human/demo/nodejs/node.js

218 lines
7.2 KiB
JavaScript

/**
* Human demo for NodeJS
*/
const log = require('@vladmandic/pilogger');
const fs = require('fs');
const path = require('path');
const process = require('process');
let fetch; // fetch is dynamically imported later
// for NodeJS, `tfjs-node` or `tfjs-node-gpu` should be loaded before using Human
// eslint-disable-next-line no-unused-vars, @typescript-eslint/no-unused-vars
const tf = require('@tensorflow/tfjs-node'); // or const tf = require('@tensorflow/tfjs-node-gpu');
// load specific version of Human library that matches TensorFlow mode
const Human = require('../../dist/human.node.js').default; // or const Human = require('../dist/human.node-gpu.js').default;
let human = null;
const myConfig = {
backend: 'tensorflow',
modelBasePath: 'file://models/',
debug: true,
async: false,
filter: {
enabled: true,
flip: true,
},
face: {
enabled: true,
detector: { enabled: true, rotation: false },
mesh: { enabled: true },
iris: { enabled: true },
description: { enabled: true },
emotion: { enabled: true },
},
hand: {
enabled: true,
},
// body: { modelPath: 'blazepose.json', enabled: true },
body: { enabled: true },
object: { enabled: true },
};
async function init() {
// create instance of human
human = new Human(myConfig);
// wait until tf is ready
await human.tf.ready();
// pre-load models
log.info('Human:', human.version);
// log.info('Active Configuration', human.config);
await human.load();
const loaded = Object.keys(human.models).filter((a) => human.models[a]);
log.info('Loaded:', loaded);
log.info('Memory state:', human.tf.engine().memory());
}
async function detect(input) {
// read input image file and create tensor to be used for processing
let buffer;
log.info('Loading image:', input);
if (input.startsWith('http:') || input.startsWith('https:')) {
const res = await fetch(input);
if (res && res.ok) buffer = await res.buffer();
else log.error('Invalid image URL:', input, res.status, res.statusText, res.headers.get('content-type'));
} else {
buffer = fs.readFileSync(input);
}
// decode image using tfjs-node so we don't need external depenencies
// can also be done using canvas.js or some other 3rd party image library
if (!buffer) return {};
const tensor = human.tf.tidy(() => {
const decode = human.tf.node.decodeImage(buffer, 3);
let expand;
if (decode.shape[2] === 4) { // input is in rgba format, need to convert to rgb
const channels = human.tf.split(decode, 4, 2); // tf.split(tensor, 4, 2); // split rgba to channels
const rgb = human.tf.stack([channels[0], channels[1], channels[2]], 2); // stack channels back to rgb and ignore alpha
expand = human.tf.reshape(rgb, [1, decode.shape[0], decode.shape[1], 3]); // move extra dim from the end of tensor and use it as batch number instead
} else {
expand = human.tf.expandDims(decode, 0);
}
const cast = human.tf.cast(expand, 'float32');
return cast;
});
// image shape contains image dimensions and depth
log.state('Processing:', tensor['shape']);
// run actual detection
let result;
try {
result = await human.detect(tensor, myConfig);
} catch (err) {
log.error('caught');
}
// dispose image tensor as we no longer need it
human.tf.dispose(tensor);
// print data to console
log.data('Results:');
if (result && result.face && result.face.length > 0) {
for (let i = 0; i < result.face.length; i++) {
const face = result.face[i];
const emotion = face.emotion.reduce((prev, curr) => (prev.score > curr.score ? prev : curr));
log.data(` Face: #${i} boxScore:${face.boxScore} faceScore:${face.faceScore} age:${face.age} genderScore:${face.genderScore} gender:${face.gender} emotionScore:${emotion.score} emotion:${emotion.emotion} iris:${face.iris}`);
}
} else {
log.data(' Face: N/A');
}
if (result && result.body && result.body.length > 0) {
for (let i = 0; i < result.body.length; i++) {
const body = result.body[i];
log.data(` Body: #${i} score:${body.score} keypoints:${body.keypoints?.length}`);
}
} else {
log.data(' Body: N/A');
}
if (result && result.hand && result.hand.length > 0) {
for (let i = 0; i < result.hand.length; i++) {
const hand = result.hand[i];
log.data(` Hand: #${i} score:${hand.score} keypoints:${hand.keypoints?.length}`);
}
} else {
log.data(' Hand: N/A');
}
if (result && result.gesture && result.gesture.length > 0) {
for (let i = 0; i < result.gesture.length; i++) {
const [key, val] = Object.entries(result.gesture[i]);
log.data(` Gesture: ${key[0]}#${key[1]} gesture:${val[1]}`);
}
} else {
log.data(' Gesture: N/A');
}
if (result && result.object && result.object.length > 0) {
for (let i = 0; i < result.object.length; i++) {
const object = result.object[i];
log.data(` Object: #${i} score:${object.score} label:${object.label}`);
}
} else {
log.data(' Object: N/A');
}
// print data to console
if (result) {
// invoke persons getter
const persons = result.persons;
// write result objects to file
// fs.writeFileSync('result.json', JSON.stringify(result, null, 2));
log.data('Persons:');
for (let i = 0; i < persons.length; i++) {
const face = persons[i].face;
const faceTxt = face ? `score:${face.score} age:${face.age} gender:${face.gender} iris:${face.iris}` : null;
const body = persons[i].body;
const bodyTxt = body ? `score:${body.score} keypoints:${body.keypoints?.length}` : null;
log.data(` #${i}: Face:${faceTxt} Body:${bodyTxt} LeftHand:${persons[i].hands.left ? 'yes' : 'no'} RightHand:${persons[i].hands.right ? 'yes' : 'no'} Gestures:${persons[i].gestures.length}`);
}
}
return result;
}
async function test() {
process.on('unhandledRejection', (err) => {
// @ts-ignore // no idea if exception message is compelte
log.error(err?.message || err || 'no error message');
});
// test with embedded full body image
let result;
log.state('Processing embedded warmup image: face');
myConfig.warmup = 'face';
result = await human.warmup(myConfig);
log.state('Processing embedded warmup image: full');
myConfig.warmup = 'full';
result = await human.warmup(myConfig);
// no need to print results as they are printed to console during detection from within the library due to human.config.debug set
return result;
}
async function main() {
log.configure({ inspect: { breakLength: 265 } });
log.header();
log.info('Current folder:', process.env.PWD);
fetch = (await import('node-fetch')).default;
await init();
const f = process.argv[2];
if (process.argv.length !== 3) {
log.warn('Parameters: <input image | folder> missing');
await test();
} else if (!fs.existsSync(f) && !f.startsWith('http')) {
log.error(`File not found: ${process.argv[2]}`);
} else {
if (fs.existsSync(f)) {
const stat = fs.statSync(f);
if (stat.isDirectory()) {
const dir = fs.readdirSync(f);
for (const file of dir) {
await detect(path.join(f, file));
}
} else {
await detect(f);
}
} else {
await detect(f);
}
}
}
main();