mirror of https://github.com/vladmandic/human
5168 lines
1.3 MiB
5168 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var Human=(()=>{var AI=Object.defineProperty;var vm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var xa=(e,t)=>{for(var n in t)AI(e,n,{get:t[n],enumerable:!0})};var d5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var on=(e,t,n)=>(d5(e,t,"read from private field"),n?n.call(e):t.get(e)),Jn=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},ba=(e,t,n,a)=>(d5(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);var zoe={};xa(zoe,{Human:()=>E9,default:()=>E9});function vt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function de(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Je=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function zn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=zn(s,i):n[r]=i}),n),{})}var p5={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:16,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19}};function c5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var tp={};xa(tp,{Abs:()=>oo,Acos:()=>lo,Acosh:()=>uo,AdadeltaOptimizer:()=>ih,AdagradOptimizer:()=>oh,AdamOptimizer:()=>lh,AdamaxOptimizer:()=>uh,Add:()=>Mr,AddN:()=>hs,All:()=>po,Any:()=>co,ArgMax:()=>fs,ArgMin:()=>Nu,Asin:()=>ho,Asinh:()=>fo,Atan:()=>mo,Atan2:()=>Ao,Atanh:()=>yo,AvgPool:()=>ms,AvgPool3D:()=>Tu,AvgPool3DGrad:()=>Wp,AvgPoolGrad:()=>Lp,BackendWasm:()=>P6,BatchMatMul:()=>ys,BatchToSpaceND:()=>Eu,Bincount:()=>Bp,BroadcastTo:()=>rb,Callback:()=>R8,CallbackList:()=>w4,Cast:()=>As,Ceil:()=>gs,ClipByValue:()=>Fr,Complex:()=>Vp,ComplexAbs:()=>Cu,Concat:()=>go,Conv2D:()=>xs,Conv2DBackpropFilter:()=>jp,Conv2DBackpropInput:()=>bs,Conv3D:()=>Ru,Conv3DBackpropFilterV2:()=>Up,Conv3DBackpropInputV2:()=>Hp,Cos:()=>vs,Cosh:()=>xo,CropAndResize:()=>bo,Cumsum:()=>ws,CustomCallback:()=>I4,DataStorage:()=>zp,DenseBincount:()=>Gp,DepthToSpace:()=>vo,DepthwiseConv2dNative:()=>ks,DepthwiseConv2dNativeBackpropFilter:()=>qp,DepthwiseConv2dNativeBackpropInput:()=>Xp,Diag:()=>Kp,Dilation2D:()=>Mu,Dilation2DBackpropFilter:()=>Yp,Dilation2DBackpropInput:()=>Zp,ENV:()=>Qn,EarlyStopping:()=>F8,Einsum:()=>Jp,Elu:()=>wo,EluGrad:()=>Qp,Environment:()=>nb,Equal:()=>Io,Erf:()=>ko,Exp:()=>Ss,ExpandDims:()=>So,Expm1:()=>No,FFT:()=>ec,Fill:()=>Fu,FlipLeftRight:()=>To,Floor:()=>Ns,FloorDiv:()=>Ts,FromPixels:()=>yc,FusedBatchNorm:()=>Es,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>Nh,GatherNd:()=>Co,GatherV2:()=>Eo,GraphModel:()=>lk,Greater:()=>Ro,GreaterEqual:()=>Cs,History:()=>k4,IFFT:()=>tc,Identity:()=>Rs,Imag:()=>nc,InputSpec:()=>zt,IsFinite:()=>Mo,IsInf:()=>Fo,IsNan:()=>$o,KernelBackend:()=>ku,LRN:()=>zu,LRNGrad:()=>rc,LayerVariable:()=>A4,LayersModel:()=>xr,LeakyRelu:()=>Ms,Less:()=>Do,LessEqual:()=>zo,LinSpace:()=>ac,Log:()=>Fs,Log1p:()=>Oo,LogSoftmax:()=>sb,LogicalAnd:()=>_o,LogicalNot:()=>$u,LogicalOr:()=>Du,MathBackendCPU:()=>hh,MathBackendWebGL:()=>jl,Max:()=>$s,MaxPool:()=>zs,MaxPool3D:()=>Ou,MaxPool3DGrad:()=>ic,MaxPoolGrad:()=>sc,MaxPoolWithArgmax:()=>oc,Maximum:()=>Ds,Mean:()=>Os,Min:()=>_s,Minimum:()=>Ps,MirrorPad:()=>Ls,Mod:()=>Po,MomentumOptimizer:()=>dh,Multinomial:()=>lc,Multiply:()=>Ws,Neg:()=>Lo,NonMaxSuppressionV3:()=>Bo,NonMaxSuppressionV4:()=>Vo,NonMaxSuppressionV5:()=>jo,NotEqual:()=>Wo,OP_SCOPE_SUFFIX:()=>yb,OneHot:()=>Bs,OnesLike:()=>Uo,Optimizer:()=>mr,Pack:()=>Ho,PadV2:()=>Vs,Pool:()=>gS,Pow:()=>js,Prelu:()=>Us,Prod:()=>Go,RMSPropOptimizer:()=>ph,RNN:()=>Qa,Range:()=>_u,Rank:()=>Om,Real:()=>uc,RealDiv:()=>Is,Reciprocal:()=>qo,Reduction:()=>cn,Relu:()=>Hs,Relu6:()=>qs,Reshape:()=>Xo,ResizeBilinear:()=>Gs,ResizeBilinearGrad:()=>pc,ResizeNearestNeighbor:()=>Pu,ResizeNearestNeighborGrad:()=>dc,Reverse:()=>Xs,RotateWithOffset:()=>ll,Round:()=>Ks,Rsqrt:()=>Zs,SGDOptimizer:()=>fd,ScatterNd:()=>Ko,Select:()=>Zo,Selu:()=>Yo,Sequential:()=>Jl,Sigmoid:()=>Js,Sign:()=>el,Sin:()=>Ys,Sinh:()=>Qo,Slice:()=>Jo,Softmax:()=>ti,Softplus:()=>tl,SpaceToBatchND:()=>Lu,SparseFillEmptyRows:()=>cc,SparseReshape:()=>hc,SparseToDense:()=>fc,SplitV:()=>nl,Sqrt:()=>Qs,Square:()=>Wu,SquaredDifference:()=>ni,Step:()=>Dr,StridedSlice:()=>al,Sub:()=>ai,Sum:()=>ei,SymbolicTensor:()=>Ra,Tan:()=>ri,Tanh:()=>si,Tensor:()=>We,TensorBuffer:()=>Pt,Tile:()=>$r,TopK:()=>rl,Transform:()=>sl,Transpose:()=>ii,Unique:()=>mc,Unpack:()=>il,UnsortedSegmentSum:()=>Bu,Variable:()=>Xu,ZerosLike:()=>ol,_FusedMatMul:()=>oi,abs:()=>Lt,acos:()=>u1,acosh:()=>d1,add:()=>se,addN:()=>Ec,all:()=>Cc,any:()=>Qu,argMax:()=>yi,argMin:()=>p1,asin:()=>c1,asinh:()=>h1,atan:()=>f1,atan2:()=>m1,atanh:()=>y1,avgPool:()=>td,avgPool3d:()=>x1,backend:()=>Yb,backend_util:()=>R,basicLSTMCell:()=>YT,batchNorm:()=>xi,batchNorm2d:()=>t3,batchNorm3d:()=>n3,batchNorm4d:()=>a3,batchToSpaceND:()=>nd,bincount:()=>b1,booleanMaskAsync:()=>aM,broadcastTo:()=>xl,browser:()=>fi,buffer:()=>Be,callbacks:()=>fse,cast:()=>me,ceil:()=>v1,clipByValue:()=>Nn,clone:()=>Ba,complex:()=>zr,concat:()=>lt,concat1d:()=>r3,concat2d:()=>bl,concat3d:()=>s3,concat4d:()=>i3,constraints:()=>K6,conv1d:()=>Mc,conv2d:()=>pr,conv2dTranspose:()=>Fc,conv3d:()=>k1,conv3dTranspose:()=>l3,copyRegisteredKernels:()=>vS,cos:()=>ad,cosh:()=>$c,cosineWindow:()=>Z1,cumsum:()=>Dc,customGrad:()=>ja,data:()=>uk,denseBincount:()=>u3,deprecationWarn:()=>o1,depthToSpace:()=>I1,depthwiseConv2d:()=>vl,deregisterOp:()=>yse,device_util:()=>Zu,diag:()=>NE,dilation2d:()=>S1,disableDeprecationWarnings:()=>dT,dispose:()=>Ie,disposeVariables:()=>pT,div:()=>fe,divNoNan:()=>N1,dot:()=>d3,dropout:()=>M3,einsum:()=>p3,elu:()=>wl,enableDebugMode:()=>uT,enableProdMode:()=>lT,enclosingPowerOfTwo:()=>F3,engine:()=>dr,env:()=>J,equal:()=>Wr,erf:()=>T1,exp:()=>ta,expandDims:()=>dn,expm1:()=>E1,eye:()=>C1,fft:()=>cd,fill:()=>kl,findBackend:()=>l1,findBackendFactory:()=>gT,floor:()=>Il,floorDiv:()=>Tc,forceHalfFloat:()=>Kv,fused:()=>Ur,gather:()=>bi,gatherND:()=>R3,gather_util:()=>e1,getBackend:()=>yT,getGradient:()=>$m,getKernel:()=>Ac,getKernelsForBackend:()=>dl,gpgpu_util:()=>xv,grad:()=>nC,grads:()=>aC,greater:()=>On,greaterEqual:()=>Vr,ifft:()=>Cl,imag:()=>zc,image:()=>je,inTopKAsync:()=>fM,initializers:()=>n4,input:()=>q4,io:()=>In,irfft:()=>Yc,isFinite:()=>c3,isInf:()=>h3,isNaN:()=>R1,keep:()=>Gt,kernel_impls:()=>Ga,layers:()=>f4,leakyRelu:()=>rd,less:()=>Oc,lessEqual:()=>jr,linalg:()=>U3,linspace:()=>f3,loadGraphModel:()=>gt,loadLayersModel:()=>Iae,localResponseNormalization:()=>M1,log:()=>_n,log1p:()=>_c,logSigmoid:()=>y3,logSoftmax:()=>Lc,logSumExp:()=>D1,logicalAnd:()=>ca,logicalNot:()=>sd,logicalOr:()=>Wc,logicalXor:()=>b3,losses:()=>PF,matMul:()=>Ve,math:()=>Fb,max:()=>Tn,maxPool:()=>id,maxPool3d:()=>z1,maxPoolWithArgmax:()=>v3,maximum:()=>Ua,mean:()=>St,memory:()=>Nc,meshgrid:()=>SC,metrics:()=>T8,min:()=>Sl,minimum:()=>Nl,mirrorPad:()=>O1,mod:()=>_1,model:()=>wae,models:()=>E8,moments:()=>Bc,movingAverage:()=>iM,mul:()=>W,multiRNNCell:()=>$C,multinomial:()=>w3,neg:()=>It,nextFrame:()=>ch,norm:()=>th,notEqual:()=>ki,oneHot:()=>ml,ones:()=>Pn,onesLike:()=>Ln,op:()=>L,outerProduct:()=>PC,pad:()=>cr,pad1d:()=>BC,pad2d:()=>jC,pad3d:()=>HC,pad4d:()=>qC,pool:()=>k3,pow:()=>hr,prelu:()=>ld,print:()=>Nb,prod:()=>Vc,profile:()=>cT,rand:()=>nR,randomGamma:()=>iR,randomNormal:()=>I3,randomUniform:()=>Tl,range:()=>El,ready:()=>mT,real:()=>ud,reciprocal:()=>W1,registerBackend:()=>Al,registerCallbackConstructor:()=>Sae,registerGradient:()=>ib,registerKernel:()=>di,registerOp:()=>mse,regularizers:()=>C8,relu:()=>Ha,relu6:()=>jc,removeBackend:()=>AT,reshape:()=>H,reverse:()=>Wn,reverse1d:()=>mR,reverse2d:()=>AR,reverse3d:()=>xR,reverse4d:()=>vR,rfft:()=>hd,round:()=>Uc,rsqrt:()=>Hc,scalar:()=>we,scatterND:()=>C3,scatter_util:()=>t1,selu:()=>Gc,separableConv2d:()=>B1,sequential:()=>kae,serialization:()=>ae,setBackend:()=>fT,setPlatform:()=>xT,setWasmPath:()=>EQ,setWasmPaths:()=>CQ,setWebGLContext:()=>xh,setdiff1dAsync:()=>S3,shared:()=>ty,sigmoid:()=>Sn,sign:()=>V1,signal:()=>_F,sin:()=>qc,sinh:()=>Xc,slice:()=>Re,slice1d:()=>Kc,slice2d:()=>j1,slice3d:()=>Zc,slice4d:()=>dd,slice_util:()=>un,softmax:()=>pd,softplus:()=>vi,spaceToBatchND:()=>od,sparse:()=>H3,sparseToDense:()=>K1,spectral:()=>OF,split:()=>qt,sqrt:()=>en,square:()=>ot,squaredDifference:()=>Jc,squeeze:()=>ha,stack:()=>pn,step:()=>Rl,stridedSlice:()=>U1,sub:()=>ye,sum:()=>Se,sumOutType:()=>vc,tan:()=>H1,tanh:()=>gi,tensor:()=>pa,tensor1d:()=>Mt,tensor2d:()=>ka,tensor3d:()=>Ic,tensor4d:()=>qR,tensor5d:()=>XR,tensor6d:()=>KR,tensor_util:()=>va,test_util:()=>Xb,tidy:()=>V,tile:()=>Br,time:()=>hT,topk:()=>G1,train:()=>Si,transpose:()=>Qe,truncatedNormal:()=>Qc,unique:()=>eh,unregisterGradient:()=>bS,unregisterKernel:()=>xS,unsortedSegmentSum:()=>q1,unstack:()=>fa,upcastType:()=>da,util:()=>k,valueAndGrad:()=>rC,valueAndGrads:()=>sC,variable:()=>N3,variableGrads:()=>m3,version:()=>noe,version_converter:()=>yie,version_core:()=>oT,version_cpu:()=>S7,version_layers:()=>AA,version_wasm:()=>W6,version_webgl:()=>Xv,webgl:()=>SB,webgl_util:()=>q7,where:()=>rn,whereAsync:()=>X1,zeros:()=>$t,zerosLike:()=>Ge});var gI=Object.create,Dp=Object.defineProperty,xI=Object.getOwnPropertyDescriptor,bI=Object.getOwnPropertyNames,vI=Object.getPrototypeOf,wI=Object.prototype.hasOwnProperty,kI=e=>Dp(e,"__esModule",{value:!0}),ao=e=>{if(typeof vm!="undefined")return vm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},wt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Dp(e,n,{get:t[n],enumerable:!0})},II=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of bI(t))!wI.call(e,a)&&a!=="default"&&Dp(e,a,{get:()=>t[a],enumerable:!(n=xI(t,a))||n.enumerable});return e},ro=e=>II(kI(Dp(e!=null?gI(vI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),SI=wt(()=>{}),NI=wt((e,t)=>{(function(n,a,r){function s(l){var d=this,p=u();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(l),d.s0<0&&(d.s0+=1),d.s1-=p(l),d.s1<0&&(d.s1+=1),d.s2-=p(l),d.s2<0&&(d.s2+=1),p=null}function i(l,d){return d.c=l.c,d.s0=l.s0,d.s1=l.s1,d.s2=l.s2,d}function o(l,d){var p=new s(l),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function u(){var l=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){l+=p.charCodeAt(c);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),TI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var c=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^c^c>>>8},u===(u|0)?l.x=u:d+=u;for(var p=0;p<d.length+64;p++)l.x^=d.charCodeAt(p)|0,l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),EI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.next=function(){var c=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(c^c<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:d+=u;for(var p=0;p<d.length+64;p++)l.x^=d.charCodeAt(p)|0,p==d.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),CI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this;l.next=function(){var p=l.x,c=l.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,l.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(l,u)}function i(u,l){return l.x=u.x.slice(),l.i=u.i,l}function o(u,l){u==null&&(u=+new Date);var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),RI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this;l.next=function(){var p=l.w,c=l.X,h=l.i,m,f;return l.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,l.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,y,A,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,y=-32;y<x;++y)c&&(m^=c.charCodeAt((y+32)%c.length)),y===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,y>=0&&(A=A+1640531527|0,h=g[y&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,y=4*128;y>0;--y)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=A,p.X=g,p.i=f}d(l,u)}function i(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function o(u,l){u==null&&(u=+new Date);var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),MI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.next=function(){var c=l.b,h=l.c,m=l.d,f=l.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,l.b=c=c<<20^c>>>12^h,l.c=h=h-m|0,l.d=m<<16^h>>>16^f,l.a=f-c|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):d+=u;for(var p=0;p<d.length+20;p++)l.b^=d.charCodeAt(p)|0,l.next()}function i(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),h5=wt(()=>{}),FI=wt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,u="random",l=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var I=[];v=v==!0?{entropy:!0}:v||{};var E=g(A(v.entropy?[b,w(n)]:b==null?x():b,3),I),$=new f(I),O=function(){for(var z=$.g(i),P=l,D=0;z<d;)z=(z+D)*s,P*=s,D=$.g(1);for(;z>=p;)z/=2,P/=2,D>>>=1;return(z+D)/P};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),n),(v.pass||N||function(z,P,D,U){return U&&(U.S&&y(U,$),z.state=function(){return y($,{})}),D?(a[u]=z,P):z})(O,E,"global"in v?v.global:this==a,v.state)}a["seed"+u]=m;function f(b){var v,N=b.length,I=this,E=0,$=I.i=I.j=0,O=I.S=[];for(N||(b=[N++]);E<s;)O[E]=E++;for(E=0;E<s;E++)O[E]=O[$=c&$+b[E%N]+(v=O[E])],O[$]=v;(I.g=function(z){for(var P,D=0,U=I.i,X=I.j,G=I.S;z--;)P=G[U=c&U+1],D=D*s+G[c&(G[U]=G[X=c&X+P])+(G[X]=P)];return I.i=U,I.j=X,D})(s)}function y(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function A(b,v){var N=[],I=typeof b,E;if(v&&I=="object")for(E in b)try{N.push(A(b[E],v-1))}catch($){}return N.length?N:I=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",I,E=0;E<N.length;)v[c&E]=c&(I^=v[c&E]*19)+N.charCodeAt(E++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(I){var v=r.navigator,N=v&&v.plugins;return[+new Date,r,N,r.screen,w(n)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=h5()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),f5=wt((e,t)=>{var n=NI(),a=TI(),r=EI(),s=CI(),i=RI(),o=MI(),u=FI();u.alea=n,u.xor128=a,u.xorwow=r,u.xorshift7=s,u.xor4096=i,u.tychei=o,t.exports=u}),wu=wt(()=>{}),$I=wt(()=>{}),DI=wt(()=>{}),zI=wt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Ue&&Jt(Q.buffer),xn}function i(){return Q.buffer!=Ue&&Jt(Q.buffer),bt}function o(){return Q.buffer!=Ue&&Jt(Q.buffer),bn}function u(){return Q.buffer!=Ue&&Jt(Q.buffer),Zn}function l(){return Q.buffer!=Ue&&Jt(Q.buffer),sn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(T,C){p=T,c=C});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],y="./this.program",A=function(T,C){throw C},g=!1,x=!1,w=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!w&&!x;var v=d.ENVIRONMENT_IS_PTHREAD||!1;v&&(Ue=d.buffer);var N="";function I(T){return d.locateFile?d.locateFile(T,N):N+T}var E,$,O,z,P,D;if(w){x?N=wu().dirname(N)+"/":N=__dirname+"/",E=function(T,C){return P||(P=ao("fs")),D||(D=wu()),T=D.normalize(T),P.readFileSync(T,C?null:"utf8")},O=function(T){var C=E(T,!0);return C.buffer||(C=new Uint8Array(C)),he(C.buffer),C},process.argv.length>1&&(y=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof vu))throw T}),process.on("unhandledRejection",sr),A=function(T){process.exit(T)},d.inspect=function(){return"[Emscripten Module object]"};var U;try{U=$I()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(E=function(T){return read(T)}),O=function(T){var C;return typeof readbuffer=="function"?new Uint8Array(readbuffer(T)):(C=read(T,"binary"),he(typeof C=="object"),C)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(A=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(E=function(T,C){return P||(P=ao("fs")),D||(D=wu()),T=D.normalize(T),P.readFileSync(T,C?null:"utf8")},O=function(T){var C=E(T,!0);return C.buffer||(C=new Uint8Array(C)),he(C.buffer),C}):(E=function(T){var C=new XMLHttpRequest;return C.open("GET",T,!1),C.send(null),C.responseText},x&&(O=function(T){var C=new XMLHttpRequest;return C.open("GET",T,!1),C.responseType="arraybuffer",C.send(null),new Uint8Array(C.response)}),$=function(T,C,B){var q=new XMLHttpRequest;q.open("GET",T,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){C(q.response);return}B()},q.onerror=B,q.send(null)}),z=function(T){document.title=T});w&&typeof performance=="undefined"&&(global.performance=DI().performance);var X=d.print||console.log.bind(console),G=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(y=d.thisProgram),d.quit&&(A=d.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,ne;d.wasmBinary&&(ne=d.wasmBinary);var ie=d.noExitRuntime||!0;typeof WebAssembly!="object"&&sr("no native wasm support detected");var Q,pe,oe=!1,ge;function he(T,C){T||sr("Assertion failed: "+C)}function Ne(T){var C=d["_"+T];return he(C,"Cannot call unknown function "+T+", make sure it is exported"),C}function Te(T,C,B,q,ce){var le={string:function(kn){var no=0;if(kn!=null&&kn!==0){var u5=(kn.length<<2)+1;no=Qi(u5),nt(kn,no,u5)}return no},array:function(kn){var no=Qi(kn.length);return Ze(kn,no),no}};function ue(kn){return C==="string"?ze(kn):C==="boolean"?Boolean(kn):kn}var be=Ne(T),at=[],Ut=0;if(q)for(var _t=0;_t<q.length;_t++){var Er=le[B[_t]];Er?(Ut===0&&(Ut=bu()),at[_t]=Er(q[_t])):at[_t]=q[_t]}var to=be.apply(null,at);return to=ue(to),Ut!==0&&Ji(Ut),to}function De(T,C,B,q){B=B||[];var ce=B.every(function(ue){return ue==="number"}),le=C!=="string";return le&&ce&&!q?Ne(T):function(){return Te(T,C,B,arguments,q)}}function _e(T,C,B){for(var q=C+B,ce="";!(C>=q);){var le=T[C++];if(!le)return ce;if(!(le&128)){ce+=String.fromCharCode(le);continue}var ue=T[C++]&63;if((le&224)==192){ce+=String.fromCharCode((le&31)<<6|ue);continue}var be=T[C++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|T[C++]&63,le<65536)ce+=String.fromCharCode(le);else{var at=le-65536;ce+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return ce}function ze(T,C){return T?_e(i(),T,C):""}function tt(T,C,B,q){if(!(q>0))return 0;for(var ce=B,le=B+q-1,ue=0;ue<T.length;++ue){var be=T.charCodeAt(ue);if(be>=55296&&be<=57343){var at=T.charCodeAt(++ue);be=65536+((be&1023)<<10)|at&1023}if(be<=127){if(B>=le)break;C[B++]=be}else if(be<=2047){if(B+1>=le)break;C[B++]=192|be>>6,C[B++]=128|be&63}else if(be<=65535){if(B+2>=le)break;C[B++]=224|be>>12,C[B++]=128|be>>6&63,C[B++]=128|be&63}else{if(B+3>=le)break;C[B++]=240|be>>18,C[B++]=128|be>>12&63,C[B++]=128|be>>6&63,C[B++]=128|be&63}}return C[B]=0,B-ce}function nt(T,C,B){return tt(T,i(),C,B)}function it(T){for(var C=0,B=0;B<T.length;++B){var q=T.charCodeAt(B);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|T.charCodeAt(++B)&1023),q<=127?++C:q<=2047?C+=2:q<=65535?C+=3:C+=4}return C}function Ze(T,C){s().set(T,C)}function pt(T,C){return T%C>0&&(T+=C-T%C),T}var Ue,xn,bt,Kn,Yt,bn,Zn,Dn,sn;function Jt(T){Ue=T,d.HEAP8=xn=new Int8Array(T),d.HEAP16=Kn=new Int16Array(T),d.HEAP32=bn=new Int32Array(T),d.HEAPU8=bt=new Uint8Array(T),d.HEAPU16=Yt=new Uint16Array(T),d.HEAPU32=Zn=new Uint32Array(T),d.HEAPF32=Dn=new Float32Array(T),d.HEAPF64=sn=new Float64Array(T)}var _a=d.INITIAL_MEMORY||16777216;if(v)Q=d.wasmMemory,Ue=d.buffer;else if(d.wasmMemory)Q=d.wasmMemory;else if(Q=new WebAssembly.Memory({initial:_a/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ue=Q.buffer),_a=Ue.byteLength,Jt(Ue);var ia,oa=[],wr=[],ar=[],kr=[],Gi=[],Pa=!1,cp=!1;v||wr.push({func:function(){Tp()}});function Z0(){if(!v){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)fp(d.preRun.shift());Xi(oa)}}function pu(){Pa=!0,!v&&Xi(wr)}function Y0(){v||Xi(ar)}function hp(){v||(cp=!0)}function vn(){if(!v){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)J0(d.postRun.shift());Xi(Gi)}}function fp(T){oa.unshift(T)}function J0(T){Gi.unshift(T)}var rr=0,Ir=null,ls=null;function Q0(T){he(!v,"addRunDependency cannot be used in a pthread worker"),rr++,d.monitorRunDependencies&&d.monitorRunDependencies(rr)}function ef(T){if(rr--,d.monitorRunDependencies&&d.monitorRunDependencies(rr),rr==0&&(Ir!==null&&(clearInterval(Ir),Ir=null),ls)){var C=ls;ls=null,C()}}d.preloadedImages={},d.preloadedAudios={};function sr(T){d.onAbort&&d.onAbort(T),v&&console.error("Pthread aborting at "+new Error().stack),T+="",G(T),oe=!0,ge=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var C=new WebAssembly.RuntimeError(T);throw c(C),C}function mp(T,C){return String.prototype.startsWith?T.startsWith(C):T.indexOf(C)===0}var qi="data:application/octet-stream;base64,";function yp(T){return mp(T,qi)}var tf="file://";function Ap(T){return mp(T,tf)}var wn="tfjs-backend-wasm-threaded-simd.wasm";yp(wn)||(wn=I(wn));function gp(T){try{if(T==wn&&ne)return new Uint8Array(ne);if(O)return O(T);throw"both async and sync fetching of the wasm failed"}catch(C){sr(C)}}function nf(){if(!ne&&(g||x)){if(typeof fetch=="function"&&!Ap(wn))return fetch(wn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+wn+"'";return T.arrayBuffer()}).catch(function(){return gp(wn)});if($)return new Promise(function(T,C){$(wn,function(B){T(new Uint8Array(B))},C)})}return Promise.resolve().then(function(){return gp(wn)})}function af(){var T={a:Xf};function C(ue,be){var at=ue.exports;if(d.asm=at,ia=d.asm.F,pe=be,!v){var Ut=ke.unusedWorkers.length;ke.unusedWorkers.forEach(function(_t){ke.loadWasmModuleToWorker(_t,function(){--Ut||ef("wasm-instantiate")})})}}v||Q0("wasm-instantiate");function B(ue){C(ue.instance,ue.module)}function q(ue){return nf().then(function(be){return WebAssembly.instantiate(be,T)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),sr(be)})}function ce(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!yp(wn)&&!Ap(wn)&&typeof fetch=="function"?fetch(wn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,T);return be.then(B,function(at){return G("wasm streaming compile failed: "+at),G("falling back to ArrayBuffer instantiation"),q(B)})}):q(B)}if(d.instantiateWasm)try{var le=d.instantiateWasm(T,C);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return ce().catch(c),{}}var rf={9816:function(){throw"Canceled!"},9834:function(T,C){setTimeout(function(){a5(T,C)},0)}};function xp(){ke.initRuntime()}function Xi(T){for(;T.length>0;){var C=T.shift();if(typeof C=="function"){C(d);continue}var B=C.func;typeof B=="number"?C.arg===void 0?ia.get(B)():ia.get(B)(C.arg):B(C.arg===void 0?null:C.arg)}}function cu(T,C){if(T<=0||T>s().length||T&!0||C<0)return-28;if(C==0)return 0;C>=2147483647&&(C=Infinity);var B=Atomics.load(o(),eo>>2),q=0;if(B==T){var ce=Atomics.compareExchange(o(),eo>>2,B,0);if(ce==B&&(--C,q=1,C<=0))return 1}var le=Atomics.notify(o(),T>>2,C);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}d._emscripten_futex_wake=cu;function sf(T){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";o()[T+12>>2]=0;var C=ke.pthreads[T];C.worker.terminate(),ke.freeThreadData(C),ke.runningWorkers.splice(ke.runningWorkers.indexOf(C.worker),1),C.worker.pthread=void 0}function of(T){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var C=ke.pthreads[T];C.worker.postMessage({cmd:"cancel"})}function lf(T){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";var C=ke.pthreads[T];if(C){o()[T+12>>2]=0;var B=C.worker;ke.returnWorkerToPool(B)}}var ke={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),C=0;C<T;++C)ke.allocateUnusedWorker()},initRuntime:function(){for(var T=ds(228),C=0;C<228/4;++C)u()[T/4+C]=0;o()[T+12>>2]=T;var B=T+152;o()[B>>2]=B;for(var q=ds(512),C=0;C<128;++C)u()[q/4+C]=0;Atomics.store(u(),T+100>>2,q),Atomics.store(u(),T+40>>2,T),xm(T,!x,1),n5(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;ke.threadExitHandlers.length>0;)ke.threadExitHandlers.pop()();v&&Yi()&&t5()},runExitHandlersAndDeinitThread:function(T,C){Atomics.store(u(),T+56>>2,1),Atomics.store(u(),T+60>>2,0),ke.runExitHandlers(),Atomics.store(u(),T+4>>2,C),Atomics.store(u(),T+0>>2,1),cu(T+0,2147483647),xm(0,0,0)},threadExit:function(T){var C=Yi();C&&(ke.runExitHandlersAndDeinitThread(C,T),v&&postMessage({cmd:"exit"}))},threadCancel:function(){ke.runExitHandlersAndDeinitThread(Yi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in ke.pthreads){var C=ke.pthreads[T];C&&C.worker&&ke.returnWorkerToPool(C.worker)}ke.pthreads={};for(var B=0;B<ke.unusedWorkers.length;++B){var q=ke.unusedWorkers[B];q.terminate()}ke.unusedWorkers=[];for(var B=0;B<ke.runningWorkers.length;++B){var q=ke.runningWorkers[B],C=q.pthread;ke.freeThreadData(C),q.terminate()}ke.runningWorkers=[]},freeThreadData:function(T){if(T){if(T.threadInfoStruct){var C=o()[T.threadInfoStruct+100>>2];o()[T.threadInfoStruct+100>>2]=0,xu(C),xu(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&xu(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){ke.runWithoutMainThreadQueuedCalls(function(){delete ke.pthreads[T.pthread.threadInfoStruct],ke.unusedWorkers.push(T),ke.runningWorkers.splice(ke.runningWorkers.indexOf(T),1),ke.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){o()[l5>>2]=0;try{T()}finally{o()[l5>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,C){T.onmessage=function(B){var q=B.data,ce=q.cmd;if(T.pthread&&(ke.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Yi()){var le=ke.pthreads[q.targetThread];le?le.worker.postMessage(B.data,q.transferList):console.error('Internal error! Worker sent a message "'+ce+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),ke.currentProxiedOperationCallerThread=void 0;return}if(ce==="processQueuedMainThreadWork")Am();else if(ce==="spawnThread")Sp(B.data);else if(ce==="cleanupThread")lf(q.thread);else if(ce==="killThread")sf(q.thread);else if(ce==="cancelThread")of(q.thread);else if(ce==="loaded")T.loaded=!0,C&&C(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(ce==="print")X("Thread "+q.threadId+": "+q.text);else if(ce==="printErr")G("Thread "+q.threadId+": "+q.text);else if(ce==="alert")alert("Thread "+q.threadId+": "+q.text);else if(ce==="exit"){var ue=T.pthread&&Atomics.load(u(),T.pthread.threadInfoStruct+64>>2);ue&&ke.returnWorkerToPool(T)}else if(ce==="exitProcess")try{yI(q.returnCode)}catch(be){if(be instanceof vu)return;throw be}else ce==="cancelDone"?ke.returnWorkerToPool(T):ce==="objectTransfer"?ke.receiveObjectTransfer(B.data):B.data.target==="setimmediate"?T.postMessage(B.data):G("worker sent an unknown command "+ce);ke.currentProxiedOperationCallerThread=void 0},T.onerror=function(B){G("pthread sent an error! "+B.filename+":"+B.lineno+": "+B.message)},w&&(T.on("message",function(B){T.onmessage({data:B})}),T.on("error",function(B){T.onerror(B)}),T.on("exit",function(B){})),T.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:pe})},allocateUnusedWorker:function(){var T=I("tfjs-backend-wasm-threaded-simd.worker.js");ke.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return ke.unusedWorkers.length==0&&(ke.allocateUnusedWorker(),ke.loadWasmModuleToWorker(ke.unusedWorkers[0])),ke.unusedWorkers.length>0?ke.unusedWorkers.pop():null},busySpinWait:function(T){for(var C=performance.now()+T;performance.now()<C;);}};function uf(T,C){i5(T,C),Ji(T)}d.establishStackSpace=uf;function df(){return ie}d.getNoExitRuntime=df;function pf(T,C){return ia.get(T)(C)}d.invokeEntryPoint=pf;function cf(T,C,B,q){sr("Assertion failed: "+ze(T)+", at: "+[C?ze(C):"unknown filename",B,q?ze(q):"unknown function"])}function hf(T,C){var B=_main(T,C)}var us;w?us=function(){var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:v?us=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?us=dateNow:us=function(){return performance.now()};function ff(T){return o()[Qg()>>2]=T,T}function mf(T,C){if(v)return Sr(1,1,T,C)}function yf(T,C){if(T==C)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var B=ke.pthreads[T],q=B&&B.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function Af(){sr()}function gf(T,C,B){var q=kf(C,B);return rf[T].apply(null,q)}function xf(T,C){}function bf(T,C,B){if(T<=0||T>s().length||T&!0)return-28;if(g){if(Atomics.load(o(),T>>2)!=C)return-6;for(var q=performance.now(),ce=q+B,le=Atomics.exchange(o(),eo>>2,T);;){if(q=performance.now(),q>ce)return le=Atomics.exchange(o(),eo>>2,0),-73;if(le=Atomics.exchange(o(),eo>>2,0),le==0)break;if(Am(),Atomics.load(o(),T>>2)!=C)return-6;le=Atomics.exchange(o(),eo>>2,T)}return 0}else{var ue=Atomics.wait(o(),T>>2,C,B);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function vf(T,C,B){i().copyWithin(T,C,C+B)}function wf(){return w?ao("os").cpus().length:navigator.hardwareConcurrency}function Sr(T,C){for(var B=arguments.length-2,q=bu(),ce=B,le=Qi(ce*8),ue=le>>3,be=0;be<B;be++){var at=arguments[2+be];l()[ue+be]=at}var Ut=s5(T,ce,le,C);return Ji(q),Ut}var hu=[],fu=[];function kf(T,C){fu.length=0;var B;for(C>>=2;B=i()[T++];){var q=B<105;q&&C&1&&C++,fu.push(q?l()[C++>>1]:o()[C]),++C}return fu}function If(T,C,B){hu.length=C;for(var q=B>>3,ce=0;ce<C;ce++)hu[ce]=l()[q+ce];var le=T<0,ue=le?rf[-T-1]:qf[T];return ue.apply(null,hu)}function Sf(){return i().length}function Nf(T){try{return Q.grow(T-Ue.byteLength+65535>>>16),Jt(Q.buffer),1}catch(C){}}function Tf(T){var C=Sf();if(T<=C)return!1;var B=2147483648;if(T>B)return!1;for(var q=1;q<=4;q*=2){var ce=C*(1+.2/q);ce=Math.min(ce,T+100663296);var le=Math.min(B,pt(Math.max(T,ce),65536)),ue=Nf(le);if(ue)return!0}return!1}var Le={inEventHandler:0,removeAllEventListeners:function(){for(var T=Le.eventHandlers.length-1;T>=0;--T)Le._removeHandler(T);Le.eventHandlers=[],Le.deferredCalls=[]},registerRemoveEventListeners:function(){Le.removeEventListenersRegistered||(kr.push(Le.removeAllEventListeners),Le.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,C,B){function q(ue,be){if(ue.length!=be.length)return!1;for(var at in ue)if(ue[at]!=be[at])return!1;return!0}for(var ce in Le.deferredCalls){var le=Le.deferredCalls[ce];if(le.targetFunction==T&&q(le.argsList,B))return}Le.deferredCalls.push({targetFunction:T,precedence:C,argsList:B}),Le.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(T){for(var C=0;C<Le.deferredCalls.length;++C)Le.deferredCalls[C].targetFunction==T&&(Le.deferredCalls.splice(C,1),--C)},canPerformEventHandlerRequests:function(){return Le.inEventHandler&&Le.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Le.canPerformEventHandlerRequests())for(var T=0;T<Le.deferredCalls.length;++T){var C=Le.deferredCalls[T];Le.deferredCalls.splice(T,1),--T,C.targetFunction.apply(null,C.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,C){for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==T&&(!C||C==Le.eventHandlers[B].eventTypeString)&&Le._removeHandler(B--)},_removeHandler:function(T){var C=Le.eventHandlers[T];C.target.removeEventListener(C.eventTypeString,C.eventListenerFunc,C.useCapture),Le.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var C=function(q){++Le.inEventHandler,Le.currentEventHandler=T,Le.runDeferredCalls(),T.handlerFunc(q),Le.runDeferredCalls(),--Le.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=C,T.target.addEventListener(T.eventTypeString,C,T.useCapture),Le.eventHandlers.push(T),Le.registerRemoveEventListeners();else for(var B=0;B<Le.eventHandlers.length;++B)Le.eventHandlers[B].target==T.target&&Le.eventHandlers[B].eventTypeString==T.eventTypeString&&Le._removeHandler(B--)},queueEventHandlerOnThread_iiii:function(T,C,B,q,ce){var le=bu(),ue=Qi(12);o()[ue>>2]=B,o()[ue+4>>2]=q,o()[ue+8>>2]=ce,gm(0,T,637534208,C,q,ue),Ji(le)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return ke.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function Ef(T){var C=it(T)+1,B=ds(C);return nt(T,B,C),B}function Cf(T,C,B,q){var ce=bu(),le=Qi(12),ue=0;C&&(ue=Ef(C)),o()[le>>2]=ue,o()[le+4>>2]=B,o()[le+8>>2]=q,gm(0,T,657457152,0,ue,le),Ji(ce)}function Rf(T,C,B,q){C=C?ze(C):"",Cf(T,C,B,q)}function Mf(T){return T>2?ze(T):T}var Ff=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function $f(T){T=Mf(T);var C=Ff[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return C}function mu(T){return $f(T)}function bp(T,C,B){var q=mu(T);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=C,o()[q.canvasSharedPtr+4>>2]=B),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var ce=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);ce=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=C,q.height=B,ce&&q.GLctxObject.GLctx.viewport(0,0,C,B)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return Rf(ue,T,C,B),1}else return-4;return 0}function vp(T,C,B){return v?Sr(2,1,T,C,B):bp(T,C,B)}function Df(T,C,B){var q=mu(T);return q?bp(T,C,B):vp(T,C,B)}function zf(T){}function Of(T,C){}function _f(T){var C=T.getExtension("ANGLE_instanced_arrays");if(C)return T.vertexAttribDivisor=function(B,q){C.vertexAttribDivisorANGLE(B,q)},T.drawArraysInstanced=function(B,q,ce,le){C.drawArraysInstancedANGLE(B,q,ce,le)},T.drawElementsInstanced=function(B,q,ce,le,ue){C.drawElementsInstancedANGLE(B,q,ce,le,ue)},1}function Pf(T){var C=T.getExtension("OES_vertex_array_object");if(C)return T.createVertexArray=function(){return C.createVertexArrayOES()},T.deleteVertexArray=function(B){C.deleteVertexArrayOES(B)},T.bindVertexArray=function(B){C.bindVertexArrayOES(B)},T.isVertexArray=function(B){return C.isVertexArrayOES(B)},1}function Lf(T){var C=T.getExtension("WEBGL_draw_buffers");if(C)return T.drawBuffers=function(B,q){C.drawBuffersWEBGL(B,q)},1}function Wf(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(T){et.lastError||(et.lastError=T)},getNewId:function(T){for(var C=et.counter++,B=T.length;B<C;B++)T[B]=null;return C},getSource:function(T,C,B,q){for(var ce="",le=0;le<C;++le){var ue=q?o()[q+le*4>>2]:-1;ce+=ze(o()[B+le*4>>2],ue<0?void 0:ue)}return ce},createContext:function(T,C){var B=T.getContext("webgl",C);if(!B)return 0;var q=et.registerContext(B,C);return q},registerContext:function(T,C){var B=ds(8);o()[B+4>>2]=Yi();var q={handle:B,attributes:C,version:C.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=q),et.contexts[B]=q,(typeof C.enableExtensionsByDefault=="undefined"||C.enableExtensionsByDefault)&&et.initExtensions(q),B},makeContextCurrent:function(T){return et.currentContext=et.contexts[T],d.ctx=Nr=et.currentContext&&et.currentContext.GLctx,!(T&&!Nr)},getContext:function(T){return et.contexts[T]},deleteContext:function(T){et.currentContext===et.contexts[T]&&(et.currentContext=null),typeof Le=="object"&&Le.removeAllHandlersOnTarget(et.contexts[T].GLctx.canvas),et.contexts[T]&&et.contexts[T].GLctx.canvas&&(et.contexts[T].GLctx.canvas.GLctxObject=void 0),xu(et.contexts[T].handle),et.contexts[T]=null},initExtensions:function(T){if(T||(T=et.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var C=T.GLctx;_f(C),Pf(C),Lf(C),C.disjointTimerQueryExt=C.getExtension("EXT_disjoint_timer_query"),Wf(C);var B=C.getSupportedExtensions()||[];B.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&C.getExtension(q)})}},populateUniformTable:function(T){for(var C=et.programs[T],B=et.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=B.uniforms,ce=Nr.getProgramParameter(C,35718),le=0;le<ce;++le){var ue=Nr.getActiveUniform(C,le),be=ue.name;B.maxUniformLength=Math.max(B.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var at=Nr.getUniformLocation(C,be);if(at){var Ut=et.getNewId(et.uniforms);q[be]=[ue.size,Ut],et.uniforms[Ut]=at;for(var _t=1;_t<ue.size;++_t){var Er=be+"["+_t+"]";at=Nr.getUniformLocation(C,Er),Ut=et.getNewId(et.uniforms),et.uniforms[Ut]=at}}}}},Bf=["default","low-power","high-performance"];function Vf(T,C){var B=C>>2,q=o()[B+(24>>2)],ce={alpha:!!o()[B+(0>>2)],depth:!!o()[B+(4>>2)],stencil:!!o()[B+(8>>2)],antialias:!!o()[B+(12>>2)],premultipliedAlpha:!!o()[B+(16>>2)],preserveDrawingBuffer:!!o()[B+(20>>2)],powerPreference:Bf[q],failIfMajorPerformanceCaveat:!!o()[B+(28>>2)],majorVersion:o()[B+(32>>2)],minorVersion:o()[B+(36>>2)],enableExtensionsByDefault:o()[B+(40>>2)],explicitSwapControl:o()[B+(44>>2)],proxyContextToMainThread:o()[B+(48>>2)],renderViaOffscreenBackBuffer:o()[B+(52>>2)]},le=mu(T);if(!le||ce.explicitSwapControl)return 0;var ue=et.createContext(le,ce);return ue}function jf(T,C){return Vf(T,C)}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(T,C){var B=Ki.buffers[T];C===0||C===10?((T===1?X:G)(_e(B,0)),B.length=0):B.push(C)},varargs:void 0,get:function(){Ki.varargs+=4;var T=o()[Ki.varargs-4>>2];return T},getStr:function(T){var C=ze(T);return C},get64:function(T,C){return T}};function wp(T){return v?Sr(3,1,T):0}function kp(T,C,B,q,ce){if(v)return Sr(4,1,T,C,B,q,ce)}function Ip(T,C,B,q){if(v)return Sr(5,1,T,C,B,q);for(var ce=0,le=0;le<B;le++){for(var ue=o()[C+le*8>>2],be=o()[C+(le*8+4)>>2],at=0;at<be;at++)Ki.printChar(T,i()[ue+at]);ce+=be}return o()[q>>2]=ce,0}function Uf(T){var C=ke.threadExitHandlers.pop();T&&C()}function Hf(T,C){ke.threadExitHandlers.push(function(){ia.get(T)(C)})}function Sp(T){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var C=ke.getNewWorker();if(C.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";ke.runningWorkers.push(C);for(var B=ds(128*4),q=0;q<128;++q)o()[B+q*4>>2]=0;var ce=T.stackBase+T.stackSize,le=ke.pthreads[T.pthread_ptr]={worker:C,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(u(),ue+(64>>2),T.detached),Atomics.store(u(),ue+(100>>2),B),Atomics.store(u(),ue+(40>>2),le.threadInfoStruct),Atomics.store(u(),ue+(80>>2),T.stackSize),Atomics.store(u(),ue+(76>>2),ce),Atomics.store(u(),ue+(104>>2),T.stackSize),Atomics.store(u(),ue+(104+8>>2),ce),Atomics.store(u(),ue+(104+12>>2),T.detached);var be=e5(),at=be+40;Atomics.store(u(),ue+(172>>2),at),C.pthread=le;var Ut={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};C.runPthread=function(){Ut.time=performance.now(),C.postMessage(Ut,T.transferList)},C.loaded&&(C.runPthread(),delete C.runPthread)}function Gf(T,C,B,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return G("pthread_create called with a null thread pointer!"),28;var ce=[],le=0;if(v&&(ce.length===0||le))return r5(687865856,T,C,B,q);if(le)return le;var ue=0,be=0,at=0;C&&C!=-1?(ue=o()[C>>2],ue+=81920,be=o()[C+8>>2],at=o()[C+12>>2]!==0):ue=2097152;var Ut=be==0;Ut?be=o5(16,ue):(be-=ue,he(be>0));for(var _t=ds(228),Er=0;Er<228>>2;++Er)u()[(_t>>2)+Er]=0;o()[T>>2]=_t,o()[_t+12>>2]=_t;var to=_t+152;o()[to>>2]=to;var kn={stackBase:be,stackSize:ue,allocatedOwnStack:Ut,detached:at,startRoutine:B,pthread_ptr:_t,arg:q,transferList:ce};return v?(kn.cmd="spawnThread",postMessage(kn,ce)):Sp(kn),0}function Np(T){if(v)return Sr(6,1,T);switch(T){case 30:return 16384;case 85:var C=2147483648;return C/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return ff(28),-1}v||ke.initMainThreadBlock();var Nr,qf=[null,mf,vp,wp,kp,Ip,Np],Xf={e:cf,r:hf,x:yf,b:Af,y:gf,j:xf,c:bf,d:cu,f:us,p:vf,z:wf,u:If,q:Tf,v:Df,i:zf,t:Of,w:jf,m:wp,n:kp,g:Ip,o:xp,a:Q||d.wasmMemory,k:Uf,l:Hf,h:Gf,s:Np},Jg=af(),Tp=d.___wasm_call_ctors=function(){return(Tp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},Kf=d._init=function(){return(Kf=d._init=d.asm.B).apply(null,arguments)},Zf=d._register_tensor=function(){return(Zf=d._register_tensor=d.asm.C).apply(null,arguments)},Yf=d._dispose_data=function(){return(Yf=d._dispose_data=d.asm.D).apply(null,arguments)},Jf=d._dispose=function(){return(Jf=d._dispose=d.asm.E).apply(null,arguments)},Qf=d._Abs=function(){return(Qf=d._Abs=d.asm.G).apply(null,arguments)},em=d._Add=function(){return(em=d._Add=d.asm.H).apply(null,arguments)},tm=d._AddN=function(){return(tm=d._AddN=d.asm.I).apply(null,arguments)},nm=d._All=function(){return(nm=d._All=d.asm.J).apply(null,arguments)},am=d._Any=function(){return(am=d._Any=d.asm.K).apply(null,arguments)},rm=d._ArgMax=function(){return(rm=d._ArgMax=d.asm.L).apply(null,arguments)},sm=d._AvgPool=function(){return(sm=d._AvgPool=d.asm.M).apply(null,arguments)},im=d._BatchMatMul=function(){return(im=d._BatchMatMul=d.asm.N).apply(null,arguments)},om=d._Ceil=function(){return(om=d._Ceil=d.asm.O).apply(null,arguments)},lm=d._ClipByValue=function(){return(lm=d._ClipByValue=d.asm.P).apply(null,arguments)},um=d._Conv2D=function(){return(um=d._Conv2D=d.asm.Q).apply(null,arguments)},dm=d._Conv2DBackpropInput=function(){return(dm=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},pm=d._Cos=function(){return(pm=d._Cos=d.asm.S).apply(null,arguments)},cm=d._CropAndResize=function(){return(cm=d._CropAndResize=d.asm.T).apply(null,arguments)},hm=d._Cumsum=function(){return(hm=d._Cumsum=d.asm.U).apply(null,arguments)},fm=d._DepthToSpace=function(){return(fm=d._DepthToSpace=d.asm.V).apply(null,arguments)},mm=d._DepthwiseConv2dNative=function(){return(mm=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},Ep=d._Equal=function(){return(Ep=d._Equal=d.asm.X).apply(null,arguments)},Cp=d._Exp=function(){return(Cp=d._Exp=d.asm.Y).apply(null,arguments)},Rp=d._FlipLeftRight=function(){return(Rp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},yu=d._Floor=function(){return(yu=d._Floor=d.asm._).apply(null,arguments)},Zi=d._FloorDiv=function(){return(Zi=d._FloorDiv=d.asm.$).apply(null,arguments)},ym=d._FusedBatchNorm=function(){return(ym=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},Au=d._FusedConv2D=function(){return(Au=d._FusedConv2D=d.asm.ba).apply(null,arguments)},K=d._FusedDepthwiseConv2D=function(){return(K=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},te=d._Gather=function(){return(te=d._Gather=d.asm.da).apply(null,arguments)},Ee=d._GatherNd=function(){return(Ee=d._GatherNd=d.asm.ea).apply(null,arguments)},Ye=d._Greater=function(){return(Ye=d._Greater=d.asm.fa).apply(null,arguments)},Tt=d._GreaterEqual=function(){return(Tt=d._GreaterEqual=d.asm.ga).apply(null,arguments)},mt=d._LeakyRelu=function(){return(mt=d._LeakyRelu=d.asm.ha).apply(null,arguments)},He=d._Less=function(){return(He=d._Less=d.asm.ia).apply(null,arguments)},qe=d._LessEqual=function(){return(qe=d._LessEqual=d.asm.ja).apply(null,arguments)},Qt=d._Log=function(){return(Qt=d._Log=d.asm.ka).apply(null,arguments)},ir=d._LogicalAnd=function(){return(ir=d._LogicalAnd=d.asm.la).apply(null,arguments)},or=d._Max=function(){return(or=d._Max=d.asm.ma).apply(null,arguments)},Mp=d._MaxPool=function(){return(Mp=d._MaxPool=d.asm.na).apply(null,arguments)},gu=d._Maximum=function(){return(gu=d._Maximum=d.asm.oa).apply(null,arguments)},Yn=d._Mean=function(){return(Yn=d._Mean=d.asm.pa).apply(null,arguments)},Tr=d._Min=function(){return(Tr=d._Min=d.asm.qa).apply(null,arguments)},Fp=d._Minimum=function(){return(Fp=d._Minimum=d.asm.ra).apply(null,arguments)},C9=d._MirrorPad=function(){return(C9=d._MirrorPad=d.asm.sa).apply(null,arguments)},R9=d._Multiply=function(){return(R9=d._Multiply=d.asm.ta).apply(null,arguments)},M9=d._Neg=function(){return(M9=d._Neg=d.asm.ua).apply(null,arguments)},F9=d._NonMaxSuppressionV3=function(){return(F9=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},$9=d._NonMaxSuppressionV4=function(){return($9=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},D9=d._NonMaxSuppressionV5=function(){return(D9=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},z9=d._NotEqual=function(){return(z9=d._NotEqual=d.asm.ya).apply(null,arguments)},O9=d._OneHot=function(){return(O9=d._OneHot=d.asm.za).apply(null,arguments)},_9=d._PadV2=function(){return(_9=d._PadV2=d.asm.Aa).apply(null,arguments)},P9=d._Pow=function(){return(P9=d._Pow=d.asm.Ba).apply(null,arguments)},L9=d._Prelu=function(){return(L9=d._Prelu=d.asm.Ca).apply(null,arguments)},W9=d._Prod=function(){return(W9=d._Prod=d.asm.Da).apply(null,arguments)},B9=d._RealDiv=function(){return(B9=d._RealDiv=d.asm.Ea).apply(null,arguments)},V9=d._Relu=function(){return(V9=d._Relu=d.asm.Fa).apply(null,arguments)},j9=d._Relu6=function(){return(j9=d._Relu6=d.asm.Ga).apply(null,arguments)},U9=d._ResizeBilinear=function(){return(U9=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},H9=d._Reverse=function(){return(H9=d._Reverse=d.asm.Ia).apply(null,arguments)},G9=d._RotateWithOffset=function(){return(G9=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},q9=d._Round=function(){return(q9=d._Round=d.asm.Ka).apply(null,arguments)},X9=d._Rsqrt=function(){return(X9=d._Rsqrt=d.asm.La).apply(null,arguments)},K9=d._ScatterNd=function(){return(K9=d._ScatterNd=d.asm.Ma).apply(null,arguments)},Z9=d._SelectV2=function(){return(Z9=d._SelectV2=d.asm.Na).apply(null,arguments)},Y9=d._Sigmoid=function(){return(Y9=d._Sigmoid=d.asm.Oa).apply(null,arguments)},J9=d._Sin=function(){return(J9=d._Sin=d.asm.Pa).apply(null,arguments)},Q9=d._Softmax=function(){return(Q9=d._Softmax=d.asm.Qa).apply(null,arguments)},eI=d._Sqrt=function(){return(eI=d._Sqrt=d.asm.Ra).apply(null,arguments)},tI=d._Square=function(){return(tI=d._Square=d.asm.Sa).apply(null,arguments)},nI=d._SquaredDifference=function(){return(nI=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},aI=d._Step=function(){return(aI=d._Step=d.asm.Ua).apply(null,arguments)},rI=d._StridedSlice=function(){return(rI=d._StridedSlice=d.asm.Va).apply(null,arguments)},sI=d._Sub=function(){return(sI=d._Sub=d.asm.Wa).apply(null,arguments)},iI=d._Sum=function(){return(iI=d._Sum=d.asm.Xa).apply(null,arguments)},oI=d._Tan=function(){return(oI=d._Tan=d.asm.Ya).apply(null,arguments)},lI=d._Tanh=function(){return(lI=d._Tanh=d.asm.Za).apply(null,arguments)},uI=d._Tile=function(){return(uI=d._Tile=d.asm._a).apply(null,arguments)},dI=d._TopK=function(){return(dI=d._TopK=d.asm.$a).apply(null,arguments)},pI=d._Transform=function(){return(pI=d._Transform=d.asm.ab).apply(null,arguments)},cI=d._Transpose=function(){return(cI=d._Transpose=d.asm.bb).apply(null,arguments)},hI=d.__FusedMatMul=function(){return(hI=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},ds=d._malloc=function(){return(ds=d._malloc=d.asm.db).apply(null,arguments)},xu=d._free=function(){return(xu=d._free=d.asm.eb).apply(null,arguments)},Qg=d.___errno_location=function(){return(Qg=d.___errno_location=d.asm.fb).apply(null,arguments)},e5=d._emscripten_get_global_libc=function(){return(e5=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},Yi=d._pthread_self=function(){return(Yi=d._pthread_self=d.asm.hb).apply(null,arguments)},t5=d.___pthread_tsd_run_dtors=function(){return(t5=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},Am=d._emscripten_main_thread_process_queued_calls=function(){return(Am=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},fI=d._emscripten_current_thread_process_queued_calls=function(){return(fI=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},n5=d._emscripten_register_main_browser_thread_id=function(){return(n5=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},a5=d.__emscripten_do_dispatch_to_thread=function(){return(a5=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},r5=d._emscripten_sync_run_in_main_thread_4=function(){return(r5=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},s5=d._emscripten_run_in_main_runtime_thread_js=function(){return(s5=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},gm=d.__emscripten_call_on_thread=function(){return(gm=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},mI=d._emscripten_tls_init=function(){return(mI=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},xm=d.__emscripten_thread_init=function(){return(xm=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},bu=d.stackSave=function(){return(bu=d.stackSave=d.asm.sb).apply(null,arguments)},Ji=d.stackRestore=function(){return(Ji=d.stackRestore=d.asm.tb).apply(null,arguments)},Qi=d.stackAlloc=function(){return(Qi=d.stackAlloc=d.asm.ub).apply(null,arguments)},i5=d._emscripten_stack_set_limits=function(){return(i5=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},o5=d._memalign=function(){return(o5=d._memalign=d.asm.wb).apply(null,arguments)},l5=d.__emscripten_allow_main_runtime_queued_calls=9808,eo=d.__emscripten_main_thread_futex=11432;d.cwrap=De,d.PThread=ke,d.PThread=ke,d.wasmMemory=Q,d.ExitStatus=vu;var $p;function vu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}ls=function T(){$p||bm(),$p||(ls=T)};function bm(T){if(T=T||f,rr>0)return;if(v){p(d),pu(),postMessage({cmd:"loaded"});return}if(Z0(),rr>0)return;function C(){$p||($p=!0,d.calledRun=!0,!oe&&(pu(),Y0(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),vn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),C()},1)):C()}d.run=bm;function yI(T,C){if(!(C&&ie&&T===0)){if(!C&&v)throw postMessage({cmd:"exitProcess",returnCode:T}),new vu(T);ie||(ke.terminateAllThreads(),ge=T,hp(),d.onExit&&d.onExit(T),oe=!0),A(T,new vu(T))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return v&&(ie=!1,ke.initWorker()),bm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),OI=wt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,te){i=K,o=te});var u={},l;for(l in s)s.hasOwnProperty(l)&&(u[l]=s[l]);var d=[],p="./this.program",c=function(K,te){throw te},h=!1,m=!1,f=!1,y=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",y=!h&&!f&&!m;var A="";function g(K){return s.locateFile?s.locateFile(K,A):A+K}var x,w,b,v,N,I;f?(m?A=wu().dirname(A)+"/":A=__dirname+"/",x=function(K,te){return N||(N=ao("fs")),I||(I=wu()),K=I.normalize(K),N.readFileSync(K,te?null:"utf8")},b=function(K){var te=x(K,!0);return te.buffer||(te=new Uint8Array(te)),X(te.buffer),te},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof ym))throw K}),process.on("unhandledRejection",Pa),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):y?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(te=read(K,"binary"),X(typeof te=="object"),te)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?A=self.location.href:typeof document!="undefined"&&document.currentScript&&(A=document.currentScript.src),a&&(A=a),A.indexOf("blob:")!==0?A=A.substr(0,A.lastIndexOf("/")+1):A="",x=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.send(null),te.responseText},m&&(b=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),w=function(K,te,Ee){var Ye=new XMLHttpRequest;Ye.open("GET",K,!0),Ye.responseType="arraybuffer",Ye.onload=function(){if(Ye.status==200||Ye.status==0&&Ye.response){te(Ye.response);return}Ee()},Ye.onerror=Ee,Ye.send(null)},v=function(K){document.title=K});var E=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(l in u)u.hasOwnProperty(l)&&(s[l]=u[l]);u=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var O;s.wasmBinary&&(O=s.wasmBinary);var z=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Pa("no native wasm support detected");var P,D=!1,U;function X(K,te){K||Pa("Assertion failed: "+te)}function G(K){var te=s["_"+K];return X(te,"Cannot call unknown function "+K+", make sure it is exported"),te}function ee(K,te,Ee,Ye,Tt){var mt={string:function(Yn){var Tr=0;if(Yn!=null&&Yn!==0){var Fp=(Yn.length<<2)+1;Tr=yu(Fp),pe(Yn,Tr,Fp)}return Tr},array:function(Yn){var Tr=yu(Yn.length);return oe(Yn,Tr),Tr}};function He(Yn){return te==="string"?ie(Yn):te==="boolean"?Boolean(Yn):Yn}var qe=G(K),Qt=[],ir=0;if(Ye)for(var or=0;or<Ye.length;or++){var Mp=mt[Ee[or]];Mp?(ir===0&&(ir=Cp()),Qt[or]=Mp(Ye[or])):Qt[or]=Ye[or]}var gu=qe.apply(null,Qt);return gu=He(gu),ir!==0&&Rp(ir),gu}function Y(K,te,Ee,Ye){Ee=Ee||[];var Tt=Ee.every(function(He){return He==="number"}),mt=te!=="string";return mt&&Tt&&!Ye?G(K):function(){return ee(K,te,Ee,arguments,Ye)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,te,Ee){for(var Ye=te+Ee,Tt=te;K[Tt]&&!(Tt>=Ye);)++Tt;if(Tt-te>16&&K.subarray&&re)return re.decode(K.subarray(te,Tt));for(var mt="";te<Tt;){var He=K[te++];if(!(He&128)){mt+=String.fromCharCode(He);continue}var qe=K[te++]&63;if((He&224)==192){mt+=String.fromCharCode((He&31)<<6|qe);continue}var Qt=K[te++]&63;if((He&240)==224?He=(He&15)<<12|qe<<6|Qt:He=(He&7)<<18|qe<<12|Qt<<6|K[te++]&63,He<65536)mt+=String.fromCharCode(He);else{var ir=He-65536;mt+=String.fromCharCode(55296|ir>>10,56320|ir&1023)}}return mt}function ie(K,te){return K?ne(Te,K,te):""}function Q(K,te,Ee,Ye){if(!(Ye>0))return 0;for(var Tt=Ee,mt=Ee+Ye-1,He=0;He<K.length;++He){var qe=K.charCodeAt(He);if(qe>=55296&&qe<=57343){var Qt=K.charCodeAt(++He);qe=65536+((qe&1023)<<10)|Qt&1023}if(qe<=127){if(Ee>=mt)break;te[Ee++]=qe}else if(qe<=2047){if(Ee+1>=mt)break;te[Ee++]=192|qe>>6,te[Ee++]=128|qe&63}else if(qe<=65535){if(Ee+2>=mt)break;te[Ee++]=224|qe>>12,te[Ee++]=128|qe>>6&63,te[Ee++]=128|qe&63}else{if(Ee+3>=mt)break;te[Ee++]=240|qe>>18,te[Ee++]=128|qe>>12&63,te[Ee++]=128|qe>>6&63,te[Ee++]=128|qe&63}}return te[Ee]=0,Ee-Tt}function pe(K,te,Ee){return Q(K,Te,te,Ee)}function oe(K,te){Ne.set(K,te)}function ge(K,te){return K%te>0&&(K+=te-K%te),K}var he,Ne,Te,De,_e,ze,tt,nt,it;function Ze(K){he=K,s.HEAP8=Ne=new Int8Array(K),s.HEAP16=De=new Int16Array(K),s.HEAP32=ze=new Int32Array(K),s.HEAPU8=Te=new Uint8Array(K),s.HEAPU16=_e=new Uint16Array(K),s.HEAPU32=tt=new Uint32Array(K),s.HEAPF32=nt=new Float32Array(K),s.HEAPF64=it=new Float64Array(K)}var pt=s.INITIAL_MEMORY||16777216,Ue,xn=[],bt=[],Kn=[],Yt=[],bn=!1;bt.push({func:function(){xp()}});function Zn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)_a(s.preRun.shift());Ir(xn)}function Dn(){bn=!0,Ir(bt)}function sn(){Ir(Kn)}function Jt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ia(s.postRun.shift());Ir(Yt)}function _a(K){xn.unshift(K)}function ia(K){Yt.unshift(K)}var oa=0,wr=null,ar=null;function kr(K){oa++,s.monitorRunDependencies&&s.monitorRunDependencies(oa)}function Gi(K){if(oa--,s.monitorRunDependencies&&s.monitorRunDependencies(oa),oa==0&&(wr!==null&&(clearInterval(wr),wr=null),ar)){var te=ar;ar=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Pa(K){s.onAbort&&s.onAbort(K),K+="",$(K),D=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(K);throw o(te),te}function cp(K,te){return String.prototype.startsWith?K.startsWith(te):K.indexOf(te)===0}var Z0="data:application/octet-stream;base64,";function pu(K){return cp(K,Z0)}var Y0="file://";function hp(K){return cp(K,Y0)}var vn="tfjs-backend-wasm.wasm";pu(vn)||(vn=g(vn));function fp(K){try{if(K==vn&&O)return new Uint8Array(O);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(te){Pa(te)}}function J0(){if(!O&&(h||m)){if(typeof fetch=="function"&&!hp(vn))return fetch(vn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+vn+"'";return K.arrayBuffer()}).catch(function(){return fp(vn)});if(w)return new Promise(function(K,te){w(vn,function(Ee){K(new Uint8Array(Ee))},te)})}return Promise.resolve().then(function(){return fp(vn)})}function rr(){var K={a:af};function te(He,qe){var Qt=He.exports;s.asm=Qt,P=s.asm.i,Ze(P.buffer),Ue=s.asm.o,Gi("wasm-instantiate")}kr("wasm-instantiate");function Ee(He){te(He.instance)}function Ye(He){return J0().then(function(qe){return WebAssembly.instantiate(qe,K)}).then(He,function(qe){$("failed to asynchronously prepare wasm: "+qe),Pa(qe)})}function Tt(){return!O&&typeof WebAssembly.instantiateStreaming=="function"&&!pu(vn)&&!hp(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(He){var qe=WebAssembly.instantiateStreaming(He,K);return qe.then(Ee,function(Qt){return $("wasm streaming compile failed: "+Qt),$("falling back to ArrayBuffer instantiation"),Ye(Ee)})}):Ye(Ee)}if(s.instantiateWasm)try{var mt=s.instantiateWasm(K,te);return mt}catch(He){return $("Module.instantiateWasm callback failed with error: "+He),!1}return Tt().catch(o),{}}function Ir(K){for(;K.length>0;){var te=K.shift();if(typeof te=="function"){te(s);continue}var Ee=te.func;typeof Ee=="number"?te.arg===void 0?Ue.get(Ee)():Ue.get(Ee)(te.arg):Ee(te.arg===void 0?null:te.arg)}}function ls(){Pa()}function Q0(K,te,Ee){Te.copyWithin(K,te,te+Ee)}function ef(){return Te.length}function sr(K){try{return P.grow(K-he.byteLength+65535>>>16),Ze(P.buffer),1}catch(te){}}function mp(K){var te=ef(),Ee=2147483648;if(K>Ee)return!1;for(var Ye=1;Ye<=4;Ye*=2){var Tt=te*(1+.2/Ye);Tt=Math.min(Tt,K+100663296);var mt=Math.min(Ee,ge(Math.max(K,Tt),65536)),He=sr(mt);if(He)return!0}return!1}var qi={mappings:{},buffers:[null,[],[]],printChar:function(K,te){var Ee=qi.buffers[K];te===0||te===10?((K===1?E:$)(ne(Ee,0)),Ee.length=0):Ee.push(te)},varargs:void 0,get:function(){qi.varargs+=4;var K=ze[qi.varargs-4>>2];return K},getStr:function(K){var te=ie(K);return te},get64:function(K,te){return K}};function yp(K){return 0}function tf(K,te,Ee,Ye,Tt){}function Ap(K,te,Ee,Ye){for(var Tt=0,mt=0;mt<Ee;mt++){for(var He=ze[te+mt*8>>2],qe=ze[te+(mt*8+4)>>2],Qt=0;Qt<qe;Qt++)qi.printChar(K,Te[He+Qt]);Tt+=qe}return ze[Ye>>2]=Tt,0}function wn(){return 6}function gp(K){return ze[Ep()>>2]=K,K}function nf(K){switch(K){case 30:return 16384;case 85:var te=2147483648;return te/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return gp(28),-1}var af={a:ls,d:Q0,e:mp,f:yp,c:tf,b:Ap,g:wn,h:nf},rf=rr(),xp=s.___wasm_call_ctors=function(){return(xp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Xi=s._init=function(){return(Xi=s._init=s.asm.k).apply(null,arguments)},cu=s._register_tensor=function(){return(cu=s._register_tensor=s.asm.l).apply(null,arguments)},sf=s._dispose_data=function(){return(sf=s._dispose_data=s.asm.m).apply(null,arguments)},of=s._dispose=function(){return(of=s._dispose=s.asm.n).apply(null,arguments)},lf=s._Abs=function(){return(lf=s._Abs=s.asm.p).apply(null,arguments)},ke=s._Add=function(){return(ke=s._Add=s.asm.q).apply(null,arguments)},uf=s._AddN=function(){return(uf=s._AddN=s.asm.r).apply(null,arguments)},df=s._All=function(){return(df=s._All=s.asm.s).apply(null,arguments)},pf=s._Any=function(){return(pf=s._Any=s.asm.t).apply(null,arguments)},cf=s._ArgMax=function(){return(cf=s._ArgMax=s.asm.u).apply(null,arguments)},hf=s._AvgPool=function(){return(hf=s._AvgPool=s.asm.v).apply(null,arguments)},us=s._BatchMatMul=function(){return(us=s._BatchMatMul=s.asm.w).apply(null,arguments)},ff=s._Ceil=function(){return(ff=s._Ceil=s.asm.x).apply(null,arguments)},mf=s._ClipByValue=function(){return(mf=s._ClipByValue=s.asm.y).apply(null,arguments)},yf=s._Conv2D=function(){return(yf=s._Conv2D=s.asm.z).apply(null,arguments)},Af=s._Conv2DBackpropInput=function(){return(Af=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},gf=s._Cos=function(){return(gf=s._Cos=s.asm.B).apply(null,arguments)},xf=s._CropAndResize=function(){return(xf=s._CropAndResize=s.asm.C).apply(null,arguments)},bf=s._Cumsum=function(){return(bf=s._Cumsum=s.asm.D).apply(null,arguments)},vf=s._DepthToSpace=function(){return(vf=s._DepthToSpace=s.asm.E).apply(null,arguments)},wf=s._DepthwiseConv2dNative=function(){return(wf=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},Sr=s._Equal=function(){return(Sr=s._Equal=s.asm.G).apply(null,arguments)},hu=s._Exp=function(){return(hu=s._Exp=s.asm.H).apply(null,arguments)},fu=s._FlipLeftRight=function(){return(fu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},kf=s._Floor=function(){return(kf=s._Floor=s.asm.J).apply(null,arguments)},If=s._FloorDiv=function(){return(If=s._FloorDiv=s.asm.K).apply(null,arguments)},Sf=s._FusedBatchNorm=function(){return(Sf=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},Nf=s._FusedConv2D=function(){return(Nf=s._FusedConv2D=s.asm.M).apply(null,arguments)},Tf=s._FusedDepthwiseConv2D=function(){return(Tf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Le=s._Gather=function(){return(Le=s._Gather=s.asm.O).apply(null,arguments)},Ef=s._GatherNd=function(){return(Ef=s._GatherNd=s.asm.P).apply(null,arguments)},Cf=s._Greater=function(){return(Cf=s._Greater=s.asm.Q).apply(null,arguments)},Rf=s._GreaterEqual=function(){return(Rf=s._GreaterEqual=s.asm.R).apply(null,arguments)},Mf=s._LeakyRelu=function(){return(Mf=s._LeakyRelu=s.asm.S).apply(null,arguments)},Ff=s._Less=function(){return(Ff=s._Less=s.asm.T).apply(null,arguments)},$f=s._LessEqual=function(){return($f=s._LessEqual=s.asm.U).apply(null,arguments)},mu=s._Log=function(){return(mu=s._Log=s.asm.V).apply(null,arguments)},bp=s._LogicalAnd=function(){return(bp=s._LogicalAnd=s.asm.W).apply(null,arguments)},vp=s._Max=function(){return(vp=s._Max=s.asm.X).apply(null,arguments)},Df=s._MaxPool=function(){return(Df=s._MaxPool=s.asm.Y).apply(null,arguments)},zf=s._Maximum=function(){return(zf=s._Maximum=s.asm.Z).apply(null,arguments)},Of=s._Mean=function(){return(Of=s._Mean=s.asm._).apply(null,arguments)},_f=s._Min=function(){return(_f=s._Min=s.asm.$).apply(null,arguments)},Pf=s._Minimum=function(){return(Pf=s._Minimum=s.asm.aa).apply(null,arguments)},Lf=s._MirrorPad=function(){return(Lf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Wf=s._Multiply=function(){return(Wf=s._Multiply=s.asm.ca).apply(null,arguments)},et=s._Neg=function(){return(et=s._Neg=s.asm.da).apply(null,arguments)},Bf=s._NonMaxSuppressionV3=function(){return(Bf=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},Vf=s._NonMaxSuppressionV4=function(){return(Vf=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},jf=s._NonMaxSuppressionV5=function(){return(jf=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},Ki=s._NotEqual=function(){return(Ki=s._NotEqual=s.asm.ha).apply(null,arguments)},wp=s._OneHot=function(){return(wp=s._OneHot=s.asm.ia).apply(null,arguments)},kp=s._PadV2=function(){return(kp=s._PadV2=s.asm.ja).apply(null,arguments)},Ip=s._Pow=function(){return(Ip=s._Pow=s.asm.ka).apply(null,arguments)},Uf=s._Prelu=function(){return(Uf=s._Prelu=s.asm.la).apply(null,arguments)},Hf=s._Prod=function(){return(Hf=s._Prod=s.asm.ma).apply(null,arguments)},Sp=s._RealDiv=function(){return(Sp=s._RealDiv=s.asm.na).apply(null,arguments)},Gf=s._Relu=function(){return(Gf=s._Relu=s.asm.oa).apply(null,arguments)},Np=s._Relu6=function(){return(Np=s._Relu6=s.asm.pa).apply(null,arguments)},Nr=s._ResizeBilinear=function(){return(Nr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},qf=s._Reverse=function(){return(qf=s._Reverse=s.asm.ra).apply(null,arguments)},Xf=s._RotateWithOffset=function(){return(Xf=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Jg=s._Round=function(){return(Jg=s._Round=s.asm.ta).apply(null,arguments)},Tp=s._Rsqrt=function(){return(Tp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Kf=s._ScatterNd=function(){return(Kf=s._ScatterNd=s.asm.va).apply(null,arguments)},Zf=s._SelectV2=function(){return(Zf=s._SelectV2=s.asm.wa).apply(null,arguments)},Yf=s._Sigmoid=function(){return(Yf=s._Sigmoid=s.asm.xa).apply(null,arguments)},Jf=s._Sin=function(){return(Jf=s._Sin=s.asm.ya).apply(null,arguments)},Qf=s._Softmax=function(){return(Qf=s._Softmax=s.asm.za).apply(null,arguments)},em=s._Sqrt=function(){return(em=s._Sqrt=s.asm.Aa).apply(null,arguments)},tm=s._Square=function(){return(tm=s._Square=s.asm.Ba).apply(null,arguments)},nm=s._SquaredDifference=function(){return(nm=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},am=s._Step=function(){return(am=s._Step=s.asm.Da).apply(null,arguments)},rm=s._StridedSlice=function(){return(rm=s._StridedSlice=s.asm.Ea).apply(null,arguments)},sm=s._Sub=function(){return(sm=s._Sub=s.asm.Fa).apply(null,arguments)},im=s._Sum=function(){return(im=s._Sum=s.asm.Ga).apply(null,arguments)},om=s._Tan=function(){return(om=s._Tan=s.asm.Ha).apply(null,arguments)},lm=s._Tanh=function(){return(lm=s._Tanh=s.asm.Ia).apply(null,arguments)},um=s._Tile=function(){return(um=s._Tile=s.asm.Ja).apply(null,arguments)},dm=s._TopK=function(){return(dm=s._TopK=s.asm.Ka).apply(null,arguments)},pm=s._Transform=function(){return(pm=s._Transform=s.asm.La).apply(null,arguments)},cm=s._Transpose=function(){return(cm=s._Transpose=s.asm.Ma).apply(null,arguments)},hm=s.__FusedMatMul=function(){return(hm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},fm=s._malloc=function(){return(fm=s._malloc=s.asm.Oa).apply(null,arguments)},mm=s._free=function(){return(mm=s._free=s.asm.Pa).apply(null,arguments)},Ep=s.___errno_location=function(){return(Ep=s.___errno_location=s.asm.Qa).apply(null,arguments)},Cp=s.stackSave=function(){return(Cp=s.stackSave=s.asm.Ra).apply(null,arguments)},Rp=s.stackRestore=function(){return(Rp=s.stackRestore=s.asm.Sa).apply(null,arguments)},yu=s.stackAlloc=function(){return(yu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=Y;var Zi;function ym(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}ar=function K(){Zi||Au(),Zi||(ar=K)};function Au(K){if(K=K||d,oa>0||(Zn(),oa>0))return;function te(){Zi||(Zi=!0,s.calledRun=!0,!D&&(Dn(),sn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Jt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}if(s.run=Au,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return Au(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),_I=wt((e,t)=>{(function(n,a,r){function s(l){var d=this,p=u();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(l),d.s0<0&&(d.s0+=1),d.s1-=p(l),d.s1<0&&(d.s1+=1),d.s2-=p(l),d.s2<0&&(d.s2+=1),p=null}function i(l,d){return d.c=l.c,d.s0=l.s0,d.s1=l.s1,d.s2=l.s2,d}function o(l,d){var p=new s(l),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function u(){var l=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){l+=p.charCodeAt(c);var h=.02519603282416938*l;l=h>>>0,h-=l,h*=l,l=h>>>0,h-=l,l+=h*4294967296}return(l>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),PI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.x=0,l.y=0,l.z=0,l.w=0,l.next=function(){var c=l.x^l.x<<11;return l.x=l.y,l.y=l.z,l.z=l.w,l.w^=l.w>>>19^c^c>>>8},u===(u|0)?l.x=u:d+=u;for(var p=0;p<d.length+64;p++)l.x^=d.charCodeAt(p)|0,l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),LI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.next=function(){var c=l.x^l.x>>>2;return l.x=l.y,l.y=l.z,l.z=l.w,l.w=l.v,(l.d=l.d+362437|0)+(l.v=l.v^l.v<<4^(c^c<<1))|0},l.x=0,l.y=0,l.z=0,l.w=0,l.v=0,u===(u|0)?l.x=u:d+=u;for(var p=0;p<d.length+64;p++)l.x^=d.charCodeAt(p)|0,p==d.length&&(l.d=l.x<<10^l.x>>>4),l.next()}function i(u,l){return l.x=u.x,l.y=u.y,l.z=u.z,l.w=u.w,l.v=u.v,l.d=u.d,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),WI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this;l.next=function(){var p=l.x,c=l.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,l.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(l,u)}function i(u,l){return l.x=u.x.slice(),l.i=u.i,l}function o(u,l){u==null&&(u=+new Date);var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),BI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this;l.next=function(){var p=l.w,c=l.X,h=l.i,m,f;return l.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,l.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,y,A,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,y=-32;y<x;++y)c&&(m^=c.charCodeAt((y+32)%c.length)),y===0&&(A=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,y>=0&&(A=A+1640531527|0,h=g[y&127]^=m+A,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,y=4*128;y>0;--y)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=A,p.X=g,p.i=f}d(l,u)}function i(u,l){return l.i=u.i,l.w=u.w,l.X=u.X.slice(),l}function o(u,l){u==null&&(u=+new Date);var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),VI=wt((e,t)=>{(function(n,a,r){function s(u){var l=this,d="";l.next=function(){var c=l.b,h=l.c,m=l.d,f=l.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,l.b=c=c<<20^c>>>12^h,l.c=h=h-m|0,l.d=m<<16^h>>>16^f,l.a=f-c|0},l.a=0,l.b=0,l.c=2654435769|0,l.d=1367130551,u===Math.floor(u)?(l.a=u/4294967296|0,l.b=u|0):d+=u;for(var p=0;p<d.length+20;p++)l.b^=d.charCodeAt(p)|0,l.next()}function i(u,l){return l.a=u.a,l.b=u.b,l.c=u.c,l.d=u.d,l}function o(u,l){var d=new s(u),p=l&&l.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jI=wt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,u="random",l=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,v,N){var I=[];v=v==!0?{entropy:!0}:v||{};var E=g(A(v.entropy?[b,w(a)]:b==null?x():b,3),I),$=new f(I),O=function(){for(var z=$.g(i),P=l,D=0;z<d;)z=(z+D)*s,P*=s,D=$.g(1);for(;z>=p;)z/=2,P/=2,D>>>=1;return(z+D)/P};return O.int32=function(){return $.g(4)|0},O.quick=function(){return $.g(4)/4294967296},O.double=O,g(w($.S),a),(v.pass||N||function(z,P,D,U){return U&&(U.S&&y(U,$),z.state=function(){return y($,{})}),D?(r[u]=z,P):z})(O,E,"global"in v?v.global:this==r,v.state)}function f(b){var v,N=b.length,I=this,E=0,$=I.i=I.j=0,O=I.S=[];for(N||(b=[N++]);E<s;)O[E]=E++;for(E=0;E<s;E++)O[E]=O[$=c&$+b[E%N]+(v=O[E])],O[$]=v;(I.g=function(z){for(var P,D=0,U=I.i,X=I.j,G=I.S;z--;)P=G[U=c&U+1],D=D*s+G[c&(G[U]=G[X=c&X+P])+(G[X]=P)];return I.i=U,I.j=X,D})(s)}function y(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function A(b,v){var N=[],I=typeof b,E;if(v&&I=="object")for(E in b)try{N.push(A(b[E],v-1))}catch($){}return N.length?N:I=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",I,E=0;E<N.length;)v[c&E]=c&(I^=v[c&E]*19)+N.charCodeAt(E++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),w(b)}catch(I){var v=n.navigator,N=v&&v.plugins;return[+new Date,n,N,n.screen,w(a)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=h5()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+u]=m})(typeof self!="undefined"?self:e,[],Math)}),m5=wt((e,t)=>{var n=_I(),a=PI(),r=LI(),s=WI(),i=BI(),o=VI(),u=jI();u.alea=n,u.xor128=a,u.xorwow=r,u.xorshift7=s,u.xor4096=i,u.tychei=o,t.exports=u}),UI=wt(()=>{}),wm={};Fe(wm,{bin:()=>N5,browser:()=>F5,default:()=>HI,dependencies:()=>M5,description:()=>g5,devDependencies:()=>C5,jsdelivr:()=>w5,license:()=>E5,main:()=>b5,miniprogram:()=>S5,module:()=>v5,name:()=>y5,private:()=>x5,repository:()=>T5,scripts:()=>R5,types:()=>I5,unpkg:()=>k5,version:()=>A5});var y5="@tensorflow/tfjs",A5="3.6.0",g5="An open-source machine learning framework.",x5=!1,b5="dist/tf.node.js",v5="dist/index.js",w5="dist/tf.min.js",k5="dist/tf.min.js",I5="dist/index.d.ts",S5="dist/miniprogram",N5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},T5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},E5="Apache-2.0",C5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},R5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},M5={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},F5={"node-fetch":!1,util:!1,crypto:!1},HI={name:y5,version:A5,description:g5,private:x5,main:b5,module:v5,jsdelivr:w5,unpkg:k5,types:I5,miniprogram:S5,bin:N5,repository:T5,license:E5,devDependencies:C5,scripts:R5,dependencies:M5,browser:F5},km={};Fe(km,{browser:()=>Z5,default:()=>GI,dependencies:()=>K5,description:()=>z5,devDependencies:()=>q5,engines:()=>U5,jsdelivr:()=>P5,"jsnext:main":()=>B5,license:()=>G5,main:()=>_5,miniprogram:()=>j5,module:()=>V5,name:()=>$5,private:()=>O5,repository:()=>H5,scripts:()=>X5,sideEffects:()=>Y5,types:()=>W5,unpkg:()=>L5,version:()=>D5});var $5="@tensorflow/tfjs-core",D5="3.6.0",z5="Hardware-accelerated JavaScript library for machine intelligence",O5=!1,_5="dist/tf-core.node.js",P5="dist/tf-core.min.js",L5="dist/tf-core.min.js",W5="dist/index.d.ts",B5="dist/index.js",V5="dist/index.js",j5="dist/miniprogram",U5={yarn:">= 1.3.2"},H5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},G5="Apache-2.0",q5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},X5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},K5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},Z5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},Y5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],GI={name:$5,version:D5,description:z5,private:O5,main:_5,jsdelivr:P5,unpkg:L5,types:W5,"jsnext:main":B5,module:V5,miniprogram:j5,engines:U5,repository:H5,license:G5,devDependencies:q5,scripts:X5,dependencies:K5,browser:Z5,sideEffects:Y5},Im={};Fe(Im,{browser:()=>fx,default:()=>qI,dependencies:()=>hx,description:()=>ex,devDependencies:()=>dx,jsdelivr:()=>ax,"jsnext:main":()=>ix,license:()=>ux,main:()=>nx,miniprogram:()=>lx,module:()=>ox,name:()=>J5,peerDependencies:()=>cx,private:()=>tx,scripts:()=>px,types:()=>sx,unpkg:()=>rx,version:()=>Q5});var J5="@tensorflow/tfjs-data",Q5="3.6.0",ex="TensorFlow Data API in JavaScript",tx=!1,nx="dist/tf-data.node.js",ax="dist/tf-data.min.js",rx="dist/tf-data.min.js",sx="dist/index.d.ts",ix="dist/index.js",ox="dist/index.js",lx="dist/miniprogram",ux="Apache-2.0",dx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},px={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},cx={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},hx={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},fx={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},qI={name:J5,version:Q5,description:ex,private:tx,main:nx,jsdelivr:ax,unpkg:rx,types:sx,"jsnext:main":ix,module:ox,miniprogram:lx,license:ux,devDependencies:dx,scripts:px,peerDependencies:cx,dependencies:hx,browser:fx},Sm={};Fe(Sm,{default:()=>XI,description:()=>Ax,devDependencies:()=>Tx,jsdelivr:()=>Ix,"jsnext:main":()=>wx,license:()=>gx,main:()=>bx,miniprogram:()=>Nx,module:()=>kx,name:()=>mx,peerDependencies:()=>Cx,private:()=>xx,scripts:()=>Ex,types:()=>vx,unpkg:()=>Sx,version:()=>yx});var mx="@tensorflow/tfjs-layers",yx="3.6.0",Ax="TensorFlow layers API in JavaScript",gx="Apache-2.0 AND MIT",xx=!1,bx="dist/tf-layers.node.js",vx="dist/index.d.ts",wx="dist/index.js",kx="dist/index.js",Ix="dist/tf-layers.min.js",Sx="dist/tf-layers.min.js",Nx="dist/miniprogram",Tx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Ex={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},Cx={"@tensorflow/tfjs-core":"3.6.0"},XI={name:mx,version:yx,description:Ax,license:gx,private:xx,main:bx,types:vx,"jsnext:main":wx,module:kx,jsdelivr:Ix,unpkg:Sx,miniprogram:Nx,devDependencies:Tx,scripts:Ex,peerDependencies:Cx},Nm={};Fe(Nm,{default:()=>KI,description:()=>Fx,devDependencies:()=>jx,jsdelivr:()=>Px,"jsnext:main":()=>Dx,license:()=>Bx,main:()=>$x,miniprogram:()=>Lx,module:()=>zx,name:()=>Rx,peerDependencies:()=>Vx,repository:()=>Wx,scripts:()=>Ux,types:()=>Ox,unpkg:()=>_x,version:()=>Mx});var Rx="@tensorflow/tfjs-converter",Mx="3.6.0",Fx="Tensorflow model converter for javascript",$x="dist/tf-converter.node.js",Dx="dist/index.js",zx="dist/index.js",Ox="dist/index.d.ts",_x="dist/tf-converter.min.js",Px="dist/tf-converter.min.js",Lx="dist/miniprogram",Wx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Bx="Apache-2.0",Vx={"@tensorflow/tfjs-core":"3.6.0"},jx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Ux={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},KI={name:Rx,version:Mx,description:Fx,main:$x,"jsnext:main":Dx,module:zx,types:Ox,unpkg:_x,jsdelivr:Px,miniprogram:Lx,repository:Wx,license:Bx,peerDependencies:Vx,devDependencies:jx,scripts:Ux},ZI=1e-7,YI=1e-4,zp=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},ku=class{refCount(e){return la("refCount")}incRef(e){return la("incRef")}timerAvailable(){return!0}time(e){return la("time")}read(e){return la("read")}readSync(e){return la("readSync")}numDataIds(){return la("numDataIds")}disposeData(e,t){return la("disposeData")}write(e,t,n){return la("write")}move(e,t,n,a,r){return la("move")}memory(){return la("memory")}floatPrecision(){return la("floatPrecision")}epsilon(){return this.floatPrecision()===32?ZI:YI}dispose(){return la("dispose")}};function la(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function Hx(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function JI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function Iu(e,t,n){return Math.max(e,Math.min(t,n))}function QI(e){return e%2==0?e:e+1}function eS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function tS(e,t){let n=Math.random();return t*n+(1-n)*e}function nS(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function ln(e,t,n=""){F(lr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ps(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function cs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||an(e)&&!n)for(let a=0;a<e.length;++a)cs(e[a],t,n);else t.push(e);return t}function Rt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function aS(e){return e.length===0}function lr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Ht(e){return e%1==0}function rS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function sS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function iS(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return Hx(t),t}function Su(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function oS(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function lS(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ua(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Ht(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function Gx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ua(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function qx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Xx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Kx(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Zx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function uS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function an(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function Tm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Yx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Cr(e){return typeof e=="string"||e instanceof String}function Jx(e){return typeof e=="boolean"}function Qx(e){return typeof e=="number"}function Op(e){return Array.isArray(e)?Op(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Qx(e)?"float32":Cr(e)?"string":Jx(e)?"bool":"float32"}function Rr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function _p(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function so(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function eb(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((u,l)=>u*l)*(a?2:1);for(let u=0;u<s;u++)r[u]=eb(e+u*o,i,n,a)}return r}function io(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return eb(0,e,t,n)}function Em(e,t){let n=Pp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Pp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function dS(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return io(e,new Float32Array(n));if(t==="int32")return io(e,new Int32Array(n));if(t==="bool")return io(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Cm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function pS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function cS(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Rm(e){return e&&e.then&&typeof e.then=="function"}var tb="tfjsflags",nb=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=hS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Rm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);tb in e&&e[tb].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=mS(n,a)})}};function hS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(fS(t,a[0],a[1]),a.join("="))),t}function fS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function mS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return Qn}var Qn=null;function yS(e){Qn=e}var Mm;function ab(){if(Mm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");Mm=e}return Mm}function AS(){let e=ab();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Fm(e,t){let n=AS();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var oo="Abs",lo="Acos",uo="Acosh",Mr="Add",hs="AddN",po="All",co="Any",fs="ArgMax",Nu="ArgMin",ho="Asin",fo="Asinh",mo="Atan",yo="Atanh",Ao="Atan2",ms="AvgPool",Lp="AvgPoolGrad",Tu="AvgPool3D",Wp="AvgPool3DGrad",ys="BatchMatMul",Eu="BatchToSpaceND",Bp="Bincount",rb="BroadcastTo",As="Cast",gs="Ceil",Fr="ClipByValue",Vp="Complex",Cu="ComplexAbs",go="Concat",xs="Conv2D",jp="Conv2DBackpropFilter",bs="Conv2DBackpropInput",Ru="Conv3D",Up="Conv3DBackpropFilterV2",Hp="Conv3DBackpropInputV2",vs="Cos",xo="Cosh",ws="Cumsum",bo="CropAndResize",Gp="DenseBincount",vo="DepthToSpace",ks="DepthwiseConv2dNative",qp="DepthwiseConv2dNativeBackpropFilter",Xp="DepthwiseConv2dNativeBackpropInput",Kp="Diag",Mu="Dilation2D",Zp="Dilation2DBackpropInput",Yp="Dilation2DBackpropFilter",Is="RealDiv",Jp="Einsum",wo="Elu",Qp="EluGrad",ko="Erf",Io="Equal",Ss="Exp",So="ExpandDims",No="Expm1",ec="FFT",Fu="Fill",To="FlipLeftRight",Ns="Floor",Ts="FloorDiv",Es="FusedBatchNorm",Eo="GatherV2",Co="GatherNd",Ro="Greater",Cs="GreaterEqual",Rs="Identity",tc="IFFT",nc="Imag",Mo="IsFinite",Fo="IsInf",$o="IsNan",Ms="LeakyRelu",Do="Less",zo="LessEqual",ac="LinSpace",Fs="Log",Oo="Log1p",_o="LogicalAnd",$u="LogicalNot",Du="LogicalOr",sb="LogSoftmax",zu="LRN",rc="LRNGrad",$s="Max",Ds="Maximum",zs="MaxPool",sc="MaxPoolGrad",Ou="MaxPool3D",ic="MaxPool3DGrad",oc="MaxPoolWithArgmax",Os="Mean",_s="Min",Ps="Minimum",Ls="MirrorPad",Po="Mod",lc="Multinomial",Ws="Multiply",Lo="Neg",Wo="NotEqual",Bo="NonMaxSuppressionV3",Vo="NonMaxSuppressionV4",jo="NonMaxSuppressionV5",Uo="OnesLike",Bs="OneHot",Ho="Pack",Vs="PadV2",gS="Pool",js="Pow",Us="Prelu",Go="Prod",_u="Range",uc="Real",qo="Reciprocal",Hs="Relu",Xo="Reshape",Pu="ResizeNearestNeighbor",dc="ResizeNearestNeighborGrad",Gs="ResizeBilinear",pc="ResizeBilinearGrad",qs="Relu6",Xs="Reverse",Ks="Round",Zs="Rsqrt",Ko="ScatterNd",Zo="Select",Yo="Selu",Jo="Slice",Ys="Sin",Qo="Sinh",el="Sign",Js="Sigmoid",tl="Softplus",Qs="Sqrt",ei="Sum",Lu="SpaceToBatchND",nl="SplitV",ti="Softmax",cc="SparseFillEmptyRows",hc="SparseReshape",fc="SparseToDense",ni="SquaredDifference",Wu="Square",al="StridedSlice",ai="Sub",ri="Tan",si="Tanh",$r="Tile",rl="TopK",sl="Transform",ii="Transpose",mc="Unique",il="Unpack",Bu="UnsortedSegmentSum",ol="ZerosLike",Dr="Step",yc="FromPixels",ll="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D",ul=Fm("kernelRegistry",()=>new Map),Vu=Fm("gradRegistry",()=>new Map);function Ac(e,t){let n=Dm(e,t);return ul.get(n)}function $m(e){return Vu.get(e)}function dl(e){let t=ul.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function di(e){let{kernelName:t,backendName:n}=e,a=Dm(t,n);ul.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),ul.set(a,e)}function ib(e){let{kernelName:t}=e;Vu.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Vu.set(t,e)}function xS(e,t){let n=Dm(e,t);if(!ul.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);ul.delete(n)}function bS(e){if(!Vu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Vu.delete(e)}function vS(e,t){dl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});di(a)})}function Dm(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>lr,assert:()=>F,assertNonNegativeIntegerDimensions:()=>Cm,assertNonNull:()=>ps,assertShapesMatch:()=>ln,bytesFromStringArray:()=>Yx,bytesPerElement:()=>Tm,checkConversionForErrors:()=>Kx,clamp:()=>Iu,computeStrides:()=>so,createScalarValue:()=>wS,createShuffledIndices:()=>iS,decodeString:()=>xc,distSquared:()=>nS,encodeString:()=>Uu,fetch:()=>IS,flatten:()=>cs,getArrayFromDType:()=>Xx,getTypedArrayFromDType:()=>qx,hasEncodingLoss:()=>uS,indexToLoc:()=>cS,inferDtype:()=>Op,inferFromImplicitShape:()=>lS,isBoolean:()=>Jx,isFunction:()=>Rr,isInt:()=>Ht,isNumber:()=>Qx,isPromise:()=>Rm,isScalarShape:()=>aS,isString:()=>Cr,isTypedArray:()=>an,isValidDtype:()=>Zx,locToIndex:()=>pS,makeOnesTypedArray:()=>Em,makeZerosNestedTypedArray:()=>dS,makeZerosTypedArray:()=>Pp,nearestDivisor:()=>_p,nearestLargerEven:()=>QI,now:()=>ju,parseAxisParam:()=>ua,randUniform:()=>tS,repeatedTry:()=>oS,rightPad:()=>Su,shuffle:()=>Hx,shuffleCombo:()=>JI,sizeFromShape:()=>Rt,sizeToSquarishShape:()=>sS,squeezeShape:()=>Gx,sum:()=>eS,tanh:()=>rS,toNestedArray:()=>io,toTypedArray:()=>gc});function wS(e,t){return t==="string"?Uu(e):gc([e],t)}function kS(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function gc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=cs(e)),J().getBool("DEBUG")&&Kx(e,t),kS(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function ju(){return J().platform.now()}function IS(e,t){return J().platform.fetch(e,t)}function Uu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function xc(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var SS=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new TS)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=ju();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:ju()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let u=a[o];u.data().then(l=>{NS(l,u.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function NS(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var TS=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Su(`${a}ms`,9):a.error,o=Su(e,25),u=t.rank,l=t.size,d=Su(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${u}D ${d} %c${l} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function ES(e,t,n){let a={},r={};for(let u=0;u<t.length;u++)a[t[u].id]=!0;for(let u=0;u<e.length;u++){let l=e[u],d=l.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){l.outputs.forEach(f=>a[f.id]=!0),h=!0,r[l.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let u=e.length-1;u>=0;u--){let l=e[u],d=l.inputs;for(let p=0;p<l.outputs.length;p++)if(s[l.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[l.id]=!0;break}}let o=[];for(let u=0;u<e.length;u++){let l=e[u];if(r[l.id]&&i[l.id]){let d={};for(let c in l.inputs){let h=l.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},l);p.inputs=d,p.outputs=l.outputs,o.push(p)}}return o}function CS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(u=>{let l=e[u.id];l!=null?i.push(l):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let u in s.inputs){if(!(u in o))throw new Error(`Cannot backprop through input ${u}. Available gradients found: ${Object.keys(o)}.`);let l=n(()=>o[u]());if(l.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${u} must have 'float32' dtype, but has '${l.dtype}'`);let d=s.inputs[u];if(!lr(l.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${u}' has shape '${l.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=l;else{let p=e[d.id];e[d.id]=a(p,l),p.dispose()}}}}var ob=20,Hu=3,zm=7;function RS(e,t,n,a){let r=so(t),s=MS(e,t,n,r),i=t.length,o=bc(e,t,n,r,s),u=["Tensor"];return a&&(u.push(` dtype: ${n}`),u.push(` rank: ${i}`),u.push(` shape: [${t}]`),u.push(" values:")),u.push(o.map(l=>" "+l).join(`
|
|
`)),u.join(`
|
|
`)}function MS(e,t,n,a){let r=Rt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,u=n==="complex64"?qu(e):e;if(o>1)for(let l=0;l<r/s;l++){let d=l*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Gu(u[d+p],0,n).length)}return i}function Gu(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(zm))} + ${parseFloat(e[1].toFixed(zm))}j`:Cr(e)?a=`'${e}'`:n==="bool"?a=lb(e):a=parseFloat(e.toFixed(zm)).toString(),Su(a,t)}function lb(e){return e===0?"false":"true"}function bc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],u=t.length;if(u===0){if(n==="complex64"){let f=qu(e);return[Gu(f[0],0,n)]}return n==="bool"?[lb(e[0])]:[e[0].toString()]}if(u===1){if(o>ob){let y=Hu*i,A=Array.from(e.slice(0,y)),g=Array.from(e.slice((o-Hu)*i,o*i));return n==="complex64"&&(A=qu(A),g=qu(g)),["["+A.map((x,w)=>Gu(x,r[w],n)).join(", ")+", ..., "+g.map((x,w)=>Gu(x,r[o-Hu+w],n)).join(", ")+"]"]}let f=n==="complex64"?qu(e):Array.from(e);return["["+f.map((y,A)=>Gu(y,r[A],n)).join(", ")+"]"]}let l=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>ob){for(let f=0;f<Hu;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),l,n,d,r,!1))}c.push("...");for(let f=o-Hu;f<o;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),l,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let y=f*p,A=y+p;c.push(...bc(e.slice(y,A),l,n,d,r,f===o-1))}let h=u===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<u;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function qu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Pt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Rt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Xx(t,this.size),this.strides=so(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return La().makeTensor(this.values,this.shape,this.dtype)}},La=null,pl=null,FS=null;function $S(e){La=e}function DS(e){pl=e}function zS(e){FS=e}var We=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Rt(e),this.strides=so(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return pl.buffer(this.shape,this.dtype,e)}bufferSync(){return pl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return io(this.shape,e,this.dtype==="complex64")}arraySync(){return io(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=La().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>xc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=La().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>xc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await La().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(La().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return pl.print(this,e)}clone(){return this.throwIfDisposed(),pl.clone(this)}toString(e=!1){let t=this.dataSync();return RS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),pl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),La().makeVariable(this,e,t,n)}};Object.defineProperty(We,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return Fm("Tensor",()=>We)}Z();var Xu=class extends We{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!lr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);La().disposeTensor(this),this.dataId=e.dataId,La().incRef(this,null)}dispose(){La().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Xu,Symbol.hasInstance,{value:e=>e instanceof We&&e.assign!=null&&e.assign instanceof Function});var va={};Fe(va,{assertTypesMatch:()=>ub,getTensorsInContainer:()=>Bm,isTensorInList:()=>_S,makeTypesMatch:()=>kt});var Om;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Om||(Om={}));var _m;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(_m||(_m={}));var Pm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Pm||(Pm={}));var Lm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Lm||(Lm={}));var Wm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Wm||(Wm={}));var OS={float32:Lm,int32:_m,bool:Pm,complex64:Wm};function da(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return OS[e][t]}function vc(e){return da(e,"int32")}function kt(e,t){if(e.dtype===t.dtype)return[e,t];let n=da(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function ub(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function _S(e,t){return t.some(n=>n.id===e.id)}function Bm(e){let t=[],n=new Set;return db(e,t,n),t}function db(e,t,n){if(e==null)return;if(e instanceof We){t.push(e);return}if(!PS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),db(s,t,n))}}function PS(e){return Array.isArray(e)||typeof e=="object"}function Vm(e){return e.kernelName!=null}var pb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Ku=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new pb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new SS(this.backendInstance),!0}setupRegisteredKernels(){dl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){dl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof ku)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Ku.nextTensorId++}nextVariableId(){return Ku.nextVariableId++}clone(e){let t=_.runKernel(Rs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},u={dtype:i};return _.runKernel(As,o,u)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Ac(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,u=Vm(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Vm(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let y=Ac(h,this.backendName);F(y!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let A=this.backend.numDataIds();o=y.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,A,g);let x=g.map(w=>{if(w.rank!=null)return w;let{dataId:b,shape:v,dtype:N}=w;return this.makeTensorFromDataId(b,v,N)});if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(y=>this.keep(this.clone(y))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let y=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(u,f,y),y}}let{inputs:l,attrs:d}=e,p=Vm(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(u,l,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(u,l,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:u,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(l).map(h=>l[h]!=null?l[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=$m(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(u=>t[u])):i=r.map(u=>t[u]);let o=n.filter((u,l)=>s[l]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&Cr(e[0])&&(r=e.map(o=>Uu(o)));let s=a.write(r,t,n),i=new We(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),u=Yx(r);this.state.numBytes+=u-o.bytes,o.bytes=u}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new We(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Xu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*Tm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Xu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*Tm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=$m(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=u=>(u=u.map((l,d)=>{if(l==null){let p=n[d],c=Pp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return l}),a(u.length>1?u:u[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Bm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof We,()=>"The result y returned by f() must be a tensor.");let s=ES(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?LS(r.shape):n,CS(i,s,u=>this.tidy(u),WS);let o=t.map(u=>i[u.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(u=>{for(let l of u.saved)l.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(Rr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof We),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof We,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Rr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let u=n.gradFunc(i,o),l=Array.isArray(u)?u:[u];F(l.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(l.every(p=>p instanceof We),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return l.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=ju(),n=await this.backend.time(e);return n.wallMs=ju()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new pb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Ku.nextTensorId=0;Ku.nextVariableId=0;function LS(e){let t=Em(Rt(e),"float32");return _.makeTensor(t,e,"float32")}function cb(){let e=ab();if(e._tfengine==null){let t=new nb(e);e._tfengine=new Ku(t)}return yS(e._tfengine.ENV),$S(()=>e._tfengine),e._tfengine}var _=cb();function WS(e,t){let n={a:e,b:t};return _.runKernel(Mr,n)}var Zu={};Fe(Zu,{isBrowser:()=>hb,isMobile:()=>VS});function BS(){return typeof navigator!="undefined"&&navigator!=null}function VS(e){if(e||BS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function hb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var wa=J();wa.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});wa.registerFlag("IS_BROWSER",()=>hb());wa.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");wa.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));wa.registerFlag("PROD",()=>!1);wa.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>wa.getBool("DEBUG"));wa.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);wa.registerFlag("IS_TEST",()=>!1);wa.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);wa.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Wa(e,t){let n=e;if(an(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||an(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&fb(e,a,[]),a}function fb(e,t,n){if(n=n||[],!Array.isArray(e)&&!an(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)fb(e[r],a,n.concat(r))}function mb(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof We)return mb(a,e.dtype,t,n),e;let r=Op(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),mb(a,r,t,n),e==null||!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Wa(e,r);!an(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?gc(e,r):cs(e,[],!0);return _.makeTensor(i,s,r)}function Yu(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var yb="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+yb;let r=(...s)=>{_.startScope(n);try{let i=a(...s);return Rm(i)&&console.error("Cannot return a Promise inside of tidy."),_.endScope(i),i}catch(i){throw _.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function jS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");ln(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return _.runKernel(Vp,r)}var zr=L({complex_:jS});function Or(e,t,n,a){if(a==null&&(a=Op(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!an(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Cm(t);let r=Rt(t),s=Rt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],u=i===n.length-1?o!==Rt(t.slice(i)):!0;F(n[i]===t[i]||!u,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!an(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?gc(e,a):cs(e,[],!0),_.makeTensor(e,t,a)}function pa(e,t,n){let a=Wa(e,n);return Or(e,t,a,n)}var jm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},wc=4;async function US(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],u=Array.isArray(e)?e[i].tensor:e[o];if(u.dtype!=="float32"&&u.dtype!=="int32"&&u.dtype!=="bool"&&u.dtype!=="string"&&u.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${u.dtype}`);let l={name:o,shape:u.shape,dtype:u.dtype};if(u.dtype==="string"){let d=new Promise(async p=>{let c=await u.bytes(),h=c.reduce((y,A)=>y+A.length,0)+wc*c.length,m=new Uint8Array(h),f=0;for(let y=0;y<c.length;y++){let A=c[y],g=new Uint8Array(new Uint32Array([A.length]).buffer);m.set(g,f),f+=wc,m.set(A,f),f+=A.length}p(m)});a.push(d)}else a.push(u.data());t!=null&&(l.group=t),n.push(l)}let s=await Promise.all(a);return{data:HS(s),specs:n}}function Ab(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,u=s.shape,l=Rt(u),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=jm[p.dtype],h=e.slice(r,r+l*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let y=m[f];d[f]=y*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=YS()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let y=m[f];d[f]=Math.round(y*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*c}else if(o==="string"){let p=Rt(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+wc))[0];r+=wc;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=jm[o],c=e.slice(r,r+l*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let A=0;A<h.length;A++)h[A]=d[A*2],m[A]=d[A*2+1];let f=pa(h,u,"float32"),y=pa(m,u,"float32");n[i]=zr(f,y),f.dispose(),y.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=l*p}o!=="complex64"&&(n[i]=pa(d,u,o))}return n}function HS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Um=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function gb(e){return Um?Buffer.byteLength(e):new Blob([e]).size}function GS(e){if(Um)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function qS(e){if(Um){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function Hm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function xb(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Ju(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:gb(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:gb(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function XS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function KS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function ZS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function YS(){let e=XS(),t=KS(),n=ZS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],u=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=u}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},JS=e=>Et.registerSaveRouter(e),QS=e=>Et.registerLoadRouter(e),eN=e=>Et.getSaveHandlers(e),tN=(e,t)=>Et.getLoadHandlers(e,t),Gm="tensorflowjs",qm=1,pi="models_store",_r="model_info_store";function bb(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Xm(e){let t=e.result;t.createObjectStore(pi,{keyPath:"modelPath"}),t.createObjectStore(_r,{keyPath:"modelPath"})}var ci=class{constructor(e){if(this.indexedDB=bb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(Gm,qm);r.onupgradeneeded=()=>Xm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(pi,"readonly"),o=i.objectStore(pi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=u=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=Ju(t),o=s.transaction(_r,"readwrite"),u=o.objectStore(_r),l=u.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;l.onsuccess=()=>{d=s.transaction(pi,"readwrite");let p=d.objectStore(pi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{u=o.objectStore(_r);let h=u.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},l.onerror=p=>(s.close(),a(l.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ci.URL_SCHEME="indexeddb://";var vb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ci.URL_SCHEME)?nN(e.slice(ci.URL_SCHEME.length)):null;Et.registerSaveRouter(vb);Et.registerLoadRouter(vb);function nN(e){return new ci(e)}function aN(e){return e.startsWith(ci.URL_SCHEME)?e.slice(ci.URL_SCHEME.length):e}var rN=class{constructor(){this.indexedDB=bb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(Gm,qm);n.onupgradeneeded=()=>Xm(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(_r,"readonly"),s=r.objectStore(_r).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=aN(e),new Promise((t,n)=>{let a=this.indexedDB.open(Gm,qm);a.onupgradeneeded=()=>Xm(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(_r,"readwrite"),i=s.objectStore(_r),o=i.get(e),u;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let l=i.delete(e),d=()=>{u=r.transaction(pi,"readwrite");let p=u.objectStore(pi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};l.onsuccess=d,l.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=l=>(r.close(),n(o.error)),s.oncomplete=()=>{u==null?r.close():u.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},ur="/",cl="tensorflowjs_models",wb="info",sN="model_topology",iN="weight_specs",oN="weight_data",lN="model_metadata";function kb(e){return{info:[cl,e,wb].join(ur),topology:[cl,e,sN].join(ur),weightSpecs:[cl,e,iN].join(ur),weightData:[cl,e,oN].join(ur),modelMetadata:[cl,e,lN].join(ur)}}function uN(e){let t=e.split(ur);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ur)}function dN(e){return e.startsWith(hi.URL_SCHEME)?e.slice(hi.URL_SCHEME.length):e}var hi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=kb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=Ju(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,GS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=qS(s),t}};hi.URL_SCHEME="localstorage://";var Ib=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hi.URL_SCHEME)?pN(e.slice(hi.URL_SCHEME.length)):null;Et.registerSaveRouter(Ib);Et.registerLoadRouter(Ib);function pN(e){return new hi(e)}var cN=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=cl+ur,n=ur+wb;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=uN(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=dN(e);let t=kb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},hl="://",ea=class{constructor(){this.managers={}}static getInstance(){return ea.instance==null&&(ea.instance=new ea),ea.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(hl)&&(e=e.slice(0,e.indexOf(hl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=ea.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function kc(e){if(e.indexOf(hl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ea.getSchemes().join(",")}`);return{scheme:e.split(hl)[0],path:e.split(hl)[1]}}async function Sb(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=kc(e).scheme,u=kc(e).path,l=o===kc(e).scheme,d=await r.load();n&&l&&await ea.getManager(o).removeModel(u);let p=await i.save(d);return n&&!l&&await ea.getManager(o).removeModel(u),p.modelArtifactsInfo}async function hN(){let e=ea.getSchemes(),t={};for(let n of e){let a=await ea.getManager(n).listModels();for(let r in a){let s=n+hl+r;t[s]=a[r]}}return t}async function fN(e){let t=kc(e);return ea.getManager(t.scheme).removeModel(t.path)}async function mN(e,t){return Sb(e,t,!1)}async function yN(e,t){return Sb(e,t,!0)}var AN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new AN);try{ea.registerManager(hi.URL_SCHEME,new cN)}catch(e){}try{ea.registerManager(ci.URL_SCHEME,new rN)}catch(e){}}var gN={importFetch:()=>SI()},Km,xN=class{constructor(){this.util=ao("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Km==null&&(Km=gN.importFetch()),Km(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new xN);function Be(e,t="float32",n){return t=t||"float32",Cm(e),new Pt(e,t,n)}function bN(e,t){let n=M(e,"x","cast");if(!Zx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return _.runKernel(As,a,r)}var me=L({cast_:bN});function vN(e){let t={x:M(e,"x","clone","string_or_numeric")};return _.runKernel(Rs,t)}var Ba=L({clone_:vN});function Nb(e,t=!1){console.log(e.toString(t))}cb();var wN={buffer:Be,cast:me,clone:Ba,print:Nb};DS(wN);var In={};Fe(In,{browserFiles:()=>CN,browserHTTPRequest:()=>DN,concatenateArrayBuffers:()=>Hm,copyModel:()=>mN,decodeWeights:()=>Ab,encodeWeights:()=>US,fromMemory:()=>ON,getLoadHandlers:()=>tN,getModelArtifactsInfoForJSON:()=>Ju,getSaveHandlers:()=>eN,http:()=>Jm,isHTTPScheme:()=>Ym,listModels:()=>hN,loadWeights:()=>RN,moveModel:()=>yN,registerLoadRouter:()=>QS,registerSaveRouter:()=>JS,removeModel:()=>fN,weightsLoaderFactory:()=>Rb,withSaveHandler:()=>_N});var kN="model",IN=".json",SN=".weights.bin";function Tb(e){return new Promise(t=>setTimeout(t)).then(e)}var fl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(fl.URL_SCHEME)&&(e=e.slice(fl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=kN),this.modelTopologyFileName=e+IN,this.weightDataFileName=e+SN}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await Tb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await Tb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Ju(e)}}}};fl.URL_SCHEME="downloads://";var NN=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let u=i.weightsManifest;if(u==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let l;try{l=this.checkManifestAndWeightFiles(u,t)}catch(h){a(h);return}let d=[],p=[],c=[];u.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),d.push(...h.weights)}),u.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=y=>{let A=y.target.result,g=p.indexOf(m);if(c[g]=A,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:Hm(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=y=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(l[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>xb(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=xb(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},TN=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(fl.URL_SCHEME)?EN(e.slice(fl.URL_SCHEME.length)):null;Et.registerSaveRouter(TN);function EN(e="model"){return new fl(e)}function CN(e){return new NN(e)}function Eb(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=u=>(u.then(l=>{let d=n+ ++r/e.length*(a-n);return t(d),l}),u);function i(u){F(u!=null&&Array.isArray(u)&&u.length>0,()=>"promises must be a none empty array")}function o(u,l){F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${u}`),F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${l}`),F(l>=u,()=>`startFraction must be no more than endFraction, but got startFraction ${u} and endFraction ${l}`)}return Promise.all(e.map(s))}async function Cb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(l=>n(l,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Eb(a,t.onProgress,r,s)).map(l=>l.arrayBuffer()),o=.5,u=1;return t.onProgress==null?await Promise.all(i):await Eb(i,t.onProgress,o,u)}async function RN(e,t="",n,a){return Rb(r=>Cb(r,{requestInit:a}))(e,t,n)}function Rb(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(y=>{let A="quantization"in y?y.quantization.dtype:y.dtype,g=jm[A]*Rt(y.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:y,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((w,b)=>{w===y.name&&(x(),i[b]=!0)}):x(),o.push(y.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let u=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),l=[];u.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;l.push(f)})});let d=await e(l),p={},c=0;return u.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let y=new ArrayBuffer(f),A=new Uint8Array(y),g=0;for(let x=0;x<m;x++){let w=new Uint8Array(d[c+x]);A.set(w,g),g+=w.byteLength}s[h].forEach(x=>{let w=y.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=Ab(w,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var MN="application/octet-stream",FN="application/json",Zm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:FN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:MN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:Ju(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,u=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let l,d;a!=null&&([l,d]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:l,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),u!=null&&(p.userDefinedMetadata=u);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=$N(t),r=this.weightPathPrefix||n,s=[];for(let l of e)s.push(...l.weights);let i=[],o=[];for(let l of e)for(let d of l.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let u=await Cb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Hm(u)]}};Zm.URL_SCHEME_REGEX=/^https?:\/\//;function $N(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Ym(e){return e.match(Zm.URL_SCHEME_REGEX)!=null}var Mb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Ym(a)):n=Ym(e),n)return Jm(e,t)}return null};Et.registerSaveRouter(Mb);Et.registerLoadRouter(Mb);function Jm(e,t){return new Zm(e,t)}function DN(e,t){return Jm(e,t)}var Qm=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},zN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function ON(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Qm(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qm({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Qm({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function _N(e){return new zN(e)}var Fb={};Fe(Fb,{confusionMatrix:()=>VN});function PN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=kt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return _.runKernel(ys,i,o)}var Ve=L({matMul_:PN});function LN(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return _.runKernel(Bs,r,s)}var ml=L({oneHot_:LN});function WN(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return _.runKernel(ii,a,r)}var Qe=L({transpose_:WN});function BN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ml(me(a,"int32"),n),i=ml(me(r,"int32"),n),o=Qe(s),u=Ve(o,i);return me(u,"int32")}var VN=L({confusionMatrix_:BN}),fi={};Fe(fi,{fromPixels:()=>KN,fromPixelsAsync:()=>qN,toPixels:()=>XN});function Ic(e,t,n){if(ps(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Wa(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}var yl;function $b(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Ac(yc,_.backendName)!=null){let c={pixels:e},h={numChannels:t};return _.runKernel(yc,c,h)}let[u,l]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,u,l).data:a||n?d=e.data:(s||r||o)&&(yl==null&&(yl=document.createElement("canvas").getContext("2d")),yl.canvas.width=u,yl.canvas.height=l,yl.drawImage(e,0,0,u,l),d=yl.getImageData(0,0,u,l).data);let p;if(t===4)p=new Int32Array(d);else{let c=u*l;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return Ic(p,[l,u,t],"int32")}function jN(e){return e!=null&&e.data instanceof Uint8Array}function UN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function HN(e){return e!=null&&e.width!==0&&e.height!==0}function GN(e){return UN()&&!(e instanceof ImageBitmap)&&HN(e)&&!jN(e)}async function qN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&GN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return $b(n,t)}async function XN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof We)){let l=n;n=me(l,"int32"),l.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,u=new Uint8ClampedArray(r*a*4);for(let l=0;l<a*r;++l){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[l*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=l*4;u[p+0]=Math.round(d[0]),u[p+1]=Math.round(d[1]),u[p+2]=Math.round(d[2]),u[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let l=t.getContext("2d"),d=new ImageData(u,r,a);l.putImageData(d,0,0)}return n!==e&&n.dispose(),u}var KN=L({fromPixels_:$b}),e1={};Fe(e1,{prepareAndValidate:()=>Db});function Db(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Rt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,u=r.slice();u.pop();let l=1;for(let p=s;p<n;++p)l*=o[p],u.push(o[p]);let d=[...so(e.shape).map(p=>p/l),1].slice(0,s);return[u,i,l,d]}var t1={};Fe(t1,{calculateShapes:()=>zb,validateInput:()=>a1,validateUpdateShape:()=>n1});function n1(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function a1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}n1(n,t,e)}function zb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,u=Rt(t.shape)/o,l=[...so(n.slice(0,r)),1],d=Rt(n);return{sliceRank:r,numUpdates:u,sliceSize:i,strides:l,outputSize:d}}var un={};Fe(un,{assertParamsValid:()=>ZN,computeFlatOffset:()=>JN,computeOutShape:()=>Ob,getNormalizedAxes:()=>Wb,isSliceContinous:()=>YN,maskToAxes:()=>Sc,parseSliceParams:()=>Gb,sliceInfo:()=>QN,startForAxis:()=>Ub,startIndicesWithElidedDims:()=>Bb,stopForAxis:()=>Hb,stopIndicesWithElidedDims:()=>Vb,stridesForAxis:()=>jb,stridesWithElidedDims:()=>_b});function ZN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Sc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Ob(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function _b(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function Pb(e,t,n){return n<=e?n:n-(t-1)}function Lb(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function Wb(e,t,n,a,r,s,i,o,u){let l=e.length,d=new Array(l),p=new Array(l),c=new Array(l);if(t.length&&n>0){let h=t[0],m=n+1;d=Bb(i,h,m,a,e),p=Vb(o,h,m,r,e),c=_b(s,h,m,e)}else for(let h=0;h<l;h++)d[h]=Ub(i,a,s,e,h,u),p[h]=Hb(o,r,s,e,h,u),c[h]=jb(s,h,u);return{begin:d,end:p,strides:c}}function Bb(e,t,n,a,r){let s=[...r],i=Lb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let u=Pb(t,n,o),l=a[u];e&1<<u&&(l=0),s[o]=l}return s}function Vb(e,t,n,a,r){let s=[...r],i=Lb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let u=Pb(t,n,o),l=a[u];e&1<<u&&(l=Number.MAX_SAFE_INTEGER),s[o]=l}for(let o=0;o<s.length;o++){let u=r[o];s[o]<0&&(s[o]+=u),s[o]=Iu(0,s[o],r[o])}return s}function jb(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function Ub(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let u=a[r];return i<0&&(i+=u),i=Iu(0,i,u-1),i}function Hb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let u=a[r];return i<0&&(i+=u),o>0?i=Iu(0,i,u):i=Iu(-1,i,u-1),i}function YN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function JN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function Gb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function QN(e,t,n,a,r,s,i,o,u){let l=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(l.length));let c=Sc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&u!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-l.length,m=Sc(o),f=e.slice();m.forEach(v=>{l[v]=0,d[v]=1,f.splice(v,0,1)});let{begin:y,end:A,strides:g}=Wb(f,c,h,l,d,p,r,s,i);l=y,d=A,p=g;let x=Sc(u);x.forEach(v=>{d[v]=l[v]+1,p[v]=1});let w=Ob(l,d,p),b=w.filter((v,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(v=>v===1),$begin:l,$end:d,$strides:p,size:w,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>qb,SerializationMap:()=>mi,registerClass:()=>Pr});var qb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},mi=class{constructor(){this.classNameMap={}}static getMap(){return mi.instance==null&&(mi.instance=new mi),mi.instance}static register(e){mi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Pr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),mi.register(e)}var Xb={};Fe(Xb,{TEST_EPSILON_FLOAT16:()=>Kb,encodeStrings:()=>Zb,expectArrayBuffersEqual:()=>iT,expectArraysClose:()=>tT,expectArraysEqual:()=>aT,expectNumbersClose:()=>rT,expectPromiseToFail:()=>nT,expectValuesInRange:()=>sT,testEpsilon:()=>r1});var eT=.001,Kb=.1;function tT(e,t,n){return n==null&&(n=r1()),s1(e,t,(a,r)=>i1(a,r,n))}function r1(){return _.backend.floatPrecision()===32?eT:Kb}function s1(e,t,n){let a=!0;if((an(e)||an(t))&&(a=!1),an(e)&&an(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Wa(e),o=Wa(t);if(!lr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=an(e)?e:cs(e),s=an(t)?t:cs(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],u=s[i];if(!n(o,u))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${u}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function nT(e,t){e().then(()=>t.fail(),()=>t())}function aT(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Cr(e)||Cr(e[0])||Cr(t)||Cr(t[0])?s1(e,n,(a,r)=>a==r):s1(e,t,(a,r)=>i1(a,r,0))}function rT(e,t,n){if(n==null&&(n=r1()),!i1(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function i1(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function sT(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function iT(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Zb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Zb(n):e[t]=Uu(n)}return e}var oT="3.6.0";function lT(){J().set("PROD",!0)}function uT(){J().set("DEBUG",!0)}function dT(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function o1(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}zS(o1);function pT(){_.disposeVariables()}function dr(){return _}function Nc(){return _.memory()}function cT(e){return _.profile(e)}function V(e,t){return _.tidy(e,t)}function Ie(e){Bm(e).forEach(t=>t.dispose())}function Gt(e){return _.keep(e)}function hT(e){return _.time(e)}function fT(e){return _.setBackend(e)}function mT(){return _.ready()}function yT(){return _.backendName}function AT(e){_.removeBackend(e)}function l1(e){return _.findBackend(e)}function gT(e){return _.findBackendFactory(e)}function Al(e,t,n=1){return _.registerBackend(e,t,n)}function Yb(){return _.backend}function xT(e,t){J().setPlatform(e,t)}function bT(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(Mr,r)}var se=L({add_:bT});function vT(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(Ts,r)}var Tc=L({floorDiv_:vT});function wT(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=kt(n,a),n.dtype==="int32"&&a.dtype==="int32")return Tc(n,a);let r={a:n,b:a},s={};return _.runKernel(Is,r,s)}var fe=L({div_:wT});function kT(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(Ws,r)}var W=L({mul_:kT});function IT(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return _.runKernel(Cu,n)}else{let n={x:t};return _.runKernel(oo,n)}}var Lt=L({abs_:IT});function ST(e){let t={x:M(e,"x","acos")};return _.runKernel(lo,t)}var u1=L({acos_:ST});function NT(e){let t={x:M(e,"x","acosh")};return _.runKernel(uo,t)}var d1=L({acosh_:NT});function TT(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!lr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return _.runKernel(hs,a)}var Ec=L({addN_:TT});function ET(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return _.runKernel(po,a,r)}var Cc=L({all_:ET});function CT(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return _.runKernel(co,a,r)}var Qu=L({any_:CT});function RT(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return _.runKernel(fs,n,a)}var yi=L({argMax_:RT});function MT(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return _.runKernel(Nu,n,a)}var p1=L({argMin_:MT});function FT(e){let t={x:M(e,"x","asin")};return _.runKernel(ho,t)}var c1=L({asin_:FT});function $T(e){let t={x:M(e,"x","asinh")};return _.runKernel(fo,t)}var h1=L({asinh_:$T});function DT(e){let t={x:M(e,"x","atan")};return _.runKernel(mo,t)}var f1=L({atan_:DT});function zT(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(Ao,r)}var m1=L({atan2_:zT});function OT(e){let t={x:M(e,"x","atanh")};return _.runKernel(yo,t)}var y1=L({atanh_:OT});function _T(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],u=e3(r);return ed(e,o,n,s,a,null,null,u)}function Jb(e,t,n,a,r,s,i="channelsLast"){let[o,u]=Rc(t),l;if(i==="channelsLast")l=[o,u,e[3],e[3]];else if(i==="channelsFirst")l=[o,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return ed(e,l,n,a,r,s,!1,i)}function PT(e,t,n,a,r,s,i="NDHWC"){let[o,u,l]=g1(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,u,l,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,u,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Qb(e,d,n,a,r,!1,p,s)}function ed(e,t,n,a,r,s,i=!1,o="channelsLast"){let[u,l,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[u,l,d,p]=e;else if(o==="channelsFirst")[u,p,l,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,y]=Rc(n),[A,g]=Rc(a),x=gl(c,A),w=gl(h,g),{padInfo:b,outHeight:v,outWidth:N}=BT(r,l,d,f,y,x,w,s,o),I=i?m*p:m,E;return o==="channelsFirst"?E=[u,I,v,N]:o==="channelsLast"&&(E=[u,v,N,I]),{batchSize:u,dataFormat:o,inHeight:l,inWidth:d,inChannels:p,outHeight:v,outWidth:N,outChannels:I,padInfo:b,strideHeight:f,strideWidth:y,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:A,dilationWidth:g,inShape:e,outShape:E,filterShape:t}}function Qb(e,t,n,a,r,s=!1,i="channelsLast",o){let[u,l,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[u,l,d,p,c]=e;else if(i==="channelsFirst")[u,c,l,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,y]=t,[A,g,x]=g1(n),[w,b,v]=g1(a),N=gl(h,w),I=gl(m,b),E=gl(f,v),{padInfo:$,outDepth:O,outHeight:z,outWidth:P}=VT(r,l,d,p,A,g,x,N,I,E,o),D=s?y*c:y,U;return i==="channelsFirst"?U=[u,D,O,z,P]:i==="channelsLast"&&(U=[u,O,z,P,D]),{batchSize:u,dataFormat:i,inDepth:l,inHeight:d,inWidth:p,inChannels:c,outDepth:O,outHeight:z,outWidth:P,outChannels:D,padInfo:$,strideDepth:A,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:I,effectiveFilterWidth:E,dilationDepth:w,dilationHeight:b,dilationWidth:v,inShape:e,outShape:U,filterShape:t}}function LT(e,t,n,a,r){a==null&&(a=A1(e,t,n));let s=e[0],i=e[1],o=Ai((s-t+2*a)/n+1,r),u=Ai((i-t+2*a)/n+1,r);return[o,u]}function WT(e,t,n,a,r,s){r==null&&(r=A1(e,t,a));let i=e[0],o=e[1],u=e[2],l=Ai((i-t+2*r)/a+1,s),d=Ai((o-t+2*r)/a+1,s),p=Ai((u-t+2*r)/a+1,s);return[l,d,p,n]}function A1(e,t,n,a=1){let r=gl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Rc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function g1(e){return typeof e=="number"?[e,e,e]:e}function gl(e,t){return t<=1?e:e+(e-1)*(t-1)}function BT(e,t,n,a,r,s,i,o,u){let l,d,p;if(typeof e=="number"){l={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=LT([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,y=Math.floor(h/2),A=h-y;l={top:m,bottom:f,left:y,right:A,type:"SAME"}}else if(e==="valid")l={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=u==="channelsLast"?e[1][0]:e[2][0],h=u==="channelsLast"?e[1][1]:e[2][1],m=u==="channelsLast"?e[2][0]:e[3][0],f=u==="channelsLast"?e[2][1]:e[3][1];l={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Ai((t-s+c+h)/a+1,o),p=Ai((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:l,outHeight:d,outWidth:p}}function VT(e,t,n,a,r,s,i,o,u,l,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=WT([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,y=(h-1)*s+u-n,A=(m-1)*i+l-a,g=Math.floor(f/2),x=f-g,w=Math.floor(y/2),b=y-w,v=Math.floor(A/2),N=A-v;p={top:w,bottom:b,left:v,right:N,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-u+1)/s),m=Math.ceil((a-l+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function Ai(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Lr(e){let[t,n,a]=Rc(e);return t===1&&n===1&&a===1}function Va(e,t){return Lr(e)||Lr(t)}function e3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function jT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return _.runKernel(Xo,n,a)}var H=L({reshape_:jT});function UT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(Va(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,u=!1;s.rank===3&&(u=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Ht(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let l={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=_.runKernel(ms,l,d);return p=me(p,s.dtype),u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var td=L({avgPool_:UT});function HT(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,u=!1;i.rank===4&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ht(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let l={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=_.runKernel(Tu,l,d);return p=me(p,o.dtype),u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var x1=L({avgPool3d_:HT});function GT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Yu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Ba(n[0]);let a=n,r={axis:t};return _.runKernel(go,a,r)}var lt=L({concat_:GT});function qT(e){let t={x:M(e,"x","sigmoid")};return _.runKernel(Js,t)}var Sn=L({sigmoid_:qT});function XT(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return _.runKernel(Jo,r,s)}var Re=L({slice_:XT});function KT(e){let t={x:M(e,"x","tanh")};return _.runKernel(si,t)}var gi=L({tanh_:KT});function ZT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),u=M(n,"lstmBias","basicLSTMCell"),l=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=lt([l,p],1),h=Ve(c,o),m=se(h,u),f=m.shape[0],y=m.shape[1]/4,A=[f,y],g=Re(m,[0,0],A),x=Re(m,[0,y],A),w=Re(m,[0,y*2],A),b=Re(m,[0,y*3],A),v=se(W(Sn(g),gi(x)),W(d,Sn(se(i,w)))),N=W(gi(v),Sn(b));return[v,N]}var YT=L({basicLSTMCell_:ZT});function JT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,u)=>o*u);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return _.runKernel(Eu,s,i)}var nd=L({batchToSpaceND_:JT});function QT(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function eE(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),u=M(n,"variance","batchNorm"),l;r!=null&&(l=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),F(o.rank===u.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(l==null||o.rank===l.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:QT(i),scale:l,offset:d,mean:o,variance:u},c={varianceEpsilon:s},h=_.runKernel(Es,p,c);return H(h,i.shape)}var xi=L({batchNorm_:eE});function tE(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),u=M(n,"variance","batchNorm"),l;r!=null&&(l=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),xi(i,o,u,d,l,s)}var t3=L({batchNorm2d_:tE});function nE(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),u=M(n,"variance","batchNorm"),l;r!=null&&(l=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),xi(i,o,u,d,l,s)}var n3=L({batchNorm3d_:nE});function aE(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),u=M(n,"variance","batchNorm"),l;r!=null&&(l=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${u.rank}.`),l!=null&&F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),xi(i,o,u,d,l,s)}var a3=L({batchNorm4d_:aE});function rE(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return _.runKernel(Bp,s,i)}var b1=L({bincount_:rE});function sE(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(u=>!(u>0)||u%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=H(n,u)}let r=n.shape,s=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])s[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((u,l)=>u>1?l:-1).filter(u=>u>=0).length===0)return Ba(n);let i={x:n},o={reps:s};return _.runKernel($r,i,o)}var xl=L({broadcastTo_:sE});function iE(e){let t={x:M(e,"x","ceil")};return _.runKernel(gs,t)}var v1=L({ceil_:iE});function oE(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return _.runKernel(Fr,r,s)}var Nn=L({clipByValue_:oE});function lE(e){return lt(e,0)}var r3=L({concat1d_:lE});function uE(e,t){return lt(e,t)}var bl=L({concat2d_:uE});function dE(e,t){return lt(e,t)}var s3=L({concat3d_:dE});function pE(e,t){return lt(e,t)}var i3=L({concat4d_:pE});function cE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),u=M(t,"filter","conv2d"),l=o,d=!1;o.rank===3&&(d=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${u.rank}.`),i!=null&&F(Ht(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?l.shape[3]:l.shape[1];F(p===u.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${u.shape[2]}.`),F(Va(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:l,filter:u},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=_.runKernel(xs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var pr=L({conv2d_:cE});function hE(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),u=M(t,"filter","conv1d"),l=o,d=!1;o.rank===2&&(d=!0,l=H(o,[1,o.shape[0],o.shape[1]])),F(l.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${l.rank}.`),F(u.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${u.rank}.`),i!=null&&F(Ht(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(l.shape[2]===u.shape[1],()=>`Error in conv1d: depth of input (${l.shape[2]}) must match input depth for filter ${u.shape[1]}.`),F(Va(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(u,[1,u.shape[0],u.shape[1],u.shape[2]]),c=H(l,[l.shape[0],1,l.shape[1],l.shape[2]]),h=pr(c,p,[1,n],a,"NHWC",[1,s],i);return d?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var Mc=L({conv1d_:hE});function fE(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,u=t,l=!1;t.rank===3&&(l=!0,u=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(u.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${u.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?u.shape[3]:u.shape[1];F(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Ht(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:u,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=_.runKernel(bs,c,h);return l?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var w1=L({conv2DBackpropInput_:fE});function mE(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return w1(n,i,o,a,r,"NHWC",s)}var Fc=L({conv2dTranspose_:mE});function yE(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),u=i,l=!1;i.rank===4&&(l=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(u.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${u.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(u.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${u.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Va(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:u,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=_.runKernel(Ru,d,p);return l?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var k1=L({conv3d_:yE});function AE(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let u=s[4],l=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(u===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[3]}.`),F(l===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${l}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=_.runKernel(Hp,d,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var o3=L({conv3DBackpropInput_:AE});function gE(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return o3(n,s,i,a,r)}var l3=L({conv3dTranspose_:gE});function xE(e){let t={x:M(e,"x","cos")};return _.runKernel(vs,t)}var ad=L({cos_:xE});function bE(e){let t={x:M(e,"x","cosh")};return _.runKernel(xo,t)}var $c=L({cosh_:bE});function vE(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return _.runKernel(ws,r,s)}var Dc=L({cumsum_:vE});function wE(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return _.runKernel(Gp,i,o)}var u3=L({denseBincount_:wE});function kE(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},u={blockSize:t,dataFormat:n};return _.runKernel(vo,o,u)}var I1=L({depthToSpace_:kE});function IE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),u=M(t,"filter","depthwiseConv2d"),l=o,d=!1;o.rank===3&&(d=!0,l=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(l.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),i!=null&&F(Ht(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:l,filter:u},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=_.runKernel(ks,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var vl=L({depthwiseConv2d_:IE});function SE(e){let t={x:M(e,"x","diag")};return _.runKernel(Kp,t)}var NE=L({diag_:SE});function TE(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let u=i,l=!1;i.rank===3&&(u=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=!0);let d={x:u,filter:o},p={strides:n,pad:a,dilations:r},c=_.runKernel(Mu,d,p);return l?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var S1=L({dilation2d_:TE});function EE(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Wt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function ct(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function CE(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Io,r)}var Wr=L({equal_:CE});function RE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=ct(ct(s.shape,a.shape),r.shape),o=xl(s,i),u=xl(a,i),l=xl(r,i),d={condition:o,t:u,e:l};return _.runKernel(Zo,d)}var rn=L({where_:RE});function ME(e){let t={x:M(e,"x","zerosLike")};return _.runKernel(ol,t)}var Ge=L({zerosLike_:ME});function FE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=kt(n,a);let r=fe(n,a),s=Ge(r),i=Wr(a,s);return rn(i,s,r)}var N1=L({divNoNan_:FE});function $E(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),u=Ve(i,o);return H(u,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),u=Ve(i,o);return H(u,[u.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Ve(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Ve(n,i)}}var d3=L({dot_:$E});function DE(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return _.runKernel(Jp,n,a)}var p3=L({einsum_:DE});function zE(e){let t={x:M(e,"x","elu")};return _.runKernel(wo,t)}var wl=L({elu_:zE});function OE(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=me(t,"float32"));let n={x:t};return _.runKernel(ko,n)}var T1=L({erf_:OE});function _E(e){let t={x:M(e,"x","exp")};return _.runKernel(Ss,t)}var ta=L({exp_:_E});function PE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return _.runKernel(So,a,r)}var dn=L({expandDims_:PE});function LE(e){let t={x:M(e,"x","expm1")};return _.runKernel(No,t)}var E1=L({expm1_:LE});function WE(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return _.runKernel($r,a,r)}var Br=L({tile_:WE});function BE(e,t,n,a="float32"){t==null&&(t=e);let r=Be([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Br(dn(i,0),[n[0],1,1]);if(n.length===2)return Br(dn(dn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Br(dn(dn(dn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var C1=L({eye_:BE});function kl(e,t,n){let a={shape:e,value:t,dtype:n};return _.runKernel(Fu,{},a)}function VE(e){let t={x:M(e,"x","floor")};return _.runKernel(Ns,t)}var Il=L({floor_:VE});function jE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return _.runKernel(Eo,i,o)}var bi=L({gather_:jE});function UE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Ro,r)}var On=L({greater_:UE});function HE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Cs,r)}var Vr=L({greaterEqual_:HE});function GE(e){let t={input:M(e,"input","imag")};return _.runKernel(nc,t)}var zc=L({imag_:GE});function qE(e){let t={x:M(e,"x","isFinite")};return _.runKernel(Mo,t)}var c3=L({isFinite_:qE});function XE(e){let t={x:M(e,"x","isInf")};return _.runKernel(Fo,t)}var h3=L({isInf_:XE});function KE(e){let t={x:M(e,"x","isNaN")};return _.runKernel($o,t)}var R1=L({isNaN_:KE});function ZE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return _.runKernel(Ms,n,a)}var rd=L({leakyRelu_:ZE});function YE(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Do,r)}var Oc=L({less_:YE});function JE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(zo,r)}var jr=L({lessEqual_:JE});function f3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return _.runKernel(ac,{},a)}function QE(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Ht(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let u={x:i},l={depthRadius:t,bias:n,alpha:a,beta:r},d=_.runKernel(zu,u,l);return o?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var M1=L({localResponseNormalization_:QE});function eC(e){let t={x:M(e,"x","log")};return _.runKernel(Fs,t)}var _n=L({log_:eC});function tC(e){let t={x:M(e,"x","log1p")};return _.runKernel(Oo,t)}var _c=L({log1p_:tC});function nC(e){return F(Rr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return _.tidy(()=>{let{value:s,grads:i}=_.gradients(()=>e(a),[a],r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Pc(i),i[0]})}}function aC(e){return F(Rr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Yu(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return _.tidy(()=>{let{value:s,grads:i}=_.gradients(()=>e(...a),a,r);return r!=null&&ln(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pc(i),i})}}function rC(e){return F(Rr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof We,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof We,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=_.gradients(()=>e(t),[t],n);return Pc(a),{grad:a[0],value:r}}}function sC(e){return F(Rr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof We),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof We,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=_.gradients(()=>e(...t),t,n);return n!=null&&ln(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Pc(a.grads),a}}function m3(e,t){F(Rr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(l=>l instanceof Xu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let l in _.registeredVariables)t.push(_.registeredVariables[l])}let a=n?t.filter(l=>!l.trainable):null,r=t.length;t=t.filter(l=>l.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=_.gradients(e,t,null,s);F(o.some(l=>l!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let u={};return t.forEach((l,d)=>{o[d]!=null&&(u[l.name]=o[d])}),a!=null&&a.forEach(l=>u[l.name]=null),{value:i,grads:u}}function ja(e){return _.customGrad(e)}function Pc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function iC(e){let t={x:M(e,"x","neg")};return _.runKernel(Lo,t)}var It=L({neg_:iC});function oC(e){let t={x:M(e,"x","softplus")};return _.runKernel(tl,t)}var vi=L({softplus_:oC});function lC(e){let t=M(e,"x","logSigmoid");return ja(n=>({value:It(vi(It(n))),gradFunc:a=>W(a,Sn(It(n)))}))(t)}var y3=L({logSigmoid_:lC});function uC(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return _.runKernel($s,a,r)}var Tn=L({max_:uC});function dC(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(ai,r)}var ye=L({sub_:dC});function pC(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=me(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return _.runKernel(ei,r,s)}var Se=L({sum_:pC});function cC(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ja((a,r)=>{let s=!0,i=Tn(a,t,!0),o=ye(a,i),u=ye(me(o,"float32"),_n(Se(ta(o),t,s)));return r([u]),{value:u,gradFunc:(l,d)=>{let[p]=d,c=!0,h=ta(p);return ye(l,W(Se(l,t,c),h))}}})(n)}var Lc=L({logSoftmax_:cC});function F1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function A3(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function g3(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function wi(e,t){let n=t.map(a=>1);return A3(e,n,t)}function hC(e,t,n){F(F1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function x3(e,t){if(F1(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function $1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function fC(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function mC(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=ua(t,a.shape),s=Tn(a,r,!0),i=ye(a,s),o=ta(i),u=Se(o,r),l=_n(u),d=se(H(s,l.shape),l);if(n){let p=wi(d.shape,r);return H(d,p)}return d}var D1=L({logSumExp_:mC});function yC(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(_o,r)}var ca=L({logicalAnd_:yC});function AC(e){let t={x:M(e,"x","logicalNot","bool")};return _.runKernel($u,t)}var sd=L({logicalNot_:AC});function gC(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Du,r)}var Wc=L({logicalOr_:gC});function xC(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return ct(n.shape,a.shape),ca(Wc(e,t),sd(ca(e,t)))}var b3=L({logicalXor_:xC});function bC(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,u=!1;s.rank===3&&(u=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Va(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Ht(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let l={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=_.runKernel(zs,l,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var id=L({maxPool_:bC});function vC(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,u=!1;i.rank===4&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Ht(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let l={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=_.runKernel(Ou,l,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var z1=L({maxPool3d_:vC});function wC(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=_.runKernel(oc,s,i);return{result:o[0],indexes:o[1]}}var v3=L({maxPoolWithArgmax_:wC});function kC(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=kt(n,a),n.dtype==="bool"&&(n=me(n,"int32"),a=me(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Ds,r)}var Ua=L({maximum_:kC});function IC(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return _.runKernel(Os,a,r)}var St=L({mean_:IC});function $t(e,t="float32"){if(t==="complex64"){let a=$t(e,"float32"),r=$t(e,"float32");return zr(a,r)}let n=Pp(Rt(e),t);return _.makeTensor(n,e,t)}function Pn(e,t="float32"){if(t==="complex64"){let a=Pn(e,"float32"),r=$t(e,"float32");return zr(a,r)}let n=Em(Rt(e),t);return _.makeTensor(n,e,t)}function SC(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof We?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof We?t.dtype:"float32"),s=Rt(a.shape),i=Rt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Ve(Pn([i,1],a.dtype),a),Ve(r,Pn([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Ve(a,Pn([1,i],a.dtype)),Ve(Pn([s,1],r.dtype),r)])}function NC(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return _.runKernel(_s,a,r)}var Sl=L({min_:NC});function TC(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=kt(n,a),n.dtype==="bool"&&(n=me(n,"int32"),a=me(a,"int32")),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Ps,r)}var Nl=L({minimum_:TC});function EC(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return _.runKernel(Ls,i,s)}var O1=L({mirrorPad_:EC});function CC(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(Po,r)}var _1=L({mod_:CC});function RC(e){let t=M(e,"x","square"),n={};return _.runKernel("Square",{x:t},n)}var ot=L({square_:RC});function MC(e,t=null,n=!1){e=M(e,"x","moments");let a=ua(t,e.shape),r=St(e,a,n),s=r.shape;n||(s=wi(r.shape,a));let i=ot(ye(me(e,"float32"),H(r,s))),o=St(i,a,n);return{mean:r,variance:o}}var Bc=L({moments_:MC});function FC(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=Yu(n,"c","multiRNNCell"),i=Yu(a,"h","multiRNNCell"),o=r,u=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);u.push(c[0]),u.push(c[1]),o=c[1]}let l=[],d=[];for(let p=0;p<u.length;p+=2)l.push(u[p]),d.push(u[p+1]);return[l,d]}var $C=L({multiRNNCell_:FC});function DC(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:a},l=_.runKernel(lc,o,u);return i===1?H(l,[l.size]):l}var w3=L({multinomial_:DC});function zC(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a};return _.runKernel(Wo,r)}var ki=L({notEqual_:zC});function OC(e){let t={x:M(e,"x","onesLike")};return _.runKernel(Uo,t)}var Ln=L({onesLike_:OC});function _C(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Ve(r,s)}var PC=L({outerProduct_:_C});function LC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return _.runKernel(Vs,s,r)}var cr=L({pad_:LC});function WC(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),cr(e,[t],n)}var BC=L({pad1d_:WC});function VC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var jC=L({pad2d_:VC});function UC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var HC=L({pad3d_:UC});function GC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),cr(e,t,n)}var qC=L({pad4d_:GC});function XC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,u)=>u>0&&u<=t.length?i&&(o+n[u-1][0]+n[u-1][1])%t[u-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return _.runKernel(Lu,r,s)}var od=L({spaceToBatchND_:XC});function KC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,u=!1;i.rank===3&&(u=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Va(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let l=Jb(o.shape,t,s,r,a),d=[l.dilationHeight,l.dilationWidth],p;a==="same"?p=YC([l.filterHeight,l.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=ZC([l.inHeight,l.inWidth],d,p),f=c?a:"valid",y=c?o:od(o,d,h),A=(n==="avg"?()=>td(y,t,s,f):()=>id(y,t,s,f))(),g=c?A:nd(A,d,m);return u?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function ZC(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),u=t.map((d,p)=>[a[p],o[p]]),l=t.map((d,p)=>[0,i[p]]);return[u,l]}function YC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var k3=L({pool_:KC});function JC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=kt(n,a);let r={a:n,b:a};return _.runKernel(js,r)}var hr=L({pow_:JC});function QC(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return _.runKernel(Us,r)}var ld=L({prelu_:QC});function eR(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=me(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return _.runKernel(Go,r,s)}var Vc=L({prod_:eR});function tR(e,t,n){let a=Rt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return _.makeTensor(r,e,n)}var nR=L({rand_:tR}),P1=ro(f5()),L1=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=P1.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},aR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=P1.alea(r.toString()),this.randn=new L1(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},rR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=P1.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function sR(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new aR(t,n,a,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var iR=L({randomGamma_:sR});function oR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new L1(t,n,a,!1,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var I3=L({randomNormal_:oR});function lR(e,t=0,n=1,a="float32",r){let s=Be(e,a),i=new rR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Tl=L({randomUniform_:lR});function El(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return _.runKernel(_u,{},r)}function uR(e){let t={input:M(e,"input","real")};return _.runKernel(uc,t)}var ud=L({real_:uR});function dR(e){let t={x:M(e,"x","reciprocal")};return _.runKernel(qo,t)}var W1=L({reciprocal_:dR});function pR(e){let t={x:M(e,"x","relu")};return _.runKernel(Hs,t)}var Ha=L({relu_:pR});function cR(e){let t={x:M(e,"x","relu6")};return _.runKernel(qs,t)}var jc=L({relu6_:cR});function hR(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return _.runKernel(Xs,n,a)}var Wn=L({reverse_:hR});function fR(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Wn(t,0)}var mR=L({reverse1d_:fR});function yR(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Wn(n,t)}var AR=L({reverse2d_:yR});function gR(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Wn(n,t)}var xR=L({reverse3d_:gR});function bR(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Wn(n,t)}var vR=L({reverse4d_:bR});function wR(e){let t={x:M(e,"x","round")};return _.runKernel(Ks,t)}var Uc=L({round_:wR});function kR(e){let t={x:M(e,"x","rsqrt")};return _.runKernel(Zs,t)}var Hc=L({rsqrt_:kR});function we(e,t){if((an(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&an(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Or(e,[],[],t)}function IR(e){let t={x:M(e,"x","selu")};return _.runKernel(Yo,t)}var Gc=L({selu_:IR});function SR(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),u=M(t,"depthwiseFilter","separableConv2d"),l=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${l.shape[0]}.`),F(l.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${l.shape[1]}.`);let c=u.shape[2],h=u.shape[3];F(l.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${l.shape[2]}.`);let m=vl(d,u,a,r,i,s),f=pr(m,l,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var B1=L({separableConv2d_:SR});async function NR(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let u=new Pt([o],n.dtype),l=new Pt([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(u.values[p]=r[d],l.values[p]=d,p++);return[u.toTensor(),l.toTensor()]}var S3=NR;function TR(e){let t={x:M(e,"x","sign")};return _.runKernel(el,t)}var V1=L({sign_:TR});function ER(e){let t={x:M(e,"x","sin")};return _.runKernel(Ys,t)}var qc=L({sin_:ER});function CR(e){let t={x:M(e,"x","sinh")};return _.runKernel(Qo,t)}var Xc=L({sinh_:CR});function RR(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var Kc=L({slice1d_:RR});function MR(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var j1=L({slice2d_:MR});function FR(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Zc=L({slice3d_:FR});function $R(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var dd=L({slice4d_:$R});function DR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return _.runKernel(ti,a,r)}var pd=L({softmax_:DR});function zR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return _.runKernel(ec,t)}var cd=L({fft_:zR});function OR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return _.runKernel(tc,t)}var Cl=L({ifft_:OR});function _R(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=Cl(r)}else{let r=[n,2*(t-1)],s=H(ud(e),[n,t]),i=H(zc(e),[n,t]),o=Wn(Re(s,[0,1],[n,t-2]),1),u=W(Wn(Re(i,[0,1],[n,t-2]),1),we(-1)),l=lt([s,o],1),d=lt([i,u],1),p=H(zr(l,d),[r[0],r[1]]);a=Cl(p)}if(a=ud(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Yc=L({irfft_:_R});function PR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return _.runKernel(nl,a,r)}var qt=L({split_:PR});function LR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(y=>0),f=e.shape.map(y=>y);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=lt([e,$t(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=H(zr(r,s),[a,n]),o=cd(i),u=Math.floor(n/2)+1,l=ud(o),d=zc(o),p=qt(l,[u,n-u],l.shape.length-1),c=qt(d,[u,n-u],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=u,H(zr(p[0],c[0]),h)}var hd=L({rfft_:LR});function WR(e){let t={x:M(e,"x","sqrt")};return _.runKernel(Qs,t)}var en=L({sqrt_:WR});function BR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=kt(n,a),ct(n.shape,a.shape);let r={a:n,b:a},s={};return _.runKernel(ni,r,s)}var Jc=L({squaredDifference_:BR});function VR(e,t){let n=M(e,"x","squeeze");return H(n,Gx(n.shape,t).newShape)}var ha=L({squeeze_:VR});function jR(e,t=0){let n=Yu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return _.runKernel(Ho,a,r)}var pn=L({stack_:jR});function UR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return _.runKernel(Dr,n,a)}var Rl=L({step_:UR});function HR(e,t,n,a,r=0,s=0,i=0,o=0,u=0){let l={x:M(e,"x","stridedSlice")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:u};return _.runKernel(al,l,d)}var U1=L({stridedSlice_:HR});function GR(e){let t={x:M(e,"x","tan")};return _.runKernel(ri,t)}var H1=L({tan_:GR});function Mt(e,t){ps(e);let n=Wa(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Or(e,null,n,t)}function ka(e,t,n){if(ps(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Wa(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Or(e,t,a,n)}function qR(e,t,n){if(ps(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Wa(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}function XR(e,t,n){if(ps(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Wa(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Or(e,t,a,n)}function KR(e,t,n){if(ps(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Wa(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Or(e,t,a,n)}function ZR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,u]=_.runKernel(rl,s,i);return{values:o,indices:u}}var G1=L({topk_:ZR});function YR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new L1(t,n,a,!0,r),i=Be(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Qc=L({truncatedNormal_:YR});function JR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=_.runKernel(mc,a,r);return{values:s,indices:i}}var eh=L({unique_:JR});function QR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Ht(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return _.runKernel(Bu,s,i)}var q1=L({unsortedSegmentSum_:QR});function eM(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return _.runKernel(il,a,r)}var fa=L({unstack_:eM});function N3(e,t=!0,n,a){return _.makeVariable(e,t,n,a)}function T3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Be(e,"int32"),r=Be([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function tM(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=T3(t.shape,n);return e!==t&&t.dispose(),a}var X1=tM;async function nM(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),ln(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let u=1;for(let f=s;f<s+i;f++)u*=o[f];let l=o.slice(0,s).concat([u],o.slice(s+i)),d=H(a,l),p=H(r,[-1]),c=await X1(p),h=ha(c,[1]),m=bi(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var aM=nM;function rM(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=E3(e,t,n),s=r.shape;if(a){let i=ua(n,e.shape);s=wi(r.shape,i)}return H(r,s)}function E3(e,t,n=null){if(e.rank===0)return Lt(e);if(e.rank!==1&&n===null)return E3(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Lt(e),n);if(t===Infinity)return Tn(Lt(e),n);if(t===-Infinity)return Sl(Lt(e),n);if(t==="euclidean"||t===2)return en(Se(hr(Lt(e),we(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Tn(Se(Lt(e),n[0]),n[1]-1);if(t===Infinity)return Tn(Se(Lt(e),n[1]),n[0]);if(t===-Infinity)return Sl(Se(Lt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return en(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var th=L({norm_:rM});function sM(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");ub(s,i),F(lr(s.shape,i.shape),()=>"Shape mismatch in v and x");let u=we(1),l=ye(u,o),d=W(ye(i,s),l);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=fe(d,ye(u,hr(o,p)))}return se(s,d)}var iM=L({movingAverage_:sM});function oM(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");a1(r,a,n);let s={indices:a,updates:r},i={shape:n};return _.runKernel(Ko,s,i)}var C3=L({scatterND_:oM});function lM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function uM(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);lM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},u={outputShape:n};return _.runKernel(fc,o,u)}var K1=L({sparseToDense_:uM});function dM(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return _.runKernel(Co,a)}var R3=L({gatherND_:dM});function pM(e,t){if(t==null)return e.shape.slice();if(lr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function cM(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof We?r.clone():r;let s=pM(r,n),i=1-t,o=fe(Il(se(Tl(s,0,1,"float32",a),i)),i);return W(r,o)}var M3=L({dropout_:cM});function F3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Z1(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Mt(r,"float32")}async function hM(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),ln(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[u,l]=[i.length/s,s],d=qx("bool",u);for(let p=0;p<u;p++){let c=p*l,h=i.subarray(c,c+l),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,y)=>y.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),pa(d,r.shape,"bool")}var fM=hM,Ur={};Fe(Ur,{conv2d:()=>AM,depthwiseConv2d:()=>vM,matMul:()=>kM});function mM(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(u.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${u.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let l=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?u.shape[3]:u.shape[1];F(l===n[2],()=>`Error in conv2dDerFilter: depth of input ${l}) must match input depth in filter (${n[2]}.`),F(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&F(Ht(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:u},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return _.runKernel(jp,p,c)}var Y1=L({conv2DBackpropFilter_:mM});function nh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return W(e,Rl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function ah(e,t){let n=t,a=Wt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),H(n,e.shape)}function rh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ha(e);if(t==="elu")return wl(e);if(t==="relu6")return jc(e);if(t==="prelu")return ld(e,n);if(t==="leakyrelu")return rd(e,a);if(t==="sigmoid")return Sn(e);throw new Error(`Unknown fused activation ${t}.`)}var sh=(e,t)=>!(e>0)||t==="linear";function yM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:d}){if(u=u||"linear",sh(_.state.gradientDepth,u)===!1){let b=pr(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),rh(b,u,l,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Ht(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(Va(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=ed(h.shape,c.shape,n,s,a,i),y;o!=null&&(y=M(o,"bias","fused conv2d"),[y]=kt(y,p),ct(f.outShape,y.shape));let A;l!=null&&(A=M(l,"prelu weights","fused conv2d"));let g=(b,v)=>{let[N,I,E,$]=v,O=nh(b,E,u);F(Lr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let z=w1(I.shape,O,N,n,a),P=Y1(I,O,N.shape,n,a),D=[z,P];if($!=null){let U=ah($,O);D.push(U)}return D},x={x:h,filter:c,bias:y,preluActivationWeights:A},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:d};return o==null?ja((b,v,N)=>{let I=_.runKernel(li,x,w);return N([v,b,I]),m&&(I=H(I,[I.shape[1],I.shape[2],I.shape[3]])),{value:I,gradFunc:g}})(h,c):ja((b,v,N,I)=>{let E=_.runKernel(li,x,w);return I([v,b,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(h,c,y)}var AM=L({fusedConv2d_:yM});function gM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let u=t;u.rank===3&&(u=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={x:o,dy:u},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return _.runKernel(qp,l,d)}var $3=L({depthwiseConv2dNativeBackpropFilter_:gM});function xM(e,t,n,a,r,s=[1,1],i){let o=t,u=!1;t.rank===3&&(u=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let l={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=_.runKernel(Xp,l,d);return u?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var D3=L({depthwiseConv2dNativeBackpropInput_:xM});function bM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:u="linear",preluActivationWeights:l,leakyreluAlpha:d}){if(sh(_.state.gradientDepth,u)===!1){let b=vl(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),rh(b,u,l,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(Va(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Ht(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=ed(h.shape,c.shape,n,s,a,i,!0),y;o!=null&&(y=M(o,"bias","fused conv2d"),[y]=kt(y,p),ct(f.outShape,y.shape));let A;l!=null&&(A=M(l,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(Lr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,I,E,$]=v,O=nh(b,E,u),z=D3(I.shape,O,N,n,a,s,i),P=$3(I,O,N.shape,n,a,s,i);if($!=null){let D=ah(y,O);return[z,P,D]}return[z,P]},x={x:h,filter:c,bias:y,preluActivationWeights:A},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:u,leakyreluAlpha:d};return o==null?ja((b,v,N)=>{let I=_.runKernel(ui,x,w);return N([v,b,I]),m&&(I=H(I,[I.shape[1],I.shape[2],I.shape[3]])),{value:I,gradFunc:g}})(h,c):ja((b,v,N,I)=>{let E=_.runKernel(ui,x,w);return I([v,b,E,N]),m&&(E=H(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:g}})(h,c,y)}var vM=L({fusedDepthwiseConv2d_:bM});function wM({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(sh(_.state.gradientDepth,s)===!1){let $=Ve(e,t,n,a);return r!=null&&($=se($,r)),rh($,s,i,o)}let u=M(e,"a","fused matMul"),l=M(t,"b","fused matMul");[u,l]=kt(u,l);let d=n?u.shape[u.rank-2]:u.shape[u.rank-1],p=a?l.shape[l.rank-1]:l.shape[l.rank-2],c=n?u.shape[u.rank-1]:u.shape[u.rank-2],h=a?l.shape[l.rank-2]:l.shape[l.rank-1],m=u.shape.slice(0,-2),f=l.shape.slice(0,-2),y=Rt(m),A=Rt(f);F(u.rank>=2&&l.rank>=2&&u.rank===l.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${u.rank} and ${l.rank}.`),F(lr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${u.shape} and ${l.shape} must match.`),F(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${u.shape} and ${l.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=u.shape.slice(0,-2).concat([c,h]),x=n?H(u,[y,d,c]):H(u,[y,c,d]),w=a?H(l,[A,h,p]):H(l,[A,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=kt(b,u),ct(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let N=($,O)=>{let[z,P,D,U]=O,X=nh(H($,D.shape),D,s),G,ee;if(!n&&!a?(G=Ve(X,P,!1,!0),ee=Ve(z,X,!0,!1)):!n&&a?(G=Ve(X,P,!1,!1),ee=Ve(X,z,!0,!1)):n&&!a?(G=Ve(P,X,!1,!0),ee=Ve(z,X,!1,!1)):(G=Ve(P,X,!0,!0),ee=Ve(X,z,!0,!0)),r!=null){let Y=ah(U,X);return[G,ee,Y]}else return[G,ee]},I={a:x,b:w,bias:b,preluActivationWeights:v},E={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?ja(($,O,z)=>{let P=_.runKernel(oi,I,E);return z([$,O,P]),{value:H(P,g),gradFunc:N}})(x,w):ja(($,O,z,P)=>{let D=_.runKernel(oi,I,E);return P([$,O,D,z]),{value:H(D,g),gradFunc:N}})(x,w,b)}var kM=L({fusedMatMul_:wM});function IM(e){return Z1(e,.54,.46)}var SM=L({hammingWindow_:IM});function NM(e){return Z1(e,.5,.5)}var z3=L({hannWindow_:NM});function TM(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,u=lt([Re(e,s,t-o),kl([o],r)]);i.push(u),s+=n}return i.length===0?ka([],[0,t]):H(lt(i),[i.length,t])}var O3=L({frame_:TM});function EM(e,t,n,a,r=z3){a==null&&(a=F3(t));let s=O3(e,t,n),i=W(s,r(t));return hd(i,a)}var CM=L({stft_:EM});function RM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),u=M(n,"boxInd","cropAndResize","int32"),l=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${l},4] but had shape ${o.shape}.`),F(u.rank===1&&u.shape[0]===l,()=>`Error in cropAndResize: boxInd must be have size [${l}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:u},p={method:r,extrapolationValue:s,cropSize:a};return _.runKernel(bo,d,p)}var MM=L({cropAndResize_:RM});function FM(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return _.runKernel(To,n,{})}var $M=L({flipLeftRight_:FM});function DM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return _.runKernel(ll,s,i)}var zM=L({rotateWithOffset_:DM});function Ml(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function OM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Ml(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return _.runKernel(Bo,{boxes:s,scores:i},u)}var _M=L({nonMaxSuppression_:OM});function PM(e,t,n){let a=LM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function LM(e,t,n){return BM(e,t,n||WM)}function WM(e,t){return e>t?1:e<t?-1:0}function BM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function _3(e,t,n,a,r){return J1(e,t,n,a,r,0)}function P3(e,t,n,a,r,s){return J1(e,t,n,a,r,0,!1,s,!0)}function L3(e,t,n,a,r,s){return J1(e,t,n,a,r,s,!0)}function J1(e,t,n,a,r,s,i=!1,o=!1,u=!1){let l=[];for(let y=0;y<t.length;y++)t[y]>r&&l.push({score:t[y],boxIndex:y,suppressBeginIndex:0});l.sort(W3);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&l.length>0;){let y=l.pop(),{score:A,boxIndex:g,suppressBeginIndex:x}=y;if(A<r)break;let w=!1;for(let b=p.length-1;b>=x;--b){let v=VM(e,g,p[b]);if(v>=a){w=!0;break}if(y.score=y.score*jM(a,d,v),y.score<=r)break}y.suppressBeginIndex=p.length,w||(y.score===A?(p.push(g),c.push(y.score)):y.score>r&&PM(l,y,W3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),u&&(f.validOutputs=h),f}function VM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),u=Math.max(a[1],a[3]),l=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(u-i),m=(p-l)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,l),y=Math.max(i,d),A=Math.min(o,p),g=Math.min(u,c),x=Math.max(A-f,0)*Math.max(g-y,0);return x/(h+m-x)}function jM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function W3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function UM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Ml(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let u=await Promise.all([s.data(),i.data()]),l=u[0],d=u[1],{selectedIndices:p}=_3(l,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Mt(p,"int32")}var HM=UM;function GM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),u=Ml(i,o,n,a,r,s);n=u.maxOutputSize,a=u.iouThreshold,r=u.scoreThreshold,s=u.softNmsSigma;let l={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=_.runKernel(jo,l,d);return{selectedIndices:p[0],selectedScores:p[1]}}var qM=L({nonMaxSuppressionWithScore_:GM});async function XM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),u=Ml(i,o,n,a,r,s);n=u.maxOutputSize,a=u.iouThreshold,r=u.scoreThreshold,s=u.softNmsSigma;let l=await Promise.all([i.data(),o.data()]),d=l[0],p=l[1],{selectedIndices:c,selectedScores:h}=L3(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Mt(c,"int32"),selectedScores:Mt(h)}}var KM=XM;function ZM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),u=Ml(i,o,n,a,r,null),l=u.maxOutputSize,d=u.iouThreshold,p=u.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:l,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=_.runKernel(Vo,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var YM=L({nonMaxSuppressionPadded_:ZM});async function JM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),u=Ml(i,o,n,a,r,null),l=u.maxOutputSize,d=u.iouThreshold,p=u.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=P3(c,h,l,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Mt(m,"int32"),validOutputs:we(f,"int32")}}var QM=JM;function eF(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},u={alignCorners:n,halfPixelCenters:a,size:t},l=_.runKernel(Gs,o,u);return i?H(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var B3=L({resizeBilinear_:eF});function tF(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},u={alignCorners:n,halfPixelCenters:a,size:t},l=_.runKernel(Pu,o,u);return i?H(l,[l.shape[1],l.shape[2],l.shape[3]]):l}var V3=L({resizeNearestNeighbor_:tF});function nF(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,u=r.shape[0]*r.shape[1],l=W(Mt([a]),255),d,p,c,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=qt(r,[1,1,1],-1);let f=W(d,s),y=W(p,i),A=W(c,o);h=se(se(f,y),A)}else h=e;if(t==="otsu"){let f=b1(me(Uc(h),"int32"),pa([]),256);l=aF(f,u)}let m=n?jr(h,l):On(h,l);return me(W(m,255),"int32")}function aF(e,t){let n=Mt([-1]),a=Mt([0]),r=Mt([0]),s,i,o,u,l,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),l=fe(Se(s),t),d=fe(Se(i),t);let c=Se(W(s,El(0,s.size)));o=fe(c,Se(s));let h=kl(i.shape,s.size),m=se(El(0,i.size),h),f=W(i,m);u=fe(Se(f),Se(i));let y=ye(o,u),A=ye(o,u),g=W(l,d);r=W(W(g,y),A);let x=On(r,a);a=rn(x,r,a),n=rn(x,Mt([p]),n)}return n}var rF=L({threshold_:nF});function sF(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let u={image:i,transforms:o},l={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return _.runKernel(sl,u,l)}var iF=L({transform_:sF});function oF(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(El(0,s,1,"int32"),[-1,1]),u=El(0,i,1,"int32"),l=ye(o,u),d=ca(jr(l,we(+t,"int32")),Vr(l,we(-n,"int32"))),p=$t([s,i],a.dtype);return H(pn(fa(H(a,[-1,s,i])).map(c=>rn(d,c,p))),r)}var lF=L({bandPart_:oF});function uF(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=qt(e,e.shape[0],0).map(r=>ha(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(_.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=W(Se(W(n[i],s)),n[i]);s=ye(s,o)}return fe(s,th(s,"euclidean"))}));return t?pn(n,0):n}var dF=L({gramSchmidt_:uF});function pF(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return j3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((u,l)=>u*l),a=fa(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(u=>{let[l,d]=j3(u,t);r.push(l),s.push(d)});let i=H(pn(r,0),e.shape),o=H(pn(s,0),e.shape);return[i,o]}}function j3(e,t=!1){return _.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=C1(n),s=Ba(e),i=ka([[1]],[1,1]),o=Ba(i),u=n>=a?a:n;for(let l=0;l<u;++l){let d=s,p=o,c=r;[o,s,r]=_.tidy(()=>{let h=Re(s,[l,l],[n-l,1]),m=th(h),f=Re(s,[l,l],[1,1]),y=rn(On(f,0),ka([[-1]]),ka([[1]])),A=ye(f,W(y,m)),g=fe(h,A);g.shape[0]===1?o=Ba(i):o=lt([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=It(fe(Ve(y,A),m)),w=Re(s,[l,0],[n-l,a]),b=W(x,o),v=Qe(o);if(l===0)s=ye(w,Ve(b,Ve(v,w)));else{let E=ye(w,Ve(b,Ve(v,w)));s=lt([Re(s,[0,0],[l,a]),E],0)}let N=Qe(b),I=Re(r,[0,l],[n,r.shape[1]-l]);if(l===0)r=ye(I,Ve(Ve(I,o),N));else{let E=ye(I,Ve(Ve(I,o),N));r=lt([Re(r,[0,0],[n,l]),E],1)}return[o,s,r]}),Ie([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var cF=L({qr_:pF}),cn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(cn||(cn={}));function hF(e,t,n=cn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:W(a,r);if(n===cn.NONE)return s;if(n===cn.SUM)return Se(s);if(n===cn.MEAN){if(r==null)return St(s);{let i=a.size/r.size,o=fe(Se(s),Se(r));return i>1?fe(o,we(i)):o}}if(n===cn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return fe(Se(s),we(a.size));{let i=W(r,Pn(a.shape)),o=me(Se(ki(i,we(0))),"float32");return fe(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var fr=L({computeWeightedLoss_:hF});function fF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),ln(r.shape,s.shape,"Error in absoluteDifference: ");let o=Lt(ye(r,s));return fr(o,i,a)}var mF=L({absoluteDifference_:fF});function yF(e,t,n,a,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),ln(s.shape,i.shape,"Error in cosineDistance: ");let u=we(1),l=ye(u,Se(W(s,i),n,!0));return fr(l,o,r)}var AF=L({cosineDistance_:yF});function gF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),ln(r.shape,s.shape,"Error in hingeLoss: ");let o=we(1);r=ye(W(we(2),r),o);let u=Ha(ye(o,W(r,s)));return fr(u,i,a)}var xF=L({hingeLoss_:gF});function bF(e,t,n,a=1,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),ln(s.shape,i.shape,"Error in huberLoss: ");let u=we(a),l=Lt(ye(i,s)),d=Nl(l,u),p=ye(l,d),c=se(W(we(.5),ot(d)),W(u,p));return fr(c,o,r)}var vF=L({huberLoss_:bF});function wF(e,t,n,a=1e-7,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),ln(s.shape,i.shape,"Error in logLoss: ");let u=we(1),l=we(a),d=It(W(s,_n(se(i,l)))),p=W(ye(u,s),_n(se(ye(u,i),l))),c=ye(d,p);return fr(c,o,r)}var kF=L({logLoss_:wF});function IF(e,t,n,a=cn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),ln(r.shape,s.shape,"Error in meanSquaredError: ");let o=Jc(r,s);return fr(o,i,a)}var SF=L({meanSquaredError_:IF});function NF(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");ln(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ha(a),s=W(a,n),i=_c(ta(It(Lt(a))));return se(ye(r,s),i)}function TF(e,t,n,a=0,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),ln(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let l=we(a),d=we(1),p=we(.5);s=se(W(s,ye(d,l)),W(p,l))}let u=NF(s,i);return fr(u,o,r)}var EF=L({sigmoidCrossEntropy_:TF});function CF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ja((a,r,s)=>{let i=D1(r,[n],!0),o=ye(me(r,"float32"),i);s([a,o]);let u=It(W(o,a));return{value:Se(u,[n]),gradFunc:(l,d)=>{let[p,c]=d,h=wi(l.shape,[n]);return[W(H(l,h),ye(me(p,"float32"),ta(c))),W(H(l,h),ye(ta(c),me(p,"float32")))]}}})(e,t)}function RF(e,t,n,a=0,r=cn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),ln(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let l=we(a),d=we(1),p=we(s.shape[1]);s=se(W(s,ye(d,l)),fe(l,p))}let u=CF(s,i);return fr(u,o,r)}var MF=L({softmaxCrossEntropy_:RF});function FF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let u={indices:r,values:s,denseShape:i,defaultValue:o},l=_.runKernel(cc,u);return{outputIndices:l[0],outputValues:l[1],emptyRowIndicator:l[2],reverseIndexMap:l[3]}}var $F=L({sparseFillEmptyRows_:FF});function DF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=_.runKernel(hc,i);return{outputIndices:o[0],outputShape:o[1]}}var zF=L({sparseReshape_:DF}),OF={fft:cd,ifft:Cl,rfft:hd,irfft:Yc},_F={hammingWindow:SM,hannWindow:z3,frame:O3,stft:CM},je={flipLeftRight:$M,resizeNearestNeighbor:V3,resizeBilinear:B3,rotateWithOffset:zM,cropAndResize:MM,nonMaxSuppression:_M,nonMaxSuppressionAsync:HM,nonMaxSuppressionWithScore:qM,nonMaxSuppressionWithScoreAsync:KM,nonMaxSuppressionPadded:YM,nonMaxSuppressionPaddedAsync:QM,threshold:rF,transform:iF},U3={bandPart:lF,gramSchmidt:dF,qr:cF},PF={absoluteDifference:mF,computeWeightedLoss:fr,cosineDistance:AF,hingeLoss:xF,huberLoss:vF,logLoss:kF,meanSquaredError:SF,sigmoidCrossEntropy:EF,softmaxCrossEntropy:MF},H3={sparseFillEmptyRows:$F,sparseReshape:zF},mr=class extends qb{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ie(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return m3(e,t)}dispose(){this.iterations_!=null&&Ie(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:we(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(mr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var ih=class extends mr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=_.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=_.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:V(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;V(()=>{let u=se(W(i,this.rho),W(ot(s),1-this.rho)),l=W(fe(en(se(o,this.epsilon)),en(se(i,this.epsilon))),s),d=se(W(o,this.rho),W(ot(l),1-this.rho));i.assign(u),o.assign(d);let p=se(W(l,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ie(this.accumulatedGrads.map(e=>e.variable)),Ie(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};ih.className="Adadelta";Pr(ih);var oh=class extends mr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=_.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:V(()=>kl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;V(()=>{let i=se(s,ot(r));s.assign(i);let o=se(W(fe(r,en(se(i,_.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ie(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};oh.className="Adagrad";Pr(oh);var lh=class extends mr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=we(t).variable(),this.accBeta2=we(n).variable()}),a==null&&(this.epsilon=_.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ye(1,this.accBeta1),a=ye(1,this.accBeta2);t.forEach((r,s)=>{let i=_.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:V(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:V(()=>Ge(i).variable(o))});let u=Array.isArray(e)?e[s].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=se(W(l,this.beta1),W(u,1-this.beta1)),c=se(W(d,this.beta2),W(ot(u),1-this.beta2)),h=fe(p,n),m=fe(c,a);l.assign(p),d.assign(c);let f=se(W(fe(h,se(en(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(W(this.accBeta1,this.beta1)),this.accBeta2.assign(W(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ie(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ie(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(hr(this.beta1,this.iterations_+1)),this.accBeta2.assign(hr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};lh.className="Adam";Pr(lh);var uh=class extends mr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=we(0).variable(),this.accBeta1=we(t).variable()}),a==null&&(this.epsilon=_.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ye(1,this.accBeta1),a=fe(-this.learningRate,se(W(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=_.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let u=Array.isArray(e)?e[s].tensor:e[r];if(u==null)return;let l=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=se(W(l,this.beta1),W(u,1-this.beta1)),c=W(d,this.beta2),h=Lt(u),m=Ua(c,h);l.assign(p),d.assign(m);let f=se(W(fe(a,n),fe(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(W(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ie(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ie(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};uh.className="Adamax";Pr(uh);var fd=class extends mr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=_.registeredVariables[t];V(()=>{let s=se(W(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Gt(we(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};fd.className="SGD";Pr(fd);var dh=class extends fd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=we(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=_.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:V(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&V(()=>{let i,o=se(W(this.m,r),s);this.useNesterov?i=se(W(this.c,se(s,W(o,this.m))),a):i=se(W(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ie(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};dh.className="Momentum";Pr(dh);var ph=class extends mr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=_.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=_.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:V(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;V(()=>{let u=se(W(i,this.decay),W(ot(s),1-this.decay));if(this.centered){let l=this.accumulatedMeanGrads[n].variable,d=se(W(l,this.decay),W(s,1-this.decay)),p=fe(W(s,this.learningRate),en(ye(u,se(ot(d),this.epsilon)))),c=se(W(o,this.momentum),p);i.assign(u),l.assign(d),o.assign(c);let h=ye(a,c);a.assign(h)}else{let l=se(W(i,this.decay),W(ot(s),1-this.decay)),d=se(W(o,this.momentum),fe(W(s,this.learningRate),en(se(l,this.epsilon))));i.assign(l),o.assign(d);let p=ye(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ie(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ie(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ie(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};ph.className="RMSProp";Pr(ph);var Ii=class{static sgd(e){return new fd(e)}static momentum(e,t,n=!1){return new dh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new ph(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new lh(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new ih(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new uh(e,t,n,a,r)}static adagrad(e,t=.1){return new oh(e,t)}},Si={sgd:Ii.sgd,momentum:Ii.momentum,adadelta:Ii.adadelta,adagrad:Ii.adagrad,rmsprop:Ii.rmsprop,adamax:Ii.adamax,adam:Ii.adam},LF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ch(){return new Promise(e=>LF(()=>e()))}var R={};Fe(R,{ERF_A1:()=>ZF,ERF_A2:()=>YF,ERF_A3:()=>JF,ERF_A4:()=>QF,ERF_A5:()=>e$,ERF_P:()=>KF,PARALLELIZE_THRESHOLD:()=>Q1,SELU_SCALE:()=>q3,SELU_SCALEALPHA:()=>G3,applyActivation:()=>rh,assertAndGetBroadcastShape:()=>ct,assertAxesAreInnerMostDims:()=>hC,assertParamsConsistent:()=>WF,assignToTypedArray:()=>l$,axesAreInnerMostDims:()=>F1,calculateShapes:()=>zb,checkEinsumDimSizes:()=>f$,combineLocations:()=>A3,complexWithEvenIndex:()=>s$,complexWithOddIndex:()=>i$,computeConv2DInfo:()=>ed,computeConv3DInfo:()=>Qb,computeDefaultPad:()=>A1,computeDilation2DInfo:()=>_T,computeOptimalWindowSize:()=>VF,computeOutAndReduceShapes:()=>g3,computeOutShape:()=>BF,computePool2DInfo:()=>Jb,computePool3DInfo:()=>PT,convertConv2DDataFormat:()=>e3,decodeEinsumEquation:()=>c$,eitherStridesOrDilationsAreOne:()=>Va,expandShapeToKeepDim:()=>wi,exponent:()=>d$,exponents:()=>u$,fromStringArrayToUint8:()=>k$,fromUint8ToStringArray:()=>w$,getAxesPermutation:()=>x3,getBroadcastDims:()=>EE,getComplexWithIndex:()=>o$,getEinsumComputePath:()=>m$,getEinsumPermutation:()=>h$,getFusedBiasGradient:()=>ah,getFusedDyActivation:()=>nh,getImageCenter:()=>jF,getInnerMostAxes:()=>fC,getPermuted:()=>HF,getReductionAxes:()=>Wt,getReshaped:()=>UF,getReshapedPermuted:()=>GF,getSliceBeginCoords:()=>qF,getSliceSize:()=>XF,getUndoAxesPermutation:()=>$1,isIdentityPermutation:()=>y$,log:()=>n$,mergeRealAndImagArrays:()=>a$,prepareAndValidate:()=>Db,prepareSplitSize:()=>g$,segment_util:()=>Z3,shouldFuse:()=>sh,slice_util:()=>un,splitRealAndImagArrays:()=>r$,tupleValuesAreOne:()=>Lr,upcastType:()=>da,validateInput:()=>a1,validateUpdateShape:()=>n1,warn:()=>t$});function WF(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function BF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var Q1=30;function VF(e){return e<=Q1?e:_p(e,Math.floor(Math.sqrt(e)))}function jF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function UF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function HF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function GF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function qF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function XF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var G3=1.7580993408473768,q3=1.0507009873554805,KF=.3275911,ZF=.254829592,YF=-.284496736,JF=1.421413741,QF=-1.453152027,e$=1.061405429;function t$(...e){J().getBool("IS_TEST")||console.warn(...e)}function n$(...e){J().getBool("IS_TEST")||console.log(...e)}function a$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function r$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function s$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function i$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function o$(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function l$(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function u$(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function d$(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var ey="->",p$=/->/g,X3=",",K3="...";function c$(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(p$,"").length)/ey.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${ey}").`);let[a,r]=e.split(ey);F(a.indexOf(K3)===-1,()=>`The ellipsis notation ("${K3}") is not supported yet.`);let s=a.split(X3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==X3&&o.push(h)}let u=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);u[c]=[];for(let h=0;h<s[c].length;++h)u[c].push(o.indexOf(s[c][h]))}let l=o.length,d=r.length,p=[];for(let c=d;c<l;++c)p.push(c);return{allDims:o,summedDims:p,idDims:u}}function h$(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function f$(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function m$(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],u=A$(t,o);for(let l of u)s.indexOf(l)===-1&&(a[i].push(l),s.push(l))}return{path:n,steps:a}}function y$(e){return e.every((t,n)=>t===n)}function A$(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function g$(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,u)=>u>0?o+u:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var Z3={};Fe(Z3,{collectGatherOpShapeInfo:()=>v$,computeOutShape:()=>b$,segOpComputeOptimalWindowSize:()=>x$});function x$(e,t){let n=!1,a;for(e<=Q1?(a=e,n=!0):a=_p(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=_p(e,a+1);return a}function b$(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function v$(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],u=1,l=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:u,sliceSize:d,outerSize:l,dimSize:i,outputShape:o}}function w$(e){try{return e.map(t=>xc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function k$(e){return e.map(t=>Uu(t))}var Ga={};Fe(Ga,{nonMaxSuppressionV3Impl:()=>_3,nonMaxSuppressionV4Impl:()=>P3,nonMaxSuppressionV5Impl:()=>L3,whereImpl:()=>T3});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var I$=Ga.whereImpl,hh=class extends ku{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new zp(this,dr())}nextDataId(){return hh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return dr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return I$(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};hh.nextDataId=0;var ty={};Fe(ty,{addImpl:()=>J3,bincountImpl:()=>ay,bincountReduceImpl:()=>Q3,ceilImpl:()=>e7,concatImpl:()=>ry,expImpl:()=>t7,expm1Impl:()=>a7,floorImpl:()=>r7,gatherV2Impl:()=>s7,greaterImpl:()=>i7,lessImpl:()=>o7,linSpaceImpl:()=>l7,logImpl:()=>u7,maxImpl:()=>d7,maximumImpl:()=>p7,minimumImpl:()=>c7,multiplyImpl:()=>sy,negImpl:()=>h7,notEqualImpl:()=>f7,prodImpl:()=>m7,rangeImpl:()=>oy,rsqrtImpl:()=>y7,simpleAbsImpl:()=>Y3,sliceImpl:()=>yh,sparseFillEmptyRowsImpl:()=>A7,sparseReshapeImpl:()=>g7,squaredDifferenceImpl:()=>x7,stridedSliceImpl:()=>b7,subImpl:()=>v7,tileImpl:()=>w7,topKImpl:()=>k7,transposeImpl:()=>iy,uniqueImpl:()=>I7});function Y3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var S$=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=Y3(r),n.makeOutput(a,t.shape,"float32")},N$={kernelName:oo,backendName:"cpu",kernelFunc:S$};function Dt(e){return(t,n,a,r,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,u=k.computeStrides(i),l=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,l),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=R.getBroadcastDims(t,i),y=R.getBroadcastDims(n,i);if(f.length+y.length===0)for(let A=0;A<d.length;++A)d[A]=e(a[A%a.length],r[A%r.length]);else for(let A=0;A<d.length;++A){let g=k.indexToLoc(A,o,u),x=g.slice(-p);f.forEach(N=>x[N]=0);let w=k.locToIndex(x,p,h),b=g.slice(-c);y.forEach(N=>b[N]=0);let v=k.locToIndex(b,c,m);d[A]=e(a[w],r[v])}return[d,i]}}function Bn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),u=n.data.get(o.dataId);return u.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var T$={kernelName:Vp,backendName:"cpu",kernelFunc:Bn};function fh(e,t,n="float32"){if(n==="complex64"){let r=fh(e,t,"float32"),s=fh(e,t,"float32");return Bn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function qa(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var E$={kernelName:Rs,backendName:"cpu",kernelFunc:qa};function Ni(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var C$={kernelName:uc,backendName:"cpu",kernelFunc:Ni};function Hr(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return qa({inputs:{x:r},backend:n});let i=fh(n,r.shape,r.dtype),o=Hr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=Bn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=Ni({inputs:{input:r},backend:n}),o=Hr({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=qa({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[u,l]=Dt((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(l,"bool",u)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var R$={kernelName:As,backendName:"cpu",kernelFunc:Hr};function Xt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,u=s;ve([i,o],e);let l=u.data.get(i.dataId).values,d=u.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,l,d,p);return u.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,u=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let l=Hr({inputs:{x:i},backend:u,attrs:{dtype:"complex64"}}),d=u.data.get(l.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=u.data.get(p.dataId).values,m=u.data.get(c.dataId).values,f=Hr({inputs:{x:o},backend:u,attrs:{dtype:"complex64"}}),y=u.data.get(f.dataId),A=y.complexTensorInfos.real,g=y.complexTensorInfos.imag,x=u.data.get(A.dataId).values,w=u.data.get(g.dataId).values,[b,v,N]=n(i.shape,o.shape,h,m,x,w),I=u.makeTensorInfo(N,"float32",b),E=u.makeTensorInfo(N,"float32",v),$=Bn({inputs:{real:I,imag:E},backend:u});return u.disposeIntermediateTensorInfo(l),u.disposeIntermediateTensorInfo(f),u.disposeIntermediateTensorInfo(I),u.disposeIntermediateTensorInfo(E),$}else{let l=u.data.get(i.dataId).values,d=u.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,l,d,p);return u.makeTensorInfo(h,p,c)}}}function ny(e){return(t,n,a,r,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),u=k.sizeFromShape(o),l=o.length,d=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",u),c=k.getTypedArrayFromDType("float32",u),h=R.getBroadcastDims(t,o),m=R.getBroadcastDims(n,o),f=R.mergeRealAndImagArrays(a,r),y=R.mergeRealAndImagArrays(s,i),A=t.length,g=k.computeStrides(t),x=n.length,w=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,N=b%y.length,I=e(f[v*2],f[v*2+1],y[N*2],y[N*2+1]);p[b]=I.real,c[b]=I.imag}else for(let b=0;b<p.length;b++){let v=k.indexToLoc(b,l,d),N=v.slice(-A);h.forEach(z=>N[z]=0);let I=k.locToIndex(N,A,g),E=v.slice(-x);m.forEach(z=>E[z]=0);let $=k.locToIndex(E,x,w),O=e(f[I*2],f[I*2+1],y[$*2],y[$*2+1]);p[b]=O.real,c[b]=O.imag}return[p,c,o]}}var J3=Dt((e,t)=>e+t),M$=ny((e,t,n,a)=>({real:e+n,imag:t+a})),md=Xt(Mr,J3,M$),F$={kernelName:Mr,backendName:"cpu",kernelFunc:md};function ay(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let u=e[o];if(u<0)throw new Error("Input x must be non-negative!");u>=r||(s>0?i[u]+=t[o]:i[u]+=1)}return i}function Q3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Be([r,n],t.dtype);for(let o=0;o<r;o++)for(let u=0;u<s;u++){let l=e.get(o,u);if(l<0)throw new Error("Input x must be non-negative!");l>=n||(a?i.set(1,o,l):t.size>0?i.set(i.get(o,l)+t.get(o,u),o,l):i.set(i.get(o,l)+1,o,l))}return i}function Fl(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,u=o.data.get(i.dataId).values,l=k.sizeFromShape(i.shape),d=n||i.dtype,p=k.getArrayFromDType(d,l);for(let c=0;c<l;++c)p[c]=t(u[c],r);return o.makeTensorInfo(i.shape,d,p)}}function $l(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,u=o.data.get(i.dataId).values,l=n||i.dtype,d=t(u,l,r);return o.makeTensorInfo(i.shape,l,d)}}var e7=Fl(e=>Math.ceil(e)),$$=$l(gs,e7),D$={kernelName:gs,backendName:"cpu",kernelFunc:$$};function ry(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,u=0;for(let l=0;l<i.shape[0];++l){let d=l*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[u++]}s+=i.shape[1]})}return r}var t7=Fl(e=>Math.exp(e)),n7=$l(Ss,t7),z$={kernelName:Ss,backendName:"cpu",kernelFunc:n7},a7=Fl(e=>Math.expm1(e)),O$=$l(No,a7),_$={kernelName:No,backendName:"cpu",kernelFunc:O$},r7=Fl(e=>Math.floor(e)),P$=$l(Ns,r7),L$={kernelName:Ns,backendName:"cpu",kernelFunc:P$};function s7(e,t,n){let a=Be(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],u=t.locToIndex([i,o]);s[2]=t.values[u];let l=e.locToIndex(s);a.values[r]=e.values[l]}return a}var i7=Dt((e,t)=>e>t?1:0),W$=Xt(Ro,i7,null,"bool"),B$={kernelName:Ro,backendName:"cpu",kernelFunc:W$},o7=Dt((e,t)=>e<t?1:0),V$=Xt(Do,o7,null,"bool"),j$={kernelName:Do,backendName:"cpu",kernelFunc:V$};function l7(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var u7=Fl(e=>Math.log(e)),U$=$l(Fs,u7),H$={kernelName:Fs,backendName:"cpu",kernelFunc:U$};function d7(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let u=0;u<t;++u){let l=e[i+u];l>o&&(o=l)}r[s]=o}return r}var p7=Dt((e,t)=>Math.max(e,t)),G$=Xt(Ds,p7),q$={kernelName:Ds,backendName:"cpu",kernelFunc:G$},c7=Dt((e,t)=>Math.min(e,t)),X$=Xt(Ps,c7),K$={kernelName:Ps,backendName:"cpu",kernelFunc:X$},sy=Dt((e,t)=>e*t),Z$=ny((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),mh=Xt(Ws,sy,Z$),Y$={kernelName:Ws,backendName:"cpu",kernelFunc:mh};function h7(e,t,n){let a=k.createScalarValue(-1,n);return sy([],t,a,e,n)}function J$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=h7(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var Q$={kernelName:Lo,backendName:"cpu",kernelFunc:J$},f7=Dt((e,t)=>e!==t?1:0),eD=Xt(Wo,f7,null,"bool"),tD={kernelName:Wo,backendName:"cpu",kernelFunc:eD};function iy(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),u=k.computeStrides(r),l=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let p=k.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,u);l[h]=e[d]}return l}function na(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let u=a.data.get(r.dataId).values,l=iy(u,r.shape,r.dtype,s,o);return{dataId:a.write(l,o,r.dtype),shape:o,dtype:r.dtype}}var nD={kernelName:ii,backendName:"cpu",kernelFunc:na};function m7(e,t,n,a){let[r,s]=R.computeOutAndReduceShapes(e,a),i=da(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),u=k.sizeFromShape(s);for(let l=0;l<o.length;++l){let d=l*u,p=1;for(let c=0;c<u;++c)p*=n[d+c];o[l]=p}return{outVals:o,outShape:r,outDtype:i}}function aD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,u=k.parseAxisParam(s,r.shape),l=R.getAxesPermutation(u,o),d=u,p=r,c=[];l!=null&&(p=na({inputs:{x:r},backend:n,attrs:{perm:l}}),c.push(p),d=R.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:y}=m7(p.shape,p.dtype,h,d),A=f;return i&&(A=R.expandShapeToKeepDim(f,u)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(A,y,m)}var rD={kernelName:Go,backendName:"cpu",kernelFunc:aD};function oy(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),u=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),u[0]=e;for(let l=1;l<u.length;l++)u[l]=u[l-1]+n;return u}var y7=Fl(e=>1/Math.sqrt(e)),sD=$l(Zs,y7),iD={kernelName:Zs,backendName:"cpu",kernelFunc:sD};function yh(e,t,n,a,r){let s=un.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=un.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let u=r==="string"?R.fromUint8ToStringArray(e):e,l=Be(a,r,u),d=Be(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(l.get(...h),...c)}return r==="string"?R.fromStringArrayToUint8(d.values):d.values}function Ti(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,u]=un.parseSliceParams(r,s,i);un.assertParamsValid(r,o,u);let l=n.data.get(r.dataId).values,d=yh(l,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,d)}var oD={kernelName:Jo,backendName:"cpu",kernelFunc:Ti};function A7(e,t,n,a,r,s,i){let o=t[0],u=s[0],l=new Array(u),d=new Array(o),p=t[1];if(u===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let y=k.getArrayFromDType(n,0),A=k.getArrayFromDType(r,0);return[y,[0,p],A,l,d]}let c=!0,h=0,m=new Array(u).fill(0);for(let y=0;y<o;++y){let A=e[y*p];if(A<0)throw new Error(`indices(${y}, 0) is invalid: ${A} < 0`);if(A>=u)throw new Error(`indices(${y}, 0) is invalid: ${A} >= ${u}`);++m[A],c=c&&A>=h,h=A}let f=!0;for(let y=0;y<u;++y){let A=m[y]===0;l[y]=A,f=f&&!A,m[y]=Math.max(m[y],1),y>0&&(m[y]+=m[y-1])}if(f&&c){let y=e,A=a;for(let g=0;g<o;++g)d[g]=g;return[y,[o,p],A,l,d]}else{let y=m[u-1],A=k.getArrayFromDType(n,y*p),g=k.getArrayFromDType(r,y),x=new Array(u).fill(0);for(let w=0;w<o;++w){let b=e[w*p],v=x[b],N=(b===0?0:m[b-1])+v;x[b]++;for(let I=0;I<p;++I)A[N*p+I]=e[w*p+I];g[N]=a[w],d[w]=N}for(let w=0;w<u;++w)if(x[w]===0){let b=w===0?0:m[w-1];A[b*p+0]=w;for(let v=1;v<p;++v)A[b*p+v]=0;g[b]=i}return[A,[o,p],g,l,d]}}function g7(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,u=[],l=1,d=-1;for(let y=0;y<o;++y){let A=r[y];if(A===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${y}`);d=y,u.push(1)}else{if(A<0)throw new Error(`size ${y} must be non-negative, not ${A}`);l*=A,u.push(A)}}if(d!==-1){if(l<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let y=Math.trunc(s/l);if(l*y!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${l}. inputShape=${a} outputShape= ${u}`);u[d]=y}let p=k.sizeFromShape(u);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${u}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let y=c-2;y>=0;--y)h[y]=h[y+1]*a[y+1]}let m=[];if(o>0){m[o-1]=1;for(let y=o-2;y>=0;--y)m[y]=m[y+1]*u[y+1]}let f=k.getArrayFromDType(n,i*o);for(let y=0;y<i;++y){let A=0;for(let g=0;g<c;++g)A+=e[y*c+g]*h[g];for(let g=0;g<o;++g)f[y*o+g]=Math.trunc(A/m[g]),A%=m[g]}return[f,[i,o],u]}var x7=Dt((e,t)=>{let n=e-t;return n*n}),lD=Xt(ni,x7),uD={kernelName:ni,backendName:"cpu",kernelFunc:lD};function b7(e,t,n,a){let r=Be(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let u=0;u<o.length;u++)o[u]=i[u]*n[u]+a[u];r.set(t.get(...o),...i)}return r}var v7=Dt((e,t)=>e-t),dD=ny((e,t,n,a)=>({real:e-n,imag:t-a})),ly=Xt(ai,v7,dD),pD={kernelName:ai,backendName:"cpu",kernelFunc:ly};function w7(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Be(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let u=0;u<i.length;u++)i[u]=s[u]%e.shape[u];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function k7(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],u=k.getTypedArrayFromDType(n,i*a),l=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,y=u.subarray(f,f+a),A=l.subarray(f,f+a);for(let g=0;g<a;g++)y[g]=m[g].value,A[g]=m[g].index}let d=t.slice();return d[d.length-1]=a,[Be(d,n,u),Be(d,"int32",l)]}function I7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),u=new Pt(s,a,e),l=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let y=[];for(let A=0;A<s[0];A++)for(let g=0;g<s[2];g++)y.push(u.get(A,m,g));f=y.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let y=Object.keys(i).length;i[f]=y,o[m]=y,l.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Pt(p,a);l.forEach((m,f)=>{for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)c.set(u.get(y,m,A),y,f,A)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var S7="3.6.0";Al("cpu",()=>new hh,1);var N7=rt(wo,e=>e>=0?e:Math.exp(e)-1),cD={kernelName:wo,backendName:"cpu",kernelFunc:N7};function T7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,u=k.getTypedArrayFromDType("float32",i);for(let l=0;l<o.length;l++)u[l]=o[l]<0?s*o[l]:o[l];return n.makeTensorInfo(r.shape,"float32",u)}var hD={kernelName:Ms,backendName:"cpu",kernelFunc:T7},fD=Dt((e,t)=>e<0?t*e:e);function E7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,u]=fD(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(u,a.dtype,o)}var mD={kernelName:Us,backendName:"cpu",kernelFunc:E7},C7=rt(Hs,e=>Math.max(0,e)),yD={kernelName:Hs,backendName:"cpu",kernelFunc:C7},R7=rt(qs,e=>Math.min(Math.max(0,e),6)),AD={kernelName:qs,backendName:"cpu",kernelFunc:R7},M7=rt(Js,e=>1/(1+Math.exp(-e))),gD={kernelName:Js,backendName:"cpu",kernelFunc:M7};function uy(e,t,n,a,r){if(n==="linear")return qa({inputs:{x:t},backend:e});if(n==="relu")return C7({inputs:{x:t},backend:e});if(n==="elu")return N7({inputs:{x:t},backend:e});if(n==="relu6")return R7({inputs:{x:t},backend:e});if(n==="prelu")return E7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return T7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return M7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ht(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),u=k.sizeFromShape(o);k.assert(i===u,()=>`The new shape (${o}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let l=n.data.get(r.dataId);if(l.complexTensorInfos!=null){let d=l.complexTensorInfos.real,p=l.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var xD={kernelName:Xo,backendName:"cpu",kernelFunc:ht};function F7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let u=r.shape.length,l=s.shape.length,d=i?r.shape[u-2]:r.shape[u-1],p=o?s.shape[l-1]:s.shape[l-2],c=i?r.shape[u-1]:r.shape[u-2],h=o?s.shape[l-2]:s.shape[l-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),y=k.sizeFromShape(m),A=k.sizeFromShape(f),g=y===A||y===1||A===1;k.assert(u>=2&&l>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(y>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[y,d,c]:[y,c,d],b=o?[A,h,p]:[A,p,h],v=ht({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ht({inputs:{x:s},backend:n,attrs:{shape:b}}),I=i?v.shape[1]:v.shape[2],E=i?v.shape[2]:v.shape[1],$=o?N.shape[1]:N.shape[2],O=Math.max(y,A),z=n.data.get(v.dataId).values,P=n.data.get(N.dataId).values,D=k.computeStrides(v.shape),U=k.computeStrides(N.shape),[X,G,ee]=i?[D[0],1,D[1]]:[D[0],D[1],1],[Y,re,ne]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=E*$,Q=Be([O,E,$],v.dtype),pe=Q.values,oe=n.blockSize;for(let ge=0;ge<O;ge++)for(let he=0;he<E;he+=oe)for(let Ne=0;Ne<$;Ne+=oe)for(let Te=0;Te<I;Te+=oe){let De=Math.min(he+oe,E),_e=Math.min(Ne+oe,$),ze=Math.min(Te+oe,I);for(let tt=he;tt<De;tt++)for(let nt=Ne;nt<_e;nt++){let it=0;for(let Ze=Te;Ze<ze;Ze++){let pt=Math.min(ge,y-1)*X,Ue=Math.min(ge,A-1)*ne,xn=z[pt+tt*G+Ze*ee],bt=P[Ze*Y+nt*re+Ue];it+=xn*bt}pe[ge*ie+(tt*$+nt)]+=it}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Q.dtype,Q.values)}var bD={kernelName:ys,backendName:"cpu",kernelFunc:F7};function vD(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=F7({inputs:{a:r,b:s},attrs:{transposeA:u,transposeB:l},backend:n}),i&&(h=md({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=uy(n,c,d,o,p),f.push(c),c=m);for(let y of f)n.disposeIntermediateTensorInfo(y);return c}var wD={kernelName:oi,backendName:"cpu",kernelFunc:vD},kD=rt(lo,e=>Math.acos(e)),ID={kernelName:lo,backendName:"cpu",kernelFunc:kD},SD=rt(uo,e=>Math.acosh(e)),ND={kernelName:uo,backendName:"cpu",kernelFunc:SD};function TD(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Be(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let u=r[o];for(let l=0;l<i.length;l++)i[l]+=u[l]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var ED={kernelName:hs,backendName:"cpu",kernelFunc:TD};function CD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),u=o,l=R.getAxesPermutation(u,r.shape.length),d=r;l!=null&&(d=na({inputs:{x:r},backend:n,attrs:{perm:l}}),u=R.getInnerMostAxes(u.length,r.shape.length)),R.assertAxesAreInnerMostDims("all",u,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,u),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x&&b}m[A]=x}l!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var RD={kernelName:po,backendName:"cpu",kernelFunc:CD};function MD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),u=o,l=R.getAxesPermutation(u,r.shape.length),d=r;l!=null&&(d=na({inputs:{x:r},backend:n,attrs:{perm:l}}),u=R.getInnerMostAxes(u.length,r.shape.length)),R.assertAxesAreInnerMostDims("any",u,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,u),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x||b}m[A]=x}l!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var FD={kernelName:co,backendName:"cpu",kernelFunc:MD};function $D(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=na({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=R.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(u.dataId).values;for(let y=0;y<h.length;++y){let A=y*m,g=f[A],x=0;for(let w=0;w<m;++w){let b=f[A+w];b>g&&(g=b,x=w)}h[y]=x}return l.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(d,"int32",h)}var DD={kernelName:fs,backendName:"cpu",kernelFunc:$D};function zD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=na({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=R.getInnerMostAxes(i.length,u.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,u.shape.length);let[d,p]=R.computeOutAndReduceShapes(u.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(u.dataId).values;for(let y=0;y<h.length;++y){let A=y*m,g=f[A],x=0;for(let w=0;w<m;++w){let b=f[A+w];b<g&&(g=b,x=w)}h[y]=x}return l.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(d,"int32",h)}var OD={kernelName:Nu,backendName:"cpu",kernelFunc:zD},_D=rt(ho,e=>Math.asin(e)),PD={kernelName:ho,backendName:"cpu",kernelFunc:_D},LD=rt(fo,e=>Math.asinh(e)),WD={kernelName:fo,backendName:"cpu",kernelFunc:LD},BD=rt(mo,e=>Math.atan(e)),VD={kernelName:mo,backendName:"cpu",kernelFunc:BD},jD=Dt((e,t)=>Math.atan2(e,t)),UD=Xt(Ao,jD),HD={kernelName:Ao,backendName:"cpu",kernelFunc:UD},GD=rt(yo,e=>Math.atanh(e)),qD={kernelName:yo,backendName:"cpu",kernelFunc:GD};function dy(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,u=r.dilationHeight,l=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Be(r.outShape,n),y=f.values,A=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let b=w*A,v=w*a[0];for(let N=0;N<r.inChannels;++N)for(let I=0;I<r.outHeight;++I){let E=I*i-c,$=Math.max(0,E),O=Math.min(r.inHeight,d+E),z=b+I*g;for(let P=0;P<r.outWidth;++P){let D=P*o-h,U=Math.max(0,D),X=Math.min(r.inWidth,p+D),G=m,ee=0,Y=0;for(let ne=$;ne<O;ne+=u){let ie=v+ne*a[1];for(let Q=U;Q<X;Q+=l){let pe=ie+Q*a[2],oe=e[pe+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=z+P*x+N;y[re]=s==="avg"?ee/Y:G}}}return f}function $7(e,t,n,a,r=!1,s=!1){let i=Be(a.outShape,"int32"),o=a.strideHeight,u=a.strideWidth,l=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Be(t,n,e);for(let y=0;y<a.batchSize;++y)for(let A=0;A<a.inChannels;++A)for(let g=0;g<a.outHeight;++g){let x=g*o-h,w=x;for(;w<0;)w+=l;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let N=v*u-m,I=N;for(;I<0;)I+=d;let E=Math.min(a.inWidth,c+N),$=Number.NEGATIVE_INFINITY,O=-1;for(let z=w;z<b;z+=l){let P=z-x;for(let D=I;D<E;D+=d){let U=D-N,X=f.get(y,z,D,A);X>$&&($=X,r?O=s?((y*a.inHeight+z)*a.inWidth+D)*a.inChannels+A:(z*a.inWidth+D)*a.inChannels+A:O=P*c+U)}}i.set(O,y,g,v,A)}}return i}function D7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,u=r.strideWidth,l=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,y=r.padInfo.top,A=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Be(r.outShape,n),w=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],I=r.outShape[4];for(let E=0;E<r.batchSize;++E){let $=E*b,O=E*a[0];for(let z=0;z<r.inChannels;++z)for(let P=0;P<r.outDepth;++P){let D=P*i-f,U=D;for(;U<0;)U+=l;let X=Math.min(r.inDepth,c+D),G=$+P*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-y,re=Y;for(;re<0;)re+=d;let ne=Math.min(r.inHeight,h+Y),ie=G+ee*N;for(let Q=0;Q<r.outWidth;++Q){let pe=Q*u-A,oe=pe;for(;oe<0;)oe+=p;let ge=Math.min(r.inWidth,m+pe),he=ie+Q*I,Ne=g,Te=0,De=0;for(let ze=U;ze<X;ze+=l){let tt=O+ze*a[1];for(let nt=re;nt<ne;nt+=d){let it=tt+nt*a[2];for(let Ze=oe;Ze<ge;Ze+=p){let pt=it+Ze*a[3],Ue=e[pt+z];if(s==="max"&&Ue>Ne?Ne=Ue:s==="avg"&&(Te+=Ue,De++),isNaN(Ne))break}if(isNaN(Ne))break}if(isNaN(Ne))break}let _e=he+z;w[_e]=s==="avg"?Te/De:Ne}}}}return x}function XD(e,t){let n=Be(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,u=t.dilationWidth,l=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let y=0;y<t.inChannels;++y)for(let A=0;A<t.outDepth;++A){let g=A*a-c,x=g;for(;x<0;)x+=i;let w=Math.min(t.inDepth,l+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,N=v;for(;N<0;)N+=o;let I=Math.min(t.inHeight,d+v);for(let E=0;E<t.outWidth;++E){let $=E*s-m,O=$;for(;O<0;)O+=u;let z=Math.min(t.inWidth,p+$),P=Number.NEGATIVE_INFINITY,D=-1;for(let U=x;U<w;U+=i){let X=U-g;for(let G=N;G<I;G+=o){let ee=G-v;for(let Y=O;Y<z;Y+=u){let re=Y-$,ne=e.get(f,U,G,Y,y);ne>=P&&(P=ne,D=X*d*p+ee*d+re)}}}n.set(D,f,A,b,E,y)}}}return n}function KD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:u}=a,l=1;k.assert(R.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let d=R.computePool2DInfo(r.shape,s,i,l,o,u),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=qa({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=dy(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var ZD={kernelName:ms,backendName:"cpu",kernelFunc:KD};function YD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=a;ve(r,"avgPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,u,l),p=n.data.get(r.dataId).values,c=D7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var JD={kernelName:Tu,backendName:"cpu",kernelFunc:YD};function QD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=a;ve([r,s],"avgPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,u,l),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,y=d.filterWidth,A=d.dilationDepth,g=d.dilationHeight,x=d.dilationWidth,w=d.effectiveFilterDepth,b=d.effectiveFilterHeight,v=d.effectiveFilterWidth,N=w-1-d.padInfo.front,I=v-1-d.padInfo.left,E=b-1-d.padInfo.top,$=Be(s.shape,"float32"),O=1/(m*f*y),z=n.bufferSync(r);for(let P=0;P<d.batchSize;++P)for(let D=0;D<d.inChannels;++D)for(let U=0;U<d.inDepth;++U)for(let X=0;X<d.inHeight;++X)for(let G=0;G<d.inWidth;++G){let ee=U-N,Y=X-E,re=G-I,ne=0;for(let ie=0;ie<w;ie+=A){let Q=(ee+ie)/p;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let pe=0;pe<b;pe+=g){let oe=(Y+pe)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let ge=0;ge<v;ge+=x){let he=(re+ge)/h;he<0||he>=d.outWidth||Math.floor(he)!==he||(ne+=z.get(P,Q,oe,he,D))}}}$.set(ne*O,P,U,X,G,D)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var ez={kernelName:Wp,backendName:"cpu",kernelFunc:QD};function tz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=a,d=R.computePool2DInfo(i.shape,o,u,1,l),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,y=d.dilationWidth,A=d.effectiveFilterHeight,g=d.effectiveFilterWidth,x=g-1-d.padInfo.left,w=A-1-d.padInfo.top,b=Be(i.shape,"float32"),v=1/(h*m),N=n.data.get(r.dataId).values,I=Be(r.shape,"float32",N);for(let E=0;E<d.batchSize;++E)for(let $=0;$<d.inChannels;++$)for(let O=0;O<d.inHeight;++O)for(let z=0;z<d.inWidth;++z){let P=O-w,D=z-x,U=0;for(let X=0;X<A;X+=f){let G=(P+X)/p;if(!(G<0||G>=d.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=y){let Y=(D+ee)/c;Y<0||Y>=d.outWidth||Math.floor(Y)!==Y||(U+=I.get(E,G,Y,$))}}b.set(U*v,E,O,z,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var nz={kernelName:Lp,backendName:"cpu",kernelFunc:tz};function az(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:u}=t;k.assert(o.shape.length===u.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,u,s,i],"batchNorm");let{varianceEpsilon:l}=a;l==null&&(l=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(u.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),y=m.length,A=h.length,g=c.length,x=p.length,w=0,b=0,v=0,N=0;for(let I=0;I<d.length;++I)f[I]=m[w++]+(d[I]-p[b++])*h[v++]/Math.sqrt(c[N++]+l),w>=y&&(w=0),b>=x&&(b=0),v>=A&&(v=0),N>=g&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var rz={kernelName:Es,backendName:"cpu",kernelFunc:az};function sz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((A,g)=>A*g),u=R.getReshaped(r.shape,s,o),l=R.getPermuted(u.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=ht({inputs:{x:r},backend:n,attrs:{shape:u}}),m=na({inputs:{x:h},backend:n,attrs:{perm:l}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:d}}),y=Ti({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),y}var iz={kernelName:Eu,backendName:"cpu",kernelFunc:sz};function oz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,l=ay(o,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,l)}var lz={kernelName:Bp,backendName:"cpu",kernelFunc:oz},uz=rt(Fr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),dz={kernelName:Fr,backendName:"cpu",kernelFunc:uz},pz=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,u=n.data.get(i.dataId).values;for(let l=0;l<o.length;l++){let d=o[l],p=u[l];a[l]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},cz={kernelName:Cu,backendName:"cpu",kernelFunc:pz};function Dl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var hz={kernelName:nc,backendName:"cpu",kernelFunc:Dl};function zl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return qa({inputs:{x:o[0]},backend:n});let u=o.map(f=>f.shape);if(R.assertParamsConsistent(u,s),o[0].dtype==="complex64"){let f=o.map(w=>Ni({inputs:{input:w},backend:n})),y=o.map(w=>Dl({inputs:{input:w},backend:n})),A=zl({inputs:f,backend:n,attrs:{axis:s}}),g=zl({inputs:y,backend:n,attrs:{axis:s}}),x=Bn({inputs:{real:A,imag:g},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),y.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(g),x}let l=o.map(f=>{let y=k.sizeFromShape(f.shape.slice(s));return ht({inputs:{x:f},backend:n,attrs:{shape:[-1,y]}})}),d=l.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=R.computeOutShape(l.map(f=>f.shape),1);let p=l[0].shape[0]===1,c=ry(d,i,t[0].dtype,p),h=R.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var fz={kernelName:go,backendName:"cpu",kernelFunc:zl};function z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:d}=a;ve([r,s],"conv2d");let p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(r.shape,s.shape,i,l,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,y=c.dilationWidth,A=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Pt(c.outShape,r.dtype),b=k.computeStrides(r.shape),v=k.computeStrides(s.shape),N=b[0],I=x?b[1]:b[2],E=x?b[2]:1,$=x?1:b[1],O=w.strides[0],z=x?w.strides[1]:w.strides[2],P=x?w.strides[2]:1,D=x?1:w.strides[1],U=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*N,re=ee*O;for(let ne=0;ne<c.outHeight;++ne){let ie=re+ne*z,Q=ne*c.strideHeight-g;for(let pe=0;pe<h;++pe){let oe=Q+pe*f;if(oe<0||oe>=c.inHeight)continue;let ge=pe*v[0],he=Y+oe*I;for(let Ne=0;Ne<c.outWidth;++Ne){let Te=ie+Ne*P,De=Ne*c.strideWidth-A;for(let _e=0;_e<m;++_e){let ze=De+_e*y;if(ze<0||ze>=c.inWidth)continue;let tt=ge+_e*v[1],nt=he+ze*E,it=tt;for(let Ze=0;Ze<c.inChannels;++Ze){let pt=U[nt+Ze*$];for(let Ue=0;Ue<c.outChannels;++Ue)G[Te+Ue*D]+=pt*X[it+Ue];it+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var mz={kernelName:xs,backendName:"cpu",kernelFunc:z7};function yz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:d}=a;ve([r,s],"conv2dBackpropFilter");let p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(r.shape,d,i,1,o,l,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:y}=c,A=c.dataFormat==="channelsLast",g=new Pt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=new Pt(r.shape,r.dtype,b),I=new Pt(s.shape,s.dtype,v);for(let E=0;E<f;++E){let $=Math.max(0,Math.ceil((w-E)/h)),O=Math.min(c.outHeight,(c.inHeight+w-E)/h);for(let z=0;z<y;++z){let P=Math.max(0,Math.ceil((x-z)/m)),D=Math.min(c.outWidth,(c.inWidth+x-z)/m);for(let U=0;U<c.inChannels;++U)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<O;++Y){let re=E+Y*h-w;for(let ne=P;ne<D;++ne){let ie=z+ne*m-x;A?G+=N.get(ee,re,ie,U)*I.get(ee,Y,ne,X):G+=N.get(ee,U,re,ie)*I.get(ee,X,Y,ne)}}g.set(G,E,z,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Az={kernelName:jp,backendName:"cpu",kernelFunc:yz};function gz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:d}=a;ve([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=R.convertConv2DDataFormat(l),m=R.computeConv2DInfo(i,s.shape,o,1,u,d,!1,h),f=new Pt(m.inShape,"float32"),y=f.values,A=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,w,b]=p,{batchSize:v,filterHeight:N,filterWidth:I,inChannels:E,inHeight:$,inWidth:O,outChannels:z,outHeight:P,outWidth:D,strideHeight:U,strideWidth:X}=m;h=m.dataFormat;let G=N-1-m.padInfo.top,ee=I-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],ne=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],pe=c[0],oe=Y?c[1]:c[2],ge=Y?c[2]:1,he=Y?1:c[1];for(let Ne=0;Ne<v;++Ne)for(let Te=0;Te<E;++Te)for(let De=0;De<$;++De){let _e=De-G,ze=Math.max(0,Math.ceil(_e/U)),tt=Math.min(P,(N+_e)/U);for(let nt=0;nt<O;++nt){let it=nt-ee,Ze=Math.max(0,Math.ceil(it/X)),pt=Math.min(D,(I+it)/X),Ue=0;for(let bt=ze;bt<tt;++bt){let Kn=bt*U-_e;for(let Yt=Ze;Yt<pt;++Yt){let bn=Yt*X-it,Zn=pe*Ne+oe*bt+ge*Yt,Dn=x*(N-1-Kn)+w*(I-1-bn)+b*Te;for(let sn=0;sn<z;++sn){let Jt=A[Zn+he*sn],_a=g[Dn+sn];Ue+=Jt*_a}}}let xn=re*Ne+ne*De+ie*nt+Q*Te;y[xn]=Ue}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var xz={kernelName:bs,backendName:"cpu",kernelFunc:gz};function bz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:u}=a;ve([r,s],"conv3d");let l=R.computeConv3DInfo(r.shape,s.shape,i,u,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:y}=l,A=y.front,g=y.left,x=y.top,w=new Pt(l.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=w.values,I=k.computeStrides(r.shape),E=k.computeStrides(s.shape);for(let $=0;$<l.batchSize;++$){let O=$*I[0],z=$*w.strides[0];for(let P=0;P<l.outDepth;++P){let D=z+P*w.strides[1],U=P*l.strideDepth-A;for(let X=0;X<d;++X){let G=U+X*h;if(G<0||G>=l.inDepth)continue;let ee=X*E[0],Y=O+G*I[1];for(let re=0;re<l.outHeight;++re){let ne=D+re*w.strides[2],ie=re*l.strideHeight-x;for(let Q=0;Q<p;++Q){let pe=ie+Q*m;if(pe<0||pe>=l.inHeight)continue;let oe=ee+Q*E[1],ge=Y+pe*I[2];for(let he=0;he<l.outWidth;++he){let Ne=ne+he*l.outChannels,Te=he*l.strideWidth-g;for(let De=0;De<c;++De){let _e=Te+De*f;if(_e<0||_e>=l.inWidth)continue;let ze=oe+De*E[2],tt=ge+_e*l.inChannels,nt=ze;for(let it=0;it<l.inChannels;++it){let Ze=b[tt+it];for(let pt=0;pt<l.outChannels;++pt)N[Ne+pt]+=Ze*v[nt+pt];nt+=l.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var vz={kernelName:Ru,backendName:"cpu",kernelFunc:bz};function wz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:u}=a;ve([r,s],"conv3dBackpropFilterV2");let l=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=R.computeConv3DInfo(r.shape,u,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,y=p.filterHeight,A=p.filterWidth,g=new Pt(p.filterShape,"float32"),x=g.values,[w,b,v,N]=g.strides,I=n.data.get(s.dataId).values,[E,$,O,z]=d,P=n.data.get(r.dataId).values,[D,U,X,G]=l,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((ee-ne)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-ne)/c),pe=ne*w;for(let oe=0;oe<y;++oe){let ge=Math.max(0,Math.ceil((re-oe)/h)),he=Math.min(p.outHeight,(p.inHeight+re-oe)/h),Ne=oe*b+pe;for(let Te=0;Te<A;++Te){let De=Math.max(0,Math.ceil((Y-Te)/m)),_e=Math.min(p.outWidth,(p.inWidth+Y-Te)/m),ze=Te*v+Ne;for(let tt=0;tt<p.inChannels;++tt){let nt=tt*N+ze;for(let it=0;it<p.outChannels;++it){let Ze=0;for(let pt=0;pt<p.batchSize;++pt){let Ue=pt*D,xn=pt*E;for(let bt=ie;bt<Q;++bt){let Kn=(ne+bt*c-ee)*U+Ue,Yt=bt*$+xn;for(let bn=ge;bn<he;++bn){let Zn=(oe+bn*h-re)*X+Kn,Dn=bn*O+Yt;for(let sn=De;sn<_e;++sn){let Jt=(Te+sn*m-Y)*G+Zn,_a=sn*z+Dn;Ze+=P[Jt+tt]*I[_a+it]}}}}x[nt+it]=Ze}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var kz={kernelName:Up,backendName:"cpu",kernelFunc:wz};function Iz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:u}=a;ve([r],"conv3dBackpropInputV2");let l=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=R.computeConv3DInfo(u,s.shape,o,1,i),c=new Pt(p.inShape,"float32"),h=c.values,[m,f,y,A]=c.strides,g=n.data.get(r.dataId).values,[x,w,b,v]=l,N=n.data.get(s.dataId).values,[I,E,$,O]=d,{batchSize:z,filterDepth:P,filterHeight:D,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:ne,outHeight:ie,outWidth:Q,strideDepth:pe,strideHeight:oe,strideWidth:ge}=p,he=P-1-p.padInfo.front,Ne=D-1-p.padInfo.top,Te=U-1-p.padInfo.left;for(let De=0;De<z;++De)for(let _e=0;_e<X;++_e)for(let ze=0;ze<G;++ze){let tt=ze-he,nt=Math.max(0,Math.ceil(tt/pe)),it=Math.min(ne,(P+tt)/pe);for(let Ze=0;Ze<ee;++Ze){let pt=Ze-Ne,Ue=Math.max(0,Math.ceil(pt/oe)),xn=Math.min(ie,(D+pt)/oe);for(let bt=0;bt<Y;++bt){let Kn=bt-Te,Yt=Math.max(0,Math.ceil(Kn/ge)),bn=Math.min(Q,(U+Kn)/ge),Zn=0;for(let Dn=nt;Dn<it;++Dn){let sn=Dn*pe-tt;for(let Jt=Ue;Jt<xn;++Jt){let _a=Jt*oe-pt;for(let ia=Yt;ia<bn;++ia){let oa=ia*ge-Kn,wr=x*De+w*Dn+b*Jt+v*ia,ar=I*(P-1-sn)+E*(D-1-_a)+$*(U-1-oa)+O*_e;for(let kr=0;kr<re;++kr){let Gi=g[wr+kr],Pa=N[ar+kr];Zn+=Gi*Pa}}}}h[m*De+f*ze+y*Ze+A*bt+_e]=Zn}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var Sz={kernelName:Hp,backendName:"cpu",kernelFunc:Iz},Nz=rt(vs,e=>Math.cos(e)),Tz={kernelName:vs,backendName:"cpu",kernelFunc:Nz},Ez=rt(xo,e=>Math.cosh(e)),Cz={kernelName:xo,backendName:"cpu",kernelFunc:Ez};function Rz(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,y]=o,A=Be([m,f,y,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),v=k.computeStrides(A.shape);for(let N=0;N<m;N++){let I=N*4,E=g[I],$=g[I+1],O=g[I+2],z=g[I+3],P=x[N];if(P>=d)continue;let D=f>1?(O-E)*(p-1)/(f-1):0,U=y>1?(z-$)*(c-1)/(y-1):0;for(let X=0;X<f;X++){let G=f>1?E*(p-1)+X*D:.5*(E+O)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<y;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+N*v[0];A.values[re]=l}continue}if(u==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let ne=0;ne<y;ne++){let ie=y>1?$*(c-1)+ne*U:.5*($+z)*(c-1);if(ie<0||ie>c-1){for(let ge=0;ge<h;ge++){let he=ge+ne*v[2]+X*v[1]+N*v[0];A.values[he]=l}continue}let Q=Math.floor(ie),pe=Math.ceil(ie),oe=ie-Q;for(let ge=0;ge<h;ge++){let he=ge+Q*b[2]+ee*b[1]+P*b[0],Ne=w[he];he=ge+pe*b[2]+ee*b[1]+P*b[0];let Te=w[he];he=ge+Q*b[2]+Y*b[1]+P*b[0];let De=w[he];he=ge+pe*b[2]+Y*b[1]+P*b[0];let _e=w[he],ze=Ne+(Te-Ne)*oe,tt=De+(_e-De)*oe;he=ge+ne*v[2]+X*v[1]+N*v[0],A.values[he]=ze+(tt-ze)*re}}}else for(let ee=0;ee<y;++ee){let Y=y>1?$*(c-1)+ee*U:.5*($+z)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+N*v[0];A.values[Q]=l}continue}let re=Math.round(Y),ne=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+ne*b[1]+P*b[0],pe=ie+ee*v[2]+X*v[1]+N*v[0];A.values[pe]=w[Q]}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Mz={kernelName:bo,backendName:"cpu",kernelFunc:Rz};function Fz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let u=R.getAxesPermutation([s],r.shape.length),l=r;u!=null&&(l=na({inputs:{x:r},backend:n,attrs:{perm:u}}));let d=R.getInnerMostAxes(1,r.shape.length)[0];if(d!==l.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${l.shape.length-1} but got axis=${d}`);let p=da(l.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(l.shape),p),h=n.data.get(l.dataId).values,m=l.shape[l.shape.length-1],f=o?(A,g)=>A+m-g-1:(A,g)=>A+g;for(let A=0;A<h.length;A+=m)for(let g=0;g<m;g++){let x=f(A,g);if(g===0)c[x]=i?0:h[x];else{let w=f(A,g-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let y=n.makeTensorInfo(l.shape,p,c);if(u!=null){let A=R.getUndoAxesPermutation(u),g=na({inputs:{x:y},backend:n,attrs:{perm:A}});return n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(l),g}return y}var $z={kernelName:ws,backendName:"cpu",kernelFunc:Fz};function Dz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let u=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,d=ay(u,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(s),d=Q3(u,l,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var zz={kernelName:Gp,backendName:"cpu",kernelFunc:Dz};function Oz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],u=r.shape[1],l=r.shape[2],d=r.shape[3],p=u*s,c=l*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),y=0;for(let A=0;A<o;++A)for(let g=0;g<p;++g){let x=Math.floor(g/s),w=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),N=b%s,I=(w*s+N)*h;for(let E=0;E<h;++E){let $=E+I+d*(v+l*(x+u*A));f[y++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var _z={kernelName:vo,backendName:"cpu",kernelFunc:Oz};function O7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=a;ve([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=u;c==null&&(c=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(r.shape,s.shape,i,c,o,l,!0),{filterHeight:m,filterWidth:f,dilationHeight:y,dilationWidth:A,padInfo:g}=h,x=g.left,w=g.top,b=h.outChannels/h.inChannels,v=new Pt(h.outShape,r.dtype),N=n.data.get(r.dataId).values,I=n.data.get(s.dataId).values,E=v.values;for(let $=0;$<h.batchSize;++$){let O=$*d[0],z=$*v.strides[0];for(let P=0;P<h.outHeight;++P){let D=z+P*v.strides[1],U=P*h.strideHeight-w;for(let X=0;X<m;++X){let G=U+X*y;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=O+G*d[1];for(let re=0;re<h.outWidth;++re){let ne=D+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let pe=ie+Q*A;if(pe<0||pe>=h.inWidth)continue;let oe=ee+Q*p[1],ge=Y+pe*h.inChannels,he=ne,Ne=oe;for(let Te=0;Te<h.inChannels;++Te){let De=N[ge+Te];for(let _e=0;_e<b;++_e)E[he+_e]+=De*I[Ne+_e];he+=b,Ne+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var Pz={kernelName:ks,backendName:"cpu",kernelFunc:O7};function Lz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:d}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=R.computeConv2DInfo(r.shape,d,i,o,u,l,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,y=new Pt(p.filterShape,"float32"),A=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,w=n.data.get(r.dataId).values,b=new Pt(r.shape,r.dtype,w),v=n.data.get(s.dataId).values,N=new Pt(s.shape,s.dtype,v);for(let I=0;I<m;++I){let E=Math.max(0,Math.ceil((g-I)/c)),$=Math.min(p.outHeight,(p.inHeight+g-I)/c);for(let O=0;O<f;++O){let z=Math.max(0,Math.ceil((A-O)/h)),P=Math.min(p.outWidth,(p.inWidth+A-O)/h);for(let D=0;D<p.outChannels;++D){let U=Math.trunc(D/x),X=D%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=E;Y<$;++Y){let re=I+Y*c-g;for(let ne=z;ne<P;++ne){let ie=O+ne*h-A;G+=b.get(ee,re,ie,U)*N.get(ee,Y,ne,D)}}y.set(G,I,O,U,X)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Wz={kernelName:qp,backendName:"cpu",kernelFunc:Lz};function Bz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:d}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=R.computeConv2DInfo(d,s.shape,i,o,u,l,!0),m=new Pt(h.inShape,"float32"),f=m.values,[y,A,g]=m.strides,x=n.data.get(r.dataId).values,[w,b,v]=p,N=n.data.get(s.dataId).values,[I,E,$]=c,{batchSize:O,filterHeight:z,filterWidth:P,inChannels:D,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:ne}=h,ie=z-1-h.padInfo.top,Q=P-1-h.padInfo.left,pe=G/D;for(let oe=0;oe<O;++oe)for(let ge=0;ge<D;++ge)for(let he=0;he<U;++he){let Ne=he-ie,Te=Math.max(0,Math.ceil(Ne/re)),De=Math.min(ee,(z+Ne)/re);for(let _e=0;_e<X;++_e){let ze=_e-Q,tt=Math.max(0,Math.ceil(ze/ne)),nt=Math.min(Y,(P+ze)/ne),it=0;for(let Ze=Te;Ze<De;++Ze){let pt=Ze*re-Ne;for(let Ue=tt;Ue<nt;++Ue){let xn=Ue*ne-ze,bt=w*oe+b*Ze+v*Ue,Kn=I*(z-1-pt)+E*(P-1-xn)+$*ge;for(let Yt=0;Yt<pe;++Yt){let bn=ge*pe+Yt,Zn=x[bt+bn],Dn=N[Kn+Yt];it+=Zn*Dn}}}f[y*oe+A*he+g*_e+ge]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var Vz={kernelName:Xp,backendName:"cpu",kernelFunc:Bz};function jz(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Be([r,r],a.dtype),o=i.values;for(let l=0;l<s.length;l++)o[l*r+l]=s[l];let u=[...a.shape,...a.shape];return n.makeTensorInfo(u,i.dtype,i.values)}var Uz={kernelName:Kp,backendName:"cpu",kernelFunc:jz},Hz={kernelName:Mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,u=t,l=u.data.get(a.dataId).values,d=a.shape.length,p=u.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:y,outHeight:A,outWidth:g,padInfo:x,strideHeight:w,strideWidth:b,filterHeight:v,filterWidth:N,dilationHeight:I,dilationWidth:E,outShape:$}=R.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),O=k.sizeFromShape($),z=$.length,P=k.getArrayFromDType(a.dtype,O);for(let D=0;D<h;++D)for(let U=0;U<A;++U){let X=U*w-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<y;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*I;if(Q>=0&&Q<m)for(let pe=0;pe<N;++pe){let oe=ee+pe*E;if(oe>=0&&oe<f){let ge=k.locToIndex([D,Q,oe,Y],d,k.computeStrides(a.shape)),he=k.locToIndex([ie,pe,Y],c,k.computeStrides(r.shape)),Ne=l[ge]+p[he];Ne>re&&(re=Ne)}}}let ne=k.locToIndex([D,U,G,Y],z,k.computeStrides($));P[ne]=re}}}return{dataId:u.write(k.toTypedArray(P,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},Gz={kernelName:Yp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:u}=n,l=t,d=k.toNestedArray(a.shape,l.data.get(a.dataId).values),p=k.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:y,outWidth:A,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:I,outShape:E}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",u);k.assert(s.rank===E.length,()=>`Error in ${Yp}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let $=k.toNestedArray(E,l.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let z=0;z<c;++z)for(let P=0;P<y;++P){let D=P*x-g.top;for(let U=0;U<A;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let ne=0;ne<b;++ne){let ie=D+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let pe=X+Q*I;if(pe>=0&&pe<m){let oe=d[z][ie][pe][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ne,re=Q)}}}O[Y][re][G]+=$[z][P][U][G]}}}return{dataId:l.write(k.toTypedArray(O,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},qz={kernelName:Zp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:u}=n,l=t,d=k.toNestedArray(a.shape,l.data.get(a.dataId).values),p=k.toNestedArray(r.shape,l.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:y,outWidth:A,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:I,outShape:E}=R.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",u);k.assert(s.rank===E.length,()=>`Error in ${Zp}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let $=k.toNestedArray(E,l.data.get(s.dataId).values),O=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let z=0;z<c;++z)for(let P=0;P<y;++P){let D=P*x-g.top;for(let U=0;U<A;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=D<0?0:D,re=X<0?0:X;for(let ne=0;ne<b;++ne){let ie=D+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let pe=X+Q*I;if(pe>=0&&pe<m){let oe=d[z][ie][pe][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ie,re=pe)}}}O[z][Y][re][G]+=$[z][P][U][G]}}}return{dataId:l.write(k.toTypedArray(O,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function yd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=Hr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=qa({inputs:{x:r},backend:n});let u=o.shape.length,l=k.parseAxisParam(s,o.shape),d=R.getAxesPermutation(l,u),p=l,c=o;d!=null&&(c=na({inputs:{x:o},backend:n,attrs:{perm:d}}),p=R.getInnerMostAxes(p.length,u)),R.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=R.computeOutAndReduceShapes(c.shape,p),f=R.upcastType(c.dtype,"int32"),y=fh(n,h,f),A=k.sizeFromShape(m),g=n.data.get(y.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<g.length;++w){let b=w*A,v=0;for(let N=0;N<A;++N)v+=x[b+N];g[w]=v}if(i){let w=R.expandShapeToKeepDim(y.shape,l),b=y;y=ht({inputs:{x:y},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),y}var Xz={kernelName:ei,backendName:"cpu",kernelFunc:yd};function Kz(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:u}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:d}=R.getEinsumComputePath(o,u),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let y of d[f]){let{permutationIndices:A,expandDims:g}=R.getEinsumPermutation(h,u[y]),x;R.isIdentityPermutation(A)?x=s[y]:(x=na({inputs:{x:s[y]},backend:n,attrs:{perm:A}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=ht({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=mh({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(l[f]>=0&&(c=yd({inputs:{x:c},backend:n,attrs:{axis:l[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Zz={kernelName:Jp,backendName:"cpu",kernelFunc:Kz};function Yz(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let u=0;u<i.length;++u){let l=i[u];l>=1?s[u]=o[u]:s[u]=o[u]*(l+1)}return n.makeTensorInfo(r.shape,"float32",s)}var Jz={kernelName:Qp,backendName:"cpu",kernelFunc:Yz},Qz=Dt((e,t)=>e===t?1:0),_7=Xt(Io,Qz,null,"bool"),eO={kernelName:Io,backendName:"cpu",kernelFunc:_7},tO=R.ERF_P,nO=R.ERF_A1,aO=R.ERF_A2,rO=R.ERF_A3,sO=R.ERF_A4,iO=R.ERF_A5,oO=rt(ko,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+tO*n);return t*(1-((((iO*a+sO)*a+rO)*a+aO)*a+nO)*a*Math.exp(-n*n))}),lO={kernelName:ko,backendName:"cpu",kernelFunc:oO};function Ah(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),u=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),o.splice(u,0,1),ht({inputs:{x:r},backend:n,attrs:{shape:o}})}var uO={kernelName:So,backendName:"cpu",kernelFunc:Ah},dO=Dt((e,t)=>e/t),py=Xt(Is,dO),cy={kernelName:Is,backendName:"cpu",kernelFunc:py};function P7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,u=i.complexTensorInfos.imag,l=[r,s],d=k.sizeFromShape(l),p=k.getTypedArrayFromDType("float32",d),c=k.getTypedArrayFromDType("float32",d);for(let y=0;y<r;y++){let A=Ti({inputs:{x:o},backend:n,attrs:{begin:[y,0],size:[1,s]}}),g=Ti({inputs:{x:u},backend:n,attrs:{begin:[y,0],size:[1,s]}}),x=Bn({inputs:{real:A,imag:g},backend:n}),{real:w,imag:b}=pO(x,t,n),v=R.mergeRealAndImagArrays(w,b);for(let N=0;N<s;N++){let I=R.getComplexWithIndex(v,N);p[y*s+N]=I.real,c[y*s+N]=I.imag}n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(l,"float32",p),m=n.makeTensorInfo(l,"float32",c),f=Bn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function pO(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(cO(a)){let o=hy(s,i,a,t,n),u=[e.shape[0],e.shape[1]];if(t){let l=n.makeTensorInfo(u,"float32",o.real),d=n.makeTensorInfo(u,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=qa({inputs:{x:p},backend:n}),h=cy.kernelFunc({inputs:{a:l,b:p},backend:n}),m=cy.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,y=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:y}}return o}else{let o=R.mergeRealAndImagArrays(s,i),u=hO(o,a,t);return R.splitRealAndImagArrays(u)}}function cO(e){return(e&e-1)==0}function hy(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),u=o.real,l=o.imag,d=[u.length],p=r.makeTensorInfo(d,"float32",u),c=r.makeTensorInfo(d,"float32",l),h=Bn({inputs:{real:p,imag:c},backend:r}),m=R.complexWithOddIndex(s),f=m.real,y=m.imag,A=[f.length],g=r.makeTensorInfo(A,"float32",f),x=r.makeTensorInfo(A,"float32",y),w=Bn({inputs:{real:g,imag:x},backend:r}),b=hy(u,l,i,a,r),v=b.real,N=b.imag,I=[v.length],E=r.makeTensorInfo(I,"float32",v),$=r.makeTensorInfo(I,"float32",N),O=Bn({inputs:{real:E,imag:$},backend:r}),z=hy(f,y,i,a,r),P=z.real,D=z.imag,U=[P.length],X=r.makeTensorInfo(U,"float32",P),G=r.makeTensorInfo(U,"float32",D),ee=Bn({inputs:{real:X,imag:G},backend:r}),Y=R.exponents(n,a),re=[Y.real.length],ne=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=Bn({inputs:{real:ne,imag:ie},backend:r}),pe=mh({inputs:{a:Q,b:ee},backend:r}),oe=md({inputs:{a:O,b:pe},backend:r}),ge=ly({inputs:{a:O,b:pe},backend:r}),he=Ni({inputs:{input:oe},backend:r}),Ne=Ni({inputs:{input:ge},backend:r}),Te=Dl({inputs:{input:oe},backend:r}),De=Dl({inputs:{input:ge},backend:r}),_e=zl({inputs:[he,Ne],backend:r,attrs:{axis:0}}),ze=zl({inputs:[Te,De],backend:r,attrs:{axis:0}}),tt=r.data.get(_e.dataId).values,nt=r.data.get(ze.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(O),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(pe),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ge),r.disposeIntermediateTensorInfo(he),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(De),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(ze),{real:tt,imag:nt}}function hO(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let u=R.exponent(r*o,t,n),l=R.getComplexWithIndex(e,o);s+=l.real*u.real-l.imag*u.imag,i+=l.real*u.imag+l.imag*u.real}n&&(s/=t,i/=t),R.assignToTypedArray(a,s,i,r)}return a}function fO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),u=P7(o,!1,n),l=ht({inputs:{x:u},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var mO={kernelName:ec,backendName:"cpu",kernelFunc:fO};function fy(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return AO(o,r,i),t.makeTensorInfo(a,i,o)}var yO={kernelName:Fu,backendName:"cpu",kernelFunc:fy};function AO(e,t,n){e.fill(t)}var gO={kernelName:To,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,u,l]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*u*o*l;for(let h=0;h<o;h++){let m=h*(u*l);for(let f=0;f<u;f++){let y=f*l;for(let A=0;A<l;A++){let g=[i,h,f,A][2],x=Math.round(u-g),w=c+m+y+A,b=d[w];if(x>=0&&x<u){let v=x*l,N=c+m+v+A;b=d[N]}s[w]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},xO=Dt((e,t)=>Math.floor(e/t)),bO=Xt(Ts,xO,null,"int32"),vO={kernelName:Ts,backendName:"cpu",kernelFunc:bO};function wO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=z7({inputs:{x:r,filter:s},backend:n,attrs:{strides:u,pad:l,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let y=f;f=md({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(y)}if(h){let y=f;f=uy(n,f,h,o,m),n.disposeIntermediateTensorInfo(y)}return f}var kO={kernelName:li,backendName:"cpu",kernelFunc:wO};function IO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=O7({inputs:{x:r,filter:s},backend:n,attrs:{strides:u,pad:l,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let y=f;f=md({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(y)}if(h){let y=f;f=uy(n,f,h,o,m),n.disposeIntermediateTensorInfo(y)}return f}var SO={kernelName:ui,backendName:"cpu",kernelFunc:IO};function NO(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[u,l,d,p]=R.prepareAndValidate(a,r);if(l===0)return n.makeTensorInfo(u,a.dtype,[]);let c=Be([l,d],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<l;f++){let y=[],A=0;for(let g=0;g<o;g++){let x=h[f*o+g];A+=x*p[g],y.push(x)}if(A<0||A>=s/d)throw new Error(`Invalid indices: ${y} does not index into ${a.shape}`);for(let g=0;g<d;g++)c.values[f*d+g]=m[A*d+g]}return n.makeTensorInfo(u,c.dtype,c.values)}var TO={kernelName:Co,backendName:"cpu",kernelFunc:NO};function EO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let u=o;o==null&&(u=0);let l=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],p=R.segment_util.collectGatherOpShapeInfo(r,s,d,u),c=ht({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ht({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,l/p.batchSize]}}),m=[p.batchSize,p.outerSize,l/p.batchSize,p.sliceSize],f=n.bufferSync(h),y=n.bufferSync(c),A=s7(y,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,A.dtype,A.values)}var CO={kernelName:Eo,backendName:"cpu",kernelFunc:EO},RO=Dt((e,t)=>e>=t?1:0),MO=Xt(Cs,RO,null,"bool"),FO={kernelName:Cs,backendName:"cpu",kernelFunc:MO};function $O(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ht({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),u=P7(o,!0,n),l=ht({inputs:{x:u},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),l}var DO={kernelName:tc,backendName:"cpu",kernelFunc:$O},zO=rt(Mo,e=>Number.isFinite(e)?1:0,"bool"),OO={kernelName:Mo,backendName:"cpu",kernelFunc:zO},_O=rt(Fo,e=>Math.abs(e)===Infinity?1:0,"bool"),PO={kernelName:Fo,backendName:"cpu",kernelFunc:_O},LO=rt($o,e=>Number.isNaN(e)?1:0,"bool"),WO={kernelName:$o,backendName:"cpu",kernelFunc:LO},BO=Dt((e,t)=>e<=t?1:0),VO=Xt(zo,BO,null,"bool"),jO={kernelName:zo,backendName:"cpu",kernelFunc:VO};function UO(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=l7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var HO={kernelName:ac,backendName:"cpu",kernelFunc:UO},GO=rt(Oo,e=>Math.log1p(e)),qO={kernelName:Oo,backendName:"cpu",kernelFunc:GO},XO=Dt((e,t)=>e&&t),KO=Xt(_o,XO,null,"bool"),ZO={kernelName:_o,backendName:"cpu",kernelFunc:KO},YO=rt($u,e=>e?0:1,"bool"),JO={kernelName:$u,backendName:"cpu",kernelFunc:YO},QO=Dt((e,t)=>e||t),e_=Xt(Du,QO,null,"bool"),t_={kernelName:Du,backendName:"cpu",kernelFunc:e_};function n_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:u}=a;ve(r,"LRN");let l=r.shape[3],d=l-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let y=f%l,A=f-y+Math.max(0,y-s),g=f-y+Math.min(y+s,d),x=0;for(;A<=g;A++){let w=p[A];x+=w*w}return x}for(let f=0;f<c;f++){let y=m(f),A=p[f]*Math.pow(i+o*y,-u);h[f]=A}return n.makeTensorInfo(r.shape,r.dtype,h)}var a_={kernelName:zu,backendName:"cpu",kernelFunc:n_};function r_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:d}=a;ve(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,y=new Float32Array(p),A=p;for(let g=0;g<A;g++){let x=g%c,w=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let N=w;N<b;N++)v+=Math.pow(m[N],2);v=l*v+u;for(let N=w;N<b;N++){let I=-2*l*d*m[N]*f[g]/v;g===N&&(I+=Math.pow(v,-d)),I*=h[g],y[N]+=I}}return n.makeTensorInfo(i.shape,r.dtype,y)}var s_={kernelName:rc,backendName:"cpu",kernelFunc:r_};function L7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,u=r.shape,l=u.length,d=k.parseAxisParam(s,u),p=d,c=R.getAxesPermutation(p,l),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(l);for(let b=0;b<w.length;b++)w[b]=u[c[b]];h=iy(h,u,r.dtype,c,w),p=R.getInnerMostAxes(p.length,l),u=w}ve(r,"max"),R.assertAxesAreInnerMostDims("max",p,l);let[m,f]=R.computeOutAndReduceShapes(u,p),y=k.sizeFromShape(f),A=d7(h,y,m,r.dtype),g=o.write(A,m,r.dtype),x=m;return i&&(x=R.expandShapeToKeepDim(m,d)),{dataId:g,shape:x,dtype:r.dtype}}var i_={kernelName:$s,backendName:"cpu",kernelFunc:L7};function o_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:u}=a,l=1;k.assert(R.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let d=R.computePool2DInfo(r.shape,s,i,l,o,u),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=qa({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=dy(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var l_={kernelName:zs,backendName:"cpu",kernelFunc:o_};function u_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=a;ve(r,"maxPool3d");let d=R.computePool3DInfo(r.shape,s,i,1,o,u,l),p=n.data.get(r.dataId).values,c=D7(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var d_={kernelName:Ou,backendName:"cpu",kernelFunc:u_};function p_(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=a;ve([r,s],"maxPool3DGrad");let d=R.computePool3DInfo(s.shape,i,o,1,u,l),p=n.bufferSync(s),c=XD(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,y=d.dilationDepth,A=d.dilationHeight,g=d.dilationWidth,x=d.effectiveFilterDepth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,v=x-1-d.padInfo.front,N=b-1-d.padInfo.left,I=w-1-d.padInfo.top,E=Be(s.shape,"float32"),$=n.bufferSync(r);for(let O=0;O<d.batchSize;++O)for(let z=0;z<d.inChannels;++z)for(let P=0;P<d.inDepth;++P)for(let D=0;D<d.inHeight;++D)for(let U=0;U<d.inWidth;++U){let X=P-v,G=D-I,ee=U-N,Y=0;for(let re=0;re<x;re+=y){let ne=(X+re)/h;if(!(ne<0||ne>=d.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<w;ie+=A){let Q=(G+ie)/m;if(!(Q<0||Q>=d.outHeight||Math.floor(Q)!==Q))for(let pe=0;pe<b;pe+=g){let oe=(ee+pe)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let ge=x*w*b-1-c.get(O,ne,Q,oe,z),he=re*w*b+ie*b+pe,Ne=ge===he?1:0;Ne!==0&&(Y+=$.get(O,ne,Q,oe,z)*Ne)}}}E.set(Y,O,P,D,U,z)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var c_={kernelName:ic,backendName:"cpu",kernelFunc:p_};function h_(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,u,l,1,d,p),h=n.data.get(o.dataId).values,m=Be(c.outShape,o.dtype,$7(h,o.shape,o.dtype,c).values),f=c.strideHeight,y=c.strideWidth,A=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,v=x-1-c.padInfo.top,N=Be(o.shape,"float32"),I=n.data.get(r.dataId).values,E=Be(r.shape,"float32",I);for(let $=0;$<c.batchSize;++$)for(let O=0;O<c.inChannels;++O)for(let z=0;z<c.inHeight;++z)for(let P=0;P<c.inWidth;++P){let D=z-v,U=P-b,X=0;for(let G=0;G<x;G+=A){let ee=(D+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<w;Y+=g){let re=(U+Y)/y;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let ne=x*w-1-m.get($,ee,re,O),ie=G*w+Y,Q=ne===ie?1:0;Q!==0&&(X+=E.get($,ee,re,O)*Q)}}N.set(X,$,z,P,O)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var f_={kernelName:sc,backendName:"cpu",kernelFunc:h_};function m_(e,t,n,a,r){let s=k.computeStrides(t),i=dy(e,t,n,s,r,"max"),o=$7(e,t,n,r,!0,a);return[i.values,o.values]}var y_={kernelName:oc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,u=n;ve(a,"MaxPoolWithArgmax");let l=u.data.get(a.dataId).values,d=R.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=m_(l,a.shape,a.dtype,o,d),h=u.write(p,d.outShape,a.dtype),m=u.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function A_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),u=R.computeOutAndReduceShapes(r.shape,o)[1],l=k.sizeFromShape(u),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([l]));d.push(p);let c=Hr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=py({inputs:{a:c,b:p},backend:n});d.push(h);let m=yd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var g_={kernelName:Os,backendName:"cpu",kernelFunc:A_};function x_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),u=o,l=R.getAxesPermutation(u,r.shape.length),d=r;l!=null&&(d=na({inputs:{x:r},backend:n,attrs:{perm:l}}),u=R.getInnerMostAxes(u.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",u,d.shape.length);let[p,c]=R.computeOutAndReduceShapes(d.shape,u),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let A=0;A<m.length;++A){let g=A*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];b<x&&(x=b)}m[A]=x}l!=null&&n.disposeIntermediateTensorInfo(d);let y=n.makeTensorInfo(p,d.dtype,m);if(i){let A=R.expandShapeToKeepDim(p,o),g=ht({inputs:{x:y},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(y),g}return y}var b_={kernelName:_s,backendName:"cpu",kernelFunc:x_};function v_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),u=s.map(g=>g[0]),l=s.map((g,x)=>g[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,y=k.computeStrides(o),A=k.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=k.indexToLoc(g,f,y);for(let b=0;b<f;b++)x[b]<u[b]?x[b]=u[b]*2-x[b]-d:x[b]>=l[b]&&(x[b]=(l[b]-1)*2-x[b]+d);x=x.map((b,v)=>b-u[v]);let w=k.locToIndex(x,c,h);A[g]=p[w]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var w_={kernelName:Ls,backendName:"cpu",kernelFunc:v_},k_=Dt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),I_=Xt(Po,k_),S_={kernelName:Po,backendName:"cpu",kernelFunc:I_},N_=ro(f5());function W7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let u=k.parseAxisParam([o],r.shape),l=L7({inputs:{x:r},backend:n,attrs:{reductionIndices:u,keepDims:!1}}),d=R.expandShapeToKeepDim(l.shape,u),p=ht({inputs:{x:l},backend:n,attrs:{shape:d}}),c=ly({inputs:{a:r,b:p},backend:n}),h=n7({inputs:{x:c},backend:n}),m=yd({inputs:{x:h},backend:n,attrs:{axis:u,keepDims:!1}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:d}}),y=py({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),y}var T_={kernelName:ti,backendName:"cpu",kernelFunc:W7};function E_(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let u=o?r:W7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),l=u.shape[0],d=u.shape[1],p=n.data.get(u.dataId).values,c=[l,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<l;++m){let f=m*d,y=new Float32Array(d-1);y[0]=p[f];for(let x=1;x<y.length;++x)y[x]=y[x-1]+p[f+x];let A=N_.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let w=A();h[g+x]=y.length;for(let b=0;b<y.length;b++)if(w<y[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(u),n.makeTensorInfo(c,"int32",h)}var C_={kernelName:lc,backendName:"cpu",kernelFunc:E_},R_=Ga.nonMaxSuppressionV3Impl;function M_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=a;ve(r,"NonMaxSuppression");let l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=R_(l,d,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var F_={kernelName:Bo,backendName:"cpu",kernelFunc:M_},$_=Ga.nonMaxSuppressionV4Impl;function D_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=a;ve(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=$_(d,p,i,o,u,l);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var z_={kernelName:Vo,backendName:"cpu",kernelFunc:D_},O_=Ga.nonMaxSuppressionV5Impl;function __(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=a;ve(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=u,f=l,{selectedIndices:y,selectedScores:A}=O_(d,p,c,h,m,f);return[n.makeTensorInfo([y.length],"int32",new Int32Array(y)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var P_={kernelName:jo,backendName:"cpu",kernelFunc:__};function L_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let u=k.sizeFromShape(r.shape),l=new Float32Array(u*s);l.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<u;++p)d[p]>=0&&d[p]<s&&(l[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",l)}var W_={kernelName:Bs,backendName:"cpu",kernelFunc:L_};function gh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ni({inputs:{input:a},backend:n}),s=gh({inputs:{x:r},backend:n}),i=Dl({inputs:{input:a},backend:n}),o=gh({inputs:{x:i},backend:n}),u=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return fy({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var B_={kernelName:ol,backendName:"cpu",kernelFunc:gh};function B7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=Ni({inputs:{input:a},backend:n}),s=B7({inputs:{x:r},backend:n}),i=Dl({inputs:{input:a},backend:n}),o=gh({inputs:{x:i},backend:n}),u=Bn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return fy({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var V_={kernelName:Uo,backendName:"cpu",kernelFunc:B7};function V7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Ah({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(d=>{let p=Ah({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),l=zl({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),l}var j_={kernelName:Ho,backendName:"cpu",kernelFunc:V7};function U_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((A,g)=>A[0]+r.shape[g]+A[1]),u=s.map(A=>A[0]),l=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,h);i!==0&&y.fill(i);for(let A=0;A<d;A++){let g=k.indexToLoc(A,p,c).map((w,b)=>w+u[b]),x=k.locToIndex(g,m,f);y[x]=l[A]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var j7={kernelName:Vs,backendName:"cpu",kernelFunc:U_},H_=Dt((e,t)=>Math.pow(e,t)),G_=Xt(js,H_),q_={kernelName:js,backendName:"cpu",kernelFunc:G_};function X_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=oy(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var K_={kernelName:_u,backendName:"cpu",kernelFunc:X_},Z_=rt(qo,e=>1/e),Y_={kernelName:qo,backendName:"cpu",kernelFunc:Z_};function J_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let u=k.computeStrides(r.shape),[l,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,y=new Float32Array(k.sizeFromShape([p,l,d,m])),A=[s&&l>1?c-1:c,s&&d>1?h-1:h],g=[s&&l>1?l-1:l,s&&d>1?d-1:d],x=0,w=A[0]/g[0],b=A[1]/g[1];for(let v=0;v<p;v++)for(let N=0;N<l;N++){let I;i?I=w*(N+.5)-.5:I=w*N;let E=Math.max(0,Math.floor(I)),$=I-E,O=Math.min(c-1,Math.ceil(I)),z=v*u[0]+E*u[1],P=v*u[0]+O*u[1];for(let D=0;D<d;D++){let U;i?U=b*(D+.5)-.5:U=b*D;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(h-1,Math.ceil(U)),Y=z+X*u[2],re=P+X*u[2],ne=z+ee*u[2],ie=P+ee*u[2];for(let Q=0;Q<m;Q++){let pe=f[Y+Q],oe=f[re+Q],ge=f[ne+Q],he=f[ie+Q],Ne=pe+(ge-pe)*G,Te=oe+(he-oe)*G,De=Ne+(Te-Ne)*$;y[x++]=De}}}return n.makeTensorInfo([p,l,d,m],"float32",y)}var Q_={kernelName:Gs,backendName:"cpu",kernelFunc:J_};function eP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[u,l,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(u*l*d*p),f=[i&&c>1?l-1:l,i&&h>1?d-1:d],y=[i&&c>1?c-1:c,i&&h>1?h-1:h],A=f[0]/y[0],g=f[1]/y[1],x=n.data.get(s.dataId).values,w=0;for(let b=0;b<u;b++){let v=b*o[0];for(let N=0;N<c;N++){let I=N*A,E=Math.floor(I),$=Math.min(Math.ceil(I),l-1),O=v+E*o[1],z=v+$*o[1],P=I-E,D=1-P;for(let U=0;U<h;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),d-1),Y=X-G,re=1-Y,ne=O+G*o[2],ie=O+ee*o[2],Q=z+G*o[2],pe=z+ee*o[2],oe=D*re,ge=D*Y,he=P*re,Ne=P*Y;for(let Te=0;Te<p;Te++){let De=x[w++];m[ne+Te]+=De*oe,m[ie+Te]+=De*ge,m[Q+Te]+=De*he,m[pe+Te]+=De*Ne}}}}return n.makeTensorInfo([u,d,l,p],"float32",m)}var tP={kernelName:pc,backendName:"cpu",kernelFunc:eP};function nP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let u=k.computeStrides(r.shape),[l,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,y=new Float32Array(p*l*d*m),A=[s&&l>1?c-1:c,s&&d>1?h-1:h],g=[s&&l>1?l-1:l,s&&d>1?d-1:d],x=A[0]/g[0],w=A[1]/g[1],b=0;for(let v=0;v<p;v++){let N=v*u[0];for(let I=0;I<l;I++){let E=i?x*(I+.5):x*I,$=Math.min(c-1,s?Math.round(E):Math.floor(E));i&&($=Math.max(0,$));let O=N+$*u[1];for(let z=0;z<d;z++){let P=i?w*(z+.5):w*z,D=Math.min(h-1,s?Math.round(P):Math.floor(P));i&&(D=Math.max(0,D));let U=O+D*u[2];for(let X=0;X<m;X++){let G=f[U+X];y[b++]=G}}}}return n.makeTensorInfo([p,l,d,m],r.dtype,y)}var aP={kernelName:Pu,backendName:"cpu",kernelFunc:nP};function rP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),u=k.computeStrides(s.shape),[l,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(l*d*p*c),y=n.data.get(s.dataId).values,A=[i&&h>1?d-1:d,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=A[0]/g[0],w=A[1]/g[1],b=1/x,v=1/w,N=Math.ceil(b)*2+2,I=Math.ceil(v)*2+2;for(let E=0;E<l;E++){let $=E*o[0];for(let O=0;O<d;O++){let z=$+O*o[1],P=Math.floor(O*b),D=Math.floor(P-N/2);for(let U=0;U<p;U++){let X=z+U*o[2],G=Math.floor(U*v),ee=Math.floor(G-I/2);for(let Y=0;Y<c;Y++){let re=0;for(let ne=0;ne<N;ne++){let ie=ne+D;if(ie<0||ie>=h)continue;let Q=$+ie*u[1],pe=ie*x,oe=Math.min(d-1,i?Math.round(pe):Math.floor(pe));if(O===oe)for(let ge=0;ge<I;ge++){let he=ge+ee;if(he<0||he>=m)continue;let Ne=Q+he*u[2],Te=he*w,De=Math.min(p-1,i?Math.round(Te):Math.floor(Te));U===De&&(re+=y[Ne+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var sP={kernelName:dc,backendName:"cpu",kernelFunc:rP};function iP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return qa({inputs:{x:r},backend:n});let u=new Pt(r.shape,r.dtype),l=n.bufferSync(r);for(let d=0;d<u.size;d++){let p=u.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),u.set(l.get(...c),...p)}return n.makeTensorInfo(u.shape,u.dtype,u.values)}var oP={kernelName:Xs,backendName:"cpu",kernelFunc:iP},lP={kernelName:ll,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,u=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[l,d,p,c]=a.shape,[h,m]=R.getImageCenter(i,d,p),f=255,y=Math.sin(r),A=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<l;x++){let w=x*p*d*c;for(let b=0;b<d;b++){let v=b*(p*c);for(let N=0;N<p;N++){let I=N*c;for(let E=0;E<c;E++){let $=[l,b,N,E],O=$[2],z=$[1],P=(O-h)*A-(z-m)*y,D=(O-h)*y+(z-m)*A;P=Math.round(P+h),D=Math.round(D+m);let U=s;if(typeof s!="number"&&(E===3?U=f:U=s[E]),P>=0&&P<p&&D>=0&&D<d){let G=D*(p*c),ee=P*c,Y=w+G+ee+E;U=g[Y]}let X=w+v+I+E;u[X]=U}}}}return{dataId:o.write(u,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},uP=rt(Ks,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),dP={kernelName:Ks,backendName:"cpu",kernelFunc:uP};function U7(e,t,n,a,r,s,i,o,u,l){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return Be(n,t.dtype);let h=Be(d,t.dtype);h.values.fill(u);for(let m=0;m<s;m++){let f=[],y=0;for(let A=0;A<i;A++){let g=p[m*i+A];f.push(g),y+=g*o[A]}if(y<0||y>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let A=0;A<r;A++)l?h.values[y*r+A]+=c[m*r+A]:h.values[y*r+A]=t.rank===0?c[0]:c[m*r+A]}return h}function pP(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:u,sliceSize:l,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=U7(h,m,i,p,l,u,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var cP={kernelName:Ko,backendName:"cpu",kernelFunc:pP};function hP(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,d=da(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=u[m]:p[c++]=l[m];return n.makeTensorInfo(r.shape,d,p)}var fP={kernelName:Zo,backendName:"cpu",kernelFunc:hP},mP=R.SELU_SCALEALPHA,yP=R.SELU_SCALE,AP=rt(Yo,e=>e>=0?yP*e:mP*(Math.exp(e)-1)),gP={kernelName:Yo,backendName:"cpu",kernelFunc:AP},xP=rt(el,e=>e<0?-1:e>0?1:0),bP={kernelName:el,backendName:"cpu",kernelFunc:xP},vP=rt(Ys,e=>Math.sin(e)),wP={kernelName:Ys,backendName:"cpu",kernelFunc:vP},kP=rt(Qo,e=>Math.sinh(e)),IP={kernelName:Qo,backendName:"cpu",kernelFunc:kP},SP=11920928955078125e-23,H7=Math.log(SP)+2,NP=rt(tl,e=>{let t=e>-H7,n=e<H7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),TP={kernelName:tl,backendName:"cpu",kernelFunc:NP};function EP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),u=[[0,0]];u.push(...i);for(let y=1+s.length;y<r.shape.length;++y)u.push([0,0]);let l=j7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),d=R.getReshaped(l.shape,s,o,!1),p=R.getPermuted(d.length,s.length,!1),c=R.getReshapedPermuted(l.shape,s,o,!1),h=ht({inputs:{x:l},backend:n,attrs:{shape:d}}),m=na({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ht({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var CP={kernelName:Lu,backendName:"cpu",kernelFunc:EP};function RP(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,u=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=A7(o,a.shape,a.dtype,u,r.dtype,l,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(y=>Number(y)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var MP={kernelName:cc,backendName:"cpu",kernelFunc:RP};function FP(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,u=Array.from(n.data.get(s.dataId).values),[l,d,p]=g7(o,a.shape,a.dtype,i,u);return[n.makeTensorInfo(d,a.dtype,l),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var $P={kernelName:hc,backendName:"cpu",kernelFunc:FP};function DP(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:u,numUpdates:l,sliceSize:d,strides:p,outputSize:c}=R.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),y=n.data.get(i.dataId).values[0],A=U7(m,f,o,c,d,l,u,p,y,h);return n.makeTensorInfo(o,A.dtype,A.values)}var zP={kernelName:fc,backendName:"cpu",kernelFunc:DP};function OP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],u=R.prepareSplitSize(r,s,o),l=new Array(r.shape.length).fill(0),d=r.shape.slice();return u.map(p=>{let c=[...d];c[o]=p;let h=Ti({inputs:{x:r},backend:n,attrs:{begin:l,size:c}});return l[o]+=p,h})}var _P={kernelName:nl,backendName:"cpu",kernelFunc:OP},PP=rt(Qs,e=>Math.sqrt(e)),LP={kernelName:Qs,backendName:"cpu",kernelFunc:PP},WP={kernelName:Wu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},BP=rt(Dr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),VP={kernelName:Dr,backendName:"cpu",kernelFunc:BP};function jP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:y,newShape:A,outShape:g}=un.sliceInfo(r.shape,s,i,o,u,l,d,p,c),x=ht({inputs:{x:r},backend:n,attrs:{shape:A}}),w;if(h){let v=Ti({inputs:{x},backend:n,attrs:{begin:m,size:y}});w=ht({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),N=b7(g,v,f,m);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=ht({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var UP={kernelName:al,backendName:"cpu",kernelFunc:jP},HP=rt(ri,e=>Math.tan(e)),GP={kernelName:ri,backendName:"cpu",kernelFunc:HP},qP=rt(si,e=>Math.tanh(e)),XP={kernelName:si,backendName:"cpu",kernelFunc:qP};function KP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=w7(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var ZP={kernelName:$r,backendName:"cpu",kernelFunc:KP};function YP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[u,l]=k7(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var JP={kernelName:rl,backendName:"cpu",kernelFunc:YP};function QP(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=n,[d,p,c,h]=r.shape,[m,f]=l!=null?l:[p,c],y=[d,m,f,h],A=k.computeStrides(r.shape),g=A[0],x=A[1],w=A[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(y));b.fill(u);let v=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let I=0;I<d;++I){let E=s.shape[0]===1?N:N.subarray(I*8,I*8+8);for(let $=0;$<m;++$)for(let O=0;O<f;++O)for(let z=0;z<h;++z){let P,D=E[6]*O+E[7]*$+1;if(D===0)continue;let U=(E[0]*O+E[1]*$+E[2])/D,X=(E[3]*O+E[4]*$+E[5])/D,G=G7(U,c,o),ee=G7(X,p,o);switch(i){case"nearest":P=sL(v,p,c,g,x,w,I,ee,G,z,u);break;case"bilinear":P=iL(v,p,c,g,x,w,I,ee,G,z,u);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=I*g+$*x+O*w+z;b[Y]=P}return a.makeTensorInfo(y,r.dtype,b)}return{dataId:a.write(b,y,r.dtype),shape:r.shape,dtype:r.dtype}}var eL={kernelName:sl,backendName:"cpu",kernelFunc:QP};function G7(e,t,n){switch(n){case"reflect":return tL(e,t);case"wrap":return nL(e,t);case"nearest":return rL(e,t);case"constant":default:return aL(e,t)}}function tL(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function nL(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function aL(e,t){return e}function rL(e,t){return k.clamp(0,e,t-1)}function Ad(e,t,n,a,r,s,i,o,u,l,d){let p=i*a+o*r+u*s+l;return 0<=o&&o<t&&0<=u&&u<n?e[p]:d}function sL(e,t,n,a,r,s,i,o,u,l,d){let p=Math.round(o),c=Math.round(u);return Ad(e,t,n,a,r,s,i,p,c,l,d)}function iL(e,t,n,a,r,s,i,o,u,l,d){let p=Math.floor(o),c=Math.floor(u),h=p+1,m=c+1,f=(m-u)*Ad(e,t,n,a,r,s,i,p,c,l,d)+(u-c)*Ad(e,t,n,a,r,s,i,p,m,l,d),y=(m-u)*Ad(e,t,n,a,r,s,i,h,c,l,d)+(u-c)*Ad(e,t,n,a,r,s,i,h,m,l,d);return(h-o)*f+(o-p)*y}function oL(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:u,indices:l}=I7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(u,s.dtype,o),a.makeTensorInfo([l.length],"int32",l)]}var lL={kernelName:mc,backendName:"cpu",kernelFunc:oL};function uL(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],u=new Array(i-1),l=0;for(let h=0;h<i;h++)h!==s&&(u[l++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=Ti({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=ht({inputs:{x:m},backend:n,attrs:{shape:u}}),n.disposeIntermediateTensorInfo(m)}return c}var dL={kernelName:il,backendName:"cpu",kernelFunc:uL};function pL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,u=s.shape.length,l=[],d=[],p=o-u,c=s;for(let m=0;m<p;++m){let f=Ah({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),y=n.makeTensorInfo([],"int32",f),A=_7({inputs:{a:y,b:c},backend:n}),g=Hr({inputs:{x:A},backend:n,attrs:{dtype:"float32"}}),x=mh({inputs:{a:g,b:r},backend:n}),w=yd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});l.push(w),d.push(y),d.push(A),d.push(g),d.push(x),d.push(w)}let h=V7({inputs:l,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var cL={kernelName:Bu,backendName:"cpu",kernelFunc:pL},hL=[wD,N$,ID,ND,F$,ED,RD,FD,DD,OD,PD,WD,VD,HD,qD,ZD,JD,ez,nz,bD,rz,iz,lz,R$,D$,dz,T$,cz,fz,Az,xz,mz,kz,Sz,vz,Tz,Cz,Mz,$z,zz,_z,Pz,Wz,Vz,Uz,Hz,qz,Gz,cy,Zz,cD,Jz,eO,lO,z$,uO,_$,mO,yO,gO,L$,vO,kO,SO,TO,CO,B$,FO,E$,DO,hz,OO,PO,WO,hD,j$,jO,HO,H$,qO,ZO,JO,t_,a_,s_,q$,l_,d_,c_,f_,y_,i_,g_,b_,K$,w_,S_,C_,Y$,Q$,F_,z_,P_,tD,W_,V_,j_,j7,q_,mD,rD,K_,C$,Y_,yD,AD,xD,Q_,tP,aP,sP,oP,lP,dP,iD,cP,fP,gP,gD,bP,wP,IP,oD,T_,TP,CP,MP,$P,zP,_P,LP,WP,uD,VP,UP,pD,Xz,GP,XP,ZP,JP,nD,eL,lL,dL,cL,B_];for(let e of hL)di(e);var q7={};Fe(q7,{assertNotComplex:()=>_l,bindCanvasToFramebuffer:()=>SL,bindColorTextureToFramebuffer:()=>vh,bindTextureToProgramUniformSampler:()=>lv,bindTextureUnit:()=>sv,bindVertexBufferToProgramAttribute:()=>Ay,callAndCheck:()=>xe,canBeRepresented:()=>X7,createFragmentShader:()=>Y7,createFramebuffer:()=>rv,createProgram:()=>J7,createStaticIndexBuffer:()=>tv,createStaticVertexBuffer:()=>ev,createTexture:()=>nv,createVertexShader:()=>Z7,getBatchDim:()=>Ci,getExtensionOrThrow:()=>vd,getFramebufferErrorMessage:()=>uv,getMaxTexturesInShader:()=>hv,getNumChannels:()=>kL,getProgramUniformLocation:()=>ov,getProgramUniformLocationOrThrow:()=>iv,getRowsCols:()=>Ri,getShapeAs3D:()=>wh,getTextureShapeFromLogicalShape:()=>pv,getWebGLDisjointQueryTimerVersion:()=>fv,getWebGLErrorMessage:()=>K7,getWebGLMaxTextureSize:()=>cv,hasExtension:()=>ra,isCapableOfRenderingToFloatTexture:()=>mv,isDownloadFloatTextureEnabled:()=>yv,isReshapeFree:()=>kd,isWebGLFenceEnabled:()=>Av,isWebGLVersionEnabled:()=>xy,linkProgram:()=>Q7,resetMaxTextureSize:()=>NL,resetMaxTexturesInShader:()=>TL,unbindColorTextureFromFramebuffer:()=>gy,unbindTextureUnit:()=>IL,validateFramebuffer:()=>wd,validateProgram:()=>bh,validateTextureSize:()=>av});var Ei={},my={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function xh(e,t){Ei[e]=t}function Xa(e){if(!(e in Ei)){let n=mL(e);if(n!==null)Ei[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Ei[e];return t.isContextLost()?(delete Ei[e],Xa(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Ei[e])}function fL(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function mL(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=fL(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Ei[e]},!1),e===1?t.getContext("webgl",my)||t.getContext("experimental-webgl",my):t.getContext("webgl2",my)}var gd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(gd||(gd={}));var aa;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(aa||(aa={}));var tn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(tn||(tn={}));function xd(e,t){return[t,e]}function yL(e,t){return e*t}function bd(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Ol(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function AL(e,t){let[n,a]=Ol(e,t);return n*a*4}function yy(e,t){let n=e,a,r,s,i,o,u,l,d,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,l=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,l=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),u=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:u,downloadUnpackNumChannels:l,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&gL(e),n}function gL(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+K7(e,t))}var xL=596e-10,bL=65504;function X7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||xL<Math.abs(e)&&Math.abs(e)<bL)}function K7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function vd(e,t){return yr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Z7(e,t){let n=yr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function Y7(e,t){let n=yr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw wL(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var vL=/ERROR: [0-9]+:([0-9]+):/g;function wL(e,t){let n=vL.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let u=i.slice(0,a-1),l=i.slice(a-1,a),d=i.slice(a);console.log(u.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(l[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function J7(e){return yr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function Q7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function bh(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ev(e,t){let n=yr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function tv(e,t){let n=yr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function kL(){return J().getNumber("WEBGL_VERSION")===2?1:4}function nv(e){return yr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function av(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function rv(e){return yr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Ay(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function sv(e,t,n){dv(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function IL(e,t){dv(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function iv(e,t,n){return yr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function ov(e,t,n){return e.getUniformLocation(t,n)}function lv(e,t,n,a){xe(e,()=>sv(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function SL(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function vh(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function gy(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function wd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+uv(e,t))}function uv(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function yr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function dv(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function Ci(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function Ri(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function wh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ci(e),...Ri(e)]),t}function pv(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=Ci(e),s=2,i=2;return e.length&&([s,i]=Ri(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function kh(e){return e%2==0}function kd(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||kh(n)&&kh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&kh(e[0])&&kh(t[0])}var Ih,Sh;function cv(e){if(Ih==null){let t=Xa(e);Ih=t.getParameter(t.MAX_TEXTURE_SIZE)}return Ih}function NL(){Ih=null}function TL(){Sh=null}function hv(e){if(Sh==null){let t=Xa(e);Sh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Sh)}function fv(e){if(e===0)return 0;let t,n=Xa(e);return ra(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:ra(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function ra(e,t){return e.getExtension(t)!=null}function xy(e){try{if(Xa(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function mv(e){if(e===0)return!1;let t=Xa(e);if(e===1){if(!ra(t,"OES_texture_float"))return!1}else if(!ra(t,"EXT_color_buffer_float"))return!1;return by(t)}function yv(e){if(e===0)return!1;let t=Xa(e);if(e===1){if(!ra(t,"OES_texture_float")||!ra(t,"WEBGL_color_buffer_float"))return!1}else{if(ra(t,"EXT_color_buffer_float"))return by(t);let n="EXT_color_buffer_half_float";if(ra(t,n)){let a=t.getExtension(n);return EL(t,a)}return!1}return by(t)}function by(e){let t=yy(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function EL(e,t){let n=yy(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function Av(e){return e!==2?!1:Xa(e).fenceSync!=null}function _l(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=J();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>xy(2)?2:xy(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>cv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>hv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:fv(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Zu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>mv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>yv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Av(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Zu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function hn(){let e,t,n,a,r,s,i,o,u,l;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,u="",l=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,u=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,l=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:u,defineRound:l}}function Mi(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function vy(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var gv=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,CL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gd.DENSE;let t=bd(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},RL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gd.DENSE;let t=bd(e),n=hn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},ML=class{constructor(e){this.variableNames=["A"],this.outTexUsage=aa.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${gv}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},FL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=aa.DOWNLOAD;let t=hn();this.outputShape=e,this.userCode=`
|
|
${gv}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},$L=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=hn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${vy(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},DL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=hn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let u=0;u<=1;u++)for(let l=0;l<=1;l++){let d=u*2+l;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${l} < ${e[2]}) {
|
|
localCoords[2] += ${l};
|
|
if(localCoords[1] + ${u} < ${e[1]}) {
|
|
localCoords[1] += ${u};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${vy(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},xv={};Fe(xv,{bindVertexProgramAttributeStreams:()=>Ev,createBufferFromOutputTexture:()=>Mv,createFloat16MatrixTexture:()=>Iv,createFloat16PackedMatrixTexture:()=>Tv,createFloat32MatrixTexture:()=>kv,createIndexBuffer:()=>wv,createPackedMatrixTexture:()=>Nv,createUnsignedBytesMatrixTexture:()=>Sv,createVertexBuffer:()=>vv,createVertexShader:()=>bv,downloadByteEncodedFloatMatrixFromOutputTexture:()=>$v,downloadFloat32MatrixFromBuffer:()=>Fv,downloadMatrixFromPackedOutputTexture:()=>zv,downloadPackedMatrixFromBuffer:()=>Dv,getInternalFormatForFloat16MatrixTexture:()=>ky,getInternalFormatForFloat16PackedMatrixTexture:()=>Ny,getInternalFormatForFloat32MatrixTexture:()=>wy,getInternalFormatForPackedMatrixTexture:()=>Sy,getInternalFormatForUnsignedBytesMatrixTexture:()=>Iy,uploadDenseMatrixToTexture:()=>Cv,uploadPixelDataToTexture:()=>Rv});function bv(e){let t=hn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Z7(e,n)}function vv(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ev(e,t)}function wv(e){let t=new Uint16Array([0,1,2,2,1,3]);return tv(e,t)}function Id(e,t,n,a,r,s){av(t,n);let i=nv(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function wy(e){return e.internalFormatFloat}function kv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,wy(a),a.textureFormatFloat,e.FLOAT)}function ky(e){return e.internalFormatHalfFloat}function Iv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,ky(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Iy(e){return e.downloadTextureFormat}function Sv(e,t,n,a){let[r,s]=xd(t,n);return Id(e,r,s,Iy(a),e.RGBA,e.UNSIGNED_BYTE)}function Sy(e){return e.internalFormatPackedFloat}function Nv(e,t,n,a){let[r,s]=Ol(t,n);return Id(e,r,s,Sy(a),e.RGBA,e.FLOAT)}function Ny(e){return e.internalFormatPackedHalfFloat}function Tv(e,t,n,a){let[r,s]=Ol(t,n);return Id(e,r,s,Ny(a),e.RGBA,a.textureTypeHalfFloat)}function Ev(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Ay(e,t,"clipSpacePos",n,3,s,a)&&Ay(e,t,"uv",n,2,s,r)}function Cv(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,u;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,u=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,u=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,u,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Rv(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Mv(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function Fv(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function $v(e,t,n,a){let[r,s]=xd(t,n),i=4,o=new Uint8Array(yL(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Dv(e,t,n,a,r,s,i,o){let u=e,l=new Float32Array(AL(s,i));return u.bindBuffer(u.PIXEL_PACK_BUFFER,t),u.getBufferSubData(u.PIXEL_PACK_BUFFER,0,l),u.bindBuffer(u.PIXEL_PACK_BUFFER,null),l}function zv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Nh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,xh(t,e)):this.gl=Xa(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=vd(this.gl,r),ra(this.gl,s))this.textureHalfFloatExtension=vd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),ra(this.gl,a))this.colorBufferHalfFloatExtension=vd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",ra(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(ra(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=vv(this.gl),this.indexBuffer=wv(this.gl),this.framebuffer=rv(this.gl),this.textureConfig=yy(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),kv(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Iv(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),Sv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Rv(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),Cv(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Tv(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Nv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(gy(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>$v(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return Dv(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Fv(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=Mv(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>zv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=Y7(t,e);this.vertexShader==null&&(this.vertexShader=bv(t));let a=J7(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),Q7(t,a),this.debug&&bh(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Ev(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&bh(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?iv(this.gl,e,t):ov(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),lv(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Ol(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&bh(this.gl,this.program),wd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=vd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=zL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),vh(this.gl,e,this.framebuffer),this.debug&&wd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(vh(this.gl,this.outputTexture,this.framebuffer),this.debug&&wd(this.gl)):gy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;vh(a,e,this.framebuffer),this.debug&&wd(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function zL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:Ov}=R;function OL(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>_L(h,t,a)).join(`
|
|
`),o=t.texShape,u=hn(),l=WL(u),d,p,c=jL(u);return t.isPacked?(d=PL(t.logicalShape,o),p=VL(u)):(d=LL(t.logicalShape,o),p=BL(u)),a&&(c+=qL),[c,l,p,s,d,i,n].join(`
|
|
`)}function Pl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return sW(e);case 1:return oW(e);case 2:return uW(e);case 3:return pW(e);case 4:return hW(e);case 5:return fW(e);case 6:return mW(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function _v(e){switch(e.shapeInfo.logicalShape.length){case 0:return rW(e);case 1:return iW(e);case 2:return lW(e);case 3:return dW(e);default:return cW(e)}}function _L(e,t,n=!1){let a="";n?a+=_v(e):a+=Pl(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=yW(e,t):a+=AW(e,t)),a}function PL(e,t){switch(e.length){case 0:return Pv();case 1:return XL(e,t);case 2:return nW(e,t);case 3:return ZL(e,t);default:return JL(e,t)}}function LL(e,t){switch(e.length){case 0:return Pv();case 1:return KL(e,t);case 2:return aW(e,t);case 3:return YL(e,t);case 4:return QL(e,t);case 5:return eW(e,t);case 6:return tW(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function WL(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function BL(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function VL(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function jL(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${UL}
|
|
${HL}
|
|
${GL}
|
|
`}var UL=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,HL=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,GL=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,qL=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function Pv(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function XL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function KL(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function ZL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function YL(e,t){let n=Mi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function JL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let u=2;u<e.length-1;u++)s*=e[e.length-u-1],i=`
|
|
int b${u} = index / ${s};
|
|
index -= b${u} * ${s};
|
|
`+i,o=`b${u}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function QL(e,t){let n=Mi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function eW(e,t){let n=Mi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function tW(e,t){let n=Mi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function nW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function aW(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Fi(e){return`offset${e}`}function rW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=hn();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function sW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Fi(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function iW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=hn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function oW(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Ll(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Fi(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function lW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=hn();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let u=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],l=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${l}, ${u[0]}, ${u[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function uW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Wl(e,o),c=["row","col"];return`
|
|
${Pl(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${Bl(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let u=r[0],l=r[1],d=Fi(n);return l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${l}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${u}, ${l}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function dW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Wl(e,p),m=["b","row","col"];return`
|
|
${_v(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${Bl(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],u=Math.ceil(t[2]/2),l=u*Math.ceil(t[1]/2),d=hn();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${l}, ${u}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function pW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),u=i;if(u.length<t.length){let m=Wl(e,u),f=["row","col","depth"];return`
|
|
${Pl(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${Bl(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let l=e.shapeInfo.texShape,d=l[0],p=l[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Fi(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cW(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],u=i[1],l=Math.ceil(t[n-1]/2),d=l*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${d} + (row / 2) * ${l} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,d*=t[n-m-1],c=`b${m} * ${d} + `+c;let h=hn();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${u};
|
|
int texC = index - texR * ${u};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${u}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function hW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:u}=k.squeezeShape(t);if(o.length<t.length){let m=Wl(e,o),f=["row","col","depth","depth2"];return`
|
|
${Pl(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${Bl(f,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let l=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],c=d[1];if(c===i&&l==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&l==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Fi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function fW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:u,keptDims:l}=k.squeezeShape(t);if(u.length<t.length){let f=Wl(e,u),y=["row","col","depth","depth2","depth3"];return`
|
|
${Pl(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${Bl(y,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Ll(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Fi(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function mW(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let y=Wl(e,r),A=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Pl(y)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${Bl(A,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,u=t[3]*o,l=t[2]*u,d=t[1]*l;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${l}, ${u}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Ll(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${l}, ${u}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Fi(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${l} + depth * ${u} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ll(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function yW(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=Ov(e.shapeInfo.logicalShape,t.logicalShape),u=ut(i),l=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(y=>`coords.${p[y+l]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((y,A)=>`coords.${p[A+l]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let y=s-2,A=s-1;o.indexOf(y)>-1&&o.indexOf(A)>-1?h="return vec4(outputValue.x);":o.indexOf(y)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function AW(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,u=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===u&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let l=ut(u),d=Ov(e.shapeInfo.logicalShape,t.logicalShape),p=u-o,c,h=["x","y","z","w","u","v"];o===0?c="":u<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return u<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,y)=>`coords.${h[y+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Wl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Bl(e,t){return t.map(n=>e[n]).join(", ")}function gW(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},u=OL(s,o,r,t.packedInputs),l=e.createProgram(u),d=null,p=e.getUniformLocation(l,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(l,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(l,m,f),c[`offset${m}`]=e.getUniformLocation(l,`offset${m}`,f)}return{program:t,source:u,webGLProgram:l,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:p}}function Lv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,u=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,u))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${u} must match`)})}function xW(e,t,n,a,r){Lv(t.inShapeInfos,n),Lv([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,u)=>{let l=t.program.variableNames[u],d=t.uniformLocations[l],p=t.uniformLocations[`offset${l}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(d,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,u)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function bW(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,u=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${u}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:vW,bincountImpl:Wv,bincountReduceImpl:wW,ceilImpl:kW,concatImpl:IW,expImpl:SW,expm1Impl:NW,floorImpl:TW,gatherV2Impl:EW,greaterImpl:CW,lessImpl:RW,linSpaceImpl:MW,logImpl:FW,maxImpl:$W,maximumImpl:DW,minimumImpl:zW,multiplyImpl:OW,negImpl:_W,prodImpl:PW,rangeImpl:LW,rsqrtImpl:WW,simpleAbsImpl:Bv,sliceImpl:BW,sparseFillEmptyRowsImpl:VW,sparseReshapeImpl:jW,stridedSliceImpl:UW,subImpl:HW,tileImpl:GW,topKImpl:qW,transposeImpl:Ty,uniqueImpl:XW}=ty;function Vv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function fn(e,t){return t===1?[e]:Vv(e,t)}function KW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var ZW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=fn("rc",t),a=ut(t),r=JW(t,e,n),s=QW(t,e[e.length-1],e[e.length-2],n),i=eB(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function YW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function JW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function QW(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function eB(e,t){let n=e.length,a=YW(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var jv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${tB(t)}
|
|
${vy(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function tB(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Mi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var nB=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=Hv(t,n),r=Gv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=Uv(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===tn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===tn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===tn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===tn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===tn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=Hv(n,a),s=Gv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Uv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let u=this.usedTextures[s],l=u.indexOf(e);if(l<0)throw new Error("Cannot release a texture that was never provided by this texture manager");u.splice(l,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function aB(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Uv(e,t,n,a,r){let s=rB(t,a),i;if(r){let[u,l]=Ol(e[0],e[1]);i=u*l}else{let[u,l]=xd(e[0],e[1]);i=u*l}let o=aB(n,s);return i*o}function rB(e,t){switch(e){case tn.PACKED_2X2_FLOAT32:return Sy(t);case tn.PACKED_2X2_FLOAT16:return Ny(t);case tn.UNPACKED_FLOAT32:return wy(t);case tn.UNPACKED_FLOAT16:return ky(t);case tn.PACKED_4X1_UNSIGNED_BYTE:return Iy(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function sB(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?tn.PACKED_2X2_FLOAT32:tn.UNPACKED_FLOAT32:e?tn.PACKED_2X2_FLOAT16:tn.UNPACKED_FLOAT16}function Hv(e,t){if(e===aa.UPLOAD)return tn.PACKED_2X2_FLOAT32;if(e===aa.RENDER||e==null)return sB(t);if(e===aa.DOWNLOAD||e===aa.PIXELS)return tn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function Gv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Gr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ia="if (isnan(x)) return x;",iB="return x;",qv="return abs(x);",oB="return (x >= 0.0) ? x : (exp(x) - 1.0);",lB=Ia+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,uB=Ia+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Th="return x;",dB="return 1.0 / (1.0 + exp(-1.0 * x));",pB="return x;",cB=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,hB=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,fB=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,mB="return 1.0 / (1.0 + exp(-1.0 * x));",Vl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},yB=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=fn("rc",t),a=ut(t),r=KW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},AB=Ga.whereImpl,gB=1e-7,xB=1e-4,Ey={};function bB(e){return e in Ey||(Ey[e]={}),Ey[e]}var vB=128,wB=600;function kB(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*wB/1024/1024}var jl=class extends ku{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xa(J().getNumber("WEBGL_VERSION"));this.binaryCache=bB(J().getNumber("WEBGL_VERSION")),this.gpgpu=new Nh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new nB(this.gpgpu),this.numMBBeforeWarning=kB(),this.texData=new zp(this,dr())}nextDataId(){return jl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:aa.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:aa.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Vl(i,Th):p=new Gr(i,Th);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let u=this.activeTimers!=null,l;u&&(l=k.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=R.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return u&&(this.downloadWaitMs+=k.now()-l),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Vl(a,Th):h=new Gr(a,Th);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let u=null,l;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){l=this.decode(e);let h=this.texData.get(l.dataId);u=this.gpgpu.createBufferFromTexture(h.texture,...bd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=R.mergeRealAndImagArrays(m,f)}else if(u==null)d=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(u,h)}l!=null&&this.disposeIntermediateTensorInfo(l);let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&dr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Be(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!X7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...bd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?wh(t):t,o=s?new FL(i):new ML(i),u=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),l=this.texData.get(u.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(l.texture,l.texShape[0],l.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(u),d}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((u,l)=>({name:s[l],ms:u})).map(u=>`${u.name}: ${u.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,u=this.dataRefCount.get(o);u>1?this.dataRefCount.set(o,u-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let l=this.texData.get(e);l.texture=null,l.texShape=null,l.isPacked=!1,l.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=vB){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return AB(e.shape,t)}packedUnaryOp(e,t,n){let a=new Vl(e.shape,t),r=this.compileAndRun(a,[e],n);return dr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=Bv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,qv,e.dtype);let t=new Gr(e.shape,qv),n=this.compileAndRun(t,[e]);return dr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return dr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new yB(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new ZW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ci(e.shape),...Ri(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[Ci(t),...Ri(t)],s=new jv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=wh(a),i;n?i=new RL(s):i=new CL(s);let o=!0,u=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:u.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===gd.DENSE){let f=bd(e.outputShape);i.texShape=f.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],u=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(f.dataId);if(y.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=f.shape)}else if(!!y.isPacked!=!!e.packedInputs)f=y.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),y=this.texData.get(f.dataId);else if(y.isPacked&&!kd(y.shape,f.shape)){let A=f,g=f.shape;f.shape=y.shape,f=this.packedReshape(f,g),o.push(f),y=this.texData.get(f.dataId),A.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:y,isUniform:!1}});this.uploadToGPU(s.dataId);let l={shape:s.shape,texData:i,isUniform:!1},d=bW(e,u,l),p=this.getAndSaveBinary(d,()=>gW(this.gpgpu,e,u,l)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),xW(this.gpgpu,p,u,l,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(we(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?gB:xB}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let u=this.activeTimers!=null,l;u&&(l=k.now());let d=t.texShape;if(d==null&&(d=pv(n,o),t.texShape=d),r!=null){let p=wh(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=Ol(d[0],d[1]),c=new DL(p,[m,h],f)):c=new $L(p,[m,h],f);let y=this.makeTensorInfo([m,h],a);f?this.texData.get(y.dataId).usage=aa.PIXELS:this.texData.get(y.dataId).usage=aa.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,m,r);let A=!0,g=this.runWebGLProgram(c,[y],a,null,A),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(y),this.texData.delete(g.dataId),t.values=null,u&&(this.uploadWaitMs+=k.now()-l)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=IB(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};jl.nextDataId=0;function IB(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var Xv="3.6.0";function Kv(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Zu.isBrowser()&&Al("webgl",()=>new jl,2);var SB={forceHalfFloat:Kv},Zv=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Ul=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Eh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Sd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=fn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Vn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var NB={kernelName:Rs,backendName:"webgl",kernelFunc:Vn};function qr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Vn({inputs:{x:a},backend:n}),u=Vn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:u},s}var TB={kernelName:Vp,backendName:"webgl",kernelFunc:qr},Yv="return (a < 0.) ? b * a : a;",Jv=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function EB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(Jv,r.shape,i.shape):new Ul(Yv,r.shape,i.shape),u=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),u}var CB={kernelName:Ms,backendName:"webgl",kernelFunc:EB},Qv="return (a < 0.) ? b * a : a;",ew=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function RB(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(ew,a.shape,r.shape):new Ul(Qv,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var MB={kernelName:Us,backendName:"webgl",kernelFunc:RB},tw="if (isnan(x)) return x;",FB=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,$B=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ke({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,u=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,u);return o.makeTensorInfo(i.shape,u,c)}let l=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return l?d=new Vl(i.shape,t):d=new Gr(i.shape,e),o.runWebGLProgram(d,[i],u)}}function nn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:u,b:l}=i,d=o;if(a&&u.dtype==="complex64"){let m=d.texData.get(u.dataId),f=d.texData.get(l.dataId),[y,A]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,b]=x,v={dataId:w.dataId,dtype:w.dtype,shape:u.shape},N={dataId:b.dataId,dtype:b.dtype,shape:l.shape},I=new Ul(e,u.shape,l.shape);return d.runWebGLProgram(I,[v,N],da(w.dtype,b.dtype))}),g=qr({inputs:{real:y,imag:A},backend:d});return d.disposeIntermediateTensorInfo(y),d.disposeIntermediateTensorInfo(A),g}let p=s||da(u.dtype,l.dtype);if(d.shouldExecuteOnCPU([u,l])&&r!=null){let m=d.texData.get(u.dataId),f=d.texData.get(l.dataId),[y,A]=r(u.shape,l.shape,m.values,f.values,p),g=d.makeTensorInfo(A,p),x=d.texData.get(g.dataId);return x.values=y,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Sd(t,u.shape,l.shape,n):h=new Ul(e,u.shape,l.shape),d.runWebGLProgram(h,[u,l],p)}}function Ch(e,t=!1){if(e==="linear")return t?pB:iB;if(e==="relu")return t?hB:lB;if(e==="elu")return t?cB:oB;if(e==="relu6")return t?fB:uB;if(e==="prelu")return t?ew:Qv;if(e==="leakyrelu")return t?Jv:Yv;if(e==="sigmoid")return t?mB:dB;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var nw=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,u=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let l=a?e[1]:e[2],d=Math.ceil(l/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",y="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:u?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,y="result = activation(result);");let A=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),u&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${g};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${A}
|
|
|
|
${y}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},aw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},rw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},sw="return a * b;";function Cy(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=R.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),u=n.texData.get(r.dataId),l=new rw(aw.REAL,a.shape,r.shape),d=new rw(aw.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:u.complexTensorInfos.real.dataId,dtype:u.complexTensorInfos.real.dtype,shape:r.shape},{dataId:u.complexTensorInfos.imag.dataId,dtype:u.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=qr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),u=n.texData.get(r.dataId),[l,d]=OW(a.shape,r.shape,o.values,u.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=l,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Sd(sw,a.shape,r.shape):i=new Ul(sw,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var DB={kernelName:Ws,backendName:"webgl",kernelFunc:Cy};function zB(e,t,n){let a=[Ci(e.shape),...Ri(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[Ci(t),...Ri(t)],i=new jv(s,a),o=!0,u=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),u=k.inferFromImplicitShape(s,o),l=k.sizeFromShape(u);k.assert(o===l,()=>`The new shape (${u}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!kd(r.shape,u)&&!(d.texture!==null&&kd(d.shape,u))?zB(r,u,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:u,dtype:r.dtype})}var OB={kernelName:Xo,backendName:"webgl",kernelFunc:Ae},iw=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,u="sumValue += dot(values, ones);";if(t!=null){let d=1/t;u=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let l="";r%n>0&&(l=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${l}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${u}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${u}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${u}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},_B=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let u=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?u="sumValue":t==="prod"?u="prodValue":t==="all"?u="allValue":t==="any"&&(u="anyValue");let l=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function PB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function $i(e,t,n,a){let r=PB(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:u,outSize:l}=r[i],d,p;n==="mean"?d=i===0?new iw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},o):new iw({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l}):d=new _B({windowSize:u,inSize:o,batchSize:e.shape[0],outSize:l},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var LB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=WB(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function WB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var BB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let l=0;l<n.length;l++)n[l]=e[t[l]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ut(this.rank),r=Vv("rc",this.rank),s=new Array(this.rank);for(let l=0;l<t.length;l++)s[t[l]]=r[l];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,u=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${u};
|
|
if(${o}) {
|
|
result[1] = ${u};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${u};
|
|
if(${o}) {
|
|
result[3] = ${u};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Rh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new BB(e.shape,t):new LB(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function VB(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,u=R.getAxesPermutation(o,s),l=u!=null,d=e;l&&(d=Rh(e,u,a),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=R.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=R.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,y=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),A=vc(e.dtype),g=$i(y,A,"sum",a),x=Ae({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(y),a.disposeIntermediateTensorInfo(g),l&&a.disposeIntermediateTensorInfo(d),x}function Mh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return VB(r,s,i,n)}var jB={kernelName:ei,backendName:"webgl",kernelFunc:Mh};function mn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,u=new Array(o);for(let d=0;d<u.length;d++)u[d]=r.shape[s[d]];let l;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=Ty(d,r.shape,r.dtype,s,u);l=i.makeTensorInfo(u,r.dtype);let c=i.texData.get(l.dataId);c.values=p}else l=Rh(r,s,i);return l}var UB={kernelName:ii,backendName:"webgl",kernelFunc:mn},ow=1e3;function Fh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:u=null}){let l=e.shape.length,d=t.shape.length,p=n?e.shape[l-2]:e.shape[l-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[l-1]:e.shape[l-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),y=t.shape.slice(0,-2),A=k.sizeFromShape(f),g=k.sizeFromShape(y),x=A===g||A===1||g===1;k.assert(l>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${y}).`);let w=(A>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[A,p,h]:[A,h,p],v=a?[g,m,c]:[g,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),I=Ae({inputs:{x:t},backend:r,attrs:{shape:v}}),E=[N,I],$=Math.max(A,g),O=n?N.shape[1]:N.shape[2],z=s!=null,P=i!=null,D=u==="leakyrelu",U=u!=null?Ch(u,!0):null,X=z||P||D||U!=null,G;if((h===1||m===1)&&O>ow&&X===!1){let Y=N,re=I;n&&(Y=mn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),E.push(Y)),a&&(re=mn({inputs:{x:I},backend:r,attrs:{perm:[0,2,1]}}),E.push(re));let ne=m!==1,ie=m===1,Q=Y;ne&&(Q=Ae({inputs:{x:Y},backend:r,attrs:{shape:[$,O,1]}}),E.push(Q));let pe=m===1?2:1,oe=re;ie&&(oe=Ae({inputs:{x:re},backend:r,attrs:{shape:[$,1,O]}}),E.push(oe));let ge=Cy({inputs:{a:Q,b:oe},backend:r});G=Mh({inputs:{x:ge},backend:r,attrs:{axis:pe,keepDims:!0}}),E.push(ge)}else{let Y=da(e.dtype,t.dtype),re=new nw(b,v,[$,h,m],n,a,z,U,P,D),ne=[N,I];if(s!=null&&ne.push(s),P&&ne.push(i),D){let ie=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ne.push(ie),E.push(ie)}G=r.runWebGLProgram(re,ne,Y)}let ee=Ae({inputs:{x:G},backend:r,attrs:{shape:w}});E.push(G);for(let Y of E)r.disposeIntermediateTensorInfo(Y);return ee}function HB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:u,transposeB:l,activation:d,leakyreluAlpha:p}=a;return Fh({a:r,b:s,transposeA:u,transposeB:l,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var GB={kernelName:oi,backendName:"webgl",kernelFunc:HB},lw="return abs(x);";function qB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=Bv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vl(a.shape,lw):r=new Gr(a.shape,lw),n.runWebGLProgram(r,[a],a.dtype)}var XB={kernelName:oo,backendName:"webgl",kernelFunc:qB},KB=Ia+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,ZB=Ke({opSnippet:KB}),YB={kernelName:lo,backendName:"webgl",kernelFunc:ZB},JB=Ia+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,QB=Ke({opSnippet:JB}),eV={kernelName:uo,backendName:"webgl",kernelFunc:QB},uw="return a + b;",tV=nn({opSnippet:uw,packedOpSnippet:uw,supportsComplex:!0,cpuKernelImpl:vW}),nV={kernelName:Mr,backendName:"webgl",kernelFunc:tV},aV=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},rV=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function $h(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Vn({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),u=$h({inputs:a.slice(0,o),backend:n}),l=$h({inputs:a.slice(o),backend:n});return $h({inputs:[u,l],backend:n})}let r=a.map(o=>o.dtype).reduce((o,u)=>da(o,u)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new rV(a[0].shape,s):new aV(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var sV={kernelName:hs,backendName:"webgl",kernelFunc:$h};function iV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,u=k.parseAxisParam(s,r.shape),l=u,d=R.getAxesPermutation(l,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=R.getInnerMostAxes(l.length,o)),R.assertAxesAreInnerMostDims("all",l,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,l),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"all",n),A;if(i){let g=R.expandShapeToKeepDim(c,u);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var oV={kernelName:po,backendName:"webgl",kernelFunc:iV};function lV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,u=k.parseAxisParam(s,r.shape),l=u,d=R.getAxesPermutation(l,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=R.getInnerMostAxes(l.length,o)),R.assertAxesAreInnerMostDims("any",l,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,l),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"any",n),A;if(i){let g=R.expandShapeToKeepDim(c,u);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var uV={kernelName:co,backendName:"webgl",kernelFunc:lV},dV=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},pV=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,u=ut(o),l=fn("coords",o),d,p;if(s===1){p=o+1;let N=ut(p);d=`
|
|
${N} sourceLocR = ${N}(${l.join()}, 0);
|
|
++${l[o-1]};
|
|
${N} sourceLocG = ${N}(${l.join()}, 0);
|
|
++${l[o-2]};
|
|
${N} sourceLocA = ${N}(${l.join()}, 0);
|
|
--${l[o-1]};
|
|
${N} sourceLocB = ${N}(${l.join()}, 0);
|
|
--${l[o-2]};`}else p=o,d=`
|
|
${u} sourceLocR = coords;
|
|
++${l[o-1]};
|
|
${u} sourceLocG = coords;
|
|
++${l[o-2]};
|
|
${u} sourceLocA = coords;
|
|
--${l[o-1]};
|
|
${u} sourceLocB = coords;
|
|
--${l[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=fn("sourceLocR",p-1).concat("inIdx.r"),y=fn("sourceLocG",p-1).concat("inIdx.g"),A=fn("sourceLocB",p-1).concat("inIdx.b"),g=fn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${v}
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
bool hasNextCol = ${l[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${l[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${w}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function dw(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},u=new dV(o,n,a==null),l=[t];a!=null&&l.push(a);let d=e.runWebGLProgram(u,l,"int32");if(d.shape[1]===1)return d;let p=dw(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function pw(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=R.computeOptimalWindowSize(s),o=new pV(r,i,n,a==null),u=a==null?[t]:[t,a],l=e.runWebGLProgram(o,u,"int32");if(l.shape.length===t.shape.length){let d=pw(e,t,n,l);return e.disposeIntermediateTensorInfo(l),d}return l}function cw(e,t,n,a){let r=[n];if(R.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,r),u=k.sizeFromShape(o),l=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,u]}});s.push(l);let d=dw(e,l,a);s.push(d);let p=Ae({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return pw(e,t,a)}function cV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=mn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=R.getInnerMostAxes(i.length,u.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],u.shape.length);let d=cw(n,u,i[0],"max");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var hV={kernelName:fs,backendName:"webgl",kernelFunc:cV};function fV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=R.getAxesPermutation(i,r.shape.length),u=r,l=[];o!=null&&(u=mn({inputs:{x:r},backend:n,attrs:{perm:o}}),l.push(u),i=R.getInnerMostAxes(i.length,u.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],u.shape.length);let d=cw(n,u,i[0],"min");return l.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var mV={kernelName:Nu,backendName:"webgl",kernelFunc:fV},yV=Ia+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,AV=Ke({opSnippet:yV}),gV={kernelName:ho,backendName:"webgl",kernelFunc:AV},xV=Ia+"return log(x + sqrt(x * x + 1.0));",bV=Ke({opSnippet:xV}),vV={kernelName:fo,backendName:"webgl",kernelFunc:bV},wV=Ia+`
|
|
return atan(x);
|
|
`,kV=Ke({opSnippet:wV}),IV={kernelName:mo,backendName:"webgl",kernelFunc:kV},SV=FB+`
|
|
return atan(a, b);
|
|
`,NV=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+$B+`
|
|
return result;
|
|
`,TV=nn({opSnippet:SV,packedOpSnippet:NV}),EV={kernelName:Ao,backendName:"webgl",kernelFunc:TV},CV=Ia+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,RV=Ke({opSnippet:CV}),MV={kernelName:yo,backendName:"webgl",kernelFunc:RV},Nd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,u=e.dilationHeight,l=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,y=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,A="0.0";if(m||(A="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${l}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:y:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,b=s%4,v=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${g}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${A};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${A});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${u}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
getValue(batch, xR, xC + 3 * ${l}, d)
|
|
);
|
|
|
|
${v}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${l}, d),
|
|
getValue(batch, xR, xC + 2 * ${l}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${v}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Ry=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,u=e.strideWidth,l=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,y=e.padInfo.top,A=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${f}, ${y}, ${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let w="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,N=s%4,I=`
|
|
if (${g}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${w}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${u});
|
|
const ivec3 pads = ivec3(${f}, ${y}, ${A});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${l}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${I}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${I}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function FV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;_l(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:u}=a,l=1;k.assert(R.eitherStridesOrDilationsAreOne(i,l),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let d=R.computePool2DInfo(r.shape,s,i,l,o,u);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:r},backend:n});let p=new Nd(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var $V={kernelName:ms,backendName:"webgl",kernelFunc:FV};function DV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:u,dataFormat:l}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new Ry(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var zV={kernelName:Tu,backendName:"webgl",kernelFunc:DV},OV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,u=e.effectiveFilterWidth,l=o-1-e.padInfo.top,d=u-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${l}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},_V=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,y=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${u}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${l}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function PV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:u,pad:l,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,u,p,l,d),h=new _V(c);return n.runWebGLProgram(h,[r],i.dtype)}var LV={kernelName:Wp,backendName:"webgl",kernelFunc:PV};function WV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;_l([r,s],"avgPoolGrad");let{filterSize:o,strides:u,pad:l}=a,d=R.computePool2DInfo(i.shape,o,u,1,l),p=new OV(d);return n.runWebGLProgram(p,[r],i.dtype)}var BV={kernelName:Lp,backendName:"webgl",kernelFunc:WV};function VV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Fh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var jV={kernelName:ys,backendName:"webgl",kernelFunc:VV},UV=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},HV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},GV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:u}=n;u==null&&(u=.001);let l=[a,r,s],d=null;i!=null&&(d=i.shape,l.push(i));let p=null;o!=null&&(p=o.shape,l.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new HV(a.shape,r.shape,s.shape,d,p,u):new UV(a.shape,r.shape,s.shape,d,p,u);return t.runWebGLProgram(c,l,l[0].dtype)},qV={kernelName:Es,backendName:"webgl",kernelFunc:GV},XV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=`uniform int start[${this.rank}];`,a=KV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${My[o]} = start[${o}] + coords.${My[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},My=["x","y","z","w","u","v"];function KV(e){if(e===1)return"sourceLoc";if(e<=6)return My.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var ZV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=fn("coords",this.rank),a=fn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,u=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((l,d)=>`start[${d}]`).join()});`:e.map((l,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${u}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function YV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=un.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let u=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,u+1),s}function Td(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,u]=un.parseSliceParams(r,s,i);if(un.assertParamsValid(r,o,u),k.sizeFromShape(u)===0)return n.makeTensorInfo(u,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=BW(p.values,o,u,r.shape,r.dtype);return n.makeTensorInfo(u,r.dtype,c)}let{isPacked:l}=n.texData.get(r.dataId),d=un.isSliceContinous(r.shape,o,u);if(l||!d){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new ZV(u):new XV(u),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),YV(r,o,u,n)}var JV={kernelName:Jo,backendName:"webgl",kernelFunc:Td},QV=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),u=R.getReshaped(r.shape,s,o),l=R.getPermuted(u.length,s.length),d=R.getReshapedPermuted(r.shape,s,o),p=R.getSliceBeginCoords(i,s.length),c=R.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:u}}),f=mn({inputs:{x:m},backend:n,attrs:{perm:l}}),y=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),A=Td({inputs:{x:y},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(y),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),A},ej={kernelName:Eu,backendName:"webgl",kernelFunc:QV};function tj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),u=n.readSync(s.dataId),l=Wv(o,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,l)}var nj={kernelName:Bp,backendName:"webgl",kernelFunc:tj},aj="return float(a != b);",hw=nn({opSnippet:aj,dtype:"bool"}),rj={kernelName:Wo,backendName:"webgl",kernelFunc:hw};function Ed(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Vn({inputs:{x:r.complexTensorInfos.real},backend:n})}var sj={kernelName:uc,backendName:"webgl",kernelFunc:Ed},ij="return float(int(x));";function oj(e,t){let n=new Gr(e.shape,ij),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Fy(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Vn({inputs:{x:r},backend:n});let i=$t(r.shape),o=Fy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),u=qr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),u}if(r.dtype==="complex64"){let i=Ed({inputs:{input:r},backend:n}),o=Fy({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Vn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return oj(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=hw({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var lj={kernelName:As,backendName:"webgl",kernelFunc:Fy},fw="return ceil(x);",uj=Ke({opSnippet:fw,packedOpSnippet:fw,cpuKernelImpl:kW}),dj={kernelName:gs,backendName:"webgl",kernelFunc:uj},pj=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},cj=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new cj(r.shape):o=new pj(r.shape);let u=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,u)}var fj={kernelName:Fr,backendName:"webgl",kernelFunc:hj},mj=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function mw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function yj(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new mj(a.shape),i=[mw(a,r.complexTensorInfos.real),mw(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var Aj={kernelName:Cu,backendName:"webgl",kernelFunc:yj},gj=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},xj=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ut(a),s=fn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let u=i[t],l=i.slice(-2),d=i.join(),p=`if (${u} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${l.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${u} < ${o[m]} && ${u} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Dh(i,u,f)}),
|
|
vec2(${Dh(l,u,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${Dh(i,u,h)}),
|
|
vec2(${Dh(l,u,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Dh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function zh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Vn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var bj={kernelName:nc,backendName:"webgl",kernelFunc:zh};function Hl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>Ed({inputs:{input:f},backend:n})),p=e.map(f=>zh({inputs:{input:f},backend:n})),c=Hl(d,t,n),h=Hl(p,t,n),m=qr({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(A=>{let g=k.sizeFromShape(A.shape.slice(t));return Ae({inputs:{x:A},backend:n,attrs:{shape:[-1,g]}})}),p=d.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),c=R.computeOutShape(d.map(A=>A.shape),1),h=d[0].shape[0]===1,m=IW(p,c,a,h),f=R.computeOutShape(e.map(A=>A.shape),t),y=n.makeTensorInfo(f,a,m);return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=Hl(e.slice(0,d),t,n),c=Hl(e.slice(d),t,n),h=Hl([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new xj(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=vj(e,t,n),o=new gj(s.map(d=>d.shape)),u=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let l=Ae({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),l}function vj(e,t,n){let a=R.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function yw(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=R.computeOutShape(t.map(l=>l.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(l=>k.sizeFromShape(l.shape)>0);if(o.length===1)return Vn({inputs:{x:o[0]},backend:n});let u=o.map(l=>l.shape);return R.assertParamsConsistent(u,s),Hl(o,s,n)}var wj={kernelName:go,backendName:"webgl",kernelFunc:yw},Aw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,u=e.strideWidth,l=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",y=f?1:2,A=f?2:3,g=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${u});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${g}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${y}], coords[${A}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${w}
|
|
setOutput(result);
|
|
}
|
|
`}},kj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,u=e.dilationHeight,l=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${l};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ij=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:u,dilationWidth:l,dilationHeight:d,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=hn(),y=p==="channelsLast",A=y?0:1,g=y?1:2,x="";for(let w=0;w<=1;w++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${w};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${u})) * ${i} - ${h};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[A]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${u}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${l} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[g]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${y}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${w*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function gw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let u=e.shape,l=a.texData.get(e.dataId),d=n.inChannels,p=u[0]*u[1]*u[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,y,A=[],g=(p===1||c===1)&&d>ow,x=u[2]%2!=0&&!!l.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let w=h?u[0]*u[1]*u[2]:u[0]*u[2]*u[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,w,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Fh({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});y=Ae({inputs:{x:N},backend:a,attrs:{shape:n.outShape}}),A.push(b),A.push(v),A.push(N)}else{let w=h?u[0]*u[1]*(u[2]+1):u[0]*u[2]*(u[3]+1),b={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},v=l.shape;l.shape=l.shape.slice(),l.shape[l.shape.length-2]++,k.assert(kd(l.shape,b.shape),()=>`packed reshape ${l.shape} to ${b.shape} isn't free`);let N=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});A.push(N);let I=Fh({a:b,b:N,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=a.texData.get(I.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),l.shape=v,E.shape=n.outShape,y=Vn({inputs:{x:I},backend:a}),y.shape=n.outShape,A.push(I)}for(let w of A)a.disposeIntermediateTensorInfo(w);return y}function xw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:u,filterHeight:l,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=u*l*d,y=c*p,A=[f,y],g=!0,x=!1,w=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});w.push(b),w.push(v);let N=new Ij(A,b.shape,n),I=a.runWebGLProgram(N,[b],"float32"),E=Ae({inputs:{x:I},backend:a,attrs:{shape:[1,A[0],A[1]]}});w.push(I),w.push(E);let $=r!=null,O=s!=null,z=o==="leakyrelu",P=o?Ch(o,!0):null,D=new nw(E.shape,v.shape,[1,y,n.outChannels],g,x,$,P,O,z),U=[E,v];if(r&&U.push(r),O&&U.push(s),z){let Y=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(Y),w.push(Y)}let X=a.runWebGLProgram(D,U,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=Ae({inputs:{x:X},backend:a,attrs:{shape:G}});w.push(X);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return ee}function Sj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:u,dilations:l,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(r.shape,s.shape,i,l,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=gw({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=xw({x:r,filter:s,convInfo:c,backend:n});else{let f=new Aw(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var Nj={kernelName:xs,backendName:"webgl",kernelFunc:Sj},Tj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Ej=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,u=s?1:2,l=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${u}], coords[${l}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Cj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Rj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,u=n-1-e.padInfo.top,l=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${u}, ${l});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Mj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,filterShape:d}=a,p=R.convertConv2DDataFormat(u),c=R.computeConv2DInfo(r.shape,d,i,1,o,l,!1,p),h=new Tj(c);return n.runWebGLProgram(h,[r,s],"float32")}var Fj={kernelName:jp,backendName:"webgl",kernelFunc:Mj};function $j(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:u,dataFormat:l,dimRoundingMode:d}=a,p=R.convertConv2DDataFormat(l),c=R.computeConv2DInfo(i,s.shape,o,1,u,d,!1,p),h=new Ej(c);return n.runWebGLProgram(h,[r,s],"float32")}var Dj={kernelName:bs,backendName:"webgl",kernelFunc:$j};function zj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:u}=a,l=R.computeConv3DInfo(r.shape,s.shape,i,u,o),d=new kj(l);return n.runWebGLProgram(d,[r,s],"float32")}var Oj={kernelName:Ru,backendName:"webgl",kernelFunc:zj};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:u}=a,l=R.computeConv3DInfo(r.shape,u,i,1,o),d=new Cj(l);return n.runWebGLProgram(d,[r,s],"float32")}var Pj={kernelName:Up,backendName:"webgl",kernelFunc:_j};function Lj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:u}=a,l=R.computeConv3DInfo(u,s.shape,o,1,i),d=new Rj(l);return n.runWebGLProgram(d,[r,s],"float32")}var Wj={kernelName:Hp,backendName:"webgl",kernelFunc:Lj},Bj=tw+`
|
|
return cos(x);
|
|
`,Vj=Ke({opSnippet:Bj}),jj={kernelName:vs,backendName:"webgl",kernelFunc:Vj},Uj=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,Hj=Ke({opSnippet:Uj}),Gj={kernelName:xo,backendName:"webgl",kernelFunc:Hj},qj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,u]=e,[l]=t,[d,p]=n;this.outputShape=[l,d,p,u];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,y,A]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,w]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${g});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${y};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${A};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${w};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},Xj=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:u,extrapolationValue:l}=a,d=new qj(r.shape,s.shape,o,u,l);return n.runWebGLProgram(d,[r,s,i],"float32")},Kj={kernelName:bo,backendName:"webgl",kernelFunc:Xj},bw=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${vw(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ut(a)} coords = getOutputCoords();
|
|
int end = ${ww(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${ww(a,"coords")} = idx;
|
|
val += getX(${vw(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function vw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function ww(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Zj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,u=r.shape.length,l=R.getAxesPermutation([s],u),d=r;l!=null&&(d=mn({inputs:{x:r},backend:n,attrs:{perm:l}}));let p=R.getInnerMostAxes(1,u)[0];if(p!==u-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Vn({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new bw(d.shape,!1,o),y=f.getCustomSetupFunc(m),A=h;h=n.runWebGLProgram(f,[h],h.dtype,y),n.disposeIntermediateTensorInfo(A)}if(i){let m=new bw(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(l!=null){let m=R.getUndoAxesPermutation(l),f=mn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var Yj={kernelName:ws,backendName:"webgl",kernelFunc:Zj};function Jj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let u=n.readSync(r.dataId),l=n.readSync(s.dataId),d=Wv(u,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let u=n.bufferSync(r),l=n.bufferSync(s),d=wW(u,l,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Qj={kernelName:Gp,backendName:"webgl",kernelFunc:Jj},eU=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function tU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=u*s,c=l*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new eU(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var nU={kernelName:vo,backendName:"webgl",kernelFunc:tU},kw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,u=e.padInfo.left,l=e.strideHeight,d=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,y="",A="";n&&(a?y=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?y=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:y=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,A="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${y}
|
|
|
|
const ivec2 strides = ivec2(${l}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${u});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${g}
|
|
${A}
|
|
setOutput(result);
|
|
}
|
|
`}},Iw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,u=e.padInfo.top,l=e.padInfo.left,d=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,y=f,A=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)A+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)A+=`
|
|
xTexelC${v*2} = vec4(0.0);
|
|
xTexelC${v*2}Ready = 0;
|
|
xC${v} = vec4(0.0);`;A+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let v=0;v<(y+1)/2;v++){let N=v*2,I=N*h;if(A+=`
|
|
xC = xCCorner + ${I};
|
|
`,p===1){if(N<f&&(l%2==1?(A+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${I}Ready == 0) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I}Ready = 1;
|
|
}
|
|
`,h===1&&I>0?A+=`
|
|
xC${N} = vec4(xTexelC${I-2}.zw, xTexelC${I}.xy);
|
|
`:A+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${N} = vec4(previous.zw, xTexelC${I}.xy);
|
|
} else {
|
|
xC${N} = vec4(0.0, 0.0, xTexelC${I}.xy);
|
|
}
|
|
`):A+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${I}Ready == 0) {
|
|
xTexelC${I} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I}Ready = 1;
|
|
}
|
|
|
|
xC${N} = xTexelC${I};
|
|
`,I+1<f)){let E=l%2==0?k.nearestLargerEven(h):h;h%2==0&&l%2==1||h%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${I+2}Ready == 0) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I+2}Ready = 1;
|
|
}
|
|
`,h>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${I}Ready == 0) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${I}Ready = 1;
|
|
}
|
|
`),A+=`
|
|
xC${N+1} = vec4(xTexelC${I}.zw, xTexelC${I+2}.xy);
|
|
`):E===1?A+=`
|
|
xC${N+1} = xTexelC${I};
|
|
`:A+=`
|
|
xCOffset = xC + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${I+2}Ready == 0) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I+2}Ready = 1;
|
|
}
|
|
|
|
xC${N+1} = xTexelC${I+2};
|
|
`}}else I<f&&(l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${I}Ready == 0) {
|
|
xTexelC${I} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${I+2}Ready == 0) {
|
|
xTexelC${I+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(xTexelC${I}.zw, xTexelC${I+2}.zw);
|
|
`,I+1<f&&(A+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${N+1} = vec4(xTexelC${I+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${I}Ready == 0) {
|
|
xTexelC${I} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${I}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${I}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${I+2}Ready == 0) {
|
|
xTexelC${I+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${I+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${I+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(
|
|
xTexelC${I}.xy, xTexelC${I+2}.xy);
|
|
`,I+1<f&&(A+=`
|
|
xC${N+1} = vec4(xTexelC${I}.zw, xTexelC${I+2}.zw);
|
|
`)));N<f&&(A+=`
|
|
wTexel = getW(${b}, ${I}, d1, q);
|
|
dotProd += xC${N} * vec4(wTexel.xz, wTexel.xz);
|
|
`,I+1<f&&(A+=`
|
|
wTexel = getW(${b}, ${I+1}, d1, q);
|
|
dotProd += xC${N+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}A+=`
|
|
}
|
|
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${p});
|
|
const ivec2 pads = ivec2(${u}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${w}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function aU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:u,dimRoundingMode:l}=a,d=u;d==null&&(d=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(r.shape,s.shape,i,d,o,l,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new Iw(p):c=new kw(p),n.runWebGLProgram(c,[r,s],"float32")}var rU={kernelName:ks,backendName:"webgl",kernelFunc:aU},sU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},iU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function oU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,filterShape:d}=a,p=R.computeConv2DInfo(r.shape,d,i,o,u,l,!0),c=new sU(p);return n.runWebGLProgram(c,[r,s],"float32")}var lU={kernelName:qp,backendName:"webgl",kernelFunc:oU};function uU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:u,dimRoundingMode:l,inputShape:d}=a,p=R.computeConv2DInfo(d,s.shape,i,o,u,l,!0),c=new iU(p);return n.runWebGLProgram(c,[r,s],"float32")}var dU={kernelName:Xp,backendName:"webgl",kernelFunc:uU},pU=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function cU(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new pU(s),u=n.runWebGLProgram(o,[i],i.dtype),l=Ae({inputs:{x:u},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),l}var hU={kernelName:Kp,backendName:"webgl",kernelFunc:cU},fU=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:u,dilationWidth:l}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${u};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${l};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function mU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:u}=a,l=R.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",u),d,p=new fU(l);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:l.outShape}});return n.disposeIntermediateTensorInfo(d),c}var yU={kernelName:Mu,backendName:"webgl",kernelFunc:mU};function AU(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:u}=R.decodeEinsumEquation(r,s.length);R.checkEinsumDimSizes(i.length,u,s);let{path:l,steps:d}=R.getEinsumComputePath(o,u),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let y of d[f]){let{permutationIndices:A,expandDims:g}=R.getEinsumPermutation(h,u[y]),x;R.isIdentityPermutation(A)?x=s[y]:(x=mn({inputs:{x:s[y]},backend:n,attrs:{perm:A}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=Ae({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=Cy({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(l[f]>=0&&(c=Mh({inputs:{x:c},backend:n,attrs:{axis:l[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var gU={kernelName:Jp,backendName:"webgl",kernelFunc:AU},xU="return (x >= 0.0) ? x : (exp(x) - 1.0);",bU=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,vU=Ke({opSnippet:xU,packedOpSnippet:bU}),wU={kernelName:wo,backendName:"webgl",kernelFunc:vU},kU="return (b >= 1.0) ? a : a * (b + 1.0);",IU=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,SU=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Sd(IU,a.shape,r.shape):new Ul(kU,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},NU={kernelName:Qp,backendName:"webgl",kernelFunc:SU},TU=`
|
|
return vec4(equal(a, b));
|
|
`,EU="return float(a == b);",CU=nn({opSnippet:EU,packedOpSnippet:TU,dtype:"bool"}),RU={kernelName:Io,backendName:"webgl",kernelFunc:CU},MU=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,FU=Ke({opSnippet:MU}),$U={kernelName:ko,backendName:"webgl",kernelFunc:FU},Sw="return exp(x);",Nw=Ke({opSnippet:Sw,packedOpSnippet:Sw,cpuKernelImpl:SW}),DU={kernelName:Ss,backendName:"webgl",kernelFunc:Nw};function $y(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),u=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+r+1),o.splice(u,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var zU={kernelName:So,backendName:"webgl",kernelFunc:$y},Tw="return exp(x) - 1.0;",OU=Ke({opSnippet:Tw,packedOpSnippet:Tw,cpuKernelImpl:NW}),_U={kernelName:No,backendName:"webgl",kernelFunc:OU},Ew=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Cw(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),u=o.shape,l=new Ew("real",u,t),d=new Ew("imag",u,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:u},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:u}],c=n.runWebGLProgram(l,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=qr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function PU(e){let{inputs:t,backend:n}=e,{input:a}=t;return Cw(a,!1,n)}var LU={kernelName:ec,backendName:"webgl",kernelFunc:PU},WU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Dy(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new WU(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var BU={kernelName:Fu,backendName:"webgl",kernelFunc:Dy},VU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},jU={kernelName:To,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new VU(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},Rw="return floor(x);",UU=Ke({opSnippet:Rw,packedOpSnippet:Rw,cpuKernelImpl:TW}),HU={kernelName:Ns,backendName:"webgl",kernelFunc:UU},GU=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,qU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,XU=nn({opSnippet:GU,packedOpSnippet:qU,dtype:"int32"}),KU={kernelName:Ts,backendName:"webgl",kernelFunc:XU},ZU=class{constructor(e){this.variableNames=["A"];let t=hn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},YU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=hn(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},JU={kernelName:yc,backendName:"webgl",kernelFunc:QU},Gl;function QU(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[u,l]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[l,u],p=[l,u,s];(o||i)&&(Gl==null&&(Gl=document.createElement("canvas").getContext("2d")),Gl.canvas.width=u,Gl.canvas.height=l,Gl.drawImage(r,0,0,u,l),r=Gl.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=aa.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new YU(p):new ZU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function eH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=R.convertConv2DDataFormat(d),y=R.computeConv2DInfo(r.shape,s.shape,u,p,l,c,!1,f),A,g=[];if(y.filterHeight===1&&y.filterWidth===1&&y.dilationHeight===1&&y.dilationWidth===1&&y.strideHeight===1&&y.strideWidth===1&&(y.padInfo.type==="SAME"||y.padInfo.type==="VALID"))A=gw({x:r,filter:s,convInfo:y,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)A=xw({x:r,filter:s,convInfo:y,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let w=i!=null,b=o!=null,v=h==="leakyrelu",N=h?Ch(h,!1):null,I=new Aw(y,w,N,b,v),E=[r,s];if(i&&E.push(i),o&&E.push(o),v){let $=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));E.push($),g.push($)}A=n.runWebGLProgram(I,E,"float32")}let x=Ae({inputs:{x:A},backend:n,attrs:{shape:y.outShape}});return g.push(A),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var tH={kernelName:li,backendName:"webgl",kernelFunc:eH};function nH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(R.eitherStridesOrDilationsAreOne(u,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${u} and dilations '${f}'`);let y=R.computeConv2DInfo(r.shape,s.shape,u,f,l,p,!0),A=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&y.strideWidth<=2&&y.outChannels/y.inChannels==1,g=c?Ch(c,A):null,x=[r,s],w=i!=null,b=o!=null,v=c==="leakyrelu";if(w&&x.push(i),b&&x.push(o),v){let E=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(E),m.push(E)}let N;A?N=new Iw(y,w,g,b,v):N=new kw(y,w,g,b,v);let I=n.runWebGLProgram(N,x,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),I}var aH={kernelName:ui,backendName:"webgl",kernelFunc:nH},rH=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ut(t.length),r=ut(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function sH(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,u,l,d]=R.prepareAndValidate(a,r),p=Ae({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/l,l]}}),h=new rH(i,d,[u,l]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var iH={kernelName:Co,backendName:"webgl",kernelFunc:sH},oH=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),a=lH(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function lH(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function uH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,u=k.parseAxisParam(i,r.shape)[0],l=R.segment_util.collectGatherOpShapeInfo(r,s,u,o),d=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[l.batchSize,d/l.batchSize]}});p.push(c),p.push(h);let m=[l.batchSize,l.outerSize,d/l.batchSize,l.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),w=EW(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(l.outputShape,w.dtype,w.values)}let f=new oH(c.shape,m),y=n.runWebGLProgram(f,[c,h],c.dtype);p.push(y);let A=Ae({inputs:{x:y},backend:n,attrs:{shape:l.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),A}var dH={kernelName:Eo,backendName:"webgl",kernelFunc:uH},pH="return float(a > b);",cH=`
|
|
return vec4(greaterThan(a, b));
|
|
`,hH=nn({opSnippet:pH,packedOpSnippet:cH,cpuKernelImpl:CW,dtype:"bool"}),fH={kernelName:Ro,backendName:"webgl",kernelFunc:hH},mH="return float(a >= b);",yH=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,AH=nn({opSnippet:mH,packedOpSnippet:yH,dtype:"bool"}),gH={kernelName:Cs,backendName:"webgl",kernelFunc:AH};function xH(e){let{inputs:t,backend:n}=e,{input:a}=t;return Cw(a,!0,n)}var bH={kernelName:tc,backendName:"webgl",kernelFunc:xH},vH="return float(!isnan(x) && !isinf(x));",wH=Ke({opSnippet:vH,dtype:"bool"}),kH={kernelName:Mo,backendName:"webgl",kernelFunc:wH},IH="return float(isinf(x));",SH=Ke({opSnippet:IH,dtype:"bool"}),NH={kernelName:Fo,backendName:"webgl",kernelFunc:SH},TH="return float(isnan(x));",EH=Ke({opSnippet:TH,dtype:"bool"}),CH={kernelName:$o,backendName:"webgl",kernelFunc:EH},RH="return float(a < b);",MH=`
|
|
return vec4(lessThan(a, b));
|
|
`,FH=nn({opSnippet:RH,packedOpSnippet:MH,cpuKernelImpl:RW,dtype:"bool"}),$H={kernelName:Do,backendName:"webgl",kernelFunc:FH},DH="return float(a <= b);",zH=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,OH=nn({opSnippet:DH,packedOpSnippet:zH,dtype:"bool"}),_H={kernelName:zo,backendName:"webgl",kernelFunc:OH};function PH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=MW(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var LH={kernelName:ac,backendName:"webgl",kernelFunc:PH},WH=`if (x < 0.0) return NAN;
|
|
return log(x);`,BH=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,VH=Ke({opSnippet:WH,packedOpSnippet:BH,cpuKernelImpl:FW}),jH={kernelName:Fs,backendName:"webgl",kernelFunc:VH},UH="return log(1.0 + x);",HH=Ke({opSnippet:UH}),GH={kernelName:Oo,backendName:"webgl",kernelFunc:HH},qH="return float(a >= 1.0 && b >= 1.0);",XH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,KH=nn({opSnippet:qH,packedOpSnippet:XH,dtype:"bool"}),ZH={kernelName:_o,backendName:"webgl",kernelFunc:KH},YH="return float(!(x >= 1.0));",JH=Ke({opSnippet:YH}),QH={kernelName:$u,backendName:"webgl",kernelFunc:JH},eG="return float(a >= 1.0 || b >= 1.0);",tG=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,nG=nn({opSnippet:eG,packedOpSnippet:tG,dtype:"bool"}),aG={kernelName:Du,backendName:"webgl",kernelFunc:nG},rG=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},sG=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,u=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${u})`:r===1?o=`1.0/(${u})`:o=`exp(log(${u}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},iG=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:u}=a,l=J().getBool("WEBGL_PACK_NORMALIZATION")?new sG(r.shape,s,i,o,u):new rG(r.shape,s,i,o,u);return n.runWebGLProgram(l,[r],r.dtype)},oG={kernelName:zu,backendName:"webgl",kernelFunc:iG},lG=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},uG=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:u,alpha:l,beta:d}=a,p=new lG(r.shape,o,u,l,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},dG={kernelName:rc,backendName:"webgl",kernelFunc:uG};function pG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$i(i,e.dtype,"max",a),u=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),u}function Mw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,u=k.parseAxisParam(s,r.shape),l=u,d=R.getAxesPermutation(l,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[d[v]];let w=Ty(g,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=w}else h=Rh(r,d,n);l=R.getInnerMostAxes(l.length,o)}R.assertAxesAreInnerMostDims("max",l,o);let[m,f]=R.computeOutAndReduceShapes(h.shape,l),y=m;i&&(y=R.expandShapeToKeepDim(m,u));let A;if(c){let g=n.texData.get(h.dataId).values,x=$W(g,k.sizeFromShape(f),y,r.dtype);A=n.makeTensorInfo(y,r.dtype);let w=n.texData.get(A.dataId);w.values=x}else A=pG(h,f,y,n);return p&&n.disposeIntermediateTensorInfo(h),A}var cG={kernelName:$s,backendName:"webgl",kernelFunc:Mw},hG=Zv+`
|
|
return max(a, b);
|
|
`,fG=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Eh+`
|
|
return result;
|
|
`,mG=nn({opSnippet:hG,packedOpSnippet:fG,cpuKernelImpl:DW}),yG={kernelName:Ds,backendName:"webgl",kernelFunc:mG};function AG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;_l(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:u}=a,l=1;k.assert(R.eitherStridesOrDilationsAreOne(i,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${l}'`);let d=R.computePool2DInfo(r.shape,s,i,l,o,u);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Vn({inputs:{x:r},backend:n});let p=new Nd(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var gG={kernelName:zs,backendName:"webgl",kernelFunc:AG};function xG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:u,dimRoundingMode:l}=a,d=[1,1,1],p=R.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new Ry(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var bG={kernelName:Ou,backendName:"webgl",kernelFunc:xG},vG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,u=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${u} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},wG=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,u=e.effectiveFilterHeight,l=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=u-1-e.padInfo.top,c=l-1-e.padInfo.left,h=o*u*l-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${u};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${u} * ${l} +
|
|
wR * ${l} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function kG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:u,pad:l,dimRoundingMode:d}=a,p=[1,1,1],c=R.computePool3DInfo(i.shape,o,u,p,l,d),h=new Ry(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new wG(c),y=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var IG={kernelName:ic,backendName:"webgl",kernelFunc:kG};function SG(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;_l([s,i],"maxPoolGrad");let{filterSize:u,strides:l,pad:d,dimRoundingMode:p}=a,c=R.computePool2DInfo(o.shape,u,l,1,d,p),h=!0,m=new Nd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),y=new vG(c),A=n.runWebGLProgram(y,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),A}var NG={kernelName:sc,backendName:"webgl",kernelFunc:SG};function TG(e,t,n,a){let r=new Nd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Nd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var EG={kernelName:oc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,u=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let l=[1,1];k.assert(R.eitherStridesOrDilationsAreOne(s,l),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${l}'`);let d=R.computePool2DInfo(a.shape,r,s,l,i),[p,c]=TG(a,o,d,u);return[p,c]}};function CG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=$i(i,"float32","mean",a),u=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),u}var RG={kernelName:Os,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,u=k.parseAxisParam(s,a.shape),l=u,d=R.getAxesPermutation(l,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=a.shape[d[N]];let b=Ty(x,a.shape,a.dtype,d,w);m=i.makeTensorInfo(w,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=Rh(a,d,i);h.push(m),l=R.getInnerMostAxes(l.length,o)}R.assertAxesAreInnerMostDims("sum",l,o);let[f,y]=R.computeOutAndReduceShapes(m.shape,l),A=f;r&&(A=R.expandShapeToKeepDim(f,u));let g=CG(m,y,A,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function MG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,u=k.parseAxisParam(s,r.shape),l=u,d=R.getAxesPermutation(l,o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=R.getInnerMostAxes(l.length,r.shape.length)),R.assertAxesAreInnerMostDims("min",l,o);let[c,h]=R.computeOutAndReduceShapes(p.shape,l),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),y=$i(f,f.dtype,"min",n),A;if(i){let g=R.expandShapeToKeepDim(c,u);A=Ae({inputs:{x:y},backend:n,attrs:{shape:g}})}else A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),d!=null&&n.disposeIntermediateTensorInfo(p),A}var FG={kernelName:_s,backendName:"webgl",kernelFunc:MG},$G=Zv+`
|
|
return min(a, b);
|
|
`,DG=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Eh+`
|
|
return result;
|
|
`,zG=nn({opSnippet:$G,packedOpSnippet:DG,cpuKernelImpl:zW}),OG={kernelName:Ps,backendName:"webgl",kernelFunc:zG},_G=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,d)=>l[0]+e[d]+l[1]);let a=e.length,r=ut(a),s=t.map(l=>l[0]).join(","),i=t.map((l,d)=>l[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),u=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${u};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${u};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${u};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${u};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},PG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ut(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=fn("rc",a),u=fn("source",a),l=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${u.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${u.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${u.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${u.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${l}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${u.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},LG=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new PG(a.shape,r,s):new _G(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},WG={kernelName:Ls,backendName:"webgl",kernelFunc:LG},BG=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,VG=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Eh+`
|
|
return result;
|
|
`,jG=nn({opSnippet:BG,packedOpSnippet:VG}),UG={kernelName:Po,backendName:"webgl",kernelFunc:jG},HG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},GG=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,qG=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,Fw=nn({opSnippet:GG,packedOpSnippet:qG,checkOutOfBounds:!0}),XG={kernelName:Is,backendName:"webgl",kernelFunc:Fw},$w="return a - b;",Dw=nn({opSnippet:$w,packedOpSnippet:$w,supportsComplex:!0,cpuKernelImpl:HW}),KG={kernelName:ai,backendName:"webgl",kernelFunc:Dw};function zw(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=Mw({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),u=R.expandShapeToKeepDim(o.shape,i),l=Ae({inputs:{x:o},backend:n,attrs:{shape:u}}),d=Dw({inputs:{a:r,b:l},backend:n}),p=Nw({inputs:{x:d},backend:n}),c=Mh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:u}}),m=Fw({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var ZG={kernelName:ti,backendName:"webgl",kernelFunc:zw};function YG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,u=o?r:zw({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),l=u.shape[0],d=u.shape[1],p=new HG(l,d,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[u],"int32",c);return o||n.disposeIntermediateTensorInfo(u),h}var JG={kernelName:lc,backendName:"webgl",kernelFunc:YG},Ow="return -x;";function QG(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=_W(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Vl(a.shape,Ow):r=new Gr(a.shape,Ow),n.runWebGLProgram(r,[a],a.dtype)}var eq={kernelName:Lo,backendName:"webgl",kernelFunc:QG},tq=Ga.nonMaxSuppressionV3Impl;function nq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u}=a,l=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=tq(l,d,i,o,u);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var aq={kernelName:Bo,backendName:"webgl",kernelFunc:nq},rq=Ga.nonMaxSuppressionV4Impl;function sq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,padToMaxOutputSize:l}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=rq(d,p,i,o,u,l);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var iq={kernelName:Vo,backendName:"webgl",kernelFunc:sq},oq=Ga.nonMaxSuppressionV5Impl;function lq(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:u,softNmsSigma:l}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=u,f=l,{selectedIndices:y,selectedScores:A}=oq(d,p,c,h,m,f);return[n.makeTensorInfo([y.length],"int32",new Int32Array(y)),n.makeTensorInfo([A.length],"float32",new Float32Array(A))]}var uq={kernelName:jo,backendName:"webgl",kernelFunc:lq},dq=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},pq=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,u=k.sizeFromShape(r.shape),l=new dq(u,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[u]}}),p=n.runWebGLProgram(l,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},cq={kernelName:Bs,backendName:"webgl",kernelFunc:pq};function Oh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=Ed({inputs:{input:a},backend:n}),s=Oh({inputs:{x:r},backend:n}),i=zh({inputs:{input:a},backend:n}),o=Oh({inputs:{x:i},backend:n}),u=qr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return Dy({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var hq={kernelName:ol,backendName:"webgl",kernelFunc:Oh};function _w(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=Ed({inputs:{input:a},backend:n}),s=_w({inputs:{x:r},backend:n}),i=zh({inputs:{input:a},backend:n}),o=Oh({inputs:{x:i},backend:n}),u=qr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),u}else return Dy({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var fq={kernelName:Uo,backendName:"webgl",kernelFunc:_w};function mq(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return $y({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(d=>{let p=$y({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),l=yw({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),l}var yq={kernelName:Ho,backendName:"webgl",kernelFunc:mq},Aq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,l)=>u[0]+e[l]+u[1]);let a=e.length,r=ut(a),s=t.map(u=>u[0]).join(","),i=t.map((u,l)=>u[0]+e[l]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},gq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ut(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=fn("rc",a),u=fn("source",a),l=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${u.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${l}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${l}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${u.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},Pw=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new gq(r.shape,s,i):new Aq(r.shape,s,i),u=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,u)},xq={kernelName:Vs,backendName:"webgl",kernelFunc:Pw},bq=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,vq=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Eh+`
|
|
return result;
|
|
`,wq=nn({opSnippet:bq,packedOpSnippet:vq}),kq={kernelName:js,backendName:"webgl",kernelFunc:wq};function Iq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,u=[],l=k.parseAxisParam(s,r.shape),d=l,p=R.getAxesPermutation(d,o),c=r;p!=null&&(c=mn({inputs:{x:r},backend:n,attrs:{perm:p}}),d=R.getInnerMostAxes(d.length,o),u.push(c)),R.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:y,outDtype:A}=PW(c.shape,c.dtype,m,d);h=n.makeTensorInfo(y,A,f)}else{let[m,f]=R.computeOutAndReduceShapes(c.shape,d),y=k.sizeFromShape(f),A=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,y]}}),g=vc(r.dtype),x=$i(A,g,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),u.push(A),u.push(x)}if(i){u.push(h);let m=R.expandShapeToKeepDim(h.shape,l);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var Sq={kernelName:Go,backendName:"webgl",kernelFunc:Iq},Lw=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=LW(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},Nq={kernelName:_u,backendName:"webgl",kernelFunc:Lw},Tq="return 1.0 / x;",Eq=Ke({opSnippet:Tq}),Cq={kernelName:qo,backendName:"webgl",kernelFunc:Eq},Rq=Ia+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Mq=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Fq=Ke({opSnippet:Rq,packedOpSnippet:Mq}),$q={kernelName:Hs,backendName:"webgl",kernelFunc:Fq},Dq=Ia+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,zq=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Oq=Ke({opSnippet:Dq,packedOpSnippet:zq}),_q={kernelName:qs,backendName:"webgl",kernelFunc:Oq},Pq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,u]=e;this.outputShape=[s,t,n,u];let l=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/d[0]},
|
|
${l[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Lq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,u]=e;this.outputShape=[s,t,n,u];let l=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/d[0]},
|
|
${l[1]/d[1]},
|
|
${l[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Wq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[u,l]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Lq(r.shape,u,l,s,i):new Pq(r.shape,u,l,s,i);return n.runWebGLProgram(d,[r],"float32")}var Bq={kernelName:Gs,backendName:"webgl",kernelFunc:Wq},Vq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],u=[n&&s>1?s-1:s,n&&i>1?i-1:i],l=o[0]/u[0],d=o[1]/u[1],p=1/l,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function jq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Vq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Uq={kernelName:pc,backendName:"webgl",kernelFunc:jq},Hq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,u]=e;this.outputShape=[s,t,n,u];let l=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${l[0]/d[0]},
|
|
${l[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Gq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,u]=e;this.outputShape=[s,t,n,u];let l=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${l[0]/d[0]},
|
|
${l[1]/d[1]},
|
|
${l[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${u-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function qq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[u,l]=o,d=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Gq(r.shape,u,l,s,i):new Hq(r.shape,u,l,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var Xq={kernelName:Pu,backendName:"webgl",kernelFunc:qq},Kq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],u=[n&&s>1?s-1:s,n&&i>1?i-1:i],l=o[0]/u[0],d=o[1]/u[1],p=1/l,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${l});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${u[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${u[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Zq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new Kq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Yq={kernelName:dc,backendName:"webgl",kernelFunc:Zq},Jq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},Qq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=fn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${u(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${l(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function l(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((A,g)=>c(g,h)),f=m.join(","),y=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${y}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function eX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Vn({inputs:{x:r},backend:n});let u=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Qq(r.shape,o):new Jq(r.shape,o);return n.runWebGLProgram(u,[r],r.dtype)}var tX={kernelName:Xs,backendName:"webgl",kernelFunc:eX},nX=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},aX={kernelName:ll,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,u=new nX(a.shape,s),[l,d]=R.getImageCenter(i,a.shape[1],a.shape[2]),p=u.getCustomSetupFunc(l,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(u,[a],a.dtype,p)}},rX=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,sX=Ke({opSnippet:rX}),iX={kernelName:Ks,backendName:"webgl",kernelFunc:sX},oX="return inversesqrt(x);",lX=Ke({opSnippet:oX,cpuKernelImpl:WW}),uX={kernelName:Zs,backendName:"webgl",kernelFunc:lX},Ww=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(r.length),u=ut(s.length),l="";n===1?l="i":n===2&&(l="i, j");let d=`getIndices(${l})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${u} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:u,sliceSize:l,strides:d,outputSize:p}=R.calculateShapes(s,r,i),c=[p/l,l];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[u,l]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),y=new Ww(u,o,h.shape.length,m.shape.length,d,c),A=n.runWebGLProgram(y,[m,h,f],m.dtype),g=Ae({inputs:{x:A},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(f),g}var pX={kernelName:Ko,backendName:"webgl",kernelFunc:dX},cX=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],u=[];for(let l=0;l<t.length;l++)u.push(`${i[l]}`),l<e&&o.push(`${i[l]}`);a=o.join(),r=u.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function hX(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new cX(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],da(r.dtype,s.dtype))}var fX={kernelName:Zo,backendName:"webgl",kernelFunc:hX},mX=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,yX=Ke({opSnippet:mX}),AX={kernelName:Yo,backendName:"webgl",kernelFunc:yX},gX="return 1.0 / (1.0 + exp(-1.0 * x));",xX=Ke({opSnippet:gX}),bX={kernelName:Js,backendName:"webgl",kernelFunc:xX},vX=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,wX=Ke({opSnippet:vX}),kX={kernelName:el,backendName:"webgl",kernelFunc:wX},IX=tw+`
|
|
return sin(x);
|
|
`,SX=Ke({opSnippet:IX}),NX={kernelName:Ys,backendName:"webgl",kernelFunc:SX},TX=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,EX=Ke({opSnippet:TX}),CX={kernelName:Qo,backendName:"webgl",kernelFunc:EX},RX=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,MX=Ke({opSnippet:RX}),FX={kernelName:tl,backendName:"webgl",kernelFunc:MX},$X=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,g)=>A*g),u=[[0,0]];u.push(...i);for(let A=1+s.length;A<r.shape.length;++A)u.push([0,0]);let l=[],d=Pw({inputs:{x:r},backend:n,attrs:{paddings:u,constantValue:0}}),p=R.getReshaped(d.shape,s,o,!1),c=R.getPermuted(p.length,s.length,!1),h=R.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=mn({inputs:{x:m},backend:n,attrs:{perm:c}}),y=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return l.push(d),l.push(m),l.push(f),l.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},DX={kernelName:Lu,backendName:"webgl",kernelFunc:$X};function zX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),u=n.readSync(r.dataId),l=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=VW(o,a.shape,a.dtype,u,r.dtype,l,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(y=>Number(y)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var OX={kernelName:cc,backendName:"webgl",kernelFunc:zX};function _X(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),u=Array.from(n.readSync(s.dataId)),[l,d,p]=jW(o,a.shape,a.dtype,i,u);return[n.makeTensorInfo(d,a.dtype,l),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var PX={kernelName:hc,backendName:"webgl",kernelFunc:_X};function LX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:u,numUpdates:l,strides:d,outputSize:p}=R.calculateShapes(s,r,o),c=!1,h=new Ww(l,u,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var WX={kernelName:fc,backendName:"webgl",kernelFunc:LX};function BX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],u=R.prepareSplitSize(r,s,o),l=r.shape.length,d=new Array(l).fill(0),p=r.shape.slice();return u.map(c=>{let h=[...p];h[o]=c;let m=Td({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var VX={kernelName:nl,backendName:"webgl",kernelFunc:BX},jX="return sqrt(x);",UX=Ke({opSnippet:jX}),HX={kernelName:Qs,backendName:"webgl",kernelFunc:UX},GX="return x * x;",qX=Ke({opSnippet:GX}),XX={kernelName:Wu,backendName:"webgl",kernelFunc:qX},Bw="return (a - b) * (a - b);",KX=nn({opSnippet:Bw,packedOpSnippet:Bw}),ZX={kernelName:ni,backendName:"webgl",kernelFunc:KX};function YX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ia+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Gr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var JX={kernelName:Dr,backendName:"webgl",kernelFunc:YX},QX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ut(n.length),s=ut(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((u,l)=>(o++,n.length===1?`coords * strides[${l}] + begin[${l}]`:`coords[${o-1}] * strides[${l}] + begin[${l}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function eK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:u,endMask:l,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:y,newShape:A,outShape:g}=un.sliceInfo(r.shape,s,i,o,u,l,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:A}}),w;if(h){let v=Td({inputs:{x},backend:n,attrs:{begin:m,size:y}});w=Ae({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,N=Be(x.shape,x.dtype,v),I=UW(g,N,f,m);w=n.makeTensorInfo(g,x.dtype,I.values)}else{let v=new QX(m,f,g);w=n.runWebGLProgram(v,[x],x.dtype)}let b=Ae({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var tK={kernelName:al,backendName:"webgl",kernelFunc:eK},nK="return tan(x);",aK=Ke({opSnippet:nK}),rK={kernelName:ri,backendName:"webgl",kernelFunc:aK},sK=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,iK=Ke({opSnippet:sK}),oK={kernelName:si,backendName:"webgl",kernelFunc:iK},lK=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=uK(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function uK(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function Vw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),u=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,l=Be(r.shape,r.dtype,u),d=GW(l,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new lK(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var dK={kernelName:$r,backendName:"webgl",kernelFunc:Vw};function pK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[u,l]=qW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(u.shape,u.dtype,u.values),n.makeTensorInfo(l.shape,l.dtype,l.values)]}var cK={kernelName:rl,backendName:"webgl",kernelFunc:pK},hK=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function fK(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=a,[d,p,c,h]=r.shape,[m,f]=l!=null?l:[p,c],y=[d,m,f,h],A=new hK(p,c,i,o,u,y);return n.runWebGLProgram(A,[r,s],"float32")}var mK={kernelName:sl,backendName:"webgl",kernelFunc:fK};function yK(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;_l(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:u,indices:l}=XW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(u,s.dtype,o),a.makeTensorInfo([l.length],"int32",l)]}var AK={kernelName:mc,backendName:"webgl",kernelFunc:yK};function gK(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,u=r.shape[s],l=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(l[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(u);for(let f=0;f<m.length;f++){c[s]=f;let y=Td({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),A=Ae({inputs:{x:y},backend:n,attrs:{shape:l}});m[f]=A,p.push(y)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var xK={kernelName:il,backendName:"webgl",kernelFunc:gK},bK=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",u="sumValue",l=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${l}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${l};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${u});
|
|
}
|
|
`}};function vK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,u=[],l=0,d=R.getAxesPermutation([l],o),p=r;d!=null&&(p=mn({inputs:{x:r},backend:n,attrs:{perm:d}}),u.push(p),l=R.getInnerMostAxes(1,o)[0]);let c=R.segment_util.computeOutShape(p.shape,l,i),h=k.sizeFromShape([p.shape[l]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});u.push(m);let f=vc(r.dtype),y=(w,b,v,N,I)=>{let E=w.shape[0],$=w.shape[1],O=R.segment_util.segOpComputeOptimalWindowSize($,I),z={windowSize:O,inSize:$,batchSize:E,numSegments:I},P=new bK(z,b),D=n.compileAndRun(P,[w,v],N);if(u.push(D),D.shape[1]===I)return D;let U=Lw({backend:n,attrs:{start:0,stop:I,step:1,dtype:"float32"}}),X=Vw({inputs:{x:U},backend:n,attrs:{reps:[$/O]}});return u.push(U),u.push(X),y(D,b,X,N,I)},A=y(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:A},backend:n,attrs:{shape:c}}),x=g;if(d!=null){u.push(g);let w=R.getUndoAxesPermutation(d);x=mn({inputs:{x},backend:n,attrs:{perm:w}})}return u.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var wK={kernelName:Bu,backendName:"webgl",kernelFunc:vK},kK=[oG,dG,GB,XB,YB,eV,nV,sV,oV,uV,hV,mV,gV,vV,EV,IV,MV,zV,$V,LV,BV,jV,qV,ej,nj,lj,dj,fj,Aj,TB,wj,Fj,Dj,Nj,Pj,Wj,Oj,jj,Gj,Kj,Yj,Qj,nU,lU,dU,rU,hU,yU,gU,wU,NU,RU,$U,DU,zU,_U,LU,BU,jU,HU,KU,JU,tH,aH,iH,dH,fH,gH,NB,bH,bj,kH,NH,CH,CB,$H,_H,LH,GH,jH,ZH,QH,aG,cG,bG,gG,IG,NG,EG,yG,RG,FG,OG,WG,UG,JG,DB,eq,aq,iq,uq,rj,cq,fq,yq,xq,kq,MB,Sq,Nq,sj,XG,Cq,_q,$q,OB,Bq,Uq,Xq,Yq,tX,aX,iX,uX,pX,fX,AX,bX,kX,NX,CX,JV,ZG,FX,DX,OX,PX,WX,VX,HX,XX,ZX,JX,tK,KG,jB,rK,oK,dK,cK,mK,UB,AK,xK,wK,hq];for(let e of kK)di(e);var En;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(En||(En={}));var Cd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Cd||(Cd={}));var jw;function IK(e){jw=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function SK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:u,transposeB:l,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let I=n.dataIdMap.get(i.dataId);if(I.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${I.shape.length}.`);m=I.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,y=Cd[d];if(y==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let A=u?r.shape[2]:r.shape[1],g=l?s.shape[1]:s.shape[2],x=r.shape[0],w=n.makeOutput([x,A,g],r.dtype),b=n.dataIdMap.get(w.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return jw(c,v,r.shape.length,h,N,s.shape.length,u,l,y,m,f,p||0,b),w}var NK={kernelName:oi,backendName:"wasm",setupFunc:IK,kernelFunc:SK};function yn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,u=s.makeOutput(i.shape,i.dtype),l=s.dataIdMap.get(u.dataId).id;return k.sizeFromShape(u.shape)===0||t(o,l),u}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var TK=yn(oo);function An(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:u}=i,{a:l,b:d}=u,p=o.dataIdMap.get(l.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:l.dtype,m=R.assertAndGetBroadcastShape(l.shape,d.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let y=new Uint8Array(new Int32Array(l.shape).buffer),A=new Uint8Array(new Int32Array(d.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,y,l.shape.length,c,A,d.shape.length,En[l.dtype],g);if(t&&l.dtype==="float32")return x(),f;let w=R.getBroadcastDims(l.shape,m),b=R.getBroadcastDims(d.shape,m),v=w.every((I,E)=>I===E),N=b.every((I,E)=>I===E);if(v&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${l.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var EK=!0,CK=An(Mr,EK),Uw;function RK(e){Uw=e.wasm.cwrap(hs,null,["array","number","number","number"])}function MK(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return Uw(s,r.length,En[a.dtype],i),a}var FK={kernelName:hs,backendName:"wasm",setupFunc:RK,kernelFunc:MK};function _h(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var $K={kernelName:Rs,backendName:"wasm",kernelFunc:_h},Hw;function DK(e){Hw=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function Ph(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=OK(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=zK(t.x.shape,a.perm),u={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=_h({inputs:t,backend:n});return m.shape=o,m}let l=n.makeOutput(o,u.dtype),d=n.dataIdMap.get(u.dataId).id,p=n.dataIdMap.get(l.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(u.shape).buffer);return Hw(d,h,u.shape.length,En[u.dtype],p,c,s.length),l}function zK(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function OK(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var _K={kernelName:ii,backendName:"wasm",kernelFunc:Ph,setupFunc:DK};function Xr(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=R.getAxesPermutation(i,r),u=null,l=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=R.getInnerMostAxes(i.length,r),u=Ph({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(u.dataId).id!==p&&(l=!0)}return{transposed:u,originalAxes:s,axes:i,inputWasTransposed:l}}var Gw;function PK(e){Gw=e.wasm.cwrap(po,null,["number, number, number"])}function LK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=i,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(l.dataId).id;u=l,o=g}let h=u.shape.length;R.assertAxesAreInnerMostDims("all",d,h);let[m,f]=R.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(u.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;Gw(o,y,g)}if(c&&t.disposeData(l.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var WK={kernelName:po,backendName:"wasm",setupFunc:PK,kernelFunc:LK},qw;function BK(e){qw=e.wasm.cwrap(co,null,["number, number, number"])}function VK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=i,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(l.dataId).id;u=l,o=g}let h=u.shape.length;R.assertAxesAreInnerMostDims("any",d,h);let[m,f]=R.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(u.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;qw(o,y,g)}if(c&&t.disposeData(l.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var jK={kernelName:co,backendName:"wasm",setupFunc:BK,kernelFunc:VK},Xw;function UK(e){Xw=e.wasm.cwrap(fs,null,["number","number","number","number","number"])}function HK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,u=s,{transposed:l,axes:d,inputWasTransposed:p}=Xr(s,r,t);if(p){let A=t.dataIdMap.get(l.dataId).id;A!==i&&(u=l,o=A)}let c=u.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),y=u.shape[d[0]];return Xw(o,En[u.dtype],f,y,m),p&&t.disposeData(l.dataId),h}var GK={kernelName:fs,backendName:"wasm",kernelFunc:HK,setupFunc:UK},Kw;function qK(e){Kw=e.wasm.cwrap(ms,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function XK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,d=R.computePool2DInfo(r.shape,i,o,1,u,l),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,y=d.padInfo.left,A=d.strideHeight,g=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let w=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(w.dataId).id;return Kw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,y,A,g,x,b),w}var KK={kernelName:ms,backendName:"wasm",setupFunc:qK,kernelFunc:XK};function Sa(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var ZK={kernelName:Xo,backendName:"wasm",kernelFunc:Sa},Zw;function YK(e){Zw=e.wasm.cwrap(ys,null,["number","array","number","number","array","number","number","number","number"])}function JK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let u=r.shape.length,l=s.shape.length,d=i?r.shape[u-2]:r.shape[u-1],p=o?s.shape[l-1]:s.shape[l-2],c=i?r.shape[u-1]:r.shape[u-2],h=o?s.shape[l-2]:s.shape[l-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),y=k.sizeFromShape(m),A=k.sizeFromShape(f),g=y===A||y===1||A===1;k.assert(u>=2&&l>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(y>A?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[y,d,c]:[y,c,d],b=o?[A,h,p]:[A,p,h],v=Sa({inputs:{x:r},backend:n,attrs:{shape:w}}),N=Sa({inputs:{x:s},backend:n,attrs:{shape:b}}),I=n.dataIdMap.get(v.dataId).id,E=n.dataIdMap.get(N.dataId).id,$=i?v.shape[2]:v.shape[1],O=o?N.shape[1]:N.shape[2],z=Math.max(y,A),P=n.makeOutput([z,$,O],v.dtype),D=n.dataIdMap.get(P.dataId).id,U=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return Zw(I,U,v.shape.length,E,X,N.shape.length,i,o,D),n.disposeData(v.dataId),n.disposeData(N.dataId),P.shape=x,P}var QK={kernelName:ys,backendName:"wasm",setupFunc:YK,kernelFunc:JK};function Lh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var eZ={kernelName:As,backendName:"wasm",kernelFunc:Lh},tZ=yn(gs),Yw;function nZ(e){Yw=e.wasm.cwrap(Fr,null,["number","number","number","number"])}function aZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(u.dataId).id;return Yw(o,s,i,l),u}var rZ={kernelName:Fr,backendName:"wasm",setupFunc:nZ,kernelFunc:aZ};function Jw(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=R.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return _h({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(R.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=k.sizeFromShape(x.shape.slice(a));return Sa({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=R.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,y=ry(m,r,t[0].dtype,f),A=R.computeOutShape(s.map(x=>x.shape),a);i.shape=A;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=R.fromStringArrayToUint8(y),h.forEach(x=>n.disposeData(x.dataId)),i}let u=k.sizeFromShape(s[0].shape.slice(0,a)),l=0,d=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return l+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<u;h++){let m=h*l;for(let f=0;f<p.length;f++){let y=d[f],A=h*y,g=p[f].subarray(A,A+y);c.set(g,m),m+=y}}return i}var sZ={kernelName:go,backendName:"wasm",kernelFunc:Jw},Qw;function iZ(e){Qw=e.wasm.cwrap(xs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function oZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=R.convertConv2DDataFormat(c),m=R.computeConv2DInfo(r.shape,s.shape,u,l,d,p,!1,h),f=m.filterHeight,y=m.filterWidth,A=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,N=m.strideHeight,I=m.strideWidth,E=m.inChannels,$=m.outChannels,O=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(m.outShape,"float32"),P=a.dataIdMap.get(z.dataId).id;return Qw(i,r.shape[0],r.shape[1],r.shape[2],o,f,y,A,g,x,w,O,b,v,N,I,E,$,P),z}var lZ={kernelName:xs,backendName:"wasm",setupFunc:iZ,kernelFunc:oZ},e6;function uZ(e){e6=e.wasm.cwrap(bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function dZ(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:u,dimRoundingMode:l,inputShape:d}=a,p=1,c=R.convertConv2DDataFormat(u),h=R.computeConv2DInfo(d,s.shape,i,p,o,l,!1,c),{batchSize:m,filterHeight:f,filterWidth:y,inChannels:A,inHeight:g,inWidth:x,outChannels:w,outHeight:b,outWidth:v,strideHeight:N,strideWidth:I}=h,E=f-1-h.padInfo.top,$=y-1-h.padInfo.left,O=h.dataFormat==="channelsLast",z=k.computeStrides(h.inShape),P=k.computeStrides(r.shape),[D,U,X]=k.computeStrides(s.shape),G=z[0],ee=O?z[1]:z[2],Y=O?z[2]:1,re=O?1:z[1],ne=P[0],ie=O?P[1]:P[2],Q=O?P[2]:1,pe=O?1:P[1],oe=t.makeOutput(h.inShape,"float32"),ge=t.dataIdMap.get(oe.dataId).id,he=t.dataIdMap.get(r.dataId).id,Ne=t.dataIdMap.get(s.dataId).id;return e6(he,Ne,m,f,y,g,x,A,b,v,w,N,I,E,$,D,U,X,G,ee,Y,re,ne,ie,Q,pe,ge),oe}var pZ={kernelName:bs,backendName:"wasm",setupFunc:uZ,kernelFunc:dZ},cZ=yn(vs),zy;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(zy||(zy={}));var t6;function hZ(e){t6=e.wasm.cwrap(bo,null,["number","number","number","number","array","number","number","number","number","number"])}function fZ(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:u,boxInd:l}=n,d=u.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Lh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let y=m.id,A=t.dataIdMap.get(u.dataId).id,g=t.dataIdMap.get(l.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return t6(y,A,g,d,b,p,c,zy[r],s,w),f!=null&&t.disposeData(f.dataId),x}var mZ={kernelName:bo,backendName:"wasm",setupFunc:hZ,kernelFunc:fZ},n6;function yZ(e){n6=e.wasm.cwrap(ws,null,["number","number","number","number","number","number"])}function AZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,u=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let l=R.getAxesPermutation([s],u),d=r;l!==null&&(d=Ph({inputs:{x:r},attrs:{perm:l},backend:n}));let p=R.getInnerMostAxes(1,u)[0];R.assertAxesAreInnerMostDims("cumsum",[p],u);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;n6(m,i?1:0,o?1:0,h,f,En[r.dtype]);let y=c;if(l!==null){let A=R.getUndoAxesPermutation(l);y=Ph({inputs:{x:c},attrs:{perm:A},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return y}var gZ={kernelName:ws,backendName:"wasm",setupFunc:yZ,kernelFunc:AZ},a6;function xZ(e){a6=e.wasm.cwrap(vo,null,["number","number","number","array","number","array","array","number","number"])}function bZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],u=i==="NHWC"?r.shape[1]:r.shape[2],l=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=u*s,c=l*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),y=t.dataIdMap.get(r.dataId).id,A=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return a6(y,s,i==="NHWC"?1:0,A,r.shape.length-1,g,x,m.length,w),f}var vZ={kernelName:vo,backendName:"wasm",setupFunc:xZ,kernelFunc:bZ},r6;function wZ(e){r6=e.wasm.cwrap(ks,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function kZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:u,dilations:l,pad:d,dimRoundingMode:p}=n,c=l==null?[1,1]:l,h=R.computeConv2DInfo(r.shape,s.shape,u,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,y=h.padInfo.top,A=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,N=h.strideWidth,I=h.inChannels,E=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let O=a.makeOutput(h.outShape,"float32"),z=a.dataIdMap.get(O.dataId).id;return r6(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,y,A,g,x,$,w,b,v,N,I,E,z),O}var IZ={kernelName:ks,backendName:"wasm",setupFunc:wZ,kernelFunc:kZ},SZ=!1,NZ=An(Io,SZ,"bool"),TZ=yn(Ss);function Oy(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),u=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),u=i+s+1),o.splice(u,0,1),Sa({inputs:{x:r},backend:a,attrs:{shape:o}})}var EZ={kernelName:So,backendName:"wasm",kernelFunc:Oy};function CZ(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var RZ={kernelName:Fu,backendName:"wasm",kernelFunc:CZ},s6;function MZ(e){s6=e.wasm.cwrap(To,null,["number","number","number","number","number","number"])}function FZ(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,u,l,d]=a.shape;return s6(s,o,u,l,d,i),r}var $Z={kernelName:To,backendName:"wasm",kernelFunc:FZ,setupFunc:MZ},DZ=yn(Ns),zZ=!1,OZ=An(Ts,zZ),i6;function _Z(e){i6=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number"])}function PZ(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:u,scale:l}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=u!=null?t.dataIdMap.get(u.dataId).id:0,m=l!=null?t.dataIdMap.get(l.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let y=t.dataIdMap.get(f.dataId).id;return i6(d,p,c,h,m,r,y),f}var LZ={kernelName:Es,backendName:"wasm",setupFunc:_Z,kernelFunc:PZ},o6;function WZ(e){o6=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function BZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,u,d,l,c),y=Cd[h];if(y==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,I=f.padInfo.right,E=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,P=f.strideHeight,D=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return o6(A,G,ee,Y,g,b,v,w,N,I,E,$,X,O,z,P,D,U,x,y,ie,m||0,ne),re}var VZ={kernelName:li,backendName:"wasm",setupFunc:WZ,kernelFunc:BZ},l6;function jZ(e){l6=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function UZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:u,pad:l,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=R.computeConv2DInfo(r.shape,s.shape,u,d,l,c,!0),y=Cd[h];if(y==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let A=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,I=f.padInfo.right,E=f.padInfo.bottom,$=f.padInfo.left,O=f.dilationHeight,z=f.dilationWidth,P=f.strideHeight,D=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return l6(A,G,ee,Y,g,b,v,w,N,I,E,$,X,O,z,P,D,U,x,y,ie,m||0,ne),re}var HZ={kernelName:ui,backendName:"wasm",setupFunc:jZ,kernelFunc:UZ},u6;function GZ(e){u6=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","array","number"])}function qZ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,u]=e1.prepareAndValidate(a,r),l=t.makeOutput(s,a.dtype);if(i===0)return l;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(u).buffer),f=t.dataIdMap.get(l.dataId).id;return u6(c,En[a.dtype],h,i,p,o,m,f),l}var XZ={kernelName:Co,backendName:"wasm",setupFunc:GZ,kernelFunc:qZ},d6;function KZ(e){d6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function ZZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,u=k.parseAxisParam(i,r.shape)[0],l=R.segment_util.collectGatherOpShapeInfo(r,s,u,o),d=Sa({inputs:{x:r},attrs:{shape:[l.batchSize,l.outerSize,l.dimSize,l.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=Sa({inputs:{x:s},attrs:{shape:[l.batchSize,p/l.batchSize]},backend:t}),h=[l.batchSize,l.outerSize,p/l.batchSize,l.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,y=t.dataIdMap.get(d.dataId).id,A=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return d6(y,En[r.dtype],x,f,A,l.batchSize,w,g),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=l.outputShape,m}var YZ={kernelName:Eo,backendName:"wasm",setupFunc:KZ,kernelFunc:ZZ},JZ=!1,QZ=An(Ro,JZ,"bool"),eY=!1,tY=An(Cs,eY,"bool"),p6;function nY(e){p6=e.wasm.cwrap(Ms,null,["number","number","number"])}function aY(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;p6(r,n,i)}return s}var rY={kernelName:Ms,backendName:"wasm",setupFunc:nY,kernelFunc:aY},sY=!1,iY=An(Do,sY,"bool"),oY=!1,lY=An(zo,oY,"bool"),uY=yn(Fs),dY=!1,pY=An(_o,dY,"bool"),c6;function cY(e){c6=e.wasm.cwrap($s,null,["number, number, number"])}function hY(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=i,{transposed:l,axes:d,originalAxes:p,inputWasTransposed:c}=Xr(i,r,t);if(c){let g=t.dataIdMap.get(l.dataId).id;u=l,o=g}let h=u.shape.length;R.assertAxesAreInnerMostDims("max",d,h);let[m,f]=R.computeOutAndReduceShapes(u.shape,d),y=k.sizeFromShape(f),A=t.makeOutput(m,i.dtype);if(k.sizeFromShape(u.shape)!==0){let g=t.dataIdMap.get(A.dataId).id;c6(o,y,g)}if(c&&t.disposeData(l.dataId),s){let g=R.expandShapeToKeepDim(A.shape,p);A.shape=g}return A}var fY={kernelName:$s,backendName:"wasm",setupFunc:cY,kernelFunc:hY},mY=!1,yY=An(Ds,mY),h6;function AY(e){h6=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gY(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:u,dimRoundingMode:l}=n,d=R.computePool2DInfo(r.shape,i,o,1,u,l),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,y=d.padInfo.left,A=d.dilationHeight,g=d.dilationWidth,x=d.strideHeight,w=d.strideWidth,b=d.inChannels,v=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(d.outShape,"float32"),I=a.dataIdMap.get(N.dataId).id;return h6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,y,A,g,x,w,b,v,I),N}var xY={kernelName:zs,backendName:"wasm",setupFunc:AY,kernelFunc:gY},f6;function bY(e){f6=e.wasm.cwrap(Os,null,["number, number, number"])}function vY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let w=t.dataIdMap.get(d.dataId).id;w!==o&&(l=d,u=w,m=R.getInnerMostAxes(m.length,l.shape.length))}R.assertAxesAreInnerMostDims("mean",m,l.shape.length);let[f,y]=R.computeOutAndReduceShapes(l.shape,m),A=k.sizeFromShape(y),g=l;l.dtype!=="float32"&&(g=Lh({backend:t,inputs:{x:l},attrs:{dtype:"float32"}}),u=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(l.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;f6(u,A,w)}if(h&&t.disposeData(d.dataId),s){let w=R.expandShapeToKeepDim(x.shape,c);x.shape=w}return l.dtype!=="float32"&&t.disposeData(g.dataId),x}var wY={kernelName:Os,backendName:"wasm",setupFunc:bY,kernelFunc:vY},m6;function kY(e){m6=e.wasm.cwrap(_s,null,["number, number, number"])}function IY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(l=d,u=x)}let m=l.shape.length;R.assertAxesAreInnerMostDims("min",p,m);let[f,y]=R.computeOutAndReduceShapes(l.shape,p),A=k.sizeFromShape(y),g=t.makeOutput(f,l.dtype);if(k.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;m6(u,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var SY={kernelName:_s,backendName:"wasm",setupFunc:kY,kernelFunc:IY},NY=!1,TY=An(Ps,NY),_y;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(_y||(_y={}));var y6;function EY(e){y6=e.wasm.cwrap(Ls,null,["number","array","number","number","array","array","number","number"])}function CY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),u=n.dataIdMap.get(o.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return y6(i,l,t.shape.length,En[t.dtype],c,h,_y[r],u),o}var RY={kernelName:Ls,backendName:"wasm",kernelFunc:CY,setupFunc:EY},MY=!0,FY=An(Ws,MY),$Y=yn(Lo);function Py(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var A6;function DY(e){A6=e.wasm.cwrap(Bo,"number",["number","number","number","number","number"])}function zY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:u}=n,l=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(u.dataId).id,p=A6(l,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=Py(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var OY={kernelName:Bo,backendName:"wasm",setupFunc:DY,kernelFunc:zY},g6;function _Y(e){g6=e.wasm.cwrap(Vo,"number",["number","number","number","number","number","bool"])}function PY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:u,scores:l}=n,d=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,c=g6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:y}=Py(t,c);t.wasm._free(f);let A=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",y);return[A,g]}var LY={kernelName:Vo,backendName:"wasm",setupFunc:_Y,kernelFunc:PY},x6;function WY(e){x6=e.wasm.cwrap(jo,"number",["number","number","number","number","number","number"])}function BY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:u,scores:l}=n,d=t.dataIdMap.get(u.dataId).id,p=t.dataIdMap.get(l.dataId).id,c=x6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:y}=Py(t,c);t.wasm._free(y);let A=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[A,g]}var VY={kernelName:jo,backendName:"wasm",setupFunc:WY,kernelFunc:BY},jY=!1,UY=An(Wo,jY,"bool"),b6;function HY(e){b6=e.wasm.cwrap(Bs,null,["number","number","number","number","number"])}function GY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,u=n.makeOutput([...r.shape,s],"int32"),l=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return b6(d,s,i,o,l),u}var qY={kernelName:Bs,backendName:"wasm",setupFunc:HY,kernelFunc:GY};function XY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var KY={kernelName:Uo,backendName:"wasm",kernelFunc:XY};function ZY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Oy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],u=t.map(d=>{let p=Oy({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),l=Jw({inputs:u,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),l}var YY={kernelName:Ho,backendName:"wasm",kernelFunc:ZY},v6;function JY(e){v6=e.wasm.cwrap(Vs,null,["number","array","number","number","array","array","number","number"])}function QY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),u=n.dataIdMap.get(o.dataId).id,l=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return v6(i,l,t.shape.length,En[t.dtype],c,h,r,u),o}var eJ={kernelName:Vs,backendName:"wasm",kernelFunc:QY,setupFunc:JY},tJ=!1,nJ=An(js,tJ),w6;function aJ(e){w6=e.wasm.cwrap(Us,null,["number","number","number"])}function rJ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),u=n.dataIdMap.get(o.dataId).id;return w6(s,i,u),o}var sJ={kernelName:Us,backendName:"wasm",setupFunc:aJ,kernelFunc:rJ},k6;function iJ(e){k6=e.wasm.cwrap(Go,null,["number","number","number","number"])}function oJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(l=d,u=x,m=R.getInnerMostAxes(m.length,l.shape.length))}R.assertAxesAreInnerMostDims("prod",m,l.shape.length);let[f,y]=R.computeOutAndReduceShapes(l.shape,m),A=k.sizeFromShape(y),g=t.makeOutput(f,l.dtype);if(k.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;k6(u,A,En[g.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var lJ={kernelName:Go,backendName:"wasm",setupFunc:iJ,kernelFunc:oJ},uJ=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=oy(a,r,s,i),u=t.makeOutput([o.length],i);return t.typedArrayFromHeap(u).set(o),u},dJ={kernelName:_u,backendName:"wasm",kernelFunc:uJ},pJ=!0,cJ=An(Is,pJ),hJ=yn(Hs),fJ=yn(qs),I6;function mJ(e){I6=e.wasm.cwrap(Gs,null,["number","number","number","number","number","number","number","number","number","number"])}function yJ(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[u,l]=o,[d,p,c,h]=r.shape,m=[d,u,l,h],f=t.dataIdMap.get(r.dataId),y;f.dtype!=="float32"&&(y=Lh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(y.dataId));let A=f.id,g=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return I6(A,d,p,c,h,u,l,s?1:0,i?1:0,x),y!=null&&t.disposeData(y.dataId),g}var AJ={kernelName:Gs,backendName:"wasm",setupFunc:mJ,kernelFunc:yJ},S6;function gJ(e){S6=e.wasm.cwrap(Xs,null,["number","array","number","array","number","number"])}function xJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return _h({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);S6(u,d,i.length,p,r.shape.length,l);let c=Sa({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var bJ={kernelName:Xs,backendName:"wasm",kernelFunc:xJ,setupFunc:gJ},N6;function vJ(e){N6=e.wasm.cwrap(ll,null,["number","number","number","number","number","number","number","number","array","number","number"])}function wJ(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,u=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(u.dataId).id,[p,c,h,m]=r.shape,[f,y]=R.getImageCenter(o,c,h),A=i===0,g=255,x=typeof i=="number"?[i,i,i,A?0:g]:[...i,g],w=new Uint8Array(new Int32Array(x).buffer);return N6(l,p,c,h,m,s,f,y,w,x.length,d),u}var kJ={kernelName:ll,backendName:"wasm",kernelFunc:wJ,setupFunc:vJ},IJ=yn(Ks),SJ=yn(Zs),T6;function NJ(e){T6=e.wasm.cwrap(Ko,null,["number","number","number","number","number","number","array","number","number"])}function TJ(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:u,numUpdates:l,sliceSize:d,strides:p,outputSize:c}=t1.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),y=t.dataIdMap.get(o.dataId).id;return T6(h,m,En[s.dtype],u,l,d,f,c,y),o}var EJ={kernelName:Ko,backendName:"wasm",setupFunc:NJ,kernelFunc:TJ},E6;function CJ(e){E6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function RJ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(s.dataId).id,l=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(l.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return E6(i,o,u,h,d),l}var MJ={kernelName:Zo,backendName:"wasm",kernelFunc:RJ,setupFunc:CJ},C6;function FJ(e){C6=e.wasm.cwrap(Js,null,["number","number"])}function $J(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||C6(a,s),r}var DJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:FJ,kernelFunc:$J},zJ=yn(Ys);function Wh(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=un.parseSliceParams(t,n,a),o=un.isSliceContinous(t.shape,s,i),u=r.readSync(t.dataId),l=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),p=r.dataIdMap.get(l.dataId);if(o){let m=un.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=u.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(l).set(u.subarray(m,m+k.sizeFromShape(i))),l}if(t.dtype==="string"){let m=yh(u,s,i,t.shape,t.dtype);return p.stringBytes=m,l}let c=r.typedArrayFromHeap(l),h=t.shape.length;if(h===2)OJ(u,d[0],c,s,i);else if(h===3)_J(u,d[0],d[1],c,s,i);else if(h===4)PJ(u,d[0],d[1],d[2],c,s,i);else{let m=yh(u,s,i,t.shape,t.dtype);c.set(m)}return l}function OJ(e,t,n,a,r){let s=0,i=a[0],o=a[1],u=i+r[0];for(let l=i;l<u;l++){let d=l*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function _J(e,t,n,a,r,s){let i=0,o=r[0],u=r[1],l=r[2],d=o+s[0],p=u+s[1];for(let c=o;c<d;c++)for(let h=u;h<p;h++){let m=c*t+h*n+l;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function PJ(e,t,n,a,r,s,i){let o=0,u=s[0],l=s[1],d=s[2],p=u+i[0],c=l+i[1],h=d+i[2],m=s[3];for(let f=u;f<p;f++)for(let y=l;y<c;y++)for(let A=d;A<h;A++){let g=f*t+y*n+A*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var LJ={kernelName:Jo,backendName:"wasm",kernelFunc:Wh},R6;function WJ(e){R6=e.wasm.cwrap(ti,null,["number","number","number","number"])}function BJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],u=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||R6(r,i,o,u),s}var VJ={kernelName:ti,backendName:"wasm",setupFunc:WJ,kernelFunc:BJ};function jJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],u=R.prepareSplitSize(r,s,o),l=new Array(r.shape.length).fill(0),d=r.shape.slice();return u.map(p=>{let c=[...d];c[o]=p;let h=Wh({inputs:{x:r},attrs:{begin:l,size:c},backend:a});return l[o]+=p,h})}var UJ={kernelName:nl,backendName:"wasm",kernelFunc:jJ},HJ=yn(Qs),GJ=yn(Wu),qJ=!0,XJ=An(ni,qJ),M6;function KJ(e){M6=e.wasm.cwrap(Dr,null,["number","number","number"])}function ZJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),u=t.dataIdMap.get(o.dataId).id;return M6(i,r,u),o}var YJ={kernelName:Dr,backendName:"wasm",setupFunc:KJ,kernelFunc:ZJ},F6;function JJ(e){F6=e.wasm.cwrap(al,null,["number","array","number","array","array","array","array","array","number","number"])}function QJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:u,endMask:l,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=R.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=R.slice_util.maskToAxes(p),y=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,y.splice($,0,1)});let A=Sa({inputs:{x:r},attrs:{shape:y},backend:t}),{begin:g,end:x,strides:w}=R.slice_util.getNormalizedAxes(A.shape,h,m,s,i,o,u,l,d);s=g,i=x,o=w;let b=R.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=R.slice_util.computeOutShape(s,i,o),N=v.filter(($,O)=>b.indexOf(O)===-1);if(o.every($=>$===1)){let $=Wh({inputs:{x:A},attrs:{begin:s,size:v},backend:t});t.disposeData(A.dataId);let O=Sa({inputs:{x:$},attrs:{shape:N},backend:t});return t.disposeData($.dataId),O}let I=t.makeOutput(N,"float32");if(!N.some($=>$===0)){let $=t.dataIdMap.get(A.dataId).id,O=new Uint8Array(new Int32Array(k.computeStrides(A.shape)).buffer),z=new Uint8Array(new Int32Array(s).buffer),P=new Uint8Array(new Int32Array(i).buffer),D=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),G=t.dataIdMap.get(I.dataId).id;F6($,O,A.shape.length,z,P,D,U,X,N.length,G)}t.disposeData(A.dataId);let E=Sa({inputs:{x:I},attrs:{shape:N},backend:t});return t.disposeData(I.dataId),E}var eQ={kernelName:al,backendName:"wasm",setupFunc:JJ,kernelFunc:QJ},tQ=!0,nQ=An(ai,tQ),$6;function aQ(e){$6=e.wasm.cwrap(ei,null,["number, number, number"])}function rQ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,u=o,l=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Xr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(l=d,u=x,m=R.getInnerMostAxes(m.length,l.shape.length))}R.assertAxesAreInnerMostDims("sum",m,l.shape.length);let[f,y]=R.computeOutAndReduceShapes(l.shape,m),A=k.sizeFromShape(y),g=t.makeOutput(f,l.dtype);if(k.sizeFromShape(l.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;$6(u,A,x)}if(h&&t.disposeData(d.dataId),s){let x=R.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var sQ={kernelName:ei,backendName:"wasm",setupFunc:aQ,kernelFunc:rQ},iQ=yn(ri),oQ=yn(si),D6;function lQ(e){D6=e.wasm.cwrap($r,null,["number","array","number","array","number","number"])}function uQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let u=new Uint8Array(new Int32Array(r.shape).buffer),l=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return D6(s,u,r.shape.length,l,o.length,En[d.dtype],p),d}var dQ={kernelName:$r,backendName:"wasm",setupFunc:lQ,kernelFunc:uQ},z6;function pQ(e){z6=e.wasm.cwrap(rl,null,["number","array","number","number","number","bool","number","number"])}var cQ=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),u=a.shape.slice();u[u.length-1]=r;let l=t.makeOutput(u,a.dtype),d=t.dataIdMap.get(l.dataId).id,p=t.makeOutput(u,"int32"),c=t.dataIdMap.get(p.dataId).id;return z6(i,o,a.shape.length,En[a.dtype],r,s,d,c),[l,p]},hQ={kernelName:rl,backendName:"wasm",setupFunc:pQ,kernelFunc:cQ},O6;function fQ(e){O6=e.wasm.cwrap(sl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function mQ(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:u,outputShape:l}=a,[d,p,c,h]=r.shape,[m,f]=l!=null?l:[p,c],y=[d,m,f,h],A=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=t.makeOutput(y,r.dtype),x=t.dataIdMap.get(g.dataId).id,w=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,v=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return O6(w,b,s.shape[0]>1,d,m,f,h,c,p,A,r.shape.length-1,v,N,u,x),g}var yQ={kernelName:sl,backendName:"wasm",setupFunc:fQ,kernelFunc:mQ};function AQ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,u=new Array(o-1),l=0;for(let h=0;h<o;h++)h!==s&&(u[l++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=Wh({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:u}))}var gQ={kernelName:il,backendName:"wasm",kernelFunc:AQ};function xQ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var bQ={kernelName:ol,backendName:"wasm",kernelFunc:xQ},vQ=[TK,CK,FK,WK,jK,GK,KK,QK,eZ,tZ,rZ,sZ,lZ,pZ,cZ,mZ,gZ,vZ,IZ,NZ,TZ,EZ,RZ,$Z,DZ,OZ,NK,LZ,VZ,HZ,XZ,YZ,QZ,tY,$K,rY,iY,lY,uY,pY,fY,yY,xY,wY,SY,TY,RY,FY,$Y,OY,LY,VY,UY,qY,KY,YY,eJ,nJ,sJ,lJ,dJ,cJ,hJ,fJ,ZK,AJ,bJ,kJ,SJ,IJ,EJ,MJ,DJ,zJ,LJ,VJ,UJ,HJ,GJ,XJ,YJ,eQ,nQ,sQ,iQ,oQ,dQ,hQ,yQ,_K,gQ,bQ];for(let e of vQ)di(e);var Ly=J();Ly.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Ly.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Ly.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var _6=ro(zI()),wQ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',kQ=ro(OI()),P6=class extends ku{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new zp(this,dr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let l=t;this.dataIdMap.set(e,{id:s,stringBytes:l,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),u=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:u,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,u),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),u)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return NQ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function IQ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function L6(e,t,n){if(Bh!=null)return Bh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Md!=null&&Md[a]!=null?Md[a]:n+a}async function SQ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,u)=>{if(o.endsWith(".worker.js")){let l=wQ,d=new Blob([l],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?L6(e,t,Rd!=null?Rd:u):u+o},Wy&&(r.instantiateWasm=IQ(L6(e,t,Rd!=null?Rd:"")));let s=!1;r.onAbort=()=>{s||Fd||(Fd=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Bh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+_6.default.toString()],{type:"text/javascript"}),i=(0,_6.default)(r)):i=(0,kQ.default)(r),i.then(o=>{s=!0,Fd=!1;let u=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",u,["number"]),dispose:o.cwrap("dispose",u,[])},n({wasm:o})})})}function NQ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var TQ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Bh=null,Rd=null,Md={},Fd=!1,Wy=!1;function EQ(e,t=!1){if(o1("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Fd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Bh=e,Wy=t}function CQ(e,t=!1){if(Fd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Rd=e;else{Md=e;let n=TQ.filter(a=>Md[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}Wy=t}var W6="3.6.0",RQ=2;Al("wasm",async()=>{let{wasm:e}=await SQ();return new P6(e)},RQ);Z().prototype.abs=function(){return this.throwIfDisposed(),Lt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),u1(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),d1(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Cc(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),yi(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),p1(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),c1(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),h1(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),f1(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),m1(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),y1(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),td(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),nd(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),xi(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),xl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),v1(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Nn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof We&&(e=[e]),lt([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Mc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),Fc(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),pr(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),ad(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),$c(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Dc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),I1(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),vl(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),S1(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),N1(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),d3(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),wl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Wr(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),T1(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),ta(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),dn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),E1(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),cd(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),Il(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Tc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),bi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Vr(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),On(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Cl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Yc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),c3(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),h3(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),R1(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),rd(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),jr(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Oc(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),M1(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),y3(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Lc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),D1(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),_n(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),_c(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),ca(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Wc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),b3(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ve(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),id(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Tn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),St(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),Sl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),Nl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),O1(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),_1(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),W(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),It(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),th(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),ki(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ml(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Ln(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),cr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),k3(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),hr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ld(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Vc(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),W1(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),Ha(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),jc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),B3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),V3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Wn(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),hd(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Uc(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Hc(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Gc(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),B1(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),Sn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),V1(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),qc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Xc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),pd(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),vi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),od(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),qt(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),en(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ot(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Jc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ha(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof We?[this,e]:[this,...e];return pn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Rl(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),U1(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),H1(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Br(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),me(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),me(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),me(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),G1(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Qe(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),eh(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),q1(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),fa(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),rn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var B6={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Rl(me(n,"float32"),-1))}}},MQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(me(n,"float32")),r=en(ye(we(1),a));return It(fe(e,r))}}}},FQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=en(ye(ot(me(n,"float32")),1));return fe(e,a)}}}},$Q={kernelName:Mr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),H(s,a.shape)}}}},DQ={kernelName:hs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},zQ={kernelName:fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},OQ={kernelName:Nu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},_Q={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,en(ye(we(1),ot(me(n,"float32")))))}}},PQ={kernelName:fo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=en(se(we(1),ot(me(n,"float32"))));return fe(e,a)}}}},LQ={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=se(ot(n),ot(a)),i=W(e,fe(a,s)),o=Wt(n.shape,r);return o.length>0&&(i=Se(i,o)),H(i,n.shape)},b:()=>{let s=se(ot(n),ot(a)),i=It(W(e,fe(n,s))),o=Wt(a.shape,r);return o.length>0&&(i=Se(i,o)),H(i,a.shape)}}}},WQ={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,se(ot(me(n,"float32")),1))}}},BQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ye(we(1),ot(me(n,"float32"))))}}};function VQ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),u=i,l=o,d=!1;o.rank===4&&(d=!0,u=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),l=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(u.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(l.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${l.rank}.`),s!=null&&F(Ht(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:u,input:l},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=_.runKernel(Wp,p,c);return d?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var jQ=L({avgPool3dGrad_:VQ}),UQ={kernelName:Tu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>jQ(e,a,r,s,i,o)}}};function HQ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,u=s,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(u.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${u.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:u,input:o},p={filterSize:n,strides:a,pad:r},c=_.runKernel(Lp,d,p);return l?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var GQ=L({avgPoolGrad_:HQ}),qQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>GQ(e,a,r,s,i)}}},XQ={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ve(e,r,!1,!0),b:()=>Ve(a,e,!0,!1)}:!s&&i?{a:()=>Ve(e,r,!1,!1),b:()=>Ve(e,a,!0,!1)}:s&&!i?{a:()=>Ve(r,e,!1,!0),b:()=>Ve(a,e,!1,!1)}:{a:()=>Ve(r,e,!0,!0),b:()=>Ve(e,a,!0,!0)}}},KQ={kernelName:Eu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>od(e,a,r)}}},ZQ={kernelName:rb,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let u=r.length-1;u>=0;u--)if(r[u]===s[u])i[u]=1;else if(r[u]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let u=0;u<i.length;u++)i[u]>1&&o.push(u);return{x:()=>Se(e,o,!0)}}},YQ={kernelName:As,gradFunc:e=>({x:()=>e.clone()})},JQ={kernelName:gs,gradFunc:e=>({x:()=>Ge(e)})},QQ={kernelName:Fr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>rn(ca(Vr(a,r),jr(a,s)),e,Ge(e))}}},eee={kernelName:Cu,inputsToSave:["x"],gradFunc:B6.gradFunc},tee={kernelName:go,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ua(r,t[0].shape)[0],i=a.map(o=>o[s]);return qt(e,i,s).map(o=>()=>o)}},nee={kernelName:xs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:u}=n;return F(Lr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>w1(a.shape,e,r,i,o,u),filter:()=>Y1(a,e,r.shape,i,o,u)}}},aee={kernelName:bs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:u}=n;return{dy:()=>pr(e,r,s,i,o,1,u),filter:()=>Y1(e,a,r.shape,s,i,o,u)}}};function ree(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},u={strides:a,pad:r,filterShape:n};return _.runKernel(Up,o,u)}var see=L({conv3DBackpropFilter_:ree}),iee={kernelName:Ru,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Lr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>o3(i.shape,e,o,r,s),filter:()=>see(i,e,o.shape,r,s)}}},oee={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(It(qc(me(n,"float32"))),e)}}},lee={kernelName:xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(Xc(me(n,"float32")),e)}}},uee={kernelName:ws,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=x3([r],a.rank),u=Dc(e,r,s,!i);return o!=null&&(u=Qe(u,o)),u}}}},dee={kernelName:ks,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Lr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[u,l]=t;return F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),F(Va(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Ht(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>D3(u.shape,e,l,r,s,a,i),filter:()=>$3(u,e,l.shape,r,s,a,i)}}},pee={kernelName:Mu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>_.runKernel(Zp,s,n),filter:()=>_.runKernel(Yp,i,n)}}},cee={kernelName:wo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>_.runKernel(Qp,a)}}},hee={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(ta(It(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>W(e,a)}}},fee={kernelName:Ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,n)}}},mee={kernelName:So,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},yee={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,ta(n))}}},Aee={kernelName:Ns,gradFunc:e=>({x:()=>Ge(e)})},gee={kernelName:Ts,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=W(e,me(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Se(s,i),a.shape));let o=ot(a);return It(fe(s,me(o,"float32")))}}}},xee={kernelName:Es,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,u=o==null?we(1):o,l=Wt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=ye(r,s),c=W(e,u),h=Hc(se(i,we(a))),m=W(W(W(h,h),h),we(-.5));return{x:()=>s.rank===1?H(W(W(e,Br(H(h,[1,1,1,s.shape[0]]),d)),u),r.shape):H(W(W(e,h),u),r.shape),mean:()=>{let f=W(W(h,we(-1)),c);return s.rank===1&&(f=Se(f,l)),H(f,s.shape)},variance:()=>{let f=W(W(m,p),c);return s.rank===1&&(f=Se(f,l)),H(f,s.shape)},scale:()=>{let f=W(p,h),y=W(e,f);return s.rank===1&&(y=Se(y,l)),H(y,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,l)),H(f,s.shape)}}}},bee={kernelName:Eo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ua(s,a.shape)[0];return{x:()=>{let o=a.shape,u=r.size,l=o.slice(0,i),d=l.length,p=o.slice(s,o.length).slice(1),c=p.length,h=V6(0,d),m=V6(d+1,d+1+c),f=j6([l,[u],p]),y=H(e,f),A=H(r,[u]),g=j6([[d],h,m]),x=Qe(y,g),w=q1(x,A,a.shape[i]),b=$1(g);return w=Qe(w,b),w},indices:()=>r}}};function V6(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function j6(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var vee={kernelName:Cs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},wee={kernelName:Rs,gradFunc:e=>({x:()=>me(e,"float32")})},kee={kernelName:Mo,gradFunc:e=>({x:()=>Ge(e)})},Iee={kernelName:Fo,gradFunc:e=>({x:()=>Ge(e)})},See={kernelName:$o,gradFunc:e=>({x:()=>Ge(e)})},Nee={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=On(a,0);return{x:()=>rn(s,e,W(e,r))}}},Tee={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,se(n,1))}}},Eee={kernelName:Fs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,me(n,"float32"))}}},Cee={kernelName:sb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=ta(a);return ye(e,W(Se(e,r,s),i))}}}};function Ree(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},u={depthRadius:a,bias:r,alpha:s,beta:i};return _.runKernel(rc,o,u)}var Mee=L({localResponseNormalizationBackprop_:Ree}),Fee={kernelName:zu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:u}=n;return{x:()=>Mee(a,r,e,s,i,o,u)}}};function U6(e,t,n,a){return t.rank<n.rank&&(t=H(t,wi(t.shape,a))),e.rank<n.rank&&(e=H(e,wi(e.shape,a))),{x:()=>W(e,me(Wr(n,t),e.dtype))}}var H6={kernelName:$s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ua(r,s.shape),u=U6(e,i,s,o);return{x:()=>u.x()}}},$ee={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,me(Vr(n,a),"float32")),b:()=>W(e,me(Oc(n,a),"float32"))}}};function Dee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),u=M(t,"input","maxPool3dGrad"),l=M(n,"output","maxPool3dGrad"),d=o,p=u,c=l,h=!1;u.rank===4&&(h=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]]),c=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]])),F(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},y=_.runKernel(ic,m,f);return h?H(y,[y.shape[1],y.shape[2],y.shape[3],y.shape[4]]):y}var zee=L({maxPool3dGrad_:Dee}),Oee={kernelName:Ou,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:u}=n;return{x:()=>zee(e,a,r,s,i,o,u)}}};function _ee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),u=M(t,"input","maxPoolGrad"),l=M(n,"output","maxPoolGrad");F(u.rank===o.rank,()=>`Rank of input (${u.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(u.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${u.rank}.`),i!=null&&F(Ht(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:u,output:l},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return _.runKernel(sc,d,p)}var Pee=L({maxPoolGrad_:_ee}),Lee={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>Pee(e,a,r,s,i,o)}}},Wee={kernelName:Os,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ua(r,a.shape),i=g3(a.shape,s)[1],o=Rt(i);return{x:()=>{let u=a.shape.slice();s.forEach(d=>{u[d]=1});let l=H(e,u);return fe(W(l,Pn(a.shape,"float32")),o)}}}},Bee={kernelName:_s,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ua(r,s.shape),u=U6(e,i,s,o);return{x:()=>u.x()}}},Vee={kernelName:Ps,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>W(e,me(jr(n,a),"float32")),b:()=>W(e,me(On(n,a),"float32"))}}},jee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Uee={kernelName:Po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=Wt(n.shape,r);return s.length>0?H(Se(e,s),n.shape):e},b:()=>{let s=W(e,It(Il(fe(n,a)))),i=Wt(a.shape,r);return i.length>0?H(Se(s,i),a.shape):s}}}},Hee={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=W(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=W(e,me(n,"float32")),i=Wt(a.shape,r);return i.length>0?H(Se(s,i),a.shape):s}}}},Gee={kernelName:Lo,gradFunc:e=>({x:()=>It(e)})},qee={kernelName:Bs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},Xee={kernelName:Uo,gradFunc:e=>({x:()=>Ge(e)})},Kee={kernelName:Ho,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return fa(e,a).map(r=>()=>r)}},G6={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},Zee={kernelName:js,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=ct(s.shape,i.shape);return{a:()=>{let u=me(i,"float32"),l=W(e,W(u,hr(s,ye(u,we(1))))),d=Wt(s.shape,o);return d.length>0&&(l=Se(l,d)),H(l,s.shape)},b:()=>{let u=On(s,0),l=rn(u,_n(s),Ge(s)),d=W(e,W(r,l)),p=Wt(i.shape,o);return p.length>0&&(d=Se(d,p)),H(d,i.shape)}}}},Yee={kernelName:Us,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=On(n,0);return{x:()=>rn(r,e,W(e,a)),alpha:()=>{let s=rn(r,Ge(e),W(e,n)),i=Wt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),H(s,a.shape)}}}},Jee={kernelName:Is,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=fe(e,me(a,"float32")),i=Wt(n.shape,r);return i.length>0?H(Se(s,i),n.shape):s},b:()=>{let s=W(e,me(n,"float32")),i=Wt(a.shape,r);i.length>0&&(s=H(Se(s,i),a.shape));let o=ot(a);return It(fe(s,me(o,"float32")))}}}},Qee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,It(ot(n)))}}},ete={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=W(jr(n,6),Rl(n));return{x:()=>W(e,me(a,"float32"))}}},tte={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,me(Rl(n),"float32"))}}},nte={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},ate={kernelName:Gs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>_.runKernel(pc,r,n)}}},rte={kernelName:Pu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>_.runKernel(dc,r,n)}}},ste={kernelName:Xs,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ua(a,e.shape);return{x:()=>Wn(e,r)}}},ite={kernelName:Ks,gradFunc:e=>({x:()=>Ge(e)})},ote={kernelName:Zs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>It(fe(e,W(hr(n,1.5),2)))}}},lte={kernelName:Zo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>me(Ge(n),"float32"),t:()=>W(e,me(n,e.dtype)),e:()=>W(e,me(sd(n),e.dtype))}}},ute={kernelName:Yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=On(n,we(0)),r=we(G3),s=we(q3),i=W(e,s),o=W(W(e,r),ta(me(n,"float32")));return rn(a,i,o)}}}},dte={kernelName:Js,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(n,ye(we(1),n)))}}},pte={kernelName:el,gradFunc:e=>({x:()=>Ge(e)})},cte={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ad(me(n,"float32")),e)}}},hte={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W($c(me(n,"float32")),e)}}},fte={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,u]=Gb(a,r,s),l=[];for(let d=0;d<e.rank;d++)l.push([o[d],i[d]-o[d]-u[d]]);return{x:()=>cr(e,l)}}},mte={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=W(e,a);return{logits:()=>ye(i,W(Se(i,[r],s),a))}}},yte={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,Sn(n))}}},q6={kernelName:Lu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>nd(e,a,r)}}},X6={kernelName:nl,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>lt(e,a)}}},Ate={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,W(en(me(n,"float32")),2))}}},gte={kernelName:Wu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(e,W(me(n,"float32"),2))}}},xte={kernelName:ni,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=we(2);return{a:()=>W(e,W(r,ye(n,a))),b:()=>W(e,W(r,ye(a,n)))}}},bte={kernelName:Dr,gradFunc:e=>({x:()=>Ge(e)})},vte={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ct(n.shape,a.shape);return{a:()=>{let s=e,i=Wt(n.shape,r);return i.length>0&&(s=Se(s,i)),H(s,n.shape)},b:()=>{let s=e,i=Wt(a.shape,r);return i.length>0&&(s=Se(s,i)),H(It(s),a.shape)}}}},wte={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ua(s,a.shape).forEach(u=>{r[u]=1});let i=H(e,r),o=W(i,Pn(a.shape,"float32"));return{x:()=>o}}},kte={kernelName:ri,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>fe(e,ot(ad(n)))}}},Ite={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>W(ye(we(1),ot(n)),e)}}},Ste={kernelName:$r,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let u=0;u<r[2];++u)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],u*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let u=0;u<r[2];++u)for(let l=0;l<r[3];++l)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],u*a.shape[2],l*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},Nte={kernelName:ii,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=$1(r);return{x:()=>Qe(e,s)}}},Tte={kernelName:il,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>pn(e,r)}}},Ete={kernelName:Bu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Cte(e,n)}}};function Cte(e,t){let n=Ua(t,Ge(t)),a=bi(e,n),r=Vr(t,we(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=dn(r,o+1);r=ca(r,Pn(a.shape,"bool"));let i=Ge(a);return rn(r,a,i)}var Rte={kernelName:ol,gradFunc:e=>({x:()=>Ge(e)})},Mte=[B6,MQ,FQ,$Q,DQ,zQ,OQ,_Q,PQ,LQ,WQ,BQ,UQ,qQ,XQ,KQ,ZQ,YQ,JQ,QQ,eee,tee,aee,nee,iee,oee,lee,uee,dee,pee,Jee,cee,hee,fee,mee,yee,gee,Aee,xee,bee,vee,wee,kee,Iee,See,Nee,Tee,Eee,Cee,Fee,H6,H6,$ee,Oee,Lee,Wee,Bee,Vee,jee,Uee,Hee,Gee,qee,Xee,Kee,G6,G6,Zee,Yee,Qee,ete,tte,nte,ate,rte,ste,ite,ote,lte,ute,dte,pte,cte,hte,fte,mte,yte,q6,q6,X6,X6,Ate,xte,gte,bte,vte,wte,kte,Ite,Ste,Nte,Tte,Ete,Rte];for(let e of Mte)ib(e);var K6={};Fe(K6,{maxNorm:()=>zte,minMaxNorm:()=>Pte,nonNeg:()=>_te,unitNorm:()=>Ote});var By;function Bt(){return By==null&&(By=Yb().epsilon()),By}function Na(){return"channelsLast"}var Ar=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ar.prototype)}},Ta=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ta.prototype)}},j=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,j.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},Z6=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Z6.prototype)}};function Di(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Ka(e,t){if(!e)throw new Z6(t)}function Y6(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Cn(e){return e.length===1?e[0]:e}function ft(e){return Array.isArray(e)?e:[e]}function gr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function zi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ma={};function Vy(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function jy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>jy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:jy(a))}}}function $d(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ma)i=ma[s];else if(i=t[s],i==null)throw new j(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new j(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,u;if(i in n?[o,u]=n[i]:i in ma?[o,u]=ma.className:i in t&&([o,u]=t[i]),o==null)throw new j(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(u!=null){let l={};for(let h of Object.keys(ma))l[h]=ma[h];for(let h of Object.keys(n))l[h]=n[h];let d=s.config;d.customObjects=l;let p=Object.assign({},ma);for(let h of Object.keys(n))ma[h]=n[h];jy(s.config);let c=u(o,s.config,n,r);return ma=Object.assign({},p),c}else{let l=Object.assign({},ma);for(let p of Object.keys(n))ma[p]=n[p];let d=new o(s.config);return ma=Object.assign({},l),d}}}function Fte(e,t){return e<t?-1:e>t?1:0}function Vh(e,t){return-1*Fte(e,t)}function Kr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function $te(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Oi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function Uy(e,t,n=0,a=Infinity){return Ka(n>=0),Ka(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Kt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Kt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${J6(e)}.`)}function J6(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>J6(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Dte(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function Q6(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function Hy(e,t){return V(()=>en(Se(W(e,e),t,!0)))}var Dd=class extends ae.Serializable{getConfig(){return{}}},Gy=class extends Dd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=Hy(e,this.axis),n=Nn(t,0,this.maxValue);return W(e,fe(n,se(Bt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};Gy.className="MaxNorm";ae.registerClass(Gy);var qy=class extends Dd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>fe(e,se(Bt(),Hy(e,this.axis))))}getConfig(){return{axis:this.axis}}};qy.className="UnitNorm";ae.registerClass(qy);var Xy=class extends Dd{apply(e){return Ha(e)}};Xy.className="NonNeg";ae.registerClass(Xy);var Ky=class extends Dd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=Hy(e,this.axis),n=se(W(this.rate,Nn(t,this.minValue,this.maxValue)),W(1-this.rate,t));return W(e,fe(n,se(Bt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};Ky.className="MinMaxNorm";ae.registerClass(Ky);var e4={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Vt(e){return Vy(e)}function t4(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function jt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in e4?e4[e]:e,config:{}};return t4(t)}else return e instanceof Dd?e:t4(e)}function zte(e){return new Gy(e)}function Ote(e){return new qy(e)}function _te(){return new Xy}function Pte(e){return new Ky(e)}var n4={};Fe(n4,{constant:()=>one,glorotNormal:()=>fne,glorotUniform:()=>hne,heNormal:()=>mne,heUniform:()=>yne,identity:()=>pne,leCunNormal:()=>Ane,leCunUniform:()=>gne,ones:()=>ine,orthogonal:()=>xne,randomNormal:()=>une,randomUniform:()=>lne,truncatedNormal:()=>dne,varianceScaling:()=>cne,zeros:()=>sne});var Lte=["channelsFirst","channelsLast"],Wte=["nearest","bilinear"],Bte=["valid","same","causal"],Vte=["max","avg"],jte=["sum","mul","concat","ave"],ql=new Map;function Ft(e){Oi(Lte,"DataFormat",e)}function Ute(e){Oi(Wte,"InterpolationFormat",e)}function sa(e){Oi(Bte,"PaddingMode",e)}function a4(e){Oi(Vte,"PoolMode",e)}var zd=[],r4="/";function _i(e,t){zd.push(e);try{let n=t();return zd.pop(),n}catch(n){throw zd.pop(),n}}function Hte(){return zd.length===0?"":zd.join(r4)+r4}function s4(e){if(!o4(e))throw new Error("Not a valid tensor name: '"+e+"'");return Hte()+e}function i4(e){if(!o4(e))throw new Error("Not a valid tensor name: '"+e+"'");ql.has(e)||ql.set(e,0);let t=ql.get(e);if(ql.set(e,ql.get(e)+1),t>0){let n=`${e}_${t}`;return ql.set(n,1),n}else return e}var Gte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function o4(e){return!!e.match(Gte)}function qte(e){return e===parseInt(e.toString(),10)}function Zr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function l4(e){return e=Array.isArray(e)?new Float32Array(e):e,Mt(e)}function Xl(e){return Sl(l4(e)).dataSync()[0]}function Yr(e){return Tn(l4(e)).dataSync()[0]}function Ea(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Od(e,t){return e.asType(t)}function _d(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function Xte(e,t){return V(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=_d(e,1);return Jy(n,[1,t,1])})}function Kte(e){let t=[Zr(e.shape)];return e.reshape(t)}function Zte(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Zr(e.shape,1)];return e.reshape(t)}function Pi(e,t,n){return V(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:return j1(e,[t,0],[n,e.shape[1]]);case 3:return Zc(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return dd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Zy(e,t,n){return V(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:return j1(e,[0,t],[e.shape[0],n]);case 3:return Zc(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return dd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function jh(e,t,n,a){return V(()=>{switch(e.rank){case 1:return Kc(e,t,n);case 2:switch(a){case 1:return Pi(e,t,n);case 2:return Zy(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Pi(e,t,n);case 2:return Zc(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return Zy(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Pi(e,t,n);case 2:return dd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return dd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return Zy(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${a}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Yy(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),lt(e,t)}function u4(e,t){switch(e.rank){case 1:return r3([e,t]);case 2:return bl([e,t],0);case 3:return s3([e,t],0);case 4:return i3([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function Jy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Br(e,t)}function Uh(e,t=0,n=1,a,r){return I3(e,t,n,a,r)}function Za(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Ur.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?Qy(e.rank,a,Na()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),u=i.pop(),l=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([u,-1]);let p=[...r,...l],c=!1,h=!1;return Ur.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?Qy(e.rank,a,Na()):null,activation:n}).reshape(p)}}function d4(e,t,n){return V(()=>(Array.isArray(t)?t=Mt(t,"int32"):t=t.toInt(),bi(e,t,n)))}function Pd(e){return W(e,e)}function Qy(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ca(e,t,n){return V(()=>(n==null&&(n=Na()),Ft(n),e.add(Qy(e.rank,t,n))))}function Yte(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return wl(e)}function Jte(e){return V(()=>fe(e,Lt(e).add(1)))}function p4(e,t,n,a){return V(()=>M3(e,t,n,a))}function Qte(e){return V(()=>{let t=se(.5,W(.2,e));return Nn(t,0,1)})}function Ld(e,t,n=!1){return n?e():t()}var ene=["fanIn","fanOut","fanAvg"],tne=["normal","uniform","truncatedNormal"];function nne(e){Oi(ene,"FanMode",e)}function ane(e){Oi(tne,"Distribution",e)}var ya=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},eA=class extends ya{apply(e,t){return $t(e,t)}};eA.className="Zeros";ae.registerClass(eA);var Hh=class extends ya{apply(e,t){return Pn(e,t)}};Hh.className="Ones";ae.registerClass(Hh);var tA=class extends ya{constructor(e){super();if(typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>W(we(this.value),Pn(e,t)))}getConfig(){return{value:this.value}}};tA.className="Constant";ae.registerClass(tA);var nA=class extends ya{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Tl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};nA.className="RandomUniform";ae.registerClass(nA);var aA=class extends ya{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Uh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};aA.className="RandomNormal";ae.registerClass(aA);var rA=class extends ya{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Qc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};rA.className="TruncatedNormal";ae.registerClass(rA);var sA=class extends ya{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return W(this.gain,C1(e[0]))})}getConfig(){return{gain:this.gain}}};sA.className="Identity";ae.registerClass(sA);function rne(e,t="channelsLast"){let n,a;if(Ft(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Zr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=Zr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=Zr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Rn=class extends ya{constructor(e){super();if(e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,nne(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,ane(this.distribution),this.seed=e.seed}apply(e,t){let n=rne(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Qc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Tl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Rn.className="VarianceScaling";ae.registerClass(Rn);var Gh=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Gh.className="GlorotUniform";ae.registerClass(Gh);var qh=class extends Rn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};qh.className="GlorotNormal";ae.registerClass(qh);var Xh=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Xh.className="HeNormal";ae.registerClass(Xh);var Kh=class extends Rn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Kh.className="HeUniform";ae.registerClass(Kh);var Zh=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Zh.className="LeCunNormal";ae.registerClass(Zh);var Yh=class extends Rn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Rn.className}};Yh.className="LeCunNormal";ae.registerClass(Yh);var iA=class extends ya{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Uh(n,0,1,"float32"),r=U3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),W(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};iA.className="Orthogonal";ae.registerClass(iA);var c4={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function h4(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function Nt(e){return Vy(e)}function yt(e){if(typeof e=="string"){let t=e in c4?c4[e]:e;if(t==="GlorotNormal")return new qh;if(t==="GlorotUniform")return new Gh;if(t==="HeNormal")return new Xh;if(t==="HeUniform")return new Kh;if(t==="LeCunNormal")return new Zh;if(t==="LeCunUniform")return new Yh;{let n={};return n.className=t,n.config={},h4(n)}}else return e instanceof ya?e:h4(e)}function sne(){return new eA}function ine(){return new Hh}function one(e){return new tA(e)}function lne(e){return new nA(e)}function une(e){return new aA(e)}function dne(e){return new rA(e)}function pne(e){return new sA(e)}function cne(e){return new Rn(e)}function hne(e){return new Gh(e)}function fne(e){return new qh(e)}function mne(e){return new Xh(e)}function yne(e){return new Kh(e)}function Ane(e){return new Zh(e)}function gne(e){return new Yh(e)}function xne(e){return new iA(e)}var f4={};Fe(f4,{Layer:()=>Xe,RNN:()=>Qa,RNNCell:()=>Xd,activation:()=>tre,add:()=>dre,alphaDropout:()=>qre,average:()=>pre,averagePooling1d:()=>I2,averagePooling2d:()=>S2,averagePooling3d:()=>N2,avgPool1d:()=>bre,avgPool2d:()=>wre,avgPool3d:()=>Ire,avgPooling1d:()=>vre,avgPooling2d:()=>kre,avgPooling3d:()=>Sre,batchNormalization:()=>Are,bidirectional:()=>Lre,concatenate:()=>cre,conv1d:()=>Gae,conv2d:()=>qae,conv2dTranspose:()=>Xae,conv3d:()=>Kae,conv3dTranspose:()=>Zae,convLstm2d:()=>zre,convLstm2dCell:()=>Ore,cropping2D:()=>Jae,dense:()=>nre,depthwiseConv2d:()=>ere,dot:()=>yre,dropout:()=>are,elu:()=>Wae,embedding:()=>ure,flatten:()=>sre,gaussianDropout:()=>Gre,gaussianNoise:()=>Hre,globalAveragePooling1d:()=>Nre,globalAveragePooling2d:()=>Tre,globalMaxPool1d:()=>Bre,globalMaxPool2d:()=>Vre,globalMaxPooling1d:()=>k8,globalMaxPooling2d:()=>I8,gru:()=>Cre,gruCell:()=>Rre,input:()=>q4,inputLayer:()=>Lae,layerNormalization:()=>gre,leakyReLU:()=>Vae,lstm:()=>Mre,lstmCell:()=>Fre,masking:()=>Xre,maxPool1d:()=>jre,maxPool2d:()=>Ure,maxPooling1d:()=>S8,maxPooling2d:()=>N8,maxPooling3d:()=>Ere,maximum:()=>hre,minimum:()=>fre,multiply:()=>mre,permute:()=>lre,prelu:()=>jae,reLU:()=>Bae,repeatVector:()=>ire,reshape:()=>ore,rnn:()=>_re,separableConv2d:()=>Yae,simpleRNN:()=>$re,simpleRNNCell:()=>Dre,softmax:()=>Uae,spatialDropout1d:()=>rre,stackedRNNCells:()=>Pre,thresholdedReLU:()=>Hae,timeDistributed:()=>Wre,upSampling2d:()=>Qae,zeroPadding2d:()=>xre});var bne=0;function m4(){return bne++}var Jh={};function Qh(e=""){return e in Jh||(Jh[e]=0),Jh[e]+=1,e+Jh[e].toString()}function oA(e){return Array.isArray(e)&&Array.isArray(e[0])}function e0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Pe(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function t0(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var y4="Variable",A4=class{constructor(e,t="float32",n=y4,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=m4(),n=n==null?y4:n,this.originalName=s4(n),this.name=i4(this.originalName),this.trainable_=a,this.constraint=r,this.val=N3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),vne(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function vne(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function lA(e){return e.map(t=>t.read())}function uA(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Ra=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=m4(),s!=null&&(this.originalName=s4(s),this.name=i4(this.originalName)),this.rank=t.length}},wne=0,n0=class{constructor(e,t){this.callArgs=t,this.id=wne++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},kne=0,Xe=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=kne++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=gr(n)+"_"+Qh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ta(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Cn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Cn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Ar(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Ar(`Layer ${this.name} is not connected, no input to return.`);return Cn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Ar(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Ar(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Cn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ft(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ft(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let u=Number(o),l=r.axes[o],d=u>=0?i[u]:i[i.length+u];if(l!=null&&[l,null].indexOf(d)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${u} of input shape to have value ${l} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],u=a.shape[i];if(o!=null&&u!=null&&o!==u)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ft(e),a=!0;for(let s of n)if(!(s instanceof Ra)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Ra){r=!1;break}if(a===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return _i(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ft(e))s.push(i.shape);this.build(Cn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ft(s),o=[];for(let u of i)n.indexOf(u)!==-1&&(u=u.clone()),o.push(u);if(s=Cn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Ine(e),i=this.computeOutputShape(s),o,u=Sne(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((l,d)=>new Ra(u,l,this,ft(e),t,this.name,d)):o=new Ra(u,i,this,ft(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Ar(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Ar(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ta(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return t0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return lA(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=lA(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new j(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}uA(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=yt("zeros"));let o=a.apply(t,n),u=new A4(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),s==null&&(s=!0),s?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ft(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ft(e);t=ft(t),n=ft(n),a=ft(a),r=e0(r),s=e0(s);let u=[],l=[],d=[];for(let p of o)u.push(p.sourceLayer),l.push(p.nodeIndex),d.push(p.tensorIndex);new n0({outboundLayer:this,inboundLayers:u,nodeIndices:l,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Ine(e){e=ft(e);let t=[];for(let n of e)t.push(n.shape);return Cn(t)}function Sne(e){return"float32"}function g4(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],u=a.nodeIndices[s],l=g4(i,o,u);for(let d of l)r.indexOf(d)===-1&&r.push(d)}return r}}}var Kl=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Qh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Ra(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};Kl.className="InputLayer";ae.registerClass(Kl);function x4(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new Kl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Jr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ie(a)}}function b4(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var v4;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(v4||(v4={}));var Nne=125,Zl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},w4=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Tne=class extends Zl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=V(()=>se(this.totals[a],W(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let a=W(fe(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Gt(t[n])}))}},k4=class extends Zl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},I4=class extends Zl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=Nne),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=Dte(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Jr(n),a.push(this.yield(e,t,n))),a.push(ch()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Jr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Jr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(ch()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Jr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Jr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(ch()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Jr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Jr(e),await this.trainEnd(e))}};function S4(e,t){return e==null&&(e={}),e instanceof Zl?[e]:Array.isArray(e)&&e[0]instanceof Zl?e:ft(e).map(n=>new I4(n,t))}var Aa=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),Aa.checkForDuplicate(t),Aa.constructors[e]==null&&(Aa.constructors[e]=[]),Aa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in Aa.constructors)Aa.constructors[+t].forEach(n=>{if(n===e)throw new j("Duplicate callback constructor.")})}static clear(){Aa.constructors={}}static createCallbacks(e){let t=[];for(let n in Aa.constructors){let a=+n;e>=a&&t.push(...Aa.constructors[a])}return t.map(n=>new n)}};Aa.constructors={};function N4(e,t,n,a,r,s,i,o,u){let l=new k4,d=[new Tne,...Aa.createCallbacks(t)];e!=null&&d.push(...e),d.push(l);let p=new w4(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:u}),{callbackList:p,history:l}}function Ma(e,t={},n=!1){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function a0(e,t){return V(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(Pd(e),t,!0),a=kl(n.shape,Bt()),r=en(Ua(n,a));return fe(e,r)})}function Li(e,t){return V(()=>St(Pd(ye(t,e)),-1))}function r0(e,t){return V(()=>St(Lt(ye(t,e)),-1))}function Yl(e,t){return V(()=>{let n=ye(e,t),a=Nn(Lt(e),Bt(),Number.MAX_VALUE),r=Lt(fe(n,a));return W(100,St(r,-1))})}function Ene(e,t){return V(()=>{let n=Nn(t,Bt(),Number.MAX_VALUE),a=_n(se(1,n)),r=Nn(e,Bt(),Number.MAX_VALUE),s=_n(se(1,r));return St(Pd(ye(a,s)),-1)})}function Cne(e,t){return V(()=>{let n=Ua(0,ye(1,W(e,t)));return St(Pd(n),-1)})}function Rne(e,t){return V(()=>{let n=Ua(0,ye(1,W(e,t)));return St(n,-1)})}function Mne(e,t){return V(()=>{let n=Se(W(e,t),-1),a=Tn(W(ye(1,e),t),-1);return Ua(0,se(1,ye(a,n)))})}function Fne(e,t){return V(()=>{let n=Math.log(2),a=ye(t,e),r=ye(se(a,vi(W(-2,a))),n);return St(r,-1)})}function Wd(e,t,n=!1){return V(()=>{if(n)t=pd(t);else{let a=Se(t,t.shape.length-1,!0);t=fe(t,a)}return t=Nn(t,Bt(),1-Bt()),It(Se(W(e.toFloat(),_n(t)),t.shape.length-1))})}function s0(e,t,n=!1){return V(()=>{let a=Il(Kte(e)).toInt();t=Nn(t,Bt(),1-Bt());let r=t.shape,s=ml(a,r[r.length-1]).reshape(r);return Wd(s,t,n)})}function $ne(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return V(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function i0(e,t){return V(()=>{let n;return n=Nn(t,Bt(),1-Bt()),n=_n(fe(n,ye(1,n))),St($ne(e,n),-1)})}function Dne(e,t){return V(()=>{let n=Nn(e,Bt(),1),a=Nn(t,Bt(),1);return Se(W(e,_n(fe(n,a))),-1)})}function zne(e,t){return V(()=>{let n=_n(se(Bt(),t));return St(ye(t,W(e,n)),-1)})}function dA(e,t){return V(()=>{let n=a0(e,-1),a=a0(t,-1),r=W(n,a);return It(Se(r,-1))})}var o0={meanSquaredError:Li,meanAbsoluteError:r0,meanAbsolutePercentageError:Yl,meanSquaredLogarithmicError:Ene,squaredHinge:Cne,hinge:Rne,categoricalHinge:Mne,logcosh:Fne,categoricalCrossentropy:Wd,sparseCategoricalCrossentropy:s0,binaryCrossentropy:i0,kullbackLeiblerDivergence:Dne,poisson:zne,cosineProximity:dA};function pA(e){if(typeof e=="string"){if(e in o0)return o0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function cA(e,t){return V(()=>{let n=W(.5,Ln(t)),a=Od(On(t,n),e.dtype);return St(Wr(e,a),-1)})}function hA(e,t){return V(()=>Od(Wr(yi(e,-1),yi(t,-1)),"float32"))}function T4(e,t){return V(()=>ca(e.equal(1),t.equal(1)).sum().cast("float32"))}function One(e,t){return V(()=>ca(e.equal(1),t.equal(0)).sum().cast("float32"))}function _ne(e,t){return V(()=>ca(e.equal(0),t.equal(1)).sum().cast("float32"))}function E4(e,t){return V(()=>{let n=T4(e,t),a=_ne(e,t),r=n.add(a);return rn(On(r,0),n.div(r),0).cast("float32")})}function Pne(e,t){return V(()=>{let n=T4(e,t),a=One(e,t),r=n.add(a);return rn(On(r,0),n.div(r),0).cast("float32")})}function C4(e,t){return i0(e,t)}function R4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Wr(e,t).asType("float32")}var Lne=Li,Wne=Li,Bne=r0,Vne=r0,jne=Yl,Une=Yl,fA=Wd,Hne=dA,M4=s0,l0={binaryAccuracy:cA,categoricalAccuracy:hA,precision:E4,categoricalCrossentropy:fA,sparseCategoricalCrossentropy:M4,mse:Lne,MSE:Wne,mae:Bne,MAE:Vne,mape:jne,MAPE:Une,cosine:Hne};function Gne(e){if(typeof e=="string"&&e in l0)return l0[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function u0(e){if(Ka(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(o0))if(o0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(l0))if(l0[n]===e){t=n;break}return t!==void 0?t:e.name}}function qne(e){let t={Adagrad:()=>Si.adagrad(.01),Adadelta:()=>Si.adadelta(1,.95,Bt()),Adam:()=>Si.adam(.001,.9,.999,Bt()),Adamax:()=>Si.adamax(.002,.9,.999,Bt(),0),RMSProp:()=>Si.rmsprop(.001,.9,0,Bt()),SGD:()=>Si.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var F4=1*1024*1024;function $4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!mA(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>F4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${F4}.`)}}function mA(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!mA(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!mA(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Xne(e,t,n,a=console.log){let r=Zne(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),d0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?Yne(o[d],n,a):Jne(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let u=Kne(e),l=t0(e.nonTrainableWeights);a(`Total params: ${u+l}`),a(`Trainable params: ${u}`),a(`Non-trainable params: ${l}`),a("_".repeat(t))}function Kne(e){let t;return e.collectedTrainableWeights!=null?t=t0(e.collectedTrainableWeights):t=t0(e.trainableWeights),t}function Zne(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function d0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function Yne(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];d0(i,t,n)}function Jne(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),u=s.length===0?"":s[0],l=[`${i} (${o})`,r,e.countParams().toString(),u];d0(l,t,a);for(let d=1;d<s.length;++d)d0(["","","",s[d]],t,a)}function D4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Bd(e,t){if(e===null)return null;if(typeof e=="string")return zi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];D4(t,r,s)?n.push(s):n.push(Bd(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=zi(a);n[s]=Bd(r,s)}}return n}}function yA(e,t){if(e==null)return null;if(typeof e=="string")return gr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];D4(t,r,s)?n.push(s):n.push(yA(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=gr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=yA(r,a)}return n}}var AA="3.6.0";function Qne(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return me(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Wi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Wi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Qne(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Ra){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Ra){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ie(this.id2Mask)}},gA={},z4={};function Vd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),u=[],l=t.names();for(let m of o)l.indexOf(m)!==-1?u.push(t.getValue(m)):u.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),p,c;if(gA[d]==null){let m=eae(i,t);p=m.sorted,c=m.recipientCounts,gA[d]=p,z4[d]=c}p=gA[d],c={},r||Object.assign(c,z4[d]);let h=new Wi(t);for(let m=0;m<p.length;++m){if(a!=null){let E=Nc().numTensors;E>a.maxNumTensors&&(a.maxNumTensors=E),E<a.minNumTensors&&(a.minNumTensors=E)}let f=p[m],y=f.sourceLayer;if(y instanceof Kl)continue;let A=[],g=[],x=[],w=!1;for(let E of f.inputs){let $=h.getValue(E),O=h.getMask(E);A.push($),g.push(O),O!=null&&(w=!0),r||(c[E.name]--,c[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!$.isDisposed&&E.sourceLayer.stateful!==!0&&x.push($))}w&&(n=n||{},n.mask=g[0]);let b=ft(y.apply(A,n)),v=null;y.supportsMasking&&(v=y.computeMask(A,g));let N=nae(f),I=Array.isArray(N)?N:[N];for(let E=0;E<I.length;++E){h.hasKey(I[E])||h.add(I[E],b[E],Array.isArray(v)?v[0]:v);let $=o.indexOf(I[E].name);$!==-1&&(u[$]=b[E])}r||Ie(x)}return h.disposeMasks(),s?u:u[0]}function eae(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=O4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=O4(s,t);for(let u of i)r.has(u.name)||(n.push(u),r.add(u.name));for(let u in o)a[u]==null&&(a[u]=new Set),o[u].forEach(l=>a[u].add(l))}}return{sorted:n,recipientCounts:tae(a)}}function tae(e){let t={};for(let n in e)t[n]=e[n].size;return t}function O4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let u=i[i.length-1]===s.length-1;if(o.inputs.length===0||u)s.pop(),a.push(o),n.add(o.name),u&&i.pop();else{i.push(s.length-1);for(let l of o.inputs)r[l.name]==null&&(r[l.name]=new Set),r[l.name].add(o.name),!n.has(l.name)&&s.push(l)}}return{sorted:a,recipientMap:r}}function nae(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ya=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let A=this.getClassName().toLowerCase();this.name=Qh(A)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Kr(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(A=>A.name)}`);Kr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(A=>A.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let A of this.outputs){let g=A.sourceLayer,x=A.nodeIndex,w=A.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let A of this.inputs){let g=A.sourceLayer,x=A.nodeIndex,w=A.tensorIndex;Ka(x===0,"input layer has >1 nodes"),Ka(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let A=0;A<this.inputLayers.length;A++){let g=this.inputLayers[A];if(!(g instanceof Kl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${A} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let A of this.outputLayers)this.outputNames.push(A.name);this.internalInputShapes=this.inputs.map(A=>A.shape),this.internalOutputShapes=this.outputs.map(A=>A.shape);let t={},n={},a={},r={},s={},i=[],o=(A,g,x,w,b,v)=>{(w==null||b==null||v==null)&&(w=A.sourceLayer,b=A.nodeIndex,v=A.tensorIndex);let N=w.inboundNodes[b];if(x.indexOf(N)!==-1)throw new Ta(`The tensor ${A.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Ya.nodeKey(w,b)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let I=N.inboundLayers.length;for(let E=0;E<I;E++){let $=N.inputTensors[E],O=N.inboundLayers[E],z=N.nodeIndices[E],P=N.tensorIndices[E];o($,g,x,O,z,P)}for(g.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},u=[],l=[];for(let A of this.outputs)o(A,u,l);let d=i.slice().reverse();for(let A of d){n[A.id]=A,A.id in t||(t[A.id]=0);let g=t[A.id],x=a[A.outboundLayer.id]==null?0:a[A.outboundLayer.id];g=Math.max(g,x),a[A.outboundLayer.id]=g,r[A.outboundLayer.id]=A.outboundLayer,t[A.id]=g;for(let w=0;w<A.inboundLayers.length;w++){let b=A.inboundLayers[w],v=A.nodeIndices[w],N=b.inboundNodes[v],I=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,I),n[N.id]=N}}let p={};for(let A in t){let g=t[A];g in p||(p[g]=[]),p[g].push(n[A])}let c={};for(let A in a){let g=a[A];g in c||(c[g]=[]),c[g].push(r[A])}let h=Object.keys(c).map(A=>parseInt(A,10)).sort(Vh);this.layers=[];for(let A of h){let g=c[A];g.sort((x,w)=>{let b=s[x.id],v=s[w.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Ya&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(A=>parseInt(A,10)).sort(Vh);let m=this.inputs.slice(),f=[];for(let A of h)for(let g of p[A]){let x=g.outboundLayer;if(x!=null){for(let w of g.inputTensors)if(m.indexOf(w)===-1)throw new Ta(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of g.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=p;let y=this.layers.map(A=>A.name);for(let A of y){let g=y.filter(x=>x===A).length;if(g!==1)throw new Ta(`The name "${A}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(y))}this.outboundNodes=[],this.inboundNodes=[],new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(A=>null),outputMasks:this.outputs.map(A=>null),inputShapes:this.inputs.map(A=>A.shape),outputShapes:this.outputs.map(A=>A.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new j(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new j(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new j(`${s.length} of ${a} weights are not set: ${s}`)}uA(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${AA}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=yA(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=ft(e);let n=new Wi;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Vd(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=ft(e);let n;return t==null?n=Di(null,e.length):n=ft(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=e0(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],u=t[i],l=o.name+"_0_0";n[l]=u}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Vh);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let u of o){let l=u.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(l.id)!==-1)continue;let d=[];for(let m=0;m<u.inboundLayers.length;m++){let f=u.inboundLayers[m],y=u.nodeIndices[m],A=u.tensorIndices[m],g=`${f.name}_${y}_${A}`,x=n[g];d.push(x)}let p=l.computeOutputShape(Cn(d)),c=e0(p),h=l.inboundNodes.indexOf(u);for(let m=0;m<c.length;m++){let f=`${l.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],u=this.outputLayersNodeIndices[i],l=this.outputLayersTensorIndices[i],d=`${o.name}_${u}_${l}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Ka(o in n),r.push(n[o])}return Cn(r)}runInternalGraph(e,t){t==null&&(t=Di(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let u=this.inputs[o],l=e[o],d=t[o];n[u.id]=[l,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Vh);for(let o of a){let u=this.nodesByDepth[o];for(let l of u){let d=l.outboundLayer,p=l.inputTensors,c=l.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,y,A,g;if(l.callArgs!=null&&(m=l.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),A=ft(d.call(x,m)),g=ft(d.computeMask(x,w)),f=[x],y=[w]}else f=h.map(x=>x[0]),y=h.map(x=>x[1]),m.mask==null&&(m.mask=y),A=ft(d.call(f,m)),g=ft(d.computeMask(f,y));if(d.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],b=A[x],v=g[x];n[w.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Ka(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[u,l]=n[o.id];i.push(u.shape),r.push(u),s.push(l)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Ya?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Ya.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Ya.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),u=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=Ya.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let y=p.inboundLayers[f],A=p.nodeIndices[f],g=p.tensorIndices[f],x=Ya.nodeKey(y,A),w=t[x];w==null&&(w=0),m.push([y.name,w,g,h])}u.push(m)}}}let l={};l.name=s.name,l.className=i,l.config=o,l.inboundNodes=u,n.push(l)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],u=Ya.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,l,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],u=Ya.nodeKey(i,o);if(!this.containerNodes.has(u))continue;let l=t[u];l==null&&(l=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,l,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,y){f.name in s?s[f.name].push(y):s[f.name]=[y]}function o(f,y){let A=[],g;for(let x of y){let w=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(w in r)){i(f,y);return}let N=r[w];if(N.inboundNodes.length<=b){i(f,y);return}let I=N.inboundNodes[b];A.push(I.outputTensors[v])}A.length>0&&f.apply(Cn(A),g)}function u(f){let y=f.name,A=Ma(f,t.customObjects!=null?t.customObjects:{});A.setFastWeightInitDuringBuild(a),r[y]=A,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${g}`);i(A,g)})}let l=t.name,d=t.layers;for(let f of d)u(f);for(;!$te(s);)for(let f of d){let y=r[f.name];if(y.name in s){let A=s[y.name];delete s[y.name];for(let g of A)o(y,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let y=f[0],A=f[1],g=f[2];Ka(y in r);let x=r[y].inboundNodes[A].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let y=f[0],A=f[1],g=f[2];Ka(y in r);let x=r[y].inboundNodes[A].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:l})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function aae(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function _4(e,t){return aae(e,t,"classWeight")}async function P4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=V(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ie(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Mt(i,"float32")}else return null}function rae(e,t){return W(e,t)}var sae=32;function L4(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=W4("input",e.inputNames,n),i=W4("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let u=0;u<s.length;u++)k.assert(s[u].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[u]} has ${s[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let u=0;u<i.length;u++)k.assert(i[u].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[u]} has ${i[u].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function W4(e,t,n){if(n instanceof We)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function iae(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function oae(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(B4(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let y=iae(n.validationData);s=y.xs,i=y.ys}let o=e.makeTrainFunction(),u=e.getDedupedMetricsNames(),l;r?l=u.slice().concat(u.map(y=>"val_"+y)):l=u.slice();let d=S4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=N4(d,p,n.epochs,null,null,lae(t,n),null,r,l);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let y={};await c.onEpochBegin(m);let A=0,g=0;for(a||(f=await t.iterator());a?A<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${A} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:b}=L4(e,x.value),v={};v.batch=g,v.size=w[0].shape[0],await c.onBatchBegin(g,v);let N=[];if(n.classWeight!=null){let $=_4(n.classWeight,e.outputNames);for(let O=0;O<$.length;++O)N.push(await P4(b[O],null,$[O]))}let I=w.concat(b).concat(N),E=o(I);Ie(I);for(let $=0;$<u.length;++$){let O=u[$],z=E[$];v[O]=z,Gt(z)}await c.onBatchEnd(g,v),b4(v),g++,A++}if(a?A>=n.batchesPerEpoch:x.done){if(r){let w;B4(n.validationData)?w=ft(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ft(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?sae:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)y[`val_${e.metricsNames[b]}`]=w[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,y),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function lae(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function B4(e){return typeof e.iterator=="function"}function uae(e){return typeof e.next=="function"}async function dae(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=uae(t)?t:await t.iterator(),o=0,u=0;for(;a?u<n.batches:!0;){let l=await i.next();if(s=V(()=>{if(l.value){let{xs:d,ys:p}=L4(e,l.value),c=d.concat(p),h=V(()=>r(c));if(Ie(c),u===0)for(let f=0;f<h.length;++f)s.push(we(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let y=h[f],A=s[f];s[f]=V(()=>se(s[f],W(m,y))),u>0&&Ie(A)}Ie(h),o+=m,++u}return s}),l.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let l=0;l<s.length;++l){let d=s[l];s[l]=fe(s[l],o),Ie(d)}return Cn(s)}function xA(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function jd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Pi(a,t,n-t)):Pi(e,t,n-t)}function bA(e,t){return V(()=>e==null?null:Array.isArray(e)?e.map(n=>bA(n,t)):d4(e,t.dtype==="int32"?t:t.toInt()))}function vA(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function pae(e,t,n,a,r,s,i,o,u,l,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(u!=null&&l!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let y=e.checkNumSamples(n,r,h,"steps_per_epoch"),A;y!=null&&(A=Ea(0,y)),i==null&&(i=1);let{callbackList:g,history:x}=N4(o,i,s,c,y,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await g.onEpochBegin(w);let b={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new Oe("batch shuffling is not implemneted yet");d&&k.shuffle(A);let v=Mt(A),N=vA(y,r);for(let I=0;I<N.length;++I){let E={};if(await g.onBatchBegin(I,E),V(()=>{let $=N[I][0],O=N[I][1],z=Pi(v,$,O-$);E.batch=I,E.size=O-$;let P=bA(n,z),D=t(P);for(let U=0;U<a.length;++U){let X=a[U],G=D[U];E[X]=G,Gt(G)}if(I===N.length-1&&f){let U=e.testLoop(u,l,r);for(let X=0;X<a.length;++X){let G=a[X],ee=U[X];Gt(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(I,E),b4(E),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(w,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function cae(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,u,l,d;try{let p=a.batchSize==null?32:a.batchSize;xA(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,N=await e.standardizeUserData(i,o,null,null,v,p);u=N[0],l=N[1],f=u.concat(l)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];u=jd(r,v,N),r=jd(r,0,v),l=jd(s,v,N),s=jd(s,0,v),f=u.concat(l)}else a.validationSteps!=null&&(m=!0);let y=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,w;m?(e.makeTestFunction(),x=e.testFunction,w=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],w=g.slice());let b=S4(a.callbacks,a.yieldEvery);return await pae(e,A,y,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,w,a.initialEpoch,null,null)}finally{e.isTraining=!1,Bi(r,t),Bi(s,n),Bi(u,i),Bi(l,o),d!=null&&Ie(d)}}function V4(e){let t=[];e instanceof We&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(_d(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Bi(e,t){if(e==null)return;let n=[];if(t instanceof We)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof We)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function hae(e){return e instanceof We}function wA(e){return Array.isArray(e)}function j4(e){return!hae(e)&&!wA(e)}function U4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(wA(e)&&e.length>0)i=!0;else if(j4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(j4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new j(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(wA(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=V4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new j(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let u=0;u<n[i].length;++u){if(u===0&&!a)continue;let l=o.shape[u],d=n[i][u];if(d!=null&&d>=0&&l!==d)throw new j(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function fae(e,t,n){let a=Kr(e.map(s=>s.shape[0]));a.sort();let r=Kr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function mae(e,t,n){let a=[Li,i0,Wd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Wd&&s.shape[s.shape.length-1]===1)throw new j(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let u=s.shape.slice(1),l=o.slice(1);for(let d=0;d<u.length;++d){let p=u[d],c=l[d];if(c!=null&&p!==c)throw new j(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function H4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new j(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let u=0;u<n[i].length;++u){if(u===0&&!a)continue;let l=o.shape[u],d=n[i][u];if(d!=null&&d!==l)throw new j(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function yae(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Aae="layers-model",xr=class extends Ya{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Xne(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=qne(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof mr))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new j(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(pA(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>pA(s))}else{let s=pA(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],_i("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=yae(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};_i("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let u="",l,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===i0?["accuracy","acc"].indexOf(c)!==-1?d=cA:["crossentropy","ce"].indexOf(c)!==-1&&(d=C4):this.lossFunctions[s]===s0?["accuracy","acc"].indexOf(c)!==-1?d=R4:["crossentropy","ce"].indexOf(c)!==-1&&(d=M4):["accuracy","acc"].indexOf(c)!==-1?d=hA:["crossentropy","ce"].indexOf(c)!==-1&&(d=fA);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,l=u+f}else p=Gne(c),l=u+u0(c);let h;_i(l,()=>{h=p}),r(s,l,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;xA(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,u=this.testLoop(o,i,a,n.verbose,n.steps);return Cn(u)}finally{Bi(s[0],e),Bi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),dae(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new Wi;if(e instanceof We&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let u=e[o.name];if(u==null)throw new j(`No value is provided for the model's input ${o.name}`);s.add(o,u)}let i=Vd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Di(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=vA(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)V(()=>{let o=r[i][0],u=r[i][1],l=jd(e,o,u),d=[];if(Array.isArray(l))for(let c=0;c<l.length;++c)d.push({key:this.inputs[c],value:l[c]});else d.push({key:this.inputs[0],value:l});let p=new Wi(d);return Vd(this.outputs,p)}).forEach((o,u)=>s[u].push(o));return Cn(s.map(i=>lt(i,0)))})}predict(e,t={}){let n=V4(e);H4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return xA(a),this.predictLoop(n,a)}finally{Bi(n,e)}}predictOnBatch(e){H4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ta("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===s0?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=U4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=U4(t,this.feedOutputNames,r,!1,"target"),fae(e,t,null),mae(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let u=null;if(a!=null){let l=_4(a,this.outputNames);u=[];for(let d=0;d<l.length;++d)u.push(await P4(o[d],null,l[d]))}return[i,o,u]}testLoop(e,t,n,a=0,r){return V(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=vA(s,n),u=Mt(Ea(0,s));for(let l=0;l<o.length;++l){let d=o[l][0],p=o[l][1],c=Pi(u,d,p-d),h=bA(t,c),m=e(h);if(l===0)for(let f=0;f<m.length;++f)i.push(we(0));for(let f=0;f<m.length;++f){let y=m[f];i[f]=se(i[f],W(p-d,y))}}for(let l=0;l<i.length;++l)i[l]=fe(i[l],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;Y6(e,a)>1&&(r+=`_${Y6(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let l=[];for(let h=0;h<this.inputs.length;++h)l.push({key:this.inputs[h],value:n[h]});let d=new Wi(l),p=Vd(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=rae(m,r[h]));let f=St(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],y=this.metricsTensors[h][1];m=St(f(a[y],p[y]))}Gt(m),s.push(m)}return c=St(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(l=>l.read()),u=!0;return[this.optimizer_.minimize(i,u,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let u=0;u<this.inputs.length;++u)s.push({key:this.inputs[u],value:a[u]});let i=new Wi(s),o=Vd(this.outputs,i);for(let u=0;u<this.lossFunctions.length;++u){let l=this.lossFunctions[u],d=St(l(r[u],o[u]));u===0?n=d:n=se(n,d),t.push(n)}for(let u=0;u<this.metricsTensors.length;++u){let l=this.metricsTensors[u][0],d=this.metricsTensors[u][1],p=St(l(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return cae(this,e,t,n)}async fitDataset(e,t){return oae(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let u=await o.data();i.push(u[0])}return Ie(s),Cn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Nc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Nc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=gr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>gr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=gr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[gr(u0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>gr(u0(e)));{let e={};for(let t in this.metrics)e[t]=gr(u0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Bd(e.optimizer_config),n=Ma(t),a;if(typeof e.loss=="string")a=zi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>zi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=zi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>zi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=zi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=In.getSaveHandlers(e);if(i.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new j(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await In.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Aae,generatedBy:`TensorFlow.js tfjs-layers v${AA}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:u}=await In.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...u),n.data=In.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;$4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){$4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};xr.className="Model";ae.registerClass(xr);var G4=class extends xr{};G4.className="Functional";ae.registerClass(G4);async function gae(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Bd(n),r=Ma(a,t);if(e.weightsManifest!=null){let s=await In.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ie(s)}return r}async function xae(e,t){if(t==null&&(t={}),typeof e=="string"){let n=In.getLoadHandlers(e,t);if(n.length===0)n.push(In.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return bae(e,void 0,t)}async function bae(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Ma(Bd(r),t,i),u=a.trainingConfig;if(u!=null&&o.loadTrainingConfig(u),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:l,optimizerWeights:d}=vae(a.weightData,a.weightSpecs);o.loadWeights(l,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),Ie(l),Ie(d.map(p=>p.tensor))}return o}function vae(e,t){let n=In.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Jl=class extends xr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Qh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Jl||e instanceof xr,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=x4({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=g4(this.outputs[0])}this.inboundNodes=[],new n0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Di(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new xr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ta("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ta("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ta("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ta("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Jl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let u=Ma(o,void 0,a);a&&u.setFastWeightInitDuringBuild(!0),i.add(u)}return i}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Jl.className="Sequential";ae.registerClass(Jl);function wae(e){return new xr(e)}function kae(e){return new Jl(e)}function Iae(e,t){return t==null&&(t={}),xae(e,t)}function q4(e){return x4(e)}function Sae(e,t){Aa.registerCallbackConstructor(e,t)}var Mn=class extends ae.Serializable{getConfig(){return{}}},X4=class extends Mn{apply(e,t=1){return Yte(e,t)}};X4.className="elu";ae.registerClass(X4);var K4=class extends Mn{apply(e){return Gc(e)}};K4.className="selu";ae.registerClass(K4);var Z4=class extends Mn{apply(e){return Ha(e)}};Z4.className="relu";ae.registerClass(Z4);var Y4=class extends Mn{apply(e){return V(()=>Nl(6,Ha(e)))}};Y4.className="relu6";ae.registerClass(Y4);var J4=class extends Mn{apply(e){return e}};J4.className="linear";ae.registerClass(J4);var Q4=class extends Mn{apply(e){return Sn(e)}};Q4.className="sigmoid";ae.registerClass(Q4);var e8=class extends Mn{apply(e){return Qte(e)}};e8.className="hardSigmoid";ae.registerClass(e8);var t8=class extends Mn{apply(e){return vi(e)}};t8.className="softplus";ae.registerClass(t8);var n8=class extends Mn{apply(e){return Jte(e)}};n8.className="softsign";ae.registerClass(n8);var a8=class extends Mn{apply(e){return gi(e)}};a8.className="tanh";ae.registerClass(a8);var kA=class extends Mn{apply(e,t=-1){return pd(e,t)}};kA.className="softmax";ae.registerClass(kA);var r8=class extends Mn{apply(e,t=-1){return Lc(e,t)}};r8.className="logSoftmax";ae.registerClass(r8);var s8=class extends Mn{apply(e,t=1){return V(()=>Sn(e.mul(t)).mul(e))}};s8.className="swish";ae.registerClass(s8);var i8=class extends Mn{apply(e){return V(()=>W(e,gi(vi(e))))}};i8.className="mish";ae.registerClass(i8);function Qr(e){return e.getClassName()}function IA(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function es(e){if(e==null){let t={};return t.className="linear",t.config={},IA(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},IA(t)}else return e instanceof Mn?e:IA(e)}function SA(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var o8=class extends ae.Serializable{},Ud=class extends o8{constructor(e){super();SA(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=$t([1]);return this.hasL1&&(t=se(t,Se(W(this.l1,Lt(e))))),this.hasL2&&(t=se(t,Se(W(this.l2,Pd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Ud.className="L1L2";ae.registerClass(Ud);function Nae(e){return SA(e),new Ud({l1:e!=null?e.l1:null,l2:0})}function Tae(e){return SA(e),new Ud({l2:e!=null?e.l2:null,l1:0})}var l8={l1l2:"L1L2"};function dt(e){return Vy(e)}function u8(e,t={}){return $d(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in l8?l8[e]:e,config:{}};return u8(t)}else return e instanceof o8?e:u8(e)}var NA=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Pe(e);let n=Ha(e);return this.maxValue!=null&&(n=Nn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};NA.className="ReLU";ae.registerClass(NA);var TA=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return rd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};TA.className="LeakyReLU";ae.registerClass(TA);var EA=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=yt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=jt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Pe(e),ld(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Nt(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Vt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};EA.className="PReLU";ae.registerClass(EA);var CA=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Pe(e);return wl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};CA.className="ELU";ae.registerClass(CA);var RA=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Pe(e);return n.mul(Od(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};RA.className="ThresholdedReLU";ae.registerClass(RA);var MA=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new kA().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Pe(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};MA.className="Softmax";ae.registerClass(MA);function Ql(e,t,n){if(typeof e=="number")return Di(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!qte(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Fa(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Ja(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+Yr([n-t,0]);else if(a==="same")e=e*t;else throw new j(`Unsupport padding mode: ${a}.`);return e}function FA(e,t){return V(()=>(Ft(t),t==="channelsFirst"?Qe(e,[0,2,3,1]):e))}function d8(e,t){return V(()=>(Ft(t),t==="channelsFirst"?Qe(e,[0,2,3,4,1]):e))}function Eae(e,t,n,a=1,r="valid",s,i=1){return V(()=>{if(s==null&&(s=Na()),Ft(s),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Qe(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Mc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ca(o,n)),o})}function p8(e,t,n,a=[1,1],r="valid",s,i,o=null){return V(()=>{if(s==null&&(s=Na()),Ft(s),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let u=FA(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return u=Ur.conv2d({x:u,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(u=Qe(u,[0,3,1,2])),u})}function Cae(e,t,n,a=[1,1,1],r="valid",s,i){return V(()=>{if(s==null&&(s=Na()),Ft(s),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=d8(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=k1(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ca(o,n)),s==="channelsFirst"&&(o=Qe(o,[0,4,1,2,3])),o})}var $A=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",$A.verifyArgs(t),this.rank=e,Kt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Ql(t.kernelSize,e,"kernelSize"),this.strides=Ql(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,sa(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=es(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=yt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=jt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=Ql(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Ka("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!Uy(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Qr(this.activation),useBias:this.useBias,biasInitializer:Nt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Hd=class extends $A{constructor(e,t){super(e,t);this.kernel=null,Hd.verifyArgs(t),this.filters=t.filters,Kt(this.filters,"filters"),this.kernelInitializer=yt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=jt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=Pe(e);let n,a=this.bias==null?null:this.bias.read(),r=Q6(this.activation.getClassName());if(r!=null&&this.rank===2)n=p8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Eae(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=p8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Cae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Fa(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Nt(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Vt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Gd=class extends Hd{constructor(e){super(2,e);Gd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Uy(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Gd.className="Conv2D";ae.registerClass(Gd);var qd=class extends Hd{constructor(e){super(3,e);qd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};qd.className="Conv3D";ae.registerClass(qd);var DA=class extends Gd{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Pe(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],u=a[i],l=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=Ja(o,p,l,this.padding),m=Ja(u,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,1]));let y=Fc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(y=Qe(y,[0,3,1,2])),this.bias!=null&&(y=Ca(y,this.bias.read(),this.dataFormat)),this.activation!=null&&(y=this.activation.apply(y)),y})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],u=this.strides[1];return t[n]=this.filters,t[a]=Ja(t[a],o,s,this.padding),t[r]=Ja(t[r],u,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};DA.className="Conv2DTranspose";ae.registerClass(DA);var zA=class extends qd{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Pe(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let u=a[o],l=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],y=this.strides[2],A=Ja(u,m,p,this.padding),g=Ja(l,f,c,this.padding),x=Ja(d,y,h,this.padding),w=[r,A,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,4,1]));let b=l3(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Qe(b,[0,4,1,2,3])),this.bias!==null&&(b=Ca(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],u=this.kernelSize[2],l=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=Ja(t[a],l,i,this.padding),t[r]=Ja(t[r],d,o,this.padding),t[s]=Ja(t[s],p,u,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};zA.className="Conv3DTranspose";ae.registerClass(zA);var c8=class extends Hd{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=jt(t.depthwiseConstraint),this.pointwiseInitializer=yt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=jt(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=Pe(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Qe(e,[0,2,3,1])),n=B1(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ca(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Qe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.pointwiseInitializer=Nt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseConstraint),e.pointwiseConstraint=Vt(this.pointwiseConstraint),e}};c8.className="SeparableConv";var OA=class extends c8{constructor(e){super(2,e)}};OA.className="SeparableConv2D";ae.registerClass(OA);var p0=class extends Hd{constructor(e){super(1,e);p0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!Uy(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};p0.className="Conv1D";ae.registerClass(p0);var _A=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Pe(e),this.dataFormat==="channelsLast"){let n=jh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return jh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=jh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return jh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};_A.className="Cropping2D";ae.registerClass(_A);var PA=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,Ute(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=Pe(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Qe(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Qe(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};PA.className="UpSampling2D";ae.registerClass(PA);function Rae(e,t,n=[1,1],a="valid",r,s){return V(()=>{r==null&&(r=Na()),Ft(r);let i=FA(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=vl(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Qe(i,[0,3,1,2])),i})}var LA=class extends $A{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=yt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=jt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Pe(e);let n=Rae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ca(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Fa(t,this.kernelSize[0],this.padding,this.strides[0]),s=Fa(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Nt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Vt(this.depthwiseRegularizer),e}};LA.className="DepthwiseConv2D";ae.registerClass(LA);function h8(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function f8(e,t,n,a=!1,r,s,i=!1,o=!1){return V(()=>{let u=t.shape.length;if(u<3)throw new j(`Input should be at least 3D, but is ${u}D.`);let l=[1,0].concat(Ea(2,u));if(t=Qe(t,l),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===u-1&&(r=dn(r,-1)),r=Qe(r,l)),a&&(t=Wn(t,0),r!=null&&(r=Wn(r,0)));let d=[],p,c=n,h=t.shape[0],m=fa(t),f;r!=null&&(f=fa(r));for(let A=0;A<h;++A){let g=m[A],x=V(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let w=V(()=>{let b=f[A],v=Ln(b).sub(b),N=x[0].mul(b).add(c[0].mul(v)),I=c.map((E,$)=>x[1][$].mul(b).add(E.mul(v)));return{output:N,newStates:I}});p=w.output,c=w.newStates}o&&d.push(p)}let y;return o&&(y=pn(d,1)),[p,y,c]})}var Qa=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new f0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Ea(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){oA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");oA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new zt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new zt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ar("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)Ie(this.states_),this.keptStates!=null&&(Ie(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ie(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new j(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Gt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=h8(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Ra){let o=[e].concat(s),u=this.inputSpec.concat(i),l=this.inputSpec;this.inputSpec=u;let d=super.apply(o,t);return this.inputSpec=l,d}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Pe(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new j(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=f8((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=o[0],l=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?l:u;return this.returnState?[p].concat(d):p})}getInitialState(e){return V(()=>{let t=$t(e.shape);return t=Se(t,[1,2]),t=_d(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?Jy(t,[1,n]):t):this.cell.stateSize>1?[Jy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Qa.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Ma(a,n);return new e(Object.assign(t,{cell:r}))}};Qa.className="RNN";ae.registerClass(Qa);var Xd=class extends Xe{},c0=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Za(W(e,s),this.kernel.read()):r=Za(e,this.kernel.read()),this.bias!=null&&(r=Ca(r,this.bias.read())),i!=null&&(n=W(n,i));let o=se(r,Za(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};c0.className="SimpleRNNCell";ae.registerClass(c0);var WA=class extends Qa{constructor(e){e.cell=new c0(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ie(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ie(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};WA.className="SimpleRNN";ae.registerClass(WA);var h0=class extends Xd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,u;0<this.dropout&&this.dropout<1&&(e=W(e,r[0]));let l=Za(e,this.kernel.read());this.useBias&&(l=Ca(l,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=qt(d,[2*this.units,this.units],d.rank-1),h=Za(a,p),[m,f,y]=qt(l,3,l.rank-1),[A,g]=qt(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,A)),o=this.recurrentActivation.apply(se(f,g));let x=Za(W(o,a),c);u=this.activation.apply(se(y,x));let w=se(W(i,a),W(se(1,It(i)),u));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),recurrentActivation:Qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};h0.className="GRUCell";ae.registerClass(h0);var BA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new h0(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ie(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ie(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};BA.className="GRU";ae.registerClass(BA);var Kd=class extends Xd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=es(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=yt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=jt(e.kernelConstraint),this.recurrentConstraint=jt(e.recurrentConstraint),this.biasConstraint=jt(e.biasConstraint),this.dropout=Xl([1,Yr([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Xl([1,Yr([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends ya{apply(i,o){let u=r.apply([s]),l=new Hh().apply([s]),d=r.apply([s*2]);return u4(u4(u,l),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,u,l,d;0<this.dropout&&this.dropout<1&&(e=W(e,s[0]));let p=Za(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=W(a,i[0])),p=se(p,Za(a,this.recurrentKernel.read())),this.useBias&&(p=Ca(p,this.bias.read()));let[c,h,m,f]=qt(p,4,p.rank-1);o=this.recurrentActivation.apply(c),u=this.recurrentActivation.apply(h),l=se(W(u,r),W(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let y=W(d,this.activation.apply(l));return[y,y,l]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Qr(this.activation),recurrentActivation:Qr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),recurrentInitializer:Nt(this.recurrentInitializer),biasInitializer:Nt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),recurrentConstraint:Vt(this.recurrentConstraint),biasConstraint:Vt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Kd.className="LSTMCell";ae.registerClass(Kd);var VA=class extends Qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Kd(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(Ie(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ie(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};VA.className="LSTM";ae.registerClass(VA);var f0=class extends Xd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){oA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{_i(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Ma(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return lA(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}uA(t)}};f0.className="StackedRNNCells";ae.registerClass(f0);function ts(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>p4(t(),n),i=()=>Ld(s,t,a);return!r||r<=1?Gt(i().clone()):Array(r).fill(void 0).map(i).map(o=>Gt(o.clone()))}var Mae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},m8=class extends Qa{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new zt({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(Ie(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ie(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=$t(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new Ar("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)Ie(this.states_),this.keptStates!=null&&(Ie(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ie(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Gt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",u=e[o?3:2],l=e[o?4:3],d=Fa(u,a[0],r,s[0],i[0]),p=Fa(l,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};m8.className="ConvRNN2D";var m0=class extends Kd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Kt(this.filters,"filters"),this.kernelSize=Ql(n,2,"kernelSize"),this.kernelSize.forEach(o=>Kt(o,"kernelSize")),this.strides=Ql(a||1,2,"strides"),this.strides.forEach(o=>Kt(o,"strides")),this.padding=r||"valid",sa(this.padding),this.dataFormat=s||"channelsLast",Ft(this.dataFormat),this.dilationRate=Ql(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Kt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let u=this.biasInitializer,l=this.filters;o=new(t=class extends ya{apply(d,p){let c=u.apply([l]),h=Pn([l]),m=u.apply([l*2]);return Yy([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ts({ones:()=>Ln(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,u=(Y,re,ne)=>!re||!re[ne]?Y:W(re[ne],Y),l=u(a,o,0),d=u(a,o,1),p=u(a,o,2),c=u(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ts({ones:()=>Ln(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=u(r,h,0),f=u(r,h,1),y=u(r,h,2),A=u(r,h,3),g=3,[x,w,b,v]=qt(this.kernel.read(),i,g),[N,I,E,$]=this.useBias?qt(this.bias.read(),i):[null,null,null,null];l=this.inputConv(l,x,N,this.padding),d=this.inputConv(d,w,I,this.padding),p=this.inputConv(p,b,E,this.padding),c=this.inputConv(c,v,$,this.padding);let[O,z,P,D]=qt(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,O),f=this.recurrentConv(f,z),y=this.recurrentConv(y,P),A=this.recurrentConv(A,D);let U=this.recurrentActivation.apply(se(l,m)),X=this.recurrentActivation.apply(se(d,f)),G=se(W(X,s),W(U,this.activation.apply(se(p,y)))),ee=W(this.recurrentActivation.apply(se(c,A)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Mae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=pr(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ca(r,n,this.dataFormat):r}recurrentConv(e,t){return pr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};m0.className="ConvLSTM2DCell";ae.registerClass(m0);var jA=class extends m8{constructor(e){let t=new m0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};jA.className="ConvLSTM2D";ae.registerClass(jA);var y0=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Ld(()=>p4(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};y0.className="Dropout";ae.registerClass(y0);var UA=class extends y0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};UA.className="SpatialDropout1D";ae.registerClass(UA);var HA=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Kt(this.units,"units"),this.activation=es(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=yt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=yt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=jt(e.kernelConstraint),this.biasConstraint=jt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=Q6(this.activation.getClassName()),r;return a!=null?r=Za(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Za(n,this.kernel.read()),this.bias!=null&&(r=Ca(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Qr(this.activation),useBias:this.useBias,kernelInitializer:Nt(this.kernelInitializer),biasInitializer:Nt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Vt(this.kernelConstraint),biasConstraint:Vt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};HA.className="Dense";ae.registerClass(HA);var GA=class extends Xe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Zr(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return Zte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};GA.className="Flatten";ae.registerClass(GA);var qA=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=es(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.activation.apply(n)})}getConfig(){let e={activation:Qr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};qA.className="Activation";ae.registerClass(qA);var XA=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Pe(e),Xte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};XA.className="RepeatVector";ae.registerClass(XA);var KA=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let u=a[o];if(this.isUnknown(u))if(s===null)s=o;else throw new j("Can only specifiy one unknown dimension.");else r*=u}let i=Zr(e);if(s!==null){if(r===0||i%r!=0)throw new j(n);a[s]=i/r}else if(i!==r)throw new j(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};KA.className="Reshape";ae.registerClass(KA);var ZA=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Ea(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Qe(Pe(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};ZA.className="Permute";ae.registerClass(ZA);var YA=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Pe(e),a=-1;return Qu(ki(n,this.maskValue),a)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e),a=-1,r=!0,s=Qu(ki(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};YA.className="Masking";ae.registerClass(YA);var JA=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ft(e.inputLength))}this.inputDim=e.inputDim,Kt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Kt(this.outputDim,"outputDim"),this.embeddingsInitializer=yt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=jt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Pe(e),ki(e,Ge(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=ft(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);return n.dtype!=="int32"&&(n=Od(n,"int32")),d4(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Nt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Vt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};JA.className="Embedding";ae.registerClass(JA);var Vi=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Kr(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Kr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=Yr(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=_d(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let u=o.rank;if(u==null){let l=o.shape,d=l[0],p=l.slice(1).concat([d]),c=o.reshape([d].concat(Zr(l.slice(1))));c=Qe(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(u>1){let l=Ea(1,u).concat([0]);n.push(Qe(o,l)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,u=o.length,l=o[u-1],d=[l].concat(o.slice(0,o.length-1));s=Qe(s.reshape([-1,l]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(Ea(0,i-1));s=Qe(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Kr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:dn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=ca(n,t[a]);return n})}},QA=class extends Vi{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};QA.className="Add";ae.registerClass(QA);var e2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=W(t,e[n]);return t})}};e2.className="Multiply";ae.registerClass(e2);var t2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return W(1/e.length,t)})}};t2.className="Average";ae.registerClass(t2);var n2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ua(t,e[n]);return t})}};n2.className="Maximum";ae.registerClass(n2);var a2=class extends Vi{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Nl(t,e[n]);return t})}};a2.className="Minimum";ae.registerClass(a2);var r2=class extends Vi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>Yy(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Ln(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(dn(t[s],-1)):a.push(t[s]);let r=lt(a,this.axis);return Cc(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};r2.className="Concatenate";ae.registerClass(r2);function Zd(e,t){for(;e<0;)e+=t;return e}function Fae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return V(()=>{let i;if(a>r){i=a-r;let u=[];for(let l=0;l<i;++l)u.push(1);t=t.reshape(t.shape.concat(u))}else if(r>a){i=r-a;let u=[];for(let l=0;l<i;++l)u.push(1);e=e.reshape(e.shape.concat(u))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let u=s[0]!==e.shape.length-1,l=s[1]===t.shape.length-1;o=e.matMul(t,u,l)}if(i>0){let u;a>r?u=a+r-3:u=a-1;let l=[];for(let d=u;d<u+i;++d)l.push(d);o=o.squeeze(l)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var s2=class extends Vi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new j(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Zd(r,e[s].shape.length)):a=[Zd(this.axes,t.shape.length),Zd(this.axes,n.shape.length)],this.normalize&&(t=a0(t,a[0]),n=a0(n,a[1])),Fae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Zd(this.axes,e.length),Zd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};s2.className="Dot";ae.registerClass(s2);var i2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);return Ld(()=>Uh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};i2.className="GaussianNoise";ae.registerClass(i2);var o2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Pe(e);return this.rate>0&&this.rate<1?Ld(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Uh(n.shape,1,a))},()=>n,t.training||!1):n})}};o2.className="GaussianDropout";ae.registerClass(o2);var l2=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Pe(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Ld(()=>{let a=Pe(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Vr(Tl(n),this.rate);o=Od(o,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,l=-u*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(u).add(l)},()=>Pe(e),t.training||!1)}return e})}};l2.className="AlphaDropout";ae.registerClass(l2);function Yd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=t3(e,t,n,a,r,s);else if(e.rank===3)i=n3(e,t,n,a,r,s);else if(e.rank===4)i=a3(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function $ae(e,t,n,a,r=.001){return V(()=>{let s=Bc(e,a),i=s.mean,o=s.variance;return[Yd(e,i,o,n,t,r),i,o]})}function Dae(e,t,n,a,r=.001){return V(()=>{let s=Bc(e,a),i=s.mean,o=s.variance,u=[];for(let h of Ea(0,e.rank))a.indexOf(h)!==-1?u.push(1):u.push(e.shape[h]);let l=i.reshape(u),d=o.reshape(u),p=t==null?null:t.reshape(u),c=n==null?null:n.reshape(u);return[Yd(e,l,d,c,p,r),i,o]})}function zae(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Ea(0,e.rank-1))?$ae(e,t,n,a,r):Dae(e,t,n,a,r)}var u2=class extends Xe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.movingMeanInitializer=yt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=yt(e.movingVarianceInitializer||"ones"),this.betaConstraint=jt(e.betaConstraint),this.gammaConstraint=jt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,a=Pe(e),r=a.shape,s=r.length,i=Ea(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let u=Di(1,s);u[o]=r[o];let l=i.slice();l.sort();let d=!k.arraysEqual(l,Ea(0,s).slice(0,s-1)),p=()=>{if(d){let y=this.movingMean.read().reshape(u),A=this.movingVariance.read().reshape(u),g=this.center?this.beta.read().reshape(u):null,x=this.scale?this.gamma.read().reshape(u):null;return Yd(a,y,A,g,x,this.epsilon)}else return Yd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=zae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(y,A,g)=>{V(()=>{let x=1-g,w=y.read(),b=w.sub(A).mul(x);y.write(w.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),movingMeanInitializer:Nt(this.movingMeanInitializer),movingVarianceInitializer:Nt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Vt(this.betaConstraint),gammaConstraint:Vt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};u2.className="BatchNormalization";ae.registerClass(u2);var d2=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=yt(e.betaInitializer||"zeros"),this.gammaInitializer=yt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Kr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Pe(e),a=n.shape,r=a.length;return V(()=>{let s=!0,{mean:i,variance:o}=Bc(n,this.axis,s),u=Di(1,r);for(let m of this.axis)u[m]=a[m];let l=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(u):m,d=l(this.gamma.read()),p=l(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),d=d.tile(h),p=p.tile(h),Yd(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Nt(this.betaInitializer),gammaInitializer:Nt(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};d2.className="LayerNormalization";ae.registerClass(d2);function Oae(e,t,n){return V(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Na()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],cr(e,a)})}var p2=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Na():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>Oae(Pe(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};p2.className="ZeroPadding2D";ae.registerClass(p2);function A0(e,t,n,a,r,s){return V(()=>{Ft(r),a4(s),sa(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Na()),s==null&&(s="max"),e=FA(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=id(e,t,n,o):i=td(e,t,n,o),r==="channelsFirst"&&(i=Qe(i,[0,3,1,2])),i})}function y8(e,t,n,a,r,s){return V(()=>{Ft(r),a4(s),sa(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Na()),s==null&&(s="max"),e=d8(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=z1(e,t,n,o):i=x1(e,t,n,o),r==="channelsFirst"&&(i=Qe(i,[0,4,1,2,3])),i})}var A8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Kt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,sa(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=st(e);let t=Fa(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=_d(Pe(e),2);let n=this.poolingFunction(Pe(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ha(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},c2=class extends A8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),A0(e,t,n,a,r,"max")}};c2.className="MaxPooling1D";ae.registerClass(c2);var h2=class extends A8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),A0(e,t,n,a,r,"avg")}};h2.className="AveragePooling1D";ae.registerClass(h2);var g8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),sa(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Fa(t,this.poolSize[0],this.padding,this.strides[0]),n=Fa(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},f2=class extends g8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),A0(e,t,n,a,r,"max")}};f2.className="MaxPooling2D";ae.registerClass(f2);var m2=class extends g8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),A0(e,t,n,a,r,"avg")}};m2.className="AveragePooling2D";ae.registerClass(m2);var x8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Kt(this.poolSize,"poolSize"),Kt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),sa(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Fa(t,this.poolSize[0],this.padding,this.strides[0]),n=Fa(n,this.poolSize[1],this.padding,this.strides[1]),a=Fa(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Pe(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},y2=class extends x8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),y8(e,t,n,a,r,"max")}};y2.className="MaxPooling3D";ae.registerClass(y2);var A2=class extends x8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),sa(a),y8(e,t,n,a,r,"avg")}};A2.className="AveragePooling3D";ae.registerClass(A2);var b8=class extends Xe{constructor(e){super(e);this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},g2=class extends b8{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Pe(e);return St(n,1)})}};g2.className="GlobalAveragePooling1D";ae.registerClass(g2);var x2=class extends b8{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Pe(e);return Tn(n,1)})}};x2.className="GlobalMaxPooling1D";ae.registerClass(x2);var v8=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},b2=class extends v8{call(e,t){return V(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?St(n,[1,2]):St(n,[2,3])})}};b2.className="GlobalAveragePooling2D";ae.registerClass(b2);var v2=class extends v8{call(e,t){return V(()=>{let n=Pe(e);return this.dataFormat==="channelsLast"?Tn(n,[1,2]):Tn(n,[2,3])})}};v2.className="GlobalMaxPooling2D";ae.registerClass(v2);var w8=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Ma(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},w2=class extends w8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return V(()=>(e=Pe(e),f8((n,a)=>[Pe(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};w2.className="TimeDistributed";ae.registerClass(w2);function _ae(e){Oi(jte,"BidirectionalMergeMode",e)}var Pae="concat",k2=class extends w8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Ma(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Ma(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Pae:e.mergeMode,_ae(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Cn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=h8(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let u=n.length;if(u%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let l=n.map(d=>new zt({shape:d.shape}));this.forwardLayer.stateSpec=l.slice(0,u/2),this.backwardLayer.stateSpec=l.slice(u/2),i.push(...l)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Ra;for(let u of s)if(u instanceof Ra!==o)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let u=[e].concat(s),l=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=l;let p=super.apply(u,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),u=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:u}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Wn(r,1));let i;return this.mergeMode==="concat"?i=Yy([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=W(.5,se(a,r)):this.mergeMode==="mul"?i=W(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){_i(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),_i(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Ma(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};k2.className="Bidirectional";ae.registerClass(k2);function Lae(e){return new Kl(e)}function Wae(e){return new CA(e)}function Bae(e){return new NA(e)}function Vae(e){return new TA(e)}function jae(e){return new EA(e)}function Uae(e){return new MA(e)}function Hae(e){return new RA(e)}function Gae(e){return new p0(e)}function qae(e){return new Gd(e)}function Xae(e){return new DA(e)}function Kae(e){return new qd(e)}function Zae(e){return new zA(e)}function Yae(e){return new OA(e)}function Jae(e){return new _A(e)}function Qae(e){return new PA(e)}function ere(e){return new LA(e)}function tre(e){return new qA(e)}function nre(e){return new HA(e)}function are(e){return new y0(e)}function rre(e){return new UA(e)}function sre(e){return new GA(e)}function ire(e){return new XA(e)}function ore(e){return new KA(e)}function lre(e){return new ZA(e)}function ure(e){return new JA(e)}function dre(e){return new QA(e)}function pre(e){return new t2(e)}function cre(e){return new r2(e)}function hre(e){return new n2(e)}function fre(e){return new a2(e)}function mre(e){return new e2(e)}function yre(e){return new s2(e)}function Are(e){return new u2(e)}function gre(e){return new d2(e)}function xre(e){return new p2(e)}function I2(e){return new h2(e)}function bre(e){return I2(e)}function vre(e){return I2(e)}function S2(e){return new m2(e)}function wre(e){return S2(e)}function kre(e){return S2(e)}function N2(e){return new A2(e)}function Ire(e){return N2(e)}function Sre(e){return N2(e)}function Nre(e){return new g2(e)}function Tre(e){return new b2(e)}function k8(e){return new x2(e)}function I8(e){return new v2(e)}function S8(e){return new c2(e)}function N8(e){return new f2(e)}function Ere(e){return new y2(e)}function Cre(e){return new BA(e)}function Rre(e){return new h0(e)}function Mre(e){return new VA(e)}function Fre(e){return new Kd(e)}function $re(e){return new WA(e)}function Dre(e){return new c0(e)}function zre(e){return new jA(e)}function Ore(e){return new m0(e)}function _re(e){return new Qa(e)}function Pre(e){return new f0(e)}function Lre(e){return new k2(e)}function Wre(e){return new w2(e)}var Bre=k8,Vre=I8,jre=S8,Ure=N8;function Hre(e){return new i2(e)}function Gre(e){return new o2(e)}function qre(e){return new l2(e)}function Xre(e){return new YA(e)}var T8={};Fe(T8,{MAPE:()=>sse,MSE:()=>lse,binaryAccuracy:()=>Kre,binaryCrossentropy:()=>Zre,categoricalAccuracy:()=>Jre,categoricalCrossentropy:()=>Qre,cosineProximity:()=>nse,mape:()=>ise,meanAbsoluteError:()=>ase,meanAbsolutePercentageError:()=>rse,meanSquaredError:()=>ose,mse:()=>use,precision:()=>ese,recall:()=>tse,sparseCategoricalAccuracy:()=>Yre});function Kre(e,t){return cA(e,t)}function Zre(e,t){return C4(e,t)}function Yre(e,t){return R4(e,t)}function Jre(e,t){return hA(e,t)}function Qre(e,t){return fA(e,t)}function ese(e,t){return E4(e,t)}function tse(e,t){return Pne(e,t)}function nse(e,t){return dA(e,t)}function ase(e,t){return r0(e,t)}function rse(e,t){return Yl(e,t)}function sse(e,t){return Yl(e,t)}function ise(e,t){return Yl(e,t)}function ose(e,t){return Li(e,t)}function lse(e,t){return Li(e,t)}function use(e,t){return Li(e,t)}var E8={};Fe(E8,{modelFromJSON:()=>gae});var C8={};Fe(C8,{l1:()=>pse,l1l2:()=>dse,l2:()=>cse});function dse(e){return new Ud(e)}function pse(e){return Nae(e)}function cse(e){return Tae(e)}var R8=class extends Zl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof xr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function g0(e,t){return e<t}function M8(e,t){return e>t}var F8=class extends R8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=g0:this.mode==="max"?this.monitorFunc=M8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=M8:this.monitorFunc=g0,this.monitorFunc===g0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===g0?Infinity:-Infinity}async onEpochEnd(e,t){await Jr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function hse(e){return new F8(e)}var fse={earlyStopping:hse},$a;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})($a||($a={}));var $8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})($8||($8={}));var T2={};function mse(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};T2[e]=n}function D8(e){return T2[e]}function yse(e){delete T2[e]}function S(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,u=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return gn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,u).map(p=>gn(p,n,a,r));let l=gn(t.inputNames.slice(o)[0],n,a,r),d=l.dataSync();return s.type==="number"?d[0]:k.toNestedArray(l.shape,d)}let i=t.attrParams[e];return i&&i.value}function gn(e,t,n,a){let[r,s]=jn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[x0(r,o)]);return i!==void 0?t[x0(r,i)][s]:void 0}function Ase(e,t,n){return t[x0(e,n.currentContextId)]}function br(e,t){let[n,a]=jn(e);return[x0(n,t&&t.currentContextId),a]}function x0(e,t){return t?`${e}-${t}`:e}function jn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function b0(e,t,n){let a=S("pad",e,t,n);if(a==="explicit"){a=S("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function vr(e){return e.kept?e:Ba(e)}var z8={};Fe(z8,{json:()=>gse});var gse=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],O8={};Fe(O8,{json:()=>xse});var xse=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],_8={};Fe(_8,{json:()=>bse});var bse=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],P8={};Fe(P8,{json:()=>vse});var vse=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],L8={};Fe(L8,{json:()=>wse});var wse=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],W8={};Fe(W8,{json:()=>kse});var kse=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],B8={};Fe(B8,{json:()=>Ise});var Ise=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],V8={};Fe(V8,{json:()=>Sse});var Sse=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],j8={};Fe(j8,{json:()=>Nse});var Nse=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],U8={};Fe(U8,{json:()=>Tse});var Tse=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],H8={};Fe(H8,{json:()=>Ese});var Ese=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],G8={};Fe(G8,{json:()=>Cse});var Cse=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],q8={};Fe(q8,{json:()=>Rse});var Rse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],X8={};Fe(X8,{json:()=>Mse});var Mse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],K8={};Fe(K8,{json:()=>Fse});var Fse=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Z8={};Fe(Z8,{json:()=>$se});var $se=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],Y8={};Fe(Y8,{json:()=>Dse});var Dse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],J8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[z8,O8,_8,P8,L8,W8,B8,H8,U8,V8,G8,q8,X8,K8,Z8,Y8,j8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],u=[],l={},d={};t!=null&&(l=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(y=>{let[A]=br(y);f.inputs.push(i[A]),i[A].children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&u.push(f)}):Object.keys(d).forEach(m=>{let[f]=br(m),y=i[f];y!=null&&(y.signatureKey=d[m],u.push(y))}),Object.keys(l).length>0?Object.keys(l).forEach(m=>{let[f]=br(m),y=i[f];y&&(y.signatureKey=l[m],o.push(y))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:u,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=D8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=E2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=O2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=O2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=R2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=R2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=z2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=z2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=C2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=C2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=P2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=P2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=D2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=D2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=_2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=_2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=F2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=F2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=$2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=$2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=ek(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ek(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((l,d)=>(l[d.name]=this.mapNode(d),d.op==="Const"&&a.push(l[d.name]),l),{}));let s=[],i=[];e.signature.inputArg.forEach(l=>{let[d]=br(l.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:M2(l.type),type:"dtype"}},children:[]};p.signatureKey=l.name,s.push(p),r[d]=p}),Object.keys(r).forEach(l=>{let d=r[l];d.inputNames.forEach(p=>{let[c]=br(p);d.inputs.push(r[c]),r[c].children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(l=>{let[d,p]=br(o[l.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function zse(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function Q8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):zse(e);return t?n:n.toLowerCase()}function E2(e,t,n,a=!1){let r=e[t];return r!=null?Q8(r.s,a):n}function C2(e,t,n){let a=e[t];return a?a.b:n}function R2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function M2(e){switch(typeof e=="string"&&(e=$a[e]),e){case $a.DT_FLOAT:return"float32";case $a.DT_INT32:case $a.DT_INT64:case $a.DT_INT8:case $a.DT_UINT8:return"int32";case $a.DT_BOOL:return"bool";case $a.DT_DOUBLE:return"float32";case $a.DT_STRING:return"string";default:return null}}function ek(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function F2(e,t,n){let a=e[t];return a&&a.type?M2(a.type):n}function $2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>M2(r)):n}function tk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function D2(e,t,n){let a=e[t];return a&&a.shape?tk(a.shape):n}function z2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function O2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>Q8(s,a)):n}function _2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>tk(r)):n}function P2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Ose=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return gn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return gn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return R2(this.node.rawAttrs,e,t);if(n.s!=null)return E2(this.node.rawAttrs,e,t);if(n.b!=null)return C2(this.node.rawAttrs,e,t);if(n.shape!=null)return D2(this.node.rawAttrs,e,t);if(n.type!=null)return F2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return z2(this.node.rawAttrs,e,t);if(n.list.s!=null)return O2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return _2(this.node.rawAttrs,e,t);if(n.list.b!=null)return P2(this.node.rawAttrs,e,t);if(n.list.type!=null)return $2(this.node.rawAttrs,e,t)}return t}},_se=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(S("a",e,t,n),S("b",e,t,n))];case"AddN":return[Ec(S("tensors",e,t,n))];case"FloorMod":case"Mod":return[_1(S("a",e,t,n),S("b",e,t,n))];case"Mul":return[W(S("a",e,t,n),S("b",e,t,n))];case"RealDiv":case"Div":return[fe(S("a",e,t,n),S("b",e,t,n))];case"DivNoNan":return[N1(S("a",e,t,n),S("b",e,t,n))];case"FloorDiv":return[Tc(S("a",e,t,n),S("b",e,t,n))];case"Sub":return[ye(S("a",e,t,n),S("b",e,t,n))];case"Minimum":return[Nl(S("a",e,t,n),S("b",e,t,n))];case"Maximum":return[Ua(S("a",e,t,n),S("b",e,t,n))];case"Pow":return[hr(S("a",e,t,n),S("b",e,t,n))];case"SquaredDifference":return[Jc(S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pse=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Lt(S("x",e,t,n))];case"Acos":return[u1(S("x",e,t,n))];case"Acosh":return[d1(S("x",e,t,n))];case"Asin":return[c1(S("x",e,t,n))];case"Asinh":return[h1(S("x",e,t,n))];case"Atan":return[f1(S("x",e,t,n))];case"Atan2":return[m1(S("x",e,t,n),S("y",e,t,n))];case"Atanh":return[y1(S("x",e,t,n))];case"Ceil":return[v1(S("x",e,t,n))];case"Complex":return[zr(S("real",e,t,n),S("imag",e,t,n))];case"Cos":return[ad(S("x",e,t,n))];case"Cosh":return[$c(S("x",e,t,n))];case"Elu":return[wl(S("x",e,t,n))];case"Erf":return[T1(S("x",e,t,n))];case"Exp":return[ta(S("x",e,t,n))];case"Expm1":return[E1(S("x",e,t,n))];case"Floor":return[Il(S("x",e,t,n))];case"Log":return[_n(S("x",e,t,n))];case"Log1p":return[_c(S("x",e,t,n))];case"Imag":return[zc(S("x",e,t,n))];case"Neg":return[It(S("x",e,t,n))];case"Reciprocal":return[W1(S("x",e,t,n))];case"Real":return[ud(S("x",e,t,n))];case"Relu":return[Ha(S("x",e,t,n))];case"Round":return[Uc(S("x",e,t,n))];case"Selu":return[Gc(S("x",e,t,n))];case"Sigmoid":return[Sn(S("x",e,t,n))];case"Sin":return[qc(S("x",e,t,n))];case"Sign":return[V1(S("x",e,t,n))];case"Sinh":return[Xc(S("x",e,t,n))];case"Softplus":return[vi(S("x",e,t,n))];case"Sqrt":return[en(S("x",e,t,n))];case"Square":return[ot(S("x",e,t,n))];case"Tanh":return[gi(S("x",e,t,n))];case"Tan":return[H1(S("x",e,t,n))];case"ClipByValue":return[Nn(S("x",e,t,n),S("clipValueMin",e,t,n),S("clipValueMax",e,t,n))];case"Relu6":return[jc(S("x",e,t,n))];case"Rsqrt":return[Hc(gn(e.inputNames[0],t,n))];case"Prod":return[Vc(S("x",e,t,n),S("axes",e,t,n))];case"LeakyRelu":return[rd(S("x",e,t,n),S("alpha",e,t,n))];case"Prelu":return[ld(S("x",e,t,n),S("alpha",e,t,n))];case"IsNan":return[R1(gn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ga(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function nk(e){return!(typeof e=="number"||e.some(t=>t<0))}function Jd(e,t,n){let a=L2(e,n),r=!nk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=L2(s.shape,a)}),!nk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function L2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var Lse=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=we(0),Gt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ga(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Gt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return pa([],[0].concat(this.elementShape));let n=this.readMany(e);return ga(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),pn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return pa([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ga(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),lt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,fa(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];V(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let u=o===0?0:a[o-1],l=[0,u,0],d=[1,e[o],r];s[o]=H(Re(t,l,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Qd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ga(t,r.shape,"TensorList shape mismatch: "),Gt(r)}),this.idTensor=we(0),this.maxNumElements=a,Gt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Qd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ga(e,this.elementShape,"TensorList shape mismatch: ");let a=Jd(this.elementShape,this.tensors,e);return V(()=>{let r=this.tensors.map(s=>H(s,a));return pn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Jd(this.elementShape,this.tensors,e),a=this.tensors.pop();return ga(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ga(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Gt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ga(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Jd(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ga(this.elementShape,t.shape,"TensorList shape mismatch: "),Gt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ga(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Jd(this.elementShape,this.tensors,n);return e.length===0?pa([],[0].concat(a)):V(()=>{let r=e.map(s=>H(this.tensors[s],a));return pn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ga(this.elementShape,t,"TensorList shape mismatch: ");let n=Jd(this.elementShape,this.tensors,t);return this.size()===0?pa([],[0].concat(n)):V(()=>{let a=this.tensors.map(r=>H(r,n));return lt(a,0)})}};function Wse(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ga(r,t,"TensorList shape mismatch: ");let s=fa(e);return new Qd(s,t,a)}function Bse(e,t,n){return new Qd([],e,t,n)}function Vse(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Qd([],n,e.dtype,a),i=fa(e,0);return t.forEach((o,u)=>{s.setItem(o,i[u])}),s}function jse(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=L2(s,n),o=a===0?0:e.size/a,u=V(()=>{let d=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=H(Re(e,h,m),i)}return e.dispose(),d}),l=new Qd([],n,e.dtype,t.length);for(let d=0;d<u.length;d++)l.setItem(d,u[d]);return l}var Use=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=S("thenBranch",e,t,n),r=S("elseBranch",e,t,n),s=S("cond",e,t,n),i=S("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=S("body",e,t,n),r=S("cond",e,t,n),s=S("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),u=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let l=s;for(;u[0];){let d=l;l=await n.functionMap[a].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);let p=l.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(l,n.tensorArrayMap,n.tensorListMap);u=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return l}case"LoopCond":{let a=S("pred",e,t,n);return[vr(a)]}case"Switch":{let a=S("pred",e,t,n),r=S("data",e,t,n);return r.kept||(r=vr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>gn(r,t,n)!==void 0);if(a){let r=gn(a,t,n);return[vr(r)]}return}case"Enter":{let a=S("frameName",e,t,n),r=S("tensor",e,t,n);return n.enterFrame(a),[vr(r)]}case"Exit":{let a=S("tensor",e,t,n);return n.exitFrame(),[vr(a)]}case"NextIteration":{let a=S("tensor",e,t,n);return n.nextIteration(),[vr(a)]}case"TensorArrayV3":{let a=S("size",e,t,n),r=S("dtype",e,t,n),s=S("elementShape",e,t,n),i=S("dynamicSize",e,t,n),o=S("clearAfterRead",e,t,n),u=S("identicalElementShapes",e,t,n),l=S("name",e,t,n),d=new Lse(l,r,a,s,u,i,o);return n.addTensorArray(d),[d.idTensor,we(1)]}case"TensorArrayWriteV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=S("tensorArrayId",e,t,n),r=S("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=S("tensorArrayId",e,t,n),r=S("indices",e,t,n),s=S("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=S("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=S("tensorArrayId",e,t,n),r=S("tensor",e,t,n),s=S("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[we(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=S("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=S("tensorListId",e,t,n),r=S("index",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=S("indices",e,t,n),r=S("tensor",e,t,n),s=S("elementShape",e,t,n),i=S("numElements",e,t,n),o=Vse(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=S("elementShape",e,t,n),r=S("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=S(s,e,t,n),o=Bse(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=S("tensorListId",e,t,n),r=S("indices",e,t,n),s=S("elementShape",e,t,n),i=S("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=S("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n),i=Wse(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=S("tensorListId",e,t,n),r=n.getTensorList(a.id),s=S("dtype",e,t,n),i=S("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=S("tensorListId",e,t,n),r=S("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=S("tensorListId",e,t,n),r=S("elementShape",e,t,n),s=S("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=S("tensor",e,t,n),r=S("elementShape",e,t,n),s=S("lengths",e,t,n),i=jse(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ak(e,t,n){let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",u=S("numArgs",e,t,n);if(s){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let l=S("strides",e,t,n),d=b0(e,t,n),p=S("dataFormat",e,t,n).toUpperCase(),c=S("dilations",e,t,n),[h,m]=S("args",e,t,n),f=S("leakyreluAlpha",e,t,n);return{stride:l,pad:d,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var Hse=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=S("stride",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilation",e,t,n);return[Mc(S("x",e,t,n),S("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=S("strides",e,t,n),r=b0(e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[pr(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:d}=ak(e,t,n);return[Ur.conv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:u,activationFunc:l,leakyreluAlpha:d}=ak(e,t,n);return[Ur.depthwiseConv2d({x:S("x",e,t,n),filter:S("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:l,preluActivationWeights:u,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=S("outputShape",e,t,n),r=S("strides",e,t,n),s=b0(e,t,n);return[Fc(S("x",e,t,n),S("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=S("strides",e,t,n),r=b0(e,t,n),s=S("dilations",e,t,n),i=S("dataFormat",e,t,n).toUpperCase();return[vl(S("input",e,t,n),S("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dataFormat",e,t,n).toUpperCase(),i=S("dilations",e,t,n);return[k1(S("x",e,t,n),S("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[td(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[id(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n),i=S("includeBatchInIndex",e,t,n),{result:o,indexes:u}=v3(S("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,u]}case"AvgPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[x1(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("kernelSize",e,t,n);return[z1(S("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=S("strides",e,t,n),r=S("pad",e,t,n),s=S("dilations",e,t,n),i=a[1],o=a[2],u=s[1],l=s[2];return[S1(S("x",e,t,n),S("filter",e,t,n),[i,o],r,[u,l],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gse=(e,t,n)=>{switch(e.op){case"Fill":{let a=S("shape",e,t,n),r=S("dtype",e,t,n),s=S("value",e,t,n);return[kl(a,s,r)]}case"LinSpace":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("num",e,t,n);return[f3(a,r,s)]}case"Multinomial":{let a=S("logits",e,t,n),r=S("numSamples",e,t,n),s=S("seed",e,t,n);return[w3(a,r,s)]}case"OneHot":{let a=S("indices",e,t,n),r=S("depth",e,t,n),s=S("onValue",e,t,n),i=S("offValue",e,t,n);return[ml(a,r,s,i)]}case"Ones":return[Pn(S("shape",e,t,n),S("dtype",e,t,n))];case"OnesLike":return[Ln(S("x",e,t,n))];case"RandomUniform":return[Tl(S("shape",e,t,n),S("minval",e,t,n),S("maxval",e,t,n),S("dtype",e,t,n))];case"Range":{let a=S("start",e,t,n),r=S("stop",e,t,n),s=S("step",e,t,n);return[El(a,r,s,S("dtype",e,t,n))]}case"TruncatedNormal":{let a=S("shape",e,t,n),r=S("mean",e,t,n),s=S("stdDev",e,t,n),i=S("seed",e,t,n);return[Qc(a,r,s,S("dtype",e,t,n),i)]}case"Zeros":return[$t(S("shape",e,t,n),S("dtype",e,t,n))];case"ZerosLike":return[Ge(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function W2(e,t,n){let a=S("boxes",e,t,n),r=S("scores",e,t,n),s=S("maxOutputSize",e,t,n),i=S("iouThreshold",e,t,n),o=S("scoreThreshold",e,t,n),u=S("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}}var qse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:u}=W2(e,t,n),l=await je.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,u);return[l.selectedIndices,l.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=W2(e,t,n),u=S("padToMaxOutputSize",e,t,n),l=await je.nonMaxSuppressionPaddedAsync(a,r,s,i,o,u);return[l.selectedIndices,l.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=W2(e,t,n);return[await je.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=me(S("condition",e,t,n),"bool"),r=[await X1(a)];return a.dispose(),r}case"ListDiff":return S3(S("x",e,t,n),S("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Xse=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=S("x",e,t,n),r=S("k",e,t,n),s=S("sorted",e,t,n),i=G1(a,r,s);return[i.values,i.indices]}case"Unique":{let a=S("x",e,t,n),r=eh(a);return[r.values,r.indices]}case"UniqueV2":{let a=S("x",e,t,n),r=S("axis",e,t,n),s=eh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Kse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=S("default",e,t,n);return[gn(e.name,t,n)||a];case"Placeholder":return[gn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let l=S("x",e,t,n);return[vr(l)]}case"IdentityN":return S("x",e,t,n).map(l=>vr(l));case"Snapshot":let r=S("x",e,t,n);return[vr(r)];case"Shape":return[Mt(S("x",e,t,n).shape,"int32")];case"ShapeN":return S("x",e,t,n).map(l=>Mt(l.shape));case"Size":return[we(S("x",e,t,n).size,"int32")];case"Rank":return[we(S("x",e,t,n).rank,"int32")];case"NoOp":return[we(1)];case"Print":let s=S("x",e,t,n),i=S("data",e,t,n),o=S("message",e,t,n),u=S("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let l=0;l<i.length;l++)console.log(Array.prototype.slice.call(i[l].dataSync()).slice(0,u));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Zse=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=we(0),this.tensorMap=new Map,Gt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return we(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),V(()=>{let a=fa(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],u=a[i];Gt(u),this.tensorMap.set(o,u)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return pn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Yse=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=S("keyDType",e,t,n),s=S("valueDType",e,t,n),i=new Zse(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=S("tableHandle",e,t,n,a),s=S("keys",e,t,n),i=S("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=S("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Jse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[je.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=S("images",e,t,n),r=S("size",e,t,n),s=S("alignCorners",e,t,n),i=S("halfPixelCenters",e,t,n);return[je.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=S("image",e,t,n),r=S("boxes",e,t,n),s=S("boxInd",e,t,n),i=S("cropSize",e,t,n),o=S("method",e,t,n),u=S("extrapolationValue",e,t,n);return[je.cropAndResize(a,r,s,i,o,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Qse=(e,t,n)=>{switch(e.op){case"Equal":return[Wr(S("a",e,t,n),S("b",e,t,n))];case"NotEqual":return[ki(S("a",e,t,n),S("b",e,t,n))];case"Greater":return[On(S("a",e,t,n),S("b",e,t,n))];case"GreaterEqual":return[Vr(S("a",e,t,n),S("b",e,t,n))];case"Less":return[Oc(S("a",e,t,n),S("b",e,t,n))];case"LessEqual":return[jr(S("a",e,t,n),S("b",e,t,n))];case"LogicalAnd":return[ca(S("a",e,t,n),S("b",e,t,n))];case"LogicalNot":return[sd(S("a",e,t,n))];case"LogicalOr":return[Wc(S("a",e,t,n),S("b",e,t,n))];case"Select":case"SelectV2":return[rn(S("condition",e,t,n),S("a",e,t,n),S("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eie=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ve(S("a",e,t,n),S("b",e,t,n),S("transposeA",e,t,n),S("transposeB",e,t,n))];case"Einsum":return[p3(S("equation",e,t,n),...S("tensors",e,t,n))];case"Transpose":return[Qe(S("x",e,t,n),S("perm",e,t,n))];case"_FusedMatMul":let[a,r]=S("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=S("numArgs",e,t,n),u=S("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[l,d]=S("args",e,t,n);return[Ur.matMul({a:S("a",e,t,n),b:S("b",e,t,n),transposeA:S("transposeA",e,t,n),transposeB:S("transposeB",e,t,n),bias:l,activation:r,preluActivationWeights:d,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},tie=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[xi(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"FusedBatchNormV3":return[xi(S("x",e,t,n),S("mean",e,t,n),S("variance",e,t,n),S("offset",e,t,n),S("scale",e,t,n),S("epsilon",e,t,n))];case"LRN":return[M1(S("x",e,t,n),S("radius",e,t,n),S("bias",e,t,n),S("alpha",e,t,n),S("beta",e,t,n))];case"Softmax":return[pd(S("x",e,t,n))];case"LogSoftmax":return[Lc(S("x",e,t,n))];case"SparseToDense":return[K1(S("sparseIndices",e,t,n),S("outputShape",e,t,n),S("sparseValues",e,t,n),S("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},nie=(e,t,n)=>{switch(e.op){case"Max":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Tn(S("x",e,t,n),i,o)]}case"Mean":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[St(S("x",e,t,n),i,o)]}case"Min":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Sl(S("x",e,t,n),i,o)]}case"Sum":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Se(S("x",e,t,n),i,o)]}case"All":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Cc(S("x",e,t,n),i,o)]}case"Any":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Qu(S("x",e,t,n),i,o)]}case"ArgMax":{let i=S("axis",e,t,n);return[yi(S("x",e,t,n),i)]}case"ArgMin":{let i=S("axis",e,t,n);return[p1(S("x",e,t,n),i)]}case"Prod":{let i=S("axis",e,t,n),o=S("keepDims",e,t,n);return[Vc(S("x",e,t,n),i,o)]}case"Cumsum":{let i=S("axis",e,t,n),o=S("exclusive",e,t,n),u=S("reverse",e,t,n);return[Dc(S("x",e,t,n),i,o,u)]}case"Bincount":let a=S("x",e,t,n),r=S("weights",e,t,n),s=S("size",e,t,n);return[b1(a,r,s)];case"DenseBincount":{let i=S("x",e,t,n),o=S("weights",e,t,n),u=S("size",e,t,n),l=S("binaryOutput",e,t,n);return[u3(i,o,u,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},aie=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=S("n",e,t,n),r=S("axis",e,t,n),s=S("tensors",e,t,n);return s=s.slice(0,a),[lt(s,r)]}case"Gather":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[bi(a,me(r,"int32"),0)]}case"GatherV2":{let a=S("axis",e,t,n),r=S("batchDims",e,t,n),s=S("x",e,t,n),i=S("indices",e,t,n);return[bi(s,me(i,"int32"),a,r)]}case"Reverse":{let a=S("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=S("x",e,t,n);return[Wn(s,r)]}case"ReverseV2":{let a=S("axis",e,t,n),r=S("x",e,t,n);return[Wn(r,a)]}case"Slice":{let a=S("begin",e,t,n),r=S("size",e,t,n);return[Re(S("x",e,t,n),a,r)]}case"StridedSlice":{let a=S("begin",e,t,n),r=S("end",e,t,n),s=S("strides",e,t,n),i=S("beginMask",e,t,n),o=S("endMask",e,t,n),u=S("ellipsisMask",e,t,n),l=S("newAxisMask",e,t,n),d=S("shrinkAxisMask",e,t,n),p=S("x",e,t,n);return[U1(p,a,r,s,i,o,u,l,d)]}case"Pack":return V(()=>{let a=S("axis",e,t,n),r=S("tensors",e,t,n),s=r[0].shape,i=ha(r[0]).shape,o=r.map(u=>{let l=k.arraysEqual(u.shape,s);if(!l&&!k.arraysEqual(ha(u).shape,i))throw new Error("the input tensors shape does not match");return l?u:H(u,s)});return[pn(o,a)]});case"Unpack":{let a=S("axis",e,t,n),r=S("tensor",e,t,n);return fa(r,a)}case"Tile":{let a=S("reps",e,t,n);return[Br(S("x",e,t,n),a)]}case"Split":case"SplitV":{let a=S("axis",e,t,n),r=S("numOrSizeSplits",e,t,n),s=S("x",e,t,n);return qt(s,r,a)}case"ScatterNd":{let a=S("indices",e,t,n),r=S("values",e,t,n),s=S("shape",e,t,n);return[C3(a,r,s)]}case"GatherNd":{let a=S("x",e,t,n),r=S("indices",e,t,n);return[R3(a,r)]}case"SparseToDense":{let a=S("sparseIndices",e,t,n),r=S("outputShape",e,t,n),s=S("sparseValues",e,t,n),i=S("defaultValue",e,t,n);return[K1(a,s,r,s.dtype===i.dtype?i:me(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},rie=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=H3.sparseReshape(S("inputIndices",e,t,n),S("inputShape",e,t,n),S("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},sie=(e,t,n)=>{switch(e.op){case"FFT":return[cd(S("x",e,t,n))];case"IFFT":return[Cl(S("x",e,t,n))];case"RFFT":return[hd(S("x",e,t,n))];case"IRFFT":return[Yc(S("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},iie=(e,t,n)=>{switch(e.op){case"Cast":return[me(S("x",e,t,n),S("dtype",e,t,n))];case"ExpandDims":{let a=S("axis",e,t,n);return[dn(S("x",e,t,n),a)]}case"Squeeze":{let a=S("axis",e,t,n);return[ha(S("x",e,t,n),a)]}case"Reshape":return[H(S("x",e,t,n),S("shape",e,t,n))];case"MirrorPad":return[O1(S("x",e,t,n),S("padding",e,t,n),S("mode",e,t,n))];case"PadV2":case"Pad":return[cr(S("x",e,t,n),S("padding",e,t,n),S("constantValue",e,t,n))];case"SpaceToBatchND":{let a=S("blockShape",e,t,n),r=S("paddings",e,t,n);return[od(S("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=S("blockShape",e,t,n),r=S("crops",e,t,n);return[nd(S("x",e,t,n),a,r)]}case"DepthToSpace":{let a=S("blockSize",e,t,n),r=S("dataFormat",e,t,n).toUpperCase();return[I1(S("x",e,t,n),a,r)]}case"BroadcastTo":return[xl(S("x",e,t,n),S("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function rk(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return V(()=>_se(s,i,o));case"basic_math":return V(()=>Pse(s,i,o));case"control":return Use(s,i,o);case"convolution":return V(()=>Hse(s,i,o));case"creation":return V(()=>Gse(s,i,o));case"dynamic":return qse(s,i,o);case"evaluation":return V(()=>Xse(s,i,o));case"image":return V(()=>Jse(s,i,o));case"graph":return V(()=>Kse(s,i,o));case"logical":return V(()=>Qse(s,i,o));case"matrices":return V(()=>eie(s,i,o));case"normalization":return V(()=>tie(s,i,o));case"reduction":return V(()=>nie(s,i,o));case"slice_join":return V(()=>aie(s,i,o));case"sparse":return V(()=>rie(s,i,o));case"spectral":return V(()=>sie(s,i,o));case"transformation":return V(()=>iie(s,i,o));case"hash_table":return Yse(s,i,o,a);case"custom":let u=D8(s.op);if(u&&u.customExecutor)return u.customExecutor(new Ose(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var sk=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function ik(e,t,n,a){let r=new Set,s=[],i=null,o=null,u=new Set,l=Object.keys(e).map(c=>jn(c)[0]),d=[];a!=null&&(d=a.map(c=>jn(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((ok(c)||pie(c)||cie(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&l.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{u.has(h.name)||(u.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function oie(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>jn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let u=new Set,l=[];for(;s.length>0;){let d=s.pop();u.add(d.name),t[d.name]||l.push(d),d.children.forEach(p=>{!u.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>u.has(c.name))&&s.push(p)})}return l}var lie=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],uie=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],die=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function ok(e){return lie.indexOf(e.op)>=0}function pie(e){return uie.indexOf(e.op)>=0}function cie(e){return die.indexOf(e.op)>=0}var B2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new B2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=ik(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(u=>u.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return oie(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[jn(d)[0]]),r=t.map(d=>jn(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let u={},l={};return V(()=>{let d=new sk(this.weightMap,u,l,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,y]=jn(m),A=[];A[y]=e[m],p[f]=A});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let y=rk(f,p,d,this._resourceManager);if(k.isPromise(y))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=y,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>gn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let u=Ase(o.name,n,a);u!=null&&u.forEach(l=>{if(l&&!l.kept&&!r.has(l.id)){let d=i[l.id];d===1?(l.dispose(),delete i[l.id]):d!=null&&i[l.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new sk(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>gn(p,i,s)),u=o.map(p=>p.id),l=Object.keys(e).map(p=>e[p].id),d=new Set([...u,...l,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[jn(g)[0]]),i=n.map(g=>jn(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:u,missingInputs:l,dynamicNode:d,syncInputs:p}=ik(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,w]=jn(g),b=[];b[w]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),y={};for(;c.length>0;){let g=this.processStack(s,c,t,h,y,f,i,m,u);await Promise.all(g)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let A=o.filter(g=>!ok(g)&&!gn(g.name,h,t)).map(g=>g.name);if(A.length>0){let g="";throw d!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${A}] from the provided inputs [${r}]. Consider providing the following inputs: [${l}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,u){let l=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&S("isConstant",d.node,a,n)&&([p]=br(d.node.name,n)),a[d.node.name]==null){let c=rk(d.node,a,n,this._resourceManager);p||([p]=br(d.node.name,n));let h=n.currentContext;k.isPromise(c)?l.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,u),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,u))}else this.processChildNodes(d.node,t,n,a,r,u)}return l}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=br(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(u=>!!gn(u,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(u=>!!gn(u,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=jn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,u)=>s[u]===-1||s[u]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=jn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=jn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},hie=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},fie="?tfjs-format=file",mie="model.json",lk=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new hie}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=In.browserHTTPRequest(e,this.loadOptions);else{let t=In.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(In.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=In.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new B2(J8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=J8.Instance.transformGraph(e.modelInitializer);this.initializer=new B2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=In.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof We)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${mie}${fie}`);let n=new lk(e,t);return await n.load(),n}var yie="3.6.0",uk={};Fe(uk,{CSVDataset:()=>vk,Dataset:()=>tu,FileDataSource:()=>Ek,TextLineDataset:()=>gk,URLDataSource:()=>Ck,array:()=>Lie,csv:()=>Zie,func:()=>Yie,generator:()=>Jie,microphone:()=>eoe,version_data:()=>toe,webcam:()=>Qie,zip:()=>Wie});var Aie=ro(m5()),gie=ro(m5());function xie(e,t){return v0(e,t)}function v0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(eu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],u=v0(o,t,n,a);s[i]=u}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function bie(e,t=pk){return dk(e,t)}function dk(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(eu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(l=>l[i]),u=dk(o,t,n);s[i]=u}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function pk(e){return e===null?null:eu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function ck(e,t){let n=new Map;v0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return v0(e,t,n)}function eu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof We))}function vie(e){return e==null||wie(e)||Array.isArray(e)||typeof e=="object"&&e instanceof We||k.isTypedArray(e)}function wie(e){return e===null||typeof e!="object"&&typeof e!="function"}function kie(e){return xie(e,Iie)}function Iie(e){return e instanceof We?{value:e.clone(),recurse:!1}:eu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var hk=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},V2=class extends hk{constructor(){super(V2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};V2.INITIAL_CAPACITY=32;function fk(e){return new Tie(e)}function j2(e){return new Eie(e)}function Sie(e,t){return new yk(e,t)}function Nie(e,t=ns.FAIL){return new _ie(e,t)}var Zt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new zie(this,e)}filter(e){return new $ie(this,e)}map(e){return new Die(this,e)}mapAsync(e){return new mk(this,e)}serialMapAsync(e){return new mk(this,e).serial()}flatmap(e){return new Oie(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Fie(this,e,t)}columnMajorBatch(e,t=!0,n=pk){return this.rowMajorBatch(e,t).map(a=>bie(a,n))}concatenate(e,t){return new yk(fk([this,e]),t)}take(e){return e<0||e==null?this:new Mie(this,e)}skip(e){return e<0||e==null?this:new Rie(this,e)}prefetch(e){return new Ak(this,e)}shuffle(e,t){return new Pie(this,e,t)}serial(){return new Cie(this)}},Tie=class extends Zt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:kie(e),done:!1}}},Eie=class extends Zt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Cie=class extends Zt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Rie=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ie(e.value)}return this.upstream.next()}},Mie=class extends Zt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Fie=class extends Zt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},$ie=class extends Zt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ie(e.value)}}},Die=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=va.getTensorsInContainer(e.value),n=this.transform(e.value),a=va.getTensorsInContainer(n);for(let r of t)va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},zie=class extends Zt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},mk=class extends Zt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=va.getTensorsInContainer(e.value),n=await this.transform(e.value),a=va.getTensorsInContainer(n);for(let r of t)va.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},U2=class extends Zt{constructor(){super();this.outputQueue=new V2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Oie=class extends U2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=va.getTensorsInContainer(e.value),n=this.transform(e.value),a=va.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)va.isTensorInList(r,a)||r.dispose();return!0}},yk=class extends Zt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},ns;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(ns||(ns={}));var _ie=class extends Zt{constructor(e,t=ns.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Zt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await ck(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case ns.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case ns.SHORTEST:return{value:null,done:!0};case ns.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Ak=class extends Zt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new hk(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Pie=class extends Ak{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=gie.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},tu=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Un(async()=>(await n.iterator()).columnMajorBatch(e,t,Bie),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Un(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Un(async()=>(await t.iterator()).filter(a=>V(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Un(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return Un(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Un(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Un(async()=>{let a=j2(async()=>({value:await t.iterator(),done:!1}));return Sie(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Un(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Aie.alea(t||k.now().toString());return Un(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Un(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};tu.MAX_BUFFER_SIZE=1e4;function Un(e,t=null){return new class extends tu{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function Lie(e){return Un(async()=>fk(e),e.length)}function Wie(e){if(!eu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Un(async()=>{let n=await ck(e,a=>{if(a instanceof tu)return{value:a.iterator(),recurse:!1};if(eu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Nie(n,ns.SHORTEST)},t)}function Bie(e){if(e===null)return null;let t=e[0];return vie(t)?{value:Vie(e),recurse:!1}:{value:null,recurse:!0}}function Vie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof We?pn(e):pa(e)}var gk=class extends tu{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},w0='"',ep=Symbol("out"),xk=Symbol("field"),k0=Symbol("quote"),H2=Symbol("quoteafterquote"),bk=Symbol("quoteinquote"),vk=class extends tu{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new gk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],u=null;if(o==="")if(i&&i.default!==void 0)u=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);u=void 0}else{let l=Number(o);if(isNaN(l))i&&i.dtype==="bool"?u=this.getBoolean(o):u=o;else if(!i||!i.dtype)u=l;else switch(i.dtype){case"float32":u=l;break;case"int32":u=Math.floor(l);break;case"bool":u=this.getBoolean(o);break;default:u=l}}i&&i.isLabel?a[s]=u:n[s]=u}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=ep;for(let i=0;i<r;i++)switch(s){case ep:switch(e.charAt(i)){case w0:a=i+1,s=k0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=ep;break;default:s=xk,a=i;break}break;case xk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=ep,a=i+1;break;default:}break;case k0:switch(e.charAt(i)){case w0:s=H2;break;default:}break;case H2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=ep,a=i+1;break;case w0:s=k0;break;default:s=bk;break}break;case bk:switch(e.charAt(i)){case w0:s=k0;break;default:}break;default:}if(s===H2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},wk=class extends Zt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new wk(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),pa(n,t)}},kk=class extends Zt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Mt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=ka([s,r,o,i],[1,4])}else this.cropBox=ka([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new kk(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=fi.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=dn(me(e,"float32"),0),n;n=je.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Ik=class{},Sk=class extends Zt{split(e){return new jie(this,e)}},jie=class extends Sk{constructor(e,t){super();this.upstream=e,this.impl=new Uie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Uie=class extends U2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Hie=class extends Zt{decodeUTF8(){return new Gie(this)}},Gie=class extends Sk{constructor(e){super();this.upstream=e,this.impl=new qie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},qie=class extends U2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=UI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Nk=class extends Hie{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function Xie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=Kie(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new Nk(s,t)}else throw new Error(r.statusText)}var Kie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Tk(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Ek=class extends Ik{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Tk(this.input)&&J().get("IS_NODE")){let e=ao("fs");this.input=e.readFileSync(this.input.substr(7))}return new Nk(this.input,this.options)}},Ck=class extends Ik{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Tk(this.url)?new Ek(this.url,this.fileOptions).iterator():Xie(this.url,this.fileOptions)}};function Zie(e,t={}){return new vk(new Ck(e),t)}function Yie(e){let t=j2(e);return Un(async()=>t)}function Jie(e){return Un(async()=>{let t=await e();return j2(()=>t.next())})}async function Qie(e,t){return kk.create(e,t)}async function eoe(e){return wk.create(e)}var toe="3.6.0",noe={tfjs:(wm==null?void 0:wm.version)||void 0,"tfjs-core":(km==null?void 0:km.version)||void 0,"tfjs-data":(Im==null?void 0:Im.version)||void 0,"tfjs-layers":(Sm==null?void 0:Sm.version)||void 0,"tfjs-converter":(Nm==null?void 0:Nm.version)||void 0,"tfjs-backend-cpu":S7||void 0,"tfjs-backend-webgl":Xv||void 0,"tfjs-backend-wasm":W6||void 0};var Hn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function Rk(){if(!l1(Hn.name)){de("backend registration:",Hn.name);try{Hn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Hn.width,Hn.height):document.createElement("canvas")}catch(e){de("error: cannot create canvas:",e);return}try{Hn.gl=Hn.canvas.getContext("webgl2",Hn.webGLattr)}catch(e){de("error: cannot get WebGL2 context:",e);return}try{xh(2,Hn.gl)}catch(e){de("error: cannot set WebGL2 context:",e);return}try{let e=new Nh(Hn.gl);Al(Hn.name,()=>new jl(e),Hn.priority)}catch(e){de("error: cannot register WebGL backend:",e);return}try{dl("webgl").forEach(t=>{let n={...t,backendName:Hn.name};di(n)})}catch(e){de("error: cannot update WebGL backend registration:",e);return}try{Qn.set("WEBGL_VERSION",2)}catch(e){de("error: cannot set WebGL backend flags:",e);return}de("backend registered:",Hn.name)}}var tg={};xa(tg,{load:()=>eg,predict:()=>Q2,triangulation:()=>Vk,uvmap:()=>jk});function Mk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function np(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function nu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function au(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return je.cropAndResize(t,s,[0],n)}function I0(e,t=1.5){let n=nu(e),a=np(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function S0(e){let t=nu(e),n=np(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function G2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var Fk=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var N0=[[1,0,0],[0,1,0],[0,0,1]];function aoe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function q2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return aoe(n)}function $k(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function roe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function Dk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(as(e[r],roe(t,s)))}return n}function T0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=$k(t[0],t[1]),i=Dk(s,r),o=$k(-t[0],-t[1]);return Dk(i,o)}function zk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-as(t[0],n),-as(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function Ok(e,t){return[as(e,t[0]),as(e,t[1])]}function _k(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let u=0;u<s;u++){let l=r*(u+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,l])}}}return n}var Pk=6;function soe(e,t,n){let a=Re(e,[0,1],[-1,2]),r=se(a,t),s=Re(e,[0,3],[-1,2]),i=fe(s,n),o=fe(r,n),u=fe(i,2),l=ye(o,u),d=se(o,u),p=W(l,n),c=W(d,n);return bl([p,c],1)}var Lk=class{constructor(t,n){this.model=t,this.anchorsData=_k(t.inputs[0].shape[1]),this.anchors=ka(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=V(()=>{let l=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(l),p;if(Array.isArray(d)){let f=d.sort((x,w)=>x.size-w.size),y=lt([f[0],f[2]],2),A=lt([f[1],f[3]],2);p=lt([A,y],1).squeeze(0)}else p=d.squeeze();let c=soe(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=Sn(h).squeeze().dataSync();return[p,c,m]}),s=await je.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let u=0;u<i.length;u++){let l=r[i[u]];if(l>this.config.face.detector.minConfidence){let d=Re(a,[i[u],0],[1,-1]),p=Fk(d);d.dispose();let c=this.anchorsData[i[u]],h=V(()=>Re(n,[i[u],Pk-1],[1,-1]).squeeze().reshape([Pk,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:l})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Wk(e){let t=await gt(vt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new Lk(t,e);return!t||!t.modelUrl?de("load model failed:",e.face.detector.modelPath):e.debug&&de("load model:",t.modelUrl),n}var er={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},X2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],ap=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],ji=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var ioe=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],ooe=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],loe=[33,133,362,263,1,78,308],Yoe=ioe.map(e=>ap[e]),Joe=ooe.map(e=>ap[e]),Qoe=loe.map(e=>ap[e]);var K2=er.leftEyeLower0,Z2=er.rightEyeLower0,ru={leftBounds:[K2[0],K2[K2.length-1]],rightBounds:[Z2[0],Z2[Z2.length-1]]},E0={count:468,mouth:13,symmetryLine:[13,er.midwayBetweenEyes[0]]},Bk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},su={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function C0(e,t,n,a){for(let r=0;r<X2.length;r++){let{key:s,indices:i}=X2[r],o=er[`${n}${s}`];if(!a||a.includes(s))for(let u=0;u<i.length;u++){let l=i[u];e[o[u]]=[t[l][0],t[l][1],(t[l][2]+e[o[u]][2])/2]}}}var Y2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=np({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?T0(a,[0,0]):N0,u=a!==0?i.map(p=>[...Ok(p,o),p[2]]):i,l=a!==0?zk(r):N0,d=[...nu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return u.map(p=>[Math.round(p[0]+as(d,l[0])),Math.round(p[1]+as(d,l[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[ru.leftBounds[0]][2],a=t[ru.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=S0(I0(G2([t[a],t[r]]),this.irisEnlarge)),o=np(i),u=je.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&Qn.flags.IS_BROWSER&&(u=je.flipLeftRight(u)),{box:i,boxSize:o,crop:u}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<su.numCoordinates;i++){let o=t[i*3],u=t[i*3+1],l=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],u/this.irisSize*a[1]+n.startPoint[1],l])}return{rawCoords:s,iris:s.slice(su.index)}}getAdjustedIrisCoords(t,n,a){let r=t[er[`${a}EyeUpper0`][su.upperCenter]][2],s=t[er[`${a}EyeLower0`][su.lowerCenter]][2],i=(r+s)/2;return n.map((o,u)=>{let l=i;return u===2?l=r:u===4&&(l=s),[o[0],o[1],l]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks.arraySync(),confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=Mk({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),u=I0(o),l=S0(u),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...l,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=V(()=>this.storedBoxes.map((i,o)=>{let u,l=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&Qn.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=E0.count?E0.symmetryLine:Bk.symmetryLine;l=q2(i.landmarks[x],i.landmarks[w]);let b=nu({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],N=je.rotateWithOffset(t,l,0,v);d=T0(-l,b),n.face.mesh.enabled?u=au({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255):u=au({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.boxSize,this.boxSize]).div(255)}else{d=N0;let x=t.clone();n.face.mesh.enabled?u=au({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshSize,this.meshSize]).div(255):u=au({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:u};let[,p,c]=this.meshDetector.execute(u),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=H(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:w,crop:b}=this.getEyeBox(f,u,ru.leftBounds[0],ru.leftBounds[1],!0),{box:v,boxSize:N,crop:I}=this.getEyeBox(f,u,ru.rightBounds[0],ru.rightBounds[1]),$=this.irisModel.predict(lt([b,I])).dataSync(),O=$.slice(0,su.numCoordinates*3),{rawCoords:z,iris:P}=this.getEyeCoords(O,x,w,!0),D=$.slice(su.numCoordinates*3),{rawCoords:U,iris:X}=this.getEyeCoords(D,v,N),G=this.getLeftToRightEyeDepthDifference(f);Math.abs(G)<30?(C0(f,z,"left",null),C0(f,U,"right",null)):G<1?C0(f,z,"left",["EyeUpper0","EyeLower0"]):C0(f,U,"right",["EyeUpper0","EyeLower0"]);let ee=this.getAdjustedIrisCoords(f,P,"left"),Y=this.getAdjustedIrisCoords(f,X,"right");f=f.concat(ee).concat(Y)}let y=this.transformRawCoords(f,i,l,d),A=i.confidence;if(i=I0(G2(y),1.5),i.confidence=A,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&Qn.flags.IS_BROWSER){let[x,w]=i.landmarks.length>=E0.count?E0.symmetryLine:Bk.symmetryLine;l=q2(i.landmarks[x],i.landmarks[w]);let b=nu({startPoint:i.startPoint,endPoint:i.endPoint}),v=[b[0]/t.shape[2],b[1]/t.shape[1]],N=je.rotateWithOffset(t.toFloat(),l,0,v);d=T0(-l,b),u=au({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255)}let g={mesh:y,box:i,faceConfidence:h,boxConfidence:i.confidence,image:u};return this.storedBoxes[o]={...S0(i),confidence:i.confidence,faceConfidence:h},g}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Ct=[null,null,null],J2;async function Q2(e,t){let n=await J2.predict(e,t),a=[],r=0;for(let s of n||[]){if(!s||s.isDisposedInternal)continue;let i=s.mesh.map(d=>[d[0]/e.shape[2],d[1]/e.shape[1],d[2]/J2.meshSize]),o={};if(s.mesh&&s.mesh.length>0)for(let d of Object.keys(er))o[d]=er[d].map(p=>s.mesh[p]);let u=s.box?[Math.trunc(Math.max(0,s.box.startPoint[0])),Math.trunc(Math.max(0,s.box.startPoint[1])),Math.trunc(Math.min(e.shape[2],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0])),Math.trunc(Math.min(e.shape[1],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1]))]:[0,0,0,0],l=s.box?[s.box.startPoint[0]/e.shape[2],s.box.startPoint[1]/e.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/e.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/e.shape[1]]:[0,0,0,0];a.push({id:r++,score:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxScore:Math.round(100*s.boxConfidence)/100,faceScore:Math.round(100*s.faceConfidence)/100,box:u,boxRaw:l,mesh:s.mesh,meshRaw:i,annotations:o,image:s.image,tensor:s.image}),s.coords&&s.coords.dispose()}return a}async function eg(e){return!Ct[0]&&e.face.enabled||!Ct[1]&&e.face.mesh.enabled||!Ct[2]&&e.face.iris.enabled?(Ct=await Promise.all([!Ct[0]&&e.face.enabled?Wk(e):null,!Ct[1]&&e.face.mesh.enabled?gt(vt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Ct[2]&&e.face.iris.enabled?gt(vt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Ct[1]||!Ct[1].modelUrl?de("load model failed:",e.face.mesh.modelPath):e.debug&&de("load model:",Ct[1].modelUrl)),e.face.iris.enabled&&(!Ct[2]||!Ct[2].modelUrl?de("load model failed:",e.face.iris.modelPath):e.debug&&de("load model:",Ct[2].modelUrl))):e.debug&&(Ct[0]&&de("cached model:",Ct[0].model.modelUrl),Ct[1]&&de("cached model:",Ct[1].modelUrl),Ct[2]&&de("cached model:",Ct[2].modelUrl)),J2=new Y2(Ct[0],Ct[1],Ct[2]),Ct}var Vk=ji,jk=ap;var sg={};xa(sg,{load:()=>rg,predict:()=>M0});var uoe=["angry","disgust","fear","happy","sad","surprise","neutral"],Da,R0=[],Uk=0,ng=Number.MAX_SAFE_INTEGER,ag=[.2989,.587,.114];async function rg(e){return Da?e.debug&&de("cached model:",Da.modelUrl):(Da=await gt(vt(e.modelBasePath,e.face.emotion.modelPath)),!Da||!Da.modelUrl?de("load model failed:",e.face.emotion.modelPath):e.debug&&de("load model:",Da.modelUrl)),Da}async function M0(e,t,n,a){return Da?ng<t.face.emotion.skipFrames&&t.skipFrame&&Uk===a&&R0[n]&&R0[n].length>0?(ng++,R0[n]):(ng=0,new Promise(async r=>{let s=je.resizeBilinear(e,[Da.inputs[0].shape[2],Da.inputs[0].shape[1]],!1),[i,o,u]=qt(s,3,3);s.dispose();let l=W(i,ag[0]),d=W(o,ag[1]),p=W(u,ag[2]);i.dispose(),o.dispose(),u.dispose();let c=Ec([l,d,p]);l.dispose(),d.dispose(),p.dispose();let h=V(()=>c.sub(.5).mul(2));c.dispose();let m=[];if(t.face.emotion.enabled){let f=await Da.predict(h),y=f.dataSync();Ie(f);for(let A=0;A<y.length;A++)y[A]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*y[A])/100),emotion:uoe[A]});m.sort((A,g)=>g.score-A.score)}h.dispose(),R0[n]=m,Uk=a,r(m)})):null}var dg={};xa(dg,{enhance:()=>ug,load:()=>og,match:()=>Gk,predict:()=>$0,similarity:()=>lg});var za,F0=[],Hk=0,ig=Number.MAX_SAFE_INTEGER;async function og(e){let t=vt(e.modelBasePath,e.face.description.modelPath);return za?e.debug&&de("cached model:",t):(za=await gt(t),za?e.debug&&de("load model:",t):de("load model failed:",e.face.description.modelPath)),za}function lg(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function Gk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=lg(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function ug(e){return V(()=>{let n=e.image||e.tensor||e;if(!(n instanceof We))return null;let a=[[.05,.15,.85,.85]];return za.inputs[0].shape?(n.shape.length===3?je.cropAndResize(dn(n,0),a,[0],[za.inputs[0].shape[2],za.inputs[0].shape[1]]):je.cropAndResize(n,a,[0],[za.inputs[0].shape[2],za.inputs[0].shape[1]])).mul(255):null})}async function $0(e,t,n,a){var r,s;return za?ig<t.face.description.skipFrames&&t.skipFrame&&Hk===a&&((r=F0[n])==null?void 0:r.age)&&((s=F0[n])==null?void 0:s.age)>0?(ig++,F0[n]):(ig=0,new Promise(async i=>{let o=ug(e),u,l={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(u=await za.predict(o)),Ie(o),u&&(V(()=>{let d=u.find(f=>f.shape[1]===1).dataSync(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(l.gender=d[0]<=.5?"female":"male",l.genderScore=Math.min(.99,p));let c=u.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],h=u.find(f=>f.shape[1]===100).dataSync();l.age=Math.round(h[c-1]>h[c+1]?10*c-100*h[c-1]:10*c+100*h[c+1])/10;let m=u.find(f=>f.shape[1]===1024);l.descriptor=[...m.dataSync()]}),u.forEach(d=>Ie(d))),F0[n]=l,Hk=a,i(l)})):null}var doe=(e,t)=>{let n=(c,h)=>Math.atan2(c[1]-h[1],c[0]-h[0]),a=[0,-.1],r=1,s=e[33][2]>e[263][2],i=s?e[473]:e[468],o=s?[(e[133][0]+e[33][0])/2,(e[133][1]+e[33][1])/2]:[(e[263][0]+e[362][0])/2,(e[263][1]+e[362][1])/2],u=s?[e[133][0]-e[33][0],e[23][1]-e[27][1]]:[e[263][0]-e[362][0],e[253][1]-e[257][1]],l=[(o[0]-i[0])/u[0]-a[0],r*(i[1]-o[1])/u[1]-a[1]],d=Math.sqrt(l[0]**2+l[1]**2);return d=Math.min(d,t[2]/2,t[3]/2),{bearing:(n([0,0],l)+Math.PI/2)%Math.PI,strength:d}},poe=(e,t)=>{let n=y=>{let A=Math.sqrt(y[0]*y[0]+y[1]*y[1]+y[2]*y[2]);return y[0]/=A,y[1]/=A,y[2]/=A,y},a=(y,A)=>{let g=y[0]-A[0],x=y[1]-A[1],w=y[2]-A[2];return[g,x,w]},r=(y,A)=>{let g=y[1]*A[2]-y[2]*A[1],x=y[2]*A[0]-y[0]*A[2],w=y[0]*A[1]-y[1]*A[0];return[g,x,w]},s=y=>{let[A,g,x,w,b,v,N,I,E]=y,$,O,z;return w<1?w>-1?(z=Math.asin(w),O=Math.atan2(-N,A),$=Math.atan2(-v,b)):(z=-Math.PI/2,O=-Math.atan2(I,E),$=0):(z=Math.PI/2,O=Math.atan2(I,E),$=0),{pitch:2*-$,yaw:2*-O,roll:2*-z}},i=y=>{let A=(x,w,b,v)=>Math.atan2(v-w,b-x);return{pitch:A(y[10][1],y[10][2],y[152][1],y[152][2]),yaw:A(y[33][0],y[33][2],y[263][0],y[263][2]),roll:A(y[33][0],y[33][1],y[263][0],y[263][1])}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let u=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(y=>[y[0]*t[0]/u,y[1]*t[1]/u,y[2]]),d=n(a(l[1],l[0])),p=n(a(l[3],l[2])),c=n(r(p,d));p=r(d,c);let h=[p[0],p[1],p[2],d[0],d[1],d[2],c[0],c[1],c[2]],m=s(h),f=o.length===478?doe(o,e.box):{bearing:0,strength:0};return{angle:m,matrix:h,gaze:f}},pg=async(e,t)=>{var d,p,c,h,m,f;let n,a,r,s,i,o,u=[];e.state="run:face",n=Je();let l=await Q2(t,e.config);if(e.performance.face=Math.trunc(Je()-n),!t.shape||t.shape.length!==4)return[];if(!l)return[];for(let y=0;y<l.length;y++){if(e.analyze("Get Face"),!l[y].image||l[y].image.isDisposedInternal){de("Face object is disposed:",l[y].image);continue}let A=poe(l[y],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?M0(l[y].image,e.config,y,l.length):{}:(e.state="run:emotion",n=Je(),s=e.config.face.emotion.enabled?await M0(l[y].image,e.config,y,l.length):{},e.performance.emotion=Math.trunc(Je()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?$0(l[y],e.config,y,l.length):[]:(e.state="run:description",n=Je(),o=e.config.face.description.enabled?await $0(l[y].image,e.config,y,l.length):[],e.performance.embedding=Math.trunc(Je()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=l[y])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((h=(c=l[y])==null?void 0:c.annotations)==null?void 0:h.rightEyeIris)&&(delete l[y].annotations.leftEyeIris,delete l[y].annotations.rightEyeIris);let g=((m=l[y].annotations)==null?void 0:m.leftEyeIris)&&((f=l[y].annotations)==null?void 0:f.rightEyeIris)?Math.max(Math.abs(l[y].annotations.leftEyeIris[3][0]-l[y].annotations.leftEyeIris[1][0]),Math.abs(l[y].annotations.rightEyeIris[4][1]-l[y].annotations.rightEyeIris[2][1]))/t.shape[2]:0;u.push({...l[y],id:y,age:o.age,gender:o.gender,genderScore:o.genderScore,embedding:o.descriptor,emotion:s,iris:g!==0?Math.trunc(500/g/11.7)/100:0,rotation:A,tensor:e.config.face.detector.return?ha(l[y].image):null}),Ie(l[y].image),l[y].image&&delete l[y].image,e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),u};var xg={};xa(xg,{load:()=>gg,predict:()=>Ag});var rp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],qk=rp.length,sp=rp.reduce((e,t,n)=>(e[t]=n,e),{}),coe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],hoe=coe.map(([e,t])=>[sp[e],sp[t]]),Xk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function Kk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Zk(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(l,d)=>({id:d,score:l.score,boxRaw:[l.box[0]/r,l.box[1]/a,l.box[2]/r,l.box[3]/a],box:[Math.trunc(l.box[0]*i),Math.trunc(l.box[1]*s),Math.trunc(l.box[2]*i),Math.trunc(l.box[3]*s)],keypoints:l.keypoints.map(({score:p,part:c,position:h})=>({score:p,part:c,position:[Math.trunc(h.x*i),Math.trunc(h.y*s)],positionRaw:[h.x/a,h.y/a]}))});return e.map((l,d)=>o(l,d))}var cg=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function hg(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+qk)}}function fg(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=hg(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function mg(e,t,n){return e<t?t:e>n?n:e}function Yk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function yg(e,t){return{x:e.x+t.x,y:e.y+t.y}}var D0=1,iu=16,foe=50**2;function Jk(e,t,n,a,r,s,i=2){let o=A=>({y:s.get(A.y,A.x,e),x:s.get(A.y,A.x,s.shape[2]/2+e)}),u=(A,g,x)=>({y:mg(Math.round(A.y/iu),0,g-1),x:mg(Math.round(A.x/iu),0,x-1)}),[l,d]=a.shape,p=u(t.position,l,d),c=o(p),m=yg(t.position,c);for(let A=0;A<i;A++){let g=u(m,l,d),x=hg(g.y,g.x,n,r);m=yg({x:g.x*iu,y:g.y*iu},{x:x.x,y:x.y})}let f=u(m,l,d),y=a.get(f.y,f.x,n);return{position:m,part:rp[n],score:y}}function moe(e,t,n,a,r){let s=Xk.map(([c,h])=>[sp[c],sp[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),u=t.shape[2],l=i.length,d=new Array(u),p=fg(e.part,iu,n);d[e.part.id]={score:e.score,part:rp[e.part.id],position:p};for(let c=l-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=Jk(c,d[h],m,t,n,r))}for(let c=0;c<l;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=Jk(c,d[h],m,t,n,a))}return d}function yoe(e,t,n,a,r){let[s,i]=r.shape,o=!0,u=Math.max(n-D0,0),l=Math.min(n+D0+1,s);for(let d=u;d<l;++d){let p=Math.max(a-D0,0),c=Math.min(a+D0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function Aoe(e,t){let[n,a,r]=t.shape,s=new cg(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let u=0;u<r;++u){let l=t.get(i,o,u);l<e||yoe(u,l,i,o,t)&&s.enqueue({score:l,part:{heatmapY:i,heatmapX:o,id:u}})}return s}function Qk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?Yk(n,t,s.y,s.x)<=foe:!1})}function goe(e,t){return t.reduce((a,{position:r,score:s},i)=>(Qk(e,r,i)||(a+=s),a),0)/t.length}function e9(e,t,n,a,r,s){let i=[],o=Aoe(s,t);for(;i.length<r&&!o.empty();){let u=o.dequeue(),l=fg(u.part,iu,e);if(Qk(i,l,u.part.id))continue;let d=moe(u,t,e,n,a);d=d.filter(h=>h.score>s);let p=goe(i,d),c=Kk(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var Gn,xoe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function Ag(e,t){let n=V(()=>{if(!Gn.inputs[0].shape)return[];let o=e.resizeBilinear([Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),l=Gn.execute(o,xoe).map(d=>d.squeeze([0]));return l[1]=l[1].sigmoid(),l}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await e9(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Gn.inputs[0].shape?Zk(r,[e.shape[1],e.shape[2]],[Gn.inputs[0].shape[2],Gn.inputs[0].shape[1]]):[]}async function gg(e){return Gn?e.debug&&de("cached model:",Gn.modelUrl):(Gn=await gt(vt(e.modelBasePath,e.body.modelPath)),!Gn||!Gn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Gn.modelUrl)),Gn}var Ng={};xa(Ng,{load:()=>Sg,predict:()=>Ig});function z0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function ip(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function t9(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return je.cropAndResize(t,s,[0],n)}function n9(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function O0(e,t=1.5){let n=ip(e),a=z0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function _0(e){let t=ip(e),n=z0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var a9=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var bg=class{constructor(t){var n;this.model=t,this.anchors=a9.map(a=>[a.x,a.y]),this.anchorsTensor=ka(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Mt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Mt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return V(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=se(fe(n,this.inputSizeTensor),this.anchorsTensor),s=fe(a,this.doubleInputSizeTensor),i=W(ye(r,s),this.inputSizeTensor),o=W(se(r,s),this.inputSizeTensor);return bl([i,o],1)})}normalizeLandmarks(t,n){return V(()=>{let a=se(fe(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return W(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=V(()=>Sn(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),u=this.normalizeBoxes(o);o.dispose();let l=await je.nonMaxSuppressionAsync(u,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=l.arraySync();s.dispose(),l.dispose();let p=[];for(let c of d)if(i[c]>=n.hand.minConfidence){let h=Re(u,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=V(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),u.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=V(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let u of i){let l=u.box.dataSync(),d=l.slice(0,2),p=l.slice(2,4),c=u.palmLandmarks.arraySync();u.box.dispose(),u.palmLandmarks.dispose(),o.push(n9({startPoint:d,endPoint:p,palmLandmarks:c,confidence:u.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function boe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function r9(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return boe(n)}var s9=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function rs(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function voe(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function i9(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(rs(e[r],voe(t,s)))}return n}function vg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=s9(t[0],t[1]),i=i9(s,r),o=s9(-t[0],-t[1]);return i9(i,o)}function o9(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-rs(t[0],n),-rs(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function wg(e,t){return[rs(e,t[0]),rs(e,t[1])]}var woe=5,l9=1.65,u9=[0,5,9,13,17,1,2],koe=0,Ioe=2,kg=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>wg([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return O0(_0(r),woe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=O0(_0(n),l9);a.palmLandmarks=[];for(let r=0;r<u9.length;r++)a.palmLandmarks.push(t[u9[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=z0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),u=vg(a,[0,0]),l=o.map(h=>[...wg(h,u),h[2]]),d=o9(r),p=[...ip(n),1],c=[rs(p,d[0]),rs(p,d[1])];return l.map(h=>[Math.trunc(h[0]+c[0]),Math.trunc(h[1]+c[1]),Math.trunc(h[2])])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let u=n.hand.rotation?r9(o.palmLandmarks[koe],o.palmLandmarks[Ioe]):0,l=ip(o),d=[l[0]/t.shape[2],l[1]/t.shape[1]],p=n.hand.rotation&&Qn.flags.IS_BROWSER?je.rotateWithOffset(t,u,0,d):t.clone(),c=vg(-u,l),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=t9(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[y,A]=await this.handPoseModel.predict(f);f.dispose();let g=y.dataSync()[0];if(y.dispose(),g>=n.hand.minConfidence){let x=H(A,[-1,3]),w=x.arraySync();A.dispose(),x.dispose();let b=this.transformRawCoords(w,h,u,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...v,confidence:g};let N={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(N)}else this.storedBoxes[i]=null;A.dispose()}else{let u=O0(_0(o),l9),l={confidence:o.confidence,box:{topLeft:u.startPoint,bottomRight:u.endPoint}};s.push(l)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var d9={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ss,is,p9;async function Ig(e,t){let n=await p9.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let l of Object.keys(d9))s[l]=d9[l].map(d=>n[r].landmarks[d]);let i=n[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],u=[0,0,0,0];if(i&&i.length>0){for(let l of i)l[0]<o[0]&&(o[0]=l[0]),l[1]<o[1]&&(o[1]=l[1]),l[0]>o[2]&&(o[2]=l[0]),l[1]>o[3]&&(o[3]=l[1]);o[2]-=o[0],o[3]-=o[1],u=[o[0]/e.shape[2],o[1]/e.shape[1],o[2]/e.shape[2],o[3]/e.shape[1]]}else o=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2],n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1],n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],u=[n[r].box.topLeft[0]/e.shape[2],n[r].box.topLeft[1]/e.shape[1],(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/e.shape[2],(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/e.shape[1]];a.push({id:r,score:Math.round(100*n[r].confidence)/100,box:o,boxRaw:u,keypoints:i,annotations:s})}return a}async function Sg(e){!ss||!is?([ss,is]=await Promise.all([e.hand.enabled?gt(vt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?gt(vt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ss||!ss.modelUrl?de("load model failed:",e.hand.detector.modelPath):e.debug&&de("load model:",ss.modelUrl),!is||!is.modelUrl?de("load model failed:",e.hand.skeleton.modelPath):e.debug&&de("load model:",is.modelUrl))):(e.debug&&de("cached model:",ss.modelUrl),e.debug&&de("cached model:",is.modelUrl));let t=new bg(ss);return p9=new kg(t,is),[ss,is]}var Eg={};xa(Eg,{load:()=>P0,predict:()=>Tg});var c9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],h9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var Fn;async function P0(e){return Fn?e.debug&&de("cached model:",Fn.modelUrl):(Fn=await gt(vt(e.modelBasePath,e.body.modelPath)),Fn.width=parseInt(Fn.signature.inputs["input_1:0"].tensorShape.dim[2].size),Fn.height=parseInt(Fn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!Fn||!Fn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Fn.modelUrl)),Fn}async function Tg(e,t){var f;if(!Fn)return[];if(!t.body.enabled)return[];let n={width:e.shape[2],height:e.shape[1]},a=je.resizeBilinear(e,[Fn.width,Fn.height],!1),r=fe(a,[255]);a.dispose();let s=await Fn.predict(r),i=((f=s.find(y=>y.size===195||y.size===155))==null?void 0:f.dataSync())||[];s.forEach(y=>y.dispose()),r.dispose();let o=[],u=(i==null?void 0:i.length)===195?c9:h9,l=5;for(let y=0;y<i.length/l;y++)o.push({id:y,part:u[y],position:[Math.trunc(n.width*i[l*y+0]/255),Math.trunc(n.height*i[l*y+1]/255),Math.trunc(i[l*y+2])+0],positionRaw:[i[l*y+0]/255,i[l*y+1]/255,i[l*y+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[l*y+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[l*y+4]))))/100});let d=o.map(y=>y.position[0]),p=o.map(y=>y.position[1]),c=[Math.min(...d),Math.min(...p),Math.max(...d)-Math.min(...d),Math.max(...p)-Math.min(...d)],h=[0,0,0,0],m=o.reduce((y,A)=>A.score>y?A.score:y,0);return[{id:0,score:m,box:c,boxRaw:h,keypoints:o}]}var $n,tr=[],Cg=[0,0,0,0],Rg=[0,0,0,0],L0=0,Mg=Number.MAX_SAFE_INTEGER,Soe=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function f9(e){return $n?e.debug&&de("cached model:",$n.modelUrl):($n=await gt(vt(e.modelBasePath,e.body.modelPath)),!$n||!$n.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",$n.modelUrl)),$n}function Noe(e,t){let[n,a]=e.shape;return V(()=>{let r=(o,u)=>ye(o,W(fe(o,we(u,"int32")),we(u,"int32"))),s=H(e,[a*n]),i=Tn(s,0).dataSync()[0];if(i>t){let o=yi(s,0),u=r(o,n).dataSync()[0],l=fe(o,we(n,"int32")).dataSync()[0];return[u,l,i]}return[0,0,i]})}async function Fg(e,t){return Mg<t.body.skipFrames&&t.skipFrame&&Object.keys(tr).length>0?(Mg++,[{id:0,score:L0,box:Cg,boxRaw:Rg,keypoints:tr}]):(Mg=0,new Promise(async n=>{let a=V(()=>{if(!$n.inputs[0].shape)return null;let l=je.resizeBilinear(e,[$n.inputs[0].shape[2],$n.inputs[0].shape[1]],!1);return W(l,2).sub(1)}),r;if(t.body.enabled&&(r=await $n.predict(a)),a.dispose(),r){tr.length=0;let l=r.squeeze();Ie(r);let d=l.unstack(2);Ie(l);for(let p=0;p<d.length;p++){let[c,h,m]=Noe(d[p],t.body.minConfidence);L0>t.body.minConfidence&&tr.push({score:Math.round(100*m)/100,part:Soe[p],positionRaw:[c/$n.inputs[0].shape[2],h/$n.inputs[0].shape[1]],position:[Math.round(e.shape[2]*c/$n.inputs[0].shape[2]),Math.round(e.shape[1]*h/$n.inputs[0].shape[1])]})}d.forEach(p=>Ie(p))}L0=tr.reduce((l,d)=>d.score>l?d.score:l,0);let s=tr.map(l=>l.position[0]),i=tr.map(l=>l.position[1]);Cg=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=tr.map(l=>l.positionRaw[0]),u=tr.map(l=>l.positionRaw[1]);Rg=[Math.min(...o),Math.min(...u),Math.max(...o)-Math.min(...o),Math.max(...u)-Math.min(...u)],n([{id:0,score:L0,box:Cg,boxRaw:Rg,keypoints:tr}])}))}var Oa,nr=[],$g=[0,0,0,0],Dg=[0,0,0,0],ou=0,zg=Number.MAX_SAFE_INTEGER,Toe=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function Og(e){return Oa?e.debug&&de("cached model:",Oa.modelUrl):(Oa=await gt(vt(e.modelBasePath,e.body.modelPath)),!Oa||!Oa.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Oa.modelUrl)),Oa}async function _g(e,t){return zg<t.body.skipFrames&&t.skipFrame&&Object.keys(nr).length>0?(zg++,[{id:0,score:ou,box:$g,boxRaw:Dg,keypoints:nr}]):(zg=0,new Promise(async n=>{let a=V(()=>{if(!Oa.inputs[0].shape)return null;let l=je.resizeBilinear(e,[Oa.inputs[0].shape[2],Oa.inputs[0].shape[1]],!1);return me(l,"int32")}),r;if(t.body.enabled&&(r=await Oa.predict(a)),a.dispose(),r){nr.length=0;let l=r.arraySync();Ie(r);let d=l[0][0];for(let p=0;p<d.length;p++)ou=d[p][2],ou>t.body.minConfidence&&nr.push({score:Math.round(100*ou)/100,part:Toe[p],positionRaw:[d[p][1],d[p][0]],position:[Math.round(e.shape[2]*d[p][1]),Math.round(e.shape[1]*d[p][0])]})}ou=nr.reduce((l,d)=>d.score>l?d.score:l,0);let s=nr.map(l=>l.position[0]),i=nr.map(l=>l.position[1]);$g=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=nr.map(l=>l.positionRaw[0]),u=nr.map(l=>l.positionRaw[1]);Dg=[Math.min(...o),Math.min(...u),Math.max(...o)-Math.min(...o),Math.max(...u)-Math.min(...u)],n([{id:0,score:ou,box:$g,boxRaw:Dg,keypoints:nr}])}))}var Vg={};xa(Vg,{load:()=>Wg,predict:()=>Bg});var lu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var qn,Pg=[],Lg=Number.MAX_SAFE_INTEGER,W0=2.5;async function Wg(e){if(qn)e.debug&&de("cached model:",qn.modelUrl);else{qn=await gt(vt(e.modelBasePath,e.object.modelPath));let t=Object.values(qn.modelSignature.inputs);if(qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!qn||!qn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",qn.modelUrl)}return qn}async function Eoe(e,t,n,a){let r=0,s=[];for(let l of[1,2,4])V(()=>{var y,A;let d=l*13,p=(y=e.find(g=>g.shape[1]===d**2&&g.shape[2]===lu.length))==null?void 0:y.squeeze(),c=(A=e.find(g=>g.shape[1]===d**2&&g.shape[2]<lu.length))==null?void 0:A.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let w=f[g][x];if(w>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%d))/d,v=(.5+Math.trunc(g/d))/d,N=m[g].map(U=>U*(d/l/t)),[I,E]=[b-W0/l*N[0],v-W0/l*N[1]],[$,O]=[b+W0/l*N[2]-I,v+W0/l*N[3]-E],z=[I,E,$,O];z=z.map(U=>Math.max(0,Math.min(U,1)));let P=[z[0]*n[0],z[1]*n[1],z[2]*n[0],z[3]*n[1]],D={id:r++,score:Math.round(100*w)/100,class:x+1,label:lu[x].label,box:P.map(U=>Math.trunc(U)),boxRaw:z};s.push(D)}}});e.forEach(l=>Ie(l));let i=s.map(l=>[l.boxRaw[1],l.boxRaw[0],l.boxRaw[3],l.boxRaw[2]]),o=s.map(l=>l.score),u=[];if(i&&i.length>0){let l=await je.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);u=l.dataSync(),Ie(l)}return s=s.filter((l,d)=>u.includes(d)).sort((l,d)=>d.score-l.score),s}async function Bg(e,t){return Lg<t.object.skipFrames&&t.skipFrame&&Pg.length>0?(Lg++,Pg):(Lg=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=je.resizeBilinear(e,[qn.inputSize,qn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await qn.predict(i)),i.dispose();let u=await Eoe(o,qn.inputSize,a,t);Pg=u,n(u)}))}var qg={};xa(qg,{load:()=>Hg,predict:()=>Gg});var Xn,jg=[],Ug=Number.MAX_SAFE_INTEGER;async function Hg(e){if(Xn)e.debug&&de("cached model:",Xn.modelUrl);else{Xn=await gt(vt(e.modelBasePath,e.object.modelPath));let t=Object.values(Xn.modelSignature.inputs);if(Xn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Xn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Xn||!Xn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",Xn.modelUrl)}return Xn}async function Coe(e,t,n,a){if(!e)return[];let r=[],s=e.arraySync(),i=ha(e);e.dispose();let o=qt(i,6,1);i.dispose();let l=pn([o[1],o[0],o[3],o[2]],1).squeeze(),d=o[4].squeeze(),p=o[5].squeeze();o.forEach(f=>f.dispose());let c=await je.nonMaxSuppressionAsync(l,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l.dispose(),d.dispose(),p.dispose();let h=c.dataSync();c.dispose();let m=0;for(let f of h){let y=Math.trunc(100*s[0][f][4])/100,A=s[0][f][5],g=lu[A].label,x=[s[0][f][0]/t,s[0][f][1]/t,s[0][f][2]/t,s[0][f][3]/t],w=[Math.trunc(x[0]*n[0]),Math.trunc(x[1]*n[1]),Math.trunc(x[2]*n[0]),Math.trunc(x[3]*n[1])];r.push({id:m++,score:y,class:A,label:g,box:w,boxRaw:x})}return r}async function Gg(e,t){return Ug<t.object.skipFrames&&t.skipFrame&&jg.length>0?(Ug++,jg):(Ug=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=je.resizeBilinear(e,[Xn.inputSize,Xn.inputSize]),s=t.object.enabled?Xn.execute(r,["tower_0/detections"]):null;r.dispose();let i=await Coe(s,Xn.inputSize,a,t);jg=i,n(i)}))}var m9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(u=>u.part==="leftWrist"),r=e[n].keypoints.find(u=>u.part==="rightWrist"),s=e[n].keypoints.find(u=>u.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(u=>u.part==="leftShoulder"),o=e[n].keypoints.find(u=>u.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},y9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},A9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],u=Math.abs(i*o),l=!1;Math.abs(s-u)/Math.max(s,u)<.25&&(l=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(c>.06||p>.06)&&(l=!1),c>.06&&t.push({iris:n,gesture:"looking right"}),p>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||h<.01||m>.022||h>.022)&&(l=!1),(m<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),l&&t.push({iris:n,gesture:"looking center"})}return t},g9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function Roe(e,t,n){let a=function(o,u,l){let d=new RegExp("\\b"+u+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(l[c]=0,p))},r=function(o,u){let l=e.createShader(u);if(e.shaderSource(l,o),e.compileShader(l),!e.getShaderParameter(l,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(l));return l};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function x9(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,u=-1,l=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:v})},this.reset=function(){i=[]};let y=function(b,v){if(!(b===o&&v===u)){if(c.width=b,o=b,c.height=v,u=v,!l){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);l=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,l),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,u),s=[null,null]}},A=function(b,v){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let I=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,I);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},g=function(b){return s[b]=s[b]||A(o,u),s[b]},x=function(b=null){var E,$;let v=null,N=null,I=!1;t===0?v=n:v=(E=g(r))==null?void 0:E.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,I=t%2==0):(r=(r+1)%2,N=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(d.uniform.flipY,I?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(y(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let N=i[v];N.func.apply(this,N.args||[])}return c};let w=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new Roe(f,v.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,I=4*N;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,I,0*N),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,I,2*N),h[b]=d,d};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let N=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,I=w(N);f.uniform1fv(I.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,N=(v-1)*-.5;p.colorMatrix([v,N,N,0,0,N,v,N,0,0,N,N,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,N=-128*(v-1);p.colorMatrix([v,0,0,0,N,0,v,0,0,N,0,0,v,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),N=Math.sin(b),I=.213,E=.715,$=.072;p.colorMatrix([I+v*(1-I)+N*-I,E+v*-E+N*-E,$+v*-$+N*(1-$),0,0,I+v*-I+N*.143,E+v*(1-E)+N*.14,$+v*-$+N*-.283,0,0,I+v*-I+N*-(1-I),E+v*-E+N*E,$+v*(1-$)+N*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),N=1/o,I=1/u,E=w(p.convolution.SHADER);f.uniform1fv(E.uniform.m,v),f.uniform2f(E.uniform.px,N,I),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,N=b/7/u,I=w(p.blur.SHADER);f.uniform2f(I.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(I.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let v=b/o,N=b/u,I=w(p.pixelate.SHADER);f.uniform2f(I.uniform.size,v,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var B0=2048,Ce,xt,Ot;function Xg(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof We)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof We)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ba(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!s)return{tensor:null,canvas:Ce};let i=r,o=s;if(i>B0&&(i=B0,o=i*s/r),o>B0&&(o=B0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let u=Ce.getContext("2d");if(e instanceof ImageData?u.putImageData(e,0,0):t.filter.flip&&typeof u.translate!="undefined"?(u.translate(r,0),u.scale(-1,1),u.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),u.setTransform(1,0,0,1,0,0)):u.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Ot||!xt||Ce.width!==xt.width||(Ce==null?void 0:Ce.height)!==(xt==null?void 0:xt.height))&&(xt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(xt==null?void 0:xt.width)!==(Ce==null?void 0:Ce.width)&&(xt.width=Ce==null?void 0:Ce.width),(xt==null?void 0:xt.height)!==(Ce==null?void 0:Ce.height)&&(xt.height=Ce==null?void 0:Ce.height),Ot=Qn.flags.IS_BROWSER?new x9({canvas:xt}):null),!Ot)return{tensor:null,canvas:Ce};Ot.reset(),Ot.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ot.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ot.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ot.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ot.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ot.addFilter("hue",t.filter.hue),t.filter.negative&&Ot.addFilter("negative"),t.filter.sepia&&Ot.addFilter("sepia"),t.filter.vintage&&Ot.addFilter("brownie"),t.filter.sepia&&Ot.addFilter("sepia"),t.filter.kodachrome&&Ot.addFilter("kodachrome"),t.filter.technicolor&&Ot.addFilter("technicolor"),t.filter.polaroid&&Ot.addFilter("polaroid"),t.filter.pixelate!==0&&Ot.addFilter("pixelate",t.filter.pixelate),Ot.apply(Ce)}else xt=Ce,Ot&&(Ot=null);let l;if(xt.data){let p=[xt.height,xt.width,3];l=Ic(xt.data,p,"int32")}else if(xt instanceof ImageData)l=fi.fromPixels(xt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(xt,0,0),l=fi.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(xt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);l=fi.fromPixels(h)}let d=l.toFloat();n=d.expandDims(0),l.dispose(),d.dispose()}let a=t.filter.return?xt:null;return{tensor:n,canvas:a}}var Yg={};xa(Yg,{all:()=>$oe,body:()=>w9,canvas:()=>Foe,face:()=>v9,gesture:()=>b9,hand:()=>k9,object:()=>I9,options:()=>os,person:()=>Moe});var os={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},V0=e=>Math.round(e*180/Math.PI);function Kg(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function op(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Zg(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function lp(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Zg(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function b9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],u=[];if([o,u]=Object.entries(t[i]),u.length>1&&u[1].length>0){let l=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${l}: ${u[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function v9(e,t,n){var s,i,o,u;let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let l of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&op(r,l.box[0],l.box[1],l.box[2],l.box[3],a);let d=[];if(d.push(`face: ${Math.trunc(100*l.score)}%`),l.genderScore&&d.push(`${l.gender||""} ${Math.trunc(100*l.genderScore)}%`),l.age&&d.push(`age: ${l.age||""}`),l.iris&&d.push(`distance: ${l.iris}`),l.emotion&&l.emotion.length>0){let p=l.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}l.rotation&&l.rotation.angle&&l.rotation.gaze&&(l.rotation.angle.roll&&d.push(`roll: ${V0(l.rotation.angle.roll)}\xB0 yaw:${V0(l.rotation.angle.yaw)}\xB0 pitch:${V0(l.rotation.angle.pitch)}\xB0`),l.rotation.gaze.bearing&&d.push(`gaze: ${V0(l.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=a.color;for(let p=d.length-1;p>=0;p--){let c=Math.max(l.box[0],0),h=p*a.lineHeight+l.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d[p],c+5,h+16)),r.fillStyle=a.labelColor,r.fillText(d[p],c+4,h+15)}if(r.lineWidth=1,l.mesh&&l.mesh.length>0){if(a.drawPoints)for(let p of l.mesh)Kg(r,p[0],p[1],p[2],a);if(a.drawPolygons){r.lineWidth=1;for(let p=0;p<ji.length/3;p++){let c=[ji[p*3+0],ji[p*3+1],ji[p*3+2]].map(h=>l.mesh[h]);Zg(r,c,a)}if(l.annotations&&l.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(l.annotations.leftEyeIris[3][0]-l.annotations.leftEyeIris[1][0])/2,c=Math.abs(l.annotations.leftEyeIris[4][1]-l.annotations.leftEyeIris[2][1])/2;r.ellipse(l.annotations.leftEyeIris[0][0],l.annotations.leftEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(l.annotations&&l.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(l.annotations.rightEyeIris[3][0]-l.annotations.rightEyeIris[1][0])/2,c=Math.abs(l.annotations.rightEyeIris[4][1]-l.annotations.rightEyeIris[2][1])/2;r.ellipse(l.annotations.rightEyeIris[0][0],l.annotations.rightEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(a.drawGaze&&((i=(s=l.rotation)==null?void 0:s.gaze)==null?void 0:i.strength)&&((u=(o=l.rotation)==null?void 0:o.gaze)==null?void 0:u.bearing)){r.strokeStyle="pink",r.beginPath();let p=[l.annotations.leftEyeIris[0][0]+Math.sin(l.rotation.gaze.bearing)*l.rotation.gaze.strength*l.box[3],l.annotations.leftEyeIris[0][1]+Math.cos(l.rotation.gaze.bearing)*l.rotation.gaze.strength*l.box[2]];r.moveTo(l.annotations.leftEyeIris[0][0],l.annotations.leftEyeIris[0][1]),r.lineTo(p[0],p[1]);let c=[l.annotations.rightEyeIris[0][0]+Math.sin(l.rotation.gaze.bearing)*l.rotation.gaze.strength*l.box[3],l.annotations.rightEyeIris[0][1]+Math.cos(l.rotation.gaze.bearing)*l.rotation.gaze.strength*l.box[2]];r.moveTo(l.annotations.rightEyeIris[0][0],l.annotations.rightEyeIris[0][1]),r.lineTo(c[0],c[1]),r.stroke()}}}}}async function w9(e,t,n){var s;let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(op(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:a.color,Kg(r,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4);if(a.drawPolygons&&t[i].keypoints){let o,u=[];u.length=0,o=t[i].keypoints.find(l=>l.part==="leftShoulder"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightShoulder"),o&&u.push([o.position[0],o.position[1]]),lp(r,u,a),u.length=0,o=t[i].keypoints.find(l=>l.part==="rightShoulder"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightHip"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftHip"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftShoulder"),o&&u.push([o.position[0],o.position[1]]),u.length===4&&Zg(r,u,a),u.length=0,o=t[i].keypoints.find(l=>l.part==="leftHip"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftKnee"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftAnkle"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftHeel"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftFoot"),o&&u.push([o.position[0],o.position[1]]),lp(r,u,a),u.length=0,o=t[i].keypoints.find(l=>l.part==="rightHip"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightKnee"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightAnkle"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightHeel"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightFoot"),o&&u.push([o.position[0],o.position[1]]),lp(r,u,a),u.length=0,o=t[i].keypoints.find(l=>l.part==="leftShoulder"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftElbow"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftWrist"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="leftPalm"),o&&u.push([o.position[0],o.position[1]]),lp(r,u,a),u.length=0,o=t[i].keypoints.find(l=>l.part==="rightShoulder"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightElbow"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightWrist"),o&&u.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(l=>l.part==="rightPalm"),o&&u.push([o.position[0],o.position[1]]),lp(r,u,a)}}}}async function k9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes&&(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText("hand",s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])),r.stroke()),a.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,Kg(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,u)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(u,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let u=0;u<o.length;u++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[u][2]}, ${127.5-2*o[u][2]}, 255, 0.5)`:a.color,r.moveTo(o[u>0?u-1:0][0],o[u>0?u-1:0][1]),r.lineTo(o[u][0],o[u][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function I9(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function Moe(e,t,n){let a=zn(os,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s=0;s<t.length;s++)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,op(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels){let i=`person #${s}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2])}r.stroke()}}}async function Foe(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function $oe(e,t,n){let a=Je(),r=zn(os,n);!t||!e||e instanceof HTMLCanvasElement&&(v9(e,t.face,r),w9(e,t.body,r),k9(e,t.hand,r),I9(e,t.object,r),b9(e,t.gesture,r),t.performance.draw=Math.trunc(Je()-a))}function S9(e,t,n,a,r){var o,u,l,d,p,c,h,m,f,y,A,g,x,w,b,v;let s=0,i=[];for(let N of e){let I={id:s++,face:N,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let D of t)N.box[0]>D.box[0]&&N.box[0]<D.box[0]+D.box[2]&&N.box[1]+N.box[3]>D.box[1]&&N.box[1]+N.box[3]<D.box[1]+D.box[3]&&(I.body=D);if(I.body)for(let D of n)D.box[0]+D.box[2]>I.body.box[0]&&D.box[0]+D.box[2]<I.body.box[0]+I.body.box[2]&&D.box[1]+D.box[3]>I.body.box[1]&&D.box[1]+D.box[3]<I.body.box[1]+I.body.box[3]&&I.hands&&(I.hands.left=D),D.box[0]<I.body.box[0]+I.body.box[2]&&D.box[0]>I.body.box[0]&&D.box[1]+D.box[3]>I.body.box[1]&&D.box[1]+D.box[3]<I.body.box[1]+I.body.box[3]&&I.hands&&(I.hands.right=D);for(let D of a)D.face!==void 0&&D.face===N.id?(o=I.gestures)==null||o.push(D):D.iris!==void 0&&D.iris===N.id?(u=I.gestures)==null||u.push(D):D.body!==void 0&&D.body===((l=I.body)==null?void 0:l.id)?(d=I.gestures)==null||d.push(D):D.hand!==void 0&&D.hand===((c=(p=I.hands)==null?void 0:p.left)==null?void 0:c.id)?(h=I.gestures)==null||h.push(D):D.hand!==void 0&&D.hand===((f=(m=I.hands)==null?void 0:m.right)==null?void 0:f.id)&&((y=I.gestures)==null||y.push(D));let E=[],$=[],O=D=>{D&&D.length===4&&(E.push(D[0],D[0]+D[2]),$.push(D[1],D[1]+D[3]))};O((A=I.face)==null?void 0:A.box),O((g=I.body)==null?void 0:g.box),O((w=(x=I.hands)==null?void 0:x.left)==null?void 0:w.box),O((v=(b=I.hands)==null?void 0:b.right)==null?void 0:v.box);let z=Math.min(...E),P=Math.min(...$);I.box=[z,P,Math.max(...E)-z,Math.max(...$)-P],r&&r.length===4&&(I.boxRaw=[I.box[0]/r[2],I.box[1]/r[1],I.box[2]/r[2],I.box[3]/r[1]]),i.push(I)}return i}var $e={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function N9(e){var a,r,s,i,o,u,l,d,p,c,h,m,f,y,A,g,x,w,b,v,N;let t=1e3/(Date.now()-e.timestamp)/4;if(!$e.body||e.body.length!==$e.body.length)$e.body=JSON.parse(JSON.stringify(e.body));else for(let I=0;I<e.body.length;I++){let E=e.body[I].box.map((z,P)=>((t-1)*$e.body[I].box[P]+z)/t),$=e.body[I].boxRaw.map((z,P)=>((t-1)*$e.body[I].boxRaw[P]+z)/t),O=e.body[I].keypoints.map((z,P)=>({score:z.score,part:z.part,position:[$e.body[I].keypoints[P]?((t-1)*$e.body[I].keypoints[P].position[0]+z.position[0])/t:z.position[0],$e.body[I].keypoints[P]?((t-1)*$e.body[I].keypoints[P].position[1]+z.position[1])/t:z.position[1]],positionRaw:[$e.body[I].keypoints[P]?((t-1)*$e.body[I].keypoints[P].positionRaw[0]+z.positionRaw[0])/t:z.position[0],$e.body[I].keypoints[P]?((t-1)*$e.body[I].keypoints[P].positionRaw[1]+z.positionRaw[1])/t:z.position[1]]}));$e.body[I]={...e.body[I],box:E,boxRaw:$,keypoints:O}}if(!$e.hand||e.hand.length!==$e.hand.length)$e.hand=JSON.parse(JSON.stringify(e.hand));else for(let I=0;I<e.hand.length;I++){let E=e.hand[I].box.map((D,U)=>((t-1)*$e.hand[I].box[U]+D)/t),$=e.hand[I].boxRaw.map((D,U)=>((t-1)*$e.hand[I].boxRaw[U]+D)/t),O=e.hand[I].keypoints.map((D,U)=>D.map((X,G)=>((t-1)*$e.hand[I].keypoints[U][G]+X)/t)),z=Object.keys(e.hand[I].annotations),P={};for(let D of z)P[D]=e.hand[I].annotations[D].map((U,X)=>U.map((G,ee)=>((t-1)*$e.hand[I].annotations[D][X][ee]+G)/t));$e.hand[I]={...e.hand[I],box:E,boxRaw:$,keypoints:O,annotations:P}}if(!$e.face||e.face.length!==$e.face.length)$e.face=JSON.parse(JSON.stringify(e.face));else for(let I=0;I<e.face.length;I++){let E=e.face[I].box.map((z,P)=>((t-1)*$e.face[I].box[P]+z)/t),$=e.face[I].boxRaw.map((z,P)=>((t-1)*$e.face[I].boxRaw[P]+z)/t),O={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};O.matrix=(a=e.face[I].rotation)==null?void 0:a.matrix,O.angle={roll:((t-1)*(((s=(r=$e.face[I].rotation)==null?void 0:r.angle)==null?void 0:s.roll)||0)+(((o=(i=e.face[I].rotation)==null?void 0:i.angle)==null?void 0:o.roll)||0))/t,yaw:((t-1)*(((l=(u=$e.face[I].rotation)==null?void 0:u.angle)==null?void 0:l.yaw)||0)+(((p=(d=e.face[I].rotation)==null?void 0:d.angle)==null?void 0:p.yaw)||0))/t,pitch:((t-1)*(((h=(c=$e.face[I].rotation)==null?void 0:c.angle)==null?void 0:h.pitch)||0)+(((f=(m=e.face[I].rotation)==null?void 0:m.angle)==null?void 0:f.pitch)||0))/t},O.gaze={bearing:((t-1)*(((A=(y=$e.face[I].rotation)==null?void 0:y.gaze)==null?void 0:A.bearing)||0)+(((x=(g=e.face[I].rotation)==null?void 0:g.gaze)==null?void 0:x.bearing)||0))/t,strength:((t-1)*(((b=(w=$e.face[I].rotation)==null?void 0:w.gaze)==null?void 0:b.strength)||0)+(((N=(v=e.face[I].rotation)==null?void 0:v.gaze)==null?void 0:N.strength)||0))/t},$e.face[I]={...e.face[I],rotation:O,box:E,boxRaw:$}}if(!$e.object||e.object.length!==$e.object.length)$e.object=JSON.parse(JSON.stringify(e.object));else for(let I=0;I<e.object.length;I++){let E=e.object[I].box.map((O,z)=>((t-1)*$e.object[I].box[z]+O)/t),$=e.object[I].boxRaw.map((O,z)=>((t-1)*$e.object[I].boxRaw[z]+O)/t);$e.object[I]={...e.object[I],box:E,boxRaw:$}}let n=e.persons;if(!$e.persons||n.length!==$e.persons.length)$e.persons=JSON.parse(JSON.stringify(n));else for(let I=0;I<n.length;I++)$e.persons[I].box=n[I].box.map((E,$)=>((t-1)*$e.persons[I].box[$]+E)/t);return $e.gesture=e.gesture,$e.performance=e.performance,$e}var j0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,U0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var T9="2.0.0";var uu,up,dp,Ui,Hi,du,H0,pp,G0,q0,X0,K0,E9=class{constructor(t){Jn(this,uu,void 0);Jn(this,up,void 0);Jn(this,dp,void 0);Jn(this,Ui,void 0);Jn(this,Hi,void 0);Jn(this,du,void 0);this.analyze=(...t)=>{if(!on(this,up))return;let n=this.tf.engine().state.numTensors,a=on(this,uu);ba(this,uu,n);let r=n-a;r!==0&&de(...t,r)};Jn(this,H0,t=>{if(!on(this,dp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof We))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Jn(this,pp,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=Je();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&de("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&de("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&de("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&de(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&de("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&Rk();try{await this.tf.setBackend(this.config.backend)}catch(r){de("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),this.config.object.enabled||this.tf.ENV.set("WEBGL_FORCE_F16_TEXTURES",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(de("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&de(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(Je()-a)}});this.next=t=>N9(t||this.result);Jn(this,G0,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=a.dataSync(),s=0;for(let u=0;u<r.length/3;u++)s+=r[3*u+2];a.dispose();let i=100*(Math.max(s,on(this,Hi))/Math.min(s,on(this,Hi))-1);ba(this,Hi,s);let o=i<Math.max(this.config.cacheSensitivity,on(this,du));return ba(this,du,i>10*this.config.cacheSensitivity?0:i),o});Jn(this,q0,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(j0);break;case"full":n=await t(U0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});Jn(this,X0,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+j0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+U0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));Jn(this,K0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(j0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(U0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&de("Warmup tfjs-node not loaded");return a});this.config=zn(p5,t||{}),this.tf=tp,this.draw=Yg,this.version=T9,this.state="idle",ba(this,uu,0),ba(this,up,!1),ba(this,dp,!1),ba(this,Ui,!0),ba(this,du,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null},this.image=n=>Xg(n,this.config),this.classes={facemesh:tg,emotion:sg,faceres:dg,body:this.config.body.modelPath.includes("posenet")?xg:Eg,hand:Ng,nanodet:Vg,centernet:qg},this.faceTriangulation=Vk,this.faceUVMap=jk,this.sysinfo=c5(),ba(this,Hi,1)}similarity(t,n){return lg(t,n)}enhance(t){return ug(t)}match(t,n,a=0){return Gk(t,n,a)}async load(t){this.state="load";let n=Je();t&&(this.config=zn(this.config,t)),on(this,Ui)&&(this.config.debug&&de(`version: ${this.version}`),this.config.debug&&de(`tfjs version: ${this.tf.version_core}`),this.config.debug&&de("platform:",this.sysinfo.platform),this.config.debug&&de("agent:",this.sysinfo.agent),await on(this,pp).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&de("configuration:",this.config),this.config.debug&&de("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.movenet,this.models.nanodet,this.models.centernet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?eg(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?rg(this.config):null),this.models.handpose||(this.config.hand.enabled?Sg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?gg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?P0(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?f9(this.config):null),this.models.movenet||(this.config.body.enabled&&this.config.body.modelPath.includes("movenet")?Og(this.config):null),this.models.nanodet||(this.config.object.enabled&&this.config.object.modelPath.includes("nanodet")?Wg(this.config):null),this.models.centernet||(this.config.object.enabled&&this.config.object.modelPath.includes("centernet")?Hg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?og(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await eg(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await rg(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await Sg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await gg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await P0(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await P0(this.config)),this.config.body.enabled&&!this.models.movenet&&this.config.body.modelPath.includes("movenet")&&(this.models.movenet=await Og(this.config)),this.config.object.enabled&&!this.models.nanodet&&this.config.object.modelPath.includes("nanodet")&&(this.models.nanodet=await Wg(this.config)),this.config.object.enabled&&!this.models.centernet&&this.config.object.modelPath.includes("centernet")&&(this.models.centernet=await Hg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await og(this.config))),on(this,Ui)&&(this.config.debug&&de("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),ba(this,Ui,!1));let a=Math.trunc(Je()-n);a>(this.performance.load||0)&&(this.performance.load=a)}async detect(t,n){return new Promise(async a=>{this.state="config";let r;this.config=zn(this.config,n),this.state="check";let s=on(this,H0).call(this,t);s&&(de(s,t),a({error:s}));let i=Je();await on(this,pp).call(this),await this.load(),r=Je();let o=Xg(t,this.config);if(!o||!o.tensor){de("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.performance.image=Math.trunc(Je()-r),this.analyze("Get Image:"),r=Je(),this.config.skipFrame=await on(this,G0).call(this,o.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Je()-r),this.analyze("Check Changed:");let u,l,d,p,c;this.config.async?(u=this.config.face.enabled?pg(this,o.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Je(),u=this.config.face.enabled?await pg(this,o.tensor):[],c=Math.trunc(Je()-r),c>0&&(this.performance.face=c)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?Ag(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?Tg(o.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?Fg(o.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?_g(o.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Je(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await Ag(o.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?l=this.config.body.enabled?await Tg(o.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?l=this.config.body.enabled?await Fg(o.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(l=this.config.body.enabled?await _g(o.tensor,this.config):[]),c=Math.trunc(Je()-r),c>0&&(this.performance.body=c)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(d=this.config.hand.enabled?Ig(o.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Je(),d=this.config.hand.enabled?await Ig(o.tensor,this.config):[],c=Math.trunc(Je()-r),c>0&&(this.performance.hand=c)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?Bg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?Gg(o.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Je(),this.config.object.modelPath.includes("nanodet")?p=this.config.object.enabled?await Bg(o.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(p=this.config.object.enabled?await Gg(o.tensor,this.config):[]),c=Math.trunc(Je()-r),c>0&&(this.performance.object=c)),this.analyze("End Object:"),this.config.async&&([u,l,d,p]=await Promise.all([u,l,d,p]));let h=[];this.config.gesture.enabled&&(r=Je(),h=[...y9(u),...m9(l),...g9(d),...A9(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Je()-r)),this.performance.total=Math.trunc(Je()-i),this.state="idle",this.result={face:u,body:l,hand:d,gesture:h,object:p,performance:this.performance,canvas:o.canvas,timestamp:Date.now(),get persons(){var m;return S9(u,l,d,h,(m=o==null?void 0:o.tensor)==null?void 0:m.shape)}},Ie(o.tensor),a(this.result)})}async warmup(t){let n=Je();if(t&&(this.config=zn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await on(this,q0).call(this):typeof Image!="undefined"?a=await on(this,X0).call(this):a=await on(this,K0).call(this);let r=Je();return this.config.debug&&de("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};uu=new WeakMap,up=new WeakMap,dp=new WeakMap,Ui=new WeakMap,Hi=new WeakMap,du=new WeakMap,H0=new WeakMap,pp=new WeakMap,G0=new WeakMap,q0=new WeakMap,X0=new WeakMap,K0=new WeakMap;return zoe;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|