human/src/hand/handpose.js

81 lines
2.8 KiB
JavaScript

/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
// https://storage.googleapis.com/tfjs-models/demos/handpose/index.html
const tf = require('@tensorflow/tfjs');
const handdetector = require('./handdetector');
const pipeline = require('./handpipeline');
const anchors = require('./anchors');
const MESH_ANNOTATIONS = {
thumb: [1, 2, 3, 4],
indexFinger: [5, 6, 7, 8],
middleFinger: [9, 10, 11, 12],
ringFinger: [13, 14, 15, 16],
pinky: [17, 18, 19, 20],
palmBase: [0],
};
class HandPose {
constructor(pipe) {
this.pipeline = pipe;
}
static getAnnotations() {
return MESH_ANNOTATIONS;
}
async estimateHands(input, config) {
const predictions = await this.pipeline.estimateHands(input, config);
if (!predictions) return [];
const hands = [];
for (const prediction of predictions) {
const annotations = {};
if (prediction.landmarks) {
for (const key of Object.keys(MESH_ANNOTATIONS)) {
annotations[key] = MESH_ANNOTATIONS[key].map((index) => prediction.landmarks[index]);
}
}
hands.push({
confidence: prediction.handInViewConfidence,
box: prediction.boundingBox ? [
prediction.boundingBox.topLeft[0],
prediction.boundingBox.topLeft[1],
prediction.boundingBox.bottomRight[0] - prediction.boundingBox.topLeft[0],
prediction.boundingBox.bottomRight[1] - prediction.boundingBox.topLeft[1],
] : 0,
landmarks: prediction.landmarks,
annotations,
});
}
return hands;
}
}
exports.HandPose = HandPose;
async function load(config) {
const [handDetectorModel, handPoseModel] = await Promise.all([
tf.loadGraphModel(config.detector.modelPath, { fromTFHub: config.detector.modelPath.includes('tfhub.dev') }),
tf.loadGraphModel(config.skeleton.modelPath, { fromTFHub: config.skeleton.modelPath.includes('tfhub.dev') }),
]);
const detector = new handdetector.HandDetector(handDetectorModel, config.inputSize, anchors.anchors);
const pipe = new pipeline.HandPipeline(detector, handPoseModel, config.inputSize);
const handpose = new HandPose(pipe);
return handpose;
}
exports.load = load;