human/types/src/human.d.ts

202 lines
7.7 KiB
TypeScript

/**
* Human main module
*/
import { Config } from './config';
import { Result, Face, Hand, Body, Item, Gesture } from './result';
import * as tf from '../dist/tfjs.esm.js';
import * as facemesh from './blazeface/facemesh';
import * as draw from './draw/draw';
import { Tensor, GraphModel } from './tfjs/types';
export { Config } from './config';
export type { Result, Face, Hand, Body, Item, Gesture, Person } from './result';
export type { DrawOptions } from './draw/draw';
/** Defines all possible input types for **Human** detection
* @typedef Input Type
*/
export declare type Input = Tensor | typeof Image | ImageData | ImageBitmap | HTMLImageElement | HTMLMediaElement | HTMLVideoElement | HTMLCanvasElement | OffscreenCanvas;
/** Error message
* @typedef Error Type
*/
export declare type Error = {
error: string;
};
/** Instance of TensorFlow/JS
* @external
*/
export declare type TensorFlow = typeof tf;
/**
* **Human** library main class
*
* All methods and properties are available only as members of Human class
*
* - Configuration object definition: {@link Config}
* - Results object definition: {@link Result}
* - Possible inputs: {@link Input}
*
* @param userConfig: {@link Config}
*/
export declare class Human {
#private;
/** Current version of Human library in *semver* format */
version: string;
/** Current configuration
* - Details: {@link Config}
*/
config: Config;
/** Last known result of detect run
* - Can be accessed anytime after initial detection
*/
result: Result;
/** Current state of Human library
* - Can be polled to determine operations that are currently executed
* - Progresses through: 'config', 'check', 'backend', 'load', 'run:<model>', 'idle'
*/
state: string;
/** @internal: Instance of current image being processed */
image: {
tensor: Tensor | null;
canvas: OffscreenCanvas | HTMLCanvasElement | null;
};
/** @internal: Instance of TensorFlow/JS used by Human
* - Can be embedded or externally provided
*/
tf: TensorFlow;
/** Draw helper classes that can draw detected objects on canvas using specified draw
* - options: {@link DrawOptions} global settings for all draw operations, can be overriden for each draw method
* - face: draw detected faces
* - body: draw detected people and body parts
* - hand: draw detected hands and hand parts
* - canvas: draw processed canvas which is a processed copy of the input
* - all: meta-function that performs: canvas, face, body, hand
*/
draw: {
options: draw.DrawOptions;
gesture: typeof draw.gesture;
face: typeof draw.face;
body: typeof draw.body;
hand: typeof draw.hand;
canvas: typeof draw.canvas;
all: typeof draw.all;
};
/** Types used by Human */
static Config: Config;
static Result: Result;
static Face: Face;
static Hand: Hand;
static Body: Body;
static Item: Item;
static Gesture: Gesture;
static Person: Gesture;
static DrawOptions: draw.DrawOptions;
/** @internal: Currently loaded models */
models: {
face: [unknown, GraphModel | null, GraphModel | null] | null;
posenet: GraphModel | null;
blazepose: GraphModel | null;
efficientpose: GraphModel | null;
movenet: GraphModel | null;
handpose: [GraphModel | null, GraphModel | null] | null;
age: GraphModel | null;
gender: GraphModel | null;
emotion: GraphModel | null;
embedding: GraphModel | null;
nanodet: GraphModel | null;
centernet: GraphModel | null;
faceres: GraphModel | null;
segmentation: GraphModel | null;
};
/** Reference face triangualtion array of 468 points, used for triangle references between points */
faceTriangulation: typeof facemesh.triangulation;
/** Refernce UV map of 468 values, used for 3D mapping of the face mesh */
faceUVMap: typeof facemesh.uvmap;
/** Platform and agent information detected by Human */
sysinfo: {
platform: string;
agent: string;
};
/** Performance object that contains values for all recently performed operations */
performance: Record<string, number>;
/**
* Creates instance of Human library that is futher used for all operations
* @param userConfig: {@link Config}
*/
constructor(userConfig?: Config | Record<string, unknown>);
/** @hidden */
analyze: (...msg: string[]) => void;
/** Simmilarity method calculates simmilarity between two provided face descriptors (face embeddings)
* - Calculation is based on normalized Minkowski distance between
*
* @param embedding1: face descriptor as array of numbers
* @param embedding2: face descriptor as array of numbers
* @returns similarity: number
*/
similarity(embedding1: Array<number>, embedding2: Array<number>): number;
/**
* Segmentation method takes any input and returns processed canvas with body segmentation
* Optional parameter background is used to fill the background with specific input
* Segmentation is not triggered as part of detect process
*
* @param input: {@link Input}
* @param background?: {@link Input}
* @returns Canvas
*/
segmentation(input: Input, background?: Input): Promise<OffscreenCanvas | HTMLCanvasElement | null>;
/** Enhance method performs additional enhacements to face image previously detected for futher processing
* @param input: Tensor as provided in human.result.face[n].tensor
* @returns Tensor
*/
enhance(input: Tensor): Tensor | null;
/** Math method find best match between provided face descriptor and predefined database of known descriptors
* @param faceEmbedding: face descriptor previsouly calculated on any face
* @param db: array of mapping of face descriptors to known values
* @param threshold: minimum score for matching to be considered in the result
* @returns best match
*/
match(faceEmbedding: Array<number>, db: Array<{
name: string;
source: string;
embedding: number[];
}>, threshold?: number): {
name: string;
source: string;
similarity: number;
embedding: number[];
};
/** Load method preloads all configured models on-demand
* - Not explicitly required as any required model is load implicitly on it's first run
* @param userConfig?: {@link Config}
*/
load(userConfig?: Config | Record<string, unknown>): Promise<void>;
/**
* Runs interpolation using last known result and returns smoothened result
* Interpolation is based on time since last known result so can be called independently
*
* @param result?: {@link Result} optional use specific result set to run interpolation on
* @returns result: {@link Result}
*/
next: (result?: Result | undefined) => Result;
/** Main detection method
* - Analyze configuration: {@link Config}
* - Pre-process input: {@link Input}
* - Run inference for all configured models
* - Process and return result: {@link Result}
*
* @param input: Input
* @param userConfig?: {@link Config}
* @returns result: {@link Result}
*/
detect(input: Input, userConfig?: Config | Record<string, unknown>): Promise<Result | Error>;
/** Warmup method pre-initializes all configured models for faster inference
* - can take significant time on startup
* - only used for `webgl` and `humangl` backends
* @param userConfig?: Config
*/
warmup(userConfig?: Config | Record<string, unknown>): Promise<Result | {
error: any;
}>;
}
/**
* Class Human is also available as default export
*/
export { Human as default };