_PACK")&&s===!0,o=a?rm(t):t,i=a?new tte(o):new ete(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(Z().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=pne){return Z().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return lne(e.shape,t)}packedUnaryOp(e,t,n){let s=new Ui(e.shape,t),r=this.compileAndRun(s,[e],n);return sn().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=s9(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(Z().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,m7,e.dtype);let t=new pa(e.shape,m7),n=this.compileAndRun(t,[e]);return sn().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return sn().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new ine(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Hte(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[sl(e.shape),...rl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[sl(t),...rl(t)],a=new o9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=rm(r),i;s?i=new Qee(o):i=new Jee(o);let l=!0,u=[t!=null?t:Xf(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===_p.DENSE){let g=a!=null?a:Xf(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=Z().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Dp(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=Yee(e,u,c),d=this.getAndSaveBinary(p,()=>Kee(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),Z().get("ENGINE_COMPILE_ONLY")||Zee(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=Z().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!Z().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(Z().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=J(()=>{if(!Z().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=Z().getBool("DEBUG");Z().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(Z().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?une:cne}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=TS(n,i),t.texShape=c),r!=null){let p=rm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=td(c[0],c[1])),i?d=new ste(p,m):d=new nte(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=qs.PIXELS:x.usage=qs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),k=this.texData.get(w.dataId);t.texShape=k.texShape,t.isPacked=k.isPacked,t.usage=k.usage,Z().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=k.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=mne(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await jA(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(Wx(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=zS(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};id.nextDataId=0;function mne(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var gne="3.19.0";function i9(){Z().set("WEBGL_FORCE_F16_TEXTURES",!0)}rh.isBrowser()&&ql("webgl",()=>new id,2);var yne={forceHalfFloat:i9},l9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,uc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=xs(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},v2=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Mh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=xs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${wt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=Qn("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function Ps(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var Ane={kernelName:_o,backendName:"webgl",kernelFunc:Ps};function pi(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=Ps({inputs:{x:s},backend:n}),l=Ps({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var xne={kernelName:Lp,backendName:"webgl",kernelFunc:pi},u9="return (a < 0.) ? b * a : a;",c9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function bne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Mh(c9,r.shape,o.shape):new uc(u9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var vne={kernelName:Do,backendName:"webgl",kernelFunc:bne},d9="return (a < 0.) ? b * a : a;",p9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function wne(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Mh(p9,s.shape,r.shape):new uc(d9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var kne={kernelName:Go,backendName:"webgl",kernelFunc:wne},ld="if (isnan(x)) return x;",Ine=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Sne=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function ct({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Ui(o.shape,t):c=new pa(o.shape,e),i.runWebGLProgram(c,[o],l)}}function Rn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},S={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new uc(e,l.shape,u.shape);return c.runWebGLProgram(E,[k,S],On(b.dtype,w.dtype))}),x=pi({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||On(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?C.fromUint8ToStringArray(f):f,y=l.dtype==="string"?C.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Mh(t,l.shape,u.shape,n):h=new uc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function w2(e,t=!1){if(e==="linear")return t?nne:Yte;if(e==="relu")return t?rne:Qte;if(e==="elu")return t?sne:Jte;if(e==="relu6")return t?ane:ene;if(e==="prelu")return t?p9:d9;if(e==="leakyrelu")return t?c9:u9;if(e==="sigmoid")return t?one:tne;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var h9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=xs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${x};
int batchB = ${A};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},g7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},y7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},A7="return a * b;";function Yx(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=C.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new y7(g7.REAL,s.shape,r.shape),c=new y7(g7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=pi({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=Ite(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Mh(A7,s.shape,r.shape):o=new uc(A7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var Cne={kernelName:Wo,backendName:"webgl",kernelFunc:Yx};function Tne(e,t,n){let s=[sl(e.shape),...rl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[sl(t),...rl(t)],o=new o9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function be(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Dp(r.shape,l)&&!(c.texture!==null&&Dp(c.shape,l))?Tne(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var Nne={kernelName:_l,backendName:"webgl",kernelFunc:be},x7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},Ene=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,d="vec4";t==="all"?(o="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(o="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${c===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${c===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function Rne(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function au(e,t,n,s){let r=Rne(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new x7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new x7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new Ene({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var _ne=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=wt(this.rank),r=Dne(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function Dne(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var $ne=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=wt(this.rank),r=a9("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function k2(e,t,n){let s=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new $ne(e.shape,t):new _ne(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function Pne(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=C.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=k2(e,l,s),i=C.getInnerMostAxes(i.length,a)),C.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=C.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=be({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=sh(e.dtype),A=au(y,x,"sum",s),b=be({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function I2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Pne(r,a,o,n)}var Fne={kernelName:ei,backendName:"webgl",kernelFunc:I2};function ts(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=Zx(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=k2(r,a,o);return u}var One={kernelName:Hr,backendName:"webgl",kernelFunc:ts},f9=1e3;function Fm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=Xl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],S=be({inputs:{x:e},backend:r,attrs:{shape:w}}),E=be({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,E],P=Math.max(y,x),_=n?S.shape[1]:S.shape[2],$=a!=null,T=o!=null,F=l==="leakyrelu",G=l!=null?w2(l,!0):null,q=$||T||F||G!=null,z;if((h===1||f===1)&&_>f9&&q===!1){let B=S,ee=E;n&&(B=ts({inputs:{x:S},backend:r,attrs:{perm:[0,2,1]}}),R.push(B)),s&&(ee=ts({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),R.push(ee));let Q=f!==1,oe=f===1,Y=B;Q&&(Y=be({inputs:{x:B},backend:r,attrs:{shape:[P,_,1]}}),R.push(Y));let ae=f===1?2:1,le=ee;oe&&(le=be({inputs:{x:ee},backend:r,attrs:{shape:[P,1,_]}}),R.push(le));let ye=Yx({inputs:{a:Y,b:le},backend:r});z=I2({inputs:{x:ye},backend:r,attrs:{axis:ae,keepDims:!0}}),R.push(ye)}else{let B=On(e.dtype,t.dtype),ee=new h9(w,k,[P,h,f],n,s,$,G,T,F),Q=[S,E];if(a!=null&&Q.push(a),T&&Q.push(o),F){let oe=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));Q.push(oe),R.push(oe)}z=r.runWebGLProgram(ee,Q,B)}let K=be({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let B of R)r.disposeIntermediateTensorInfo(B);return K}function Mne(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return Fm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var zne={kernelName:Ja,backendName:"webgl",kernelFunc:Mne},b7="return abs(x);";function Lne(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=s9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ui(s.shape,b7):r=new pa(s.shape,b7),n.runWebGLProgram(r,[s],s.dtype)}var Bne={kernelName:il,backendName:"webgl",kernelFunc:Lne},Wne=hr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,Vne=ct({opSnippet:Wne}),Une={kernelName:pc,backendName:"webgl",kernelFunc:Vne},Gne=hr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,Hne=ct({opSnippet:Gne}),jne={kernelName:hc,backendName:"webgl",kernelFunc:Hne},v7="return a + b;",qne=Rn({opSnippet:v7,packedOpSnippet:v7,supportsComplex:!0,cpuKernelImpl:ate}),Xne={kernelName:xa,backendName:"webgl",kernelFunc:qne},Kne=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},Zne=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function im(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Ps({inputs:{x:s[0]},backend:n});if(s.length>Z().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=im({inputs:s.slice(0,l),backend:n}),c=im({inputs:s.slice(l),backend:n});return im({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>On(l,u)),a=s.map(l=>l.shape),i=Z().getBool("WEBGL_PACK")?new Zne(s[0].shape,a):new Kne(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var Yne={kernelName:po,backendName:"webgl",kernelFunc:im};function Jne(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ts({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("all",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=au(m,m.dtype,"all",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Qne={kernelName:fc,backendName:"webgl",kernelFunc:Jne};function ese(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ts({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,i)),C.assertAxesAreInnerMostDims("any",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=au(m,m.dtype,"any",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var tse={kernelName:mc,backendName:"webgl",kernelFunc:ese},nse=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},sse=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=wt(i),u=Qn("coords",i),c,p;if(a===1){p=i+1;let S=wt(p);c=`
${S} sourceLocR = ${S}(${u.join()}, 0);
++${u[i-1]};
${S} sourceLocG = ${S}(${u.join()}, 0);
++${u[i-2]};
${S} sourceLocA = ${S}(${u.join()}, 0);
--${u[i-1]};
${S} sourceLocB = ${S}(${u.join()}, 0);
--${u[i-2]};`}else p=i,c=`
${l} sourceLocR = coords;
++${u[i-1]};
${l} sourceLocG = coords;
++${u[i-2]};
${l} sourceLocA = coords;
--${u[i-1]};
${l} sourceLocB = coords;
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(S=>"int "+S),m=Qn("sourceLocR",p-1).concat("inIdx.r"),g=Qn("sourceLocG",p-1).concat("inIdx.g"),y=Qn("sourceLocB",p-1).concat("inIdx.b"),x=Qn("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function m9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=C.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new nse(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=m9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function g9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=C.computeOptimalWindowSize(a),i=new sse(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=g9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function y9(e,t,n,s){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!Z().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=C.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=be({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=m9(e,d,s);a.push(h);let f=be({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return g9(e,t,s)}function rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ts({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=y9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var ase={kernelName:ho,backendName:"webgl",kernelFunc:rse};function ose(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=ts({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=y9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var ise={kernelName:gc,backendName:"webgl",kernelFunc:ose},lse=hr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,use=ct({opSnippet:lse}),cse={kernelName:yc,backendName:"webgl",kernelFunc:use},dse=hr+"return log(x + sqrt(x * x + 1.0));",pse=ct({opSnippet:dse}),hse={kernelName:Ac,backendName:"webgl",kernelFunc:pse},fse=hr+`
return atan(x);
`,mse=ct({opSnippet:fse}),gse={kernelName:xc,backendName:"webgl",kernelFunc:mse},yse=Ine+`
return atan(a, b);
`,Ase=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+Sne+`
return result;
`,xse=Rn({opSnippet:yse,packedOpSnippet:Ase}),bse={kernelName:vc,backendName:"webgl",kernelFunc:xse},vse=hr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,wse=ct({opSnippet:vse}),kse={kernelName:bc,backendName:"webgl",kernelFunc:wse},$p=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let S=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${S} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${k}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${k}
}
}
setOutput(${A});
}
`}},Jx=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,S=a%4,E=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${E}
}
int xC = xCCorner + ${k};
if (${S===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${S===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${S===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function Ise(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;nd(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ps({inputs:{x:r},backend:n});let p=new $p(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Sse={kernelName:fo,backendName:"webgl",kernelFunc:Ise};function Cse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new Jx(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var Tse={kernelName:zp,backendName:"webgl",kernelFunc:Cse},Nse=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},Ese=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function Rse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new Ese(d);return n.runWebGLProgram(h,[r],o.dtype)}var _se={kernelName:Hm,backendName:"webgl",kernelFunc:Rse};function Dse(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;nd([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=C.computePool2DInfo(o.shape,i,l,1,u),p=new Nse(c);return n.runWebGLProgram(p,[r],o.dtype)}var $se={kernelName:Gm,backendName:"webgl",kernelFunc:Dse};function Pse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return Fm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Fse={kernelName:mo,backendName:"webgl",kernelFunc:Pse},Ose=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},Mse=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},zse=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=Z().getBool("WEBGL_PACK_NORMALIZATION")?new Mse(s.shape,r.shape,a.shape,c,p,l):new Ose(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},Lse={kernelName:Eo,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=wt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Wse(this.rank),s,r=e.map((a,o)=>`sourceLoc.${oy[o]} = start[${o}] + coords.${oy[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},oy=["x","y","z","w","u","v"];function Wse(e){if(e===1)return"sourceLoc";if(e<=6)return oy.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Vse=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=wt(this.rank),n=Qn("coords",this.rank),s=Qn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function Use(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Ut.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function ud(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ut.parseSliceParams(r,a,o);if(Ut.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=Dte(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Ut.isSliceContinous(r.shape,i,l);if(u||!c){let p=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Vse(l):new Bse(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Use(r,i,l,n)}var Gse={kernelName:Ol,backendName:"webgl",kernelFunc:ud},Hse=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=be({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ts({inputs:{x:f},backend:n,attrs:{perm:u}}),g=be({inputs:{x:m},backend:n,attrs:{shape:c}}),y=ud({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},jse={kernelName:ll,backendName:"webgl",kernelFunc:Hse};function qse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=n9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var Xse={kernelName:jm,backendName:"webgl",kernelFunc:qse};function Kse(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=C.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Zse={kernelName:qm,backendName:"webgl",kernelFunc:Kse},Yse="return float(a != b);",A9=Rn({opSnippet:Yse,cpuKernelImpl:Cte,dtype:"bool"}),Jse={kernelName:Sl,backendName:"webgl",kernelFunc:A9};function zh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ps({inputs:{x:r.complexTensorInfos.real},backend:n})}var Qse={kernelName:qp,backendName:"webgl",kernelFunc:zh},ere="return float(int(x));";function tre(e,t){let n=new pa(e.shape,ere),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function iy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Ps({inputs:{x:r},backend:n});let o=Wt(r.shape),i=iy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=pi({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=zh({inputs:{input:r},backend:n}),i=iy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Ps({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return tre(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=A9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var nre={kernelName:go,backendName:"webgl",kernelFunc:iy},w7="return ceil(x);",sre=ct({opSnippet:w7,packedOpSnippet:w7,cpuKernelImpl:ite}),rre={kernelName:yo,backendName:"webgl",kernelFunc:sre},are=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},ore=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function ire(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;Z().getBool("WEBGL_PACK_CLIP")?i=new ore(r.shape):i=new are(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var lre={kernelName:ba,backendName:"webgl",kernelFunc:ire},ure=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function k7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function cre(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new ure(s.shape),o=[k7(s,r.complexTensorInfos.real),k7(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var dre={kernelName:Bp,backendName:"webgl",kernelFunc:cre},pre=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},hre=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=wt(s),a=Qn("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${Yf(o,l,m)}),
vec2(${Yf(u,l,m)}));
}`}let d=i.length,h=i[i.length-1];p+=`
return getChannel(
getT${d}(${Yf(o,l,h)}),
vec2(${Yf(u,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function Yf(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function S2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return Ps({inputs:{x:r.complexTensorInfos.imag},backend:n})}var fre={kernelName:Gp,backendName:"webgl",kernelFunc:S2};function dp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>zh({inputs:{input:g},backend:n})),d=e.map(g=>S2({inputs:{input:g},backend:n})),h=dp(p,t,n),f=dp(d,t,n),m=pi({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return be({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=C.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=lte(d,h,s,f),g=C.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=Z().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h<e.length;h+=a){let f=e.slice(h,h+a);p.push(dp(f,t,n))}let d=dp(p,t,n);for(let h of p)n.disposeIntermediateTensorInfo(h);return d}if(Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new hre(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=mre(e,t,n),l=new pre(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=be({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function mre(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>be({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function x9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Ps({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),dp(i,a,n)}var gre={kernelName:ul,backendName:"webgl",kernelFunc:x9},b9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},yre=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},Are=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=xs(this.outputShape.length);let{dataFormat:n}=t,s=as(),r=n==="channelsLast",a=r?1:2,o=r?2:3,i=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
blockIndex = rc.z + ${c};
pos = rc.y + ${u};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+c}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+c}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function Om(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function v9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=Om(a.shape,h);b!=null&&(a=be({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=Om(r.shape,h);b!=null&&(r=be({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>f9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Dp(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let S=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(S);let E=Fm({a:w,b:S,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),R=s.texData.get(E.dataId);v.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,R.shape=n.outShape,g=Ps({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=be({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),k=be({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),S=Fm({a:h?w:k,b:h?k:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=be({inputs:{x:S},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(k),y.push(S)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function w9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let K=Om(a.shape,f);K!=null&&(a=be({inputs:{x:a},backend:s,attrs:{shape:K}}),b.push(a))}if(r!=null){let K=Om(r.shape,f);K!=null&&(r=be({inputs:{x:r},backend:s,attrs:{shape:K}}),b.push(r))}let w=be({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let k=new Are(y,n),S=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(k,[e],"float32",S),R=be({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(R);let P=r!=null,_=a!=null,$=i==="leakyrelu",T=i?w2(i,!0):null,F=new h9(f?R.shape:w.shape,f?w.shape:R.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,P,T,_,$),G=f?[R,w]:[w,R];if(r&&G.push(r),_&&G.push(a),$){let K=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));G.push(K),b.push(K)}let q=s.runWebGLProgram(F,G,"float32"),z=be({inputs:{x:q},backend:s,attrs:{shape:n.outShape}});b.push(q);for(let K of b)s.disposeIntermediateTensorInfo(K);return z}function xre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=v9({x:r,filter:a,convInfo:d,backend:n});else if(Z().getBool("WEBGL_CONV_IM2COL"))h=w9({x:r,filter:a,convInfo:d,backend:n});else{let m=new b9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=be({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var bre={kernelName:Ao,backendName:"webgl",kernelFunc:xre},vre=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},wre=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},kre=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},Ire=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function Sre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new vre(d);return n.runWebGLProgram(h,[r,a],"float32")}var Cre={kernelName:Xm,backendName:"webgl",kernelFunc:Sre};function Tre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new wre(d);return n.runWebGLProgram(h,[r,a],"float32")}var Nre={kernelName:xo,backendName:"webgl",kernelFunc:Tre};function Ere(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new yre(u);return n.runWebGLProgram(c,[r,a],"float32")}var Rre={kernelName:Wp,backendName:"webgl",kernelFunc:Ere};function _re(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=C.computeConv3DInfo(r.shape,l,o,1,i),c=new kre(u);return n.runWebGLProgram(c,[r,a],"float32")}var Dre={kernelName:Km,backendName:"webgl",kernelFunc:_re};function $re(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=C.computeConv3DInfo(l,a.shape,i,1,o),c=new Ire(u);return n.runWebGLProgram(c,[r,a],"float32")}var Pre={kernelName:Zm,backendName:"webgl",kernelFunc:$re},Fre=ld+`
return cos(x);
`,Ore=ct({opSnippet:Fre}),Mre={kernelName:bo,backendName:"webgl",kernelFunc:Ore},zre=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Lre=ct({opSnippet:zre}),Bre={kernelName:vo,backendName:"webgl",kernelFunc:Lre},Wre=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${A};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Vre=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Wre(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Ure={kernelName:dl,backendName:"webgl",kernelFunc:Vre},Pp;(function(e){e.Prod="*",e.Sum="+"})(Pp||(Pp={}));var I7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Pp.Prod?"1.0":"0.0",o=n?a:`getX(${S7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${wt(r)} coords = getOutputCoords();
int end = ${C7(r,"coords",this.op)};
float val = ${o};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${C7(r,"coords",this.op)} = idx;
val ${this.op}= getX(${S7(r,"coords",this.op)});
}
setOutput(val);
}
`}};function S7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function C7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function k9(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=ts({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Ps({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new I7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new I7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=ts({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function Gre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return k9(Pp.Prod,r,n,a,o,i)}var Hre={kernelName:cl,backendName:"webgl",kernelFunc:Gre};function jre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return k9(Pp.Sum,r,n,a,o,i)}var qre={kernelName:wo,backendName:"webgl",kernelFunc:jre};function Xre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=ote(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Kre={kernelName:Ym,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Yre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Zre(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Jre={kernelName:pl,backendName:"webgl",kernelFunc:Yre},I9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=xs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${c}
${u}
setOutput(result);
}
`}},S9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=xs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;d+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<c;g++)d+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
xC = xCCorner + ${y*l};
`,i===1){if(y<c&&(o%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?d+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1&&(d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
xTexelC${y}Ready = 1;
}
`),d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):x===1?d+=`
xC${y+1} = xTexelC${y};
`:d+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<c&&(o%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<c&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<c&&(d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<c&&(d+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<c&&(d+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}d+=`
}
`,d+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function Qre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=C.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new S9(p):d=new I9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var eae={kernelName:ko,backendName:"webgl",kernelFunc:Qre},tae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},nae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=C.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new tae(p);return n.runWebGLProgram(d,[r,a],"float32")}var rae={kernelName:Jm,backendName:"webgl",kernelFunc:sae};function aae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=C.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new nae(p);return n.runWebGLProgram(d,[r,a],"float32")}var oae={kernelName:Qm,backendName:"webgl",kernelFunc:aae},iae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function lae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=be({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new iae(a),l=n.runWebGLProgram(i,[o],o.dtype),u=be({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var uae={kernelName:e0,backendName:"webgl",kernelFunc:lae},cae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${c}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function dae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=C.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new cae(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=be({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var pae={kernelName:Vp,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=ts({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=be({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=Yx({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=I2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var fae={kernelName:Up,backendName:"webgl",kernelFunc:hae},mae="return (x >= 0.0) ? x : (exp(x) - 1.0);",gae=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,yae=ct({opSnippet:mae,packedOpSnippet:gae}),Aae={kernelName:So,backendName:"webgl",kernelFunc:yae},xae="return (b >= 1.0) ? a : a * (b + 1.0);",bae=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,vae=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=Z().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Mh(bae,s.shape,r.shape):new uc(xae,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},wae={kernelName:t0,backendName:"webgl",kernelFunc:vae},kae=`
return vec4(equal(a, b));
`,Iae="return float(a == b);",Sae=Rn({opSnippet:Iae,packedOpSnippet:kae,dtype:"bool",cpuKernelImpl:ute}),Cae={kernelName:hl,backendName:"webgl",kernelFunc:Sae},Tae=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,Nae=ct({opSnippet:Tae}),Eae={kernelName:wc,backendName:"webgl",kernelFunc:Nae},Rae=ld+`
return exp(x);
`,_ae=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,C9=ct({opSnippet:Rae,packedOpSnippet:_ae,cpuKernelImpl:cte,dtype:"float32"}),Dae={kernelName:Co,backendName:"webgl",kernelFunc:C9};function ly(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),be({inputs:{x:a},backend:s,attrs:{shape:i}})}var $ae={kernelName:fl,backendName:"webgl",kernelFunc:ly},T7="return exp(x) - 1.0;",Pae=ct({opSnippet:T7,packedOpSnippet:T7,cpuKernelImpl:dte}),Fae={kernelName:ml,backendName:"webgl",kernelFunc:Pae},N7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function T9(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=be({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new N7("real",l,t),c=new N7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=pi({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=be({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function Oae(e){let{inputs:t,backend:n}=e,{input:s}=t;return T9(s,!1,n)}var Mae={kernelName:n0,backendName:"webgl",kernelFunc:Oae},zae=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function Lh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new zae(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var Lae={kernelName:kc,backendName:"webgl",kernelFunc:Lh},Bae=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Wae={kernelName:gl,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Bae(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},E7="return floor(x);",Vae=ct({opSnippet:E7,packedOpSnippet:E7,cpuKernelImpl:pte}),Uae={kernelName:To,backendName:"webgl",kernelFunc:Vae},Gae=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Hae=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,jae=Rn({opSnippet:Gae,packedOpSnippet:Hae,dtype:"int32"}),qae={kernelName:No,backendName:"webgl",kernelFunc:jae},Xae=class{constructor(e){this.variableNames=["A"];let t=as(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},Kae=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=as(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Zae={kernelName:bp,backendName:"webgl",kernelFunc:Yae},Fu;function Yae(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];(i||o)&&(Fu==null&&(Fu=document.createElement("canvas").getContext("2d")),Fu.canvas.width=l,Fu.canvas.height=u,Fu.drawImage(r,0,0,l,u),r=Fu.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=qs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=Z().getBool("WEBGL_PACK")?new Kae(p):new Xae(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Jae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=v9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(Z().getBool("WEBGL_CONV_IM2COL"))y=w9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let b=o!=null,w=i!=null,k=h==="leakyrelu",S=h?w2(h,!1):null,E=new b9(g,b,S,w,k),R=[r,a],P=(_,$)=>{if($==="NCHW"&&_.shape.length===1&&_.shape[0]!==1){let T=be({inputs:{x:_},backend:n,attrs:{shape:[_.shape[0],1,1]}});return x.push(T),T}return _};if(b&&R.push(P(o,c)),w&&R.push(P(i,c)),k){let _=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));R.push(_),x.push(_)}y=n.runWebGLProgram(E,R,"float32")}let A=be({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Qae={kernelName:Qa,backendName:"webgl",kernelFunc:Jae};function eoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=C.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=Z().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?w2(d,y):null,A=[r,a],b=o!=null,w=i!=null,k=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),k){let P=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push(P),f.push(P)}let S;y?S=new S9(g,b,x,w,k):S=new I9(g,b,x,w,k);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=n.runWebGLProgram(S,A,"float32",E);return f.forEach(P=>n.disposeIntermediateTensorInfo(P)),R}var toe={kernelName:eo,backendName:"webgl",kernelFunc:eoe},noe=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=wt(t.length),a=wt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=wt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${r} strides = ${r}(${this.strides});
${i} paramsShape = ${i}(${this.paramsShape});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${o};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function soe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=be({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=be({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=hte(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new noe(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var roe={kernelName:Al,backendName:"webgl",kernelFunc:soe},aoe=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=wt(this.rank),s=ooe(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${s}));
}
`}};function ooe(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function N9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(Z().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=be({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=be({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=fte(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new aoe(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=be({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var ioe={kernelName:yl,backendName:"webgl",kernelFunc:N9},loe="return float(a > b);",uoe=`
return vec4(greaterThan(a, b));
`,coe=Rn({opSnippet:loe,packedOpSnippet:uoe,cpuKernelImpl:mte,dtype:"bool"}),doe={kernelName:xl,backendName:"webgl",kernelFunc:coe},poe="return float(a >= b);",hoe=`
return vec4(greaterThanEqual(a, b));
`,foe=Rn({opSnippet:poe,packedOpSnippet:hoe,dtype:"bool",cpuKernelImpl:gte}),moe={kernelName:Ro,backendName:"webgl",kernelFunc:foe};function goe(e){let{inputs:t,backend:n}=e,{input:s}=t;return T9(s,!0,n)}var yoe={kernelName:s0,backendName:"webgl",kernelFunc:goe},Aoe="return float(!isnan(x) && !isinf(x));",xoe=ct({opSnippet:Aoe,dtype:"bool"}),boe={kernelName:Ic,backendName:"webgl",kernelFunc:xoe},voe="return float(isinf(x));",woe=ct({opSnippet:voe,dtype:"bool"}),koe={kernelName:Sc,backendName:"webgl",kernelFunc:woe},Ioe="return float(isnan(x));",Soe=ct({opSnippet:Ioe,dtype:"bool"}),Coe={kernelName:Cc,backendName:"webgl",kernelFunc:Soe},Toe="return float(a < b);",Noe=`
return vec4(lessThan(a, b));
`,Eoe=Rn({opSnippet:Toe,packedOpSnippet:Noe,cpuKernelImpl:yte,dtype:"bool"}),Roe={kernelName:bl,backendName:"webgl",kernelFunc:Eoe},_oe="return float(a <= b);",Doe=`
return vec4(lessThanEqual(a, b));
`,$oe=Rn({opSnippet:_oe,packedOpSnippet:Doe,cpuKernelImpl:Ate,dtype:"bool"}),Poe={kernelName:vl,backendName:"webgl",kernelFunc:$oe};function Foe(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=xte(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var Ooe={kernelName:r0,backendName:"webgl",kernelFunc:Foe},Moe=ld+`
return x < 0.0 ? 0./0. : log(x);
`,zoe=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,Loe=ct({opSnippet:Moe,packedOpSnippet:zoe,cpuKernelImpl:bte}),Boe={kernelName:$o,backendName:"webgl",kernelFunc:Loe},Woe=ld+`
return log(1.0 + x);
`,Voe=ct({opSnippet:Woe}),Uoe={kernelName:Tc,backendName:"webgl",kernelFunc:Voe},Goe="return float(a >= 1.0 && b >= 1.0);",Hoe=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,joe=Rn({opSnippet:Goe,packedOpSnippet:Hoe,dtype:"bool"}),qoe={kernelName:wl,backendName:"webgl",kernelFunc:joe},Xoe="return float(!(x >= 1.0));",Koe=ct({opSnippet:Xoe}),Zoe={kernelName:kl,backendName:"webgl",kernelFunc:Koe},Yoe="return float(a >= 1.0 || b >= 1.0);",Joe=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Qoe=Rn({opSnippet:Yoe,packedOpSnippet:Joe,dtype:"bool"}),eie={kernelName:Nc,backendName:"webgl",kernelFunc:Qoe},tie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},nie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},sie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=Z().getBool("WEBGL_PACK_NORMALIZATION")?new nie(r.shape,a,o,i,l):new tie(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},rie={kernelName:Hp,backendName:"webgl",kernelFunc:sie},aie=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},oie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new aie(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},iie={kernelName:a0,backendName:"webgl",kernelFunc:oie};function lie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=au(i,e.dtype,"max",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function E9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let S=0;S<b.length;S++)b[S]=r.shape[c[S]];let w=Zx(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=k2(r,c,n);u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("max",u,i);let[f,m]=C.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=C.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=vte(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=lie(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var uie={kernelName:Po,backendName:"webgl",kernelFunc:E9},cie=l9+`
return max(a, b);
`,die=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+v2+`
return result;
`,pie=Rn({opSnippet:cie,packedOpSnippet:die,cpuKernelImpl:wte}),hie={kernelName:Fo,backendName:"webgl",kernelFunc:pie};function fie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;nd(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(C.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Ps({inputs:{x:r},backend:n});let p=new $p(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var mie={kernelName:Oo,backendName:"webgl",kernelFunc:fie};function gie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=C.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new Jx(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var yie={kernelName:jp,backendName:"webgl",kernelFunc:gie},Aie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},xie=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function bie(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=C.computePool3DInfo(o.shape,i,l,p,u,c),h=new Jx(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new xie(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var vie={kernelName:i0,backendName:"webgl",kernelFunc:bie};function wie(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;nd([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=C.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new $p(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new Aie(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var kie={kernelName:o0,backendName:"webgl",kernelFunc:wie};function Iie(e,t,n,s){let r=new $p(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new $p(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var Sie={kernelName:l0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(C.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=C.computePool2DInfo(s.shape,r,a,u,o),[p,d]=Iie(s,i,c,l);return[p,d]}};function Cie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=be({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=au(i,"float32","mean",s),u=be({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var Tie={kernelName:Mo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=C.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let k=Zx(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let S=o.texData.get(f.dataId);S.values=k}else f=k2(s,c,o);h.push(f),u=C.getInnerMostAxes(u.length,i)}C.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=C.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=C.expandShapeToKeepDim(m,l));let x=Cie(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function Nie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=C.getAxesPermutation(u,i),p=r;c!=null&&(p=ts({inputs:{x:r},backend:n,attrs:{perm:c}}),u=C.getInnerMostAxes(u.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",u,i);let[d,h]=C.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=be({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=au(m,m.dtype,"min",n),y;if(o){let x=C.expandShapeToKeepDim(d,l);y=be({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=be({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Eie={kernelName:zo,backendName:"webgl",kernelFunc:Nie},Rie=l9+`
return min(a, b);
`,_ie=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+v2+`
return result;
`,Die=Rn({opSnippet:Rie,packedOpSnippet:_ie,cpuKernelImpl:kte}),$ie={kernelName:Lo,backendName:"webgl",kernelFunc:Die},Pie=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=wt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},Fie=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=wt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=Qn("rc",s),l=Qn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},Oie=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Fie(s.shape,r,a):new Pie(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},Mie={kernelName:Bo,backendName:"webgl",kernelFunc:Oie},zie=`if (b == 0.0) return NAN;
return mod(a, b);`,Lie=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+v2+`
return result;
`,Bie=Rn({opSnippet:zie,packedOpSnippet:Lie}),Wie={kernelName:Ec,backendName:"webgl",kernelFunc:Bie},Vie=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Uie=`
if (a == b) {
return 1.0;
};
return a / b;`,Gie=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,R9=Rn({opSnippet:Uie,packedOpSnippet:Gie,checkOutOfBounds:!0}),Hie={kernelName:Io,backendName:"webgl",kernelFunc:R9},R7="return a - b;",_9=Rn({opSnippet:R7,packedOpSnippet:R7,supportsComplex:!0,cpuKernelImpl:Bte}),jie={kernelName:si,backendName:"webgl",kernelFunc:_9};function D9(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=E9({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=be({inputs:{x:i},backend:n,attrs:{shape:l}}),c=_9({inputs:{a:r,b:u},backend:n}),p=C9({inputs:{x:c},backend:n}),d=I2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=be({inputs:{x:d},backend:n,attrs:{shape:l}}),f=R9({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var qie={kernelName:ti,backendName:"webgl",kernelFunc:D9};function Xie(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:D9({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Vie(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var Kie={kernelName:u0,backendName:"webgl",kernelFunc:Xie},Zie=hr+`
return -x;
`,Yie=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Jie(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=Ste(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return Z().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Ui(s.shape,Yie):r=new pa(s.shape,Zie),n.runWebGLProgram(r,[s],s.dtype)}var Qie={kernelName:Il,backendName:"webgl",kernelFunc:Jie},ele=dr.nonMaxSuppressionV3Impl;function tle(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=ele(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var nle={kernelName:Cl,backendName:"webgl",kernelFunc:tle},sle=dr.nonMaxSuppressionV4Impl;function rle(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=sle(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var ale={kernelName:Rc,backendName:"webgl",kernelFunc:rle},ole=dr.nonMaxSuppressionV5Impl;function ile(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=ole(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var lle={kernelName:Tl,backendName:"webgl",kernelFunc:ile},ule=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},cle=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=v.sizeFromShape(r.shape),u=new ule(l,a,o,i),c=be({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[c],r.dtype);n.disposeIntermediateTensorInfo(c);let d=[...r.shape,a],h=be({inputs:{x:p},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(p),h},dle={kernelName:El,backendName:"webgl",kernelFunc:cle};function Mm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=zh({inputs:{input:s},backend:n}),a=Mm({inputs:{x:r},backend:n}),o=S2({inputs:{input:s},backend:n}),i=Mm({inputs:{x:o},backend:n}),l=pi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Lh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var ple={kernelName:Hl,backendName:"webgl",kernelFunc:Mm};function $9(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=zh({inputs:{input:s},backend:n}),a=$9({inputs:{x:r},backend:n}),o=S2({inputs:{input:s},backend:n}),i=Mm({inputs:{x:o},backend:n}),l=pi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return Lh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var hle={kernelName:Nl,backendName:"webgl",kernelFunc:$9};function fle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return ly({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=ly({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=x9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var mle={kernelName:Rl,backendName:"webgl",kernelFunc:fle},gle=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=wt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},yle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=wt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=Qn("rc",s),l=Qn("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${u}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${p[f]}
if (${d}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${c});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},P9=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return Lh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yle(r.shape,a,o):new gle(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},Ale={kernelName:Vo,backendName:"webgl",kernelFunc:P9},xle=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,ble=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+v2+`
return result;
`,vle=Rn({opSnippet:xle,packedOpSnippet:ble}),wle={kernelName:Uo,backendName:"webgl",kernelFunc:vle};function kle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=C.getAxesPermutation(c,i),d=r;p!=null&&(d=ts({inputs:{x:r},backend:n,attrs:{perm:p}}),c=C.getInnerMostAxes(c.length,i),l.push(d)),C.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=Tte(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=C.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=be({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=sh(r.dtype),A=au(y,x,"prod",n);h=be({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=C.expandShapeToKeepDim(h.shape,u);h=be({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var Ile={kernelName:Ho,backendName:"webgl",kernelFunc:kle},F9=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=Nte(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},Sle={kernelName:_c,backendName:"webgl",kernelFunc:F9},Cle="return 1.0 / x;",Tle=ct({opSnippet:Cle}),Nle={kernelName:Dc,backendName:"webgl",kernelFunc:Tle},Ele=hr+`
return (x < 0.0) ? 0.0 : x;
`,Rle=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,_le=ct({opSnippet:Ele,packedOpSnippet:Rle}),Dle={kernelName:jo,backendName:"webgl",kernelFunc:_le},$le=hr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,Ple=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Fle=ct({opSnippet:$le,packedOpSnippet:Ple}),Ole={kernelName:Ko,backendName:"webgl",kernelFunc:Fle},Mle=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},zle=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Lle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new zle(r.shape,l,u,a,o):new Mle(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Ble={kernelName:Xo,backendName:"webgl",kernelFunc:Lle},Wle=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Vle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Wle(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Ule={kernelName:d0,backendName:"webgl",kernelFunc:Vle},Gle=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},Hle=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function jle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=Z().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Hle(r.shape,l,u,a,o):new Gle(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var qle={kernelName:qo,backendName:"webgl",kernelFunc:jle},Xle=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Kle(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Xle(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Zle={kernelName:c0,backendName:"webgl",kernelFunc:Kle},Yle=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=wt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Jle=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=Qn("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=wt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${u(s.slice())};
if(${r}) {
result.a = ${c(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Qle(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return Ps({inputs:{x:r},backend:n});let l=Z().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Jle(r.shape,i):new Yle(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var eue={kernelName:Dl,backendName:"webgl",kernelFunc:Qle},tue=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},nue={kernelName:jl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new tue(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},sue=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,rue=ct({opSnippet:sue}),aue={kernelName:$l,backendName:"webgl",kernelFunc:rue},oue="return inversesqrt(x);",iue=ct({opSnippet:oue,cpuKernelImpl:Ete}),lue={kernelName:Zo,backendName:"webgl",kernelFunc:iue},O9=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=wt(r.length),l=wt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function uue(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=be({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=be({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new O9(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=be({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var cue={kernelName:Pl,backendName:"webgl",kernelFunc:uue},due=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=Z().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${o}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${i} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function pue(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new due(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var hue={kernelName:p0,backendName:"webgl",kernelFunc:pue},fue=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=wt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function mue(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new fue(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],On(r.dtype,a.dtype))}var gue={kernelName:Fl,backendName:"webgl",kernelFunc:mue},yue=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Aue=ct({opSnippet:yue}),xue={kernelName:$c,backendName:"webgl",kernelFunc:Aue},bue=ld+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,vue=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,wue=ct({opSnippet:bue,packedOpSnippet:vue,cpuKernelImpl:_te}),kue={kernelName:Jo,backendName:"webgl",kernelFunc:wue},Iue=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,Sue=ct({opSnippet:Iue}),Cue={kernelName:Pc,backendName:"webgl",kernelFunc:Sue},Tue=ld+`
return sin(x);
`,Nue=ct({opSnippet:Tue}),Eue={kernelName:Yo,backendName:"webgl",kernelFunc:Nue},Rue=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,_ue=ct({opSnippet:Rue}),Due={kernelName:Ml,backendName:"webgl",kernelFunc:_ue},$ue=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,Pue=ct({opSnippet:$ue}),Fue={kernelName:Fc,backendName:"webgl",kernelFunc:Pue},Oue=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=P9({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=be({inputs:{x:c},backend:n,attrs:{shape:p}}),m=ts({inputs:{x:f},backend:n,attrs:{perm:d}}),g=be({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},Mue={kernelName:zl,backendName:"webgl",kernelFunc:Oue};function zue(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=$te(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Lue={kernelName:Xp,backendName:"webgl",kernelFunc:zue};function Bue(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Pte(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Wue={kernelName:Oc,backendName:"webgl",kernelFunc:Bue};function Vue(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=r9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Uue={kernelName:Kp,backendName:"webgl",kernelFunc:Vue};function Gue(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=r9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var Hue={kernelName:Zp,backendName:"webgl",kernelFunc:Gue};function jue(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=Rte(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new O9(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=be({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var que={kernelName:Yp,backendName:"webgl",kernelFunc:jue};function Xue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=ud({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Kue={kernelName:Ll,backendName:"webgl",kernelFunc:Xue},_7="return sqrt(x);",Zue=ct({opSnippet:_7,packedOpSnippet:_7,cpuKernelImpl:Fte}),Yue={kernelName:Qo,backendName:"webgl",kernelFunc:Zue},Jue="return x * x;",Que=ct({opSnippet:Jue}),ece={kernelName:Mc,backendName:"webgl",kernelFunc:Que},D7="return (a - b) * (a - b);",tce=Rn({opSnippet:D7,packedOpSnippet:D7}),nce={kernelName:ni,backendName:"webgl",kernelFunc:tce};function sce({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=hr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new pa(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var rce={kernelName:ai,backendName:"webgl",kernelFunc:sce},ace=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=wt(n.length),a=wt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function oce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ut.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=be({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let S=Ut.computeOutShape(x,A,b),E=ud({inputs:{x:r},backend:n,attrs:{begin:x,size:S}});w=be({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),R=Le(r.shape,r.dtype,E),P=Ote(h,R,b,x);w=n.makeTensorInfo(f,r.dtype,P.values)}else{let E=new ace(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let k=be({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var ice={kernelName:Bl,backendName:"webgl",kernelFunc:oce};function lce(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=Mte(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var uce={kernelName:zc,backendName:"webgl",kernelFunc:lce};function cce(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=zte(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var dce={kernelName:Jp,backendName:"webgl",kernelFunc:cce};function pce(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=Lte(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var hce={kernelName:Qp,backendName:"webgl",kernelFunc:pce},fce="return tan(x);",mce=ct({opSnippet:fce}),gce={kernelName:Wl,backendName:"webgl",kernelFunc:mce},yce=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,Ace=ct({opSnippet:yce}),xce={kernelName:ri,backendName:"webgl",kernelFunc:Ace},bce=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=wt(this.rank),r=vce(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function vce(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function M9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=Le(r.shape,r.dtype,u),p=Wte(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new bce(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var wce={kernelName:va,backendName:"webgl",kernelFunc:M9},kce=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},Ice=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function $i(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function $7(e){let t=1;for(;t<e;)t*=2;return t}function Sce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=Z().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=Z().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let P=n.readSync(r.dataId),[_,$]=Vte(P,u,r.dtype,a,o);return[n.makeTensorInfo(_.shape,_.dtype,_.values),n.makeTensorInfo($.shape,$.dtype,$.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,Lh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=be({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&$i(n,h);let y=$7(a),x=$7(c),A=null,b=()=>A===null?[g,g]:[g,A],w=(P,_,$)=>{let T=b(),F=new kce($),q=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[P],[_]],z=A;A=n.runWebGLProgram(F,T,"int32",q),$i(n,z)};for(let P=1;P<y;P*=2){let _=P*2;for(let $=P;$>=1;$/=2)w(_,$,[m,x])}for(let P=x;P>y;P/=2){let _=b(),$=new Ice([m,P/2]),F=[[c],[A===null?1:0],[y]],G=A;A=n.runWebGLProgram($,_,"int32",F),$i(n,G);let q=y/2,z=q*2;for(let K=q;K>=1;K/=2)w(z,K,A.shape)}let k=A;A=ud({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),$i(n,k);let S=N9({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});$i(n,g);let E=u.slice(0,-1);E.push(a),k=A,A=be({inputs:{x:A},attrs:{shape:E},backend:n}),$i(n,k);let R=S;return S=be({inputs:{x:S},attrs:{shape:E},backend:n}),$i(n,R),[S,A]}var Cce={kernelName:Vl,backendName:"webgl",kernelFunc:Sce},Tce=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function Nce(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Tce(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var Ece={kernelName:Ul,backendName:"webgl",kernelFunc:Nce};function Rce(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;nd(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Ute(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var _ce={kernelName:h0,backendName:"webgl",kernelFunc:Rce};function Dce(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=ud({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=be({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var $ce={kernelName:Gl,backendName:"webgl",kernelFunc:Dce},Pce=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function Fce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=C.getAxesPermutation([u],i),p=r;c!=null&&(p=ts({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=C.getInnerMostAxes(1,i)[0]);let d=C.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=be({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=sh(r.dtype),g=(b,w,k,S,E)=>{let R=b.shape[0],P=b.shape[1],_=C.segment_util.segOpComputeOptimalWindowSize(P,E),$={windowSize:_,inSize:P,batchSize:R,numSegments:E},T=new Pce($,w),F=n.compileAndRun(T,[b,k],S);if(l.push(F),F.shape[1]===E)return F;let G=F9({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),q=M9({inputs:{x:G},backend:n,attrs:{reps:[P/_]}});return l.push(G),l.push(q),g(F,w,q,S,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=be({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=C.getUndoAxesPermutation(c);A=ts({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var Oce={kernelName:eh,backendName:"webgl",kernelFunc:Fce},Mce=[zne,Bne,Une,jne,Xne,Yne,Qne,tse,ase,ise,cse,hse,gse,bse,kse,Sse,Tse,_se,$se,Fse,Lse,jse,Xse,Zse,nre,rre,lre,xne,dre,gre,bre,Cre,Nre,Rre,Dre,Pre,Mre,Bre,Ure,Hre,qre,Kre,Jre,eae,rae,oae,uae,pae,fae,Aae,wae,Cae,Eae,Dae,$ae,Fae,Mae,Lae,Wae,Uae,qae,Zae,Qae,toe,roe,ioe,doe,moe,Ane,yoe,fre,boe,koe,Coe,vne,Roe,Poe,Ooe,Boe,Uoe,qoe,Zoe,eie,rie,iie,uie,hie,mie,yie,vie,kie,Sie,Tie,Eie,$ie,Mie,Wie,Kie,Cne,Qie,nle,ale,lle,Jse,dle,hle,mle,Ale,wle,kne,Ile,Sle,Qse,Hie,Nle,Dle,Ole,Nne,Ble,Ule,qle,Zle,eue,nue,aue,lue,cue,hue,gue,xue,kue,Cue,Eue,Due,Gse,qie,Fue,Mue,Lue,Wue,Uue,Hue,que,Kue,Yue,ece,nce,rce,ice,uce,dce,hce,jie,Fne,gce,xce,wce,Cce,Ece,One,_ce,$ce,Oce,ple];for(let e of Mce)cr(e);var Ht;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Ht||(Ht={}));var Fp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Fp||(Fp={}));var z9;function zce(e){z9=e.wasm.cwrap(Ja,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Lce(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Fp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=Xl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),S=new Uint8Array(new Int32Array(a.shape).buffer);return z9(d,k,r.shape.length,h,S,a.shape.length,l,u,g,f,m,p||0,w),b}var Bce={kernelName:Ja,backendName:"wasm",setupFunc:zce,kernelFunc:Lce};function In(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,Ht[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Wce=In(il);function _n(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=C.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,Ht[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Vce=!0,Uce=_n(xa,Vce),L9;function Gce(e){L9=e.wasm.cwrap(po,null,["array","number","number","number"])}function Hce(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return L9(a,r.length,Ht[s.dtype],o),s}var jce={kernelName:po,backendName:"wasm",setupFunc:Gce,kernelFunc:Hce};function C2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var qce={kernelName:_o,backendName:"wasm",kernelFunc:C2},B9;function Xce(e){B9=e.wasm.cwrap(Hr,null,["number","array","number","number","number","array","number"])}function lo(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Zce(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Kce(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=C2({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return B9(c,h,l.shape.length,Ht[l.dtype],p,d,a.length),u}function Kce(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Zce(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Yce={kernelName:Hr,backendName:"wasm",kernelFunc:lo,setupFunc:Xce};function hi(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=C.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=C.getInnerMostAxes(o.length,r),l=lo({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var W9;function Jce(e){W9=e.wasm.cwrap(fc,null,["number, number, number"])}function Qce(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("all",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;W9(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var ede={kernelName:fc,backendName:"wasm",setupFunc:Jce,kernelFunc:Qce},V9;function tde(e){V9=e.wasm.cwrap(mc,null,["number, number, number"])}function nde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("any",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;V9(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var sde={kernelName:mc,backendName:"wasm",setupFunc:tde,kernelFunc:nde},U9;function rde(e){U9=e.wasm.cwrap(ho,null,["number","number","number","number","number"])}function ade(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=hi(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return U9(i,Ht[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var ode={kernelName:ho,backendName:"wasm",kernelFunc:ade,setupFunc:rde},G9;function ide(e){G9=e.wasm.cwrap(fo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function lde(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return G9(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var ude={kernelName:fo,backendName:"wasm",setupFunc:ide,kernelFunc:lde};function hs(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var cde={kernelName:_l,backendName:"wasm",kernelFunc:hs},H9;function dde(e){H9=e.wasm.cwrap(mo,null,["number","array","number","number","array","number","number","number","number"])}function pde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=Xl.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=hs({inputs:{x:r},backend:n,attrs:{shape:b}}),S=hs({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(k.dataId).id,R=n.dataIdMap.get(S.dataId).id,P=o?k.shape[2]:k.shape[1],_=i?S.shape[1]:S.shape[2],$=Math.max(g,y),T=n.makeOutput([$,P,_],k.dtype),F=n.dataIdMap.get(T.dataId).id,G=new Uint8Array(new Int32Array(k.shape).buffer),q=new Uint8Array(new Int32Array(S.shape).buffer);return H9(E,G,k.shape.length,R,q,S.shape.length,o,i,F),n.disposeData(k.dataId),n.disposeData(S.dataId),T.shape=A,T}var hde={kernelName:mo,backendName:"wasm",setupFunc:dde,kernelFunc:pde};function al(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Ut.parseSliceParams(t,n,s),i=Ut.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Ut.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=_m(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)fde(l,c[0],d,a,o);else if(h===3)mde(l,c[0],c[1],d,a,o);else if(h===4)gde(l,c[0],c[1],c[2],d,a,o);else{let f=_m(l,a,o,t.shape,t.dtype);d.set(f)}return u}function fde(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function mde(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function gde(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var yde={kernelName:Ol,backendName:"wasm",kernelFunc:al};function Ade(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=hs({inputs:{x:r},backend:n,attrs:{shape:l}}),f=lo({inputs:{x:h},backend:n,attrs:{perm:u}}),m=hs({inputs:{x:f},backend:n,attrs:{shape:c}}),g=al({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var xde={kernelName:ll,backendName:"wasm",kernelFunc:Ade};function cd(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var bde={kernelName:go,backendName:"wasm",kernelFunc:cd},vde=In(yo),j9;function wde(e){j9=e.wasm.cwrap(ba,null,["number","number","number","number"])}function kde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return j9(i,a,o,u),l}var Ide={kernelName:ba,backendName:"wasm",setupFunc:wde,kernelFunc:kde};function q9(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return C2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(C.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return hs({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=C.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Nx(f,r,t[0].dtype,m),y=C.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=C.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var Sde={kernelName:ul,backendName:"wasm",kernelFunc:q9},X9;function Cde(e){X9=e.wasm.cwrap(Ao,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Tde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=C.convertConv2DDataFormat(d),f=C.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,S=f.strideHeight,E=f.strideWidth,R=f.inChannels,P=f.outChannels,_=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let $=s.makeOutput(f.outShape,"float32"),T=s.dataIdMap.get($.dataId).id;return X9(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,_,w,k,S,E,R,P,T),$}var Nde={kernelName:Ao,backendName:"wasm",setupFunc:Cde,kernelFunc:Tde},K9;function Ede(e){K9=e.wasm.cwrap(xo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Rde(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:k,strideHeight:S,strideWidth:E}=h,R=m-1-h.padInfo.top,P=g-1-h.padInfo.left,_=h.dataFormat==="channelsLast",$=v.computeStrides(h.inShape),T=v.computeStrides(r.shape),[F,G,q]=v.computeStrides(a.shape),z=$[0],K=_?$[1]:$[2],B=_?$[2]:1,ee=_?1:$[1],Q=T[0],oe=_?T[1]:T[2],Y=_?T[2]:1,ae=_?1:T[1],le=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(le.dataId).id,we=t.dataIdMap.get(r.dataId).id,Re=t.dataIdMap.get(a.dataId).id;return K9(we,Re,f,m,g,x,A,y,w,k,b,S,E,R,P,F,G,q,z,K,B,ee,Q,oe,Y,ae,ye),le}var _de={kernelName:xo,backendName:"wasm",setupFunc:Ede,kernelFunc:Rde},Dde=In(bo),$de=In(vo),uy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(uy||(uy={}));var Z9;function Pde(e){Z9=e.wasm.cwrap(dl,null,["number","number","number","number","array","number","number","number","number","number"])}function Fde(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=cd({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return Z9(g,y,x,c,w,p,d,uy[r],a,b),m!=null&&t.disposeData(m.dataId),A}var Ode={kernelName:dl,backendName:"wasm",setupFunc:Pde,kernelFunc:Fde},Y9;function Mde(e){Y9=e.wasm.cwrap(cl,null,["number","number","number","number","number","number"])}function zde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=lo({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;Y9(f,o?1:0,i?1:0,h,m,Ht[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=lo({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Lde={kernelName:cl,backendName:"wasm",setupFunc:Mde,kernelFunc:zde},J9;function Bde(e){J9=e.wasm.cwrap(wo,null,["number","number","number","number","number","number"])}function Wde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=C.getAxesPermutation([a],l),c=r;u!==null&&(c=lo({inputs:{x:r},attrs:{perm:u},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;J9(f,o?1:0,i?1:0,h,m,Ht[r.dtype]);let g=d;if(u!==null){let y=C.getUndoAxesPermutation(u);g=lo({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Vde={kernelName:wo,backendName:"wasm",setupFunc:Bde,kernelFunc:Wde},Q9;function Ude(e){Q9=e.wasm.cwrap(pl,null,["number","number","number","array","number","array","array","number","number"])}function Gde(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return Q9(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var Hde={kernelName:pl,backendName:"wasm",setupFunc:Ude,kernelFunc:Gde},eC;function jde(e){eC=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qde(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=C.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,S=h.strideWidth,E=h.inChannels,R=h.outChannels,P=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let _=s.makeOutput(h.outShape,"float32"),$=s.dataIdMap.get(_.dataId).id;return eC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,P,b,w,k,S,E,R,$),_}var Xde={kernelName:ko,backendName:"wasm",setupFunc:jde,kernelFunc:qde},Kde=In(So),Zde=!1,Yde=_n(hl,Zde,"bool"),Jde=In(Co,"float32");function cy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),hs({inputs:{x:r},backend:s,attrs:{shape:i}})}var Qde={kernelName:fl,backendName:"wasm",kernelFunc:cy};function tC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var epe={kernelName:kc,backendName:"wasm",kernelFunc:tC},nC;function tpe(e){nC=e.wasm.cwrap(gl,null,["number","number","number","number","number","number"])}function npe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return nC(a,i,l,u,c,o),r}var spe={kernelName:gl,backendName:"wasm",kernelFunc:npe,setupFunc:tpe},rpe=In(To),ape=!1,ope=_n(No,ape),sC;function ipe(e){sC=e.wasm.cwrap(Eo,null,["number","number","number","number","number","number","number"])}function lpe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return sC(c,p,d,h,f,r,g),m}var upe={kernelName:Eo,backendName:"wasm",setupFunc:ipe,kernelFunc:lpe},rC;function cpe(e){rC=e.wasm.cwrap(Qa,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=Fp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let Y=s.dataIdMap.get(o.dataId);if(Y.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Y.shape.length}.`);if(Y.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${Y.shape}) does not match the number of output channels (${A})`);b=Y.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,$=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,G=m.inChannels,q=m.padInfo.type==="SAME"?1:0,z=m.batchSize,K=m.inHeight,B=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,oe=i==null?0:s.dataIdMap.get(i.dataId).id;return rC(y,z,K,B,x,w,k,b,S,E,R,P,q,_,$,T,F,G,A,g,oe,f||0,Q),ee}var ppe={kernelName:Qa,backendName:"wasm",setupFunc:cpe,kernelFunc:dpe},aC;function hpe(e){aC=e.wasm.cwrap(eo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=C.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=Fp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let Y=s.dataIdMap.get(o.dataId);if(Y.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Y.shape.length}.`);if(Y.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${Y.shape}) does not match the number of output channels (${A})`);b=Y.id}let w=m.filterHeight,k=m.filterWidth,S=m.padInfo.top,E=m.padInfo.right,R=m.padInfo.bottom,P=m.padInfo.left,_=m.dilationHeight,$=m.dilationWidth,T=m.strideHeight,F=m.strideWidth,G=m.inChannels,q=m.padInfo.type==="SAME"?1:0,z=m.batchSize,K=m.inHeight,B=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ee=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(ee.dataId).id,oe=i==null?0:s.dataIdMap.get(i.dataId).id;return aC(y,z,K,B,x,w,k,b,S,E,R,P,q,_,$,T,F,G,A,g,oe,f||0,Q),ee}var mpe={kernelName:eo,backendName:"wasm",setupFunc:hpe,kernelFunc:fpe},oC;function gpe(e){oC=e.wasm.cwrap(Al,null,["number","number","number","number","number","number","array","number"])}function ype(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=zy.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return oC(h,Ht[s.dtype],m,o,p,i,g,y),u}var Ape={kernelName:Al,backendName:"wasm",setupFunc:gpe,kernelFunc:ype},iC;function xpe(e){iC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function bpe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let R=0;R<u.length;++R){let P=u[R];v.assert(P<=c-1&&P>=0,()=>`GatherV2: the index value ${P} is not in [0, ${c-1}]`)}let p=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=hs({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=hs({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,S=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return iC(A,Ht[r.dtype],S,y,w,p.batchSize,E,k),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var vpe={kernelName:yl,backendName:"wasm",setupFunc:xpe,kernelFunc:bpe},wpe=!1,kpe=_n(xl,wpe,"bool"),Ipe=!1,Spe=_n(Ro,Ipe,"bool"),lC;function Cpe(e){lC=e.wasm.cwrap(Do,null,["number","number","number","number"])}function Tpe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;lC(r,Ht[t.dtype],n,o)}return a}var Npe={kernelName:Do,backendName:"wasm",setupFunc:Cpe,kernelFunc:Tpe},Epe=!1,Rpe=_n(bl,Epe,"bool"),_pe=!1,Dpe=_n(vl,_pe,"bool"),$pe=In($o),Ppe=!1,Fpe=_n(wl,Ppe,"bool"),Ope=In(kl),Mpe=!1,zpe=_n(Nc,Mpe,"bool"),Lpe=!1,Bpe=_n(d6,Lpe,"bool"),uC;function Wpe(e){uC=e.wasm.cwrap(Po,null,["number","number","number","number"])}function Vpe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;C.assertAxesAreInnerMostDims("max",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;uC(l,Ht[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Upe={kernelName:Po,backendName:"wasm",setupFunc:Wpe,kernelFunc:Vpe},Gpe=!1,Hpe=_n(Fo,Gpe),cC;function jpe(e){cC=e.wasm.cwrap(Oo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function qpe(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=C.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let S=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(S.dataId).id;return cC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,k,E),S}var Xpe={kernelName:Oo,backendName:"wasm",setupFunc:jpe,kernelFunc:qpe},dC;function Kpe(e){dC=e.wasm.cwrap(Mo,null,["number, number, number"])}function Zpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=cd({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;dC(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=C.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var Ype={kernelName:Mo,backendName:"wasm",setupFunc:Kpe,kernelFunc:Zpe},pC;function Jpe(e){pC=e.wasm.cwrap(zo,null,["number","number","number","number"])}function Qpe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;C.assertAxesAreInnerMostDims("min",p,f);let[m,g]=C.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;pC(l,Ht[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var ehe={kernelName:zo,backendName:"wasm",setupFunc:Jpe,kernelFunc:Qpe},the=!1,nhe=_n(Lo,the),dy;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(dy||(dy={}));var hC;function she(e){hC=e.wasm.cwrap(Bo,null,["number","array","number","number","array","array","number","number"])}function rhe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return hC(o,u,t.shape.length,Ht[t.dtype],d,h,dy[r],l),i}var ahe={kernelName:Bo,backendName:"wasm",kernelFunc:rhe,setupFunc:she},ohe=!0,ihe=_n(Wo,ohe),lhe=In(Il);function Qx(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var fC;function uhe(e){fC=e.wasm.cwrap(Cl,"number",["number","number","number","number","number"])}function che(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=fC(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=Qx(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var dhe={kernelName:Cl,backendName:"wasm",setupFunc:uhe,kernelFunc:che},mC;function phe(e){mC=e.wasm.cwrap(Rc,"number",["number","number","number","number","number","bool"])}function hhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=mC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Qx(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var fhe={kernelName:Rc,backendName:"wasm",setupFunc:phe,kernelFunc:hhe},gC;function mhe(e){gC=e.wasm.cwrap(Tl,"number",["number","number","number","number","number","number"])}function ghe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=gC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=Qx(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var yhe={kernelName:Tl,backendName:"wasm",setupFunc:mhe,kernelFunc:ghe},Ahe=!1,xhe=_n(Sl,Ahe,"bool"),yC;function bhe(e){yC=e.wasm.cwrap(El,null,["number","number","number","number","number"])}function vhe(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{depth:a,onValue:o,offValue:i}=s,l=n.makeOutput([...r.shape,a],"int32"),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(r.dataId).id;return yC(p,a,o,i,u),l}var whe={kernelName:El,backendName:"wasm",setupFunc:bhe,kernelFunc:vhe};function khe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var Ihe={kernelName:Nl,backendName:"wasm",kernelFunc:khe};function She(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return cy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=cy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=q9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var Che={kernelName:Rl,backendName:"wasm",kernelFunc:She},AC;function The(e){AC=e.wasm.cwrap(Vo,null,["number","array","number","number","array","array","number","number"])}function Nhe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return tC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return AC(o,c,t.shape.length,Ht[t.dtype],h,f,r,u),i}var xC={kernelName:Vo,backendName:"wasm",kernelFunc:Nhe,setupFunc:The},Ehe=!1,Rhe=_n(Uo,Ehe),bC;function _he(e){bC=e.wasm.cwrap(Go,null,["number","number","number"])}function Dhe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=cd({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return bC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var $he={kernelName:Go,backendName:"wasm",setupFunc:_he,kernelFunc:Dhe},vC;function Phe(e){vC=e.wasm.cwrap(Ho,null,["number","number","number","number"])}function Fhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;vC(l,y,Ht[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ohe={kernelName:Ho,backendName:"wasm",setupFunc:Phe,kernelFunc:Fhe},Mhe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=_x(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},zhe={kernelName:_c,backendName:"wasm",kernelFunc:Mhe},Lhe=!0,Bhe=_n(Io,Lhe),Whe=In(jo),Vhe=In(Ko),wC;function Uhe(e){wC=e.wasm.cwrap(Xo,null,["number","number","number","number","number","number","number","number","number","number"])}function Ghe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=cd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return wC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var Hhe={kernelName:Xo,backendName:"wasm",setupFunc:Uhe,kernelFunc:Ghe},kC;function jhe(e){kC=e.wasm.cwrap(qo,null,["number","number","number","number","number","number","number","number","number","number"])}function qhe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=cd({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return kC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var Xhe={kernelName:qo,backendName:"wasm",setupFunc:jhe,kernelFunc:qhe},IC;function Khe(e){IC=e.wasm.cwrap(Dl,null,["number","array","number","array","number","number"])}function Zhe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return C2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);IC(l,c,o.length,p,r.shape.length,u);let d=hs({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var Yhe={kernelName:Dl,backendName:"wasm",kernelFunc:Zhe,setupFunc:Khe},SC;function Jhe(e){SC=e.wasm.cwrap(jl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Qhe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=C.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return SC(u,p,d,h,f,a,m,g,b,A.length,c),l}var efe={kernelName:jl,backendName:"wasm",kernelFunc:Qhe,setupFunc:Jhe},tfe=In($l),nfe=In(Zo),CC;function sfe(e){CC=e.wasm.cwrap(Pl,null,["number","number","number","number","number","number","array","number","number"])}function rfe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=Ly.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return CC(f,g,Ht[a.dtype],l,u,c,y,d,x),i}var afe={kernelName:Pl,backendName:"wasm",setupFunc:sfe,kernelFunc:rfe},TC;function ofe(e){TC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function ife(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return TC(o,i,l,h,c),u}var lfe={kernelName:Fl,backendName:"wasm",kernelFunc:ife,setupFunc:ofe},NC;function ufe(e){NC=e.wasm.cwrap(Jo,null,["number","number"])}function cfe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||NC(s,a),r}var dfe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:ufe,kernelFunc:cfe},pfe=In(Yo),EC;function hfe(e){EC=e.wasm.cwrap(ti,null,["number","number","number","number"])}function ffe(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||EC(r,o,i,l),a}var mfe={kernelName:ti,backendName:"wasm",setupFunc:hfe,kernelFunc:ffe};function gfe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=xC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=C.getReshaped(u.shape,a,i,!1),p=C.getPermuted(c.length,a.length,!1),d=C.getReshapedPermuted(u.shape,a,i,!1),m=hs({inputs:{x:u},backend:n,attrs:{shape:c}}),x=lo({inputs:{x:m},backend:n,attrs:{perm:p}}),w=hs({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var yfe={kernelName:zl,backendName:"wasm",kernelFunc:gfe},RC;function Afe(e){RC=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function xfe(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,k=t.makeOutput([4],"int32"),S=t.dataIdMap.get(k.dataId).id,E=RC(p,d,Ht[r.dtype],i,u,l,h,m,y,A,w,S),R=t.readSync(k.dataId),P;switch(R[0]){case 1:{P=C.getSparseFillEmptyRowsIndicesDenseShapeMismatch(R[1]);break}case 2:{P=C.getSparseFillEmptyRowsNegativeIndexErrorMessage(R[1],R[2]);break}case 3:P=C.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(R[1],R[2],R[3]);break;default:P=""}if(t.disposeData(k.dataId),P)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error(P);let _=f,$=g;return E!==c[0]&&(_=al({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),$=al({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[_,$,x,b]}var bfe={kernelName:Xp,backendName:"wasm",setupFunc:Afe,kernelFunc:xfe},_C;function vfe(e){_C=e.wasm.cwrap(Oc,null,["number","number","number","number","number","number","number"])}function wfe(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;_C(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=C.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=C.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=C.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=C.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var kfe={kernelName:Oc,backendName:"wasm",setupFunc:vfe,kernelFunc:wfe},DC;function $C(e){DC=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function PC(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;DC(d,Ht[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=C.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=C.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=C.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=C.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function Ife(e){return PC(e,!0)}var Sfe={kernelName:Kp,backendName:"wasm",setupFunc:$C,kernelFunc:Ife};function Cfe(e){return PC(e,!1)}var Tfe={kernelName:Zp,backendName:"wasm",setupFunc:$C,kernelFunc:Cfe};function Nfe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=al({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var Efe={kernelName:Ll,backendName:"wasm",kernelFunc:Nfe},Rfe=In(Qo),_fe=In(Mc),Dfe=!0,$fe=_n(ni,Dfe),FC;function Pfe(e){FC=e.wasm.cwrap(ai,null,["number","number","number","number"])}function Ffe(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return FC(o,r,Ht[a.dtype],l),i}var Ofe={kernelName:ai,backendName:"wasm",setupFunc:Pfe,kernelFunc:Ffe},OC;function Mfe(e){OC=e.wasm.cwrap(Bl,null,["number","array","number","array","array","array","array","array","number","number"])}function zfe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ut.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=hs({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ut.computeOutShape(x,A,b),S=al({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=hs({inputs:{x:S},backend:t,attrs:{shape:f}}),t.disposeData(S.dataId)}else{let k=t.makeOutput(h,"float32"),S=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),R=new Uint8Array(new Int32Array(x).buffer),P=new Uint8Array(new Int32Array(A).buffer),_=new Uint8Array(new Int32Array(b).buffer),$=new Uint8Array(new Int32Array(h).buffer),T=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),F=t.dataIdMap.get(k.dataId).id;OC(S,E,r.shape.length,R,P,_,$,T,h.length,F),w=hs({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var Lfe={kernelName:Bl,backendName:"wasm",setupFunc:Mfe,kernelFunc:zfe};function Bfe(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=$x(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var Wfe={kernelName:zc,backendName:"wasm",kernelFunc:Bfe};function Vfe(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=Px(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var Ufe={kernelName:Jp,backendName:"wasm",kernelFunc:Vfe};function Gfe(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=Fx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var Hfe={kernelName:Qp,backendName:"wasm",kernelFunc:Gfe},jfe=!0,qfe=_n(si,jfe),MC;function Xfe(e){MC=e.wasm.cwrap(ei,null,["number","number","number","number"])}function Kfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=hi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=C.getInnerMostAxes(f.length,u.shape.length))}C.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=C.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;MC(l,y,Ht[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=C.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Zfe={kernelName:ei,backendName:"wasm",setupFunc:Xfe,kernelFunc:Kfe},Yfe=In(Wl),Jfe=In(ri),zC;function Qfe(e){zC=e.wasm.cwrap(va,null,["number","array","number","array","number","number"])}function eme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return zC(a,l,r.shape.length,u,i.length,Ht[c.dtype],p),c}var tme={kernelName:va,backendName:"wasm",setupFunc:Qfe,kernelFunc:eme},LC;function nme(e){LC=e.wasm.cwrap(Vl,null,["number","array","number","number","number","bool","number","number"])}var sme=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return LC(o,i,s.shape.length,Ht[s.dtype],r,a,c,d),[u,p]},rme={kernelName:Vl,backendName:"wasm",setupFunc:nme,kernelFunc:sme},BC;function ame(e){BC=e.wasm.cwrap(Ul,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function ome(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=t.makeOutput(g,r.dtype),A=t.dataIdMap.get(x.dataId).id,w=t.dataIdMap.get(r.dataId).id,S=t.dataIdMap.get(a.dataId).id,E=o==="nearest"?1:2,R;switch(i){case"constant":R=1;break;case"reflect":R=2;break;case"wrap":R=3;break;case"nearest":R=4;break;default:R=1;break}return BC(w,S,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,E,R,l,A),x}var ime={kernelName:Ul,backendName:"wasm",setupFunc:ame,kernelFunc:ome};function lme(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=al({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var ume={kernelName:Gl,backendName:"wasm",kernelFunc:lme};function cme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var dme={kernelName:Hl,backendName:"wasm",kernelFunc:cme},pme=[Bce,Wce,Uce,jce,ede,sde,ode,ude,hde,xde,bde,vde,Ide,Sde,Nde,_de,Dde,$de,Ode,Lde,Vde,Hde,Xde,Kde,Yde,Jde,Qde,epe,spe,rpe,ope,upe,ppe,mpe,Ape,vpe,kpe,Spe,qce,Npe,Rpe,Dpe,$pe,Fpe,Ope,zpe,Bpe,Upe,Hpe,Xpe,Ype,ehe,nhe,ahe,ihe,lhe,dhe,fhe,yhe,xhe,whe,Ihe,Che,xC,Rhe,$he,Ohe,zhe,Bhe,Whe,Vhe,cde,Hhe,Xhe,Yhe,efe,tfe,nfe,afe,lfe,dfe,pfe,yde,mfe,yfe,bfe,kfe,Sfe,Tfe,Efe,Rfe,_fe,$fe,Ofe,Lfe,Wfe,Ufe,Hfe,qfe,Zfe,Yfe,Jfe,tme,rme,ime,Yce,ume,dme];for(let e of pme)cr(e);var py=Z();py.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));py.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(py.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var P7=uo(m_()),hme=uo(g_()),F7=uo(y_()),O7=P7.default||P7,fme=F7.default||F7,WC=class extends cc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(VC),hy=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Mp(this,sn())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return yme(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function mme(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function M7(e,t,n){if(zm!=null)return zm;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),gp!=null&&gp[s]!=null?gp[s]:n+s}async function gme(){let[e,t]=await Promise.all([Z().getAsync("WASM_HAS_SIMD_SUPPORT"),Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=hme.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?M7(e,t,pp!=null?pp:l):l+i},eb&&(r.instantiateWasm=mme(M7(e,t,pp!=null?pp:"")));let a=!1;r.onAbort=()=>{if(a||yp)return;yp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&zm==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+O7.toString()],{type:"text/javascript"}),o=O7(r)):o=fme(r),o.then(i=>{a=!0,yp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function yme(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Ame=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],zm=null,pp=null,gp={},yp=!1,eb=!1;function xme(e,t=!1){if(Py("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),yp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");zm=e,eb=t}function tb(e,t=!1){if(yp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")pp=e;else{gp=e;let n=Ame.filter(s=>gp[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}eb=t}var VC=-1,hy=-1;function bme(e){VC=e}function vme(){if(hy===-1)throw new Error("WASM backend not initialized.");return hy}var wme="3.19.0",kme=2;ql("wasm",async()=>{let{wasm:e}=await gme();return new WC(e)},kme);var Sa=Z();Sa.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);Sa.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);Sa.registerFlag("WEBGPU_MATMUL_WORK_PER_THREAD",()=>4);Sa.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);Sa.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);Sa.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);Sa.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);Sa.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);Sa.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!1);var Ye;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.SUB=2]="SUB",e[e.DIV=3]="DIV",e[e.EQUAL=4]="EQUAL",e[e.GREATER=5]="GREATER",e[e.GREATER_EQUAL=6]="GREATER_EQUAL",e[e.LESS=7]="LESS",e[e.LESS_EQUAL=8]="LESS_EQUAL",e[e.LOGICAL_AND=9]="LOGICAL_AND",e[e.NOT_EQUAL=10]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=11]="SQUARED_DIFFERENCE",e[e.INT_DIV=12]="INT_DIV",e[e.POW=13]="POW",e[e.PRELU=14]="PRELU",e[e.MAX=15]="MAX",e[e.MIN=16]="MIN",e[e.COMPLEX_MULTIPLY_REAL=17]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=18]="COMPLEX_MULTIPLY_IMAG"})(Ye||(Ye={}));var Ime="return a + b;",Sme="return areal * breal - aimag * bimag;",Cme="return areal * bimag + aimag * breal;",Tme="return a / b;",Nme="return a * b;",Eme="return (a - b) * (a - b);",Rme="return a - b;",_me="return f32(a == b);",Dme="return vec4<f32>(a == b);",$me="return f32(a > b);",Pme="return vec4<f32>(a > b);",Fme="return f32(a >= b);",Ome="return vec4<f32>(a >= b);",Mme="return f32(a < b);",zme="return vec4<f32>(a < b);",Lme="return f32(a <= b);",Bme="return vec4<f32>(a <= b);",Wme="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",Vme=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,Ume=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,UC=`
if (isNaN.r) {
resultTemp.r = uniforms.NAN;
}
if (isNaN.g) {
resultTemp.g = uniforms.NAN;
}
if (isNaN.b) {
resultTemp.b = uniforms.NAN;
}
if (isNaN.a) {
resultTemp.a = uniforms.NAN;
}
`,Gme=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,Hme=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,jme="return f32(a != b);",qme="return vec4<f32>(a != b);",Xme=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,Kme=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
${UC}
return resultTemp;
`,Zme="if (a < 0.0) { return b * a; } return a;",Yme=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function z7(e,t){let n=t?UC:Ume;return t?`
var resultTemp = vec4<f32>(${e}(a, b));
let isNaN = isnanVec4(a) | isnanVec4(b);
`+n+`
return resultTemp;
`:n+`
return ${e}(a, b);
`}function Lm(e,t){switch(e){case Ye.MUL:return Nme;case Ye.ADD:return Ime;case Ye.SUB:return Rme;case Ye.DIV:return Tme;case Ye.EQUAL:return t?Dme:_me;case Ye.GREATER:return t?Pme:$me;case Ye.GREATER_EQUAL:return t?Ome:Fme;case Ye.LESS:return t?zme:Mme;case Ye.LESS_EQUAL:return t?Bme:Lme;case Ye.LOGICAL_AND:return t?Vme:Wme;case Ye.NOT_EQUAL:return t?qme:jme;case Ye.SQUARED_DIFFERENCE:return Eme;case Ye.INT_DIV:return t?Hme:Gme;case Ye.PRELU:return t?Yme:Zme;case Ye.MAX:return z7("max",t);case Ye.MIN:return z7("min",t);case Ye.POW:return t?Kme:Xme;case Ye.COMPLEX_MULTIPLY_REAL:return Sme;case Ye.COMPLEX_MULTIPLY_IMAG:return Cme;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.LINEAR=8]="LINEAR",e[e.LOG=9]="LOG",e[e.LOGICAL_NOT=10]="LOGICAL_NOT",e[e.NEG=11]="NEG",e[e.RELU=12]="RELU",e[e.RELU6=13]="RELU6",e[e.LEAKYRELU=14]="LEAKYRELU",e[e.RSQRT=15]="RSQRT",e[e.SIN=16]="SIN",e[e.SINH=17]="SINH",e[e.SIGMOID=18]="SIGMOID",e[e.SQRT=19]="SQRT",e[e.SQUARE=20]="SQUARE",e[e.TANH=21]="TANH",e[e.TO_INT=22]="TO_INT"})(Fe||(Fe={}));var Jme="return abs(a);",Qme="return ceil(a);",e0e="return cos(a);",t0e=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,n0e="return exp(a) - 1.0;",s0e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",r0e=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,a0e="return exp(a);",o0e="return floor(a);",i0e="return a;",l0e=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,u0e="return f32(!(a >= 1.0));",c0e="return -a;",d0e="if (a < 0.0) { return uniforms.alpha * a; } return a;",p0e=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,h0e="return select(a, 0.0, a < 0.0);",f0e="return clamp(a, 0.0, 6.0);",m0e="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",g0e=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,y0e="return 1.0/sqrt(a);",A0e="return 1.0 / (1.0 + exp(-1.0 * a));",x0e="return sin(a);",b0e=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,v0e="return sqrt(a);",w0e="return a * a;",k0e=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,I0e="return f32(i32((a)));";function Oi(e,t){switch(e){case Fe.ABS:return Jme;case Fe.COS:return e0e;case Fe.COSH:return t0e;case Fe.CEIL:return Qme;case Fe.ELU:return t?r0e:s0e;case Fe.EXP:return a0e;case Fe.EXPM1:return n0e;case Fe.FLOOR:return o0e;case Fe.LINEAR:return i0e;case Fe.LOG:return l0e;case Fe.LOGICAL_NOT:return u0e;case Fe.NEG:return c0e;case Fe.LEAKYRELU:return t?p0e:d0e;case Fe.RELU:return t?g0e:h0e;case Fe.RELU6:return t?m0e:f0e;case Fe.RSQRT:return y0e;case Fe.SIGMOID:return A0e;case Fe.SIN:return x0e;case Fe.SINH:return b0e;case Fe.SQRT:return v0e;case Fe.SQUARE:return w0e;case Fe.TANH:return k0e;case Fe.TO_INT:return I0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var nn=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function Ca(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Oi(Fe.LINEAR);else if(e==="relu")r=Oi(Fe.RELU,n);else if(e==="elu")r=Oi(Fe.ELU,n);else if(e==="relu6")r=Oi(Fe.RELU6,n);else if(e==="prelu")r=Lm(Ye.PRELU,n);else if(e==="sigmoid")r=Oi(Fe.SIGMOID,n);else if(e==="leakyrelu")r=Oi(Fe.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=nn(n?4:1),i="";return t?i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
let b = getPreluActivationWeightsByOutputCoords(coords);
${r}
}`:i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
${r}
}`,i}function dd(e,t){return`
${e?"value = value + getBiasByOutputCoords(coords);":""}
${t?"value = activation(value, coords);":""}
`}function S0e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var C0e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=T0e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"main"},label:t.constructor.name,layout:"auto"})};function Tn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Za(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function lt(){return`
${pd()}
let index = getGlobalIndex();
`}function pd(){return`
${T2()}
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
`}function T2(){return`
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
`}function T0e(e,t,n){let s=[];if(s.push(`
const workGroupSizeX = ${n.workGroupSize[0]}u;
const workGroupSizeY = ${n.workGroupSize[1]}u;
const workGroupSizeZ = ${n.workGroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${GC(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
`}
}
`),n.isFromPixels)return s.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
};
@group(0) @binding(0) var<storage, read_write> result: array<${Ap(t.dtype,n.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`),[L7,s.join(`
`),B7(t.shape),n.getUserCode()].join(`
`);let r=!1,a=!1,o="struct Uniforms { NAN : f32, ";n.variableNames.forEach((f,m)=>{let g=Tn(e[m].shape.length);(g==="vec5"||g==="vec6")&&(a=!0),(r||a)&&(o+="@align(16) "),r=a,o+=`${f.charAt(0).toLowerCase()+f.slice(1)}Shape : ${g}, `});let i=Tn(t.shape.length);a=i==="vec5"||i==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=`outShape : ${i}, `;let l=t.shape.length-1,u=Tn(l);a=u==="vec5"||u==="vec6",(r||a)&&(o+="@align(16) "),r=a,o+=`
outShapeStrides: ${u}, `,n.size&&(r&&(o+="@align(16) "),r=!1,o+="size : i32, "),n.uniforms&&(r&&(o+="@align(16) "),o+=n.uniforms),o+="};",s.push(o),n.atomic?s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<${Ap(t.dtype,n.isVec4)}>;
`),n.variableNames.forEach((f,m)=>{s.push(`
@group(0) @binding(${1+m}) var<storage, read> ${f}: array<${n.variableTypes?n.variableTypes[m]:Ap(e[m].dtype,n.isVec4)}>;
`)}),o!==""&&s.push(`
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let c=D0e(t.shape,n.dispatchLayout),p=[L7,s.join(`
`),B7(t.shape),c,$0e(t.shape.length)];n.atomic||p.push(P0e(t.shape,t.dtype,n.isVec4));let d=e.map((f,m)=>_0e(f,t.shape,n.variableTypes?n.variableTypes[m]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);return p.push(d),p.push(n.getUserCode()),p.join(`
`)}function N0e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>C.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=GC(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var L7=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let mod: i32 = a % b;
if (sign < 0. && mod != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`;function B7(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Tn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${Za(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${Za(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${Za(i)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}function E0e(e,t){let n=e.name,s=e.shape.length,r=Tn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l})]);
}
`}function R0e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=Tn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
return f32(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> f32 {
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let c=C.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}Index(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> f32{
return get${a}();
}
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${Za(g+p)} = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Tn(i),y=e.shape.map((x,A)=>`coords.${Za(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
fn ${o}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
`}function _0e(e,t,n,s){let r=E0e(e,n);return e.shape.length<=t.length&&(r+=R0e(e,t,n,s)),r}function D0e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${Tn(a)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`;let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=S0e(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=Tn(l),p=`fn getOutputCoords() -> ${c} {
${o}
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function $0e(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function GC(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function Ap(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function P0e(e,t,n){let s=e.length,r=Ap(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${r}(value);
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=Tn(s);n?a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return a}var HC={};Ve(HC,{ArrayBufferToTypedArray:()=>XC,GPUBytesPerElement:()=>qC,MatMulProgramType:()=>Hs,computeDispatch:()=>We,computeWorkGroupSizeForConv2d:()=>nb,computeWorkGroupSizeForMatMul:()=>jC,computeWorkPerThreadForConv2d:()=>sb,flatDispatchLayout:()=>at,isWebGPUSupported:()=>rb,tilesFitEvenlyIntoShape:()=>F0e});var qi=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function F0e(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function We(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(qi(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(qi(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(qi(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function nb(e,t,n=!1){if(n)return[8,8,1];let s=qi(e.x.map(a=>t[a])),r=qi(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function jC(e,t,n){return e===1?[32,1,1]:n===1?[1,32,1]:[8,8,1]}function sb(e,t,n=!1){if(n)return[4,4,1];let s=qi(e.x.map(a=>t[a])),r=qi(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function at(e){return{x:e.map((t,n)=>n)}}function qC(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function XC(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function rb(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var Hs;(function(e){e[e.MatMulPackedVec4Program=0]="MatMulPackedVec4Program",e[e.MatMulReduceProgram=1]="MatMulReduceProgram",e[e.MatMulSplitKProgram=2]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=3]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=4]="MatMulPackedProgram",e[e.MatMulMax=5]="MatMulMax"})(Hs||(Hs={}));function KC(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=`
let batch = ${e?"0":"batchIn"};
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${n?`value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${i}];`:`value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${i}];`}
`,u;return s===!1?u=`value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${i}];`:u=`value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${i}];`,`
fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${nn(i)} {
var value = ${nn(i)}(0.0);
let col = colIn * ${i};
${r&&o?l:`
${n?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
{
${l}
}
`}
return value;
}
fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${nn(i)} {
let col = colIn * ${i};
let batch = ${t?"0":"batchIn"};
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
var value = ${nn(i)}(0.0);
${u}
return value;
}
`}function N2(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return`
${KC(n,s,r,a,o,i,l,u)}
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${nn(u)}) {
let col = colIn * ${u};
${o&&i?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let coords = vec3<i32>(batch, row, col);
${dd(e,t)}
setOutputAtCoords(coords[0], coords[1], coords[2], value);
}
}
`}var O0e=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
t * TileInner + inputRow,
globalRowStart + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRowStart + inputRow,
t * TileInner + inputCol);
`,M0e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function ab(e,t,n=!1,s=32){let r=e[1]*t[1],a=e[0]*t[0],o=n?r:s,i=n?s:r;v.assert(i%t[1]===0&&o%t[0]===0&&s%t[1]===0,()=>`tileAHight ${i} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${o} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let l=i/t[1],u=o/t[0],c=s/t[1];return`
var<workgroup> mm_Asub : array<array<f32, ${o}>, ${i}>;
var<workgroup> mm_Bsub : array<array<f32, ${a}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x) * ColPerThread;
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x) * ColPerThread;
let batch = i32(globalId.z);
let globalRowStart = i32(workgroupId.y) * ${r};
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc : array<array<f32, ColPerThread>, RowPerThread>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let tileRowA = i32(localId.y) * ${l};
let tileColA = i32(localId.x) * ${u};
let tileRowB = i32(localId.y) * ${c};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${l}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${u}; innerCol = innerCol + 1) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${O0e(n)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
t * TileInner + inputRow,
globalCol + innerCol);
}
}
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ColPerThread>;
for (var k = 0; k < TileInner; k = k + 1) {
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
${M0e(n)}
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
acc[innerRow][innerCol]);
}
}
}
`}var z0e=e=>e?`
mm_readA(batch, colA, globalRow),
mm_readA(batch, colA + 1, globalRow),
mm_readA(batch, colA + 2, globalRow),
mm_readA(batch, colA + 3, globalRow)
`:`
mm_readA(batch, globalRow, colA),
mm_readA(batch, globalRow, colA + 1),
mm_readA(batch, globalRow, colA + 2),
mm_readA(batch, globalRow, colA + 3)
`;function L0e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
const TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${pd()}
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
let batch = i32(globalId.z);
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${z0e(t)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(batch, rowB, globalCol),
mm_readB(batch, rowB + 1, globalCol),
mm_readB(batch, rowB + 2, globalCol),
mm_readB(batch, rowB + 3, globalCol));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var B0e=class{constructor(e,t,n,s,r,a=!1,o=!1,i=null,l=null,u=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,16,1],this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let c=a?e[1]:e[2];this.workGroupSize=jC(t[1],c,t[2]),(t[1]===1||t[2]===1)&&(n=1),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]),v.arraysEqual(this.dispatch,[1,1,1])&&(n=1,this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[n,n,1]));let p=i!=null,d=u!=null;p&&this.variableNames.push("bias"),d&&this.variableNames.push("preluActivationWeights"),this.workPerThread=n,this.transposeA=a,this.transposeB=o,this.addBias=p,this.activation=l,this.hasPreluActivationWeights=d,this.batchAEqualOne=s,this.batchBEqualOne=r,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],c),this.shaderKey=`matMulPacked_${this.workPerThread}_${a}_${o}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.outputShape[1]>1}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.workPerThread,r=this.workGroupSize[0]*this.workPerThread;this.tileInner=32,this.outputShape[1]===1&&(this.tileInner=this.workGroupSize[0]*4);let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return`
${Ca(this.activation,this.hasPreluActivationWeights)}
${N2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner)}
${this.outputShape[1]>1?ab([this.workPerThread,this.workPerThread,1],this.workGroupSize,this.transposeA,this.tileInner):L0e(this.workGroupSize,this.transposeA)}
`}},W0e=(e,t)=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
t * TileInner + inputRow,
globalRowStart / ${t} + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRow + innerRow,
t * TileInner / ${t} + inputCol);
`,V0e=(e,t)=>e?`
let ACached0 = mm_Asub[k * InnerElementSize][localRow];
let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];
let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];
${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"}
for (var i = 0; i < RowPerThread; i = i + 1) {
acc[i] = BCached[0] * ACached0[i] + acc[i];
acc[i] = BCached[1] * ACached1[i] + acc[i];
acc[i] = BCached[2] * ACached2[i] + acc[i];
${t===3?"":"acc[i] = BCached[3] * ACached3[i] + acc[i];"}
}`:`
for (var i = 0; i < RowPerThread; i = i + 1) {
let ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached[0] * ACached.x + acc[i];
acc[i] = BCached[1] * ACached.y + acc[i];
acc[i] = BCached[2] * ACached.z + acc[i];
${t===3?"":"acc[i] = BCached[3] * ACached.w + acc[i];"}
}`;function ob(e,t,n,s,r=4,a=!1){let o=a?t:s,i=a?s:t,l=a?e[1]:r;return v.assert((a&&t===n||s%4===0||s%3===0)&&e[0]===4&&(r===3||r===4),()=>`tileInner ${s} must be divisible by 4|3. ColPerThread ${e[0]} must be 4.
innerElementSize ${r} must be 3|4.`),`
var<workgroup> mm_Asub : array<array<vec${l}<f32>, ${o/l}>, ${i}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${n/e[0]}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const InnerElementSize = ${r};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let localRow = i32(localId.y);
let tileRow = ${t===1?"0":"localRow * RowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${t===1?"0":"i32(globalId.y) * RowPerThread"};
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
let globalRowStart = i32(workgroupId.y) * ${t};
let numTiles = (uniforms.dimInner - 1) / TileInner + 1;
var acc: array<vec4<f32>, RowPerThread>;
var BCached : array<vec4<f32>, 4>;
// Loop over shared dimension.
let RowPerThreadB = TileInner / i32(workGroupSizeY);
let tileRowB = localRow * RowPerThreadB;
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${W0e(a,l)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < RowPerThreadB; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch, t * TileInner + inputRow, globalCol);
}
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
BCached[0] = mm_Bsub[k * InnerElementSize][tileCol];
BCached[1] = mm_Bsub[k * InnerElementSize + 1][tileCol];
BCached[2] = mm_Bsub[k * InnerElementSize + 2][tileCol];
${r===3?"":"BCached[3] = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
${V0e(a,r)}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
}
}`}var U0e=class{constructor(e,t,n,s,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.isVec4=!0,this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]},t[1]===1&&!r?this.elementsPerThread=[4,1,1]:this.elementsPerThread=[4,4,1],this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.tileAOuter=t[1]===1&&!r?1:this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=this.tileBOuter,this.aShape=e,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=n,this.batchBEqualOne=s,this.transposeA=r;let c=r?e[1]:e[2];this.fitAOuter=t[1]%this.tileAOuter===0,this.fitBOuter=t[2]%this.tileBOuter===0,this.fitInner=c%this.tileInner===0,this.shaderKey=`matMulPackedVec4_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.elementsPerThread}_${this.batchAEqualOne}_${this.batchBEqualOne}_${this.transposeA}`}getUserCode(){return`
${Ca(this.activation,this.hasPreluActivationWeights,!0)}
${N2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,!1,this.fitAOuter,this.fitBOuter,this.fitInner,4)}
${ob(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,4,this.transposeA)}
`}};function G0e(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${pd()}
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var H0e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ca(this.activation,this.hasPreluActivationWeights)}
${N2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${G0e()}
`}};function j0e(e){let t=e[1],n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Read data from global memory to registers firstly, then store them into
// shared memory, so it is instruction-Level parallelism for arithmetic
// operations and others handle IO operations between barrier api, makes ALU
// and load/store units work simultaneously, could improves the performance.
${pd()}
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = 0;
var regA = mm_readA(batch, globalRow, globalColA);
var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var t = 0; t < numTiles; t = t + 1) {
mm_Asub[tileRow][tileCol] = regA;
mm_Bsub[2 * tileRow][tileCol] = regB0;
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
workgroupBarrier();
regA = mm_readA(batch, globalRow, globalColA);
regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var k = 0; k < ${s}; k = k + 1) {
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var q0e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ca(this.activation,this.hasPreluActivationWeights)}
${N2(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${j0e(this.workGroupSize)}
`}},X0e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.tileInner=32,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.elementsPerThread=[4,4,this.tileInner],this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1),this.dispatch=We(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}`}getUserCode(){let e=`
var oldValue = atomicLoad(&(result[flatIndex]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + value;
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(&(result[flatIndex]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
`;return`
${KC(this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
fn mm_write(batch: i32, row : i32, col : i32, valueIn : f32) {
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
let coords = vec3<i32>(batch, row, col);
let flatIndex = getOutputIndexFromCoords(coords);
var value = valueIn;
// The problem is that we should initialize output to zero before using.
// Otherwise, the original value will be added to the result.
${e}
}
}
${this.makeMatMulSplitKSource()}
`}makeMatMulSplitKSource(){let e=this.workGroupSize[1]*this.elementsPerThread[1],t=this.workGroupSize[0]*this.elementsPerThread[0],n=this.elementsPerThread[1],s=this.elementsPerThread[0],r=this.tileInner/this.workGroupSize[0],a=this.tileInner/this.workGroupSize[1];return v.assert(this.tileInner%this.workGroupSize[0]===0&&this.tileInner%this.workGroupSize[1]===0,()=>`tileInner ${this.tileInner} must be divisible by workGroupSize[0]${this.workGroupSize[0]} and workGroupSize[1]${this.workGroupSize[1]}`),`
var<workgroup> mm_Asub : array<array<f32, ${this.tileInner}>, ${e}>;
var<workgroup> mm_Bsub : array<array<f32, ${t}>, ${this.tileInner}>;
${pd()}
let tileRow = i32(localId.y) * ${n};
let tileCol = i32(localId.x) * ${s};
let globalRow = i32(globalId.y) * ${n};
let globalCol = i32(globalId.x) * ${s};
let batch = 0;
let kStart = i32(globalId.z) * ${this.tileInner};
// Load one tile of A into local memory.
let tileColA = i32(localId.x) * ${r};
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${r}; innerCol = innerCol + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileColA + innerCol;
mm_Asub[inputRow][inputCol] = mm_readA(${this.batchAEqualOne?0:"batch"},
globalRow + innerRow,
kStart + inputCol);
}
}
// Load one tile of B into local memory.
let tileRowB = i32(localId.y) * ${a};
for (var innerRow = 0; innerRow < ${a}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(${this.batchBEqualOne?0:"batch"},
kStart + inputRow,
globalCol + innerCol);
}
}
workgroupBarrier();
var acc : array<array<f32, ${s}>, ${n}>;
// Loop over shared dimension. Compute acc values for a single thread.
for (var k = 0; k < ${this.tileInner}; k = k + 1) {
var BCached : array<f32, ${s}>;
for (var inner = 0; inner < ${s}; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
let ACached = mm_Asub[tileRow + innerRow][k];
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
for (var innerRow = 0; innerRow < ${n}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${s}; innerCol = innerCol + 1) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol, acc[innerRow][innerCol]);
}
}
}
`}},K0e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return`
${Ca(this.activation,this.hasPreluActivationWeights)}
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var value = getXByOutputIndex(index);
${dd(this.addBias,this.activation)}
setOutputAtIndex(index, value);
}
}
`}},Z0e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function ou(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new Z0e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var Y0e={kernelName:kc,backendName:"webgpu",kernelFunc:ou};function Ue(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var J0e={kernelName:_l,backendName:"webgpu",kernelFunc:Ue};function ib({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=Xl.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],S=Ue({inputs:{x:e},backend:r,attrs:{shape:w}}),E=Ue({inputs:{x:t},backend:r,attrs:{shape:k}}),R=[S,E],P=Math.max(y,x),_=y===1,$=x===1,T=(p%4===0&&!n||h%4===0&&n)&&f%4===0&&!s,F=[S,E],G=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],q,z,K=[P,h,f],B=Z().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(B<0&&(h*f<=128?B=Hs.MatMulReduceProgram:P===1&&h<=128&&f<=48&&d>=2e3?B=Hs.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?B=Hs.MatMulSmallOutputSizeProgram:T?B=Hs.MatMulPackedVec4Program:B=Hs.MatMulPackedProgram),B){case Hs.MatMulPackedVec4Program:q=new U0e(w,K,_,$,n,a,l,o);break;case Hs.MatMulReduceProgram:q=new H0e(K,_,$,n,s,a,l,o);break;case Hs.MatMulSplitKProgram:{if(z=ou({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),q=new X0e(K,d,_,$,n,s),a||l){z=r.runWebGPUProgram(q,F,e.dtype,G,z);let Q=new K0e(z.shape,a,l,o),oe=null,Y=[z];a&&Y.push(a),o&&Y.push(o),l==="leakyrelu"&&(oe=[{type:"float32",data:[i]}],Q.uniforms+=" alpha : f32,");let ae=r.runWebGPUProgram(Q,Y,z.dtype,oe);R.push(z);let le=Ue({inputs:{x:ae},backend:r,attrs:{shape:b}});R.push(ae);for(let ye of R)r.disposeData(ye.dataId);return le}break}case Hs.MatMulSmallOutputSizeProgram:q=new q0e(w,k,K,n,s,a,l,o);break;case Hs.MatMulPackedProgram:q=new B0e(w,K,Z().get("WEBGPU_MATMUL_WORK_PER_THREAD"),_,$,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${B}.`)}a&&F.push(a),o&&F.push(o),l==="leakyrelu"&&(G.push({type:"float32",data:[i]}),q.uniforms+=" alpha : f32,"),z=r.runWebGPUProgram(q,F,e.dtype,G,z);let ee=Ue({inputs:{x:z},backend:r,attrs:{shape:b}});R.push(z);for(let Q of R)r.disposeData(Q.dataId);return ee}function Q0e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return ib({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var e2e={kernelName:Ja,backendName:"webgpu",kernelFunc:Q0e},W7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${Lm(this.op,!1)}
}
${lt()}
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},fy=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.dispatchLayout=at(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
let b = sharedBuf[${t}];`:`let a = sharedBuf[${t}];
let b = getBByOutputCoords(coords);`;e=`
fn binaryOperation(a : f32, b : f32) -> f32 {
${Lm(this.op,this.isVec4)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${lt()}
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${n}
setOutputAtIndex(flatIndex, binaryOperation(a, b));
}
}
}
`}else{let t=this.type==="vec4"?"vec4<f32>":"f32",n=Lm(this.op,this.isVec4);e=`
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
${n}
}
${lt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}return e}};function Fs(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var t2e={kernelName:_o,backendName:"webgpu",kernelFunc:Fs};function hd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=Fs({inputs:{x:s},backend:n}),l=Fs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var n2e={kernelName:Lp,backendName:"webgpu",kernelFunc:hd},Bh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Oi(this.op,!1)}
}
${lt()}
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function Dn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Bh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function os({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==Ye.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new fy(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],On(y.dtype,x.dtype))});else{let g=new W7(Ye.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new W7(Ye.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=hd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||On(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?C.fromUint8ToStringArray(p):p,f=o.dtype==="string"?C.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new fy(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:s2e,ceilImpl:r2e,concatImpl:a2e,equalImpl:o2e,expImpl:i2e,expm1Impl:l2e,floorImpl:u2e,gatherNdImpl:c2e,gatherV2Impl:d2e,greaterEqualImpl:p2e,greaterImpl:h2e,lessEqualImpl:f2e,lessImpl:m2e,logImpl:g2e,maxImpl:y2e,maximumImpl:A2e,minimumImpl:x2e,multiplyImpl:b2e,negImpl:v2e,notEqualImpl:w2e,prodImpl:k2e,rangeImpl:I2e,rsqrtImpl:S2e,scatterImpl:C2e,simpleAbsImpl:T2e,sliceImpl:N2e,stridedSliceImpl:E2e,stringNGramsImpl:R2e,subImpl:_2e,tileImpl:D2e,topKImpl:$2e,transposeImpl:P2e,uniqueImpl:Fxe}=Sx,F2e=Dn({opType:Fe.ABS,cpuKernelImpl:T2e}),O2e={kernelName:il,backendName:"webgpu",kernelFunc:F2e},M2e=os({opType:Ye.ADD,cpuKernelImpl:s2e,supportsComplex:!0}),z2e={kernelName:xa,backendName:"webgpu",kernelFunc:M2e},L2e=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${lt()}
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function B2e(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return Fs({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>On(i,l)),a=s.map(i=>i.shape),o=new L2e(a);return n.runWebGPUProgram(o,s,r)}var W2e={kernelName:po,backendName:"webgpu",kernelFunc:B2e},ZC=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];C.assertAxesAreInnerMostDims("arg"+n.charAt(0).toUpperCase()+n.slice(1),s,e.length),this.op=n==="min"?"<":">";let[r]=C.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,[1,1,1]),this.inputShape=e,this.shaderKey=`argMinMax${this.op}`}getUserCode(){let e=`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`,t=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${Za(this.inputShape.length-1)}`,n=()=>{let r="";if(this.outputShape.length===1)this.inputShape.length!==1&&(r+="outputCoords,");else for(let a=0;a<this.outputShape.length;a++)r+=`outputCoords.${Za(a)},`;return r};return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${e}
${lt()}
let outputIndex = index / i32(workGroupSizeX);
let reduceLength = ${t()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = getX(${n()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`}},V2e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
const TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${T2()}
fn main(@builtin(local_invocation_id) localId : vec3<u32>,
@builtin(workgroup_id) workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = A[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},U2e=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Tn(this.outputShape.length),t=G2e(this.newDim);return`
${lt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function G2e(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${Za(s)}`;return n.join()}function Aa(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=P2e(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new V2e(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new U2e(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var H2e={kernelName:Hr,backendName:"webgpu",kernelFunc:Aa};function j2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Aa({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new ZC(l.shape,o[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var q2e={kernelName:ho,backendName:"webgpu",kernelFunc:j2e};function X2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=C.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Aa({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=C.getInnerMostAxes(o.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new ZC(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var K2e={kernelName:gc,backendName:"webgpu",kernelFunc:X2e},YC=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},JC=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}};function Z2e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Fs({inputs:{x:r},backend:n});let p,d=[{type:"int32",data:[c.strideHeight,c.strideWidth]}];return c.filterHeight===1&&c.filterWidth===1?p=new JC(c):(p=new YC(c,"avg"),d.push({type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]})),n.runWebGPUProgram(p,[r],r.dtype,d)}var Y2e={kernelName:fo,backendName:"webgpu",kernelFunc:Z2e};function J2e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return ib({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var Q2e={kernelName:mo,backendName:"webgpu",kernelFunc:J2e},e1e=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Tn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Tn(this.rank),t=t1e(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${my[a]} = uniforms.start[${a}] + coords.${my[a]};`),`
${lt()}
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${n.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},my=["x","y","z","w","u","v"];function t1e(e){if(e===1)return"sourceLoc";if(e<=6)return my.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function fd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Ut.parseSliceParams(r,a,o);if(Ut.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=N2e(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new e1e(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var n1e={kernelName:Ol,backendName:"webgpu",kernelFunc:fd},s1e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=C.getReshaped(r.shape,a,i),u=C.getPermuted(l.length,a.length),c=C.getReshapedPermuted(r.shape,a,i),p=C.getSliceBeginCoords(o,a.length),d=C.getSliceSize(c,o,a.length),h=[],f=Ue({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Aa({inputs:{x:f},backend:n,attrs:{perm:u}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:c}}),y=fd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},r1e={kernelName:ll,backendName:"webgpu",kernelFunc:s1e},QC=os({opType:Ye.NOT_EQUAL,dtype:"bool",cpuKernelImpl:w2e}),a1e={kernelName:Sl,backendName:"webgpu",kernelFunc:QC};function Wh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Fs({inputs:{x:r.complexTensorInfos.real},backend:n})}var o1e={kernelName:qp,backendName:"webgpu",kernelFunc:Wh};function i1e(e,t){let n=new Bh(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function gy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return Fs({inputs:{x:r},backend:n});let o=Wt(r.shape),i=gy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=hd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Wh({inputs:{input:r},backend:n}),i=gy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=Fs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(a==="int32")return i1e(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=QC({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var l1e={kernelName:go,backendName:"webgpu",kernelFunc:gy},u1e=Dn({opType:Fe.CEIL,cpuKernelImpl:r2e}),c1e={kernelName:yo,backendName:"webgpu",kernelFunc:u1e},d1e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${lt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},p1e=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${lt()}
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function h1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new d1e(r.shape):i=new p1e(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var f1e={kernelName:ba,backendName:"webgpu",kernelFunc:h1e},m1e=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${lt()}
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function E2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return Fs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var g1e={kernelName:Gp,backendName:"webgpu",kernelFunc:E2};function hp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let f=e.map(A=>Wh({inputs:{input:A},backend:n})),m=e.map(A=>E2({inputs:{input:A},backend:n})),g=hp(f,t,n),y=hp(m,t,n),x=hd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let k=v.sizeFromShape(w.shape.slice(t));return Ue({inputs:{x:w},backend:n,attrs:{shape:[-1,k]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=C.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=a2e(m,g,s,y),A=C.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;g<e.length;g+=a){let y=e.slice(g,g+a);f.push(hp(y,t,n))}let m=hp(f,t,n);for(let g of f)n.disposeData(g.dataId);return m}let{tensors2D:o,outShape:i}=y1e(e,t,n),l=o.map(f=>f.shape),u=new m1e(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;f<p.length;f++)p[f]=p[f-1]+l[f][1],c.push({type:"int32",data:[p[f]]})}let d=n.runWebGPUProgram(u,o,o[0].dtype,c);o.forEach(f=>n.disposeData(f.dataId));let h=Ue({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function y1e(e,t,n){let s=C.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ue({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function eT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=C.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return Fs({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return C.assertParamsConsistent(l,a),hp(i,a,n)}var A1e={kernelName:ul,backendName:"webgpu",kernelFunc:eT};function x1e(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=R=>{switch(R){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${R} is not supported.`)}},p=R=>{switch(R){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${R} is not supported.`)}},d=e?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,h=e?`
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",y=e?"col":"row",x=`
let inChannels = uniforms.wShape[2];
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${y} / (uniforms.filterDims[1] * inChannels);
let WCol = ${y} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
let xCh = ${y} % inChannels;
var resData = ${nn(i)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
${d}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${c(i)}
}
return resData;`,A=e?t&&s?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${x}
}
return ${nn(i)}(0.0);`:s&&n?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${x}
}
return ${nn(i)}(0.0);`,b=`${p(l)}`,w=nn(u),k=nn(e?i:l),S=nn(e?l:i);return`
${Ca(a,o,u===4,4)}
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${k} {
${e?A:b}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${S} {
${e?b:A}
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${w}) {
let col = colIn * ${u};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${h}
${dd(r,a)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}`}var b1e=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=nb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=sb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?ob(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize,!this.isChannelsLast):ab(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.isChannelsLast?this.innerElementSize:4,4,4]:[1,1,1];return`
${x1e(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}};function V7(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function v1e({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=Ue({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=Ue({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=V7(a.shape,l);y!=null&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=V7(r.shape,l);y!=null&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=ib({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ue({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function tT({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return v1e({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new b1e(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function w1e(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=C.convertConv2DDataFormat(l),d=C.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return tT({x:r,filter:a,convInfo:d,backend:s})}var k1e={kernelName:Ao,backendName:"webgpu",kernelFunc:w1e};function I1e(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;default:throw new Error(`innerElementSize ${a} is not supported.`)}},s=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return ${nn(e)}(0.0);
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return ${nn(e)}(0.0);
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
}
return ${nn(e)}(0.0);`;return`
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${nn(e)} {
let col = colIn * ${e};
${s}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${nn(e)} {
let col = colIn * ${e};
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let rowInner = row % uniforms.outBackprop[3];
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${t(e)}
}
return ${nn(e)}(0.0);
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${nn(e)}) {
let col = colIn * ${e};
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
}
}`}var S1e=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=nb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=sb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.innerElementSize=4,this.variableTypes=["vec4<f32>","f32"]):this.innerElementSize=this.elementsPerThread[0],this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}_${this.innerElementSize}`}getUserCode(){let e=this.isVec4?ob(this.elementsPerThread,this.tileAOuter,this.tileBOuter,this.tileInner,this.innerElementSize):ab(this.elementsPerThread,this.workGroupSize);return`
${I1e(this.isVec4?4:1)}
${e}
`}},C1e=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${lt()} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function T1e(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(u),d=C.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(Z().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new C1e(d);else{f=new S1e(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var N1e={kernelName:xo,backendName:"webgpu",kernelFunc:T1e},E1e=Dn({opType:Fe.COS}),R1e={kernelName:bo,backendName:"webgpu",kernelFunc:E1e},_1e=Dn({opType:Fe.COSH}),D1e={kernelName:vo,backendName:"webgpu",kernelFunc:_1e},$1e=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},P1e=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new $1e(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},F1e={kernelName:dl,backendName:"webgpu",kernelFunc:P1e},Op;(function(e){e.Prod="*",e.Sum="+"})(Op||(Op={}));var U7=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Op.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${G7(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
${lt()}
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${H7(e,"coords",this.op)};
var val = ${n};
let pow2 = i32(pow(2.0, uniforms.index));
if (${r}) {
let idx = ${a};
${H7(e,"coords",this.op)} = idx;
val ${this.op}= getX(${G7(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function G7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function H7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function nT(e,t,n,s,r,a){let o=t.shape.length,i=C.getAxesPermutation([s],o),l=t;i!=null&&(l=Aa({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=C.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=Fs({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new U7(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new U7(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=C.getUndoAxesPermutation(i),h=Aa({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function O1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return nT(Op.Prod,r,n,a,o,i)}var M1e={kernelName:cl,backendName:"webgpu",kernelFunc:O1e};function z1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return nT(Op.Sum,r,n,a,o,i)}var L1e={kernelName:wo,backendName:"webgpu",kernelFunc:z1e},B1e=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function W1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new B1e(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var V1e={kernelName:pl,backendName:"webgpu",kernelFunc:W1e},U1e=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return`
${Ca(this.activation,this.hasPreluActivation,!1,4)}
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
var value = 0.0;
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, channel, row, col);
}
return value;
}
${T2()}
fn main(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(local_invocation_index) LocalIndex: u32,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
let localIndex = i32(LocalIndex);
numWorkgroups = NumWorkgroups;
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
let channelMul = uniforms.wShape[3];
let d1 = coords[1] / channelMul;
let q = coords[1] % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let localRow = i32(localId.y);
let localCol = i32(localId.x);
// Load one tile of X into local memory.
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${this.workGroupSize[1]}) {
for (var inputCol = localCol; inputCol < ${s}; inputCol = inputCol + ${this.workGroupSize[0]}) {
let rowOffset = inputRow - localRow;
let colOffset = inputCol - localCol;
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
}
}
// Load one tile of W into local memory.
var wIndex = localIndex;
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
{
let wRow = wIndex / ${this.filterWidth};
let wCol = wIndex % ${this.filterWidth};
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
}
workgroupBarrier();
var value = 0.0;
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
let xVal = mm_Asub[localRow + wR][localCol + wC];
let wVal = mm_Bsub[wR][wC];
value = fma(xVal, wVal, value);
}
}
${dd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}},sT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return`
${Ca(this.activation,this.hasPreluActivation,!0,4)}
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
var value = vec4<f32>(0.0);
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, row, col, channel);
}
return value;
}
${T2()}
fn main(@builtin(global_invocation_id) globalId: vec3<u32>) {
let batch = i32(globalId.z) / uniforms.outShape[1];
let r = i32(globalId.z) % uniforms.outShape[1];
let c = i32(globalId.y) * 4;
let d1 = i32(globalId.x) * 4;
let xRCCorner = vec2<i32>(r, c) - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var xVals : array<vec4<f32>, ${e}>;
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
// Use constant instead of uniform can give better performance.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = xRCorner + wR;
for (var i = 0; i < ${e}; i++)
{
xVals[i] = readX(batch, xR, xCCorner + i, d1);
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let wValue = getW(wR, wC, d1, 0);
dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;
dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;
dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;
dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = dotProd[i];
${dd(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
}
`}},rT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
${Ca(this.activation,this.hasPreluActivation,!1,4)}
${pd()}
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
let d2 = coords[${this.isChannelsLast?3:1}];
let channelMul = uniforms.wShape[3];
let d1 = d2 / channelMul;
let q = d2 % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
var value = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
}
${dd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};function G1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=C.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=C.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new U1e(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new sT(h):(g=new rT(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var H1e={kernelName:ko,backendName:"webgpu",kernelFunc:G1e},aT=os({opType:Ye.MUL,cpuKernelImpl:b2e,supportsComplex:!0}),j1e={kernelName:Wo,backendName:"webgpu",kernelFunc:aT},q1e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=C.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${lt()}
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};function Vh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=C.getAxesPermutation(l,a),c=e;u!=null&&(c=Aa({inputs:{x:e},attrs:{perm:u},backend:r}),l=C.getInnerMostAxes(l.length,a),o.push(c)),C.assertAxesAreInnerMostDims(s,l,a);let[p,d]=C.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=y2e(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=k2e(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":sh(e.dtype),b=[{type:"int32",data:[m]}],w=new q1e(x,s),k=r.runWebGPUProgram(w,[c],A,b);o.push(k),f=Ue({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function lb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Vh(r,a,o,"sum",n)}var X1e={kernelName:ei,backendName:"webgpu",kernelFunc:lb};function K1e(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=C.decodeEinsumEquation(r,a.length);C.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=C.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=C.getEinsumPermutation(h,l[g]),A;C.isIdentityPermutation(y)?A=a[g]:(A=Aa({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Ue({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=aT({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=lb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Z1e={kernelName:Up,backendName:"webgpu",kernelFunc:K1e},Y1e=Dn({opType:Fe.ELU}),J1e={kernelName:So,backendName:"webgpu",kernelFunc:Y1e},Q1e=os({opType:Ye.EQUAL,dtype:"bool",cpuKernelImpl:o2e}),ege={kernelName:hl,backendName:"webgpu",kernelFunc:Q1e},oT=Dn({opType:Fe.EXP,cpuKernelImpl:i2e,dtype:"float32"}),tge={kernelName:Co,backendName:"webgpu",kernelFunc:oT};function yy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ue({inputs:{x:a},backend:s,attrs:{shape:i}})}var nge={kernelName:fl,backendName:"webgpu",kernelFunc:yy},sge=Dn({opType:Fe.EXPM1,cpuKernelImpl:l2e}),rge={kernelName:ml,backendName:"webgpu",kernelFunc:sge},age=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},oge={kernelName:gl,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new age(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},ige=Dn({opType:Fe.FLOOR,cpuKernelImpl:u2e}),lge={kernelName:To,backendName:"webgpu",kernelFunc:ige},uge=os({opType:Ye.INT_DIV,dtype:"int32"}),cge={kernelName:No,backendName:"webgpu",kernelFunc:uge},dge=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
${lt()}
let flatIndex = index * uniforms.numChannels;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let values = ${e};
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
result[flatIndex + i] = i32(floor(255.0 * values[i]));
}
}
}
`}},pge={kernelName:bp,backendName:"webgpu",kernelFunc:hge},Ou,Jf=new Map;function hge(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a],h=Z().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&o,f=o||i;if(u||l||f){let x;if(h){let P=r;if(!Jf.has(P)||Jf.get(P).expired){let _={source:P};Jf.set(P,n.device.importExternalTexture(_))}x={width:c,height:p,format:null,usage:null,texture:Jf.get(P)}}else{f&&(Ou==null&&(Ou=document.createElement("canvas").getContext("2d")),Ou.canvas.width=c,Ou.canvas.height=p,Ou.drawImage(r,0,0,c,p),r=Ou.canvas);let P=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,_="rgba8unorm",$=n.textureManager.acquireTexture(d[1],d[0],_,P);n.queue.copyExternalImageToTexture({source:r},{texture:$},[d[1],d[0]]),x={width:c,height:p,format:_,usage:P,texture:$}}let A=v.sizeFromShape(d),b=v.computeStrides(d),w=new dge(d,a,h),k=[{type:"uint32",data:[A]},{type:"uint32",data:[a]},{type:"uint32",data:[...b]}],S=n.makeTensorInfo([p,c],"int32"),E=n.tensorMap.get(S.dataId);E.resourceInfo=x;let R=n.runWebGPUProgram(w,[S],"int32",k);return n.disposeData(S.dataId),R}let m=r.data,g=m;if(a!=null&&a!==4){g=new Uint8Array(r.width*r.height*a);let x=m.length,A=0;for(let b=0;b<x;b++)b%4<a&&(g[A++]=m[b])}let y=n.makeTensorInfo(d,"int32",new Int32Array(g));return n.uploadToGPU(y.dataId),y}var fge=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(C.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${lt()}
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},mge={kernelName:Eo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new fge(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function gge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=C.convertConv2DDataFormat(c),g=C.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return tT({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var yge={kernelName:Qa,backendName:"webgpu",kernelFunc:gge};function Age(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=C.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new sT(m,y,d,x):(b=new rT(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var xge={kernelName:eo,backendName:"webgpu",kernelFunc:Age},bge=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Tn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function vge(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=C.prepareAndValidate(s,r),d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=Ue({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=c2e(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new bge(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=Ue({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var wge={kernelName:Al,backendName:"webgpu",kernelFunc:vge},kge=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=Ige(this.aShape);return`
${lt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function Ige(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function iT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=C.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ue({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=Le(h.shape,h.dtype,A),k=n.tensorMap.get(d.dataId).values,S=Le(d.shape,d.dtype,k),E=d2e(S,b,f);return p.forEach(R=>n.disposeData(R.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new kge(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=Ue({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var Sge={kernelName:yl,backendName:"webgpu",kernelFunc:iT},Cge=os({opType:Ye.GREATER,cpuKernelImpl:h2e,dtype:"bool"}),Tge={kernelName:xl,backendName:"webgpu",kernelFunc:Cge},Nge=os({opType:Ye.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:p2e}),Ege={kernelName:Ro,backendName:"webgpu",kernelFunc:Nge};function Rge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Bh(r.shape,Fe.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var _ge={kernelName:Do,backendName:"webgpu",kernelFunc:Rge},Dge=os({opType:Ye.LESS,dtype:"bool",cpuKernelImpl:m2e}),$ge={kernelName:bl,backendName:"webgpu",kernelFunc:Dge},Pge=os({opType:Ye.LESS_EQUAL,dtype:"bool",cpuKernelImpl:f2e}),Fge={kernelName:vl,backendName:"webgpu",kernelFunc:Pge},Oge=Dn({opType:Fe.LOG,cpuKernelImpl:g2e}),Mge={kernelName:$o,backendName:"webgpu",kernelFunc:Oge},zge=os({opType:Ye.LOGICAL_AND,dtype:"bool"}),Lge={kernelName:wl,backendName:"webgpu",kernelFunc:zge},Bge=Dn({opType:Fe.LOGICAL_NOT}),Wge={kernelName:kl,backendName:"webgpu",kernelFunc:Bge};function lT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Vh(r,a,o,"max",n)}var Vge={kernelName:Po,backendName:"webgpu",kernelFunc:lT},Uge=os({opType:Ye.MAX,cpuKernelImpl:A2e}),Gge={kernelName:Fo,backendName:"webgpu",kernelFunc:Uge};function Hge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=C.computePool2DInfo(r.shape,a,o,u,i,l),p,d=[];if(c.filterHeight===1&&c.filterWidth===1){if(v.arraysEqual(c.inShape,c.outShape))return Fs({inputs:{x:r},backend:n});p=new JC(c),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]})}else p=new YC(c,"max"),d.push({type:"int32",data:[c.strideHeight,c.strideWidth]},{type:"int32",data:[c.padInfo.top,c.padInfo.left]},{type:"int32",data:[c.dilationHeight,c.dilationWidth]},{type:"int32",data:[c.inHeight,c.inWidth]},{type:"int32",data:[c.effectiveFilterHeight,c.effectiveFilterWidth]});return n.runWebGPUProgram(p,[r],r.dtype,d)}var jge={kernelName:Oo,backendName:"webgpu",kernelFunc:Hge};function qge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Vh(r,o,a,"mean",n)}var Xge={kernelName:Mo,backendName:"webgpu",kernelFunc:qge};function Kge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Vh(r,a,o,"min",n)}var Zge={kernelName:zo,backendName:"webgpu",kernelFunc:Kge},Yge=os({opType:Ye.MIN,cpuKernelImpl:x2e}),Jge={kernelName:Lo,backendName:"webgpu",kernelFunc:Yge},Qge=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Tn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${lt()}
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} else if(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${i}));
}
}
`}},e3e={kernelName:Bo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new Qge(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function t3e(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=v2e(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Bh(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var n3e={kernelName:Il,backendName:"webgpu",kernelFunc:t3e};function s3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=dr.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var r3e={kernelName:Cl,backendName:"webgpu",kernelFunc:s3e};function a3e(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=dr.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var o3e={kernelName:Tl,backendName:"webgpu",kernelFunc:a3e};function Bm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Wh({inputs:{input:s},backend:n}),a=Bm({inputs:{x:r},backend:n}),o=E2({inputs:{input:s},backend:n}),i=Bm({inputs:{x:o},backend:n}),l=hd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ou({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var i3e={kernelName:Hl,backendName:"webgpu",kernelFunc:Bm};function uT(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Wh({inputs:{input:s},backend:n}),a=uT({inputs:{x:r},backend:n}),o=E2({inputs:{input:s},backend:n}),i=Bm({inputs:{x:o},backend:n}),l=hd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return ou({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var l3e={kernelName:Nl,backendName:"webgpu",kernelFunc:uT};function u3e(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return yy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=yy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=eT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var c3e={kernelName:Rl,backendName:"webgpu",kernelFunc:u3e},d3e=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Tn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${lt()}
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromIndex(index);
if (${o} || ${i}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},cT=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return Fs({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return ou({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new d3e(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},p3e={kernelName:Vo,backendName:"webgpu",kernelFunc:cT},h3e=os({opType:Ye.POW}),f3e={kernelName:Uo,backendName:"webgpu",kernelFunc:h3e};function m3e(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new fy(Ye.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var g3e={kernelName:Go,backendName:"webgpu",kernelFunc:m3e};function y3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Vh(r,a,o,"prod",n)}var A3e={kernelName:Ho,backendName:"webgpu",kernelFunc:y3e},x3e=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=I2e(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},b3e={kernelName:_c,backendName:"webgpu",kernelFunc:x3e},dT=os({opType:Ye.DIV}),v3e={kernelName:Io,backendName:"webgpu",kernelFunc:dT},w3e=Dn({opType:Fe.RELU}),k3e={kernelName:jo,backendName:"webgpu",kernelFunc:w3e},I3e=Dn({opType:Fe.RELU6}),S3e={kernelName:Ko,backendName:"webgpu",kernelFunc:I3e},C3e=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function T3e(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new C3e(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var N3e={kernelName:Xo,backendName:"webgpu",kernelFunc:T3e},E3e=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function R3e(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new E3e(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var _3e={kernelName:qo,backendName:"webgpu",kernelFunc:R3e},D3e=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},$3e={kernelName:jl,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new D3e(s.shape,a),[u,c]=C.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},P3e=Dn({opType:Fe.RSQRT,cpuKernelImpl:S2e}),F3e={kernelName:Zo,backendName:"webgpu",kernelFunc:P3e},lm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=at(e),this.dispatch=We(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=Tn(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.dispatchLayout.x.length===2&&(s="vec2<i32>(flattenedIndex, coords[1])",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
// N.B. |updates| could be a scalar tensor, conceptually representing a
// 2D tensor with all values equal to that. By design, its size must be
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
// gives the other.
let sliceSize = uniforms.outShape[1];
let d0 = index / sliceSize;
let d1 = index - d0 * sliceSize;
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${Array.from({length:this.updatesRank},(u,c)=>`coords[${c}]`).join(", ")})`,i=(u,c)=>{let p=`atomicAdd(${u}, bitcast<i32>(${c}))`;this.type==="float32"&&(p=`
{
var oldBits = 0;
var newBits = bitcast<i32>(${c});
loop {
let info = atomicCompareExchangeWeak(${u}, oldBits, newBits);
if (info.exchanged) {
break;
}
oldBits = info.old_value;
let oldValue = bitcast<f32>(oldBits);
let newValue = oldValue + (${c});
newBits = bitcast<i32>(newValue);
}
}
`);let d=`atomicStore(${u}, bitcast<i32>(${c}));`;return this.sumDupeIndices?p:d};return`
${r}
${lt()}
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue =
${Ap(this.type,!1)}(${o});
let flatIndex = getOutputIndexFromCoords(${s});
${i("&result[flatIndex]","updateValue")};
}
}`}};function O3e(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=C.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=Ue({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ue({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=ou({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new lm(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=Ue({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var M3e={kernelName:Pl,backendName:"webgpu",kernelFunc:O3e},z3e=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${lt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function L3e(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new z3e(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],On(r.dtype,a.dtype))}var B3e={kernelName:Fl,backendName:"webgpu",kernelFunc:L3e},W3e=Dn({opType:Fe.SIGMOID}),V3e={kernelName:Jo,backendName:"webgpu",kernelFunc:W3e},U3e=Dn({opType:Fe.SIN}),G3e={kernelName:Yo,backendName:"webgpu",kernelFunc:U3e},H3e=Dn({opType:Fe.SINH}),j3e={kernelName:Ml,backendName:"webgpu",kernelFunc:H3e},pT=os({opType:Ye.SUB,cpuKernelImpl:_2e,supportsComplex:!0}),q3e={kernelName:si,backendName:"webgpu",kernelFunc:pT};function X3e(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=lT({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=C.expandShapeToKeepDim(i.shape,o),u=Ue({inputs:{x:i},backend:n,attrs:{shape:l}}),c=pT({inputs:{a:r,b:u},backend:n}),p=oT({inputs:{x:c},backend:n}),d=lb({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ue({inputs:{x:d},backend:n,attrs:{shape:l}}),f=dT({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var K3e={kernelName:ti,backendName:"webgpu",kernelFunc:X3e},Z3e=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=cT({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(c.shape,a,i,!1),d=C.getPermuted(p.length,a.length,!1),h=C.getReshapedPermuted(c.shape,a,i,!1),f=Ue({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Aa({inputs:{x:f},backend:n,attrs:{perm:d}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},Y3e={kernelName:zl,backendName:"webgpu",kernelFunc:Z3e},J3e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Q3e(this.rank,"uniforms.");return`
${lt()}
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function Q3e(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function hT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=Le(r.shape,r.dtype,u),p=D2e(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new J3e(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var eye={kernelName:va,backendName:"webgpu",kernelFunc:hT};function tye(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=C.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),R=n.bufferSync(a),P=v.decodeString(n.readSync(o.dataId)[0]),_=C2e(E,R,i,d,c,u,l,p,P,h);return n.makeTensorInfo(i,_.dtype,_.values)}let f=[d/c,c],m=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?Ue({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):Fs({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=Ue({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=hT({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),k=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new lm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,k,b)}break;default:{let E=new lm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,k,b)}{let E=new lm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,k,b)}}let S=Ue({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),S}var nye={kernelName:Yp,backendName:"webgpu",kernelFunc:tye};function sye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=C.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=fd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var rye={kernelName:Ll,backendName:"webgpu",kernelFunc:sye},aye=Dn({opType:Fe.SQRT}),oye={kernelName:Qo,backendName:"webgpu",kernelFunc:aye},iye={kernelName:Mc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Bh(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},lye=os({opType:Ye.SQUARED_DIFFERENCE}),uye={kernelName:ni,backendName:"webgpu",kernelFunc:lye},cye=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Tn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function dye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Ut.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Ue({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Ut.computeOutShape(x,A,b),S=fd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Ue({inputs:{x:S},backend:n,attrs:{shape:f}}),n.disposeData(S.dataId)}else if(n.shouldExecuteOnCPU([r])){let S=n.readSync(r.dataId),E=Le(r.shape,r.dtype,S),R=E2e(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,R.values)}else{let S=new cye(h),E=[{type:"int32",data:x},{type:"int32",data:b}],R=n.runWebGPUProgram(S,[r],r.dtype,E);w=Ue({inputs:{x:R},backend:n,attrs:{shape:f}}),n.disposeData(R.dataId)}return w}var pye={kernelName:Bl,backendName:"webgpu",kernelFunc:dye};function hye(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=R2e(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var fye={kernelName:zc,backendName:"webgpu",kernelFunc:hye},mye=Dn({opType:Fe.TANH}),gye={kernelName:ri,backendName:"webgpu",kernelFunc:mye},yye=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},Aye=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${lt()}
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function Mu(e,t){t!==null&&e.disposeData(t.dataId)}function j7(e){let t=1;for(;t<e;)t*=2;return t}function xye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,S]=$2e(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(S.shape,S.dtype,S.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,ou({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=Ue({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=j7(a),h=j7(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,k,S)=>{let E=m(),R=new yye(S),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],$=f;f=n.runWebGPUProgram(R,E,"int32",_),Mu(n,$)};for(let w=1;w<d;w*=2){let k=w*2;for(let S=w;S>=1;S/=2)g(k,S,[c,h])}for(let w=h;w>d;w/=2){let k=m(),S=new Aye([c,w/2]),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],P=f;f=n.runWebGPUProgram(S,k,"int32",R),Mu(n,P);let _=d/2,$=_*2;for(let T=_;T>=1;T/=2)g($,T,f.shape)}let y=f;f=fd({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Mu(n,y);let x=iT({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Mu(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=Ue({inputs:{x:f},attrs:{shape:A},backend:n}),Mu(n,y);let b=x;return x=Ue({inputs:{x},attrs:{shape:A},backend:n}),Mu(n,b),[x,f]}var bye={kernelName:Vl,backendName:"webgpu",kernelFunc:xye},vye=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=at(this.outputShape),this.dispatch=We(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${lt()}
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function wye(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new vye(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var kye={kernelName:Ul,backendName:"webgpu",kernelFunc:wye};function Iye(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=fd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=Ue({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var Sye={kernelName:Gl,backendName:"webgpu",kernelFunc:Iye},Cye=[e2e,O2e,z2e,W2e,q2e,K2e,Y2e,Q2e,r1e,l1e,c1e,f1e,n2e,A1e,k1e,N1e,R1e,D1e,F1e,M1e,L1e,V1e,H1e,Z1e,J1e,ege,tge,nge,rge,Y0e,oge,pge,lge,cge,mge,yge,xge,wge,Sge,Tge,Ege,t2e,g1e,_ge,$ge,Fge,Mge,Lge,Wge,Vge,Gge,jge,Xge,Zge,Jge,e3e,j1e,n3e,r3e,o3e,a1e,l3e,c3e,p3e,f3e,g3e,A3e,b3e,o1e,v3e,k3e,S3e,J0e,N3e,_3e,$3e,F3e,M3e,B3e,V3e,G3e,j3e,n1e,pye,fye,K3e,Y3e,nye,rye,oye,iye,uye,q3e,X1e,gye,eye,bye,kye,H2e,Sye,i3e];for(let e of Cye)cr(e);var Tye=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=q7(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=q7(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function q7(e,t){return`${e}_${t}`}var Nye=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=K7(n),a=e*t*r,o=X7(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=X7(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=K7(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function X7(e,t,n,s){return`${e}_${t}_${n}_${s}`}function K7(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}var Eye=Z().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),Rye=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},R2=class extends cc{constructor(e,t=!1){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!rb())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=t,this.bufferManager=new Tye(this.device),this.textureManager=new Nye(this.device),this.tensorMap=new Mp(this,sn()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return R2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),Z().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=C.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=XC(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=sn().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return Le(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return Le(e.shape,e.dtype,t)}async time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=qC(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=Rye(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=N0e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=C0e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),Z().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=Eye){return Z().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};R2.nextDataId=0;var fT={};Ve(fT,{WebGPUBackend:()=>R2,webgpu_util:()=>HC});rb()&&ql("webgpu",async()=>{Z().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:Z().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r?s.requiredFeatures=["timestamp-query"]:console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Or zero will shown for the kernel time when profiling mode isenabled. Using performance.now is not workable for webgpu sinceit doesn't support synchronously to read data from GPU.");let a=await t.requestDevice(s);return new R2(a,r)},3);var _ye="3.19.0",Dye="3.19.0",$ye="3.19.0",Pye="3.19.0",Fye="3.19.0",Oye="3.19.0",Mye="3.19.0",Uh={tfjs:_ye,"tfjs-core":Dye,"tfjs-data":$ye,"tfjs-layers":Pye,"tfjs-converter":Fye,"tfjs-backend-webgl":Oye,"tfjs-backend-wasm":Mye};var mT=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var gT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,yT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,AT=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,xT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,bT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var ub=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},cb=class{constructor(t,n,s){me(this,"uniform",{});me(this,"attribute",{});me(this,"gl");me(this,"id");me(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(ie(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)}`),null)):(ie("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){ie("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ie(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)}`);return}this.gl.useProgram(this.id),ub(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);ub(n,"uniform",this.uniform),ub(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function vT(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=is(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){ie("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let k=p.createTexture();return p.bindTexture(p.TEXTURE_2D,k),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,k,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new cb(p,mT,x),!i)return ie("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?yT:gT,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,k=.715,S=.072;y.colorMatrix([w+A*(1-w)+b*-w,k+A*-k+b*-k,S+A*-S+b*(1-S),0,0,w+A*-w+b*.143,k+A*(1-k)+b*.14,S+A*-S+b*-.283,0,0,w+A*-w+b*-(1-w),k+A*-k+b*k,S+A*(1-S)+b*S,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(bT);!k||(p.uniform1fv(k.uniform.m,A),p.uniform2f(k.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(xT);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(AT);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function _2(e){let t=e.shape.length===4?rt(e):e,n=Zt(t,3,2),s=[ga(n[0]),ga(n[1]),ga(n[2])],r=[mn(n[0]),mn(n[1]),mn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[he(n[0],s[0]),he(n[1],s[1]),he(n[2],s[2])],l=[he(r[0],s[0]),he(r[1],s[1]),he(r[2],s[2])],u=[pe(o,l[0]),pe(o,l[1]),pe(o,l[2])],c=[L(i[0],u[0]),L(i[1],u[1]),L(i[2],u[2])],p=on([c[0],c[1],c[2]],2),d=U(p,[1,t.shape[0],t.shape[1],3]);return ne([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var D2=3840,mt=null,cn=null,md=null,$t,Ta={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function is(e,t){let n;if(fe.browser)if(fe.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof fe.Canvas!="undefined"?n=new fe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function $2(e,t){let n=t||is(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function gd(e,t,n=!0){if(!e)return t.debug&&ie("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof tt)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof fe.Canvas!="undefined"&&e instanceof fe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof tt){let s=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)s=Kt(e,0);else if(e.shape[2]===4){let r=ci(e,[0,0,0],[-1,-1,3]);s=Kt(r,0),ne(r)}}else e.shape.length===4&&(e.shape[3]===3?s=Fn(e):e.shape[3]===4&&(s=no(e,[0,0,0,0],[-1,-1,-1,3])));if(s==null||s.shape.length!==4||s.shape[0]!==1||s.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape}`);if(s.dtype==="int32"){let r=ge(s,"float32");ne(s),s=r}return{tensor:s,canvas:t.filter.return?cn:null}}else{if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ie("input stream is not ready"),{tensor:null,canvas:mt};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ie("cannot determine input dimensions"),{tensor:null,canvas:mt};let a=s,o=r;if(a>D2&&(a=D2,o=Math.trunc(a*r/s)),o>D2&&(o=D2,a=Math.trunc(o*s/r)),(t.filter.width||0)>0?a=t.filter.width:(t.filter.height||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!mt||(mt==null?void 0:mt.width)!==a||(mt==null?void 0:mt.height)!==o)&&(mt=is(a,o));let i=mt.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,mt==null?void 0:mt.width,mt==null?void 0:mt.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,mt==null?void 0:mt.width,mt==null?void 0:mt.height),(!cn||mt.width!==cn.width||(mt==null?void 0:mt.height)!==(cn==null?void 0:cn.height))&&(cn=is(mt.width,mt.height)),t.filter.enabled&&fe.webgl.supported?($t||($t=fe.browser?new vT:null),fe.filter=!!$t,!$t||!$t.add?(t.debug&&ie("input process error: cannot initialize filters"),fe.webgl.supported=!1,t.filter.enabled=!1,$2(mt,cn)):($t.reset(),t.filter.brightness!==0&&$t.add("brightness",t.filter.brightness),t.filter.contrast!==0&&$t.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&$t.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&$t.add("blur",t.filter.blur),t.filter.saturation!==0&&$t.add("saturation",t.filter.saturation),t.filter.hue!==0&&$t.add("hue",t.filter.hue),t.filter.negative&&$t.add("negative"),t.filter.sepia&&$t.add("sepia"),t.filter.vintage&&$t.add("brownie"),t.filter.sepia&&$t.add("sepia"),t.filter.kodachrome&&$t.add("kodachrome"),t.filter.technicolor&&$t.add("technicolor"),t.filter.polaroid&&$t.add("polaroid"),t.filter.pixelate!==0&&$t.add("pixelate",t.filter.pixelate),$t.get()>0?cn=$t.apply(mt):cn=$t.draw(mt))):($2(mt,cn),$t&&($t=null),fe.filter=!!$t),!n)return{tensor:null,canvas:cn};if(!cn)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(fe.browser&&Ys)l=Ys?Ys.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let d=new Uint8Array(e.data.buffer);l=ft(d,[e.height,e.width,u],"int32")}else if((!md||cn.width!==md.width||cn.height!==md.height)&&(md=is(cn.width,cn.height)),Ys&&fe.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=Ys.fromPixels(cn):(md=$2(cn),l=Ys.fromPixels(md));else{let f=$2(cn).getContext("2d").getImageData(0,0,a,o);u=f.data.length/a/o;let m=new Uint8Array(f.data.buffer);l=ft(m,[a,o,u])}if(u===4){let d=ci(l,[0,0,0],[-1,-1,3]);ne(l),l=d}if(!l)throw new Error("input error: cannot create tensor");let c=ge(l,"float32"),p=t.filter.equalization?await _2(c):Kt(c,0);return ne([l,c]),{tensor:p,canvas:t.filter.return?cn:null}}}async function wT(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!Ta.inputTensor)Ta.inputTensor=Fn(t);else if(Ta.inputTensor.shape[1]!==t.shape[1]||Ta.inputTensor.shape[2]!==t.shape[2])ne(Ta.inputTensor),Ta.inputTensor=Fn(t);else{let s={};s.diff=he(t,Ta.inputTensor),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ne([Ta.inputTensor,s.diff,s.squared,s.sum]),Ta.inputTensor=Fn(t),n=a<=(e.cacheSensitivity||0)}return n}async function kT(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||ie("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||ie("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Fn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Ne.resizeBilinear(n,[t.shape[1],t.shape[2]]):Fn(n),s.diff=he(s.input1,s.input2),s.squared=L(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ne([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var db=class{constructor(){me(this,"browser");me(this,"node");me(this,"worker");me(this,"platform","");me(this,"agent","");me(this,"backends",[]);me(this,"initial");me(this,"filter");me(this,"tfjs");me(this,"offscreen");me(this,"perfadd",!1);me(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});me(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});me(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});me(this,"cpu",{model:void 0,flags:[]});me(this,"kernels",[]);me(this,"Canvas");me(this,"Image");me(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Uh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(sn().registryFactory),this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&ss()==="wasm"&&(this.wasm.simd=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"));let t=is(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(ss()==="webgl"||ss()==="humangl")){let s=Zs().gpgpu!=="undefined"?await Zs().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{this.webgpu.supported&&(this.webgpu.adapter=(await navigator.gpu.requestAdapter()).name)}catch(s){this.webgpu.supported=!1}try{this.kernels=qr(ss()).map(s=>s.kernelName.toLowerCase())}catch(s){}}async updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},fe=new db;var pb={};ia(pb,{age:()=>Wye,antispoof:()=>Vye,blazeface:()=>Hye,"blazeface-back":()=>Uye,"blazeface-front":()=>Gye,"blazepose-detector2d":()=>jye,"blazepose-detector3d":()=>qye,"blazepose-full":()=>Xye,"blazepose-heavy":()=>Kye,"blazepose-lite":()=>Zye,default:()=>EAe,efficientpose:()=>Yye,emotion:()=>Jye,faceboxes:()=>Qye,facemesh:()=>aAe,"facemesh-attention":()=>tAe,"facemesh-attention-alt":()=>eAe,"facemesh-detection-full":()=>nAe,"facemesh-detection-short":()=>sAe,"facemesh-orig":()=>rAe,faceres:()=>iAe,"faceres-deep":()=>oAe,gear:()=>lAe,gender:()=>cAe,"gender-ssrnet-imdb":()=>uAe,handdetect:()=>dAe,"handlandmark-full":()=>pAe,"handlandmark-lite":()=>hAe,"handlandmark-sparse":()=>fAe,handskeleton:()=>mAe,handtrack:()=>gAe,iris:()=>yAe,liveness:()=>AAe,"mb3-centernet":()=>xAe,meet:()=>bAe,mobileface:()=>vAe,mobilefacenet:()=>wAe,"movenet-lightning":()=>kAe,"movenet-multipose":()=>IAe,"movenet-thunder":()=>SAe,nanodet:()=>CAe,posenet:()=>TAe,selfie:()=>NAe});var Wye=161240,Vye=853098,Uye=538928,Gye=402048,Hye=538928,jye=7499400,qye=5928856,Xye=6338290,Kye=27501554,Zye=2725490,Yye=5651240,Jye=820516,Qye=2013002,eAe=2387598,tAe=2382414,nAe=1026192,sAe=201268,rAe=2955780,aAe=1477958,oAe=13957620,iAe=6978814,lAe=1498916,uAe=161236,cAe=201808,dAe=3515612,pAe=5431368,hAe=2023432,fAe=5286322,mAe=5502280,gAe=2964837,yAe=2599092,AAe=592976,xAe=4030290,bAe=372228,vAe=2183192,wAe=5171976,kAe=4650216,IAe=9448838,SAe=12477112,CAe=7574558,TAe=5032780,NAe=212886,EAe={age:Wye,antispoof:Vye,"blazeface-back":Uye,"blazeface-front":Gye,blazeface:Hye,"blazepose-detector2d":jye,"blazepose-detector3d":qye,"blazepose-full":Xye,"blazepose-heavy":Kye,"blazepose-lite":Zye,efficientpose:Yye,emotion:Jye,faceboxes:Qye,"facemesh-attention-alt":eAe,"facemesh-attention":tAe,"facemesh-detection-full":nAe,"facemesh-detection-short":sAe,"facemesh-orig":rAe,facemesh:aAe,"faceres-deep":oAe,faceres:iAe,gear:lAe,"gender-ssrnet-imdb":uAe,gender:cAe,handdetect:dAe,"handlandmark-full":pAe,"handlandmark-lite":hAe,"handlandmark-sparse":fAe,handskeleton:mAe,handtrack:gAe,iris:yAe,liveness:AAe,"mb3-centernet":xAe,meet:bAe,mobileface:vAe,mobilefacenet:wAe,"movenet-lightning":kAe,"movenet-multipose":IAe,"movenet-thunder":SAe,nanodet:CAe,posenet:TAe,selfie:NAe};var ls={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},Or={};async function RAe(e,t){return ls.debug&&ie("load model fetch:",e,t),fetch(e,t)}function IT(e){ls.cacheModels=e.cacheModels,ls.verbose=e.debug,ls.modelBasePath=e.modelBasePath}async function qe(e){var u,c,p;let t=uv(ls.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;Or[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:pb[s],inCache:!1},ls.cacheSupported=typeof window!="undefined"&&typeof window.localStorage!="undefined"&&typeof window.indexedDB!="undefined";let a={};try{a=ls.cacheSupported&&ls.cacheModels?await Ts.listModels():{}}catch(d){ls.cacheSupported=!1}Or[s].inCache=ls.cacheSupported&&ls.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(d,h)=>RAe(d,h)},i=new $h(Or[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),ls.debug&&ie("model load handler:",i.handler);let d=await i.handler.load();Or[s].sizeFromManifest=((u=d==null?void 0:d.weightData)==null?void 0:u.byteLength)||0,i.loadSync(d),Or[s].sizeLoadedWeights=((p=(c=i==null?void 0:i.artifacts)==null?void 0:c.weightData)==null?void 0:p.byteLength)||0,ls.verbose&&ie("load model:",i.modelUrl,{bytes:Or[s].sizeLoadedWeights},ls),l=!0}catch(d){ie("error loading model:",t,d)}if(l&&ls.cacheModels&&ls.cacheSupported&&!Or[s].inCache)try{let d=await i.save(r);ie("model saved:",r,d)}catch(d){ie("error saving model:",t,d)}return i}var hb="2.9.1";var m1={};ia(m1,{Models:()=>Qh,getModelStats:()=>I4,load:()=>S4,reset:()=>f1,validate:()=>C4});var fr,fb=[],$Ae=["white","black","asian","indian","other"],PAe=[15,23,28,35.5,45.5,55.5,65],ST=0,CT=0,mb=Number.MAX_SAFE_INTEGER;async function TT(e){var t;return fe.initial&&(fr=null),fr?e.debug&&ie("cached model:",fr.modelUrl):fr=await qe((t=e.face.gear)==null?void 0:t.modelPath),fr}async function gb(e,t,n,s){var o,i;if(!fr)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=mb<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>ue()-CT;return t.skipAllowed&&a&&r&&ST===s&&fb[n]?(mb++,fb[n]):(mb=0,new Promise(async l=>{var y,x;if(!(fr!=null&&fr.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Ne.cropAndResize(e,c,[0],[fr.inputs[0].shape[2],fr.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=fr.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:$Ae[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[PAe[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>ne(u[A])),fb[n]=p,ST=s,CT=ue(),l(p)}))}var nt={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function ET(){nt.tf255=Se(255,"float32"),nt.tf1=Se(1,"float32"),nt.tf2=Se(2,"float32"),nt.tf05=Se(.5,"float32"),nt.tf127=Se(127.5,"float32"),nt.rgb=Ft([.2989,.587,.114],"float32")}var Os,P2=[],RT=0,_T=0,yb=Number.MAX_SAFE_INTEGER;async function DT(e){return fe.initial&&(Os=null),Os?e.debug&&ie("cached model:",Os.modelUrl):Os=await qe(e.face.ssrnet.modelPathAge),Os}async function Ab(e,t,n,s){var o,i,l,u;if(!Os)return{age:0};let r=yb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ue()-_T;return t.skipAllowed&&r&&a&&RT===s&&((l=P2[n])==null?void 0:l.age)&&((u=P2[n])==null?void 0:u.age)>0?(yb++,P2[n]):(yb=0,new Promise(async c=>{if(!(Os!=null&&Os.inputs)||!Os.inputs[0]||!Os.inputs[0].shape)return;let p={};p.resize=Ne.resizeBilinear(e,[Os.inputs[0].shape[2],Os.inputs[0].shape[1]],!1),p.enhance=L(p.resize,nt.tf255);let d={age:0};if(t.face.ssrnet.enabled&&(p.age=Os.execute(p.enhance)),p.age){let h=await p.age.data();d.age=Math.trunc(10*h[0])/10}Object.keys(p).forEach(h=>ne(p[h])),P2[n]=d,RT=s,_T=ue(),c(d)}))}var mr,F2=[],PT=0,FT=0,xb=Number.MAX_SAFE_INTEGER,bb=[.2989,.587,.114];async function OT(e){return fe.initial&&(mr=null),mr?e.debug&&ie("cached model:",mr.modelUrl):mr=await qe(e.face.ssrnet.modelPathGender),mr}async function vb(e,t,n,s){var o,i,l,u;if(!mr)return{gender:"unknown",genderScore:0};let r=xb<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>ue()-FT;return t.skipAllowed&&r&&a&&PT===s&&((l=F2[n])==null?void 0:l.gender)&&((u=F2[n])==null?void 0:u.genderScore)>0?(xb++,F2[n]):(xb=0,new Promise(async c=>{if(!(mr!=null&&mr.inputs[0].shape))return;let p={};p.resize=Ne.resizeBilinear(e,[mr.inputs[0].shape[2],mr.inputs[0].shape[1]],!1),p.enhance=J(()=>{let[f,m,g]=Zt(p.resize,3,3),y=L(f,bb[0]),x=L(m,bb[1]),A=L(g,bb[2]),b=m0([y,x,A]);return L(he(b,nt.tf05),2)});let d={gender:"unknown",genderScore:0};t.face.ssrnet.enabled&&(p.gender=mr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(f=>ne(p[f])),F2[n]=d,PT=s,FT=ue(),c(d)}))}var zn,O2=[],wb=Number.MAX_SAFE_INTEGER,zT=0,LT=0;async function BT(e){var t;return fe.initial&&(zn=null),zn?e.debug&&ie("cached model:",zn.modelUrl):zn=await qe((t=e.face.antispoof)==null?void 0:t.modelPath),zn}async function kb(e,t,n,s){var o,i;if(!zn)return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>ue()-LT,a=wb<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&zT===s&&O2[n]?(wb++,O2[n]):(wb=0,new Promise(async l=>{let u=Ne.resizeBilinear(e,[zn!=null&&zn.inputs[0].shape?zn.inputs[0].shape[2]:0,zn!=null&&zn.inputs[0].shape?zn.inputs[0].shape[1]:0],!1),c=zn==null?void 0:zn.execute(u),p=(await c.data())[0];O2[n]=Math.round(100*p)/100,zT=s,LT=ue(),ne([u,c]),l(O2[n])}))}var gr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Ib={count:468,mouth:13,symmetryLine:[13,gr.midwayBetweenEyes[0]]},iu={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Sb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Hh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],lu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var OAe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],MAe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],zAe=[33,133,362,263,1,78,308],B8e=OAe.map(e=>Hh[e]),W8e=MAe.map(e=>Hh[e]),V8e=zAe.map(e=>Hh[e]);function fi(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var LAe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],BAe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],WAe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],VAe=[[474,475],[475,476],[476,477],[477,474]],UAe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],GAe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],HAe=[[469,470],[470,471],[471,472],[472,469]],jAe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],U8e={lips:fi(LAe),leftEye:fi(BAe),leftEyebrow:fi(WAe),leftIris:fi(VAe),rightEye:fi(UAe),rightEyebrow:fi(GAe),rightIris:fi(HAe),faceOval:fi(jAe)};var yd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],M2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],z2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],L2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],GT=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Tb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Ne.cropAndResize(t,[a],[0],n),i=pe(o,nt.tf255);return ne(o),i},B2=(e,t)=>{let n=M2(e),s=yd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},W2=e=>{let t=M2(e),n=yd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},HT=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Nb=[[1,0,0],[0,1,0],[0,0,1]],qAe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),XAe=(e,t)=>qAe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var VT=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],uu=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},KAe=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},UT=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(uu(e[r],KAe(t,a)))}return n},jT=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=VT(t[0],t[1]),o=UT(a,r),i=VT(-t[0],-t[1]);return UT(o,i)},ZAe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-uu(t[0],n),-uu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},YAe=(e,t)=>[uu(e,t[0]),uu(e,t[1])];function qT(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function XT(e,t,n,s,r){let a=yd(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?jT(n,[0,0]):Nb,u=i?o.map(h=>[...YAe(h,l),h[2]]):o,c=i?ZAe(s):Nb,p=M2(t),d=[uu(p,c[0]),uu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function KT(e,t,n,s){let r=t.landmarks.length>=Ib.count?Ib.symmetryLine:iu.symmetryLine,a=0,o=Nb,i;if(e&&fe.kernels.includes("rotatewithoffset"))if(a=XAe(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=M2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Ne.rotateWithOffset(n,a,0,c);o=jT(-a,u),i=Tb(t,p,[s,s]),ne(p)}else i=Tb(t,n,[s,s]);else i=Tb(t,n,[s,s]);return[a,o,i]}var JAe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},ZT=(e,t)=>{let n=JAe(e),s=yd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var YT=6,QAe=1.4,ea,JT=null,mi=0,jh=null,Ad=()=>mi;async function QT(e){var t;return fe.initial&&(ea=null),ea?e.debug&&ie("cached model:",ea.modelUrl):ea=await qe((t=e.face.detector)==null?void 0:t.modelPath),mi=ea.inputs[0].shape?ea.inputs[0].shape[2]:0,jh=Se(mi,"int32"),JT=or(qT(mi)),ea}function e5e(e){let t={};t.boxStarts=Oe(e,[0,1],[-1,2]),t.centers=ce(t.boxStarts,JT),t.boxSizes=Oe(e,[0,3],[-1,2]),t.boxSizesNormalized=pe(t.boxSizes,jh),t.centersNormalized=pe(t.centers,jh),t.halfBoxSize=pe(t.boxSizesNormalized,nt.tf2),t.starts=he(t.centersNormalized,t.halfBoxSize),t.ends=ce(t.centersNormalized,t.halfBoxSize),t.startNormalized=L(t.starts,jh),t.endNormalized=L(t.ends,jh);let n=Kl([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ne(t[s])),n}async function eN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Ne.resizeBilinear(e,[mi,mi]),n.div=pe(n.resized,nt.tf127),n.normalized=he(n.div,nt.tf05);let s=ea==null?void 0:ea.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=Ct([p[0],p[2]],2),n.concat512=Ct([p[1],p[3]],2),n.concat=Ct([n.concat512,n.concat384],1),n.batch=rt(n.concat,0)}else Array.isArray(s)?n.batch=rt(s[0]):n.batch=rt(s);ne(s),n.boxes=e5e(n.batch),n.logits=Oe(n.batch,[0,0],[-1,1]),n.sigmoid=Cn(n.logits),n.scores=rt(n.sigmoid),n.nms=await Ne.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=Oe(n.boxes,[r[p],0],[1,-1]),h.slice=Oe(n.batch,[r[p],YT-1],[1,-1]),h.squeeze=rt(h.slice),h.landmarks=U(h.squeeze,[YT,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=GT(m,[(e.shape[2]||0)/mi,(e.shape[1]||0)/mi]),y=B2(g,t.face.scale||QAe),x=W2(y);a.push(x),Object.keys(h).forEach(A=>ne(h[A]))}}return Object.keys(n).forEach(p=>ne(n[p])),a}var V2={};ia(V2,{connected:()=>_b,kpt:()=>Rb});var Rb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],_b={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var nN=224,t5e,n5e=5,U2=[8,16,32,32,32];async function sN(){let e=[],t=0;for(;t<n5e;){let n=0,s=t;for(;s<U2.length&&U2[s]===U2[t];)n+=2,s++;let r=U2[t],a=Math.ceil(nN/r),o=Math.ceil(nN/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}t5e={x:Ft(e.map(n=>n.x)),y:Ft(e.map(n=>n.y))}}function Na(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function rN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function G2(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var iN={initial:!0},Ms={detector:null,landmarks:null},xd={detector:[224,224],landmarks:[256,256]},Db=Number.MAX_SAFE_INTEGER,r5e={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},j2=null,qh,gi=[[0,0],[0,0],[0,0],[0,0]],aN=0,oN=e=>1-1/(1+Math.exp(e));async function lN(e){if(iN.initial&&(Ms.detector=null),!Ms.detector&&e.body.detector&&e.body.detector.modelPath){Ms.detector=await qe(e.body.detector.modelPath);let t=Object.values(Ms.detector.modelSignature.inputs);xd.detector[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,xd.detector[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&Ms.detector&&ie("cached model:",Ms.detector.modelUrl);return await sN(),Ms.detector}async function uN(e){if(iN.initial&&(Ms.landmarks=null),Ms.landmarks)e.debug&&ie("cached model:",Ms.landmarks.modelUrl);else{Ms.landmarks=await qe(e.body.modelPath);let t=Object.values(Ms.landmarks.modelSignature.inputs);xd.landmarks[0]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[1].size):0,xd.landmarks[1]=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Ms.landmarks}async function a5e(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;let s;if(qh&&(n.cropped=Ne.cropAndResize(e,[qh],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let r=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],a=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];gi=[[0,0],r,a,[0,0]],n.pad=Js(n.cropped||e,gi),n.resize=Ne.resizeBilinear(n.pad,[t,t]),s=pe(n.resize,nt.tf255)}else e.shape[1]!==t?(n.resize=Ne.resizeBilinear(n.cropped||e,[t,t]),s=pe(n.resize,nt.tf255)):s=pe(n.cropped||e,nt.tf255);return Object.keys(n).forEach(r=>ne(n[r])),s}function o5e(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+gi[2][0]+gi[2][1])/t[0]-gi[2][0]),Math.trunc(n.position[1]*(t[1]+gi[1][0]+gi[1][1])/t[1]-gi[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(qh)for(let n of e)n.positionRaw=[n.positionRaw[0]+qh[1],n.positionRaw[1]+qh[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}async function i5e(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function l5e(e,t,n){var f;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(f=Ms.landmarks)==null?void 0:f.execute(e,r5e.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(m=>ne(s[m]));let i=[],l=5;for(let m=0;m<a.length/l;m++){let g=oN(a[l*m+3]),y=oN(a[l*m+4]),x=Math.trunc(100*g*y*r)/100,A=[a[l*m+0]/xd.landmarks[0],a[l*m+1]/xd.landmarks[1],a[l*m+2]+0],b=[Math.trunc(n[0]*A[0]),Math.trunc(n[1]*A[1]),A[2]],w=[o[l*m+0],o[l*m+1],o[l*m+2]+0];i.push({part:Rb[m],positionRaw:A,position:b,distance:w,score:x})}if(r<(t.body.minConfidence||0))return null;i5e(i);let u=o5e(i,n),c=u.map(m=>m.position),p=Na(c,[n[0],n[1]]),d={};for(let[m,g]of Object.entries(_b)){let y=[];for(let x=0;x<g.length-1;x++){let A=u.find(w=>w.part===g[x]),b=u.find(w=>w.part===g[x+1]);A&&b&&y.push([A.position,b.position])}d[m]=y}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function $b(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>ue()-aN,r=Db<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&j2!==null)Db++;else{let a={};a.landmarks=await a5e(e,256),j2=await l5e(a.landmarks,t,n),Object.keys(a).forEach(o=>ne(a[o])),aN=ue(),Db=0}return j2?[j2]:[]}var bd=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Ea,cu=0,Pb=[],dN=0,Fb=Number.MAX_SAFE_INTEGER;async function pN(e){if(fe.initial&&(Ea=null),Ea)e.debug&&ie("cached model:",Ea.modelUrl);else{Ea=await qe(e.object.modelPath);let t=Object.values(Ea.modelSignature.inputs);cu=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return Ea}async function u5e(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=rt(e);let o=Zt(s.squeeze,6,1);s.stack=on([o[1],o[0],o[3],o[2]],1),s.boxes=rt(s.stack),s.scores=rt(o[4]),s.classes=rt(o[5]),ne([e,...o]),s.nms=await Ne.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5],d=bd[p].label,[h,f]=[a[0][u][0]/cu,a[0][u][1]/cu],m=[h,f,a[0][u][2]/cu-h,a[0][u][3]/cu-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>ne(s[u])),r}async function Ob(e,t){let n=(t.object.skipTime||0)>ue()-dN,s=Fb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Pb.length>0?(Fb++,Pb):(Fb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ne.resizeBilinear(e,[cu,cu]),i=t.object.enabled?Ea==null?void 0:Ea.execute(o,["tower_0/detections"]):null;dN=ue(),ne(o);let l=await u5e(i,a,t);Pb=l,r(l)}))}var q2={};ia(q2,{connected:()=>zb,kpt:()=>Mb});var Mb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],zb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var Ln,fN=0,us={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Lb=Number.MAX_SAFE_INTEGER;async function mN(e){return fe.initial&&(Ln=null),Ln?e.debug&&ie("cached model:",Ln.modelUrl):Ln=await qe(e.body.modelPath),Ln}async function c5e(e,t){let[n,s]=e.shape,r=U(e,[s*n]),a=mn(r,0),o=(await a.data())[0];if(ne([r,a]),o>t){let i=Es(r,0),l=Yl(i,n),u=(await l.data())[0],c=pe(i,Se(n,"int32")),p=(await c.data())[0];return ne([l,c]),[u,p,o]}return[0,0,o]}async function Bb(e,t){let n=(t.body.skipTime||0)>ue()-fN,s=Lb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(us.keypoints).length>0?(Lb++,[us]):(Lb=0,new Promise(async r=>{var p;let a=J(()=>{if(!(Ln!=null&&Ln.inputs[0].shape))return null;let d=Ne.resizeBilinear(e,[Ln.inputs[0].shape[2],Ln.inputs[0].shape[1]],!1),h=L(d,nt.tf2);return he(h,nt.tf1)}),o;if(t.body.enabled&&(o=Ln==null?void 0:Ln.execute(a)),fN=ue(),ne(a),o){us.keypoints.length=0;let d=o.squeeze();ne(o);let h=d.unstack(2);ne(d);for(let f=0;f<h.length;f++){let[m,g,y]=await c5e(h[f],t.body.minConfidence);y>(((p=t.body)==null?void 0:p.minConfidence)||0)&&us.keypoints.push({score:Math.round(100*y)/100,part:Mb[f],positionRaw:[m/Ln.inputs[0].shape[2],g/Ln.inputs[0].shape[1]],position:[Math.round(e.shape[2]*m/Ln.inputs[0].shape[2]),Math.round(e.shape[1]*g/Ln.inputs[0].shape[1])]})}h.forEach(f=>ne(f))}us.score=us.keypoints.reduce((d,h)=>h.score>d?h.score:d,0);let i=us.keypoints.map(d=>d.position[0]),l=us.keypoints.map(d=>d.position[1]);us.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=us.keypoints.map(d=>d.positionRaw[0]),c=us.keypoints.map(d=>d.positionRaw[1]);us.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[d,h]of Object.entries(zb)){let f=[];for(let m=0;m<h.length-1;m++){let g=us.keypoints.find(x=>x.part===h[m]),y=us.keypoints.find(x=>x.part===h[m+1]);g&&y&&g.score>(t.body.minConfidence||0)&&y.score>(t.body.minConfidence||0)&&f.push([g.position,y.position])}us.annotations[d]=f}r([us])}))}var d5e=["angry","disgust","fear","happy","sad","surprise","neutral"],er,X2=[],yN=0,AN=0,Wb=Number.MAX_SAFE_INTEGER;async function xN(e){var t;return fe.initial&&(er=null),er?e.debug&&ie("cached model:",er.modelUrl):er=await qe((t=e.face.emotion)==null?void 0:t.modelPath),er}async function Vb(e,t,n,s){var o,i;if(!er)return[];let r=Wb<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>ue()-AN;return t.skipAllowed&&a&&r&&yN===s&&X2[n]&&X2[n].length>0?(Wb++,X2[n]):(Wb=0,new Promise(async l=>{var c,p;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let d={},h=er!=null&&er.inputs[0].shape?er.inputs[0].shape[2]:0;d.resize=Ne.resizeBilinear(e,[h,h],!1),d.channels=L(d.resize,nt.rgb),d.grayscale=ke(d.channels,3,!0),d.grayscaleSub=he(d.grayscale,nt.tf05),d.grayscaleMul=L(d.grayscaleSub,nt.tf2),d.emotion=er==null?void 0:er.execute(d.grayscaleMul),AN=ue();let f=await d.emotion.data();for(let m=0;m<f.length;m++)f[m]>(((p=t.face.emotion)==null?void 0:p.minConfidence)||0)&&u.push({score:Math.min(.99,Math.trunc(100*f[m])/100),emotion:d5e[m]});u.sort((m,g)=>g.score-m.score),Object.keys(d).forEach(m=>ne(d[m]))}X2[n]=u,yN=s,l(u)}))}var zs,Ub=[],vN=0,wN=0,kN=Number.MAX_SAFE_INTEGER;async function IN(e){return fe.initial&&(zs=null),zs?e.debug&&ie("cached model:",zs.modelUrl):zs=await qe(e.face.mobilefacenet.modelPath),zs}async function Gb(e,t,n,s){var o,i;if(!zs)return[];let r=kN<(((o=t.face.embedding)==null?void 0:o.skipFrames)||0),a=(((i=t.face.embedding)==null?void 0:i.skipTime)||0)>ue()-wN;return t.skipAllowed&&a&&r&&vN===s&&Ub[n]?(kN++,Ub[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.embedding)==null?void 0:c.enabled)&&(zs==null?void 0:zs.inputs[0].shape)){let p={};p.crop=Ne.resizeBilinear(e,[zs.inputs[0].shape[2],zs.inputs[0].shape[1]],!1),p.data=zs==null?void 0:zs.execute(p.crop);let d=await p.data.data();u=Array.from(d)}Ub[n]=u,vN=s,wN=ue(),l(u)})}var Ra,yi=0,p5e=2.3,Hb=gr.leftEyeLower0,jb=gr.rightEyeLower0,vd={leftBounds:[Hb[0],Hb[Hb.length-1]],rightBounds:[jb[0],jb[jb.length-1]]},wd={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function EN(e){var t;return fe.initial&&(Ra=null),Ra?e.debug&&ie("cached model:",Ra.modelUrl):Ra=await qe((t=e.face.iris)==null?void 0:t.modelPath),yi=Ra.inputs[0].shape?Ra.inputs[0].shape[2]:0,yi===-1&&(yi=64),Ra}function K2(e,t,n,s){for(let r=0;r<Sb.length;r++){let{key:a,indices:o}=Sb[r],i=gr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var h5e=e=>{let t=e[vd.leftBounds[0]][2],n=e[vd.rightBounds[0]][2];return t-n},CN=(e,t,n,s,r,a=!1)=>{let o=W2(B2(HT([e[n],e[s]]),p5e)),i=yd(o),l=Ne.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[yi,yi]);if(a&&fe.kernels.includes("flipleftright")){let u=Ne.flipLeftRight(l);ne(l),l=u}return{box:o,boxSize:i,crop:l}},TN=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<wd.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/yi:o/yi)*n[0]+t.startPoint[0],i/yi*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(wd.index)}},NN=(e,t,n)=>{let s=e[gr[`${n}EyeUpper0`][wd.upperCenter]][2],r=e[gr[`${n}EyeLower0`][wd.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function RN(e,t,n,s){if(!Ra)return n.debug&&ie("face mesh iris detection requested, but model is not loaded"),e;let{box:r,boxSize:a,crop:o}=CN(e,t,vd.leftBounds[0],vd.leftBounds[1],s,!0),{box:i,boxSize:l,crop:u}=CN(e,t,vd.rightBounds[0],vd.rightBounds[1],s,!0),c=Ct([o,u]);ne(o),ne(u);let p=Ra.execute(c);ne(c);let d=await p.data();ne(p);let h=d.slice(0,wd.numCoordinates*3),{rawCoords:f,iris:m}=TN(h,r,a,!0),g=d.slice(wd.numCoordinates*3),{rawCoords:y,iris:x}=TN(g,i,l,!1),A=h5e(e);Math.abs(A)<30?(K2(e,f,"left",null),K2(e,y,"right",null)):A<1?K2(e,f,"left",["EyeUpper0","EyeLower0"]):K2(e,y,"right",["EyeUpper0","EyeLower0"]);let b=NN(e,m,"left"),w=NN(e,x,"right");return e.concat(b).concat(w)}var f5e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],m5e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],g5e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],y5e=[[474,475],[475,476],[476,477],[477,474]],A5e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],x5e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],b5e=[[469,470],[470,471],[471,472],[472,469]],v5e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function Ai(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var w5e={lips:Ai(f5e),leftEye:Ai(m5e),leftEyebrow:Ai(g5e),leftIris:Ai(y5e),rightEye:Ai(A5e),rightEyebrow:Ai(x5e),rightIris:Ai(b5e),faceOval:Ai(v5e)},k5e=Object.entries(w5e).map(([e,t])=>t.map(n=>[n,e])).flat(),Ake=new Map(k5e),Xh=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],du=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],pu=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function $N(e,t){let n={lips:await t.filter(a=>a.size===160)[0].data(),irisL:await t.filter(a=>a.size===10)[0].data(),eyeL:await t.filter(a=>a.size===142)[0].data(),irisR:await t.filter(a=>a.size===10)[1].data(),eyeR:await t.filter(a=>a.size===142)[1].data()},s=du.reduce((a,o)=>a+=e[o][2],0)/du.length;for(let a=0;a<n.irisL.length/2;a++)e.push([n.irisL[2*a+0],n.irisL[2*a+1],s]);let r=pu.reduce((a,o)=>a+=e[o][2],0)/pu.length;for(let a=0;a<n.irisR.length/2;a++)e.push([n.irisR[2*a+0],n.irisR[2*a+1],r]);for(let a=0;a<n.eyeL.length/2;a++)e[du[a]]=[n.eyeL[2*a+0],n.eyeL[2*a+1],e[du[a]][2]];for(let a=0;a<n.eyeR.length/2;a++)e[pu[a]]=[n.eyeR[2*a+0],n.eyeR[2*a+1],e[pu[a]][2]];for(let a=0;a<n.lips.length/2;a++)e[Xh[a]]=[n.lips[2*a+0],n.lips[2*a+1],e[Xh[a]][2]];return e}var ta={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Bn=null,hu=0;async function PN(e,t){var i,l,u,c,p,d,h,f,m,g,y;let n=(((i=t.face.detector)==null?void 0:i.skipTime)||0)>ue()-ta.timestamp,s=ta.skipped<(((l=t.face.detector)==null?void 0:l.skipFrames)||0);!t.skipAllowed||!n||!s||ta.boxes.length===0?(ta.boxes=await eN(e,t),ta.timestamp=ue(),ta.skipped=0):ta.skipped++;let r=[],a=[],o=0;for(let x=0;x<ta.boxes.length;x++){let A=ta.boxes[x],b=0,w,k={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,k.tensor]=KT((u=t.face.detector)==null?void 0:u.rotation,A,e,(c=t.face.mesh)!=null&&c.enabled?hu:Ad()),(p=t==null?void 0:t.filter)!=null&&p.equalization){let S=await _2(k.tensor);ne(k.tensor),k.tensor=S}if(k.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!Bn)t.debug&&ie("face mesh detection requested, but model is not loaded");else{let S=Bn.execute(k.tensor),R=await S.find(P=>P.shape[P.shape.length-1]===1).data();if(k.faceScore=Math.round(100*R[0])/100,k.faceScore<(((h=t.face.detector)==null?void 0:h.minConfidence)||1)){if(A.confidence=k.faceScore,(f=t.face.mesh)!=null&&f.keepInvalid){k.box=z2(A,e),k.boxRaw=L2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map(P=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*P[0]/Ad(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*P[1]/Ad()]),k.meshRaw=k.mesh.map(P=>[P[0]/(e.shape[2]||1),P[1]/(e.shape[1]||1),(P[2]||0)/hu]);for(let P of Object.keys(iu))k.annotations[P]=[k.mesh[iu[P]]]}}else{let P=S.find(F=>F.shape[F.shape.length-1]===1404),_=U(P,[-1,3]),$=await _.array();ne(_),(m=t.face.attention)!=null&&m.enabled?$=await $N($,S):(g=t.face.iris)!=null&&g.enabled&&($=await RN($,k.tensor,t,hu)),k.mesh=XT($,A,b,w,hu),k.meshRaw=k.mesh.map(F=>[F[0]/(e.shape[2]||0),F[1]/(e.shape[1]||0),(F[2]||0)/hu]);for(let F of Object.keys(gr))k.annotations[F]=gr[F].map(G=>k.mesh[G]);k.score=k.faceScore;let T={...ZT(k.mesh,A),confidence:A.confidence,landmarks:A.landmarks};k.box=z2(T,e),k.boxRaw=L2(T,e),a.push(T)}ne(S)}else{k.box=z2(A,e),k.boxRaw=L2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map(S=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*S[0]/Ad(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*S[1]/Ad()]),k.meshRaw=k.mesh.map(S=>[S[0]/(e.shape[2]||0),S[1]/(e.shape[1]||0),(S[2]||0)/hu]);for(let S of Object.keys(iu))k.annotations[S]=[k.mesh[iu[S]]]}k.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(k):ne(k.tensor)}return ta.boxes=a,r}async function FN(e){var t,n,s,r,a,o;return fe.initial&&(Bn=null),((n=(t=e==null?void 0:e.face)==null?void 0:t.attention)==null?void 0:n.enabled)&&(Bn==null?void 0:Bn.signature)&&Object.keys(((s=Bn==null?void 0:Bn.signature)==null?void 0:s.outputs)||{}).length<6&&(Bn=null),Bn?e.debug&&ie("cached model:",Bn.modelUrl):(r=e.face.attention)!=null&&r.enabled?Bn=await qe((a=e.face.attention)==null?void 0:a.modelPath):Bn=await qe((o=e.face.mesh)==null?void 0:o.modelPath),hu=Bn.inputs[0].shape?Bn.inputs[0].shape[2]:0,Bn}var ON=lu,MN=Hh;var Ls,Z2=[],zN=0,LN=0,Xb=Number.MAX_SAFE_INTEGER;async function BN(e){var t;return fe.initial&&(Ls=null),Ls?e.debug&&ie("cached model:",Ls.modelUrl):Ls=await qe((t=e.face.description)==null?void 0:t.modelPath),Ls}function Kb(e){let t=e.image||e.tensor||e;if(!(Ls!=null&&Ls.inputs[0].shape))return t;let n=Ne.resizeBilinear(t,[Ls.inputs[0].shape[2],Ls.inputs[0].shape[1]],!1),s=L(n,nt.tf255);return ne(n),s}async function Zb(e,t,n,s){var o,i,l,u;if(!Ls)return{age:0,gender:"unknown",genderScore:0,descriptor:[]};let r=Xb<(((o=t.face.description)==null?void 0:o.skipFrames)||0),a=(((i=t.face.description)==null?void 0:i.skipTime)||0)>ue()-zN;return t.skipAllowed&&r&&a&&LN===s&&((l=Z2[n])==null?void 0:l.age)&&((u=Z2[n])==null?void 0:u.age)>0?(Xb++,Z2[n]):(Xb=0,new Promise(async c=>{var d,h;let p={age:0,gender:"unknown",genderScore:0,descriptor:[]};if((d=t.face.description)!=null&&d.enabled){let f=Kb(e),m=Ls==null?void 0:Ls.execute(f);zN=ue(),ne(f);let y=await(await m.find(R=>R.shape[1]===1)).data(),x=Math.trunc(200*Math.abs(y[0]-.5))/100;x>(((h=t.face.description)==null?void 0:h.minConfidence)||0)&&(p.gender=y[0]<=.5?"female":"male",p.genderScore=Math.min(.99,x));let A=Es(m.find(R=>R.shape[1]===100),1),b=(await A.data())[0];ne(A);let k=await m.find(R=>R.shape[1]===100).data();p.age=Math.round(k[b-1]>k[b+1]?10*b-100*k[b-1]:10*b+100*k[b+1])/10;let S=m.find(R=>R.shape[1]===1024),E=S?await S.data():[];p.descriptor=Array.from(E),m.forEach(R=>ne(R))}Z2[n]=p,LN=s,c(p)}))}function Y2(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Kh(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function UN(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Ne.cropAndResize(t,a,[0],n)}function GN(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function J2(e,t=1.5){let n=Kh(e),s=Y2(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Q2(e){let t=Kh(e),n=Y2(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function S5e(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function HN(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return S5e(n)}var WN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function xi(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function C5e(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function VN(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(xi(e[r],C5e(t,a)))}return n}function Jb(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=WN(t[0],t[1]),o=VN(a,r),i=WN(-t[0],-t[1]);return VN(o,i)}function jN(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-xi(t[0],n),-xi(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function Qb(e,t){return[xi(e,t[0]),xi(e,t[1])]}var XN=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var e1=class{constructor(t){me(this,"model");me(this,"anchors");me(this,"anchorsTensor");me(this,"inputSize");me(this,"inputSizeTensor");me(this,"doubleInputSizeTensor");this.model=t,this.anchors=XN.map(n=>[n.x,n.y]),this.anchorsTensor=or(this.anchors),this.inputSize=this.model&&this.model.inputs&&this.model.inputs[0].shape?this.model.inputs[0].shape[2]:0,this.inputSizeTensor=Ft([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Ft([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=Oe(t,[0,0],[-1,2]),n.boxSizes=Oe(t,[0,2],[-1,2]),n.div=pe(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ce(n.div,this.anchorsTensor),n.halfBoxSizes=pe(n.boxSizes,this.doubleInputSizeTensor),n.sub=he(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=L(n.sub,this.inputSizeTensor),n.add=ce(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=L(n.add,this.inputSizeTensor);let s=Kl([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ne(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=U(t,[-1,7,2]),s.div=pe(s.reshape,this.inputSizeTensor),s.landmarks=ce(s.div,this.anchors[n]);let r=L(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ne(s[a])),r}async predict(t,n){let s={};s.resize=Ne.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=pe(s.resize,nt.tf127),s.image=he(s.div,nt.tf1),s.batched=this.model.execute(s.image),s.predictions=rt(s.batched),s.slice=Oe(s.predictions,[0,0],[-1,1]),s.sigmoid=Cn(s.slice),s.scores=rt(s.sigmoid);let r=await s.scores.data();s.boxes=Oe(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Ne.nonMaxSuppressionAsync(s.norm,s.scores,3*n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let i of a){let l={};l.box=Oe(s.norm,[i,0],[1,-1]),l.slice=Oe(s.predictions,[i,5],[1,14]),l.norm=this.normalizeLandmarks(l.slice,i),l.palmLandmarks=U(l.norm,[-1,2]);let u=await l.box.data(),c=u.slice(0,2),p=u.slice(2,4),d=await l.palmLandmarks.array(),h={startPoint:c,endPoint:p,palmLandmarks:d,confidence:r[i]},f=GN(h,[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]);o.push(f),Object.keys(l).forEach(m=>ne(l[m]))}return Object.keys(s).forEach(i=>ne(s[i])),o}};var E5e=5,KN=1.65,ZN=[0,5,9,13,17,1,2],R5e=0,_5e=2,YN=0,t1=class{constructor(t,n){me(this,"handDetector");me(this,"handPoseModel");me(this,"inputSize");me(this,"storedBoxes");me(this,"skipped");me(this,"detectedHands");this.handDetector=t,this.handPoseModel=n,this.inputSize=this.handPoseModel&&this.handPoseModel.inputs[0].shape?this.handPoseModel.inputs[0].shape[2]:0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>Qb([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return J2(Q2(r),E5e)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=J2(Q2(n),KN);s.palmLandmarks=[];for(let r=0;r<ZN.length;r++)s.palmLandmarks.push(t[ZN[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=Y2(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=Jb(s,[0,0]),u=i.map(h=>[...Qb(h,l),h[2]]),c=jN(r),p=[...Kh(n),1],d=[xi(p,c[0]),xi(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>ue()-YN,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?HN(u.palmLandmarks[R5e],u.palmLandmarks[_5e]):0,p=Kh(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&fe.kernels.includes("rotatewithoffset")?Ne.rotateWithOffset(t,c,0,d):t.clone(),f=Jb(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=UN(m,h,[this.inputSize,this.inputSize]),y=pe(g,nt.tf255);ne(g),ne(h);let[x,A]=this.handPoseModel.execute(y);YN=ue(),ne(y);let b=(await x.data())[0];if(ne(x),b>=n.hand.minConfidence/4){let w=U(A,[-1,3]),k=await w.array();ne(A),ne(w);let S=this.transformRawCoords(k,m,c,f),E=this.getBoxForHandLandmarks(S);this.storedBoxes[l]={...E,confidence:b};let R={landmarks:S,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(R)}else this.storedBoxes[l]=null;ne(A)}else{let c=J2(Q2(u),KN),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var cs={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>cs.nameMapping[e],getPoints:e=>cs.pointsMapping[e]},vi={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>vi.nameMapping[e]},jt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>jt.nameMapping[e]},bi=class{constructor(t){me(this,"name");me(this,"curls");me(this,"directions");me(this,"weights");me(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Mr,index:_a,middle:Da,ring:fu,pinky:mu}=cs,{none:zr,half:$5e,full:Lr}=vi,{verticalUp:kd,verticalDown:$ke,horizontalLeft:e4,horizontalRight:P5e,diagonalUpRight:F5e,diagonalUpLeft:Id,diagonalDownRight:Pke,diagonalDownLeft:Fke}=jt,wi=new bi("thumbs up");wi.curl(Mr,zr,1);wi.direction(Mr,kd,1);wi.direction(Mr,Id,.25);wi.direction(Mr,F5e,.25);for(let e of[cs.index,cs.middle,cs.ring,cs.pinky])wi.curl(e,Lr,1),wi.direction(e,e4,1),wi.direction(e,P5e,1);var dn=new bi("victory");dn.curl(Mr,$5e,.5);dn.curl(Mr,zr,.5);dn.direction(Mr,kd,1);dn.direction(Mr,Id,1);dn.curl(_a,zr,1);dn.direction(_a,kd,.75);dn.direction(_a,Id,1);dn.curl(Da,zr,1);dn.direction(Da,kd,1);dn.direction(Da,Id,.75);dn.curl(fu,Lr,1);dn.direction(fu,kd,.2);dn.direction(fu,Id,1);dn.direction(fu,e4,.2);dn.curl(mu,Lr,1);dn.direction(mu,kd,.2);dn.direction(mu,Id,1);dn.direction(mu,e4,.2);dn.weight(_a,2);dn.weight(Da,2);var ki=new bi("point");ki.curl(Mr,Lr,1);ki.curl(_a,zr,.5);ki.curl(Da,Lr,.5);ki.curl(fu,Lr,.5);ki.curl(mu,Lr,.5);ki.weight(_a,2);ki.weight(Da,2);var Ii=new bi("middle finger");Ii.curl(Mr,zr,1);Ii.curl(_a,Lr,.5);Ii.curl(Da,Lr,.5);Ii.curl(fu,Lr,.5);Ii.curl(mu,Lr,.5);Ii.weight(_a,2);Ii.weight(Da,2);var Sd=new bi("open palm");Sd.curl(Mr,zr,.75);Sd.curl(_a,zr,.75);Sd.curl(Da,zr,.75);Sd.curl(fu,zr,.75);Sd.curl(mu,zr,.75);var JN=[wi,dn,ki,Ii,Sd];var O5e=.7,gu={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function QN(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function tE(e,t){if(!e||!t)return[0,0];let n=QN(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=QN(e[1],e[2],t[1],t[2]);return[n,s]}function eE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function M5e(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>gu.NO_CURL_START_LIMIT?y=vi.none:g>gu.HALF_CURL_START_LIMIT?y=vi.half:y=vi.full,y}function nE(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=jt.horizontalLeft:r=jt.horizontalRight:s===Math.abs(t)?t>0?r=jt.horizontalLeft:r=jt.horizontalRight:n>0?r=jt.horizontalLeft:r=jt.horizontalRight,r}function sE(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=jt.verticalDown:r=jt.verticalUp:s===Math.abs(t)?t<0?r=jt.verticalDown:r=jt.verticalUp:n<0?r=jt.verticalDown:r=jt.verticalUp,r}function z5e(e,t,n,s,r,a,o,i){let l,u=sE(e,t,n,s),c=nE(r,a,o,i);return u===jt.verticalUp?c===jt.horizontalLeft?l=jt.diagonalUpLeft:l=jt.diagonalUpRight:c===jt.horizontalLeft?l=jt.diagonalDownLeft:l=jt.diagonalDownRight,l}function L5e(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=gu.DISTANCE_VOTE_POWER:m>.66?h+=gu.DISTANCE_VOTE_POWER:f+=gu.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],k=n[0],S=n[1];A===g?(k=n[0],S=n[1]):A===x&&(b=t[0],w=t[1]);let P=tE([b,w],[k,S]),_=eE(P,gu.TOTAL_ANGLE_VOTE_POWER);d+=_[0],h+=_[1],f+=_[2];for(let T of s){let F=eE(T,gu.SINGLE_ANGLE_VOTE_POWER);d+=F[0],h+=F[1],f+=F[2]}let $;return d===Math.max(d,h,f)?$=sE(l,i,u,p):f===Math.max(h,f)?$=nE(a,r,o,c):$=z5e(l,i,u,p,a,r,o,c),$}function rE(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of cs.all){let o=cs.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=tE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of cs.all){let o=a===cs.thumb?1:0,i=cs.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=M5e(l,u,c),d=L5e(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function n1(e){if(!e||e.length===0)return null;let t=rE(e),n={};for(let s of cs.all)n[cs.getName(s)]={curl:vi.getName(t.curls[s]),direction:jt.getName(t.directions[s])};return n}function aE(e){let t=[];if(!e||e.length===0)return t;let n=rE(e);for(let s of JN){let r=s.matchAgainst(n.curls,n.directions);r>=O5e&&t.push({name:s.name,confidence:r})}return t}var oE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Cd,Td,iE;async function n4(e,t){let n=await iE.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(oE))a[c]=oE[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=n1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function s4(e){var n,s;fe.initial&&(Cd=null,Td=null),!Cd||!Td?[Cd,Td]=await Promise.all([e.hand.enabled?qe((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?qe((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&ie("cached model:",Cd.modelUrl),e.debug&&ie("cached model:",Td.modelUrl));let t=new e1(Cd);return iE=new t1(t,Td),[Cd,Td]}var An=[null,null],B5e=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],Si=[[0,0],[0,0]],W5e=["hand","fist","pinch","point","face","tip","pinchtip"],uE=4,cE=1.6,V5e=512,U5e=1.4,s1=Number.MAX_SAFE_INTEGER,r4=0,$a=[0,0],Jt={boxes:[],hands:[]},dE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function pE(e){var t;if(fe.initial&&(An[0]=null),An[0])e.debug&&ie("cached model:",An[0].modelUrl);else{r1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),An[0]=await qe((t=e.hand.detector)==null?void 0:t.modelPath);let n=Object.values(An[0].modelSignature.inputs);Si[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Si[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return An[0]}async function hE(e){var t;if(fe.initial&&(An[1]=null),An[1])e.debug&&ie("cached model:",An[1].modelUrl);else{An[1]=await qe((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=Object.values(An[1].modelSignature.inputs);Si[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Si[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return An[1]}async function G5e(e,t){let n=[];if(!e||!An[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,V5e),o=Math.round(a*r/8)*8;s.resize=Ne.resizeBilinear(e,[a,o]),s.cast=ge(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await An[0].executeAsync(s.cast,B5e),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=es(s.scores,1);ne(i[uE]),i.splice(uE,1),s.filtered=on(i,1),ne(i),s.max=mn(s.filtered,1),s.argmax=Es(s.filtered,1);let l=0;s.nms=await Ne.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=Oe(s.boxes,d,1),f=await h.data();ne(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=G2(m,U5e),y=[Math.trunc(m[0]*$a[0]),Math.trunc(m[1]*$a[1]),Math.trunc(m[2]*$a[0]),Math.trunc(m[3]*$a[1])],x=c[d],A=W5e[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>ne(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function a4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&An[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Ne.cropAndResize(e,[a],[0],[Si[1][0],Si[1][1]],"bilinear"),r.div=pe(r.crop,nt.tf255),[r.score,r.keypoints]=An[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=U(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/Si[1][1],p[1]/Si[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[$a[0]*(p[0]+t.boxRaw[0]),$a[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=n1(s.keypoints);for(let p of Object.keys(dE))s.annotations[p]=dE[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>ne(r[l]))}return s}async function o4(e,t){var r,a;if(!An[0]||!An[1]||!((r=An[0])!=null&&r.inputs[0].shape)||!((a=An[1])!=null&&a.inputs[0].shape))return[];$a=[e.shape[2]||0,e.shape[1]||0],s1++;let n=(t.hand.skipTime||0)>ue()-r4,s=s1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?Jt.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>ue()-r4,l=s1<3*(t.hand.skipFrames||0);t.skipAllowed&&Jt.hands.length===t.hand.maxDetected?Jt.hands=await Promise.all(Jt.boxes.map(c=>a4(e,c,t))):t.skipAllowed&&i&&l&&Jt.hands.length>0?Jt.hands=await Promise.all(Jt.boxes.map(c=>a4(e,c,t))):(Jt.boxes=await G5e(e,t),r4=ue(),Jt.hands=await Promise.all(Jt.boxes.map(c=>a4(e,c,t))),s1=0);let u=[...Jt.boxes];if(Jt.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c<Jt.hands.length;c++){let p=rN(Jt.hands[c].keypoints,$a);if(p.box[2]/(e.shape[2]||1)>.05&&p.box[3]/(e.shape[1]||1)>.05&&Jt.hands[c].fingerScore&&Jt.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=G2(p.box,cE),h=G2(p.boxRaw,cE);Jt.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;c<Jt.hands.length;c++){let p=Na(Jt.hands[c].keypoints,$a);Jt.hands[c].box=p.box,Jt.hands[c].boxRaw=p.boxRaw}o(Jt.hands)})}var Wn,a1=[],i4=Number.MAX_SAFE_INTEGER,mE=0,gE=0;async function yE(e){var t;return fe.initial&&(Wn=null),Wn?e.debug&&ie("cached model:",Wn.modelUrl):Wn=await qe((t=e.face.liveness)==null?void 0:t.modelPath),Wn}async function l4(e,t,n,s){var o,i;if(!Wn)return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>ue()-gE,a=i4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&mE===s&&a1[n]?(i4++,a1[n]):(i4=0,new Promise(async l=>{let u=Ne.resizeBilinear(e,[Wn!=null&&Wn.inputs[0].shape?Wn.inputs[0].shape[2]:0,Wn!=null&&Wn.inputs[0].shape?Wn.inputs[0].shape[1]:0],!1),c=Wn==null?void 0:Wn.execute(u),p=(await c.data())[0];a1[n]=Math.round(100*p)/100,mE=s,gE=ue(),ne([u,c]),l(a1[n])}))}var Zh={};ia(Zh,{connected:()=>i1,horizontal:()=>u4,kpt:()=>o1,relative:()=>d4,vertical:()=>c4});var o1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],u4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],c4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],d4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],i1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var xE=.005,Bs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function p4(e){for(let t of u4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of c4){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of d4){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function bE(e){for(let t=0;t<e.length;t++)if(e[t]&&Bs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Bs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Bs.keypoints[t].positionRaw[1])];n[0]<xE&&n[1]<xE?e[t]=Bs.keypoints[t]:Bs.keypoints[t]=e[t]}else Bs.keypoints[t]=e[t];return e}function vE(e,t){let n={};if(!e.shape||!e.shape[1]||!e.shape[2])return e;Bs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=Js(e,Bs.padding),n.resize=Ne.resizeBilinear(n.pad,[t,t]);let s=ge(n.resize,"int32");return Object.keys(n).forEach(r=>ne(n[r])),s}function wE(e,t){e.keypoints=e.keypoints.filter(s=>s&&s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Bs.padding[2][0]+Bs.padding[2][1])/t[0]-Bs.padding[2][0],s.position[1]*(t[1]+Bs.padding[1][0]+Bs.padding[1][1])/t[1]-Bs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Na(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var Ws,l1=0,h4=Number.MAX_SAFE_INTEGER,yu={boxes:[],bodies:[],last:0};async function kE(e){return fe.initial&&(Ws=null),Ws?e.debug&&ie("cached model:",Ws.modelUrl):(r1(["size"],e),Ws=await qe(e.body.modelPath)),l1=Ws.inputs[0].shape?Ws.inputs[0].shape[2]:0,l1<64&&(l1=256),Ws}async function j5e(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:o1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=Na(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(i1)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return p4(u),o.push(u),o}async function q5e(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:o1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=Na(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(i1)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};p4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function f4(e,t){if(!Ws||!(Ws!=null&&Ws.inputs[0].shape))return[];t.skipAllowed||(yu.boxes.length=0),h4++;let n=(t.body.skipTime||0)>ue()-yu.last,s=h4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?yu.bodies:new Promise(async r=>{let a={};h4=0,a.input=vE(e,l1),a.res=Ws==null?void 0:Ws.execute(a.input),yu.last=ue();let o=await a.res.array();yu.bodies=a.res.shape[2]===17?await j5e(o,t,e):await q5e(o,t,e);for(let i of yu.bodies)wE(i,[e.shape[2]||1,e.shape[1]||1]),bE(i.keypoints);Object.keys(a).forEach(i=>ne(a[i])),r(yu.bodies)})}var Nd,u1=[],SE=0,m4=Number.MAX_SAFE_INTEGER,d1=0,c1=2.5;async function CE(e){if(!Nd||fe.initial){Nd=await qe(e.object.modelPath);let t=Object.values(Nd.modelSignature.inputs);d1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}else e.debug&&ie("cached model:",Nd.modelUrl);return Nd}async function X5e(e,t,n){let s=0,r=[];for(let l of[1,2,4])J(async()=>{let u=l*13,c=rt(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)===bd.length)),p=rt(e.find(m=>m.shape[1]===u**2&&(m.shape[2]||0)<bd.length)),h=await p.reshape([-1,4,p.shape[1]/4]).argMax(2).array(),f=await c.array();for(let m=0;m<c.shape[0];m++)for(let g=0;g<c.shape[1];g++){let y=f[m][g];if(y>(n.object.minConfidence||0)&&g!==61){let x=(.5+Math.trunc(m%u))/u,A=(.5+Math.trunc(m/u))/u,b=h[m].map($=>$*(u/l/d1)),[w,k]=[x-c1/l*b[0],A-c1/l*b[1]],[S,E]=[x+c1/l*b[2]-w,A+c1/l*b[3]-k],R=[w,k,S,E];R=R.map($=>Math.max(0,Math.min($,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],_={id:s++,score:Math.round(100*y)/100,class:g+1,label:bd[g].label,box:P.map($=>Math.trunc($)),boxRaw:R};r.push(_)}}});e.forEach(l=>ne(l));let a=r.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),o=r.map(l=>l.score),i=[];if(a&&a.length>0){let l=await Ne.nonMaxSuppressionAsync(a,o,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);i=await l.data(),ne(l)}return r=r.filter((l,u)=>i.includes(u)).sort((l,u)=>u.score-l.score),r}async function g4(e,t){let n=(t.object.skipTime||0)>ue()-SE,s=m4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&u1.length>0?(m4++,u1):(m4=0,!fe.kernels.includes("mod")||!fe.kernels.includes("sparsetodense")?u1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ne.resizeBilinear(e,[d1,d1],!1),i=pe(o,nt.tf255),l=i.transpose([0,3,1,2]);ne(i),ne(o);let u;t.object.enabled&&(u=Nd.execute(l)),SE=ue(),ne(l);let c=await X5e(u,a,t);u1=c,r(c)}))}var Jh=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],K5e=Jh.length,Yh=Jh.reduce((e,t,n)=>(e[t]=n,e),{}),Z5e=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],aIe=Z5e.map(([e,t])=>[Yh[e],Yh[t]]),NE=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function EE(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function RE(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var p1=class{constructor(t,n){me(this,"priorityQueue");me(this,"numberOfElements");me(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function y4(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+K5e)}}function A4(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=y4(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function x4(e,t,n){return e<t?t:e>n?n:e}function _E(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function b4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Br,J5e=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],h1=1,Ed=16,Q5e=50**2;function DE(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:x4(Math.round(y.y/Ed),0,x-1),x:x4(Math.round(y.x/Ed),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=b4(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=y4(x.y,x.x,n,r);f=b4({x:x.x*Ed,y:x.y*Ed},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:Jh[n],score:g}}function exe(e,t,n,s,r){let a=NE.map(([d,h])=>[Yh[d],Yh[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=A4(e.part,Ed,n);c[e.part.id]={score:e.score,part:Jh[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=DE(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=DE(d,c[h],f,t,n,s))}return c}function txe(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-h1,0),u=Math.min(n+h1+1,a);for(let c=l;c<u;++c){let p=Math.max(s-h1,0),d=Math.min(s+h1+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function nxe(e,t){let[n,s,r]=t.shape,a=new p1(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||txe(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function $E(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?_E(n,t,a.y,a.x)<=Q5e:!1})}function sxe(e,t){return t.reduce((s,{position:r,score:a},o)=>($E(e,r,o)||(s+=a),s),0)/t.length}function rxe(e,t,n,s,r,a){let o=[],i=nxe(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=A4(l.part,Ed,e);if($E(o,u,l.part.id))continue;let c=exe(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=sxe(o,c),d=EE(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function v4(e,t){let n=J(()=>{if(!Br.inputs[0].shape)return[];let o=Ne.resizeBilinear(e,[Br.inputs[0].shape[2],Br.inputs[0].shape[1]]),i=he(pe(ge(o,"float32"),127.5),1),u=Br.execute(i,J5e).map(c=>rt(c,[0]));return u[1]=Cn(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ne(o);let r=await rxe(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Br.inputs[0].shape?RE(r,[e.shape[1],e.shape[2]],[Br.inputs[0].shape[2],Br.inputs[0].shape[1]]):[]}async function PE(e){return!Br||fe.initial?Br=await qe(e.body.modelPath):e.debug&&ie("cached model:",Br.modelUrl),Br}var na,w4=!1;async function k4(e){return!na||fe.initial?na=await qe(e.segmentation.modelPath):e.debug&&ie("cached model:",na.modelUrl),na}async function OE(e,t,n){var m,g;if(w4)return{data:[],canvas:null,alpha:null};w4=!0,na||await k4(n);let s=await gd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Ne.resizeBilinear(s.tensor,[na.inputs[0].shape?na.inputs[0].shape[1]:0,na.inputs[0].shape?na.inputs[0].shape[2]:0],!1),ne(s.tensor),o.norm=pe(o.resize,nt.tf255),o.res=na.execute(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=Jl(o.squeeze),[o.bg,o.fg]=es(o.softmax,2),o.expand=Kt(o.fg,2),o.pad=Kt(o.expand,0),o.crop=Ne.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=Ne.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(fe.node&&!fe.Canvas&&typeof ImageData=="undefined")return n.debug&&ie("canvas support missing"),Object.keys(o).forEach(y=>ne(o[y])),{data:i,canvas:null,alpha:null};let l=is(r,a);Ys&&await Ys.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=is(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=is(r,a);let y=await gd(t,n);ne(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>ne(o[y])),w4=!1,{data:i,canvas:p,alpha:l}}var Qh=class{constructor(){me(this,"ssrnetage",null);me(this,"gear",null);me(this,"blazeposedetect",null);me(this,"blazepose",null);me(this,"centernet",null);me(this,"efficientpose",null);me(this,"mobilefacenet",null);me(this,"emotion",null);me(this,"facedetect",null);me(this,"faceiris",null);me(this,"facemesh",null);me(this,"faceres",null);me(this,"ssrnetgender",null);me(this,"handpose",null);me(this,"handskeleton",null);me(this,"handtrack",null);me(this,"liveness",null);me(this,"movenet",null);me(this,"nanodet",null);me(this,"posenet",null);me(this,"segmentation",null);me(this,"antispoof",null)}},I4=e=>{let t=0,n=0,s=0;for(let a of Object.values(Or))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(Or).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(Or)}};function f1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function S4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,S,E,R,P,_,$,T,F,G;fe.initial&&f1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await s4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await s4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((o=(a=e.config.body)==null?void 0:a.modelPath)==null?void 0:o.includes("blazepose"))&&(e.models.blazepose=uN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=lN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((l=(i=e.config.body)==null?void 0:i.modelPath)==null?void 0:l.includes("efficientpose"))&&(e.models.efficientpose=mN(e.config)),e.config.body.enabled&&!e.models.movenet&&((c=(u=e.config.body)==null?void 0:u.modelPath)==null?void 0:c.includes("movenet"))&&(e.models.movenet=kE(e.config)),e.config.body.enabled&&!e.models.posenet&&((d=(p=e.config.body)==null?void 0:p.modelPath)==null?void 0:d.includes("posenet"))&&(e.models.posenet=PE(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=QT(e.config)),e.config.face.enabled&&((h=e.config.face.antispoof)==null?void 0:h.enabled)&&!e.models.antispoof&&(e.models.antispoof=BT(e.config)),e.config.face.enabled&&((f=e.config.face.liveness)==null?void 0:f.enabled)&&!e.models.liveness&&(e.models.liveness=yE(e.config)),e.config.face.enabled&&((m=e.config.face.description)==null?void 0:m.enabled)&&!e.models.faceres&&(e.models.faceres=BN(e.config)),e.config.face.enabled&&((g=e.config.face.emotion)==null?void 0:g.enabled)&&!e.models.emotion&&(e.models.emotion=xN(e.config)),e.config.face.enabled&&((y=e.config.face.iris)==null?void 0:y.enabled)&&!((x=e.config.face.attention)!=null&&x.enabled)&&!e.models.faceiris&&(e.models.faceiris=EN(e.config)),e.config.face.enabled&&((A=e.config.face.mesh)==null?void 0:A.enabled)&&!e.models.facemesh&&(e.models.facemesh=FN(e.config)),e.config.face.enabled&&((b=e.config.face.gear)==null?void 0:b.enabled)&&!e.models.gear&&(e.models.gear=TT(e.config)),e.config.face.enabled&&((w=e.config.face.ssrnet)==null?void 0:w.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=DT(e.config)),e.config.face.enabled&&((k=e.config.face.ssrnet)==null?void 0:k.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=OT(e.config)),e.config.face.enabled&&((S=e.config.face.mobilefacenet)==null?void 0:S.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=IN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((R=(E=e.config.hand.detector)==null?void 0:E.modelPath)==null?void 0:R.includes("handtrack"))&&(e.models.handtrack=pE(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((_=(P=e.config.hand.detector)==null?void 0:P.modelPath)==null?void 0:_.includes("handtrack"))&&(e.models.handskeleton=hE(e.config)),e.config.object.enabled&&!e.models.centernet&&((T=($=e.config.object)==null?void 0:$.modelPath)==null?void 0:T.includes("centernet"))&&(e.models.centernet=pN(e.config)),e.config.object.enabled&&!e.models.nanodet&&((G=(F=e.config.object)==null?void 0:F.modelPath)==null?void 0:G.includes("nanodet"))&&(e.models.nanodet=CE(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=k4(e.config));for await(let q of Object.keys(e.models))e.models[q]&&typeof e.models[q]!="undefined"&&(e.models[q]=await e.models[q])}async function C4(e){let t=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"];for(let n of Object.keys(e.models)){let s=e.models[n];if(!s)continue;let r=[],a=s==null?void 0:s.executor;if(a&&a.graph.nodes)for(let i of Object.values(a.graph.nodes)){let l=i.op.toLowerCase();r.includes(l)||r.push(l)}else!a&&e.config.debug&&ie("model signature not determined:",n);let o=[];for(let i of r)!t.includes(i)&&!e.env.kernels.includes(i)&&!e.env.kernels.includes(i.replace("_",""))&&!e.env.kernels.includes(i.replace("native",""))&&!e.env.kernels.includes(i.replace("v2",""))&&o.push(i);e.config.debug&&o.length>0&&ie("model validation failed:",n,o)}}var Pt={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function axe(){let e=Pt.gl;!e||(Pt.extensions=e.getSupportedExtensions())}async function zE(e){var t;if(e.config.backend==="humangl"&&(Pt.name in sn().registry&&(!Pt.gl||!Pt.gl.getParameter(Pt.gl.VERSION))&&(ie("error: humangl backend invalid context"),f1(e)),!Oy(Pt.name))){try{Pt.canvas=await is(100,100)}catch(s){ie("error: cannot create canvas:",s);return}try{if(Pt.gl=(t=Pt.canvas)==null?void 0:t.getContext("webgl2",Pt.webGLattr),!Pt.gl.getParameter(Pt.gl.VERSION).includes("2.0")){ie("override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}Pt.canvas&&(Pt.canvas.addEventListener("webglcontextlost",async r=>{throw ie("error: humangl:",r.type),ie("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),Pt.canvas.addEventListener("webglcontextrestored",r=>{ie("error: humangl context restored:",r)}),Pt.canvas.addEventListener("webglcontextcreationerror",r=>{ie("error: humangl context create:",r)}))}catch(s){ie("error: cannot get WebGL context:",s);return}try{x2(2,Pt.gl)}catch(s){ie("error: cannot set WebGL context:",s);return}try{let s=new ju(Pt.gl);ql(Pt.name,()=>new id(s),Pt.priority)}catch(s){ie("error: cannot register WebGL backend:",s);return}try{qr("webgl").forEach(r=>{let a={...r,backendName:Pt.name};cr(a)})}catch(s){ie("error: cannot update WebGL backend registration:",s);return}let n=Zs().getGPGPUContext?Zs().getGPGPUContext().gl:null;if(n)ie(`humangl webgl version:${n.getParameter(n.VERSION)} renderer:${n.getParameter(n.RENDERER)}`);else{ie("error: no current gl context:",n,Pt.gl);return}try{$r.set("WEBGL_VERSION",2)}catch(s){ie("error: cannot set WebGL backend flags:",s);return}axe(),ie("backend registered:",Pt.name)}}function oxe(){if(!fe.kernels.includes("mod")){let e={kernelName:"Mod",backendName:ss(),kernelFunc:t=>J(()=>he(t.inputs.a,L(pe(t.inputs.a,t.inputs.b),t.inputs.b)))};cr(e),fe.kernels.push("mod")}if(!fe.kernels.includes("floormod")){let e={kernelName:"FloorMod",backendName:ss(),kernelFunc:t=>J(()=>Bc(t.inputs.a/t.inputs.b)*t.inputs.b+Yl(t.inputs.a,t.inputs.b))};cr(e),fe.kernels.push("floormod")}}async function g1(e,t=!1){if(e.state="backend",t||fe.initial||e.config.backend&&e.config.backend.length>0&&ss()!==e.config.backend){let n=ue();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ie("running inside web worker"),fe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ie("override: backend set to tensorflow while running in browser"),e.config.backend="humangl"),fe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ie(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),fe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ie("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="humangl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&ie("enumerated webgpu adapter:",r),!r)ie("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="humangl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;ie("webgpu adapter info:",a)}}e.config.backend==="humangl"&&await zE(e);let s=Object.keys(sn().registryFactory);if(e.config.debug&&ie("available backends:",s),s.includes(e.config.backend)||(ie(`error: backend ${e.config.backend} not found in registry`),e.config.backend=fe.node?"tensorflow":"webgl",e.config.debug&&ie(`override: setting backend ${e.config.backend}`)),e.config.debug&&ie("setting backend:",e.config.backend),e.config.backend==="wasm"){try{Z().set("CANVAS2D_WILL_READ_FREQUENTLY",!0)}catch(o){}if(e.config.debug&&ie("wasm path:",e.config.wasmPath),typeof(je==null?void 0:je.setWasmPaths)!="undefined")await tb(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=await Z().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await Z().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");e.config.debug&&ie(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),e.config.debug&&!r&&ie("warning: wasm simd support is not enabled")}try{await Fy(e.config.backend),await Lc(),ET()}catch(r){return ie("error: cannot set backend:",e.config.backend,r),!1}}if(ss()==="humangl"&&($r.set("CHECK_COMPUTATION_FOR_ERRORS",!1),$r.set("WEBGL_CPU_FORWARD",!0),$r.set("WEBGL_USE_SHAPES_UNIFORMS",!0),$r.set("CPU_HANDOFF_SIZE_THRESHOLD",256),typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ie("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),$r.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0)),Zs().getGPGPUContext)){let s=await Zs().getGPGPUContext().gl;e.config.debug&&ie(`gl version:${s.getParameter(s.VERSION)} renderer:${s.getParameter(s.RENDERER)}`)}ss(),$y(),await Lc(),e.performance.initBackend=Math.trunc(ue()-n),e.config.backend=ss(),await fe.updateBackend(),oxe()}return!0}function r1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ie("kernelFunc",n,t.backend)}};cr(s)}fe.kernels=qr(ss()).map(n=>n.kernelName.toLowerCase())}var $4={};ia($4,{all:()=>D4,body:()=>_d,canvas:()=>_4,face:()=>Rd,gesture:()=>Pd,hand:()=>Dd,object:()=>$d,options:()=>Vn,person:()=>R4});var tr=e=>{if(!e)ie("draw error: invalid canvas");else if(!e.getContext)ie("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ie("draw error: cannot get canvas context");else return t}return null},Au=e=>Math.round(e*180/Math.PI),Pa=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function Fa(e,t,n,s,r){e.fillStyle=Pa(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function sa(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function T4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=Pa(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function BE(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){T4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function N4(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}var Vn={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var gt;function lxe(e,t){if(gt.drawLabels){let n=[];if(n.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&n.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&n.push(`age: ${e.age||""}`),e.iris&&n.push(`distance: ${e.iris}`),e.real&&n.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&n.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let s=e.emotion.map(r=>`${Math.trunc(100*r.score)}% ${r.emotion}`);s.length>3&&(s.length=3),n.push(s.join(" "))}e.rotation&&e.rotation.angle&&e.rotation.gaze&&(e.rotation.angle.roll&&n.push(`roll: ${Au(e.rotation.angle.roll)}\xB0 yaw:${Au(e.rotation.angle.yaw)}\xB0 pitch:${Au(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&n.push(`gaze: ${Au(e.rotation.gaze.bearing)}\xB0`)),n.length===0&&n.push("face"),t.fillStyle=gt.color;for(let s=n.length-1;s>=0;s--){let r=Math.max(e.box[0],0),a=s*gt.lineHeight+e.box[1];gt.shadowColor&&gt.shadowColor!==""&&(t.fillStyle=gt.shadowColor,t.fillText(n[s],r+5,a+16)),t.fillStyle=gt.labelColor,t.fillText(n[s],r+4,a+15)}}}function uxe(e,t){if(e.annotations&&e.annotations.leftEyeIris&&e.annotations.leftEyeIris[0]){t.strokeStyle=gt.useDepth?"rgba(255, 200, 255, 0.3)":gt.color,t.beginPath();let n=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,s=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],n,s,0,0,2*Math.PI),t.stroke(),gt.fillPolygons&&(t.fillStyle=gt.useDepth?"rgba(255, 255, 200, 0.3)":gt.color,t.fill())}if(e.annotations&&e.annotations.rightEyeIris&&e.annotations.rightEyeIris[0]){t.strokeStyle=gt.useDepth?"rgba(255, 200, 255, 0.3)":gt.color,t.beginPath();let n=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,s=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],n,s,0,0,2*Math.PI),t.stroke(),gt.fillPolygons&&(t.fillStyle=gt.useDepth?"rgba(255, 255, 200, 0.3)":gt.color,t.fill())}}function cxe(e,t){var n;if(gt.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Au(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Au(e.rotation.angle.pitch)/90,a=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${s} ${e.box[1]},
${s} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),o=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${r},
${e.box[0]+e.box[2]} ${r},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(o),t.stroke(a)}}function dxe(e,t){var n,s,r,a;if(gt.drawGaze&&((s=(n=e.rotation)==null?void 0:n.gaze)==null?void 0:s.strength)&&((a=(r=e.rotation)==null?void 0:r.gaze)==null?void 0:a.bearing)&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let o=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];N4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[o[0],o[1]],4);let i=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];N4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[i[0],i[1]],4)}}function pxe(e,t){if(gt.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;n<lu.length/3;n++){let s=[lu[n*3+0],lu[n*3+1],lu[n*3+2]].map(r=>e.mesh[r]);T4(t,s,gt)}uxe(e,t)}}function hxe(e,t){if(gt.drawPoints&&e.mesh.length>=468)for(let n=0;n<e.mesh.length;n++)Fa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2],gt),gt.drawAttention&&(Xh.includes(n)&&Fa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]+127,gt),du.includes(n)&&Fa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,gt),pu.includes(n)&&Fa(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,gt))}function fxe(e,t){gt.drawBoxes&&sa(t,e.box[0],e.box[1],e.box[2],e.box[3],gt)}async function Rd(e,t,n){if(gt=Xt(Vn,n),!t||!e)return;let s=tr(e);if(!!s){s.font=gt.font,s.strokeStyle=gt.color,s.fillStyle=gt.color;for(let r of t)fxe(r,s),lxe(r,s),r.mesh&&r.mesh.length>0&&(hxe(r,s),pxe(r,s),cxe(r,s),dxe(r,s))}}async function _d(e,t,n){var a;let s=Xt(Vn,n);if(!t||!e)return;let r=tr(e);if(!!r){r.lineJoin="round";for(let o=0;o<t.length;o++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[o].box&&((a=t[o].box)==null?void 0:a.length)===4&&(sa(r,t[o].box[0],t[o].box[1],t[o].box[2],t[o].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+3,1+t[o].box[1]+s.lineHeight,t[o].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[o].score}%`,t[o].box[0]+2,0+t[o].box[1]+s.lineHeight,t[o].box[2]))),s.drawPoints&&t[o].keypoints)for(let i=0;i<t[o].keypoints.length;i++)!t[o].keypoints[i].score||t[o].keypoints[i].score===0||(r.fillStyle=Pa(t[o].keypoints[i].position[2],s),Fa(r,t[o].keypoints[i].position[0],t[o].keypoints[i].position[1],0,s));if(s.drawLabels&&t[o].keypoints){r.font=s.font;for(let i of t[o].keypoints)!i.score||i.score===0||(r.fillStyle=Pa(i.position[2],s),r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position[0]+4,i.position[1]+4))}if(s.drawPolygons&&t[o].keypoints&&t[o].annotations)for(let i of Object.values(t[o].annotations))for(let l of i)BE(r,l,s)}}}async function Dd(e,t,n){let s=Xt(Vn,n);if(!t||!e)return;let r=tr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,sa(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=Pa(o[2],s),Fa(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=Pa(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=Pa(l*u,s),r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}async function $d(e,t,n){let s=Xt(Vn,n);if(!t||!e)return;let r=tr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,sa(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}async function Pd(e,t,n){let s=Xt(Vn,n);if(!(!t||!e)&&s.drawGestures){let r=tr(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var E4=0;async function R4(e,t,n){let s=Xt(Vn,n);if(!t||!e)return;let r=tr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,sa(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}async function _4(e,t){if(!e||!t)return;let n=tr(t);!n||n.drawImage(e,0,0)}async function D4(e,t,n){if(!t||!t.performance||!t||!e)return null;let s=ue(),r=Xt(Vn,n),a=Promise.all([Rd(e,t.face,r),_d(e,t.body,r),Dd(e,t.hand,r),$d(e,t.object,r),Pd(e,t.gesture,r)]);return E4=fe.perfadd?E4+Math.round(ue()-s):Math.round(ue()-s),t.performance.draw=E4,a}var Fd=.1,P4=.5;function mxe(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function WE(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of gr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Fd&&Fd>0&&(r=r.map(o=>({x:o.x>.5?o.x+Fd:o.x-Fd,y:o.y>.5?o.y+Fd:o.y-Fd})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)mxe(o/t,i/t,r)||(s.set(P4*s.get(0,i,o,0),0,i,o,0),s.set(P4*s.get(0,i,o,1),0,i,o,1),s.set(P4*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ne(s),a}var yxe=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},VE=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,k,S,E]=m,R,P,_;return A<1?A>-1?(_=Math.asin(A),P=Math.atan2(-k,g),R=Math.atan2(-w,b)):(_=-Math.PI/2,P=-Math.atan2(S,E),R=0):(_=Math.PI/2,P=Math.atan2(S,E),R=0),isNaN(R)&&(R=0),isNaN(P)&&(P=0),isNaN(_)&&(_=0),{pitch:2*-R,yaw:2*-P,roll:2*-_}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?yxe(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var F4=async(e,t)=>{var h,f,m,g,y,x,A,b,w,k,S,E,R,P,_,$,T,F,G,q,z,K;let n=ue(),s,r,a,o,i,l,u,c,p=[];e.state="run:face";let d=await PN(t,e.config);if(e.performance.face=fe.perfadd?(e.performance.face||0)+Math.trunc(ue()-n):Math.trunc(ue()-n),!t.shape||t.shape.length!==4)return[];if(!d)return[];for(let B=0;B<d.length;B++){if(e.analyze("Get Face"),!d[B].tensor||d[B].tensor.isDisposedInternal){ie("Face object is disposed:",d[B].tensor);continue}if((h=e.config.face.detector)!=null&&h.mask){let ae=await WE(d[B]);ne(d[B].tensor),d[B].tensor=ae}let ee=d[B].mesh&&d[B].mesh.length>200?VE(d[B],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(f=e.config.face.emotion)!=null&&f.enabled?Vb(d[B].tensor||ft([]),e.config,B,d.length):[]:(e.state="run:emotion",n=ue(),o=(m=e.config.face.emotion)!=null&&m.enabled?await Vb(d[B].tensor||ft([]),e.config,B,d.length):[],e.performance.emotion=fe.perfadd?(e.performance.emotion||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?l=(g=e.config.face.antispoof)!=null&&g.enabled?kb(d[B].tensor||ft([]),e.config,B,d.length):0:(e.state="run:antispoof",n=ue(),l=(y=e.config.face.antispoof)!=null&&y.enabled?await kb(d[B].tensor||ft([]),e.config,B,d.length):0,e.performance.antispoof=fe.perfadd?(e.performance.antispoof||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?u=(x=e.config.face.liveness)!=null&&x.enabled?l4(d[B].tensor||ft([]),e.config,B,d.length):0:(e.state="run:liveness",n=ue(),u=(A=e.config.face.liveness)!=null&&A.enabled?await l4(d[B].tensor||ft([]),e.config,B,d.length):0,e.performance.liveness=fe.perfadd?(e.performance.antispoof||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(b=e.config.face.gear)!=null&&b.enabled?gb(d[B].tensor||ft([]),e.config,B,d.length):null:(e.state="run:gear",n=ue(),r=(w=e.config.face.gear)!=null&&w.enabled?await gb(d[B].tensor||ft([]),e.config,B,d.length):null,e.performance.gear=Math.trunc(ue()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(k=e.config.face.ssrnet)!=null&&k.enabled?Ab(d[B].tensor||ft([]),e.config,B,d.length):null,a=(S=e.config.face.ssrnet)!=null&&S.enabled?vb(d[B].tensor||ft([]),e.config,B,d.length):null):(e.state="run:ssrnet",n=ue(),s=(E=e.config.face.ssrnet)!=null&&E.enabled?await Ab(d[B].tensor||ft([]),e.config,B,d.length):null,a=(R=e.config.face.ssrnet)!=null&&R.enabled?await vb(d[B].tensor||ft([]),e.config,B,d.length):null,e.performance.ssrnet=Math.trunc(ue()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?Gb(d[B].tensor||ft([]),e.config,B,d.length):null:(e.state="run:mobilefacenet",n=ue(),i=(_=e.config.face.mobilefacenet)!=null&&_.enabled?await Gb(d[B].tensor||ft([]),e.config,B,d.length):null,e.performance.mobilefacenet=Math.trunc(ue()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start Description:"),e.config.async?c=($=e.config.face.description)!=null&&$.enabled?Zb(d[B].tensor||ft([]),e.config,B,d.length):null:(e.state="run:description",n=ue(),c=(T=e.config.face.description)!=null&&T.enabled?await Zb(d[B].tensor||ft([]),e.config,B,d.length):null,e.performance.description=fe.perfadd?(e.performance.description||0)+Math.trunc(ue()-n):Math.trunc(ue()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,c,r,l,u]=await Promise.all([s,a,o,i,c,r,l,u])),e.analyze("Finish Face:"),((F=e.config.face.ssrnet)==null?void 0:F.enabled)&&s&&a&&(c={...c,age:s.age,gender:a.gender,genderScore:a.genderScore}),((G=e.config.face.gear)==null?void 0:G.enabled)&&r&&(c={...c,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((q=e.config.face.mobilefacenet)==null?void 0:q.enabled)&&i&&(c.descriptor=i),(z=e.config.face.iris)!=null&&z.enabled;let Q=d[B].annotations&&d[B].annotations.leftEyeIris&&d[B].annotations.leftEyeIris[0]&&d[B].annotations.rightEyeIris&&d[B].annotations.rightEyeIris[0]&&d[B].annotations.leftEyeIris.length>0&&d[B].annotations.rightEyeIris.length>0&&d[B].annotations.leftEyeIris[0]!==null&&d[B].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(d[B].annotations.leftEyeIris[3][0]-d[B].annotations.leftEyeIris[1][0]),Math.abs(d[B].annotations.rightEyeIris[4][1]-d[B].annotations.rightEyeIris[2][1]))/t.shape[2]:0,oe=(K=e.config.face.detector)!=null&&K.return?rt(d[B].tensor):null;ne(d[B].tensor),d[B].tensor&&delete d[B].tensor;let Y={...d[B],id:B};c!=null&&c.age&&(Y.age=c.age),c!=null&&c.gender&&(Y.gender=c.gender),c!=null&&c.genderScore&&(Y.genderScore=c==null?void 0:c.genderScore),c!=null&&c.descriptor&&(Y.embedding=c==null?void 0:c.descriptor),c!=null&&c.race&&(Y.race=c==null?void 0:c.race),o&&(Y.emotion=o),l&&(Y.real=l),u&&(Y.live=u),Q&&Q!==0&&(Y.iris=Math.trunc(500/Q/11.7)/100),ee&&(Y.rotation=ee),oe&&(Y.tensor=oe),p.push(Y),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),p};var UE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},GE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},HE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.leftEyeIris[0]||!e[n].annotations.rightEyeIris||!e[n].annotations.rightEyeIris[0])continue;let s=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],a=Math.abs(s*r),o=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],i=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(o*i),u=!1;Math.abs(a-l)/Math.max(a,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2],d=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2];(p>.06||d>.06)&&(u=!1),p>d?p>.05&&t.push({iris:n,gesture:"looking right"}):d>.05&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],f=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(f<.01||h<.01||f>.022||h>.022)&&(u=!1),(f<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(f>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},jE=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=aE(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ee={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},O4=0;function qE(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,S,E,R,P,_,$,T,F,G,q;let n=ue();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ee.canvas=e.canvas),e.error&&(Ee.error=e.error),!Ee.body||e.body.length!==Ee.body.length)Ee.body=JSON.parse(JSON.stringify(e.body));else for(let z=0;z<e.body.length;z++){let K=e.body[z].box.map((Y,ae)=>((r-1)*Ee.body[z].box[ae]+Y)/r),B=e.body[z].boxRaw.map((Y,ae)=>((r-1)*Ee.body[z].boxRaw[ae]+Y)/r),ee=e.body[z].keypoints.map((Y,ae)=>{var le,ye,we,Re,_e,Be,Ge,ot,dt;return{score:Y.score,part:Y.part,position:[Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[0]||0)+(Y.position[0]||0))/r:Y.position[0],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[1]||0)+(Y.position[1]||0))/r:Y.position[1],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].position[2]||0)+(Y.position[2]||0))/r:Y.position[2]],positionRaw:[Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[0]||0)+(Y.positionRaw[0]||0))/r:Y.positionRaw[0],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[1]||0)+(Y.positionRaw[1]||0))/r:Y.positionRaw[1],Ee.body[z].keypoints[ae]?((r-1)*(Ee.body[z].keypoints[ae].positionRaw[2]||0)+(Y.positionRaw[2]||0))/r:Y.positionRaw[2]],distance:[Ee.body[z].keypoints[ae]?((r-1)*(((le=Ee.body[z].keypoints[ae].distance)==null?void 0:le[0])||0)+(((ye=Y.distance)==null?void 0:ye[0])||0))/r:(we=Y.distance)==null?void 0:we[0],Ee.body[z].keypoints[ae]?((r-1)*(((Re=Ee.body[z].keypoints[ae].distance)==null?void 0:Re[1])||0)+(((_e=Y.distance)==null?void 0:_e[1])||0))/r:(Be=Y.distance)==null?void 0:Be[1],Ee.body[z].keypoints[ae]?((r-1)*(((Ge=Ee.body[z].keypoints[ae].distance)==null?void 0:Ge[2])||0)+(((ot=Y.distance)==null?void 0:ot[2])||0))/r:(dt=Y.distance)==null?void 0:dt[2]]}}),Q={},oe={connected:{}};(i=(o=t.body)==null?void 0:o.modelPath)!=null&&i.includes("efficientpose")?oe=q2:(u=(l=t.body)==null?void 0:l.modelPath)!=null&&u.includes("blazepose")?oe=V2:(p=(c=t.body)==null?void 0:c.modelPath)!=null&&p.includes("movenet")&&(oe=Zh);for(let[Y,ae]of Object.entries(oe.connected)){let le=[];for(let ye=0;ye<ae.length-1;ye++){let we=ee.find(_e=>_e.part===ae[ye]),Re=ee.find(_e=>_e.part===ae[ye+1]);we&&Re&&le.push([we.position,Re.position])}Q[Y]=le}Ee.body[z]={...e.body[z],box:K,boxRaw:B,keypoints:ee,annotations:Q}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let z=0;z<e.hand.length;z++){let K=e.hand[z].box.map((oe,Y)=>((r-1)*Ee.hand[z].box[Y]+oe)/r),B=e.hand[z].boxRaw.map((oe,Y)=>((r-1)*Ee.hand[z].boxRaw[Y]+oe)/r);Ee.hand[z].keypoints.length!==e.hand[z].keypoints.length&&(Ee.hand[z].keypoints=e.hand[z].keypoints);let ee=e.hand[z].keypoints&&e.hand[z].keypoints.length>0?e.hand[z].keypoints.map((oe,Y)=>oe.map((ae,le)=>((r-1)*(Ee.hand[z].keypoints[Y][le]||1)+(ae||0))/r)):[],Q={};if(Object.keys(Ee.hand[z].annotations).length!==Object.keys(e.hand[z].annotations).length)Ee.hand[z].annotations=e.hand[z].annotations,Q=Ee.hand[z].annotations;else if(e.hand[z].annotations)for(let oe of Object.keys(e.hand[z].annotations))Q[oe]=e.hand[z].annotations[oe]&&e.hand[z].annotations[oe][0]?e.hand[z].annotations[oe].map((Y,ae)=>Y.map((le,ye)=>((r-1)*Ee.hand[z].annotations[oe][ae][ye]+le)/r)):null;Ee.hand[z]={...e.hand[z],box:K,boxRaw:B,keypoints:ee,annotations:Q}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let z=0;z<e.face.length;z++){let K=e.face[z].box.map((ee,Q)=>((r-1)*Ee.face[z].box[Q]+ee)/r),B=e.face[z].boxRaw.map((ee,Q)=>((r-1)*Ee.face[z].boxRaw[Q]+ee)/r);if(e.face[z].rotation){let ee={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};ee.matrix=(d=e.face[z].rotation)==null?void 0:d.matrix,ee.angle={roll:((r-1)*(((f=(h=Ee.face[z].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[z].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(y=Ee.face[z].rotation)==null?void 0:y.angle)==null?void 0:x.yaw)||0)+(((b=(A=e.face[z].rotation)==null?void 0:A.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Ee.face[z].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((E=(S=e.face[z].rotation)==null?void 0:S.angle)==null?void 0:E.pitch)||0))/r},ee.gaze={bearing:((r-1)*(((P=(R=Ee.face[z].rotation)==null?void 0:R.gaze)==null?void 0:P.bearing)||0)+((($=(_=e.face[z].rotation)==null?void 0:_.gaze)==null?void 0:$.bearing)||0))/r,strength:((r-1)*(((F=(T=Ee.face[z].rotation)==null?void 0:T.gaze)==null?void 0:F.strength)||0)+(((q=(G=e.face[z].rotation)==null?void 0:G.gaze)==null?void 0:q.strength)||0))/r},Ee.face[z]={...e.face[z],rotation:ee,box:K,boxRaw:B}}Ee.face[z]={...e.face[z],box:K,boxRaw:B}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let z=0;z<e.object.length;z++){let K=e.object[z].box.map((ee,Q)=>((r-1)*Ee.object[z].box[Q]+ee)/r),B=e.object[z].boxRaw.map((ee,Q)=>((r-1)*Ee.object[z].boxRaw[Q]+ee)/r);Ee.object[z]={...e.object[z],box:K,boxRaw:B}}if(e.persons){let z=e.persons;if(!Ee.persons||z.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(z));else for(let K=0;K<z.length;K++)Ee.persons[K].box=z[K].box.map((B,ee)=>((r-1)*Ee.persons[K].box[ee]+B)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=ue();return O4=fe.perfadd?O4+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:O4}),Ee}var L4={};ia(L4,{distance:()=>ef,match:()=>z4,similarity:()=>M4});function ef(e,t,n={order:2,multiplier:25}){let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var XE=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function M4(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=ef(e,t,n);return XE(s,n.order||2,n.min||0,n.max||1)}function z4(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0||e.length!==t[0].length)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=ef(e,t[o],n);if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=XE(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function KE(e,t,n,s,r){var i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k;let a=0,o=[];for(let S of e){let E={id:a++,face:S,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let F of t)S.box[0]>F.box[0]&&S.box[0]<F.box[0]+F.box[2]&&S.box[1]+S.box[3]>F.box[1]&&S.box[1]+S.box[3]<F.box[1]+F.box[3]&&(E.body=F);if(E.body)for(let F of n)F.box[0]+F.box[2]>E.body.box[0]&&F.box[0]+F.box[2]<E.body.box[0]+E.body.box[2]&&F.box[1]+F.box[3]>E.body.box[1]&&F.box[1]+F.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.left=F),F.box[0]<E.body.box[0]+E.body.box[2]&&F.box[0]>E.body.box[0]&&F.box[1]+F.box[3]>E.body.box[1]&&F.box[1]+F.box[3]<E.body.box[1]+E.body.box[3]&&E.hands&&(E.hands.right=F);for(let F of s)F.face!==void 0&&F.face===S.id?(i=E.gestures)==null||i.push(F):F.iris!==void 0&&F.iris===S.id?(l=E.gestures)==null||l.push(F):F.body!==void 0&&F.body===((u=E.body)==null?void 0:u.id)?(c=E.gestures)==null||c.push(F):F.hand!==void 0&&F.hand===((d=(p=E.hands)==null?void 0:p.left)==null?void 0:d.id)?(h=E.gestures)==null||h.push(F):F.hand!==void 0&&F.hand===((m=(f=E.hands)==null?void 0:f.right)==null?void 0:m.id)&&((g=E.gestures)==null||g.push(F));let R=[],P=[],_=F=>{F&&F.length===4&&(R.push(F[0],F[0]+F[2]),P.push(F[1],F[1]+F[3]))};_((y=E.face)==null?void 0:y.box),_((x=E.body)==null?void 0:x.box),_((b=(A=E.hands)==null?void 0:A.left)==null?void 0:b.box),_((k=(w=E.hands)==null?void 0:w.right)==null?void 0:k.box);let $=Math.min(...R),T=Math.min(...P);E.box=[$,T,Math.max(...R)-$,Math.max(...P)-T],r&&r[1]&&r[2]&&(E.boxRaw=[E.box[0]/r[2],E.box[1]/r[1],E.box[2]/r[2],E.box[3]/r[1]]),o.push(E)}return o}var y1=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,A1=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function kxe(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(y1);break;case"body":case"full":n=await t(A1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function Ixe(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+y1;break;case"full":case"body":n="data:image/jpeg;base64,"+A1;break;default:n=null}let s;if(typeof Image!="undefined")s=new Image;else if(fe.Image)s=new fe.Image;else return;s.onload=async()=>{let r=is(s.naturalWidth,s.naturalHeight);if(!r)ie("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=await e.detect(o.tensor,e.config);t(i)}},n?s.src=n:t(void 0)})}async function Sxe(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(y1):n=t(A1);let s;if("node"in je){let r=(void 0).decodeJpeg(n),a=r.expandDims(0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ie("Warmup tfjs-node not loaded");return s}async function Cxe(e){let t;return typeof createImageBitmap=="function"?t=await kxe(e):typeof Image!="undefined"||fe.Canvas!==void 0?t=await Ixe(e):t=await Sxe(e),t}async function Txe(e){let t=ss(),n=Zs();if(t!=="webgl"&&t!=="humangl"||!n||!n.checkCompileCompletion)return;Z().set("ENGINE_COMPILE_ONLY",!0);let s=sn().state.numTensors,r=[];for(let[i,l]of Object.entries(e).filter(([u,c])=>u!==null&&c!==null)){let u=l.inputs&&l.inputs[0]&&l.inputs[0].shape?[...l.inputs[0].shape]:[1,64,64,3],c=l.inputs&&l.inputs[0]&&l.inputs[0].dtype?l.inputs[0].dtype:"float32";for(let d=0;d<u.length;d++)u[d]===-1&&(u[d]=d===0?1:64);let p=Wt(u,c);try{let d=l.execute(p);r.push(i),Array.isArray(d)?d.forEach(h=>ne(h)):ne(d)}catch(d){ie("compile fail model:",i)}ne(p)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),ie("compile pass models:",r),ie("compile pass kernels:",a.length),Z().set("ENGINE_COMPILE_ONLY",!1);let o=sn().state.numTensors;o-s>0&&ie("tensor leak:",o-s)}async function ZE(e,t){let n=ue();return e.state="warmup",t&&(e.config=Xt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:ue(),persons:[],error:null}:new Promise(async s=>{await Txe(e.models);let r=await Cxe(e),a=ue();e.config.debug&&ie("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var Od,tf,nf,x1,B4=class{constructor(t){me(this,"version");me(this,"config");me(this,"result");me(this,"state");me(this,"process");me(this,"tf");me(this,"env");me(this,"draw");me(this,"models");me(this,"events");me(this,"faceTriangulation");me(this,"faceUVMap");me(this,"performance");Yd(this,Od,void 0);Yd(this,tf,void 0);Yd(this,nf,void 0);me(this,"gl");me(this,"analyze",(...t)=>{if(!Zd(this,tf))return;let n=this.tf.engine().state.numTensors,s=Zd(this,Od);Jd(this,Od,n);let r=n-s;r!==0&&ie(...t,r)});Yd(this,x1,t=>{if(!Zd(this,nf))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof tt))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});me(this,"similarity",M4);me(this,"distance",ef);me(this,"match",z4);me(this,"emit",t=>{var n;this.events&&this.events.dispatchEvent&&((n=this.events)==null||n.dispatchEvent(new Event(t)))});var s;this.env=fe;let n=(((s=Uh)==null?void 0:s.tfjs)||Gy).replace(/-(.*)/,"");Ba.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,Ba.modelBasePath=fe.browser?"../models/":"file://models/",Ba.backend=fe.browser?"humangl":"tensorflow",this.version=hb,Object.defineProperty(this,"version",{value:hb}),this.config=JSON.parse(JSON.stringify(Ba)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Xt(this.config,t)),IT(this.config),this.tf=je,this.state="idle",Jd(this,Od,0),Jd(this,tf,!1),Jd(this,nf,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new Qh,this.draw={options:Vn,canvas:(r,a)=>_4(r,a),face:(r,a,o)=>Rd(r,a,o),body:(r,a,o)=>_d(r,a,o),hand:(r,a,o)=>Dd(r,a,o),gesture:(r,a,o)=>Pd(r,a,o),object:(r,a,o)=>$d(r,a,o),person:(r,a,o)=>R4(r,a,o),all:(r,a,o)=>D4(r,a,o)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=ON,this.faceUVMap=MN,this.gl=Pt,this.emit("create")}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ba)),this.config.backend=t}validate(t){return t3(Ba,t||this.config)}now(){return ue()}image(t,n=!0){return gd(t,this.config,n)}async segmentation(t,n){return OE(t,n,this.config)}enhance(t){return Kb(t)}compare(t,n){return kT(this.config,t,n)}async init(){await g1(this,!0),await this.tf.ready()}async load(t){this.state="load";let n=ue(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Xt(this.config,t)),this.env.initial&&(this.config.debug&&ie(`version: ${this.version}`),this.config.debug&&ie(`tfjs version: ${this.tf.version["tfjs-core"]}`),await g1(this)||ie("error: backend check failed"),await Lc(),this.env.browser&&(this.config.debug&&ie("configuration:",this.config),this.config.debug&&ie("environment:",this.env),this.config.debug&&ie("tf flags:",this.tf.ENV.flags))),await S4(this),this.env.initial&&this.config.debug&&ie("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(await C4(this),this.emit("load"));let a=Math.trunc(ue()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return qE(t,this.config)}getModelStats(){return I4(this)}async warmup(t){let n=ue(),s=await ZE(this,t),r=ue();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={};for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs;let a=[];Object.entries(r).forEach(i=>a.push({name:i[0],ms:i[1]})),a.sort((i,l)=>l.ms-i.ms),a.length=20;let o={};for(let i of a)o[i.name]=i.ms;return o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,k,S,E,R,P,_,$,T,F,G,q,z,K,B,ee,Q;this.state="config";let r;this.config=Xt(this.config,n),this.state="check";let a=Zd(this,x1).call(this,t);a&&(ie(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ue(),persons:[],error:a}));let o=ue();await g1(this),await this.load(),r=ue(),this.state="image";let i=await gd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(ue()-r):Math.trunc(ue()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&ie("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:ue(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=ue(),this.config.skipAllowed=await wT(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(ue()-r):Math.trunc(ue()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?F4(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=ue(),l=this.config.face.enabled?await F4(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Xt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?v4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?$b(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?Bb(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?f4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=ue(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await v4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await $b(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("efficientpose")?u=this.config.body.enabled?await Bb(i.tensor,d):[]:(S=this.config.body.modelPath)!=null&&S.includes("movenet")&&(u=this.config.body.enabled?await f4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Xt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((R=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&R.includes("handdetect")?c=this.config.hand.enabled?n4(i.tensor,h):[]:(_=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&_.includes("handtrack")&&(c=this.config.hand.enabled?o4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=ue(),(T=($=this.config.hand.detector)==null?void 0:$.modelPath)!=null&&T.includes("handdetect")?c=this.config.hand.enabled?await n4(i.tensor,h):[]:(G=(F=this.config.hand.detector)==null?void 0:F.modelPath)!=null&&G.includes("handtrack")&&(c=this.config.hand.enabled?await o4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((q=this.config.object.modelPath)!=null&&q.includes("nanodet")?p=this.config.object.enabled?g4(i.tensor,this.config):[]:(z=this.config.object.modelPath)!=null&&z.includes("centernet")&&(p=this.config.object.enabled?Ob(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=ue(),(K=this.config.object.modelPath)!=null&&K.includes("nanodet")?p=this.config.object.enabled?await g4(i.tensor,this.config):[]:(B=this.config.object.modelPath)!=null&&B.includes("centernet")&&(p=this.config.object.enabled?await Ob(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=ue(),f=[...GE(l),...UE(u),...jE(c),...HE(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(ue()-r):Math.trunc(ue()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(ue()-o):Math.trunc(ue()-o);let m=((Q=(ee=this.process)==null?void 0:ee.tensor)==null?void 0:Q.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return KE(l,u,c,f,m)}},ne(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}};Od=new WeakMap,tf=new WeakMap,nf=new WeakMap,x1=new WeakMap;return KR(Exe);})();