human/dist/human.js

5168 lines
1.3 MiB

/*
Human library
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
var Human=(()=>{var V9=Object.defineProperty;var cm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var fa=(e,t)=>{for(var n in t)V9(e,n,{get:t[n],enumerable:!0})};var Wg=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var na=(e,t,n)=>(Wg(e,t,"read from private field"),n?n.call(e):t.get(e)),Fa=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},rs=(e,t,n,a)=>(Wg(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);var eoe={};fa(eoe,{Human:()=>Qk,default:()=>Qk});function Yt(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function he(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var it=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Hn(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=Hn(s,i):n[r]=i}),n),{})}var Bg={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist//",debug:!0,async:!0,videoOptimized:!0,warmup:"full",filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!1,maxDetected:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:31,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:32,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"posenet.json",maxDetected:1,minConfidence:.1},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"nanodet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:41}};function Vg(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var qd={};fa(qd,{Abs:()=>to,Acos:()=>no,Acosh:()=>ao,AdadeltaOptimizer:()=>Yc,AdagradOptimizer:()=>Jc,AdamOptimizer:()=>Qc,AdamaxOptimizer:()=>eh,Add:()=>kr,AddN:()=>os,All:()=>ro,Any:()=>so,ArgMax:()=>ls,ArgMin:()=>yu,Asin:()=>io,Asinh:()=>oo,Atan:()=>lo,Atan2:()=>po,Atanh:()=>uo,AvgPool:()=>us,AvgPool3D:()=>gu,AvgPool3DGrad:()=>Mp,AvgPoolGrad:()=>Rp,BackendWasm:()=>f6,BatchMatMul:()=>ds,BatchToSpaceND:()=>xu,Bincount:()=>Fp,BroadcastTo:()=>Dx,Callback:()=>i8,CallbackList:()=>J6,Cast:()=>ps,Ceil:()=>cs,ClipByValue:()=>Ir,Complex:()=>$p,ComplexAbs:()=>bu,Concat:()=>co,Conv2D:()=>hs,Conv2DBackpropFilter:()=>Dp,Conv2DBackpropInput:()=>fs,Conv3D:()=>vu,Conv3DBackpropFilterV2:()=>Op,Conv3DBackpropInputV2:()=>zp,Cos:()=>ms,Cosh:()=>ho,CropAndResize:()=>fo,Cumsum:()=>As,CustomCallback:()=>e4,DataStorage:()=>Np,DenseBincount:()=>_p,DepthToSpace:()=>mo,DepthwiseConv2dNative:()=>ys,DepthwiseConv2dNativeBackpropFilter:()=>Pp,DepthwiseConv2dNativeBackpropInput:()=>Lp,Diag:()=>Wp,Dilation2D:()=>wu,Dilation2DBackpropFilter:()=>Vp,Dilation2DBackpropInput:()=>Bp,ENV:()=>ma,EarlyStopping:()=>l8,Einsum:()=>jp,Elu:()=>Ao,EluGrad:()=>Up,Environment:()=>Fx,Equal:()=>go,Erf:()=>yo,Exp:()=>xs,ExpandDims:()=>xo,Expm1:()=>bo,FFT:()=>Hp,Fill:()=>ku,FlipLeftRight:()=>vo,Floor:()=>bs,FloorDiv:()=>vs,FromPixels:()=>oc,FusedBatchNorm:()=>ws,FusedConv2D:()=>ni,FusedDepthwiseConv2D:()=>ai,GPGPUContext:()=>yh,GatherNd:()=>ko,GatherV2:()=>wo,GraphModel:()=>P8,Greater:()=>Io,GreaterEqual:()=>ks,History:()=>Q6,IFFT:()=>Gp,Identity:()=>Is,Imag:()=>qp,InputSpec:()=>Mt,IsFinite:()=>So,IsInf:()=>No,IsNan:()=>To,KernelBackend:()=>fu,LRN:()=>Nu,LRNGrad:()=>Kp,LayerVariable:()=>q6,LayersModel:()=>pr,LeakyRelu:()=>Ss,Less:()=>Eo,LessEqual:()=>Co,LinSpace:()=>Xp,Log:()=>Ns,Log1p:()=>Ro,LogSoftmax:()=>Ox,LogicalAnd:()=>Mo,LogicalNot:()=>Iu,LogicalOr:()=>Su,MathBackendCPU:()=>rh,MathBackendWebGL:()=>_l,Max:()=>Ts,MaxPool:()=>Cs,MaxPool3D:()=>Tu,MaxPool3DGrad:()=>Yp,MaxPoolGrad:()=>Zp,MaxPoolWithArgmax:()=>Jp,Maximum:()=>Es,Mean:()=>Rs,Min:()=>Ms,Minimum:()=>Fs,MirrorPad:()=>$s,Mod:()=>Fo,MomentumOptimizer:()=>th,Multinomial:()=>Qp,Multiply:()=>Ds,Neg:()=>$o,NonMaxSuppressionV3:()=>Oo,NonMaxSuppressionV4:()=>zo,NonMaxSuppressionV5:()=>_o,NotEqual:()=>Do,OP_SCOPE_SUFFIX:()=>Gx,OneHot:()=>Os,OnesLike:()=>Po,Optimizer:()=>or,Pack:()=>Lo,PadV2:()=>zs,Pool:()=>jI,Pow:()=>_s,Prelu:()=>Ps,Prod:()=>Wo,RMSPropOptimizer:()=>nh,RNN:()=>qa,Range:()=>Eu,Rank:()=>Tm,Real:()=>ec,RealDiv:()=>gs,Reciprocal:()=>Bo,Reduction:()=>un,Relu:()=>Ls,Relu6:()=>Bs,Reshape:()=>Vo,ResizeBilinear:()=>Ws,ResizeBilinearGrad:()=>nc,ResizeNearestNeighbor:()=>Cu,ResizeNearestNeighborGrad:()=>tc,Reverse:()=>Vs,RotateWithOffset:()=>nl,Round:()=>js,Rsqrt:()=>Us,SGDOptimizer:()=>id,ScatterNd:()=>jo,Select:()=>Uo,Selu:()=>Ho,Sequential:()=>Gl,Sigmoid:()=>Gs,Sign:()=>Xo,Sin:()=>Hs,Sinh:()=>qo,Slice:()=>Go,Softmax:()=>Ks,Softplus:()=>Ko,SpaceToBatchND:()=>Ru,SparseFillEmptyRows:()=>ac,SparseReshape:()=>rc,SparseToDense:()=>sc,SplitV:()=>Zo,Sqrt:()=>qs,Square:()=>Mu,SquaredDifference:()=>Zs,Step:()=>Nr,StridedSlice:()=>Yo,Sub:()=>Ys,Sum:()=>Xs,SymbolicTensor:()=>Sa,Tan:()=>Js,Tanh:()=>Qs,Tensor:()=>Le,TensorBuffer:()=>Dt,Tile:()=>Sr,TopK:()=>Jo,Transform:()=>Qo,Transpose:()=>ei,Unique:()=>ic,Unpack:()=>el,UnsortedSegmentSum:()=>Fu,Variable:()=>Lu,ZerosLike:()=>tl,_FusedMatMul:()=>ti,abs:()=>Ot,acos:()=>eA,acosh:()=>tA,add:()=>se,addN:()=>xc,all:()=>bc,any:()=>Uu,argMax:()=>Hu,argMin:()=>nA,asin:()=>aA,asinh:()=>rA,atan:()=>sA,atan2:()=>iA,atanh:()=>oA,avgPool:()=>qu,avgPool3d:()=>dA,backend:()=>Tb,backend_util:()=>C,basicLSTMCell:()=>wT,batchNorm:()=>ci,batchNorm2d:()=>Mb,batchNorm3d:()=>Fb,batchNorm4d:()=>$b,batchToSpaceND:()=>Xu,bincount:()=>pA,booleanMaskAsync:()=>ER,broadcastTo:()=>hl,browser:()=>li,buffer:()=>We,callbacks:()=>Lre,cast:()=>fe,ceil:()=>cA,clipByValue:()=>kn,clone:()=>Oa,complex:()=>Tr,concat:()=>ot,concat1d:()=>Db,concat2d:()=>fl,concat3d:()=>Ob,concat4d:()=>zb,constraints:()=>S6,conv1d:()=>wc,conv2d:()=>ar,conv2dTranspose:()=>kc,conv3d:()=>fA,conv3dTranspose:()=>Pb,copyRegisteredKernels:()=>GI,cos:()=>Ku,cosh:()=>Ic,cosineWindow:()=>BA,cumsum:()=>Sc,customGrad:()=>_a,data:()=>L8,denseBincount:()=>Lb,deprecationWarn:()=>Jm,depthToSpace:()=>mA,depthwiseConv2d:()=>ml,deregisterOp:()=>Bre,device_util:()=>Bu,diag:()=>YT,dilation2d:()=>AA,disableDeprecationWarnings:()=>ON,dispose:()=>Ee,disposeVariables:()=>zN,div:()=>me,divNoNan:()=>yA,dot:()=>Wb,dropout:()=>o3,einsum:()=>Bb,elu:()=>Al,enableDebugMode:()=>DN,enableProdMode:()=>$N,enclosingPowerOfTwo:()=>l3,engine:()=>nr,env:()=>J,equal:()=>Fr,erf:()=>gA,exp:()=>qn,expandDims:()=>ln,expm1:()=>xA,eye:()=>bA,fft:()=>rd,fill:()=>yl,findBackend:()=>Qm,findBackendFactory:()=>jN,floor:()=>gl,floorDiv:()=>gc,forceHalfFloat:()=>Sv,fused:()=>_r,gather:()=>hi,gatherND:()=>i3,gather_util:()=>Hm,getBackend:()=>BN,getGradient:()=>Im,getKernel:()=>lc,getKernelsForBackend:()=>rl,gpgpu_util:()=>K7,grad:()=>TE,grads:()=>EE,greater:()=>Mn,greaterEqual:()=>Dr,ifft:()=>kl,imag:()=>Nc,image:()=>Ye,inTopKAsync:()=>LR,initializers:()=>F6,input:()=>k4,io:()=>vn,irfft:()=>Vc,isFinite:()=>Vb,isInf:()=>jb,isNaN:()=>vA,keep:()=>jt,kernel_impls:()=>Wa,layers:()=>U6,leakyRelu:()=>Zu,less:()=>Tc,lessEqual:()=>Or,linalg:()=>b3,linspace:()=>Ub,loadGraphModel:()=>Gt,loadLayersModel:()=>Kne,localResponseNormalization:()=>wA,log:()=>Fn,log1p:()=>Ec,logSigmoid:()=>Gb,logSoftmax:()=>Rc,logSumExp:()=>SA,logicalAnd:()=>oa,logicalNot:()=>Yu,logicalOr:()=>Mc,logicalXor:()=>Zb,losses:()=>uF,matMul:()=>Be,math:()=>lb,max:()=>Xn,maxPool:()=>Ju,maxPool3d:()=>NA,maxPoolWithArgmax:()=>Yb,maximum:()=>Pa,mean:()=>wt,memory:()=>yc,meshgrid:()=>ZE,metrics:()=>a8,min:()=>xl,minimum:()=>bl,mirrorPad:()=>TA,mod:()=>EA,model:()=>qne,models:()=>r8,moments:()=>Fc,movingAverage:()=>MR,mul:()=>_,multiRNNCell:()=>rC,multinomial:()=>Jb,neg:()=>vt,nextFrame:()=>ah,norm:()=>Gc,notEqual:()=>Ai,oneHot:()=>ul,ones:()=>$n,onesLike:()=>Dn,op:()=>O,outerProduct:()=>uC,pad:()=>rr,pad1d:()=>cC,pad2d:()=>fC,pad3d:()=>AC,pad4d:()=>gC,pool:()=>Qb,pow:()=>sr,prelu:()=>ed,print:()=>nb,prod:()=>$c,profile:()=>_N,rand:()=>TC,randomGamma:()=>MC,randomNormal:()=>e3,randomUniform:()=>vl,range:()=>wl,ready:()=>WN,real:()=>td,reciprocal:()=>MA,registerBackend:()=>pl,registerCallbackConstructor:()=>Zne,registerGradient:()=>zx,registerKernel:()=>ri,registerOp:()=>Wre,regularizers:()=>s8,relu:()=>La,relu6:()=>Dc,removeBackend:()=>VN,reshape:()=>H,reverse:()=>On,reverse1d:()=>WC,reverse2d:()=>VC,reverse3d:()=>UC,reverse4d:()=>GC,rfft:()=>sd,round:()=>Oc,rsqrt:()=>zc,scalar:()=>Se,scatterND:()=>s3,scatter_util:()=>Gm,selu:()=>_c,separableConv2d:()=>FA,sequential:()=>Xne,serialization:()=>ae,setBackend:()=>LN,setPlatform:()=>UN,setWasmPath:()=>QJ,setWasmPaths:()=>eQ,setWebGLContext:()=>dh,setdiff1dAsync:()=>t3,shared:()=>GA,sigmoid:()=>wn,sign:()=>$A,signal:()=>lF,sin:()=>Pc,sinh:()=>Lc,slice:()=>Re,slice1d:()=>Wc,slice2d:()=>DA,slice3d:()=>Bc,slice4d:()=>nd,slice_util:()=>on,softmax:()=>ad,softplus:()=>fi,spaceToBatchND:()=>Qu,sparse:()=>v3,sparseToDense:()=>WA,spectral:()=>oF,split:()=>an,sqrt:()=>Jt,square:()=>st,squaredDifference:()=>jc,squeeze:()=>zr,stack:()=>zn,step:()=>Il,stridedSlice:()=>OA,sub:()=>ge,sum:()=>ke,sumOutType:()=>cc,tan:()=>zA,tanh:()=>pi,tensor:()=>ia,tensor1d:()=>Tt,tensor2d:()=>ga,tensor3d:()=>mc,tensor4d:()=>gR,tensor5d:()=>xR,tensor6d:()=>bR,tensor_util:()=>Aa,test_util:()=>Ib,tidy:()=>W,tile:()=>$r,time:()=>PN,topk:()=>_A,train:()=>gi,transpose:()=>Ze,truncatedNormal:()=>Uc,unique:()=>Hc,unregisterGradient:()=>HI,unregisterKernel:()=>UI,unsortedSegmentSum:()=>PA,unstack:()=>la,upcastType:()=>sa,util:()=>k,valueAndGrad:()=>CE,valueAndGrads:()=>RE,variable:()=>n3,variableGrads:()=>Hb,version:()=>Tie,version_converter:()=>Bse,version_core:()=>FN,version_cpu:()=>t7,version_layers:()=>ly,version_wasm:()=>A6,version_webgl:()=>Iv,webgl:()=>ZW,webgl_util:()=>k7,where:()=>nn,whereAsync:()=>LA,zeros:()=>Ct,zerosLike:()=>Ue});var j9=Object.create,Sp=Object.defineProperty,U9=Object.getOwnPropertyDescriptor,H9=Object.getOwnPropertyNames,G9=Object.getPrototypeOf,q9=Object.prototype.hasOwnProperty,X9=e=>Sp(e,"__esModule",{value:!0}),Yi=e=>{if(typeof cm!="undefined")return cm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)Sp(e,n,{get:t[n],enumerable:!0})},K9=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of H9(t))!q9.call(e,a)&&a!=="default"&&Sp(e,a,{get:()=>t[a],enumerable:!(n=U9(t,a))||n.enumerable});return e},Ji=e=>K9(X9(Sp(e!=null?j9(G9(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),Z9=xt(()=>{}),Y9=xt((e,t)=>{(function(n,a,r){function s(d){var u=this,p=l();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(d),u.s0<0&&(u.s0+=1),u.s1-=p(d),u.s1<0&&(u.s1+=1),u.s2-=p(d),u.s2<0&&(u.s2+=1),p=null}function i(d,u){return u.c=d.c,u.s0=d.s0,u.s1=d.s1,u.s2=d.s2,u}function o(d,u){var p=new s(d),c=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var d=4022871197,u=function(p){p=p.toString();for(var c=0;c<p.length;c++){d+=p.charCodeAt(c);var h=.02519603282416938*d;d=h>>>0,h-=d,h*=d,d=h>>>0,h-=d,d+=h*4294967296}return(d>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),J9=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.x=0,d.y=0,d.z=0,d.w=0,d.next=function(){var c=d.x^d.x<<11;return d.x=d.y,d.y=d.z,d.z=d.w,d.w^=d.w>>>19^c^c>>>8},l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),Q9=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.x^d.x>>>2;return d.x=d.y,d.y=d.z,d.z=d.w,d.w=d.v,(d.d=d.d+362437|0)+(d.v=d.v^d.v<<4^(c^c<<1))|0},d.x=0,d.y=0,d.z=0,d.w=0,d.v=0,l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,p==u.length&&(d.d=d.x<<10^d.x>>>4),d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d.v=l.v,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.x,c=d.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,d.i=c+1&7,m};function u(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(d,l)}function i(l,d){return d.x=l.x.slice(),d.i=l.i,d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.x&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.w,c=d.X,h=d.i,m,f;return d.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,d.i=h,f+(p^p>>>16)|0};function u(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}u(d,l)}function i(l,d){return d.i=l.i,d.w=l.w,d.X=l.X.slice(),d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.X&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.b,h=d.c,m=d.d,f=d.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,d.b=c=c<<20^c>>>12^h,d.c=h=h-m|0,d.d=m<<16^h>>>16^f,d.a=f-c|0},d.a=0,d.b=0,d.c=2654435769|0,d.d=1367130551,l===Math.floor(l)?(d.a=l/4294967296|0,d.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)d.b^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.a=l.a,d.b=l.b,d.c=l.c,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),jg=xt(()=>{}),aI=xt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",d=a.pow(s,i),u=a.pow(2,o),p=u*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(n)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var P=$.g(i),V=d,j=0;P<u;)P=(P+j)*s,V*=s,j=$.g(1);for(;P>=p;)P/=2,V/=2,j>>>=1;return(P+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(w($.S),n),(v.pass||N||function(P,V,j,U){return U&&(U.S&&A(U,$),P.state=function(){return A($,{})}),j?(a[l]=P,V):P})(z,R,"global"in v?v.global:this==a,v.state)}a["seed"+l]=m;function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(N||(b=[N++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%N]+(v=z[R])],z[$]=v;(T.g=function(P){for(var V,j=0,U=T.i,X=T.j,G=T.S;P--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=r.navigator,N=v&&v.plugins;return[+new Date,r,N,r.screen,w(n)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=jg()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),Ug=xt((e,t)=>{var n=Y9(),a=J9(),r=Q9(),s=eI(),i=tI(),o=nI(),l=aI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),hu=xt(()=>{}),rI=xt(()=>{}),sI=xt(()=>{}),iI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Q.buffer!=Ve&&Kt(Q.buffer),An}function i(){return Q.buffer!=Ve&&Kt(Q.buffer),gt}function o(){return Q.buffer!=Ve&&Kt(Q.buffer),yn}function l(){return Q.buffer!=Ve&&Kt(Q.buffer),jn}function d(){return Q.buffer!=Ve&&Kt(Q.buffer),rn}var u=typeof r!="undefined"?r:{},p,c;u.ready=new Promise(function(S,E){p=S,c=E});var h={},m;for(m in u)u.hasOwnProperty(m)&&(h[m]=u[m]);var f=[],A="./this.program",y=function(S,E){throw E},g=!1,x=!1,w=!1,b=!1;g=typeof window=="object",x=typeof importScripts=="function",w=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!g&&!w&&!x;var v=u.ENVIRONMENT_IS_PTHREAD||!1;v&&(Ve=u.buffer);var N="";function T(S){return u.locateFile?u.locateFile(S,N):N+S}var R,$,z,P,V,j;if(w){x?N=hu().dirname(N)+"/":N=__dirname+"/",R=function(S,E){return V||(V=Yi("fs")),j||(j=hu()),S=j.normalize(S),V.readFileSync(S,E?null:"utf8")},z=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(S){if(!(S instanceof cu))throw S}),process.on("unhandledRejection",Ya),y=function(S){process.exit(S)},u.inspect=function(){return"[Emscripten Module object]"};var U;try{U=rI()}catch(S){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),S}global.Worker=U.Worker}else b?(typeof read!="undefined"&&(R=function(S){return read(S)}),z=function(S){var E;return typeof readbuffer=="function"?new Uint8Array(readbuffer(S)):(E=read(S,"binary"),ce(typeof E=="object"),E)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(S){quit(S)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(g||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",w?(R=function(S,E){return V||(V=Yi("fs")),j||(j=hu()),S=j.normalize(S),V.readFileSync(S,E?null:"utf8")},z=function(S){var E=R(S,!0);return E.buffer||(E=new Uint8Array(E)),ce(E.buffer),E}):(R=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.send(null),E.responseText},x&&(z=function(S){var E=new XMLHttpRequest;return E.open("GET",S,!1),E.responseType="arraybuffer",E.send(null),new Uint8Array(E.response)}),$=function(S,E,L){var q=new XMLHttpRequest;q.open("GET",S,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){E(q.response);return}L()},q.onerror=L,q.send(null)}),P=function(S){document.title=S});w&&typeof performance=="undefined"&&(global.performance=sI().performance);var X=u.print||console.log.bind(console),G=u.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(u[m]=h[m]);h=null,u.arguments&&(f=u.arguments),u.thisProgram&&(A=u.thisProgram),u.quit&&(y=u.quit);var ee=Atomics.load,Y=Atomics.store,re=Atomics.compareExchange,ne;u.wasmBinary&&(ne=u.wasmBinary);var ie=u.noExitRuntime||!0;typeof WebAssembly!="object"&&Ya("no native wasm support detected");var Q,de,oe=!1,ye;function ce(S,E){S||Ya("Assertion failed: "+E)}function Ie(S){var E=u["_"+S];return ce(E,"Cannot call unknown function "+S+", make sure it is exported"),E}function Ne(S,E,L,q,pe){var le={string:function(bn){var Zi=0;if(bn!=null&&bn!==0){var Lg=(bn.length<<2)+1;Zi=qi(Lg),et(bn,Zi,Lg)}return Zi},array:function(bn){var Zi=qi(bn.length);return Xe(bn,Zi),Zi}};function ue(bn){return E==="string"?De(bn):E==="boolean"?Boolean(bn):bn}var be=Ie(S),tt=[],Bt=0;if(q)for(var $t=0;$t<q.length;$t++){var br=le[L[$t]];br?(Bt===0&&(Bt=pu()),tt[$t]=br(q[$t])):tt[$t]=q[$t]}var Ki=be.apply(null,tt);return Ki=ue(Ki),Bt!==0&&Gi(Bt),Ki}function $e(S,E,L,q){L=L||[];var pe=L.every(function(ue){return ue==="number"}),le=E!=="string";return le&&pe&&!q?Ie(S):function(){return Ne(S,E,L,arguments,q)}}function ze(S,E,L){for(var q=E+L,pe="";!(E>=q);){var le=S[E++];if(!le)return pe;if(!(le&128)){pe+=String.fromCharCode(le);continue}var ue=S[E++]&63;if((le&224)==192){pe+=String.fromCharCode((le&31)<<6|ue);continue}var be=S[E++]&63;if((le&240)==224?le=(le&15)<<12|ue<<6|be:le=(le&7)<<18|ue<<12|be<<6|S[E++]&63,le<65536)pe+=String.fromCharCode(le);else{var tt=le-65536;pe+=String.fromCharCode(55296|tt>>10,56320|tt&1023)}}return pe}function De(S,E){return S?ze(i(),S,E):""}function Qe(S,E,L,q){if(!(q>0))return 0;for(var pe=L,le=L+q-1,ue=0;ue<S.length;++ue){var be=S.charCodeAt(ue);if(be>=55296&&be<=57343){var tt=S.charCodeAt(++ue);be=65536+((be&1023)<<10)|tt&1023}if(be<=127){if(L>=le)break;E[L++]=be}else if(be<=2047){if(L+1>=le)break;E[L++]=192|be>>6,E[L++]=128|be&63}else if(be<=65535){if(L+2>=le)break;E[L++]=224|be>>12,E[L++]=128|be>>6&63,E[L++]=128|be&63}else{if(L+3>=le)break;E[L++]=240|be>>18,E[L++]=128|be>>12&63,E[L++]=128|be>>6&63,E[L++]=128|be&63}}return E[L]=0,L-pe}function et(S,E,L){return Qe(S,i(),E,L)}function rt(S){for(var E=0,L=0;L<S.length;++L){var q=S.charCodeAt(L);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|S.charCodeAt(++L)&1023),q<=127?++E:q<=2047?E+=2:q<=65535?E+=3:E+=4}return E}function Xe(S,E){s().set(S,E)}function dt(S,E){return S%E>0&&(S+=E-S%E),S}var Ve,An,gt,Vn,Xt,yn,jn,Rn,rn;function Kt(S){Ve=S,u.HEAP8=An=new Int8Array(S),u.HEAP16=Vn=new Int16Array(S),u.HEAP32=yn=new Int32Array(S),u.HEAPU8=gt=new Uint8Array(S),u.HEAPU16=Xt=new Uint16Array(S),u.HEAPU32=jn=new Uint32Array(S),u.HEAPF32=Rn=new Float32Array(S),u.HEAPF64=rn=new Float64Array(S)}var Ra=u.INITIAL_MEMORY||16777216;if(v)Q=u.wasmMemory,Ve=u.buffer;else if(u.wasmMemory)Q=u.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Ra/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),w&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(Ve=Q.buffer),Ra=Ve.byteLength,Kt(Ve);var ea,ta=[],fr=[],Ka=[],mr=[],Wi=[],Ma=!1,ap=!1;v||fr.push({func:function(){gp()}});function B0(){if(!v){if(u.preRun)for(typeof u.preRun=="function"&&(u.preRun=[u.preRun]);u.preRun.length;)sp(u.preRun.shift());Vi(ta)}}function nu(){Ma=!0,!v&&Vi(fr)}function V0(){v||Vi(Ka)}function rp(){v||(ap=!0)}function gn(){if(!v){if(u.postRun)for(typeof u.postRun=="function"&&(u.postRun=[u.postRun]);u.postRun.length;)j0(u.postRun.shift());Vi(Wi)}}function sp(S){ta.unshift(S)}function j0(S){Wi.unshift(S)}var Za=0,Ar=null,ts=null;function U0(S){ce(!v,"addRunDependency cannot be used in a pthread worker"),Za++,u.monitorRunDependencies&&u.monitorRunDependencies(Za)}function H0(S){if(Za--,u.monitorRunDependencies&&u.monitorRunDependencies(Za),Za==0&&(Ar!==null&&(clearInterval(Ar),Ar=null),ts)){var E=ts;ts=null,E()}}u.preloadedImages={},u.preloadedAudios={};function Ya(S){u.onAbort&&u.onAbort(S),v&&console.error("Pthread aborting at "+new Error().stack),S+="",G(S),oe=!0,ye=1,S="abort("+S+"). Build with -s ASSERTIONS=1 for more info.";var E=new WebAssembly.RuntimeError(S);throw c(E),E}function ip(S,E){return String.prototype.startsWith?S.startsWith(E):S.indexOf(E)===0}var Bi="data:application/octet-stream;base64,";function op(S){return ip(S,Bi)}var G0="file://";function lp(S){return ip(S,G0)}var xn="tfjs-backend-wasm-threaded-simd.wasm";op(xn)||(xn=T(xn));function up(S){try{if(S==xn&&ne)return new Uint8Array(ne);if(z)return z(S);throw"both async and sync fetching of the wasm failed"}catch(E){Ya(E)}}function q0(){if(!ne&&(g||x)){if(typeof fetch=="function"&&!lp(xn))return fetch(xn,{credentials:"same-origin"}).then(function(S){if(!S.ok)throw"failed to load wasm binary file at '"+xn+"'";return S.arrayBuffer()}).catch(function(){return up(xn)});if($)return new Promise(function(S,E){$(xn,function(L){S(new Uint8Array(L))},E)})}return Promise.resolve().then(function(){return up(xn)})}function X0(){var S={a:Lf};function E(ue,be){var tt=ue.exports;if(u.asm=tt,ea=u.asm.F,de=be,!v){var Bt=we.unusedWorkers.length;we.unusedWorkers.forEach(function($t){we.loadWasmModuleToWorker($t,function(){--Bt||H0("wasm-instantiate")})})}}v||U0("wasm-instantiate");function L(ue){E(ue.instance,ue.module)}function q(ue){return q0().then(function(be){return WebAssembly.instantiate(be,S)}).then(ue,function(be){G("failed to asynchronously prepare wasm: "+be),Ya(be)})}function pe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!op(xn)&&!lp(xn)&&typeof fetch=="function"?fetch(xn,{credentials:"same-origin"}).then(function(ue){var be=WebAssembly.instantiateStreaming(ue,S);return be.then(L,function(tt){return G("wasm streaming compile failed: "+tt),G("falling back to ArrayBuffer instantiation"),q(L)})}):q(L)}if(u.instantiateWasm)try{var le=u.instantiateWasm(S,E);return le}catch(ue){return G("Module.instantiateWasm callback failed with error: "+ue),!1}return pe().catch(c),{}}var K0={9816:function(){throw"Canceled!"},9834:function(S,E){setTimeout(function(){$g(S,E)},0)}};function dp(){we.initRuntime()}function Vi(S){for(;S.length>0;){var E=S.shift();if(typeof E=="function"){E(u);continue}var L=E.func;typeof L=="number"?E.arg===void 0?ea.get(L)():ea.get(L)(E.arg):L(E.arg===void 0?null:E.arg)}}function au(S,E){if(S<=0||S>s().length||S&!0||E<0)return-28;if(E==0)return 0;E>=2147483647&&(E=Infinity);var L=Atomics.load(o(),Xi>>2),q=0;if(L==S){var pe=Atomics.compareExchange(o(),Xi>>2,L,0);if(pe==L&&(--E,q=1,E<=0))return 1}var le=Atomics.notify(o(),S>>2,E);if(le>=0)return le+q;throw"Atomics.notify returned an unexpected value "+le}u._emscripten_futex_wake=au;function Z0(S){if(v)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in killThread!";o()[S+12>>2]=0;var E=we.pthreads[S];E.worker.terminate(),we.freeThreadData(E),we.runningWorkers.splice(we.runningWorkers.indexOf(E.worker),1),E.worker.pthread=void 0}function Y0(S){if(v)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cancelThread!";var E=we.pthreads[S];E.worker.postMessage({cmd:"cancel"})}function J0(S){if(v)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!S)throw"Internal Error! Null pthread_ptr in cleanupThread!";var E=we.pthreads[S];if(E){o()[S+12>>2]=0;var L=E.worker;we.returnWorkerToPool(L)}}var we={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var S=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),E=0;E<S;++E)we.allocateUnusedWorker()},initRuntime:function(){for(var S=as(228),E=0;E<228/4;++E)l()[S/4+E]=0;o()[S+12>>2]=S;var L=S+152;o()[L>>2]=L;for(var q=as(512),E=0;E<128;++E)l()[q/4+E]=0;Atomics.store(l(),S+100>>2,q),Atomics.store(l(),S+40>>2,S),dm(S,!x,1),Fg(S)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;we.threadExitHandlers.length>0;)we.threadExitHandlers.pop()();v&&Hi()&&Mg()},runExitHandlersAndDeinitThread:function(S,E){Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),we.runExitHandlers(),Atomics.store(l(),S+4>>2,E),Atomics.store(l(),S+0>>2,1),au(S+0,2147483647),dm(0,0,0)},threadExit:function(S){var E=Hi();E&&(we.runExitHandlersAndDeinitThread(E,S),v&&postMessage({cmd:"exit"}))},threadCancel:function(){we.runExitHandlersAndDeinitThread(Hi(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var S in we.pthreads){var E=we.pthreads[S];E&&E.worker&&we.returnWorkerToPool(E.worker)}we.pthreads={};for(var L=0;L<we.unusedWorkers.length;++L){var q=we.unusedWorkers[L];q.terminate()}we.unusedWorkers=[];for(var L=0;L<we.runningWorkers.length;++L){var q=we.runningWorkers[L],E=q.pthread;we.freeThreadData(E),q.terminate()}we.runningWorkers=[]},freeThreadData:function(S){if(S){if(S.threadInfoStruct){var E=o()[S.threadInfoStruct+100>>2];o()[S.threadInfoStruct+100>>2]=0,du(E),du(S.threadInfoStruct)}S.threadInfoStruct=0,S.allocatedOwnStack&&S.stackBase&&du(S.stackBase),S.stackBase=0,S.worker&&(S.worker.pthread=null)}},returnWorkerToPool:function(S){we.runWithoutMainThreadQueuedCalls(function(){delete we.pthreads[S.pthread.threadInfoStruct],we.unusedWorkers.push(S),we.runningWorkers.splice(we.runningWorkers.indexOf(S),1),we.freeThreadData(S.pthread),S.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(S){o()[Pg>>2]=0;try{S()}finally{o()[Pg>>2]=1}},receiveObjectTransfer:function(S){},loadWasmModuleToWorker:function(S,E){S.onmessage=function(L){var q=L.data,pe=q.cmd;if(S.pthread&&(we.currentProxiedOperationCallerThread=S.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Hi()){var le=we.pthreads[q.targetThread];le?le.worker.postMessage(L.data,q.transferList):console.error('Internal error! Worker sent a message "'+pe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),we.currentProxiedOperationCallerThread=void 0;return}if(pe==="processQueuedMainThreadWork")lm();else if(pe==="spawnThread")Ap(L.data);else if(pe==="cleanupThread")J0(q.thread);else if(pe==="killThread")Z0(q.thread);else if(pe==="cancelThread")Y0(q.thread);else if(pe==="loaded")S.loaded=!0,E&&E(S),S.runPthread&&(S.runPthread(),delete S.runPthread);else if(pe==="print")X("Thread "+q.threadId+": "+q.text);else if(pe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(pe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(pe==="exit"){var ue=S.pthread&&Atomics.load(l(),S.pthread.threadInfoStruct+64>>2);ue&&we.returnWorkerToPool(S)}else if(pe==="exitProcess")try{B9(q.returnCode)}catch(be){if(be instanceof cu)return;throw be}else pe==="cancelDone"?we.returnWorkerToPool(S):pe==="objectTransfer"?we.receiveObjectTransfer(L.data):L.data.target==="setimmediate"?S.postMessage(L.data):G("worker sent an unknown command "+pe);we.currentProxiedOperationCallerThread=void 0},S.onerror=function(L){G("pthread sent an error! "+L.filename+":"+L.lineno+": "+L.message)},w&&(S.on("message",function(L){S.onmessage({data:L})}),S.on("error",function(L){S.onerror(L)}),S.on("exit",function(L){})),S.postMessage({cmd:"load",urlOrBlob:u.mainScriptUrlOrBlob||a,wasmMemory:Q,wasmModule:de})},allocateUnusedWorker:function(){var S=T("tfjs-backend-wasm-threaded-simd.worker.js");we.unusedWorkers.push(new Worker(S))},getNewWorker:function(){return we.unusedWorkers.length==0&&(we.allocateUnusedWorker(),we.loadWasmModuleToWorker(we.unusedWorkers[0])),we.unusedWorkers.length>0?we.unusedWorkers.pop():null},busySpinWait:function(S){for(var E=performance.now()+S;performance.now()<E;);}};function Q0(S,E){zg(S,E),Gi(S)}u.establishStackSpace=Q0;function ef(){return ie}u.getNoExitRuntime=ef;function tf(S,E){return ea.get(S)(E)}u.invokeEntryPoint=tf;function nf(S,E,L,q){Ya("Assertion failed: "+De(S)+", at: "+[E?De(E):"unknown filename",L,q?De(q):"unknown function"])}function af(S,E){var L=_main(S,E)}var ns;w?ns=function(){var S=process.hrtime();return S[0]*1e3+S[1]/1e6}:v?ns=function(){return performance.now()-u.__performance_now_clock_drift}:typeof dateNow!="undefined"?ns=dateNow:ns=function(){return performance.now()};function rf(S){return o()[Cg()>>2]=S,S}function sf(S,E){if(v)return yr(1,1,S,E)}function of(S,E){if(S==E)postMessage({cmd:"processQueuedMainThreadWork"});else if(v)postMessage({targetThread:S,cmd:"processThreadQueue"});else{var L=we.pthreads[S],q=L&&L.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function lf(){Ya()}function uf(S,E,L){var q=ff(E,L);return K0[S].apply(null,q)}function df(S,E){}function pf(S,E,L){if(S<=0||S>s().length||S&!0)return-28;if(g){if(Atomics.load(o(),S>>2)!=E)return-6;for(var q=performance.now(),pe=q+L,le=Atomics.exchange(o(),Xi>>2,S);;){if(q=performance.now(),q>pe)return le=Atomics.exchange(o(),Xi>>2,0),-73;if(le=Atomics.exchange(o(),Xi>>2,0),le==0)break;if(lm(),Atomics.load(o(),S>>2)!=E)return-6;le=Atomics.exchange(o(),Xi>>2,S)}return 0}else{var ue=Atomics.wait(o(),S>>2,E,L);if(ue==="timed-out")return-73;if(ue==="not-equal")return-6;if(ue==="ok")return 0;throw"Atomics.wait returned an unexpected value "+ue}}function cf(S,E,L){i().copyWithin(S,E,E+L)}function hf(){return w?Yi("os").cpus().length:navigator.hardwareConcurrency}function yr(S,E){for(var L=arguments.length-2,q=pu(),pe=L,le=qi(pe*8),ue=le>>3,be=0;be<L;be++){var tt=arguments[2+be];d()[ue+be]=tt}var Bt=Og(S,pe,le,E);return Gi(q),Bt}var ru=[],su=[];function ff(S,E){su.length=0;var L;for(E>>=2;L=i()[S++];){var q=L<105;q&&E&1&&E++,su.push(q?d()[E++>>1]:o()[E]),++E}return su}function mf(S,E,L){ru.length=E;for(var q=L>>3,pe=0;pe<E;pe++)ru[pe]=d()[q+pe];var le=S<0,ue=le?K0[-S-1]:Pf[S];return ue.apply(null,ru)}function Af(){return i().length}function yf(S){try{return Q.grow(S-Ve.byteLength+65535>>>16),Kt(Q.buffer),1}catch(E){}}function gf(S){var E=Af();if(S<=E)return!1;var L=2147483648;if(S>L)return!1;for(var q=1;q<=4;q*=2){var pe=E*(1+.2/q);pe=Math.min(pe,S+100663296);var le=Math.min(L,dt(Math.max(S,pe),65536)),ue=yf(le);if(ue)return!0}return!1}var Pe={inEventHandler:0,removeAllEventListeners:function(){for(var S=Pe.eventHandlers.length-1;S>=0;--S)Pe._removeHandler(S);Pe.eventHandlers=[],Pe.deferredCalls=[]},registerRemoveEventListeners:function(){Pe.removeEventListenersRegistered||(mr.push(Pe.removeAllEventListeners),Pe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(S,E,L){function q(ue,be){if(ue.length!=be.length)return!1;for(var tt in ue)if(ue[tt]!=be[tt])return!1;return!0}for(var pe in Pe.deferredCalls){var le=Pe.deferredCalls[pe];if(le.targetFunction==S&&q(le.argsList,L))return}Pe.deferredCalls.push({targetFunction:S,precedence:E,argsList:L}),Pe.deferredCalls.sort(function(ue,be){return ue.precedence<be.precedence})},removeDeferredCalls:function(S){for(var E=0;E<Pe.deferredCalls.length;++E)Pe.deferredCalls[E].targetFunction==S&&(Pe.deferredCalls.splice(E,1),--E)},canPerformEventHandlerRequests:function(){return Pe.inEventHandler&&Pe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Pe.canPerformEventHandlerRequests())for(var S=0;S<Pe.deferredCalls.length;++S){var E=Pe.deferredCalls[S];Pe.deferredCalls.splice(S,1),--S,E.targetFunction.apply(null,E.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(S,E){for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S&&(!E||E==Pe.eventHandlers[L].eventTypeString)&&Pe._removeHandler(L--)},_removeHandler:function(S){var E=Pe.eventHandlers[S];E.target.removeEventListener(E.eventTypeString,E.eventListenerFunc,E.useCapture),Pe.eventHandlers.splice(S,1)},registerOrRemoveHandler:function(S){var E=function(q){++Pe.inEventHandler,Pe.currentEventHandler=S,Pe.runDeferredCalls(),S.handlerFunc(q),Pe.runDeferredCalls(),--Pe.inEventHandler};if(S.callbackfunc)S.eventListenerFunc=E,S.target.addEventListener(S.eventTypeString,E,S.useCapture),Pe.eventHandlers.push(S),Pe.registerRemoveEventListeners();else for(var L=0;L<Pe.eventHandlers.length;++L)Pe.eventHandlers[L].target==S.target&&Pe.eventHandlers[L].eventTypeString==S.eventTypeString&&Pe._removeHandler(L--)},queueEventHandlerOnThread_iiii:function(S,E,L,q,pe){var le=pu(),ue=qi(12);o()[ue>>2]=L,o()[ue+4>>2]=q,o()[ue+8>>2]=pe,um(0,S,637534208,E,q,ue),Gi(le)},getTargetThreadForEventCallback:function(S){switch(S){case 1:return 0;case 2:return we.currentProxiedOperationCallerThread;default:return S}},getNodeNameForTarget:function(S){return S?S==window?"#window":S==screen?"#screen":S&&S.nodeName?S.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function xf(S){var E=rt(S)+1,L=as(E);return et(S,L,E),L}function bf(S,E,L,q){var pe=pu(),le=qi(12),ue=0;E&&(ue=xf(E)),o()[le>>2]=ue,o()[le+4>>2]=L,o()[le+8>>2]=q,um(0,S,657457152,0,ue,le),Gi(pe)}function vf(S,E,L,q){E=E?De(E):"",bf(S,E,L,q)}function wf(S){return S>2?De(S):S}var kf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function If(S){S=wf(S);var E=kf[S]||(typeof document!="undefined"?document.querySelector(S):void 0);return E}function iu(S){return If(S)}function pp(S,E,L){var q=iu(S);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=E,o()[q.canvasSharedPtr+4>>2]=L),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var pe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var le=q.GLctxObject.GLctx.getParameter(2978);pe=le[0]===0&&le[1]===0&&le[2]===q.width&&le[3]===q.height}q.width=E,q.height=L,pe&&q.GLctxObject.GLctx.viewport(0,0,E,L)}else if(q.canvasSharedPtr){var ue=o()[q.canvasSharedPtr+8>>2];return vf(ue,S,E,L),1}else return-4;return 0}function cp(S,E,L){return v?yr(2,1,S,E,L):pp(S,E,L)}function Sf(S,E,L){var q=iu(S);return q?pp(S,E,L):cp(S,E,L)}function Nf(S){}function Tf(S,E){}function Ef(S){var E=S.getExtension("ANGLE_instanced_arrays");if(E)return S.vertexAttribDivisor=function(L,q){E.vertexAttribDivisorANGLE(L,q)},S.drawArraysInstanced=function(L,q,pe,le){E.drawArraysInstancedANGLE(L,q,pe,le)},S.drawElementsInstanced=function(L,q,pe,le,ue){E.drawElementsInstancedANGLE(L,q,pe,le,ue)},1}function Cf(S){var E=S.getExtension("OES_vertex_array_object");if(E)return S.createVertexArray=function(){return E.createVertexArrayOES()},S.deleteVertexArray=function(L){E.deleteVertexArrayOES(L)},S.bindVertexArray=function(L){E.bindVertexArrayOES(L)},S.isVertexArray=function(L){return E.isVertexArrayOES(L)},1}function Rf(S){var E=S.getExtension("WEBGL_draw_buffers");if(E)return S.drawBuffers=function(L,q){E.drawBuffersWEBGL(L,q)},1}function Mf(S){return!!(S.multiDrawWebgl=S.getExtension("WEBGL_multi_draw"))}var Je={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(S){Je.lastError||(Je.lastError=S)},getNewId:function(S){for(var E=Je.counter++,L=S.length;L<E;L++)S[L]=null;return E},getSource:function(S,E,L,q){for(var pe="",le=0;le<E;++le){var ue=q?o()[q+le*4>>2]:-1;pe+=De(o()[L+le*4>>2],ue<0?void 0:ue)}return pe},createContext:function(S,E){var L=S.getContext("webgl",E);if(!L)return 0;var q=Je.registerContext(L,E);return q},registerContext:function(S,E){var L=as(8);o()[L+4>>2]=Hi();var q={handle:L,attributes:E,version:E.majorVersion,GLctx:S};return S.canvas&&(S.canvas.GLctxObject=q),Je.contexts[L]=q,(typeof E.enableExtensionsByDefault=="undefined"||E.enableExtensionsByDefault)&&Je.initExtensions(q),L},makeContextCurrent:function(S){return Je.currentContext=Je.contexts[S],u.ctx=gr=Je.currentContext&&Je.currentContext.GLctx,!(S&&!gr)},getContext:function(S){return Je.contexts[S]},deleteContext:function(S){Je.currentContext===Je.contexts[S]&&(Je.currentContext=null),typeof Pe=="object"&&Pe.removeAllHandlersOnTarget(Je.contexts[S].GLctx.canvas),Je.contexts[S]&&Je.contexts[S].GLctx.canvas&&(Je.contexts[S].GLctx.canvas.GLctxObject=void 0),du(Je.contexts[S].handle),Je.contexts[S]=null},initExtensions:function(S){if(S||(S=Je.currentContext),!S.initExtensionsDone){S.initExtensionsDone=!0;var E=S.GLctx;Ef(E),Cf(E),Rf(E),E.disjointTimerQueryExt=E.getExtension("EXT_disjoint_timer_query"),Mf(E);var L=E.getSupportedExtensions()||[];L.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&E.getExtension(q)})}},populateUniformTable:function(S){for(var E=Je.programs[S],L=Je.programInfos[S]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=L.uniforms,pe=gr.getProgramParameter(E,35718),le=0;le<pe;++le){var ue=gr.getActiveUniform(E,le),be=ue.name;L.maxUniformLength=Math.max(L.maxUniformLength,be.length+1),be.slice(-1)=="]"&&(be=be.slice(0,be.lastIndexOf("[")));var tt=gr.getUniformLocation(E,be);if(tt){var Bt=Je.getNewId(Je.uniforms);q[be]=[ue.size,Bt],Je.uniforms[Bt]=tt;for(var $t=1;$t<ue.size;++$t){var br=be+"["+$t+"]";tt=gr.getUniformLocation(E,br),Bt=Je.getNewId(Je.uniforms),Je.uniforms[Bt]=tt}}}}},Ff=["default","low-power","high-performance"];function $f(S,E){var L=E>>2,q=o()[L+(24>>2)],pe={alpha:!!o()[L+(0>>2)],depth:!!o()[L+(4>>2)],stencil:!!o()[L+(8>>2)],antialias:!!o()[L+(12>>2)],premultipliedAlpha:!!o()[L+(16>>2)],preserveDrawingBuffer:!!o()[L+(20>>2)],powerPreference:Ff[q],failIfMajorPerformanceCaveat:!!o()[L+(28>>2)],majorVersion:o()[L+(32>>2)],minorVersion:o()[L+(36>>2)],enableExtensionsByDefault:o()[L+(40>>2)],explicitSwapControl:o()[L+(44>>2)],proxyContextToMainThread:o()[L+(48>>2)],renderViaOffscreenBackBuffer:o()[L+(52>>2)]},le=iu(S);if(!le||pe.explicitSwapControl)return 0;var ue=Je.createContext(le,pe);return ue}function Df(S,E){return $f(S,E)}var ji={mappings:{},buffers:[null,[],[]],printChar:function(S,E){var L=ji.buffers[S];E===0||E===10?((S===1?X:G)(ze(L,0)),L.length=0):L.push(E)},varargs:void 0,get:function(){ji.varargs+=4;var S=o()[ji.varargs-4>>2];return S},getStr:function(S){var E=De(S);return E},get64:function(S,E){return S}};function hp(S){return v?yr(3,1,S):0}function fp(S,E,L,q,pe){if(v)return yr(4,1,S,E,L,q,pe)}function mp(S,E,L,q){if(v)return yr(5,1,S,E,L,q);for(var pe=0,le=0;le<L;le++){for(var ue=o()[E+le*8>>2],be=o()[E+(le*8+4)>>2],tt=0;tt<be;tt++)ji.printChar(S,i()[ue+tt]);pe+=be}return o()[q>>2]=pe,0}function Of(S){var E=we.threadExitHandlers.pop();S&&E()}function zf(S,E){we.threadExitHandlers.push(function(){ea.get(S)(E)})}function Ap(S){if(v)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var E=we.getNewWorker();if(E.pthread!==void 0)throw"Internal error!";if(!S.pthread_ptr)throw"Internal error, no pthread ptr!";we.runningWorkers.push(E);for(var L=as(128*4),q=0;q<128;++q)o()[L+q*4>>2]=0;var pe=S.stackBase+S.stackSize,le=we.pthreads[S.pthread_ptr]={worker:E,stackBase:S.stackBase,stackSize:S.stackSize,allocatedOwnStack:S.allocatedOwnStack,threadInfoStruct:S.pthread_ptr},ue=le.threadInfoStruct>>2;Atomics.store(l(),ue+(64>>2),S.detached),Atomics.store(l(),ue+(100>>2),L),Atomics.store(l(),ue+(40>>2),le.threadInfoStruct),Atomics.store(l(),ue+(80>>2),S.stackSize),Atomics.store(l(),ue+(76>>2),pe),Atomics.store(l(),ue+(104>>2),S.stackSize),Atomics.store(l(),ue+(104+8>>2),pe),Atomics.store(l(),ue+(104+12>>2),S.detached);var be=Rg(),tt=be+40;Atomics.store(l(),ue+(172>>2),tt),E.pthread=le;var Bt={cmd:"run",start_routine:S.startRoutine,arg:S.arg,threadInfoStruct:S.pthread_ptr,stackBase:S.stackBase,stackSize:S.stackSize};E.runPthread=function(){Bt.time=performance.now(),E.postMessage(Bt,S.transferList)},E.loaded&&(E.runPthread(),delete E.runPthread)}function _f(S,E,L,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!S)return G("pthread_create called with a null thread pointer!"),28;var pe=[],le=0;if(v&&(pe.length===0||le))return Dg(687865856,S,E,L,q);if(le)return le;var ue=0,be=0,tt=0;E&&E!=-1?(ue=o()[E>>2],ue+=81920,be=o()[E+8>>2],tt=o()[E+12>>2]!==0):ue=2097152;var Bt=be==0;Bt?be=_g(16,ue):(be-=ue,ce(be>0));for(var $t=as(228),br=0;br<228>>2;++br)l()[($t>>2)+br]=0;o()[S>>2]=$t,o()[$t+12>>2]=$t;var Ki=$t+152;o()[Ki>>2]=Ki;var bn={stackBase:be,stackSize:ue,allocatedOwnStack:Bt,detached:tt,startRoutine:L,pthread_ptr:$t,arg:q,transferList:pe};return v?(bn.cmd="spawnThread",postMessage(bn,pe)):Ap(bn),0}function yp(S){if(v)return yr(6,1,S);switch(S){case 30:return 16384;case 85:var E=2147483648;return E/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return rf(28),-1}v||we.initMainThreadBlock();var gr,Pf=[null,sf,cp,hp,fp,mp,yp],Lf={e:nf,r:af,x:of,b:lf,y:uf,j:df,c:pf,d:au,f:ns,p:cf,z:hf,u:mf,q:gf,v:Sf,i:Nf,t:Tf,w:Df,m:hp,n:fp,g:mp,o:dp,a:Q||u.wasmMemory,k:Of,l:zf,h:_f,s:yp},Eg=X0(),gp=u.___wasm_call_ctors=function(){return(gp=u.___wasm_call_ctors=u.asm.A).apply(null,arguments)},Wf=u._init=function(){return(Wf=u._init=u.asm.B).apply(null,arguments)},Bf=u._register_tensor=function(){return(Bf=u._register_tensor=u.asm.C).apply(null,arguments)},Vf=u._dispose_data=function(){return(Vf=u._dispose_data=u.asm.D).apply(null,arguments)},jf=u._dispose=function(){return(jf=u._dispose=u.asm.E).apply(null,arguments)},Uf=u._Abs=function(){return(Uf=u._Abs=u.asm.G).apply(null,arguments)},Hf=u._Add=function(){return(Hf=u._Add=u.asm.H).apply(null,arguments)},Gf=u._AddN=function(){return(Gf=u._AddN=u.asm.I).apply(null,arguments)},qf=u._All=function(){return(qf=u._All=u.asm.J).apply(null,arguments)},Xf=u._Any=function(){return(Xf=u._Any=u.asm.K).apply(null,arguments)},Kf=u._ArgMax=function(){return(Kf=u._ArgMax=u.asm.L).apply(null,arguments)},Zf=u._AvgPool=function(){return(Zf=u._AvgPool=u.asm.M).apply(null,arguments)},Yf=u._BatchMatMul=function(){return(Yf=u._BatchMatMul=u.asm.N).apply(null,arguments)},Jf=u._Ceil=function(){return(Jf=u._Ceil=u.asm.O).apply(null,arguments)},Qf=u._ClipByValue=function(){return(Qf=u._ClipByValue=u.asm.P).apply(null,arguments)},em=u._Conv2D=function(){return(em=u._Conv2D=u.asm.Q).apply(null,arguments)},tm=u._Conv2DBackpropInput=function(){return(tm=u._Conv2DBackpropInput=u.asm.R).apply(null,arguments)},nm=u._Cos=function(){return(nm=u._Cos=u.asm.S).apply(null,arguments)},am=u._CropAndResize=function(){return(am=u._CropAndResize=u.asm.T).apply(null,arguments)},rm=u._Cumsum=function(){return(rm=u._Cumsum=u.asm.U).apply(null,arguments)},sm=u._DepthToSpace=function(){return(sm=u._DepthToSpace=u.asm.V).apply(null,arguments)},im=u._DepthwiseConv2dNative=function(){return(im=u._DepthwiseConv2dNative=u.asm.W).apply(null,arguments)},xp=u._Equal=function(){return(xp=u._Equal=u.asm.X).apply(null,arguments)},bp=u._Exp=function(){return(bp=u._Exp=u.asm.Y).apply(null,arguments)},vp=u._FlipLeftRight=function(){return(vp=u._FlipLeftRight=u.asm.Z).apply(null,arguments)},ou=u._Floor=function(){return(ou=u._Floor=u.asm._).apply(null,arguments)},Ui=u._FloorDiv=function(){return(Ui=u._FloorDiv=u.asm.$).apply(null,arguments)},om=u._FusedBatchNorm=function(){return(om=u._FusedBatchNorm=u.asm.aa).apply(null,arguments)},lu=u._FusedConv2D=function(){return(lu=u._FusedConv2D=u.asm.ba).apply(null,arguments)},K=u._FusedDepthwiseConv2D=function(){return(K=u._FusedDepthwiseConv2D=u.asm.ca).apply(null,arguments)},te=u._Gather=function(){return(te=u._Gather=u.asm.da).apply(null,arguments)},Te=u._GatherNd=function(){return(Te=u._GatherNd=u.asm.ea).apply(null,arguments)},Ke=u._Greater=function(){return(Ke=u._Greater=u.asm.fa).apply(null,arguments)},It=u._GreaterEqual=function(){return(It=u._GreaterEqual=u.asm.ga).apply(null,arguments)},ft=u._LeakyRelu=function(){return(ft=u._LeakyRelu=u.asm.ha).apply(null,arguments)},je=u._Less=function(){return(je=u._Less=u.asm.ia).apply(null,arguments)},He=u._LessEqual=function(){return(He=u._LessEqual=u.asm.ja).apply(null,arguments)},Zt=u._Log=function(){return(Zt=u._Log=u.asm.ka).apply(null,arguments)},Ja=u._LogicalAnd=function(){return(Ja=u._LogicalAnd=u.asm.la).apply(null,arguments)},Qa=u._Max=function(){return(Qa=u._Max=u.asm.ma).apply(null,arguments)},wp=u._MaxPool=function(){return(wp=u._MaxPool=u.asm.na).apply(null,arguments)},uu=u._Maximum=function(){return(uu=u._Maximum=u.asm.oa).apply(null,arguments)},Un=u._Mean=function(){return(Un=u._Mean=u.asm.pa).apply(null,arguments)},xr=u._Min=function(){return(xr=u._Min=u.asm.qa).apply(null,arguments)},kp=u._Minimum=function(){return(kp=u._Minimum=u.asm.ra).apply(null,arguments)},e9=u._MirrorPad=function(){return(e9=u._MirrorPad=u.asm.sa).apply(null,arguments)},t9=u._Multiply=function(){return(t9=u._Multiply=u.asm.ta).apply(null,arguments)},n9=u._Neg=function(){return(n9=u._Neg=u.asm.ua).apply(null,arguments)},a9=u._NonMaxSuppressionV3=function(){return(a9=u._NonMaxSuppressionV3=u.asm.va).apply(null,arguments)},r9=u._NonMaxSuppressionV4=function(){return(r9=u._NonMaxSuppressionV4=u.asm.wa).apply(null,arguments)},s9=u._NonMaxSuppressionV5=function(){return(s9=u._NonMaxSuppressionV5=u.asm.xa).apply(null,arguments)},i9=u._NotEqual=function(){return(i9=u._NotEqual=u.asm.ya).apply(null,arguments)},o9=u._OneHot=function(){return(o9=u._OneHot=u.asm.za).apply(null,arguments)},l9=u._PadV2=function(){return(l9=u._PadV2=u.asm.Aa).apply(null,arguments)},u9=u._Pow=function(){return(u9=u._Pow=u.asm.Ba).apply(null,arguments)},d9=u._Prelu=function(){return(d9=u._Prelu=u.asm.Ca).apply(null,arguments)},p9=u._Prod=function(){return(p9=u._Prod=u.asm.Da).apply(null,arguments)},c9=u._RealDiv=function(){return(c9=u._RealDiv=u.asm.Ea).apply(null,arguments)},h9=u._Relu=function(){return(h9=u._Relu=u.asm.Fa).apply(null,arguments)},f9=u._Relu6=function(){return(f9=u._Relu6=u.asm.Ga).apply(null,arguments)},m9=u._ResizeBilinear=function(){return(m9=u._ResizeBilinear=u.asm.Ha).apply(null,arguments)},A9=u._Reverse=function(){return(A9=u._Reverse=u.asm.Ia).apply(null,arguments)},y9=u._RotateWithOffset=function(){return(y9=u._RotateWithOffset=u.asm.Ja).apply(null,arguments)},g9=u._Round=function(){return(g9=u._Round=u.asm.Ka).apply(null,arguments)},x9=u._Rsqrt=function(){return(x9=u._Rsqrt=u.asm.La).apply(null,arguments)},b9=u._ScatterNd=function(){return(b9=u._ScatterNd=u.asm.Ma).apply(null,arguments)},v9=u._SelectV2=function(){return(v9=u._SelectV2=u.asm.Na).apply(null,arguments)},w9=u._Sigmoid=function(){return(w9=u._Sigmoid=u.asm.Oa).apply(null,arguments)},k9=u._Sin=function(){return(k9=u._Sin=u.asm.Pa).apply(null,arguments)},I9=u._Softmax=function(){return(I9=u._Softmax=u.asm.Qa).apply(null,arguments)},S9=u._Sqrt=function(){return(S9=u._Sqrt=u.asm.Ra).apply(null,arguments)},N9=u._Square=function(){return(N9=u._Square=u.asm.Sa).apply(null,arguments)},T9=u._SquaredDifference=function(){return(T9=u._SquaredDifference=u.asm.Ta).apply(null,arguments)},E9=u._Step=function(){return(E9=u._Step=u.asm.Ua).apply(null,arguments)},C9=u._StridedSlice=function(){return(C9=u._StridedSlice=u.asm.Va).apply(null,arguments)},R9=u._Sub=function(){return(R9=u._Sub=u.asm.Wa).apply(null,arguments)},M9=u._Sum=function(){return(M9=u._Sum=u.asm.Xa).apply(null,arguments)},F9=u._Tan=function(){return(F9=u._Tan=u.asm.Ya).apply(null,arguments)},$9=u._Tanh=function(){return($9=u._Tanh=u.asm.Za).apply(null,arguments)},D9=u._Tile=function(){return(D9=u._Tile=u.asm._a).apply(null,arguments)},O9=u._TopK=function(){return(O9=u._TopK=u.asm.$a).apply(null,arguments)},z9=u._Transform=function(){return(z9=u._Transform=u.asm.ab).apply(null,arguments)},_9=u._Transpose=function(){return(_9=u._Transpose=u.asm.bb).apply(null,arguments)},P9=u.__FusedMatMul=function(){return(P9=u.__FusedMatMul=u.asm.cb).apply(null,arguments)},as=u._malloc=function(){return(as=u._malloc=u.asm.db).apply(null,arguments)},du=u._free=function(){return(du=u._free=u.asm.eb).apply(null,arguments)},Cg=u.___errno_location=function(){return(Cg=u.___errno_location=u.asm.fb).apply(null,arguments)},Rg=u._emscripten_get_global_libc=function(){return(Rg=u._emscripten_get_global_libc=u.asm.gb).apply(null,arguments)},Hi=u._pthread_self=function(){return(Hi=u._pthread_self=u.asm.hb).apply(null,arguments)},Mg=u.___pthread_tsd_run_dtors=function(){return(Mg=u.___pthread_tsd_run_dtors=u.asm.ib).apply(null,arguments)},lm=u._emscripten_main_thread_process_queued_calls=function(){return(lm=u._emscripten_main_thread_process_queued_calls=u.asm.jb).apply(null,arguments)},L9=u._emscripten_current_thread_process_queued_calls=function(){return(L9=u._emscripten_current_thread_process_queued_calls=u.asm.kb).apply(null,arguments)},Fg=u._emscripten_register_main_browser_thread_id=function(){return(Fg=u._emscripten_register_main_browser_thread_id=u.asm.lb).apply(null,arguments)},$g=u.__emscripten_do_dispatch_to_thread=function(){return($g=u.__emscripten_do_dispatch_to_thread=u.asm.mb).apply(null,arguments)},Dg=u._emscripten_sync_run_in_main_thread_4=function(){return(Dg=u._emscripten_sync_run_in_main_thread_4=u.asm.nb).apply(null,arguments)},Og=u._emscripten_run_in_main_runtime_thread_js=function(){return(Og=u._emscripten_run_in_main_runtime_thread_js=u.asm.ob).apply(null,arguments)},um=u.__emscripten_call_on_thread=function(){return(um=u.__emscripten_call_on_thread=u.asm.pb).apply(null,arguments)},W9=u._emscripten_tls_init=function(){return(W9=u._emscripten_tls_init=u.asm.qb).apply(null,arguments)},dm=u.__emscripten_thread_init=function(){return(dm=u.__emscripten_thread_init=u.asm.rb).apply(null,arguments)},pu=u.stackSave=function(){return(pu=u.stackSave=u.asm.sb).apply(null,arguments)},Gi=u.stackRestore=function(){return(Gi=u.stackRestore=u.asm.tb).apply(null,arguments)},qi=u.stackAlloc=function(){return(qi=u.stackAlloc=u.asm.ub).apply(null,arguments)},zg=u._emscripten_stack_set_limits=function(){return(zg=u._emscripten_stack_set_limits=u.asm.vb).apply(null,arguments)},_g=u._memalign=function(){return(_g=u._memalign=u.asm.wb).apply(null,arguments)},Pg=u.__emscripten_allow_main_runtime_queued_calls=9808,Xi=u.__emscripten_main_thread_futex=11432;u.cwrap=$e,u.PThread=we,u.PThread=we,u.wasmMemory=Q,u.ExitStatus=cu;var Ip;function cu(S){this.name="ExitStatus",this.message="Program terminated with exit("+S+")",this.status=S}ts=function S(){Ip||pm(),Ip||(ts=S)};function pm(S){if(S=S||f,Za>0)return;if(v){p(u),nu(),postMessage({cmd:"loaded"});return}if(B0(),Za>0)return;function E(){Ip||(Ip=!0,u.calledRun=!0,!oe&&(nu(),V0(),p(u),u.onRuntimeInitialized&&u.onRuntimeInitialized(),gn()))}u.setStatus?(u.setStatus("Running..."),setTimeout(function(){setTimeout(function(){u.setStatus("")},1),E()},1)):E()}u.run=pm;function B9(S,E){if(!(E&&ie&&S===0)){if(!E&&v)throw postMessage({cmd:"exitProcess",returnCode:S}),new cu(S);ie||(we.terminateAllThreads(),ye=S,rp(),u.onExit&&u.onExit(S),oe=!0),y(S,new cu(S))}}if(u.preInit)for(typeof u.preInit=="function"&&(u.preInit=[u.preInit]);u.preInit.length>0;)u.preInit.pop()();return v&&(ie=!1,we.initWorker()),pm(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),oI=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(K,te){i=K,o=te});var l={},d;for(d in s)s.hasOwnProperty(d)&&(l[d]=s[d]);var u=[],p="./this.program",c=function(K,te){throw te},h=!1,m=!1,f=!1,A=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!h&&!f&&!m;var y="";function g(K){return s.locateFile?s.locateFile(K,y):y+K}var x,w,b,v,N,T;f?(m?y=hu().dirname(y)+"/":y=__dirname+"/",x=function(K,te){return N||(N=Yi("fs")),T||(T=hu()),K=T.normalize(K),N.readFileSync(K,te?null:"utf8")},b=function(K){var te=x(K,!0);return te.buffer||(te=new Uint8Array(te)),X(te.buffer),te},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),u=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof om))throw K}),process.on("unhandledRejection",Ma),c=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(x=function(K){return read(K)}),b=function(K){var te;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(te=read(K,"binary"),X(typeof te=="object"),te)},typeof scriptArgs!="undefined"?u=scriptArgs:typeof arguments!="undefined"&&(u=arguments),typeof quit=="function"&&(c=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.send(null),te.responseText},m&&(b=function(K){var te=new XMLHttpRequest;return te.open("GET",K,!1),te.responseType="arraybuffer",te.send(null),new Uint8Array(te.response)}),w=function(K,te,Te){var Ke=new XMLHttpRequest;Ke.open("GET",K,!0),Ke.responseType="arraybuffer",Ke.onload=function(){if(Ke.status==200||Ke.status==0&&Ke.response){te(Ke.response);return}Te()},Ke.onerror=Te,Ke.send(null)},v=function(K){document.title=K});var R=s.print||console.log.bind(console),$=s.printErr||console.warn.bind(console);for(d in l)l.hasOwnProperty(d)&&(s[d]=l[d]);l=null,s.arguments&&(u=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var z;s.wasmBinary&&(z=s.wasmBinary);var P=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Ma("no native wasm support detected");var V,j=!1,U;function X(K,te){K||Ma("Assertion failed: "+te)}function G(K){var te=s["_"+K];return X(te,"Cannot call unknown function "+K+", make sure it is exported"),te}function ee(K,te,Te,Ke,It){var ft={string:function(Un){var xr=0;if(Un!=null&&Un!==0){var kp=(Un.length<<2)+1;xr=ou(kp),de(Un,xr,kp)}return xr},array:function(Un){var xr=ou(Un.length);return oe(Un,xr),xr}};function je(Un){return te==="string"?ie(Un):te==="boolean"?Boolean(Un):Un}var He=G(K),Zt=[],Ja=0;if(Ke)for(var Qa=0;Qa<Ke.length;Qa++){var wp=ft[Te[Qa]];wp?(Ja===0&&(Ja=bp()),Zt[Qa]=wp(Ke[Qa])):Zt[Qa]=Ke[Qa]}var uu=He.apply(null,Zt);return uu=je(uu),Ja!==0&&vp(Ja),uu}function Y(K,te,Te,Ke){Te=Te||[];var It=Te.every(function(je){return je==="number"}),ft=te!=="string";return ft&&It&&!Ke?G(K):function(){return ee(K,te,Te,arguments,Ke)}}var re=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,te,Te){for(var Ke=te+Te,It=te;K[It]&&!(It>=Ke);)++It;if(It-te>16&&K.subarray&&re)return re.decode(K.subarray(te,It));for(var ft="";te<It;){var je=K[te++];if(!(je&128)){ft+=String.fromCharCode(je);continue}var He=K[te++]&63;if((je&224)==192){ft+=String.fromCharCode((je&31)<<6|He);continue}var Zt=K[te++]&63;if((je&240)==224?je=(je&15)<<12|He<<6|Zt:je=(je&7)<<18|He<<12|Zt<<6|K[te++]&63,je<65536)ft+=String.fromCharCode(je);else{var Ja=je-65536;ft+=String.fromCharCode(55296|Ja>>10,56320|Ja&1023)}}return ft}function ie(K,te){return K?ne(Ne,K,te):""}function Q(K,te,Te,Ke){if(!(Ke>0))return 0;for(var It=Te,ft=Te+Ke-1,je=0;je<K.length;++je){var He=K.charCodeAt(je);if(He>=55296&&He<=57343){var Zt=K.charCodeAt(++je);He=65536+((He&1023)<<10)|Zt&1023}if(He<=127){if(Te>=ft)break;te[Te++]=He}else if(He<=2047){if(Te+1>=ft)break;te[Te++]=192|He>>6,te[Te++]=128|He&63}else if(He<=65535){if(Te+2>=ft)break;te[Te++]=224|He>>12,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}else{if(Te+3>=ft)break;te[Te++]=240|He>>18,te[Te++]=128|He>>12&63,te[Te++]=128|He>>6&63,te[Te++]=128|He&63}}return te[Te]=0,Te-It}function de(K,te,Te){return Q(K,Ne,te,Te)}function oe(K,te){Ie.set(K,te)}function ye(K,te){return K%te>0&&(K+=te-K%te),K}var ce,Ie,Ne,$e,ze,De,Qe,et,rt;function Xe(K){ce=K,s.HEAP8=Ie=new Int8Array(K),s.HEAP16=$e=new Int16Array(K),s.HEAP32=De=new Int32Array(K),s.HEAPU8=Ne=new Uint8Array(K),s.HEAPU16=ze=new Uint16Array(K),s.HEAPU32=Qe=new Uint32Array(K),s.HEAPF32=et=new Float32Array(K),s.HEAPF64=rt=new Float64Array(K)}var dt=s.INITIAL_MEMORY||16777216,Ve,An=[],gt=[],Vn=[],Xt=[],yn=!1;gt.push({func:function(){dp()}});function jn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ra(s.preRun.shift());Ar(An)}function Rn(){yn=!0,Ar(gt)}function rn(){Ar(Vn)}function Kt(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)ea(s.postRun.shift());Ar(Xt)}function Ra(K){An.unshift(K)}function ea(K){Xt.unshift(K)}var ta=0,fr=null,Ka=null;function mr(K){ta++,s.monitorRunDependencies&&s.monitorRunDependencies(ta)}function Wi(K){if(ta--,s.monitorRunDependencies&&s.monitorRunDependencies(ta),ta==0&&(fr!==null&&(clearInterval(fr),fr=null),Ka)){var te=Ka;Ka=null,te()}}s.preloadedImages={},s.preloadedAudios={};function Ma(K){s.onAbort&&s.onAbort(K),K+="",$(K),j=!0,U=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var te=new WebAssembly.RuntimeError(K);throw o(te),te}function ap(K,te){return String.prototype.startsWith?K.startsWith(te):K.indexOf(te)===0}var B0="data:application/octet-stream;base64,";function nu(K){return ap(K,B0)}var V0="file://";function rp(K){return ap(K,V0)}var gn="tfjs-backend-wasm.wasm";nu(gn)||(gn=g(gn));function sp(K){try{if(K==gn&&z)return new Uint8Array(z);if(b)return b(K);throw"both async and sync fetching of the wasm failed"}catch(te){Ma(te)}}function j0(){if(!z&&(h||m)){if(typeof fetch=="function"&&!rp(gn))return fetch(gn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+gn+"'";return K.arrayBuffer()}).catch(function(){return sp(gn)});if(w)return new Promise(function(K,te){w(gn,function(Te){K(new Uint8Array(Te))},te)})}return Promise.resolve().then(function(){return sp(gn)})}function Za(){var K={a:X0};function te(je,He){var Zt=je.exports;s.asm=Zt,V=s.asm.i,Xe(V.buffer),Ve=s.asm.o,Wi("wasm-instantiate")}mr("wasm-instantiate");function Te(je){te(je.instance)}function Ke(je){return j0().then(function(He){return WebAssembly.instantiate(He,K)}).then(je,function(He){$("failed to asynchronously prepare wasm: "+He),Ma(He)})}function It(){return!z&&typeof WebAssembly.instantiateStreaming=="function"&&!nu(gn)&&!rp(gn)&&typeof fetch=="function"?fetch(gn,{credentials:"same-origin"}).then(function(je){var He=WebAssembly.instantiateStreaming(je,K);return He.then(Te,function(Zt){return $("wasm streaming compile failed: "+Zt),$("falling back to ArrayBuffer instantiation"),Ke(Te)})}):Ke(Te)}if(s.instantiateWasm)try{var ft=s.instantiateWasm(K,te);return ft}catch(je){return $("Module.instantiateWasm callback failed with error: "+je),!1}return It().catch(o),{}}function Ar(K){for(;K.length>0;){var te=K.shift();if(typeof te=="function"){te(s);continue}var Te=te.func;typeof Te=="number"?te.arg===void 0?Ve.get(Te)():Ve.get(Te)(te.arg):Te(te.arg===void 0?null:te.arg)}}function ts(){Ma()}function U0(K,te,Te){Ne.copyWithin(K,te,te+Te)}function H0(){return Ne.length}function Ya(K){try{return V.grow(K-ce.byteLength+65535>>>16),Xe(V.buffer),1}catch(te){}}function ip(K){var te=H0(),Te=2147483648;if(K>Te)return!1;for(var Ke=1;Ke<=4;Ke*=2){var It=te*(1+.2/Ke);It=Math.min(It,K+100663296);var ft=Math.min(Te,ye(Math.max(K,It),65536)),je=Ya(ft);if(je)return!0}return!1}var Bi={mappings:{},buffers:[null,[],[]],printChar:function(K,te){var Te=Bi.buffers[K];te===0||te===10?((K===1?R:$)(ne(Te,0)),Te.length=0):Te.push(te)},varargs:void 0,get:function(){Bi.varargs+=4;var K=De[Bi.varargs-4>>2];return K},getStr:function(K){var te=ie(K);return te},get64:function(K,te){return K}};function op(K){return 0}function G0(K,te,Te,Ke,It){}function lp(K,te,Te,Ke){for(var It=0,ft=0;ft<Te;ft++){for(var je=De[te+ft*8>>2],He=De[te+(ft*8+4)>>2],Zt=0;Zt<He;Zt++)Bi.printChar(K,Ne[je+Zt]);It+=He}return De[Ke>>2]=It,0}function xn(){return 6}function up(K){return De[xp()>>2]=K,K}function q0(K){switch(K){case 30:return 16384;case 85:var te=2147483648;return te/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return up(28),-1}var X0={a:ts,d:U0,e:ip,f:op,c:G0,b:lp,g:xn,h:q0},K0=Za(),dp=s.___wasm_call_ctors=function(){return(dp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},Vi=s._init=function(){return(Vi=s._init=s.asm.k).apply(null,arguments)},au=s._register_tensor=function(){return(au=s._register_tensor=s.asm.l).apply(null,arguments)},Z0=s._dispose_data=function(){return(Z0=s._dispose_data=s.asm.m).apply(null,arguments)},Y0=s._dispose=function(){return(Y0=s._dispose=s.asm.n).apply(null,arguments)},J0=s._Abs=function(){return(J0=s._Abs=s.asm.p).apply(null,arguments)},we=s._Add=function(){return(we=s._Add=s.asm.q).apply(null,arguments)},Q0=s._AddN=function(){return(Q0=s._AddN=s.asm.r).apply(null,arguments)},ef=s._All=function(){return(ef=s._All=s.asm.s).apply(null,arguments)},tf=s._Any=function(){return(tf=s._Any=s.asm.t).apply(null,arguments)},nf=s._ArgMax=function(){return(nf=s._ArgMax=s.asm.u).apply(null,arguments)},af=s._AvgPool=function(){return(af=s._AvgPool=s.asm.v).apply(null,arguments)},ns=s._BatchMatMul=function(){return(ns=s._BatchMatMul=s.asm.w).apply(null,arguments)},rf=s._Ceil=function(){return(rf=s._Ceil=s.asm.x).apply(null,arguments)},sf=s._ClipByValue=function(){return(sf=s._ClipByValue=s.asm.y).apply(null,arguments)},of=s._Conv2D=function(){return(of=s._Conv2D=s.asm.z).apply(null,arguments)},lf=s._Conv2DBackpropInput=function(){return(lf=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},uf=s._Cos=function(){return(uf=s._Cos=s.asm.B).apply(null,arguments)},df=s._CropAndResize=function(){return(df=s._CropAndResize=s.asm.C).apply(null,arguments)},pf=s._Cumsum=function(){return(pf=s._Cumsum=s.asm.D).apply(null,arguments)},cf=s._DepthToSpace=function(){return(cf=s._DepthToSpace=s.asm.E).apply(null,arguments)},hf=s._DepthwiseConv2dNative=function(){return(hf=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},yr=s._Equal=function(){return(yr=s._Equal=s.asm.G).apply(null,arguments)},ru=s._Exp=function(){return(ru=s._Exp=s.asm.H).apply(null,arguments)},su=s._FlipLeftRight=function(){return(su=s._FlipLeftRight=s.asm.I).apply(null,arguments)},ff=s._Floor=function(){return(ff=s._Floor=s.asm.J).apply(null,arguments)},mf=s._FloorDiv=function(){return(mf=s._FloorDiv=s.asm.K).apply(null,arguments)},Af=s._FusedBatchNorm=function(){return(Af=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},yf=s._FusedConv2D=function(){return(yf=s._FusedConv2D=s.asm.M).apply(null,arguments)},gf=s._FusedDepthwiseConv2D=function(){return(gf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},Pe=s._Gather=function(){return(Pe=s._Gather=s.asm.O).apply(null,arguments)},xf=s._GatherNd=function(){return(xf=s._GatherNd=s.asm.P).apply(null,arguments)},bf=s._Greater=function(){return(bf=s._Greater=s.asm.Q).apply(null,arguments)},vf=s._GreaterEqual=function(){return(vf=s._GreaterEqual=s.asm.R).apply(null,arguments)},wf=s._LeakyRelu=function(){return(wf=s._LeakyRelu=s.asm.S).apply(null,arguments)},kf=s._Less=function(){return(kf=s._Less=s.asm.T).apply(null,arguments)},If=s._LessEqual=function(){return(If=s._LessEqual=s.asm.U).apply(null,arguments)},iu=s._Log=function(){return(iu=s._Log=s.asm.V).apply(null,arguments)},pp=s._LogicalAnd=function(){return(pp=s._LogicalAnd=s.asm.W).apply(null,arguments)},cp=s._Max=function(){return(cp=s._Max=s.asm.X).apply(null,arguments)},Sf=s._MaxPool=function(){return(Sf=s._MaxPool=s.asm.Y).apply(null,arguments)},Nf=s._Maximum=function(){return(Nf=s._Maximum=s.asm.Z).apply(null,arguments)},Tf=s._Mean=function(){return(Tf=s._Mean=s.asm._).apply(null,arguments)},Ef=s._Min=function(){return(Ef=s._Min=s.asm.$).apply(null,arguments)},Cf=s._Minimum=function(){return(Cf=s._Minimum=s.asm.aa).apply(null,arguments)},Rf=s._MirrorPad=function(){return(Rf=s._MirrorPad=s.asm.ba).apply(null,arguments)},Mf=s._Multiply=function(){return(Mf=s._Multiply=s.asm.ca).apply(null,arguments)},Je=s._Neg=function(){return(Je=s._Neg=s.asm.da).apply(null,arguments)},Ff=s._NonMaxSuppressionV3=function(){return(Ff=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},$f=s._NonMaxSuppressionV4=function(){return($f=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},Df=s._NonMaxSuppressionV5=function(){return(Df=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},ji=s._NotEqual=function(){return(ji=s._NotEqual=s.asm.ha).apply(null,arguments)},hp=s._OneHot=function(){return(hp=s._OneHot=s.asm.ia).apply(null,arguments)},fp=s._PadV2=function(){return(fp=s._PadV2=s.asm.ja).apply(null,arguments)},mp=s._Pow=function(){return(mp=s._Pow=s.asm.ka).apply(null,arguments)},Of=s._Prelu=function(){return(Of=s._Prelu=s.asm.la).apply(null,arguments)},zf=s._Prod=function(){return(zf=s._Prod=s.asm.ma).apply(null,arguments)},Ap=s._RealDiv=function(){return(Ap=s._RealDiv=s.asm.na).apply(null,arguments)},_f=s._Relu=function(){return(_f=s._Relu=s.asm.oa).apply(null,arguments)},yp=s._Relu6=function(){return(yp=s._Relu6=s.asm.pa).apply(null,arguments)},gr=s._ResizeBilinear=function(){return(gr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},Pf=s._Reverse=function(){return(Pf=s._Reverse=s.asm.ra).apply(null,arguments)},Lf=s._RotateWithOffset=function(){return(Lf=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},Eg=s._Round=function(){return(Eg=s._Round=s.asm.ta).apply(null,arguments)},gp=s._Rsqrt=function(){return(gp=s._Rsqrt=s.asm.ua).apply(null,arguments)},Wf=s._ScatterNd=function(){return(Wf=s._ScatterNd=s.asm.va).apply(null,arguments)},Bf=s._SelectV2=function(){return(Bf=s._SelectV2=s.asm.wa).apply(null,arguments)},Vf=s._Sigmoid=function(){return(Vf=s._Sigmoid=s.asm.xa).apply(null,arguments)},jf=s._Sin=function(){return(jf=s._Sin=s.asm.ya).apply(null,arguments)},Uf=s._Softmax=function(){return(Uf=s._Softmax=s.asm.za).apply(null,arguments)},Hf=s._Sqrt=function(){return(Hf=s._Sqrt=s.asm.Aa).apply(null,arguments)},Gf=s._Square=function(){return(Gf=s._Square=s.asm.Ba).apply(null,arguments)},qf=s._SquaredDifference=function(){return(qf=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Xf=s._Step=function(){return(Xf=s._Step=s.asm.Da).apply(null,arguments)},Kf=s._StridedSlice=function(){return(Kf=s._StridedSlice=s.asm.Ea).apply(null,arguments)},Zf=s._Sub=function(){return(Zf=s._Sub=s.asm.Fa).apply(null,arguments)},Yf=s._Sum=function(){return(Yf=s._Sum=s.asm.Ga).apply(null,arguments)},Jf=s._Tan=function(){return(Jf=s._Tan=s.asm.Ha).apply(null,arguments)},Qf=s._Tanh=function(){return(Qf=s._Tanh=s.asm.Ia).apply(null,arguments)},em=s._Tile=function(){return(em=s._Tile=s.asm.Ja).apply(null,arguments)},tm=s._TopK=function(){return(tm=s._TopK=s.asm.Ka).apply(null,arguments)},nm=s._Transform=function(){return(nm=s._Transform=s.asm.La).apply(null,arguments)},am=s._Transpose=function(){return(am=s._Transpose=s.asm.Ma).apply(null,arguments)},rm=s.__FusedMatMul=function(){return(rm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},sm=s._malloc=function(){return(sm=s._malloc=s.asm.Oa).apply(null,arguments)},im=s._free=function(){return(im=s._free=s.asm.Pa).apply(null,arguments)},xp=s.___errno_location=function(){return(xp=s.___errno_location=s.asm.Qa).apply(null,arguments)},bp=s.stackSave=function(){return(bp=s.stackSave=s.asm.Ra).apply(null,arguments)},vp=s.stackRestore=function(){return(vp=s.stackRestore=s.asm.Sa).apply(null,arguments)},ou=s.stackAlloc=function(){return(ou=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=Y;var Ui;function om(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}Ka=function K(){Ui||lu(),Ui||(Ka=K)};function lu(K){if(K=K||u,ta>0||(jn(),ta>0))return;function te(){Ui||(Ui=!0,s.calledRun=!0,!j&&(Rn(),rn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),Kt()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),te()},1)):te()}if(s.run=lu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return lu(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),lI=xt((e,t)=>{(function(n,a,r){function s(d){var u=this,p=l();u.next=function(){var c=2091639*u.s0+u.c*23283064365386963e-26;return u.s0=u.s1,u.s1=u.s2,u.s2=c-(u.c=c|0)},u.c=1,u.s0=p(" "),u.s1=p(" "),u.s2=p(" "),u.s0-=p(d),u.s0<0&&(u.s0+=1),u.s1-=p(d),u.s1<0&&(u.s1+=1),u.s2-=p(d),u.s2<0&&(u.s2+=1),p=null}function i(d,u){return u.c=d.c,u.s0=d.s0,u.s1=d.s1,u.s2=d.s2,u}function o(d,u){var p=new s(d),c=u&&u.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var d=4022871197,u=function(p){p=String(p);for(var c=0;c<p.length;c++){d+=p.charCodeAt(c);var h=.02519603282416938*d;d=h>>>0,h-=d,h*=d,d=h>>>0,h-=d,d+=h*4294967296}return(d>>>0)*23283064365386963e-26};return u}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.x=0,d.y=0,d.z=0,d.w=0,d.next=function(){var c=d.x^d.x<<11;return d.x=d.y,d.y=d.z,d.z=d.w,d.w^=d.w>>>19^c^c>>>8},l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.x^d.x>>>2;return d.x=d.y,d.y=d.z,d.z=d.w,d.w=d.v,(d.d=d.d+362437|0)+(d.v=d.v^d.v<<4^(c^c<<1))|0},d.x=0,d.y=0,d.z=0,d.w=0,d.v=0,l===(l|0)?d.x=l:u+=l;for(var p=0;p<u.length+64;p++)d.x^=u.charCodeAt(p)|0,p==u.length&&(d.d=d.x<<10^d.x>>>4),d.next()}function i(l,d){return d.x=l.x,d.y=l.y,d.z=l.z,d.w=l.w,d.v=l.v,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.x,c=d.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,d.i=c+1&7,m};function u(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}u(d,l)}function i(l,d){return d.x=l.x.slice(),d.i=l.i,d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.x&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),cI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this;d.next=function(){var p=d.w,c=d.X,h=d.i,m,f;return d.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,d.i=h,f+(p^p>>>16)|0};function u(p,c){var h,m,f,A,y,g=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,A=-32;A<x;++A)c&&(m^=c.charCodeAt((A+32)%c.length)),A===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,A>=0&&(y=y+1640531527|0,h=g[A&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(g[(c&&c.length||0)&127]=-1),f=127,A=4*128;A>0;--A)m=g[f+34&127],h=g[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,g[f]=m^h;p.w=y,p.X=g,p.i=f}u(d,l)}function i(l,d){return d.i=l.i,d.w=l.w,d.X=l.X.slice(),d}function o(l,d){l==null&&(l=+new Date);var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(p.X&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hI=xt((e,t)=>{(function(n,a,r){function s(l){var d=this,u="";d.next=function(){var c=d.b,h=d.c,m=d.d,f=d.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,d.b=c=c<<20^c>>>12^h,d.c=h=h-m|0,d.d=m<<16^h>>>16^f,d.a=f-c|0},d.a=0,d.b=0,d.c=2654435769|0,d.d=1367130551,l===Math.floor(l)?(d.a=l/4294967296|0,d.b=l|0):u+=l;for(var p=0;p<u.length+20;p++)d.b^=u.charCodeAt(p)|0,d.next()}function i(l,d){return d.a=l.a,d.b=l.b,d.c=l.c,d.d=l.d,d}function o(l,d){var u=new s(l),p=d&&d.state,c=function(){return(u.next()>>>0)/4294967296};return c.double=function(){do var h=u.next()>>>11,m=(u.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=u.next,c.quick=c,p&&(typeof p=="object"&&i(p,u),c.state=function(){return i(u,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fI=xt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",d=r.pow(s,i),u=r.pow(2,o),p=u*2,c=s-1,h;function m(b,v,N){var T=[];v=v==!0?{entropy:!0}:v||{};var R=g(y(v.entropy?[b,w(a)]:b==null?x():b,3),T),$=new f(T),z=function(){for(var P=$.g(i),V=d,j=0;P<u;)P=(P+j)*s,V*=s,j=$.g(1);for(;P>=p;)P/=2,V/=2,j>>>=1;return(P+j)/V};return z.int32=function(){return $.g(4)|0},z.quick=function(){return $.g(4)/4294967296},z.double=z,g(w($.S),a),(v.pass||N||function(P,V,j,U){return U&&(U.S&&A(U,$),P.state=function(){return A($,{})}),j?(r[l]=P,V):P})(z,R,"global"in v?v.global:this==r,v.state)}function f(b){var v,N=b.length,T=this,R=0,$=T.i=T.j=0,z=T.S=[];for(N||(b=[N++]);R<s;)z[R]=R++;for(R=0;R<s;R++)z[R]=z[$=c&$+b[R%N]+(v=z[R])],z[$]=v;(T.g=function(P){for(var V,j=0,U=T.i,X=T.j,G=T.S;P--;)V=G[U=c&U+1],j=j*s+G[c&(G[U]=G[X=c&X+V])+(G[X]=V)];return T.i=U,T.j=X,j})(s)}function A(b,v){return v.i=b.i,v.j=b.j,v.S=b.S.slice(),v}function y(b,v){var N=[],T=typeof b,R;if(v&&T=="object")for(R in b)try{N.push(y(b[R],v-1))}catch($){}return N.length?N:T=="string"?b:b+"\0"}function g(b,v){for(var N=b+"",T,R=0;R<N.length;)v[c&R]=c&(T^=v[c&R]*19)+N.charCodeAt(R++);return w(v)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),w(b)}catch(T){var v=n.navigator,N=v&&v.plugins;return[+new Date,n,N,n.screen,w(a)]}}function w(b){return String.fromCharCode.apply(0,b)}if(g(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=jg()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),Hg=xt((e,t)=>{var n=lI(),a=uI(),r=dI(),s=pI(),i=cI(),o=hI(),l=fI();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),mI=xt(()=>{}),hm={};Fe(hm,{bin:()=>n5,browser:()=>l5,default:()=>AI,dependencies:()=>o5,description:()=>Xg,devDependencies:()=>s5,jsdelivr:()=>Jg,license:()=>r5,main:()=>Zg,miniprogram:()=>t5,module:()=>Yg,name:()=>Gg,private:()=>Kg,repository:()=>a5,scripts:()=>i5,types:()=>e5,unpkg:()=>Qg,version:()=>qg});var Gg="@tensorflow/tfjs",qg="3.6.0",Xg="An open-source machine learning framework.",Kg=!1,Zg="dist/tf.node.js",Yg="dist/index.js",Jg="dist/tf.min.js",Qg="dist/tf.min.js",e5="dist/index.d.ts",t5="dist/miniprogram",n5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},a5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},r5="Apache-2.0",s5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},i5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},o5={"@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-converter":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-data":"3.6.0","@tensorflow/tfjs-layers":"3.6.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},l5={"node-fetch":!1,util:!1,crypto:!1},AI={name:Gg,version:qg,description:Xg,private:Kg,main:Zg,module:Yg,jsdelivr:Jg,unpkg:Qg,types:e5,miniprogram:t5,bin:n5,repository:a5,license:r5,devDependencies:s5,scripts:i5,dependencies:o5,browser:l5},fm={};Fe(fm,{browser:()=>N5,default:()=>yI,dependencies:()=>S5,description:()=>p5,devDependencies:()=>k5,engines:()=>b5,jsdelivr:()=>f5,"jsnext:main":()=>y5,license:()=>w5,main:()=>h5,miniprogram:()=>x5,module:()=>g5,name:()=>u5,private:()=>c5,repository:()=>v5,scripts:()=>I5,sideEffects:()=>T5,types:()=>A5,unpkg:()=>m5,version:()=>d5});var u5="@tensorflow/tfjs-core",d5="3.6.0",p5="Hardware-accelerated JavaScript library for machine intelligence",c5=!1,h5="dist/tf-core.node.js",f5="dist/tf-core.min.js",m5="dist/tf-core.min.js",A5="dist/index.d.ts",y5="dist/index.js",g5="dist/index.js",x5="dist/miniprogram",b5={yarn:">= 1.3.2"},v5={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},w5="Apache-2.0",k5={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},I5={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},S5={"@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30","node-fetch":"~2.6.1",seedrandom:"2.4.3"},N5={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},T5=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],yI={name:u5,version:d5,description:p5,private:c5,main:h5,jsdelivr:f5,unpkg:m5,types:A5,"jsnext:main":y5,module:g5,miniprogram:x5,engines:b5,repository:v5,license:w5,devDependencies:k5,scripts:I5,dependencies:S5,browser:N5,sideEffects:T5},mm={};Fe(mm,{browser:()=>U5,default:()=>gI,dependencies:()=>j5,description:()=>R5,devDependencies:()=>W5,jsdelivr:()=>$5,"jsnext:main":()=>z5,license:()=>L5,main:()=>F5,miniprogram:()=>P5,module:()=>_5,name:()=>E5,peerDependencies:()=>V5,private:()=>M5,scripts:()=>B5,types:()=>O5,unpkg:()=>D5,version:()=>C5});var E5="@tensorflow/tfjs-data",C5="3.6.0",R5="TensorFlow Data API in JavaScript",M5=!1,F5="dist/tf-data.node.js",$5="dist/tf-data.min.js",D5="dist/tf-data.min.js",O5="dist/index.d.ts",z5="dist/index.js",_5="dist/index.js",P5="dist/miniprogram",L5="Apache-2.0",W5={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@tensorflow/tfjs-layers":"3.6.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},B5={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},V5={"@tensorflow/tfjs-core":"3.6.0",seedrandom:"~2.4.3"},j5={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},U5={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},gI={name:E5,version:C5,description:R5,private:M5,main:F5,jsdelivr:$5,unpkg:D5,types:O5,"jsnext:main":z5,module:_5,miniprogram:P5,license:L5,devDependencies:W5,scripts:B5,peerDependencies:V5,dependencies:j5,browser:U5},Am={};Fe(Am,{default:()=>xI,description:()=>q5,devDependencies:()=>ax,jsdelivr:()=>ex,"jsnext:main":()=>J5,license:()=>X5,main:()=>Z5,miniprogram:()=>nx,module:()=>Q5,name:()=>H5,peerDependencies:()=>sx,private:()=>K5,scripts:()=>rx,types:()=>Y5,unpkg:()=>tx,version:()=>G5});var H5="@tensorflow/tfjs-layers",G5="3.6.0",q5="TensorFlow layers API in JavaScript",X5="Apache-2.0 AND MIT",K5=!1,Z5="dist/tf-layers.node.js",Y5="dist/index.d.ts",J5="dist/index.js",Q5="dist/index.js",ex="dist/tf-layers.min.js",tx="dist/tf-layers.min.js",nx="dist/miniprogram",ax={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-backend-webgl":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},rx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},sx={"@tensorflow/tfjs-core":"3.6.0"},xI={name:H5,version:G5,description:q5,license:X5,private:K5,main:Z5,types:Y5,"jsnext:main":J5,module:Q5,jsdelivr:ex,unpkg:tx,miniprogram:nx,devDependencies:ax,scripts:rx,peerDependencies:sx},ym={};Fe(ym,{default:()=>bI,description:()=>lx,devDependencies:()=>xx,jsdelivr:()=>fx,"jsnext:main":()=>dx,license:()=>yx,main:()=>ux,miniprogram:()=>mx,module:()=>px,name:()=>ix,peerDependencies:()=>gx,repository:()=>Ax,scripts:()=>bx,types:()=>cx,unpkg:()=>hx,version:()=>ox});var ix="@tensorflow/tfjs-converter",ox="3.6.0",lx="Tensorflow model converter for javascript",ux="dist/tf-converter.node.js",dx="dist/index.js",px="dist/index.js",cx="dist/index.d.ts",hx="dist/tf-converter.min.js",fx="dist/tf-converter.min.js",mx="dist/miniprogram",Ax={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},yx="Apache-2.0",gx={"@tensorflow/tfjs-core":"3.6.0"},xx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.6.0","@tensorflow/tfjs-core":"3.6.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},bx={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},bI={name:ix,version:ox,description:lx,main:ux,"jsnext:main":dx,module:px,types:cx,unpkg:hx,jsdelivr:fx,miniprogram:mx,repository:Ax,license:yx,peerDependencies:gx,devDependencies:xx,scripts:bx},vI=1e-7,wI=1e-4,Np=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},fu=class{refCount(e){return aa("refCount")}incRef(e){return aa("incRef")}timerAvailable(){return!0}time(e){return aa("time")}read(e){return aa("read")}readSync(e){return aa("readSync")}numDataIds(){return aa("numDataIds")}disposeData(e,t){return aa("disposeData")}write(e,t,n){return aa("write")}move(e,t,n,a,r){return aa("move")}memory(){return aa("memory")}floatPrecision(){return aa("floatPrecision")}epsilon(){return this.floatPrecision()===32?vI:wI}dispose(){return aa("dispose")}};function aa(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function vx(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function kI(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function mu(e,t,n){return Math.max(e,Math.min(t,n))}function II(e){return e%2==0?e:e+1}function SI(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function NI(e,t){let n=Math.random();return t*n+(1-n)*e}function TI(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function sn(e,t,n=""){F(er(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ss(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function is(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||tn(e)&&!n)for(let a=0;a<e.length;++a)is(e[a],t,n);else t.push(e);return t}function Nt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function EI(e){return e.length===0}function er(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Vt(e){return e%1==0}function CI(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function RI(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function MI(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return vx(t),t}function Au(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function FI(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function $I(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ra(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),F(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(a=>Vt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function wx(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ra(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function kx(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Ix(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function Sx(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function Nx(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function DI(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function tn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function gm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function Tx(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function vr(e){return typeof e=="string"||e instanceof String}function Ex(e){return typeof e=="boolean"}function Cx(e){return typeof e=="number"}function Tp(e){return Array.isArray(e)?Tp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":Cx(e)?"float32":vr(e)?"string":Ex(e)?"bool":"float32"}function wr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Ep(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function Qi(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function Rx(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,d)=>l*d)*(a?2:1);for(let l=0;l<s;l++)r[l]=Rx(e+l*o,i,n,a)}return r}function eo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return Rx(0,e,t,n)}function xm(e,t){let n=Cp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function Cp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function OI(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return eo(e,new Float32Array(n));if(t==="int32")return eo(e,new Int32Array(n));if(t==="bool")return eo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function bm(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function zI(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function _I(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function vm(e){return e&&e.then&&typeof e.then=="function"}var Mx="tfjsflags",Fx=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=PI,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(vm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Mx in e&&e[Mx].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=WI(n,a)})}};function PI(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(LI(t,a[0],a[1]),a.join("="))),t}function LI(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function WI(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return ma}var ma=null;function BI(e){ma=e}var wm;function $x(){if(wm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");wm=e}return wm}function VI(){let e=$x();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function km(e,t){let n=VI();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var to="Abs",no="Acos",ao="Acosh",kr="Add",os="AddN",ro="All",so="Any",ls="ArgMax",yu="ArgMin",io="Asin",oo="Asinh",lo="Atan",uo="Atanh",po="Atan2",us="AvgPool",Rp="AvgPoolGrad",gu="AvgPool3D",Mp="AvgPool3DGrad",ds="BatchMatMul",xu="BatchToSpaceND",Fp="Bincount",Dx="BroadcastTo",ps="Cast",cs="Ceil",Ir="ClipByValue",$p="Complex",bu="ComplexAbs",co="Concat",hs="Conv2D",Dp="Conv2DBackpropFilter",fs="Conv2DBackpropInput",vu="Conv3D",Op="Conv3DBackpropFilterV2",zp="Conv3DBackpropInputV2",ms="Cos",ho="Cosh",As="Cumsum",fo="CropAndResize",_p="DenseBincount",mo="DepthToSpace",ys="DepthwiseConv2dNative",Pp="DepthwiseConv2dNativeBackpropFilter",Lp="DepthwiseConv2dNativeBackpropInput",Wp="Diag",wu="Dilation2D",Bp="Dilation2DBackpropInput",Vp="Dilation2DBackpropFilter",gs="RealDiv",jp="Einsum",Ao="Elu",Up="EluGrad",yo="Erf",go="Equal",xs="Exp",xo="ExpandDims",bo="Expm1",Hp="FFT",ku="Fill",vo="FlipLeftRight",bs="Floor",vs="FloorDiv",ws="FusedBatchNorm",wo="GatherV2",ko="GatherNd",Io="Greater",ks="GreaterEqual",Is="Identity",Gp="IFFT",qp="Imag",So="IsFinite",No="IsInf",To="IsNan",Ss="LeakyRelu",Eo="Less",Co="LessEqual",Xp="LinSpace",Ns="Log",Ro="Log1p",Mo="LogicalAnd",Iu="LogicalNot",Su="LogicalOr",Ox="LogSoftmax",Nu="LRN",Kp="LRNGrad",Ts="Max",Es="Maximum",Cs="MaxPool",Zp="MaxPoolGrad",Tu="MaxPool3D",Yp="MaxPool3DGrad",Jp="MaxPoolWithArgmax",Rs="Mean",Ms="Min",Fs="Minimum",$s="MirrorPad",Fo="Mod",Qp="Multinomial",Ds="Multiply",$o="Neg",Do="NotEqual",Oo="NonMaxSuppressionV3",zo="NonMaxSuppressionV4",_o="NonMaxSuppressionV5",Po="OnesLike",Os="OneHot",Lo="Pack",zs="PadV2",jI="Pool",_s="Pow",Ps="Prelu",Wo="Prod",Eu="Range",ec="Real",Bo="Reciprocal",Ls="Relu",Vo="Reshape",Cu="ResizeNearestNeighbor",tc="ResizeNearestNeighborGrad",Ws="ResizeBilinear",nc="ResizeBilinearGrad",Bs="Relu6",Vs="Reverse",js="Round",Us="Rsqrt",jo="ScatterNd",Uo="Select",Ho="Selu",Go="Slice",Hs="Sin",qo="Sinh",Xo="Sign",Gs="Sigmoid",Ko="Softplus",qs="Sqrt",Xs="Sum",Ru="SpaceToBatchND",Zo="SplitV",Ks="Softmax",ac="SparseFillEmptyRows",rc="SparseReshape",sc="SparseToDense",Zs="SquaredDifference",Mu="Square",Yo="StridedSlice",Ys="Sub",Js="Tan",Qs="Tanh",Sr="Tile",Jo="TopK",Qo="Transform",ei="Transpose",ic="Unique",el="Unpack",Fu="UnsortedSegmentSum",tl="ZerosLike",Nr="Step",oc="FromPixels",nl="RotateWithOffset",ti="_FusedMatMul",ni="FusedConv2D",ai="FusedDepthwiseConv2D",al=km("kernelRegistry",()=>new Map),$u=km("gradRegistry",()=>new Map);function lc(e,t){let n=Sm(e,t);return al.get(n)}function Im(e){return $u.get(e)}function rl(e){let t=al.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function ri(e){let{kernelName:t,backendName:n}=e,a=Sm(t,n);al.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),al.set(a,e)}function zx(e){let{kernelName:t}=e;$u.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),$u.set(t,e)}function UI(e,t){let n=Sm(e,t);if(!al.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);al.delete(n)}function HI(e){if(!$u.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);$u.delete(e)}function GI(e,t){rl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});ri(a)})}function Sm(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>er,assert:()=>F,assertNonNegativeIntegerDimensions:()=>bm,assertNonNull:()=>ss,assertShapesMatch:()=>sn,bytesFromStringArray:()=>Tx,bytesPerElement:()=>gm,checkConversionForErrors:()=>Sx,clamp:()=>mu,computeStrides:()=>Qi,createScalarValue:()=>qI,createShuffledIndices:()=>MI,decodeString:()=>dc,distSquared:()=>TI,encodeString:()=>Ou,fetch:()=>KI,flatten:()=>is,getArrayFromDType:()=>Ix,getTypedArrayFromDType:()=>kx,hasEncodingLoss:()=>DI,indexToLoc:()=>_I,inferDtype:()=>Tp,inferFromImplicitShape:()=>$I,isBoolean:()=>Ex,isFunction:()=>wr,isInt:()=>Vt,isNumber:()=>Cx,isPromise:()=>vm,isScalarShape:()=>EI,isString:()=>vr,isTypedArray:()=>tn,isValidDtype:()=>Nx,locToIndex:()=>zI,makeOnesTypedArray:()=>xm,makeZerosNestedTypedArray:()=>OI,makeZerosTypedArray:()=>Cp,nearestDivisor:()=>Ep,nearestLargerEven:()=>II,now:()=>Du,parseAxisParam:()=>ra,randUniform:()=>NI,repeatedTry:()=>FI,rightPad:()=>Au,shuffle:()=>vx,shuffleCombo:()=>kI,sizeFromShape:()=>Nt,sizeToSquarishShape:()=>RI,squeezeShape:()=>wx,sum:()=>SI,tanh:()=>CI,toNestedArray:()=>eo,toTypedArray:()=>uc});function qI(e,t){return t==="string"?Ou(e):uc([e],t)}function XI(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function uc(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=is(e)),J().getBool("DEBUG")&&Sx(e,t),XI(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Du(){return J().platform.now()}function KI(e,t){return J().platform.fetch(e,t)}function Ou(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function dc(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var ZI=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new JI)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Du();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Du()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(d=>{YI(d,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function YI(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var JI=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Au(`${a}ms`,9):a.error,o=Au(e,25),l=t.rank,d=t.size,u=Au(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${u} %c${d} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function QI(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let d=e[l],u=d.inputs;for(let p in u){let c=u[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){d.outputs.forEach(f=>a[f.id]=!0),h=!0,r[d.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let d=e[l],u=d.inputs;for(let p=0;p<d.outputs.length;p++)if(s[d.outputs[p].id]){for(let c in u)s[u[c].id]=!0,i[d.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let d=e[l];if(r[d.id]&&i[d.id]){let u={};for(let c in d.inputs){let h=d.inputs[c];a[h.id]&&(u[c]=h)}let p=Object.assign({},d);p.inputs=u,p.outputs=d.outputs,o.push(p)}}return o}function eS(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let d=e[l.id];d!=null?i.push(d):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let d=n(()=>o[l]());if(d.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${d.dtype}'`);let u=s.inputs[l];if(!er(d.shape,u.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${d.shape}', which does not match the shape of the input '${u.shape}'`);if(e[u.id]==null)e[u.id]=d;else{let p=e[u.id];e[u.id]=a(p,d),p.dispose()}}}}var _x=20,zu=3,Nm=7;function tS(e,t,n,a){let r=Qi(t),s=nS(e,t,n,r),i=t.length,o=pc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(d=>" "+d).join(`
`)),l.join(`
`)}function nS(e,t,n,a){let r=Nt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Pu(e):e;if(o>1)for(let d=0;d<r/s;d++){let u=d*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],_u(l[u+p],0,n).length)}return i}function _u(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Nm))} + ${parseFloat(e[1].toFixed(Nm))}j`:vr(e)?a=`'${e}'`:n==="bool"?a=Px(e):a=parseFloat(e.toFixed(Nm)).toString(),Au(a,t)}function Px(e){return e===0?"false":"true"}function pc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=Pu(e);return[_u(f[0],0,n)]}return n==="bool"?[Px(e[0])]:[e[0].toString()]}if(l===1){if(o>_x){let A=zu*i,y=Array.from(e.slice(0,A)),g=Array.from(e.slice((o-zu)*i,o*i));return n==="complex64"&&(y=Pu(y),g=Pu(g)),["["+y.map((x,w)=>_u(x,r[w],n)).join(", ")+", ..., "+g.map((x,w)=>_u(x,r[o-zu+w],n)).join(", ")+"]"]}let f=n==="complex64"?Pu(e):Array.from(e);return["["+f.map((A,y)=>_u(A,r[y],n)).join(", ")+"]"]}let d=t.slice(1),u=a.slice(1),p=a[0]*i,c=[];if(o>_x){for(let f=0;f<zu;f++){let A=f*p,y=A+p;c.push(...pc(e.slice(A,y),d,n,u,r,!1))}c.push("...");for(let f=o-zu;f<o;f++){let A=f*p,y=A+p;c.push(...pc(e.slice(A,y),d,n,u,r,f===o-1))}}else for(let f=0;f<o;f++){let A=f*p,y=A+p;c.push(...pc(e.slice(A,y),d,n,u,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
`;for(let f=2;f<l;f++)m+=`
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function Pu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Dt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Nt(e),n!=null){let a=n.length;F(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||Ix(t,this.size),this.strides=Qi(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return $a().makeTensor(this.values,this.shape,this.dtype)}},$a=null,sl=null,aS=null;function rS(e){$a=e}function sS(e){sl=e}function iS(e){aS=e}var Le=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Nt(e),this.strides=Qi(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return sl.buffer(this.shape,this.dtype,e)}bufferSync(){return sl.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return eo(this.shape,e,this.dtype==="complex64")}arraySync(){return eo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=$a().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>dc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=$a().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>dc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await $a().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||($a().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return sl.print(this,e)}clone(){return this.throwIfDisposed(),sl.clone(this)}toString(e=!1){let t=this.dataSync();return tS(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),sl.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),$a().makeVariable(this,e,t,n)}};Object.defineProperty(Le,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return km("Tensor",()=>Le)}Z();var Lu=class extends Le{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!er(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);$a().disposeTensor(this),this.dataId=e.dataId,$a().incRef(this,null)}dispose(){$a().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Lu,Symbol.hasInstance,{value:e=>e instanceof Le&&e.assign!=null&&e.assign instanceof Function});var Aa={};Fe(Aa,{assertTypesMatch:()=>Lx,getTensorsInContainer:()=>Fm,isTensorInList:()=>lS,makeTypesMatch:()=>bt});var Tm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Tm||(Tm={}));var Em;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Em||(Em={}));var Cm;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Cm||(Cm={}));var Rm;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Rm||(Rm={}));var Mm;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Mm||(Mm={}));var oS={float32:Rm,int32:Em,bool:Cm,complex64:Mm};function sa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return oS[e][t]}function cc(e){return sa(e,"int32")}function bt(e,t){if(e.dtype===t.dtype)return[e,t];let n=sa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Lx(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function lS(e,t){return t.some(n=>n.id===e.id)}function Fm(e){let t=[],n=new Set;return Wx(e,t,n),t}function Wx(e,t,n){if(e==null)return;if(e instanceof Le){t.push(e);return}if(!uS(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),Wx(s,t,n))}}function uS(e){return Array.isArray(e)||typeof e=="object"}function $m(e){return e.kernelName!=null}var Bx=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Wu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Bx}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ZI(this.backendInstance),!0}setupRegisteredKernels(){rl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){rl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof fu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return Wu.nextTensorId++}nextVariableId(){return Wu.nextVariableId++}clone(e){let t=D.runKernel(Is,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return D.runKernel(ps,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(lc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=$m(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if($m(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let A=lc(h,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=A.kernelFunc({inputs:m,attrs:f,backend:this.backend});let g=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,g);let x=g.map(w=>{if(w.rank!=null)return w;let{dataId:b,shape:v,dtype:N}=w;return this.makeTensorFromDataId(b,v,N)});if(a){let w=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(w)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(A=>this.keep(this.clone(A))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,A),A}}let{inputs:d,attrs:u}=e,p=$m(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,d,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,d,t,p,n,u),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(d).map(h=>d[h]!=null?d[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Im(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,d)=>s[d]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&vr(e[0])&&(r=e.map(o=>Ou(o)));let s=a.write(r,t,n),i=new Le(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=Tx(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Le(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new Lu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*gm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Lu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*gm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Im(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((d,u)=>{if(d==null){let p=n[u],c=Cp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return d}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Fm(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(r instanceof Le,()=>"The result y returned by f() must be a tensor.");let s=QI(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?dS(r.shape):n,eS(i,s,l=>this.tidy(l),pS);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let d of l.saved)d.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return F(wr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof Le),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),F(n.value instanceof Le,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(wr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),d=Array.isArray(l)?l:[l];F(d.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(d.every(p=>p instanceof Le),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let u={};return d.forEach((p,c)=>{u[c]=()=>p}),u};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Du(),n=await this.backend.time(e);return n.wallMs=Du()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Bx;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Wu.nextTensorId=0;Wu.nextVariableId=0;function dS(e){let t=xm(Nt(e),"float32");return D.makeTensor(t,e,"float32")}function Vx(){let e=$x();if(e._tfengine==null){let t=new Fx(e);e._tfengine=new Wu(t)}return BI(e._tfengine.ENV),rS(()=>e._tfengine),e._tfengine}var D=Vx();function pS(e,t){let n={a:e,b:t};return D.runKernel(kr,n)}var Bu={};Fe(Bu,{isBrowser:()=>jx,isMobile:()=>hS});function cS(){return typeof navigator!="undefined"&&navigator!=null}function hS(e){if(e||cS()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function jx(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var ya=J();ya.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});ya.registerFlag("IS_BROWSER",()=>jx());ya.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");ya.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));ya.registerFlag("PROD",()=>!1);ya.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>ya.getBool("DEBUG"));ya.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);ya.registerFlag("IS_TEST",()=>!1);ya.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);ya.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Da(e,t){let n=e;if(tn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||tn(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Ux(e,a,[]),a}function Ux(e,t,n){if(n=n||[],!Array.isArray(e)&&!tn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)Ux(e[r],a,n.concat(r))}function Hx(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Le)return Hx(a,e.dtype,t,n),e;let r=Tp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Hx(a,r,t,n),e==null||!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Da(e,r);!tn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?uc(e,r):is(e,[],!0);return D.makeTensor(i,s,r)}function Vu(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var Gx="__op";function O(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Gx;let r=(...s)=>{D.startScope(n);try{let i=a(...s);return vm(i)&&console.error("Cannot return a Promise inside of tidy."),D.endScope(i),i}catch(i){throw D.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function fS(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");sn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return D.runKernel($p,r)}var Tr=O({complex_:fS});function Er(e,t,n,a){if(a==null&&(a=Tp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!tn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){bm(t);let r=Nt(t),s=Nt(n);F(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Nt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!tn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?uc(e,a):is(e,[],!0),D.makeTensor(e,t,a)}function ia(e,t,n){let a=Da(e,n);return Er(e,t,a,n)}var Dm={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},hc=4;async function mS(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let d={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let u=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((A,y)=>A+y.length,0)+hc*c.length,m=new Uint8Array(h),f=0;for(let A=0;A<c.length;A++){let y=c[A],g=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(g,f),f+=hc,m.set(y,f),f+=y.length}p(m)});a.push(u)}else a.push(l.data());t!=null&&(d.group=t),n.push(d)}let s=await Promise.all(a);return{data:AS(s),specs:n}}function qx(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,d=Nt(l),u;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=Dm[p.dtype],h=e.slice(r,r+d*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){u=new Float32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];u[f]=A*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=wS()),u=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);u=new Int32Array(m.length);for(let f=0;f<m.length;f++){let A=m[f];u[f]=Math.round(A*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=d*c}else if(o==="string"){let p=Nt(s.shape);u=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+hc))[0];r+=hc;let m=new Uint8Array(e.slice(r,r+h));u.push(m),r+=h}}else{let p=Dm[o],c=e.slice(r,r+d*p);if(o==="float32")u=new Float32Array(c);else if(o==="int32")u=new Int32Array(c);else if(o==="bool")u=new Uint8Array(c);else if(o==="complex64"){u=new Float32Array(c);let h=new Float32Array(u.length/2),m=new Float32Array(u.length/2);for(let y=0;y<h.length;y++)h[y]=u[y*2],m[y]=u[y*2+1];let f=ia(h,l,"float32"),A=ia(m,l,"float32");n[i]=Tr(f,A),f.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=d*p}o!=="complex64"&&(n[i]=ia(u,l,o))}return n}function AS(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var Om=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Xx(e){return Om?Buffer.byteLength(e):new Blob([e]).size}function yS(e){if(Om)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function gS(e){if(Om){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function zm(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Kx(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function ju(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Xx(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Xx(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function xS(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function bS(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function vS(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function wS(){let e=xS(),t=bS(),n=vS();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var St=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return St.instance==null&&(St.instance=new St),St.instance}static registerSaveRouter(e){St.getInstance().saveRouters.push(e)}static registerLoadRouter(e){St.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return St.getHandlers(e,"save")}static getLoadHandlers(e,t){return St.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?St.getInstance().loadRouters:St.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},kS=e=>St.registerSaveRouter(e),IS=e=>St.registerLoadRouter(e),SS=e=>St.getSaveHandlers(e),NS=(e,t)=>St.getLoadHandlers(e,t),_m="tensorflowjs",Pm=1,si="models_store",Cr="model_info_store";function Zx(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Lm(e){let t=e.result;t.createObjectStore(si,{keyPath:"modelPath"}),t.createObjectStore(Cr,{keyPath:"modelPath"})}var ii=class{constructor(e){if(this.indexedDB=Zx(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(_m,Pm);r.onupgradeneeded=()=>Lm(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(si,"readonly"),o=i.objectStore(si).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=ju(t),o=s.transaction(Cr,"readwrite"),l=o.objectStore(Cr),d=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),u;d.onsuccess=()=>{u=s.transaction(si,"readwrite");let p=u.objectStore(si).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(Cr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},d.onerror=p=>(s.close(),a(d.error)),o.oncomplete=()=>{u==null?s.close():u.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};ii.URL_SCHEME="indexeddb://";var Yx=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ii.URL_SCHEME)?TS(e.slice(ii.URL_SCHEME.length)):null;St.registerSaveRouter(Yx);St.registerLoadRouter(Yx);function TS(e){return new ii(e)}function ES(e){return e.startsWith(ii.URL_SCHEME)?e.slice(ii.URL_SCHEME.length):e}var CS=class{constructor(){this.indexedDB=Zx()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(_m,Pm);n.onupgradeneeded=()=>Lm(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Cr,"readonly"),s=r.objectStore(Cr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=ES(e),new Promise((t,n)=>{let a=this.indexedDB.open(_m,Pm);a.onupgradeneeded=()=>Lm(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Cr,"readwrite"),i=s.objectStore(Cr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let d=i.delete(e),u=()=>{l=r.transaction(si,"readwrite");let p=l.objectStore(si).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};d.onsuccess=u,d.onerror=p=>(u(),r.close(),n(o.error))}},o.onerror=d=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},tr="/",il="tensorflowjs_models",Jx="info",RS="model_topology",MS="weight_specs",FS="weight_data",$S="model_metadata";function Qx(e){return{info:[il,e,Jx].join(tr),topology:[il,e,RS].join(tr),weightSpecs:[il,e,MS].join(tr),weightData:[il,e,FS].join(tr),modelMetadata:[il,e,$S].join(tr)}}function DS(e){let t=e.split(tr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(tr)}function OS(e){return e.startsWith(oi.URL_SCHEME)?e.slice(oi.URL_SCHEME.length):e}var oi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Qx(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=ju(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,yS(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=gS(s),t}};oi.URL_SCHEME="localstorage://";var eb=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(oi.URL_SCHEME)?zS(e.slice(oi.URL_SCHEME.length)):null;St.registerSaveRouter(eb);St.registerLoadRouter(eb);function zS(e){return new oi(e)}var _S=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=il+tr,n=tr+Jx;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=DS(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=OS(e);let t=Qx(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},ol="://",Gn=class{constructor(){this.managers={}}static getInstance(){return Gn.instance==null&&(Gn.instance=new Gn),Gn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(ol)&&(e=e.slice(0,e.indexOf(ol))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Gn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function fc(e){if(e.indexOf(ol)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Gn.getSchemes().join(",")}`);return{scheme:e.split(ol)[0],path:e.split(ol)[1]}}async function tb(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=St.getLoadHandlers(e);F(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=St.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=fc(e).scheme,l=fc(e).path,d=o===fc(e).scheme,u=await r.load();n&&d&&await Gn.getManager(o).removeModel(l);let p=await i.save(u);return n&&!d&&await Gn.getManager(o).removeModel(l),p.modelArtifactsInfo}async function PS(){let e=Gn.getSchemes(),t={};for(let n of e){let a=await Gn.getManager(n).listModels();for(let r in a){let s=n+ol+r;t[s]=a[r]}}return t}async function LS(e){let t=fc(e);return Gn.getManager(t.scheme).removeModel(t.path)}async function WS(e,t){return tb(e,t,!1)}async function BS(e,t){return tb(e,t,!0)}var VS=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new VS);try{Gn.registerManager(oi.URL_SCHEME,new _S)}catch(e){}try{Gn.registerManager(ii.URL_SCHEME,new CS)}catch(e){}}var jS={importFetch:()=>Z9()},Wm,US=class{constructor(){this.util=Yi("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Wm==null&&(Wm=jS.importFetch()),Wm(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new US);function We(e,t="float32",n){return t=t||"float32",bm(e),new Dt(e,t,n)}function HS(e,t){let n=M(e,"x","cast");if(!Nx(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return D.runKernel(ps,a,r)}var fe=O({cast_:HS});function GS(e){let t={x:M(e,"x","clone","string_or_numeric")};return D.runKernel(Is,t)}var Oa=O({clone_:GS});function nb(e,t=!1){console.log(e.toString(t))}Vx();var qS={buffer:We,cast:fe,clone:Oa,print:nb};sS(qS);var vn={};Fe(vn,{browserFiles:()=>eN,browserHTTPRequest:()=>sN,concatenateArrayBuffers:()=>zm,copyModel:()=>WS,decodeWeights:()=>qx,encodeWeights:()=>mS,fromMemory:()=>oN,getLoadHandlers:()=>NS,getModelArtifactsInfoForJSON:()=>ju,getSaveHandlers:()=>SS,http:()=>jm,isHTTPScheme:()=>Vm,listModels:()=>PS,loadWeights:()=>tN,moveModel:()=>BS,registerLoadRouter:()=>IS,registerSaveRouter:()=>kS,removeModel:()=>LS,weightsLoaderFactory:()=>ib,withSaveHandler:()=>lN});var XS="model",KS=".json",ZS=".weights.bin";function ab(e){return new Promise(t=>setTimeout(t)).then(e)}var ll=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ll.URL_SCHEME)&&(e=e.slice(ll.URL_SCHEME.length)),(e==null||e.length===0)&&(e=XS),this.modelTopologyFileName=e+KS,this.weightDataFileName=e+ZS}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await ab(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await ab(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:ju(e)}}}};ll.URL_SCHEME="downloads://";var YS=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let d;try{d=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let u=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),u.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=A=>{let y=A.target.result,g=p.indexOf(m);if(c[g]=y,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:u,weightData:zm(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=A=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(d[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>Kx(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=Kx(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},JS=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ll.URL_SCHEME)?QS(e.slice(ll.URL_SCHEME.length)):null;St.registerSaveRouter(JS);function QS(e="model"){return new ll(e)}function eN(e){return new YS(e)}function rb(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(d=>{let u=n+ ++r/e.length*(a-n);return t(u),d}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,d){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(d>=0&&d<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${d}`),F(d>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${d}`)}return Promise.all(e.map(s))}async function sb(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,a=e.map(d=>n(d,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await rb(a,t.onProgress,r,s)).map(d=>d.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await rb(i,t.onProgress,o,l)}async function tN(e,t="",n,a){return ib(r=>sb(r,{requestInit:a}))(e,t,n)}function ib(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(A=>{let y="quantization"in A?A.quantization.dtype:A.dtype,g=Dm[y]*Nt(A.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:A,groupOffset:f,sizeBytes:g})};a!=null?a.forEach((w,b)=>{w===A.name&&(x(),i[b]=!0)}):x(),o.push(A.name),f+=g})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),d=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;d.push(f)})});let u=await e(d),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=u[c+x].byteLength;let A=new ArrayBuffer(f),y=new Uint8Array(A),g=0;for(let x=0;x<m;x++){let w=new Uint8Array(u[c+x]);y.set(w,g),g+=w.byteLength}s[h].forEach(x=>{let w=A.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=qx(w,[x.manifestEntry]);for(let v in b)p[v]=b[v]}),c+=m}),p}}var nN="application/octet-stream",aN="application/json",Bm=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:aN}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:nN}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:ju(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let d,u;a!=null&&([d,u]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:d,weightData:u,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=rN(t),r=this.weightPathPrefix||n,s=[];for(let d of e)s.push(...d.weights);let i=[],o=[];for(let d of e)for(let u of d.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(u)):i.push(r+u+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await sb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,zm(l)]}};Bm.URL_SCHEME_REGEX=/^https?:\/\//;function rN(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function Vm(e){return e.match(Bm.URL_SCHEME_REGEX)!=null}var ob=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>Vm(a)):n=Vm(e),n)return jm(e,t)}return null};St.registerSaveRouter(ob);St.registerLoadRouter(ob);function jm(e,t){return new Bm(e,t)}function sN(e,t){return jm(e,t)}var Um=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},iN=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function oN(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Um(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Um({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function lN(e){return new iN(e)}var lb={};Fe(lb,{confusionMatrix:()=>hN});function uN(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=bt(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return D.runKernel(ds,i,o)}var Be=O({matMul_:uN});function dN(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return D.runKernel(Os,r,s)}var ul=O({oneHot_:dN});function pN(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return D.runKernel(ei,a,r)}var Ze=O({transpose_:pN});function cN(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),F(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),F(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=ul(fe(a,"int32"),n),i=ul(fe(r,"int32"),n),o=Ze(s),l=Be(o,i);return fe(l,"int32")}var hN=O({confusionMatrix_:cN}),li={};Fe(li,{fromPixels:()=>bN,fromPixelsAsync:()=>gN,toPixels:()=>xN});function mc(e,t,n){if(ss(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Da(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}var dl;function ub(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(lc(oc,D.backendName)!=null){let c={pixels:e},h={numChannels:t};return D.runKernel(oc,c,h)}let[l,d]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],u;i?u=e.getContext("2d").getImageData(0,0,l,d).data:a||n?u=e.data:(s||r||o)&&(dl==null&&(dl=document.createElement("canvas").getContext("2d")),dl.canvas.width=l,dl.canvas.height=d,dl.drawImage(e,0,0,l,d),u=dl.getImageData(0,0,l,d).data);let p;if(t===4)p=new Int32Array(u);else{let c=l*d;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=u[h*4+m]}return mc(p,[d,l,t],"int32")}function fN(e){return e!=null&&e.data instanceof Uint8Array}function mN(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function AN(e){return e!=null&&e.width!==0&&e.height!==0}function yN(e){return mN()&&!(e instanceof ImageBitmap)&&AN(e)&&!fN(e)}async function gN(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&yN(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return ub(n,t)}async function xN(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Le)){let d=n;n=fe(d,"int32"),d.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let d=0;d<a*r;++d){let u=[0,0,0,255];for(let c=0;c<s;c++){let h=i[d*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(u[0]=h*o,u[1]=h*o,u[2]=h*o):u[c]=h*o}let p=d*4;l[p+0]=Math.round(u[0]),l[p+1]=Math.round(u[1]),l[p+2]=Math.round(u[2]),l[p+3]=Math.round(u[3])}if(t!=null){t.width=r,t.height=a;let d=t.getContext("2d"),u=new ImageData(l,r,a);d.putImageData(u,0,0)}return n!==e&&n.dispose(),l}var bN=O({fromPixels_:ub}),Hm={};Fe(Hm,{prepareAndValidate:()=>db});function db(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Nt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let d=1;for(let p=s;p<n;++p)d*=o[p],l.push(o[p]);let u=[...Qi(e.shape).map(p=>p/d),1].slice(0,s);return[l,i,d,u]}var Gm={};Fe(Gm,{calculateShapes:()=>pb,validateInput:()=>Xm,validateUpdateShape:()=>qm});function qm(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function Xm(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}qm(n,t,e)}function pb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Nt(t.shape)/o,d=[...Qi(n.slice(0,r)),1],u=Nt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:d,outputSize:u}}var on={};Fe(on,{assertParamsValid:()=>vN,computeFlatOffset:()=>kN,computeOutShape:()=>cb,getNormalizedAxes:()=>Ab,isSliceContinous:()=>wN,maskToAxes:()=>Ac,parseSliceParams:()=>wb,sliceInfo:()=>IN,startForAxis:()=>bb,startIndicesWithElidedDims:()=>yb,stopForAxis:()=>vb,stopIndicesWithElidedDims:()=>gb,stridesForAxis:()=>xb,stridesWithElidedDims:()=>hb});function vN(e,t,n){let a=e.shape.length;F(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),F(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)F(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Ac(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function cb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function hb(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function fb(e,t,n){return n<=e?n:n-(t-1)}function mb(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function Ab(e,t,n,a,r,s,i,o,l){let d=e.length,u=new Array(d),p=new Array(d),c=new Array(d);if(t.length&&n>0){let h=t[0],m=n+1;u=yb(i,h,m,a,e),p=gb(o,h,m,r,e),c=hb(s,h,m,e)}else for(let h=0;h<d;h++)u[h]=bb(i,a,s,e,h,l),p[h]=vb(o,r,s,e,h,l),c[h]=xb(s,h,l);return{begin:u,end:p,strides:c}}function yb(e,t,n,a,r){let s=[...r],i=mb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=fb(t,n,o),d=a[l];e&1<<l&&(d=0),s[o]=d}return s}function gb(e,t,n,a,r){let s=[...r],i=mb(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=fb(t,n,o),d=a[l];e&1<<l&&(d=Number.MAX_SAFE_INTEGER),s[o]=d}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=mu(0,s[o],r[o])}return s}function xb(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function bb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=mu(0,i,l-1),i}function vb(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=mu(0,i,l):i=mu(-1,i,l-1),i}function wN(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function kN(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function wb(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function IN(e,t,n,a,r,s,i,o,l){let d=t.slice(),u=n.slice(),p=a;a==null&&(p=new Array(d.length));let c=Ac(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-d.length,m=Ac(o),f=e.slice();m.forEach(v=>{d[v]=0,u[v]=1,f.splice(v,0,1)});let{begin:A,end:y,strides:g}=Ab(f,c,h,d,u,p,r,s,i);d=A,u=y,p=g;let x=Ac(l);x.forEach(v=>{u[v]=d[v]+1,p[v]=1});let w=cb(d,u,p),b=w.filter((v,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(v=>v===1),$begin:d,$end:u,$strides:p,size:w,newShape:f,outShape:b}}var ae={};Fe(ae,{Serializable:()=>kb,SerializationMap:()=>ui,registerClass:()=>Rr});var kb=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},ui=class{constructor(){this.classNameMap={}}static getMap(){return ui.instance==null&&(ui.instance=new ui),ui.instance}static register(e){ui.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function Rr(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),ui.register(e)}var Ib={};Fe(Ib,{TEST_EPSILON_FLOAT16:()=>Sb,encodeStrings:()=>Nb,expectArrayBuffersEqual:()=>MN,expectArraysClose:()=>NN,expectArraysEqual:()=>EN,expectNumbersClose:()=>CN,expectPromiseToFail:()=>TN,expectValuesInRange:()=>RN,testEpsilon:()=>Km});var SN=.001,Sb=.1;function NN(e,t,n){return n==null&&(n=Km()),Zm(e,t,(a,r)=>Ym(a,r,n))}function Km(){return D.backend.floatPrecision()===32?SN:Sb}function Zm(e,t,n){let a=!0;if((tn(e)||tn(t))&&(a=!1),tn(e)&&tn(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Da(e),o=Da(t);if(!er(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=tn(e)?e:is(e),s=tn(t)?t:is(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
Actual: ${r}.
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
Actual: ${r}.
Expected: ${s}.`)}}function TN(e,t){e().then(()=>t.fail(),()=>t())}function EN(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return vr(e)||vr(e[0])||vr(t)||vr(t[0])?Zm(e,n,(a,r)=>a==r):Zm(e,t,(a,r)=>Ym(a,r,0))}function CN(e,t,n){if(n==null&&(n=Km()),!Ym(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Ym(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function RN(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function MN(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function Nb(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?Nb(n):e[t]=Ou(n)}return e}var FN="3.6.0";function $N(){J().set("PROD",!0)}function DN(){J().set("DEBUG",!0)}function ON(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Jm(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}iS(Jm);function zN(){D.disposeVariables()}function nr(){return D}function yc(){return D.memory()}function _N(e){return D.profile(e)}function W(e,t){return D.tidy(e,t)}function Ee(e){Fm(e).forEach(t=>t.dispose())}function jt(e){return D.keep(e)}function PN(e){return D.time(e)}function LN(e){return D.setBackend(e)}function WN(){return D.ready()}function BN(){return D.backendName}function VN(e){D.removeBackend(e)}function Qm(e){return D.findBackend(e)}function jN(e){return D.findBackendFactory(e)}function pl(e,t,n=1){return D.registerBackend(e,t,n)}function Tb(){return D.backend}function UN(e,t){J().setPlatform(e,t)}function HN(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(kr,r)}var se=O({add_:HN});function GN(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(vs,r)}var gc=O({floorDiv_:GN});function qN(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=bt(n,a),n.dtype==="int32"&&a.dtype==="int32")return gc(n,a);let r={a:n,b:a},s={};return D.runKernel(gs,r,s)}var me=O({div_:qN});function XN(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ds,r)}var _=O({mul_:XN});function KN(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return D.runKernel(bu,n)}else{let n={x:t};return D.runKernel(to,n)}}var Ot=O({abs_:KN});function ZN(e){let t={x:M(e,"x","acos")};return D.runKernel(no,t)}var eA=O({acos_:ZN});function YN(e){let t={x:M(e,"x","acosh")};return D.runKernel(ao,t)}var tA=O({acosh_:YN});function JN(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!er(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return D.runKernel(os,a)}var xc=O({addN_:JN});function QN(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return D.runKernel(ro,a,r)}var bc=O({all_:QN});function eT(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return D.runKernel(so,a,r)}var Uu=O({any_:eT});function tT(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return D.runKernel(ls,n,a)}var Hu=O({argMax_:tT});function nT(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return D.runKernel(yu,n,a)}var nA=O({argMin_:nT});function aT(e){let t={x:M(e,"x","asin")};return D.runKernel(io,t)}var aA=O({asin_:aT});function rT(e){let t={x:M(e,"x","asinh")};return D.runKernel(oo,t)}var rA=O({asinh_:rT});function sT(e){let t={x:M(e,"x","atan")};return D.runKernel(lo,t)}var sA=O({atan_:sT});function iT(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(po,r)}var iA=O({atan2_:iT});function oT(e){let t={x:M(e,"x","atanh")};return D.runKernel(uo,t)}var oA=O({atanh_:oT});function lT(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=Rb(r);return Gu(e,o,n,s,a,null,null,l)}function Eb(e,t,n,a,r,s,i="channelsLast"){let[o,l]=vc(t),d;if(i==="channelsLast")d=[o,l,e[3],e[3]];else if(i==="channelsFirst")d=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Gu(e,d,n,a,r,s,!1,i)}function uT(e,t,n,a,r,s,i="NDHWC"){let[o,l,d]=uA(t),u,p;if(i==="NDHWC")p="channelsLast",u=[o,l,d,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",u=[o,l,d,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Cb(e,u,n,a,r,!1,p,s)}function Gu(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,d,u,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,d,u,p]=e;else if(o==="channelsFirst")[l,p,d,u]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,A]=vc(n),[y,g]=vc(a),x=cl(c,y),w=cl(h,g),{padInfo:b,outHeight:v,outWidth:N}=cT(r,d,u,f,A,x,w,s,o),T=i?m*p:m,R;return o==="channelsFirst"?R=[l,T,v,N]:o==="channelsLast"&&(R=[l,v,N,T]),{batchSize:l,dataFormat:o,inHeight:d,inWidth:u,inChannels:p,outHeight:v,outWidth:N,outChannels:T,padInfo:b,strideHeight:f,strideWidth:A,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:w,dilationHeight:y,dilationWidth:g,inShape:e,outShape:R,filterShape:t}}function Cb(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,d,u,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,d,u,p,c]=e;else if(i==="channelsFirst")[l,c,d,u,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,A]=t,[y,g,x]=uA(n),[w,b,v]=uA(a),N=cl(h,w),T=cl(m,b),R=cl(f,v),{padInfo:$,outDepth:z,outHeight:P,outWidth:V}=hT(r,d,u,p,y,g,x,N,T,R,o),j=s?A*c:A,U;return i==="channelsFirst"?U=[l,j,z,P,V]:i==="channelsLast"&&(U=[l,z,P,V,j]),{batchSize:l,dataFormat:i,inDepth:d,inHeight:u,inWidth:p,inChannels:c,outDepth:z,outHeight:P,outWidth:V,outChannels:j,padInfo:$,strideDepth:y,strideHeight:g,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:R,dilationDepth:w,dilationHeight:b,dilationWidth:v,inShape:e,outShape:U,filterShape:t}}function dT(e,t,n,a,r){a==null&&(a=lA(e,t,n));let s=e[0],i=e[1],o=di((s-t+2*a)/n+1,r),l=di((i-t+2*a)/n+1,r);return[o,l]}function pT(e,t,n,a,r,s){r==null&&(r=lA(e,t,a));let i=e[0],o=e[1],l=e[2],d=di((i-t+2*r)/a+1,s),u=di((o-t+2*r)/a+1,s),p=di((l-t+2*r)/a+1,s);return[d,u,p,n]}function lA(e,t,n,a=1){let r=cl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function vc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function uA(e){return typeof e=="number"?[e,e,e]:e}function cl(e,t){return t<=1?e:e+(e-1)*(t-1)}function cT(e,t,n,a,r,s,i,o,l){let d,u,p;if(typeof e=="number"){d={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=dT([t,n],s,a,e,o);u=c[0],p=c[1]}else if(e==="same"){u=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(u-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,A=Math.floor(h/2),y=h-A;d={top:m,bottom:f,left:A,right:y,type:"SAME"}}else if(e==="valid")d={top:0,bottom:0,left:0,right:0,type:"VALID"},u=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];d={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},u=di((t-s+c+h)/a+1,o),p=di((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:d,outHeight:u,outWidth:p}}function hT(e,t,n,a,r,s,i,o,l,d,u){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=pT([t,n,a,1],o,1,r,e,u);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,A=(h-1)*s+l-n,y=(m-1)*i+d-a,g=Math.floor(f/2),x=f-g,w=Math.floor(A/2),b=A-w,v=Math.floor(y/2),N=y-v;p={top:w,bottom:b,left:v,right:N,front:g,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-d+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function di(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Mr(e){let[t,n,a]=vc(e);return t===1&&n===1&&a===1}function za(e,t){return Mr(e)||Mr(t)}function Rb(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function fT(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return D.runKernel(Vo,n,a)}var H=O({reshape_:fT});function mT(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;F(za(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&F(Vt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(us,d,u);return p=fe(p,s.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var qu=O({avgPool_:mT});function AT(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(gu,d,u);return p=fe(p,o.dtype),l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var dA=O({avgPool3d_:AT});function yT(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=Vu(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${s.dtype}. `)}),n.length===1)return Oa(n[0]);let a=n,r={axis:t};return D.runKernel(co,a,r)}var ot=O({concat_:yT});function gT(e){let t={x:M(e,"x","sigmoid")};return D.runKernel(Gs,t)}var wn=O({sigmoid_:gT});function xT(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return D.runKernel(Go,r,s)}var Re=O({slice_:xT});function bT(e){let t={x:M(e,"x","tanh")};return D.runKernel(Qs,t)}var pi=O({tanh_:bT});function vT(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),d=M(a,"data","basicLSTMCell"),u=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=ot([d,p],1),h=Be(c,o),m=se(h,l),f=m.shape[0],A=m.shape[1]/4,y=[f,A],g=Re(m,[0,0],y),x=Re(m,[0,A],y),w=Re(m,[0,A*2],y),b=Re(m,[0,A*3],y),v=se(_(wn(g),pi(x)),_(u,wn(se(i,w)))),N=_(pi(v),wn(b));return[v,N]}var wT=O({basicLSTMCell_:vT});function kT(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);F(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return D.runKernel(xu,s,i)}var Xu=O({batchToSpaceND_:kT});function IT(e){let t;return e.rank===0||e.rank===1?t=H(e,[1,1,1,e.size]):e.rank===2?t=H(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function ST(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;a!=null&&(u=M(a,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:IT(i),scale:d,offset:u,mean:o,variance:l},c={varianceEpsilon:s},h=D.runKernel(ws,p,c);return H(h,i.shape)}var ci=O({batchNorm_:ST});function NT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${u.rank}.`),ci(i,o,l,u,d,s)}var Mb=O({batchNorm2d_:NT});function TT(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${u.rank}.`),ci(i,o,l,u,d,s)}var Fb=O({batchNorm3d_:TT});function ET(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),d;r!=null&&(d=M(r,"scale","batchNorm"));let u;return a!=null&&(u=M(a,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),d!=null&&F(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${d.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${u.rank}.`),ci(i,o,l,u,d,s)}var $b=O({batchNorm4d_:ET});function CT(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");F(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return D.runKernel(Fp,s,i)}var pA=O({bincount_:CT});function RT(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=H(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,d)=>l>1?d:-1).filter(l=>l>=0).length===0)return Oa(n);let i={x:n},o={reps:s};return D.runKernel(Sr,i,o)}var hl=O({broadcastTo_:RT});function MT(e){let t={x:M(e,"x","ceil")};return D.runKernel(cs,t)}var cA=O({ceil_:MT});function FT(e,t,n){let a=M(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return D.runKernel(Ir,r,s)}var kn=O({clipByValue_:FT});function $T(e){return ot(e,0)}var Db=O({concat1d_:$T});function DT(e,t){return ot(e,t)}var fl=O({concat2d_:DT});function OT(e,t){return ot(e,t)}var Ob=O({concat3d_:OT});function zT(e,t){return ot(e,t)}var zb=O({concat4d_:zT});function _T(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),d=o,u=!1;o.rank===3&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(d.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?d.shape[3]:d.shape[1];F(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:d,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=D.runKernel(hs,c,h);return u?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var ar=O({conv2d_:_T});function PT(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),d=o,u=!1;o.rank===2&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1]])),F(d.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${d.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Vt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(d.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${d.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(za(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=H(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=H(d,[d.shape[0],1,d.shape[1],d.shape[2]]),h=ar(c,p,[1,n],a,"NHWC",[1,s],i);return u?H(h,[h.shape[2],h.shape[3]]):H(h,[h.shape[0],h.shape[2],h.shape[3]])}var wc=O({conv1d_:PT});function LT(e,t,n,a,r,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,d=!1;t.rank===3&&(d=!0,l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let u=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${u}) must match input depth for filter ${n.shape[2]}.`),F(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Vt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=D.runKernel(fs,c,h);return d?H(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var hA=O({conv2DBackpropInput_:LT});function WT(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return hA(n,i,o,a,r,"NHWC",s)}var kc=O({conv2dTranspose_:WT});function BT(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,d=!1;i.rank===4&&(d=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(za(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let u={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=D.runKernel(vu,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var fA=O({conv3d_:BT});function VT(e,t,n,a,r){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],d=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(d===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${d}) must match output depth for filter ${n.shape[4]}.`);let u={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=D.runKernel(zp,u,p);return o?H(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var _b=O({conv3DBackpropInput_:VT});function jT(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return _b(n,s,i,a,r)}var Pb=O({conv3dTranspose_:jT});function UT(e){let t={x:M(e,"x","cos")};return D.runKernel(ms,t)}var Ku=O({cos_:UT});function HT(e){let t={x:M(e,"x","cosh")};return D.runKernel(ho,t)}var Ic=O({cosh_:HT});function GT(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return D.runKernel(As,r,s)}var Sc=O({cumsum_:GT});function qT(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");F(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),F(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return D.runKernel(_p,i,o)}var Lb=O({denseBincount_:qT});function XT(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];F(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${a.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${s} and ${t} for depthToSpace with input shape
${a.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return D.runKernel(mo,o,l)}var mA=O({depthToSpace_:XT});function KT(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),d=o,u=!1;o.rank===3&&(u=!0,d=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(d.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${d.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(d.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${d.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Vt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:d,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=D.runKernel(ys,p,c);return u?H(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var ml=O({depthwiseConv2d_:KT});function ZT(e){let t={x:M(e,"x","diag")};return D.runKernel(Wp,t)}var YT=O({diag_:ZT});function JT(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,d=!1;i.rank===3&&(l=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),d=!0);let u={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=D.runKernel(wu,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var AA=O({dilation2d_:JT});function QT(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function zt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function pt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function eE(e,t){let n=M(e,"a","equal"),a=M(t,"b","equal");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(go,r)}var Fr=O({equal_:eE});function tE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=pt(pt(s.shape,a.shape),r.shape),o=hl(s,i),l=hl(a,i),d=hl(r,i),u={condition:o,t:l,e:d};return D.runKernel(Uo,u)}var nn=O({where_:tE});function nE(e){let t={x:M(e,"x","zerosLike")};return D.runKernel(tl,t)}var Ue=O({zerosLike_:nE});function aE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=bt(n,a);let r=me(n,a),s=Ue(r),i=Fr(a,s);return nn(i,s,r)}var yA=O({divNoNan_:aE});function rE(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");F((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(F(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=H(n,[1,-1]),o=H(a,[-1,1]),l=Be(i,o);return H(l,[])}else if(n.rank===1&&a.rank===2){let i=H(n,[1,-1]),o=H(a,[a.shape[0],a.shape[1]]),l=Be(i,o);return H(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=H(a,[-1,1]),o=Be(n,i);return H(o,[o.size])}else{let i=H(a,[a.shape[0],a.shape[1]]);return Be(n,i)}}var Wb=O({dot_:rE});function sE(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return D.runKernel(jp,n,a)}var Bb=O({einsum_:sE});function iE(e){let t={x:M(e,"x","elu")};return D.runKernel(Ao,t)}var Al=O({elu_:iE});function oE(e){let t=M(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=fe(t,"float32"));let n={x:t};return D.runKernel(yo,n)}var gA=O({erf_:oE});function lE(e){let t={x:M(e,"x","exp")};return D.runKernel(xs,t)}var qn=O({exp_:lE});function uE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return D.runKernel(xo,a,r)}var ln=O({expandDims_:uE});function dE(e){let t={x:M(e,"x","expm1")};return D.runKernel(bo,t)}var xA=O({expm1_:dE});function pE(e,t){let n=M(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return D.runKernel(Sr,a,r)}var $r=O({tile_:pE});function cE(e,t,n,a="float32"){t==null&&(t=e);let r=We([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=H(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return $r(ln(i,0),[n[0],1,1]);if(n.length===2)return $r(ln(ln(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return $r(ln(ln(ln(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var bA=O({eye_:cE});function yl(e,t,n){let a={shape:e,value:t,dtype:n};return D.runKernel(ku,{},a)}function hE(e){let t={x:M(e,"x","floor")};return D.runKernel(bs,t)}var gl=O({floor_:hE});function fE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return D.runKernel(wo,i,o)}var hi=O({gather_:fE});function mE(e,t){let n=M(e,"a","greater"),a=M(t,"b","greater");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Io,r)}var Mn=O({greater_:mE});function AE(e,t){let n=M(e,"a","greaterEqual"),a=M(t,"b","greaterEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(ks,r)}var Dr=O({greaterEqual_:AE});function yE(e){let t={input:M(e,"input","imag")};return D.runKernel(qp,t)}var Nc=O({imag_:yE});function gE(e){let t={x:M(e,"x","isFinite")};return D.runKernel(So,t)}var Vb=O({isFinite_:gE});function xE(e){let t={x:M(e,"x","isInf")};return D.runKernel(No,t)}var jb=O({isInf_:xE});function bE(e){let t={x:M(e,"x","isNaN")};return D.runKernel(To,t)}var vA=O({isNaN_:bE});function vE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return D.runKernel(Ss,n,a)}var Zu=O({leakyRelu_:vE});function wE(e,t){let n=M(e,"a","less"),a=M(t,"b","less");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Eo,r)}var Tc=O({less_:wE});function kE(e,t){let n=M(e,"a","lessEqual"),a=M(t,"b","lessEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Co,r)}var Or=O({lessEqual_:kE});function Ub(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return D.runKernel(Xp,{},a)}function IE(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${s.rank}.`),F(Vt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=H(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},d={depthRadius:t,bias:n,alpha:a,beta:r},u=D.runKernel(Nu,l,d);return o?H(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var wA=O({localResponseNormalization_:IE});function SE(e){let t={x:M(e,"x","log")};return D.runKernel(Ns,t)}var Fn=O({log_:SE});function NE(e){let t={x:M(e,"x","log1p")};return D.runKernel(Ro,t)}var Ec=O({log1p_:NE});function TE(e){return F(wr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(a),[a],r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Cc(i),i[0]})}}function EE(e){return F(wr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=Vu(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return D.tidy(()=>{let{value:s,grads:i}=D.gradients(()=>e(...a),a,r);return r!=null&&sn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Cc(i),i})}}function CE(e){return F(wr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof Le,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=D.gradients(()=>e(t),[t],n);return Cc(a),{grad:a[0],value:r}}}function RE(e){return F(wr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(r=>r instanceof Le),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof Le,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=D.gradients(()=>e(...t),t,n);return n!=null&&sn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Cc(a.grads),a}}function Hb(e,t){F(wr(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(d=>d instanceof Lu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let d in D.registeredVariables)t.push(D.registeredVariables[d])}let a=n?t.filter(d=>!d.trainable):null,r=t.length;t=t.filter(d=>d.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=D.gradients(e,t,null,s);F(o.some(d=>d!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((d,u)=>{o[u]!=null&&(l[d.name]=o[u])}),a!=null&&a.forEach(d=>l[d.name]=null),{value:i,grads:l}}function _a(e){return D.customGrad(e)}function Cc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function ME(e){let t={x:M(e,"x","neg")};return D.runKernel($o,t)}var vt=O({neg_:ME});function FE(e){let t={x:M(e,"x","softplus")};return D.runKernel(Ko,t)}var fi=O({softplus_:FE});function $E(e){let t=M(e,"x","logSigmoid");return _a(n=>({value:vt(fi(vt(n))),gradFunc:a=>_(a,wn(vt(n)))}))(t)}var Gb=O({logSigmoid_:$E});function DE(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return D.runKernel(Ts,a,r)}var Xn=O({max_:DE});function OE(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Ys,r)}var ge=O({sub_:OE});function zE(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Xs,r,s)}var ke=O({sum_:zE});function _E(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return _a((a,r)=>{let s=!0,i=Xn(a,t,!0),o=ge(a,i),l=ge(fe(o,"float32"),Fn(ke(qn(o),t,s)));return r([l]),{value:l,gradFunc:(d,u)=>{let[p]=u,c=!0,h=qn(p);return ge(d,_(ke(d,t,c),h))}}})(n)}var Rc=O({logSoftmax_:_E});function kA(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function qb(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function Xb(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function mi(e,t){let n=t.map(a=>1);return qb(e,n,t)}function PE(e,t,n){F(kA(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Kb(e,t){if(kA(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function IA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function LE(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function WE(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=ra(t,a.shape),s=Xn(a,r,!0),i=ge(a,s),o=qn(i),l=ke(o,r),d=Fn(l),u=se(H(s,d.shape),d);if(n){let p=mi(u.shape,r);return H(u,p)}return u}var SA=O({logSumExp_:WE});function BE(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Mo,r)}var oa=O({logicalAnd_:BE});function VE(e){let t={x:M(e,"x","logicalNot","bool")};return D.runKernel(Iu,t)}var Yu=O({logicalNot_:VE});function jE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Su,r)}var Mc=O({logicalOr_:jE});function UE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return pt(n.shape,a.shape),oa(Mc(e,t),Yu(oa(e,t)))}var Zb=O({logicalXor_:UE});function HE(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(za(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&F(Vt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=D.runKernel(Cs,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Ju=O({maxPool_:HE});function GE(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&F(Vt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let d={x:o},u={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=D.runKernel(Tu,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var NA=O({maxPool3d_:GE});function qE(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=D.runKernel(Jp,s,i);return{result:o[0],indexes:o[1]}}var Yb=O({maxPoolWithArgmax_:qE});function XE(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Es,r)}var Pa=O({maximum_:XE});function KE(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return D.runKernel(Rs,a,r)}var wt=O({mean_:KE});function Ct(e,t="float32"){if(t==="complex64"){let a=Ct(e,"float32"),r=Ct(e,"float32");return Tr(a,r)}let n=Cp(Nt(e),t);return D.makeTensor(n,e,t)}function $n(e,t="float32"){if(t==="complex64"){let a=$n(e,"float32"),r=Ct(e,"float32");return Tr(a,r)}let n=xm(Nt(e),t);return D.makeTensor(n,e,t)}function ZE(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Le?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Le?t.dtype:"float32"),s=Nt(a.shape),i=Nt(r.shape);return n==="xy"?(a=H(a,[1,-1]),r=H(r,[-1,1]),[Be($n([i,1],a.dtype),a),Be(r,$n([1,s],r.dtype))]):(a=H(a,[-1,1]),r=H(r,[1,-1]),[Be(a,$n([1,i],a.dtype)),Be($n([s,1],r.dtype),r)])}function YE(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return D.runKernel(Ms,a,r)}var xl=O({min_:YE});function JE(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=bt(n,a),n.dtype==="bool"&&(n=fe(n,"int32"),a=fe(a,"int32")),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Fs,r)}var bl=O({minimum_:JE});function QE(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return D.runKernel($s,i,s)}var TA=O({mirrorPad_:QE});function eC(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(Fo,r)}var EA=O({mod_:eC});function tC(e){let t=M(e,"x","square"),n={};return D.runKernel("Square",{x:t},n)}var st=O({square_:tC});function nC(e,t=null,n=!1){e=M(e,"x","moments");let a=ra(t,e.shape),r=wt(e,a,n),s=r.shape;n||(s=mi(r.shape,a));let i=st(ge(fe(e,"float32"),H(r,s))),o=wt(i,a,n);return{mean:r,variance:o}}var Fc=O({moments_:nC});function aC(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=Vu(n,"c","multiRNNCell"),i=Vu(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let d=[],u=[];for(let p=0;p<l.length;p+=2)d.push(l[p]),u.push(l[p+1]);return[d,u]}var rC=O({multiRNNCell_:aC});function sC(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?H(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},d=D.runKernel(Qp,o,l);return i===1?H(d,[d.size]):d}var Jb=O({multinomial_:sC});function iC(e,t){let n=M(e,"a","notEqual"),a=M(t,"b","notEqual");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a};return D.runKernel(Do,r)}var Ai=O({notEqual_:iC});function oC(e){let t={x:M(e,"x","onesLike")};return D.runKernel(Po,t)}var Dn=O({onesLike_:oC});function lC(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");F(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=H(n,[-1,1]),s=H(a,[1,-1]);return Be(r,s)}var uC=O({outerProduct_:lC});function dC(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return D.runKernel(zs,s,r)}var rr=O({pad_:dC});function pC(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),rr(e,[t],n)}var cC=O({pad1d_:pC});function hC(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var fC=O({pad2d_:hC});function mC(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var AC=O({pad3d_:mC});function yC(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),rr(e,t,n)}var gC=O({pad4d_:yC});function xC(e,t,n){let a=M(e,"x","spaceToBatchND");F(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return D.runKernel(Ru,r,s)}var Qu=O({spaceToBatchND_:xC});function bC(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(za(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let d=Eb(o.shape,t,s,r,a),u=[d.dilationHeight,d.dilationWidth],p;a==="same"?p=wC([d.filterHeight,d.filterWidth],u):p=[[0,0],[0,0]];let c=u[0]===1&&u[1]===1,[h,m]=vC([d.inHeight,d.inWidth],u,p),f=c?a:"valid",A=c?o:Qu(o,u,h),y=(n==="avg"?()=>qu(A,t,s,f):()=>Ju(A,t,s,f))(),g=c?y:Xu(y,u,m);return l?H(g,[g.shape[1],g.shape[2],g.shape[3]]):g}function vC(e,t,n){let a=n.map(u=>u[0]),r=n.map(u=>u[1]),s=e.concat(a,r),i=t.map((u,p)=>(u-s[p]%u)%u),o=r.map((u,p)=>u+i[p]),l=t.map((u,p)=>[a[p],o[p]]),d=t.map((u,p)=>[0,i[p]]);return[l,d]}function wC(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var Qb=O({pool_:bC});function kC(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=bt(n,a);let r={a:n,b:a};return D.runKernel(_s,r)}var sr=O({pow_:kC});function IC(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return D.runKernel(Ps,r)}var ed=O({prelu_:IC});function SC(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=fe(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return D.runKernel(Wo,r,s)}var $c=O({prod_:SC});function NC(e,t,n){let a=Nt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return D.makeTensor(r,e,n)}var TC=O({rand_:NC}),CA=Ji(Ug()),RA=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=CA.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},EC=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=CA.alea(r.toString()),this.randn=new RA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},CC=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=CA.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function RC(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new EC(t,n,a,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var MC=O({randomGamma_:RC});function FC(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new RA(t,n,a,!1,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var e3=O({randomNormal_:FC});function $C(e,t=0,n=1,a="float32",r){let s=We(e,a),i=new CC(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var vl=O({randomUniform_:$C});function wl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return D.runKernel(Eu,{},r)}function DC(e){let t={input:M(e,"input","real")};return D.runKernel(ec,t)}var td=O({real_:DC});function OC(e){let t={x:M(e,"x","reciprocal")};return D.runKernel(Bo,t)}var MA=O({reciprocal_:OC});function zC(e){let t={x:M(e,"x","relu")};return D.runKernel(Ls,t)}var La=O({relu_:zC});function _C(e){let t={x:M(e,"x","relu6")};return D.runKernel(Bs,t)}var Dc=O({relu6_:_C});function PC(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return D.runKernel(Vs,n,a)}var On=O({reverse_:PC});function LC(e){let t=M(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),On(t,0)}var WC=O({reverse1d_:LC});function BC(e,t){let n=M(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),On(n,t)}var VC=O({reverse2d_:BC});function jC(e,t){let n=M(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),On(n,t)}var UC=O({reverse3d_:jC});function HC(e,t){let n=M(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),On(n,t)}var GC=O({reverse4d_:HC});function qC(e){let t={x:M(e,"x","round")};return D.runKernel(js,t)}var Oc=O({round_:qC});function XC(e){let t={x:M(e,"x","rsqrt")};return D.runKernel(Us,t)}var zc=O({rsqrt_:XC});function Se(e,t){if((tn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&tn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Er(e,[],[],t)}function KC(e){let t={x:M(e,"x","selu")};return D.runKernel(Ho,t)}var _c=O({selu_:KC});function ZC(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),d=M(n,"pointwiseFilter","separableConv2d"),u=o,p=!1;if(o.rank===3&&(p=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(u.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(d.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(d.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${d.shape[0]}.`),F(d.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${d.shape[1]}.`);let c=l.shape[2],h=l.shape[3];F(d.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${d.shape[2]}.`);let m=ml(u,l,a,r,i,s),f=ar(m,d,1,"valid",i);return p?H(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var FA=O({separableConv2d_:ZC});async function YC(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");F(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let u=0;u<r.length;u++)i.has(r[u])||o++;let l=new Dt([o],n.dtype),d=new Dt([o],"int32");for(let u=0,p=0;u<r.length;u++)i.has(r[u])||(l.values[p]=r[u],d.values[p]=u,p++);return[l.toTensor(),d.toTensor()]}var t3=YC;function JC(e){let t={x:M(e,"x","sign")};return D.runKernel(Xo,t)}var $A=O({sign_:JC});function QC(e){let t={x:M(e,"x","sin")};return D.runKernel(Hs,t)}var Pc=O({sin_:QC});function eR(e){let t={x:M(e,"x","sinh")};return D.runKernel(qo,t)}var Lc=O({sinh_:eR});function tR(e,t,n){let a=M(e,"x","slice1d");return F(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var Wc=O({slice1d_:tR});function nR(e,t,n){let a=M(e,"x","slice2d");return F(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var DA=O({slice2d_:nR});function aR(e,t,n){let a=M(e,"x","slice3d");return F(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Bc=O({slice3d_:aR});function rR(e,t,n){let a=M(e,"x","slice4d");return F(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var nd=O({slice4d_:rR});function sR(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return D.runKernel(Ks,a,r)}var ad=O({softmax_:sR});function iR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Hp,t)}var rd=O({fft_:iR});function oR(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return D.runKernel(Gp,t)}var kl=O({ifft_:oR});function lR(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=H(e,[n,t]);a=kl(r)}else{let r=[n,2*(t-1)],s=H(td(e),[n,t]),i=H(Nc(e),[n,t]),o=On(Re(s,[0,1],[n,t-2]),1),l=_(On(Re(i,[0,1],[n,t-2]),1),Se(-1)),d=ot([s,o],1),u=ot([i,l],1),p=H(Tr(d,u),[r[0],r[1]]);a=kl(p)}if(a=td(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=H(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var Vc=O({irfft_:lR});function uR(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return D.runKernel(Zo,a,r)}var an=O({split_:uR});function dR(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(A=>0),f=e.shape.map(A=>A);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=ot([e,Ct(m)],e.shape.length-1),n=t}else r=e;let s=Ue(r),i=H(Tr(r,s),[a,n]),o=rd(i),l=Math.floor(n/2)+1,d=td(o),u=Nc(o),p=an(d,[l,n-l],d.shape.length-1),c=an(u,[l,n-l],u.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,H(Tr(p[0],c[0]),h)}var sd=O({rfft_:dR});function pR(e){let t={x:M(e,"x","sqrt")};return D.runKernel(qs,t)}var Jt=O({sqrt_:pR});function cR(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=bt(n,a),pt(n.shape,a.shape);let r={a:n,b:a},s={};return D.runKernel(Zs,r,s)}var jc=O({squaredDifference_:cR});function hR(e,t){let n=M(e,"x","squeeze");return H(n,wx(n.shape,t).newShape)}var zr=O({squeeze_:hR});function fR(e,t=0){let n=Vu(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return D.runKernel(Lo,a,r)}var zn=O({stack_:fR});function mR(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return D.runKernel(Nr,n,a)}var Il=O({step_:mR});function AR(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let d={x:M(e,"x","stridedSlice")},u={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return D.runKernel(Yo,d,u)}var OA=O({stridedSlice_:AR});function yR(e){let t={x:M(e,"x","tan")};return D.runKernel(Js,t)}var zA=O({tan_:yR});function Tt(e,t){ss(e);let n=Da(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Er(e,null,n,t)}function ga(e,t,n){if(ss(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Da(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Er(e,t,a,n)}function gR(e,t,n){if(ss(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Da(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}function xR(e,t,n){if(ss(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Da(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Er(e,t,a,n)}function bR(e,t,n){if(ss(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Da(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Er(e,t,a,n)}function vR(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=D.runKernel(Jo,s,i);return{values:o,indices:l}}var _A=O({topk_:vR});function wR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new RA(t,n,a,!0,r),i=We(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Uc=O({truncatedNormal_:wR});function kR(e,t=0){let n=M(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=D.runKernel(ic,a,r);return{values:s,indices:i}}var Hc=O({unique_:kR});function IR(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");F(Vt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return D.runKernel(Fu,s,i)}var PA=O({unsortedSegmentSum_:IR});function SR(e,t=0){let n=M(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return D.runKernel(el,a,r)}var la=O({unstack_:SR});function n3(e,t=!0,n,a){return D.makeVariable(e,t,n,a)}function a3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=We(e,"int32"),r=We([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function NR(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=a3(t.shape,n);return e!==t&&t.dispose(),a}var LA=NR;async function TR(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;F(i>0,()=>"mask cannot be scalar"),sn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let d=o.slice(0,s).concat([l],o.slice(s+i)),u=H(a,d),p=H(r,[-1]),c=await LA(p),h=zr(c,[1]),m=hi(u,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),u.dispose(),p.dispose(),c.dispose(),m}var ER=TR;function CR(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=r3(e,t,n),s=r.shape;if(a){let i=ra(n,e.shape);s=mi(r.shape,i)}return H(r,s)}function r3(e,t,n=null){if(e.rank===0)return Ot(e);if(e.rank!==1&&n===null)return r3(H(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(Ot(e),n);if(t===Infinity)return Xn(Ot(e),n);if(t===-Infinity)return xl(Ot(e),n);if(t==="euclidean"||t===2)return Jt(ke(sr(Ot(e),Se(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Xn(ke(Ot(e),n[0]),n[1]-1);if(t===Infinity)return Xn(ke(Ot(e),n[1]),n[0]);if(t===-Infinity)return xl(ke(Ot(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Jt(ke(st(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Gc=O({norm_:CR});function RR(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");Lx(s,i),F(er(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Se(1),d=ge(l,o),u=_(ge(i,s),d);if(r){F(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");u=me(u,ge(l,sr(o,p)))}return se(s,u)}var MR=O({movingAverage_:RR});function FR(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");Xm(r,a,n);let s={indices:a,updates:r},i={shape:n};return D.runKernel(jo,s,i)}var s3=O({scatterND_:FR});function $R(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function DR(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);$R(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return D.runKernel(sc,o,l)}var WA=O({sparseToDense_:DR});function OR(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND"),indices:n};return D.runKernel(ko,a)}var i3=O({gatherND_:OR});function zR(e,t){if(t==null)return e.shape.slice();if(er(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function _R(e,t,n,a){let r=M(e,"x","dropout");if(F(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Le?r.clone():r;let s=zR(r,n),i=1-t,o=me(gl(se(vl(s,0,1,"float32",a),i)),i);return _(r,o)}var o3=O({dropout_:_R});function l3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function BA(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Tt(r,"float32")}async function PR(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");F(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),F(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),sn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,d]=[i.length/s,s],u=kx("bool",l);for(let p=0;p<l;p++){let c=p*d,h=i.subarray(c,c+d),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,A)=>A.value-f.value),u[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){u[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),ia(u,r.shape,"bool")}var LR=PR,_r={};Fe(_r,{conv2d:()=>VR,depthwiseConv2d:()=>GR,matMul:()=>XR});function WR(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let d=s==="NHWC"?o.shape[3]:o.shape[1],u=s==="NHWC"?l.shape[3]:l.shape[1];F(d===n[2],()=>`Error in conv2dDerFilter: depth of input ${d}) must match input depth in filter (${n[2]}.`),F(u===n[3],()=>`Error in conv2dDerFilter: depth of dy (${u}) must match output depth for filter (${n[3]}).`),i!=null&&F(Vt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return D.runKernel(Dp,p,c)}var VA=O({conv2DBackpropFilter_:WR});function qc(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return _(e,Il(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Xc(e,t){let n=t,a=zt(e.shape,t.shape);return a.length>0&&(n=ke(n,a)),H(n,e.shape)}function Kc(e,t,n,a){if(t==="linear")return e;if(t==="relu")return La(e);if(t==="elu")return Al(e);if(t==="relu6")return Dc(e);if(t==="prelu")return ed(e,n);if(t==="leakyrelu")return Zu(e,a);if(t==="sigmoid")return wn(e);throw new Error(`Unknown fused activation ${t}.`)}var Zc=(e,t)=>!(e>0)||t==="linear";function BR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:d,leakyreluAlpha:u}){if(l=l||"linear",Zc(D.state.gradientDepth,l)===!1){let b=ar(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Kc(b,l,d,u)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&F(Vt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),F(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),F(za(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=Gu(h.shape,c.shape,n,s,a,i),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;d!=null&&(y=M(d,"prelu weights","fused conv2d"));let g=(b,v)=>{let[N,T,R,$]=v,z=qc(b,R,l);F(Mr(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let P=hA(T.shape,z,N,n,a),V=VA(T,z,N.shape,n,a),j=[P,V];if($!=null){let U=Xc($,z);j.push(U)}return j},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?_a((b,v,N)=>{let T=D.runKernel(ni,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,N,T)=>{let R=D.runKernel(ni,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var VR=O({fusedConv2d_:BR});function jR(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=H(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let d={x:o,dy:l},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return D.runKernel(Pp,d,u)}var u3=O({depthwiseConv2dNativeBackpropFilter_:jR});function UR(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=H(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let d={dy:o,filter:n},u={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=D.runKernel(Lp,d,u);return l?H(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var d3=O({depthwiseConv2dNativeBackpropInput_:UR});function HR({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:d,leakyreluAlpha:u}){if(Zc(D.state.gradientDepth,l)===!1){let b=ml(e,t,n,a,r,s,i);return o!=null&&(b=se(b,o)),Kc(b,l,d,u)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=H(p,[1,p.shape[0],p.shape[1],p.shape[2]])),F(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),F(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),F(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),F(za(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Vt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=Gu(h.shape,c.shape,n,s,a,i,!0),A;o!=null&&(A=M(o,"bias","fused conv2d"),[A]=bt(A,p),pt(f.outShape,A.shape));let y;d!=null&&(y=M(d,"prelu weights","fused depthwiseConv2d"));let g=(b,v)=>{F(Mr(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,R,$]=v,z=qc(b,R,l),P=d3(T.shape,z,N,n,a,s,i),V=u3(T,z,N.shape,n,a,s,i);if($!=null){let j=Xc(A,z);return[P,V,j]}return[P,V]},x={x:h,filter:c,bias:A,preluActivationWeights:y},w={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:u};return o==null?_a((b,v,N)=>{let T=D.runKernel(ai,x,w);return N([v,b,T]),m&&(T=H(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:g}})(h,c):_a((b,v,N,T)=>{let R=D.runKernel(ai,x,w);return T([v,b,R,N]),m&&(R=H(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:g}})(h,c,A)}var GR=O({fusedDepthwiseConv2d_:HR});function qR({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(Zc(D.state.gradientDepth,s)===!1){let $=Be(e,t,n,a);return r!=null&&($=se($,r)),Kc($,s,i,o)}let l=M(e,"a","fused matMul"),d=M(t,"b","fused matMul");[l,d]=bt(l,d);let u=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?d.shape[d.rank-1]:d.shape[d.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?d.shape[d.rank-2]:d.shape[d.rank-1],m=l.shape.slice(0,-2),f=d.shape.slice(0,-2),A=Nt(m),y=Nt(f);F(l.rank>=2&&d.rank>=2&&l.rank===d.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${d.rank}.`),F(er(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${d.shape} must match.`),F(u===p,()=>`Error in fused matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${l.shape} and ${d.shape} and transposeA=${n} and transposeB=${a} must match.`);let g=l.shape.slice(0,-2).concat([c,h]),x=n?H(l,[A,u,c]):H(l,[A,c,u]),w=a?H(d,[y,h,p]):H(d,[y,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=bt(b,l),pt(g,b.shape));let v;i!=null&&(v=M(i,"prelu weights","fused matMul"));let N=($,z)=>{let[P,V,j,U]=z,X=qc(H($,j.shape),j,s),G,ee;if(!n&&!a?(G=Be(X,V,!1,!0),ee=Be(P,X,!0,!1)):!n&&a?(G=Be(X,V,!1,!1),ee=Be(X,P,!0,!1)):n&&!a?(G=Be(V,X,!1,!0),ee=Be(P,X,!1,!1)):(G=Be(V,X,!0,!0),ee=Be(X,P,!0,!0)),r!=null){let Y=Xc(U,X);return[G,ee,Y]}else return[G,ee]},T={a:x,b:w,bias:b,preluActivationWeights:v},R={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?_a(($,z,P)=>{let V=D.runKernel(ti,T,R);return P([$,z,V]),{value:H(V,g),gradFunc:N}})(x,w):_a(($,z,P,V)=>{let j=D.runKernel(ti,T,R);return V([$,z,j,P]),{value:H(j,g),gradFunc:N}})(x,w,b)}var XR=O({fusedMatMul_:qR});function KR(e){return BA(e,.54,.46)}var ZR=O({hammingWindow_:KR});function YR(e){return BA(e,.5,.5)}var p3=O({hannWindow_:YR});function JR(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=ot([Re(e,s,t-o),yl([o],r)]);i.push(l),s+=n}return i.length===0?ga([],[0,t]):H(ot(i),[i.length,t])}var c3=O({frame_:JR});function QR(e,t,n,a,r=p3){a==null&&(a=l3(t));let s=c3(e,t,n),i=_(s,r(t));return sd(i,a)}var eM=O({stft_:QR});function tM(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),d=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${d},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===d,()=>`Error in cropAndResize: boxInd must be have size [${d}] but had shape ${o.shape}.`),F(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),F(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),F(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let u={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return D.runKernel(fo,u,p)}var nM=O({cropAndResize_:tM});function aM(e){let t=M(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return D.runKernel(vo,n,{})}var rM=O({flipLeftRight_:aM});function sM(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");F(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return D.runKernel(nl,s,i)}var iM=O({rotateWithOffset_:sM});function Sl(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function oM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=Sl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return D.runKernel(Oo,{boxes:s,scores:i},l)}var lM=O({nonMaxSuppression_:oM});function uM(e,t,n){let a=dM(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function dM(e,t,n){return cM(e,t,n||pM)}function pM(e,t){return e>t?1:e<t?-1:0}function cM(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function h3(e,t,n,a,r){return jA(e,t,n,a,r,0)}function f3(e,t,n,a,r,s){return jA(e,t,n,a,r,0,!1,s,!0)}function m3(e,t,n,a,r,s){return jA(e,t,n,a,r,s,!0)}function jA(e,t,n,a,r,s,i=!1,o=!1,l=!1){let d=[];for(let A=0;A<t.length;A++)t[A]>r&&d.push({score:t[A],boxIndex:A,suppressBeginIndex:0});d.sort(A3);let u=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&d.length>0;){let A=d.pop(),{score:y,boxIndex:g,suppressBeginIndex:x}=A;if(y<r)break;let w=!1;for(let b=p.length-1;b>=x;--b){let v=hM(e,g,p[b]);if(v>=a){w=!0;break}if(A.score=A.score*fM(a,u,v),A.score<=r)break}A.suppressBeginIndex=p.length,w||(A.score===y?(p.push(g),c.push(A.score)):A.score>r&&uM(d,A,A3))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function hM(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),d=Math.min(r[0],r[2]),u=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-d)*(c-u);if(h<=0||m<=0)return 0;let f=Math.max(s,d),A=Math.max(i,u),y=Math.min(o,p),g=Math.min(l,c),x=Math.max(y-f,0)*Math.max(g-A,0);return x/(h+m-x)}function fM(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function A3(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function mM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=Sl(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),d=l[0],u=l[1],{selectedIndices:p}=h3(d,u,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Tt(p,"int32")}var AM=mM;function yM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Sl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let d={boxes:i,scores:o},u={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=D.runKernel(_o,d,u);return{selectedIndices:p[0],selectedScores:p[1]}}var gM=O({nonMaxSuppressionWithScore_:yM});async function xM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Sl(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let d=await Promise.all([i.data(),o.data()]),u=d[0],p=d[1],{selectedIndices:c,selectedScores:h}=m3(u,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Tt(c,"int32"),selectedScores:Tt(h)}}var bM=xM;function vM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=Sl(i,o,n,a,r,null),d=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:d,iouThreshold:u,scoreThreshold:p,padToMaxOutputSize:s},m=D.runKernel(zo,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var wM=O({nonMaxSuppressionPadded_:vM});async function kM(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=Sl(i,o,n,a,r,null),d=l.maxOutputSize,u=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=f3(c,h,d,u,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Tt(m,"int32"),validOutputs:Se(f,"int32")}}var IM=kM;function SM(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");F(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},d=D.runKernel(Ws,o,l);return i?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var y3=O({resizeBilinear_:SM});function NM(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");F(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=H(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},d=D.runKernel(Cu,o,l);return i?H(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var g3=O({resizeNearestNeighbor_:NM});function TM(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],d=_(Tt([a]),255),u,p,c,h;if(F(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),F(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),F(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),F(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[u,p,c]=an(r,[1,1,1],-1);let f=_(u,s),A=_(p,i),y=_(c,o);h=se(se(f,A),y)}else h=e;if(t==="otsu"){let f=pA(fe(Oc(h),"int32"),ia([]),256);d=EM(f,l)}let m=n?Or(h,d):Mn(h,d);return fe(_(m,255),"int32")}function EM(e,t){let n=Tt([-1]),a=Tt([0]),r=Tt([0]),s,i,o,l,d,u;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),d=me(ke(s),t),u=me(ke(i),t);let c=ke(_(s,wl(0,s.size)));o=me(c,ke(s));let h=yl(i.shape,s.size),m=se(wl(0,i.size),h),f=_(i,m);l=me(ke(f),ke(i));let A=ge(o,l),y=ge(o,l),g=_(d,u);r=_(_(g,A),y);let x=Mn(r,a);a=nn(x,r,a),n=nn(x,Tt([p]),n)}return n}var CM=O({threshold_:TM});function RM(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},d={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return D.runKernel(Qo,l,d)}var MM=O({transform_:RM});function FM(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");F(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=H(wl(0,s,1,"int32"),[-1,1]),l=wl(0,i,1,"int32"),d=ge(o,l),u=oa(Or(d,Se(+t,"int32")),Dr(d,Se(-n,"int32"))),p=Ct([s,i],a.dtype);return H(zn(la(H(a,[-1,s,i])).map(c=>nn(u,c,p))),r)}var $M=O({bandPart_:FM});function DM(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=an(e,e.shape[0],0).map(r=>zr(r,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(D.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=_(ke(_(n[i],s)),n[i]);s=ge(s,o)}return me(s,Gc(s,"euclidean"))}));return t?zn(n,0):n}var OM=O({gramSchmidt_:DM});function zM(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return x3(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,d)=>l*d),a=la(H(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[d,u]=x3(l,t);r.push(d),s.push(u)});let i=H(zn(r,0),e.shape),o=H(zn(s,0),e.shape);return[i,o]}}function x3(e,t=!1){return D.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=bA(n),s=Oa(e),i=ga([[1]],[1,1]),o=Oa(i),l=n>=a?a:n;for(let d=0;d<l;++d){let u=s,p=o,c=r;[o,s,r]=D.tidy(()=>{let h=Re(s,[d,d],[n-d,1]),m=Gc(h),f=Re(s,[d,d],[1,1]),A=nn(Mn(f,0),ga([[-1]]),ga([[1]])),y=ge(f,_(A,m)),g=me(h,y);g.shape[0]===1?o=Oa(i):o=ot([i,Re(g,[1,0],[g.shape[0]-1,g.shape[1]])],0);let x=vt(me(Be(A,y),m)),w=Re(s,[d,0],[n-d,a]),b=_(x,o),v=Ze(o);if(d===0)s=ge(w,Be(b,Be(v,w)));else{let R=ge(w,Be(b,Be(v,w)));s=ot([Re(s,[0,0],[d,a]),R],0)}let N=Ze(b),T=Re(r,[0,d],[n,r.shape[1]-d]);if(d===0)r=ge(T,Be(Be(T,o),N));else{let R=ge(T,Be(Be(T,o),N));r=ot([Re(r,[0,0],[n,d]),R],1)}return[o,s,r]}),Ee([u,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var _M=O({qr_:zM}),un;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(un||(un={}));function PM(e,t,n=un.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:_(a,r);if(n===un.NONE)return s;if(n===un.SUM)return ke(s);if(n===un.MEAN){if(r==null)return wt(s);{let i=a.size/r.size,o=me(ke(s),ke(r));return i>1?me(o,Se(i)):o}}if(n===un.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(ke(s),Se(a.size));{let i=_(r,$n(a.shape)),o=fe(ke(Ai(i,Se(0))),"float32");return me(ke(s),o)}}throw Error(`Unknown reduction: ${n}`)}var ir=O({computeWeightedLoss_:PM});function LM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),sn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Ot(ge(r,s));return ir(o,i,a)}var WM=O({absoluteDifference_:LM});function BM(e,t,n,a,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),sn(s.shape,i.shape,"Error in cosineDistance: ");let l=Se(1),d=ge(l,ke(_(s,i),n,!0));return ir(d,o,r)}var VM=O({cosineDistance_:BM});function jM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),sn(r.shape,s.shape,"Error in hingeLoss: ");let o=Se(1);r=ge(_(Se(2),r),o);let l=La(ge(o,_(r,s)));return ir(l,i,a)}var UM=O({hingeLoss_:jM});function HM(e,t,n,a=1,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),sn(s.shape,i.shape,"Error in huberLoss: ");let l=Se(a),d=Ot(ge(i,s)),u=bl(d,l),p=ge(d,u),c=se(_(Se(.5),st(u)),_(l,p));return ir(c,o,r)}var GM=O({huberLoss_:HM});function qM(e,t,n,a=1e-7,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),sn(s.shape,i.shape,"Error in logLoss: ");let l=Se(1),d=Se(a),u=vt(_(s,Fn(se(i,d)))),p=_(ge(l,s),Fn(se(ge(l,i),d))),c=ge(u,p);return ir(c,o,r)}var XM=O({logLoss_:qM});function KM(e,t,n,a=un.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),sn(r.shape,s.shape,"Error in meanSquaredError: ");let o=jc(r,s);return ir(o,i,a)}var ZM=O({meanSquaredError_:KM});function YM(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");sn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=La(a),s=_(a,n),i=Ec(qn(vt(Ot(a))));return se(ge(r,s),i)}function JM(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),sn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let d=Se(a),u=Se(1),p=Se(.5);s=se(_(s,ge(u,d)),_(p,d))}let l=YM(s,i);return ir(l,o,r)}var QM=O({sigmoidCrossEntropy_:JM});function eF(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return _a((a,r,s)=>{let i=SA(r,[n],!0),o=ge(fe(r,"float32"),i);s([a,o]);let l=vt(_(o,a));return{value:ke(l,[n]),gradFunc:(d,u)=>{let[p,c]=u,h=mi(d.shape,[n]);return[_(H(d,h),ge(fe(p,"float32"),qn(c))),_(H(d,h),ge(qn(c),fe(p,"float32")))]}}})(e,t)}function tF(e,t,n,a=0,r=un.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),sn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let d=Se(a),u=Se(1),p=Se(s.shape[1]);s=se(_(s,ge(u,d)),me(d,p))}let l=eF(s,i);return ir(l,o,r)}var nF=O({softmaxCrossEntropy_:tF});function aF(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},d=D.runKernel(ac,l);return{outputIndices:d[0],outputValues:d[1],emptyRowIndicator:d[2],reverseIndexMap:d[3]}}var rF=O({sparseFillEmptyRows_:aF});function sF(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=D.runKernel(rc,i);return{outputIndices:o[0],outputShape:o[1]}}var iF=O({sparseReshape_:sF}),oF={fft:rd,ifft:kl,rfft:sd,irfft:Vc},lF={hammingWindow:ZR,hannWindow:p3,frame:c3,stft:eM},Ye={flipLeftRight:rM,resizeNearestNeighbor:g3,resizeBilinear:y3,rotateWithOffset:iM,cropAndResize:nM,nonMaxSuppression:lM,nonMaxSuppressionAsync:AM,nonMaxSuppressionWithScore:gM,nonMaxSuppressionWithScoreAsync:bM,nonMaxSuppressionPadded:wM,nonMaxSuppressionPaddedAsync:IM,threshold:CM,transform:MM},b3={bandPart:$M,gramSchmidt:OM,qr:_M},uF={absoluteDifference:WM,computeWeightedLoss:ir,cosineDistance:VM,hingeLoss:UM,huberLoss:GM,logLoss:XM,meanSquaredError:ZM,sigmoidCrossEntropy:QM,softmaxCrossEntropy:nF},v3={sparseFillEmptyRows:rF,sparseReshape:iF},or=class extends kb{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return Ee(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Hb(e,t)}dispose(){this.iterations_!=null&&Ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Se(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(or,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var Yc=class extends or{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;W(()=>{let l=se(_(i,this.rho),_(st(s),1-this.rho)),d=_(me(Jt(se(o,this.epsilon)),Jt(se(i,this.epsilon))),s),u=se(_(o,this.rho),_(st(d),1-this.rho));i.assign(l),o.assign(u);let p=se(_(d,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Ee(this.accumulatedGrads.map(e=>e.variable)),Ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};Yc.className="Adadelta";Rr(Yc);var Jc=class extends or{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:W(()=>yl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;W(()=>{let i=se(s,st(r));s.assign(i);let o=se(_(me(r,Jt(se(i,D.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};Jc.className="Adagrad";Rr(Jc);var Qc=class extends or{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],W(()=>{this.accBeta1=Se(t).variable(),this.accBeta2=Se(n).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=ge(1,this.accBeta2);t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:W(()=>Ue(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:W(()=>Ue(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let d=this.accumulatedFirstMoment[s].variable,u=this.accumulatedSecondMoment[s].variable,p=se(_(d,this.beta1),_(l,1-this.beta1)),c=se(_(u,this.beta2),_(st(l),1-this.beta2)),h=me(p,n),m=me(c,a);d.assign(p),u.assign(c);let f=se(_(me(h,se(Jt(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(_(this.accBeta1,this.beta1)),this.accBeta2.assign(_(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),W(()=>{this.accBeta1.assign(sr(this.beta1,this.iterations_+1)),this.accBeta2.assign(sr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Qc.className="Adam";Rr(Qc);var eh=class extends or{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],W(()=>{this.iteration=Se(0).variable(),this.accBeta1=Se(t).variable()}),a==null&&(this.epsilon=D.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);W(()=>{let n=ge(1,this.accBeta1),a=me(-this.learningRate,se(_(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=D.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ue(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ue(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let d=this.accumulatedFirstMoment[s].variable,u=this.accumulatedWeightedInfNorm[s].variable,p=se(_(d,this.beta1),_(l,1-this.beta1)),c=_(u,this.beta2),h=Ot(l),m=Pa(c,h);d.assign(p),u.assign(m);let f=se(_(me(a,n),me(p,se(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(se(this.iteration,1)),this.accBeta1.assign(_(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};eh.className="Adamax";Rr(eh);var id=class extends or{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=D.registeredVariables[t];W(()=>{let s=se(_(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=jt(Se(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};id.className="SGD";Rr(id);var th=class extends id{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Se(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&W(()=>{let i,o=se(_(this.m,r),s);this.useNesterov?i=se(_(this.c,se(s,_(o,this.m))),a):i=se(_(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};th.className="Momentum";Rr(th);var nh=class extends or{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=D.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=D.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:W(()=>Ue(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:W(()=>Ue(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;W(()=>{let l=se(_(i,this.decay),_(st(s),1-this.decay));if(this.centered){let d=this.accumulatedMeanGrads[n].variable,u=se(_(d,this.decay),_(s,1-this.decay)),p=me(_(s,this.learningRate),Jt(ge(l,se(st(u),this.epsilon)))),c=se(_(o,this.momentum),p);i.assign(l),d.assign(u),o.assign(c);let h=ge(a,c);a.assign(h)}else{let d=se(_(i,this.decay),_(st(s),1-this.decay)),u=se(_(o,this.momentum),me(_(s,this.learningRate),Jt(se(d,this.epsilon))));i.assign(d),o.assign(u);let p=ge(a,u);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};nh.className="RMSProp";Rr(nh);var yi=class{static sgd(e){return new id(e)}static momentum(e,t,n=!1){return new th(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new nh(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Qc(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new Yc(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new eh(e,t,n,a,r)}static adagrad(e,t=.1){return new Jc(e,t)}},gi={sgd:yi.sgd,momentum:yi.momentum,adadelta:yi.adadelta,adagrad:yi.adagrad,rmsprop:yi.rmsprop,adamax:yi.adamax,adam:yi.adam},dF=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function ah(){return new Promise(e=>dF(()=>e()))}var C={};Fe(C,{ERF_A1:()=>vF,ERF_A2:()=>wF,ERF_A3:()=>kF,ERF_A4:()=>IF,ERF_A5:()=>SF,ERF_P:()=>bF,PARALLELIZE_THRESHOLD:()=>UA,SELU_SCALE:()=>k3,SELU_SCALEALPHA:()=>w3,applyActivation:()=>Kc,assertAndGetBroadcastShape:()=>pt,assertAxesAreInnerMostDims:()=>PE,assertParamsConsistent:()=>pF,assignToTypedArray:()=>$F,axesAreInnerMostDims:()=>kA,calculateShapes:()=>pb,checkEinsumDimSizes:()=>LF,combineLocations:()=>qb,complexWithEvenIndex:()=>RF,complexWithOddIndex:()=>MF,computeConv2DInfo:()=>Gu,computeConv3DInfo:()=>Cb,computeDefaultPad:()=>lA,computeDilation2DInfo:()=>lT,computeOptimalWindowSize:()=>hF,computeOutAndReduceShapes:()=>Xb,computeOutShape:()=>cF,computePool2DInfo:()=>Eb,computePool3DInfo:()=>uT,convertConv2DDataFormat:()=>Rb,decodeEinsumEquation:()=>_F,eitherStridesOrDilationsAreOne:()=>za,expandShapeToKeepDim:()=>mi,exponent:()=>OF,exponents:()=>DF,fromStringArrayToUint8:()=>XF,fromUint8ToStringArray:()=>qF,getAxesPermutation:()=>Kb,getBroadcastDims:()=>QT,getComplexWithIndex:()=>FF,getEinsumComputePath:()=>WF,getEinsumPermutation:()=>PF,getFusedBiasGradient:()=>Xc,getFusedDyActivation:()=>qc,getImageCenter:()=>fF,getInnerMostAxes:()=>LE,getPermuted:()=>AF,getReductionAxes:()=>zt,getReshaped:()=>mF,getReshapedPermuted:()=>yF,getSliceBeginCoords:()=>gF,getSliceSize:()=>xF,getUndoAxesPermutation:()=>IA,isIdentityPermutation:()=>BF,log:()=>TF,mergeRealAndImagArrays:()=>EF,prepareAndValidate:()=>db,prepareSplitSize:()=>jF,segment_util:()=>N3,shouldFuse:()=>Zc,slice_util:()=>on,splitRealAndImagArrays:()=>CF,tupleValuesAreOne:()=>Mr,upcastType:()=>sa,validateInput:()=>Xm,validateUpdateShape:()=>qm,warn:()=>NF});function pF(e,t){let n=e[0].length;e.forEach((r,s)=>{F(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)F(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function cF(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var UA=30;function hF(e){return e<=UA?e:Ep(e,Math.floor(Math.sqrt(e)))}function fF(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function mF(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function AF(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function yF(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function gF(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function xF(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var w3=1.7580993408473768,k3=1.0507009873554805,bF=.3275911,vF=.254829592,wF=-.284496736,kF=1.421413741,IF=-1.453152027,SF=1.061405429;function NF(...e){J().getBool("IS_TEST")||console.warn(...e)}function TF(...e){J().getBool("IS_TEST")||console.log(...e)}function EF(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function CF(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function RF(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function MF(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function FF(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function $F(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function DF(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function OF(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var HA="->",zF=/->/g,I3=",",S3="...";function _F(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(zF,"").length)/HA.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${HA}").`);let[a,r]=e.split(HA);F(a.indexOf(S3)===-1,()=>`The ellipsis notation ("${S3}") is not supported yet.`);let s=a.split(I3),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==I3&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let d=o.length,u=r.length,p=[];for(let c=u;c<d;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function PF(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function LF(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:F(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function WF(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=VF(t,o);for(let d of l)s.indexOf(d)===-1&&(a[i].push(d),s.push(d))}return{path:n,steps:a}}function BF(e){return e.every((t,n)=>t===n)}function VF(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function jF(e,t,n=0){let a=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var N3={};Fe(N3,{collectGatherOpShapeInfo:()=>GF,computeOutShape:()=>HF,segOpComputeOptimalWindowSize:()=>UF});function UF(e,t){let n=!1,a;for(e<=UA?(a=e,n=!0):a=Ep(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Ep(e,a+1);return a}function HF(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function GF(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,d=1,u=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),d*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),u*=e.shape[p];return{batchSize:l,sliceSize:u,outerSize:d,dimSize:i,outputShape:o}}function qF(e){try{return e.map(t=>dc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function XF(e){return e.map(t=>Ou(t))}var Wa={};Fe(Wa,{nonMaxSuppressionV3Impl:()=>h3,nonMaxSuppressionV4Impl:()=>f3,nonMaxSuppressionV5Impl:()=>m3,whereImpl:()=>a3});function ve(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var KF=Wa.whereImpl,rh=class extends fu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Np(this,nr())}nextDataId(){return rh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&C.warn(`
============================
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return C.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return nr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){ve([e],"where");let t=this.readSync(e.dataId);return KF(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};rh.nextDataId=0;var GA={};Fe(GA,{addImpl:()=>E3,bincountImpl:()=>XA,bincountReduceImpl:()=>C3,ceilImpl:()=>R3,concatImpl:()=>KA,expImpl:()=>M3,expm1Impl:()=>$3,floorImpl:()=>D3,gatherV2Impl:()=>O3,greaterImpl:()=>z3,lessImpl:()=>_3,linSpaceImpl:()=>P3,logImpl:()=>L3,maxImpl:()=>W3,maximumImpl:()=>B3,minimumImpl:()=>V3,multiplyImpl:()=>ZA,negImpl:()=>j3,notEqualImpl:()=>U3,prodImpl:()=>H3,rangeImpl:()=>JA,rsqrtImpl:()=>G3,simpleAbsImpl:()=>T3,sliceImpl:()=>oh,sparseFillEmptyRowsImpl:()=>q3,sparseReshapeImpl:()=>X3,squaredDifferenceImpl:()=>K3,stridedSliceImpl:()=>Z3,subImpl:()=>Y3,tileImpl:()=>J3,topKImpl:()=>Q3,transposeImpl:()=>YA,uniqueImpl:()=>e7});function T3(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var ZF=e=>{let{x:t}=e.inputs,n=e.backend;ve(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=T3(r),n.makeOutput(a,t.shape,"float32")},YF={kernelName:to,backendName:"cpu",kernelFunc:ZF};function Rt(e){return(t,n,a,r,s)=>{let i=C.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),d=k.sizeFromShape(i),u=k.getTypedArrayFromDType(s,d),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=C.getBroadcastDims(t,i),A=C.getBroadcastDims(n,i);if(f.length+A.length===0)for(let y=0;y<u.length;++y)u[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<u.length;++y){let g=k.indexToLoc(y,o,l),x=g.slice(-p);f.forEach(N=>x[N]=0);let w=k.locToIndex(x,p,h),b=g.slice(-c);A.forEach(N=>b[N]=0);let v=k.locToIndex(b,c,m);u[y]=e(a[w],r[v])}return[u,i]}}function _n(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var JF={kernelName:$p,backendName:"cpu",kernelFunc:_n};function sh(e,t,n="float32"){if(n==="complex64"){let r=sh(e,t,"float32"),s=sh(e,t,"float32");return _n({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function Ba(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var QF={kernelName:Is,backendName:"cpu",kernelFunc:Ba};function xi(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var e$={kernelName:ec,backendName:"cpu",kernelFunc:xi};function Pr(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ba({inputs:{x:r},backend:n});let i=sh(n,r.shape,r.dtype),o=Pr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=_n({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=xi({inputs:{input:r},backend:n}),o=Pr({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Ba({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,d]=Rt((u,p)=>u!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(d,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var t$={kernelName:ps,backendName:"cpu",kernelFunc:Pr};function Ut(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;ve([i,o],e);let d=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,d,u,p);return l.makeTensorInfo(h,p,c)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let d=Pr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),u=l.data.get(d.dataId),p=u.complexTensorInfos.real,c=u.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=Pr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(f.dataId),y=A.complexTensorInfos.real,g=A.complexTensorInfos.imag,x=l.data.get(y.dataId).values,w=l.data.get(g.dataId).values,[b,v,N]=n(i.shape,o.shape,h,m,x,w),T=l.makeTensorInfo(N,"float32",b),R=l.makeTensorInfo(N,"float32",v),$=_n({inputs:{real:T,imag:R},backend:l});return l.disposeIntermediateTensorInfo(d),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(R),$}else{let d=l.data.get(i.dataId).values,u=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,d,u,p);return l.makeTensorInfo(h,p,c)}}}function qA(e){return(t,n,a,r,s,i)=>{let o=C.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),d=o.length,u=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=C.getBroadcastDims(t,o),m=C.getBroadcastDims(n,o),f=C.mergeRealAndImagArrays(a,r),A=C.mergeRealAndImagArrays(s,i),y=t.length,g=k.computeStrides(t),x=n.length,w=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let v=b%f.length,N=b%A.length,T=e(f[v*2],f[v*2+1],A[N*2],A[N*2+1]);p[b]=T.real,c[b]=T.imag}else for(let b=0;b<p.length;b++){let v=k.indexToLoc(b,d,u),N=v.slice(-y);h.forEach(P=>N[P]=0);let T=k.locToIndex(N,y,g),R=v.slice(-x);m.forEach(P=>R[P]=0);let $=k.locToIndex(R,x,w),z=e(f[T*2],f[T*2+1],A[$*2],A[$*2+1]);p[b]=z.real,c[b]=z.imag}return[p,c,o]}}var E3=Rt((e,t)=>e+t),n$=qA((e,t,n,a)=>({real:e+n,imag:t+a})),od=Ut(kr,E3,n$),a$={kernelName:kr,backendName:"cpu",kernelFunc:od};function XA(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function C3(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=We([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let d=e.get(o,l);if(d<0)throw new Error("Input x must be non-negative!");d>=n||(a?i.set(1,o,d):t.size>0?i.set(i.get(o,d)+t.get(o,l),o,d):i.set(i.get(o,d)+1,o,d))}return i}function Nl(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function nt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,d=k.sizeFromShape(i.shape),u=n||i.dtype,p=k.getArrayFromDType(u,d);for(let c=0;c<d;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,u,p)}}function Tl(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(ve(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,d=n||i.dtype,u=t(l,d,r);return o.makeTensorInfo(i.shape,d,u)}}var R3=Nl(e=>Math.ceil(e)),r$=Tl(cs,R3),s$={kernelName:cs,backendName:"cpu",kernelFunc:r$};function KA(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?C.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let d=0;d<i.shape[0];++d){let u=d*t[1]+s;for(let p=0;p<i.shape[1];++p)r[u+p]=o[l++]}s+=i.shape[1]})}return r}var M3=Nl(e=>Math.exp(e)),F3=Tl(xs,M3),i$={kernelName:xs,backendName:"cpu",kernelFunc:F3},$3=Nl(e=>Math.expm1(e)),o$=Tl(bo,$3),l$={kernelName:bo,backendName:"cpu",kernelFunc:o$},D3=Nl(e=>Math.floor(e)),u$=Tl(bs,D3),d$={kernelName:bs,backendName:"cpu",kernelFunc:u$};function O3(e,t,n){let a=We(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let d=e.locToIndex(s);a.values[r]=e.values[d]}return a}var z3=Rt((e,t)=>e>t?1:0),p$=Ut(Io,z3,null,"bool"),c$={kernelName:Io,backendName:"cpu",kernelFunc:p$},_3=Rt((e,t)=>e<t?1:0),h$=Ut(Eo,_3,null,"bool"),f$={kernelName:Eo,backendName:"cpu",kernelFunc:h$};function P3(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var L3=Nl(e=>Math.log(e)),m$=Tl(Ns,L3),A$={kernelName:Ns,backendName:"cpu",kernelFunc:m$};function W3(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let d=e[i+l];d>o&&(o=d)}r[s]=o}return r}var B3=Rt((e,t)=>Math.max(e,t)),y$=Ut(Es,B3),g$={kernelName:Es,backendName:"cpu",kernelFunc:y$},V3=Rt((e,t)=>Math.min(e,t)),x$=Ut(Fs,V3),b$={kernelName:Fs,backendName:"cpu",kernelFunc:x$},ZA=Rt((e,t)=>e*t),v$=qA((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),ih=Ut(Ds,ZA,v$),w$={kernelName:Ds,backendName:"cpu",kernelFunc:ih};function j3(e,t,n){let a=k.createScalarValue(-1,n);return ZA([],t,a,e,n)}function k$(e){let{inputs:t,backend:n}=e,{x:a}=t;ve(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=j3(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var I$={kernelName:$o,backendName:"cpu",kernelFunc:k$},U3=Rt((e,t)=>e!==t?1:0),S$=Ut(Do,U3,null,"bool"),N$={kernelName:Do,backendName:"cpu",kernelFunc:S$};function YA(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),d=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let u=0;u<i;++u){let p=k.indexToLoc(u,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,l);d[h]=e[u]}return d}function Kn(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;ve(r,"transpose");let i=r.shape.length,o=new Array(i);for(let u=0;u<o.length;u++)o[u]=r.shape[s[u]];let l=a.data.get(r.dataId).values,d=YA(l,r.shape,r.dtype,s,o);return{dataId:a.write(d,o,r.dtype),shape:o,dtype:r.dtype}}var T$={kernelName:ei,backendName:"cpu",kernelFunc:Kn};function H3(e,t,n,a){let[r,s]=C.computeOutAndReduceShapes(e,a),i=sa(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let d=0;d<o.length;++d){let u=d*l,p=1;for(let c=0;c<l;++c)p*=n[u+c];o[d]=p}return{outVals:o,outShape:r,outDtype:i}}function E$(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),d=C.getAxesPermutation(l,o),u=l,p=r,c=[];d!=null&&(p=Kn({inputs:{x:r},backend:n,attrs:{perm:d}}),c.push(p),u=C.getInnerMostAxes(u.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:A}=H3(p.shape,p.dtype,h,u),y=f;return i&&(y=C.expandShapeToKeepDim(f,l)),c.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(y,A,m)}var C$={kernelName:Wo,backendName:"cpu",kernelFunc:E$};function JA(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let d=1;d<l.length;d++)l[d]=l[d-1]+n;return l}var G3=Nl(e=>1/Math.sqrt(e)),R$=Tl(Us,G3),M$={kernelName:Us,backendName:"cpu",kernelFunc:R$};function oh(e,t,n,a,r){let s=on.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=on.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?C.fromUint8ToStringArray(e):e,d=We(a,r,l),u=We(n,r);for(let p=0;p<u.size;++p){let c=u.indexToLoc(p),h=c.map((m,f)=>m+t[f]);u.set(d.get(...h),...c)}return r==="string"?C.fromStringArrayToUint8(u.values):u.values}function bi(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;ve(r,"slice");let[o,l]=on.parseSliceParams(r,s,i);on.assertParamsValid(r,o,l);let d=n.data.get(r.dataId).values,u=oh(d,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,u)}var F$={kernelName:Go,backendName:"cpu",kernelFunc:bi};function q3(e,t,n,a,r,s,i){let o=t[0],l=s[0],d=new Array(l),u=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${o}`);let A=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[A,[0,p],y,d,u]}let c=!0,h=0,m=new Array(l).fill(0);for(let A=0;A<o;++A){let y=e[A*p];if(y<0)throw new Error(`indices(${A}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${A}, 0) is invalid: ${y} >= ${l}`);++m[y],c=c&&y>=h,h=y}let f=!0;for(let A=0;A<l;++A){let y=m[A]===0;d[A]=y,f=f&&!y,m[A]=Math.max(m[A],1),A>0&&(m[A]+=m[A-1])}if(f&&c){let A=e,y=a;for(let g=0;g<o;++g)u[g]=g;return[A,[o,p],y,d,u]}else{let A=m[l-1],y=k.getArrayFromDType(n,A*p),g=k.getArrayFromDType(r,A),x=new Array(l).fill(0);for(let w=0;w<o;++w){let b=e[w*p],v=x[b],N=(b===0?0:m[b-1])+v;x[b]++;for(let T=0;T<p;++T)y[N*p+T]=e[w*p+T];g[N]=a[w],u[w]=N}for(let w=0;w<l;++w)if(x[w]===0){let b=w===0?0:m[w-1];y[b*p+0]=w;for(let v=1;v<p;++v)y[b*p+v]=0;g[b]=i}return[y,[o,p],g,d,u]}}function X3(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],d=1,u=-1;for(let A=0;A<o;++A){let y=r[A];if(y===-1){if(u!==-1)throw new Error(`only one output dimension may be -1, not both ${u} and ${A}`);u=A,l.push(1)}else{if(y<0)throw new Error(`size ${A} must be non-negative, not ${y}`);d*=y,l.push(y)}}if(u!==-1){if(d<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let A=Math.trunc(s/d);if(d*A!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
dense values, but the requested shape requires a multiple of ${d}. inputShape=${a} outputShape= ${l}`);l[u]=A}let p=k.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let A=c-2;A>=0;--A)h[A]=h[A+1]*a[A+1]}let m=[];if(o>0){m[o-1]=1;for(let A=o-2;A>=0;--A)m[A]=m[A+1]*l[A+1]}let f=k.getArrayFromDType(n,i*o);for(let A=0;A<i;++A){let y=0;for(let g=0;g<c;++g)y+=e[A*c+g]*h[g];for(let g=0;g<o;++g)f[A*o+g]=Math.trunc(y/m[g]),y%=m[g]}return[f,[i,o],l]}var K3=Rt((e,t)=>{let n=e-t;return n*n}),$$=Ut(Zs,K3),D$={kernelName:Zs,backendName:"cpu",kernelFunc:$$};function Z3(e,t,n,a){let r=We(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var Y3=Rt((e,t)=>e-t),O$=qA((e,t,n,a)=>({real:e-n,imag:t-a})),QA=Ut(Ys,Y3,O$),z$={kernelName:Ys,backendName:"cpu",kernelFunc:QA};function J3(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=We(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function Q3(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),d=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let g=0;g<h.length;g++)m.push({value:h[g],index:g});m.sort((g,x)=>x.value-g.value);let f=p*a,A=l.subarray(f,f+a),y=d.subarray(f,f+a);for(let g=0;g<a;g++)A[g]=m[g].value,y[g]=m[g].index}let u=t.slice();return u[u.length-1]=a,[We(u,n,l),We(u,"int32",d)]}function e7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Dt(s,a,e),d=[],u=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(u)f=e[m].toString();else{let A=[];for(let y=0;y<s[0];y++)for(let g=0;g<s[2];g++)A.push(l.get(y,m,g));f=A.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let A=Object.keys(i).length;i[f]=A,o[m]=A,d.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Dt(p,a);d.forEach((m,f)=>{for(let A=0;A<s[0];A++)for(let y=0;y<s[2];y++)c.set(l.get(A,m,y),A,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var t7="3.6.0";pl("cpu",()=>new rh,1);var n7=nt(Ao,e=>e>=0?e:Math.exp(e)-1),_$={kernelName:Ao,backendName:"cpu",kernelFunc:n7};function a7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;ve([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let d=0;d<o.length;d++)l[d]=o[d]<0?s*o[d]:o[d];return n.makeTensorInfo(r.shape,"float32",l)}var P$={kernelName:Ss,backendName:"cpu",kernelFunc:a7},L$=Rt((e,t)=>e<0?t*e:e);function r7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;ve([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=L$(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var W$={kernelName:Ps,backendName:"cpu",kernelFunc:r7},s7=nt(Ls,e=>Math.max(0,e)),B$={kernelName:Ls,backendName:"cpu",kernelFunc:s7},i7=nt(Bs,e=>Math.min(Math.max(0,e),6)),V$={kernelName:Bs,backendName:"cpu",kernelFunc:i7},o7=nt(Gs,e=>1/(1+Math.exp(-e))),j$={kernelName:Gs,backendName:"cpu",kernelFunc:o7};function e1(e,t,n,a,r){if(n==="linear")return Ba({inputs:{x:t},backend:e});if(n==="relu")return s7({inputs:{x:t},backend:e});if(n==="elu")return n7({inputs:{x:t},backend:e});if(n==="relu6")return i7({inputs:{x:t},backend:e});if(n==="prelu")return r7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return a7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return o7({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function ct(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let d=n.data.get(r.dataId);if(d.complexTensorInfos!=null){let u=d.complexTensorInfos.real,p=d.complexTensorInfos.imag;u.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var U$={kernelName:Vo,backendName:"cpu",kernelFunc:ct};function l7(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;ve([r,s],"matMul");let l=r.shape.length,d=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[d-1]:s.shape[d-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[d-2]:s.shape[d-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&d>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,u,c]:[A,c,u],b=o?[y,h,p]:[y,p,h],v=ct({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ct({inputs:{x:s},backend:n,attrs:{shape:b}}),T=i?v.shape[1]:v.shape[2],R=i?v.shape[2]:v.shape[1],$=o?N.shape[1]:N.shape[2],z=Math.max(A,y),P=n.data.get(v.dataId).values,V=n.data.get(N.dataId).values,j=k.computeStrides(v.shape),U=k.computeStrides(N.shape),[X,G,ee]=i?[j[0],1,j[1]]:[j[0],j[1],1],[Y,re,ne]=o?[1,U[1],U[0]]:[U[1],1,U[0]],ie=R*$,Q=We([z,R,$],v.dtype),de=Q.values,oe=n.blockSize;for(let ye=0;ye<z;ye++)for(let ce=0;ce<R;ce+=oe)for(let Ie=0;Ie<$;Ie+=oe)for(let Ne=0;Ne<T;Ne+=oe){let $e=Math.min(ce+oe,R),ze=Math.min(Ie+oe,$),De=Math.min(Ne+oe,T);for(let Qe=ce;Qe<$e;Qe++)for(let et=Ie;et<ze;et++){let rt=0;for(let Xe=Ne;Xe<De;Xe++){let dt=Math.min(ye,A-1)*X,Ve=Math.min(ye,y-1)*ne,An=P[dt+Qe*G+Xe*ee],gt=V[Xe*Y+et*re+Ve];rt+=An*gt}de[ye*ie+(Qe*$+et)]+=rt}}return n.disposeIntermediateTensorInfo(v),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Q.dtype,Q.values)}var H$={kernelName:ds,backendName:"cpu",kernelFunc:l7};function G$(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a,c,h,m,f=[];c=l7({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:d},backend:n}),i&&(h=od({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),u&&(m=e1(n,c,u,o,p),f.push(c),c=m);for(let A of f)n.disposeIntermediateTensorInfo(A);return c}var q$={kernelName:ti,backendName:"cpu",kernelFunc:G$},X$=nt(no,e=>Math.acos(e)),K$={kernelName:no,backendName:"cpu",kernelFunc:X$},Z$=nt(ao,e=>Math.acosh(e)),Y$={kernelName:ao,backendName:"cpu",kernelFunc:Z$};function J$(e){let{inputs:t,backend:n}=e,a=t;ve(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=We(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let d=0;d<i.length;d++)i[d]+=l[d]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var Q$={kernelName:os,backendName:"cpu",kernelFunc:J$};function eD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Kn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("all",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x&&b}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var tD={kernelName:ro,backendName:"cpu",kernelFunc:eD};function nD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Kn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("any",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];x=x||b}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var aD={kernelName:so,backendName:"cpu",kernelFunc:nD};function rD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=Kn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[u,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(u),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b>g&&(g=b,x=w)}h[A]=x}return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",h)}var sD={kernelName:ls,backendName:"cpu",kernelFunc:rD};function iD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;ve(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=Kn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],C.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[u,p]=C.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(u),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let A=0;A<h.length;++A){let y=A*m,g=f[y],x=0;for(let w=0;w<m;++w){let b=f[y+w];b<g&&(g=b,x=w)}h[A]=x}return d.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(u,"int32",h)}var oD={kernelName:yu,backendName:"cpu",kernelFunc:iD},lD=nt(io,e=>Math.asin(e)),uD={kernelName:io,backendName:"cpu",kernelFunc:lD},dD=nt(oo,e=>Math.asinh(e)),pD={kernelName:oo,backendName:"cpu",kernelFunc:dD},cD=nt(lo,e=>Math.atan(e)),hD={kernelName:lo,backendName:"cpu",kernelFunc:cD},fD=Rt((e,t)=>Math.atan2(e,t)),mD=Ut(po,fD),AD={kernelName:po,backendName:"cpu",kernelFunc:mD},yD=nt(uo,e=>Math.atanh(e)),gD={kernelName:uo,backendName:"cpu",kernelFunc:yD};function t1(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,d=r.dilationWidth,u=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=We(r.outShape,n),A=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],g=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let w=0;w<r.batchSize;++w){let b=w*y,v=w*a[0];for(let N=0;N<r.inChannels;++N)for(let T=0;T<r.outHeight;++T){let R=T*i-c,$=Math.max(0,R),z=Math.min(r.inHeight,u+R),P=b+T*g;for(let V=0;V<r.outWidth;++V){let j=V*o-h,U=Math.max(0,j),X=Math.min(r.inWidth,p+j),G=m,ee=0,Y=0;for(let ne=$;ne<z;ne+=l){let ie=v+ne*a[1];for(let Q=U;Q<X;Q+=d){let de=ie+Q*a[2],oe=e[de+N];s==="max"&&oe>G?G=oe:s==="avg"&&(ee+=oe,Y++)}if(isNaN(G))break}let re=P+V*x+N;A[re]=s==="avg"?ee/Y:G}}}return f}function u7(e,t,n,a,r=!1,s=!1){let i=We(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,d=a.dilationHeight,u=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=We(t,n,e);for(let A=0;A<a.batchSize;++A)for(let y=0;y<a.inChannels;++y)for(let g=0;g<a.outHeight;++g){let x=g*o-h,w=x;for(;w<0;)w+=d;let b=Math.min(a.inHeight,p+x);for(let v=0;v<a.outWidth;++v){let N=v*l-m,T=N;for(;T<0;)T+=u;let R=Math.min(a.inWidth,c+N),$=Number.NEGATIVE_INFINITY,z=-1;for(let P=w;P<b;P+=d){let V=P-x;for(let j=T;j<R;j+=u){let U=j-N,X=f.get(A,P,j,y);X>$&&($=X,r?z=s?((A*a.inHeight+P)*a.inWidth+j)*a.inChannels+y:(P*a.inWidth+j)*a.inChannels+y:z=V*c+U)}}i.set(z,A,g,v,y)}}return i}function d7(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,d=r.dilationDepth,u=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,A=r.padInfo.top,y=r.padInfo.left,g=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=We(r.outShape,n),w=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],v=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],T=r.outShape[4];for(let R=0;R<r.batchSize;++R){let $=R*b,z=R*a[0];for(let P=0;P<r.inChannels;++P)for(let V=0;V<r.outDepth;++V){let j=V*i-f,U=j;for(;U<0;)U+=d;let X=Math.min(r.inDepth,c+j),G=$+V*v;for(let ee=0;ee<r.outHeight;++ee){let Y=ee*o-A,re=Y;for(;re<0;)re+=u;let ne=Math.min(r.inHeight,h+Y),ie=G+ee*N;for(let Q=0;Q<r.outWidth;++Q){let de=Q*l-y,oe=de;for(;oe<0;)oe+=p;let ye=Math.min(r.inWidth,m+de),ce=ie+Q*T,Ie=g,Ne=0,$e=0;for(let De=U;De<X;De+=d){let Qe=z+De*a[1];for(let et=re;et<ne;et+=u){let rt=Qe+et*a[2];for(let Xe=oe;Xe<ye;Xe+=p){let dt=rt+Xe*a[3],Ve=e[dt+P];if(s==="max"&&Ve>Ie?Ie=Ve:s==="avg"&&(Ne+=Ve,$e++),isNaN(Ie))break}if(isNaN(Ie))break}if(isNaN(Ie))break}let ze=ce+P;w[ze]=s==="avg"?Ne/$e:Ie}}}}return x}function xD(e,t){let n=We(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,d=t.effectiveFilterDepth,u=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let A=0;A<t.inChannels;++A)for(let y=0;y<t.outDepth;++y){let g=y*a-c,x=g;for(;x<0;)x+=i;let w=Math.min(t.inDepth,d+g);for(let b=0;b<t.outHeight;++b){let v=b*r-h,N=v;for(;N<0;)N+=o;let T=Math.min(t.inHeight,u+v);for(let R=0;R<t.outWidth;++R){let $=R*s-m,z=$;for(;z<0;)z+=l;let P=Math.min(t.inWidth,p+$),V=Number.NEGATIVE_INFINITY,j=-1;for(let U=x;U<w;U+=i){let X=U-g;for(let G=N;G<T;G+=o){let ee=G-v;for(let Y=z;Y<P;Y+=l){let re=Y-$,ne=e.get(f,U,G,Y,A);ne>=V&&(V=ne,j=X*u*p+ee*u+re)}}}n.set(j,f,y,b,R,A)}}}return n}function bD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=t1(c,r.shape,r.dtype,h,u,"avg");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var vD={kernelName:us,backendName:"cpu",kernelFunc:bD};function wD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a;ve(r,"avgPool3d");let u=C.computePool3DInfo(r.shape,s,i,1,o,l,d),p=n.data.get(r.dataId).values,c=d7(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var kD={kernelName:gu,backendName:"cpu",kernelFunc:wD};function ID(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=a;ve([r,s],"avgPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,d),p=u.strideDepth,c=u.strideHeight,h=u.strideWidth,m=u.filterDepth,f=u.filterHeight,A=u.filterWidth,y=u.dilationDepth,g=u.dilationHeight,x=u.dilationWidth,w=u.effectiveFilterDepth,b=u.effectiveFilterHeight,v=u.effectiveFilterWidth,N=w-1-u.padInfo.front,T=v-1-u.padInfo.left,R=b-1-u.padInfo.top,$=We(s.shape,"float32"),z=1/(m*f*A),P=n.bufferSync(r);for(let V=0;V<u.batchSize;++V)for(let j=0;j<u.inChannels;++j)for(let U=0;U<u.inDepth;++U)for(let X=0;X<u.inHeight;++X)for(let G=0;G<u.inWidth;++G){let ee=U-N,Y=X-R,re=G-T,ne=0;for(let ie=0;ie<w;ie+=y){let Q=(ee+ie)/p;if(!(Q<0||Q>=u.outDepth||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(Y+de)/c;if(!(oe<0||oe>=u.outHeight||Math.floor(oe)!==oe))for(let ye=0;ye<v;ye+=x){let ce=(re+ye)/h;ce<0||ce>=u.outWidth||Math.floor(ce)!==ce||(ne+=P.get(V,Q,oe,ce,j))}}}$.set(ne*z,V,U,X,G,j)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var SD={kernelName:Mp,backendName:"cpu",kernelFunc:ID};function ND(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;ve([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:d}=a,u=C.computePool2DInfo(i.shape,o,l,1,d),p=u.strideHeight,c=u.strideWidth,h=u.filterHeight,m=u.filterWidth,f=u.dilationHeight,A=u.dilationWidth,y=u.effectiveFilterHeight,g=u.effectiveFilterWidth,x=g-1-u.padInfo.left,w=y-1-u.padInfo.top,b=We(i.shape,"float32"),v=1/(h*m),N=n.data.get(r.dataId).values,T=We(r.shape,"float32",N);for(let R=0;R<u.batchSize;++R)for(let $=0;$<u.inChannels;++$)for(let z=0;z<u.inHeight;++z)for(let P=0;P<u.inWidth;++P){let V=z-w,j=P-x,U=0;for(let X=0;X<y;X+=f){let G=(V+X)/p;if(!(G<0||G>=u.outHeight||Math.floor(G)!==G))for(let ee=0;ee<g;ee+=A){let Y=(j+ee)/c;Y<0||Y>=u.outWidth||Math.floor(Y)!==Y||(U+=T.get(R,G,Y,$))}}b.set(U*v,R,z,P,$)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var TD={kernelName:Rp,backendName:"cpu",kernelFunc:ND};function ED(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),ve([r,o,l,s,i],"batchNorm");let{varianceEpsilon:d}=a;d==null&&(d=.001);let u=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(u.length),A=m.length,y=h.length,g=c.length,x=p.length,w=0,b=0,v=0,N=0;for(let T=0;T<u.length;++T)f[T]=m[w++]+(u[T]-p[b++])*h[v++]/Math.sqrt(c[N++]+d),w>=A&&(w=0),b>=x&&(b=0),v>=y&&(v=0),N>=g&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var CD={kernelName:ws,backendName:"cpu",kernelFunc:ED};function RD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;ve([r],"batchToSpaceND");let o=s.reduce((y,g)=>y*g),l=C.getReshaped(r.shape,s,o),d=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(u,i,s.length),h=ct({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Kn({inputs:{x:h},backend:n,attrs:{perm:d}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:u}}),A=bi({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var MD={kernelName:xu,backendName:"cpu",kernelFunc:RD};function FD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,d=XA(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}var $D={kernelName:Fp,backendName:"cpu",kernelFunc:FD},DD=nt(Ir,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),OD={kernelName:Ir,backendName:"cpu",kernelFunc:DD},zD=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let d=0;d<o.length;d++){let u=o[d],p=l[d];a[d]=Math.hypot(u,p)}return n.makeOutput(a,t.shape,"float32")},_D={kernelName:bu,backendName:"cpu",kernelFunc:zD};function El(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var PD={kernelName:qp,backendName:"cpu",kernelFunc:El};function Cl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return Ba({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(C.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(w=>xi({inputs:{input:w},backend:n})),A=o.map(w=>El({inputs:{input:w},backend:n})),y=Cl({inputs:f,backend:n,attrs:{axis:s}}),g=Cl({inputs:A,backend:n,attrs:{axis:s}}),x=_n({inputs:{real:y,imag:g},backend:n});return f.forEach(w=>n.disposeIntermediateTensorInfo(w)),A.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),x}let d=o.map(f=>{let A=k.sizeFromShape(f.shape.slice(s));return ct({inputs:{x:f},backend:n,attrs:{shape:[-1,A]}})}),u=d.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=C.computeOutShape(d.map(f=>f.shape),1);let p=d[0].shape[0]===1,c=KA(u,i,t[0].dtype,p),h=C.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var LD={kernelName:co,backendName:"cpu",kernelFunc:Cl};function p7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:d,dimRoundingMode:u}=a;ve([r,s],"conv2d");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,A=c.dilationWidth,y=c.padInfo.left,g=c.padInfo.top,x=c.dataFormat==="channelsLast",w=new Dt(c.outShape,r.dtype),b=k.computeStrides(r.shape),v=k.computeStrides(s.shape),N=b[0],T=x?b[1]:b[2],R=x?b[2]:1,$=x?1:b[1],z=w.strides[0],P=x?w.strides[1]:w.strides[2],V=x?w.strides[2]:1,j=x?1:w.strides[1],U=n.data.get(r.dataId).values,X=n.data.get(s.dataId).values,G=w.values;for(let ee=0;ee<c.batchSize;++ee){let Y=ee*N,re=ee*z;for(let ne=0;ne<c.outHeight;++ne){let ie=re+ne*P,Q=ne*c.strideHeight-g;for(let de=0;de<h;++de){let oe=Q+de*f;if(oe<0||oe>=c.inHeight)continue;let ye=de*v[0],ce=Y+oe*T;for(let Ie=0;Ie<c.outWidth;++Ie){let Ne=ie+Ie*V,$e=Ie*c.strideWidth-y;for(let ze=0;ze<m;++ze){let De=$e+ze*A;if(De<0||De>=c.inWidth)continue;let Qe=ye+ze*v[1],et=ce+De*R,rt=Qe;for(let Xe=0;Xe<c.inChannels;++Xe){let dt=U[et+Xe*$];for(let Ve=0;Ve<c.outChannels;++Ve)G[Ne+Ve*j]+=dt*X[rt+Ve];rt+=c.outChannels}}}}}}return n.makeTensorInfo(w.shape,w.dtype,G)}var WD={kernelName:hs,backendName:"cpu",kernelFunc:p7};function BD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,filterShape:u}=a;ve([r,s],"conv2dBackpropFilter");let p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,u,i,1,o,d,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:A}=c,y=c.dataFormat==="channelsLast",g=new Dt(c.filterShape,"float32"),x=c.padInfo.left,w=c.padInfo.top,b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=new Dt(r.shape,r.dtype,b),T=new Dt(s.shape,s.dtype,v);for(let R=0;R<f;++R){let $=Math.max(0,Math.ceil((w-R)/h)),z=Math.min(c.outHeight,(c.inHeight+w-R)/h);for(let P=0;P<A;++P){let V=Math.max(0,Math.ceil((x-P)/m)),j=Math.min(c.outWidth,(c.inWidth+x-P)/m);for(let U=0;U<c.inChannels;++U)for(let X=0;X<c.outChannels;++X){let G=0;for(let ee=0;ee<c.batchSize;++ee)for(let Y=$;Y<z;++Y){let re=R+Y*h-w;for(let ne=V;ne<j;++ne){let ie=P+ne*m-x;y?G+=N.get(ee,re,ie,U)*T.get(ee,Y,ne,X):G+=N.get(ee,U,re,ie)*T.get(ee,X,Y,ne)}}g.set(G,R,P,U,X)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var VD={kernelName:Dp,backendName:"cpu",kernelFunc:BD};function jD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:d,dimRoundingMode:u}=a;ve([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=C.convertConv2DDataFormat(d),m=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,h),f=new Dt(m.inShape,"float32"),A=f.values,y=n.data.get(r.dataId).values,g=n.data.get(s.dataId).values,[x,w,b]=p,{batchSize:v,filterHeight:N,filterWidth:T,inChannels:R,inHeight:$,inWidth:z,outChannels:P,outHeight:V,outWidth:j,strideHeight:U,strideWidth:X}=m;h=m.dataFormat;let G=N-1-m.padInfo.top,ee=T-1-m.padInfo.left,Y=h==="channelsLast",re=f.strides[0],ne=Y?f.strides[1]:f.strides[2],ie=Y?f.strides[2]:1,Q=Y?1:f.strides[1],de=c[0],oe=Y?c[1]:c[2],ye=Y?c[2]:1,ce=Y?1:c[1];for(let Ie=0;Ie<v;++Ie)for(let Ne=0;Ne<R;++Ne)for(let $e=0;$e<$;++$e){let ze=$e-G,De=Math.max(0,Math.ceil(ze/U)),Qe=Math.min(V,(N+ze)/U);for(let et=0;et<z;++et){let rt=et-ee,Xe=Math.max(0,Math.ceil(rt/X)),dt=Math.min(j,(T+rt)/X),Ve=0;for(let gt=De;gt<Qe;++gt){let Vn=gt*U-ze;for(let Xt=Xe;Xt<dt;++Xt){let yn=Xt*X-rt,jn=de*Ie+oe*gt+ye*Xt,Rn=x*(N-1-Vn)+w*(T-1-yn)+b*Ne;for(let rn=0;rn<P;++rn){let Kt=y[jn+ce*rn],Ra=g[Rn+rn];Ve+=Kt*Ra}}}let An=re*Ie+ne*$e+ie*et+Q*Ne;A[An]=Ve}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var UD={kernelName:fs,backendName:"cpu",kernelFunc:jD};function HD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;ve([r,s],"conv3d");let d=C.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:u,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:A}=d,y=A.front,g=A.left,x=A.top,w=new Dt(d.outShape,r.dtype),b=n.data.get(r.dataId).values,v=n.data.get(s.dataId).values,N=w.values,T=k.computeStrides(r.shape),R=k.computeStrides(s.shape);for(let $=0;$<d.batchSize;++$){let z=$*T[0],P=$*w.strides[0];for(let V=0;V<d.outDepth;++V){let j=P+V*w.strides[1],U=V*d.strideDepth-y;for(let X=0;X<u;++X){let G=U+X*h;if(G<0||G>=d.inDepth)continue;let ee=X*R[0],Y=z+G*T[1];for(let re=0;re<d.outHeight;++re){let ne=j+re*w.strides[2],ie=re*d.strideHeight-x;for(let Q=0;Q<p;++Q){let de=ie+Q*m;if(de<0||de>=d.inHeight)continue;let oe=ee+Q*R[1],ye=Y+de*T[2];for(let ce=0;ce<d.outWidth;++ce){let Ie=ne+ce*d.outChannels,Ne=ce*d.strideWidth-g;for(let $e=0;$e<c;++$e){let ze=Ne+$e*f;if(ze<0||ze>=d.inWidth)continue;let De=oe+$e*R[2],Qe=ye+ze*d.inChannels,et=De;for(let rt=0;rt<d.inChannels;++rt){let Xe=b[Qe+rt];for(let dt=0;dt<d.outChannels;++dt)N[Ie+dt]+=Xe*v[et+dt];et+=d.outChannels}}}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var GD={kernelName:vu,backendName:"cpu",kernelFunc:HD};function qD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;ve([r,s],"conv3dBackpropFilterV2");let d=k.computeStrides(r.shape),u=k.computeStrides(s.shape),p=C.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,A=p.filterHeight,y=p.filterWidth,g=new Dt(p.filterShape,"float32"),x=g.values,[w,b,v,N]=g.strides,T=n.data.get(s.dataId).values,[R,$,z,P]=u,V=n.data.get(r.dataId).values,[j,U,X,G]=d,ee=p.padInfo.front,Y=p.padInfo.left,re=p.padInfo.top;for(let ne=0;ne<f;++ne){let ie=Math.max(0,Math.ceil((ee-ne)/c)),Q=Math.min(p.outDepth,(p.inDepth+ee-ne)/c),de=ne*w;for(let oe=0;oe<A;++oe){let ye=Math.max(0,Math.ceil((re-oe)/h)),ce=Math.min(p.outHeight,(p.inHeight+re-oe)/h),Ie=oe*b+de;for(let Ne=0;Ne<y;++Ne){let $e=Math.max(0,Math.ceil((Y-Ne)/m)),ze=Math.min(p.outWidth,(p.inWidth+Y-Ne)/m),De=Ne*v+Ie;for(let Qe=0;Qe<p.inChannels;++Qe){let et=Qe*N+De;for(let rt=0;rt<p.outChannels;++rt){let Xe=0;for(let dt=0;dt<p.batchSize;++dt){let Ve=dt*j,An=dt*R;for(let gt=ie;gt<Q;++gt){let Vn=(ne+gt*c-ee)*U+Ve,Xt=gt*$+An;for(let yn=ye;yn<ce;++yn){let jn=(oe+yn*h-re)*X+Vn,Rn=yn*z+Xt;for(let rn=$e;rn<ze;++rn){let Kt=(Ne+rn*m-Y)*G+jn,Ra=rn*P+Rn;Xe+=V[Kt+Qe]*T[Ra+rt]}}}}x[et+rt]=Xe}}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var XD={kernelName:Op,backendName:"cpu",kernelFunc:qD};function KD(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;ve([r],"conv3dBackpropInputV2");let d=k.computeStrides(r.shape),u=k.computeStrides(s.shape),p=C.computeConv3DInfo(l,s.shape,o,1,i),c=new Dt(p.inShape,"float32"),h=c.values,[m,f,A,y]=c.strides,g=n.data.get(r.dataId).values,[x,w,b,v]=d,N=n.data.get(s.dataId).values,[T,R,$,z]=u,{batchSize:P,filterDepth:V,filterHeight:j,filterWidth:U,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:re,outDepth:ne,outHeight:ie,outWidth:Q,strideDepth:de,strideHeight:oe,strideWidth:ye}=p,ce=V-1-p.padInfo.front,Ie=j-1-p.padInfo.top,Ne=U-1-p.padInfo.left;for(let $e=0;$e<P;++$e)for(let ze=0;ze<X;++ze)for(let De=0;De<G;++De){let Qe=De-ce,et=Math.max(0,Math.ceil(Qe/de)),rt=Math.min(ne,(V+Qe)/de);for(let Xe=0;Xe<ee;++Xe){let dt=Xe-Ie,Ve=Math.max(0,Math.ceil(dt/oe)),An=Math.min(ie,(j+dt)/oe);for(let gt=0;gt<Y;++gt){let Vn=gt-Ne,Xt=Math.max(0,Math.ceil(Vn/ye)),yn=Math.min(Q,(U+Vn)/ye),jn=0;for(let Rn=et;Rn<rt;++Rn){let rn=Rn*de-Qe;for(let Kt=Ve;Kt<An;++Kt){let Ra=Kt*oe-dt;for(let ea=Xt;ea<yn;++ea){let ta=ea*ye-Vn,fr=x*$e+w*Rn+b*Kt+v*ea,Ka=T*(V-1-rn)+R*(j-1-Ra)+$*(U-1-ta)+z*ze;for(let mr=0;mr<re;++mr){let Wi=g[fr+mr],Ma=N[Ka+mr];jn+=Wi*Ma}}}}h[m*$e+f*De+A*Xe+y*gt+ze]=jn}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var ZD={kernelName:zp,backendName:"cpu",kernelFunc:KD},YD=nt(ms,e=>Math.cos(e)),JD={kernelName:ms,backendName:"cpu",kernelFunc:YD},QD=nt(ho,e=>Math.cosh(e)),eO={kernelName:ho,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:d}=a,[u,p,c,h]=r.shape,m=s.shape[0],[f,A]=o,y=We([m,f,A,h],"float32"),g=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,w=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),v=k.computeStrides(y.shape);for(let N=0;N<m;N++){let T=N*4,R=g[T],$=g[T+1],z=g[T+2],P=g[T+3],V=x[N];if(V>=u)continue;let j=f>1?(z-R)*(p-1)/(f-1):0,U=A>1?(P-$)*(c-1)/(A-1):0;for(let X=0;X<f;X++){let G=f>1?R*(p-1)+X*j:.5*(R+z)*(p-1);if(G<0||G>p-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<h;Y++){let re=Y+ee*v[2]+X*v[1]+N*v[0];y.values[re]=d}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),re=G-ee;for(let ne=0;ne<A;ne++){let ie=A>1?$*(c-1)+ne*U:.5*($+P)*(c-1);if(ie<0||ie>c-1){for(let ye=0;ye<h;ye++){let ce=ye+ne*v[2]+X*v[1]+N*v[0];y.values[ce]=d}continue}let Q=Math.floor(ie),de=Math.ceil(ie),oe=ie-Q;for(let ye=0;ye<h;ye++){let ce=ye+Q*b[2]+ee*b[1]+V*b[0],Ie=w[ce];ce=ye+de*b[2]+ee*b[1]+V*b[0];let Ne=w[ce];ce=ye+Q*b[2]+Y*b[1]+V*b[0];let $e=w[ce];ce=ye+de*b[2]+Y*b[1]+V*b[0];let ze=w[ce],De=Ie+(Ne-Ie)*oe,Qe=$e+(ze-$e)*oe;ce=ye+ne*v[2]+X*v[1]+N*v[0],y.values[ce]=De+(Qe-De)*re}}}else for(let ee=0;ee<A;++ee){let Y=A>1?$*(c-1)+ee*U:.5*($+P)*(c-1);if(Y<0||Y>c-1){for(let ie=0;ie<h;ie++){let Q=ie+ee*v[2]+X*v[1]+N*v[0];y.values[Q]=d}continue}let re=Math.round(Y),ne=Math.round(G);for(let ie=0;ie<h;ie++){let Q=ie+re*b[2]+ne*b[1]+V*b[0],de=ie+ee*v[2]+X*v[1]+N*v[0];y.values[de]=w[Q]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var nO={kernelName:fo,backendName:"cpu",kernelFunc:tO};function aO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;ve(r,"cumsum");let l=C.getAxesPermutation([s],r.shape.length),d=r;l!=null&&(d=Kn({inputs:{x:r},backend:n,attrs:{perm:l}}));let u=C.getInnerMostAxes(1,r.shape.length)[0];if(u!==d.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${d.shape.length-1} but got axis=${u}`);let p=sa(d.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(d.shape),p),h=n.data.get(d.dataId).values,m=d.shape[d.shape.length-1],f=o?(y,g)=>y+m-g-1:(y,g)=>y+g;for(let y=0;y<h.length;y+=m)for(let g=0;g<m;g++){let x=f(y,g);if(g===0)c[x]=i?0:h[x];else{let w=f(y,g-1);c[x]=i?h[w]+c[w]:h[x]+c[w]}}let A=n.makeTensorInfo(d.shape,p,c);if(l!=null){let y=C.getUndoAxesPermutation(l),g=Kn({inputs:{x:A},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(d),g}return A}var rO={kernelName:As,backendName:"cpu",kernelFunc:aO};function sO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,u=XA(l,d,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),d=n.bufferSync(s),u=C3(l,d,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var iO={kernelName:_p,backendName:"cpu",kernelFunc:sO};function oO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],d=r.shape[2],u=r.shape[3],p=l*s,c=d*s,h=u/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),A=0;for(let y=0;y<o;++y)for(let g=0;g<p;++g){let x=Math.floor(g/s),w=g%s;for(let b=0;b<c;++b){let v=Math.floor(b/s),N=b%s,T=(w*s+N)*h;for(let R=0;R<h;++R){let $=R+T+u*(v+d*(x+l*y));f[A++]=m[$]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var lO={kernelName:mo,backendName:"cpu",kernelFunc:oO};function c7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:d}=a;ve([r,s],"depthwiseConv2DNative");let u=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=C.computeConv2DInfo(r.shape,s.shape,i,c,o,d,!0),{filterHeight:m,filterWidth:f,dilationHeight:A,dilationWidth:y,padInfo:g}=h,x=g.left,w=g.top,b=h.outChannels/h.inChannels,v=new Dt(h.outShape,r.dtype),N=n.data.get(r.dataId).values,T=n.data.get(s.dataId).values,R=v.values;for(let $=0;$<h.batchSize;++$){let z=$*u[0],P=$*v.strides[0];for(let V=0;V<h.outHeight;++V){let j=P+V*v.strides[1],U=V*h.strideHeight-w;for(let X=0;X<m;++X){let G=U+X*A;if(G<0||G>=h.inHeight)continue;let ee=X*p[0],Y=z+G*u[1];for(let re=0;re<h.outWidth;++re){let ne=j+re*v.strides[2],ie=re*h.strideWidth-x;for(let Q=0;Q<f;++Q){let de=ie+Q*y;if(de<0||de>=h.inWidth)continue;let oe=ee+Q*p[1],ye=Y+de*h.inChannels,ce=ne,Ie=oe;for(let Ne=0;Ne<h.inChannels;++Ne){let $e=N[ye+Ne];for(let ze=0;ze<b;++ze)R[ce+ze]+=$e*T[Ie+ze];ce+=b,Ie+=b}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var uO={kernelName:ys,backendName:"cpu",kernelFunc:c7};function dO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,filterShape:u}=a;ve([r,s],"depthwiseConv2dNativeBackpropFilter");let p=C.computeConv2DInfo(r.shape,u,i,o,l,d,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,A=new Dt(p.filterShape,"float32"),y=p.padInfo.left,g=p.padInfo.top,x=p.outChannels/p.inChannels,w=n.data.get(r.dataId).values,b=new Dt(r.shape,r.dtype,w),v=n.data.get(s.dataId).values,N=new Dt(s.shape,s.dtype,v);for(let T=0;T<m;++T){let R=Math.max(0,Math.ceil((g-T)/c)),$=Math.min(p.outHeight,(p.inHeight+g-T)/c);for(let z=0;z<f;++z){let P=Math.max(0,Math.ceil((y-z)/h)),V=Math.min(p.outWidth,(p.inWidth+y-z)/h);for(let j=0;j<p.outChannels;++j){let U=Math.trunc(j/x),X=j%x,G=0;for(let ee=0;ee<p.batchSize;++ee)for(let Y=R;Y<$;++Y){let re=T+Y*c-g;for(let ne=P;ne<V;++ne){let ie=z+ne*h-y;G+=b.get(ee,re,ie,U)*N.get(ee,Y,ne,j)}}A.set(G,T,z,U,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var pO={kernelName:Pp,backendName:"cpu",kernelFunc:dO};function cO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,inputShape:u}=a;ve([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=C.computeConv2DInfo(u,s.shape,i,o,l,d,!0),m=new Dt(h.inShape,"float32"),f=m.values,[A,y,g]=m.strides,x=n.data.get(r.dataId).values,[w,b,v]=p,N=n.data.get(s.dataId).values,[T,R,$]=c,{batchSize:z,filterHeight:P,filterWidth:V,inChannels:j,inHeight:U,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:re,strideWidth:ne}=h,ie=P-1-h.padInfo.top,Q=V-1-h.padInfo.left,de=G/j;for(let oe=0;oe<z;++oe)for(let ye=0;ye<j;++ye)for(let ce=0;ce<U;++ce){let Ie=ce-ie,Ne=Math.max(0,Math.ceil(Ie/re)),$e=Math.min(ee,(P+Ie)/re);for(let ze=0;ze<X;++ze){let De=ze-Q,Qe=Math.max(0,Math.ceil(De/ne)),et=Math.min(Y,(V+De)/ne),rt=0;for(let Xe=Ne;Xe<$e;++Xe){let dt=Xe*re-Ie;for(let Ve=Qe;Ve<et;++Ve){let An=Ve*ne-De,gt=w*oe+b*Xe+v*Ve,Vn=T*(P-1-dt)+R*(V-1-An)+$*ye;for(let Xt=0;Xt<de;++Xt){let yn=ye*de+Xt,jn=x[gt+yn],Rn=N[Vn+Xt];rt+=jn*Rn}}}f[A*oe+y*ce+g*ze+ye]=rt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var hO={kernelName:Lp,backendName:"cpu",kernelFunc:cO};function fO(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=We([r,r],a.dtype),o=i.values;for(let d=0;d<s.length;d++)o[d*r+d]=s[d];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var mO={kernelName:Wp,backendName:"cpu",kernelFunc:fO},AO={kernelName:wu,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,d=l.data.get(a.dataId).values,u=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:A,outHeight:y,outWidth:g,padInfo:x,strideHeight:w,strideWidth:b,filterHeight:v,filterWidth:N,dilationHeight:T,dilationWidth:R,outShape:$}=C.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),z=k.sizeFromShape($),P=$.length,V=k.getArrayFromDType(a.dtype,z);for(let j=0;j<h;++j)for(let U=0;U<y;++U){let X=U*w-x.top;for(let G=0;G<g;++G){let ee=G*b-x.left;for(let Y=0;Y<A;++Y){let re=Number.MIN_SAFE_INTEGER;for(let ie=0;ie<v;++ie){let Q=X+ie*T;if(Q>=0&&Q<m)for(let de=0;de<N;++de){let oe=ee+de*R;if(oe>=0&&oe<f){let ye=k.locToIndex([j,Q,oe,Y],u,k.computeStrides(a.shape)),ce=k.locToIndex([ie,de,Y],c,k.computeStrides(r.shape)),Ie=d[ye]+p[ce];Ie>re&&(re=Ie)}}}let ne=k.locToIndex([j,U,G,Y],P,k.computeStrides($));V[ne]=re}}}return{dataId:l.write(k.toTypedArray(V,a.dtype),$,a.dtype),shape:$,dtype:a.dtype}}},yO={kernelName:Vp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,d=t,u=k.toNestedArray(a.shape,d.data.get(a.dataId).values),p=k.toNestedArray(r.shape,d.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${Vp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,d.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let P=0;P<c;++P)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,re=0;for(let ne=0;ne<b;++ne){let ie=j+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=u[P][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ne,re=Q)}}}z[Y][re][G]+=$[P][V][U][G]}}}return{dataId:d.write(k.toTypedArray(z,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},gO={kernelName:Bp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,d=t,u=k.toNestedArray(a.shape,d.data.get(a.dataId).values),p=k.toNestedArray(r.shape,d.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:A,outWidth:y,padInfo:g,strideHeight:x,strideWidth:w,filterHeight:b,filterWidth:v,dilationHeight:N,dilationWidth:T,outShape:R}=C.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===R.length,()=>`Error in ${Bp}, dy must have the same rank as output ${R.length}, but got ${s.rank}`);let $=k.toNestedArray(R,d.data.get(s.dataId).values),z=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let P=0;P<c;++P)for(let V=0;V<A;++V){let j=V*x-g.top;for(let U=0;U<y;++U){let X=U*w-g.left;for(let G=0;G<f;++G){let ee=Number.MIN_SAFE_INTEGER,Y=j<0?0:j,re=X<0?0:X;for(let ne=0;ne<b;++ne){let ie=j+ne*N;if(ie>=0&&ie<h)for(let Q=0;Q<v;++Q){let de=X+Q*T;if(de>=0&&de<m){let oe=u[P][ie][de][G]+p[ne][Q][G];oe>ee&&(ee=oe,Y=ie,re=de)}}}z[P][Y][re][G]+=$[P][V][U][G]}}}return{dataId:d.write(k.toTypedArray(z,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function ld(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"sum");let o;r.dtype==="bool"?o=Pr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Ba({inputs:{x:r},backend:n});let l=o.shape.length,d=k.parseAxisParam(s,o.shape),u=C.getAxesPermutation(d,l),p=d,c=o;u!=null&&(c=Kn({inputs:{x:o},backend:n,attrs:{perm:u}}),p=C.getInnerMostAxes(p.length,l)),C.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=C.computeOutAndReduceShapes(c.shape,p),f=C.upcastType(c.dtype,"int32"),A=sh(n,h,f),y=k.sizeFromShape(m),g=n.data.get(A.dataId).values,x=n.data.get(c.dataId).values;for(let w=0;w<g.length;++w){let b=w*y,v=0;for(let N=0;N<y;++N)v+=x[b+N];g[w]=v}if(i){let w=C.expandShapeToKeepDim(A.shape,d),b=A;A=ct({inputs:{x:A},backend:n,attrs:{shape:w}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),u!=null&&n.disposeIntermediateTensorInfo(c),A}var xO={kernelName:Xs,backendName:"cpu",kernelFunc:ld};function bO(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:d,steps:u}=C.getEinsumComputePath(o,l),p=u.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of u[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=Kn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=ct({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=ih({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(d[f]>=0&&(c=ld({inputs:{x:c},backend:n,attrs:{axis:d[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var vO={kernelName:jp,backendName:"cpu",kernelFunc:bO};function wO(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;ve([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let d=i[l];d>=1?s[l]=o[l]:s[l]=o[l]*(d+1)}return n.makeTensorInfo(r.shape,"float32",s)}var kO={kernelName:Up,backendName:"cpu",kernelFunc:wO},IO=Rt((e,t)=>e===t?1:0),h7=Ut(go,IO,null,"bool"),SO={kernelName:go,backendName:"cpu",kernelFunc:h7},NO=C.ERF_P,TO=C.ERF_A1,EO=C.ERF_A2,CO=C.ERF_A3,RO=C.ERF_A4,MO=C.ERF_A5,FO=nt(yo,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+NO*n);return t*(1-((((MO*a+RO)*a+CO)*a+EO)*a+TO)*a*Math.exp(-n*n))}),$O={kernelName:yo,backendName:"cpu",kernelFunc:FO};function lh(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ct({inputs:{x:r},backend:n,attrs:{shape:o}})}var DO={kernelName:xo,backendName:"cpu",kernelFunc:lh},OO=Rt((e,t)=>e/t),n1=Ut(gs,OO),a1={kernelName:gs,backendName:"cpu",kernelFunc:n1};function f7(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,d=[r,s],u=k.sizeFromShape(d),p=k.getTypedArrayFromDType("float32",u),c=k.getTypedArrayFromDType("float32",u);for(let A=0;A<r;A++){let y=bi({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),g=bi({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),x=_n({inputs:{real:y,imag:g},backend:n}),{real:w,imag:b}=zO(x,t,n),v=C.mergeRealAndImagArrays(w,b);for(let N=0;N<s;N++){let T=C.getComplexWithIndex(v,N);p[A*s+N]=T.real,c[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(d,"float32",p),m=n.makeTensorInfo(d,"float32",c),f=_n({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function zO(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(_O(a)){let o=r1(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let d=n.makeTensorInfo(l,"float32",o.real),u=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=Ba({inputs:{x:p},backend:n}),h=a1.kernelFunc({inputs:{a:d,b:p},backend:n}),m=a1.kernelFunc({inputs:{a:u,b:c},backend:n}),f=n.data.get(h.dataId).values,A=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:A}}return o}else{let o=C.mergeRealAndImagArrays(s,i),l=PO(o,a,t);return C.splitRealAndImagArrays(l)}}function _O(e){return(e&e-1)==0}function r1(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=C.mergeRealAndImagArrays(e,t),i=n/2,o=C.complexWithEvenIndex(s),l=o.real,d=o.imag,u=[l.length],p=r.makeTensorInfo(u,"float32",l),c=r.makeTensorInfo(u,"float32",d),h=_n({inputs:{real:p,imag:c},backend:r}),m=C.complexWithOddIndex(s),f=m.real,A=m.imag,y=[f.length],g=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",A),w=_n({inputs:{real:g,imag:x},backend:r}),b=r1(l,d,i,a,r),v=b.real,N=b.imag,T=[v.length],R=r.makeTensorInfo(T,"float32",v),$=r.makeTensorInfo(T,"float32",N),z=_n({inputs:{real:R,imag:$},backend:r}),P=r1(f,A,i,a,r),V=P.real,j=P.imag,U=[V.length],X=r.makeTensorInfo(U,"float32",V),G=r.makeTensorInfo(U,"float32",j),ee=_n({inputs:{real:X,imag:G},backend:r}),Y=C.exponents(n,a),re=[Y.real.length],ne=r.makeTensorInfo(re,"float32",Y.real),ie=r.makeTensorInfo(re,"float32",Y.imag),Q=_n({inputs:{real:ne,imag:ie},backend:r}),de=ih({inputs:{a:Q,b:ee},backend:r}),oe=od({inputs:{a:z,b:de},backend:r}),ye=QA({inputs:{a:z,b:de},backend:r}),ce=xi({inputs:{input:oe},backend:r}),Ie=xi({inputs:{input:ye},backend:r}),Ne=El({inputs:{input:oe},backend:r}),$e=El({inputs:{input:ye},backend:r}),ze=Cl({inputs:[ce,Ie],backend:r,attrs:{axis:0}}),De=Cl({inputs:[Ne,$e],backend:r,attrs:{axis:0}}),Qe=r.data.get(ze.dataId).values,et=r.data.get(De.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(g),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(w),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(z),r.disposeIntermediateTensorInfo(X),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(ee),r.disposeIntermediateTensorInfo(ne),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(ye),r.disposeIntermediateTensorInfo(ce),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Ie),r.disposeIntermediateTensorInfo($e),r.disposeIntermediateTensorInfo(ze),r.disposeIntermediateTensorInfo(De),{real:Qe,imag:et}}function PO(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=C.exponent(r*o,t,n),d=C.getComplexWithIndex(e,o);s+=d.real*l.real-d.imag*l.imag,i+=d.real*l.imag+d.imag*l.real}n&&(s/=t,i/=t),C.assignToTypedArray(a,s,i,r)}return a}function LO(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=f7(o,!1,n),d=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),d}var WO={kernelName:Hp,backendName:"cpu",kernelFunc:LO};function s1(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return VO(o,r,i),t.makeTensorInfo(a,i,o)}var BO={kernelName:ku,backendName:"cpu",kernelFunc:s1};function VO(e,t,n){e.fill(t)}var jO={kernelName:vo,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,d]=a.shape,u=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*d;for(let h=0;h<o;h++){let m=h*(l*d);for(let f=0;f<l;f++){let A=f*d;for(let y=0;y<d;y++){let g=[i,h,f,y][2],x=Math.round(l-g),w=c+m+A+y,b=u[w];if(x>=0&&x<l){let v=x*d,N=c+m+v+y;b=u[N]}s[w]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},UO=Rt((e,t)=>Math.floor(e/t)),HO=Ut(vs,UO,null,"int32"),GO={kernelName:vs,backendName:"cpu",kernelFunc:HO};function qO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=p7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=od({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=e1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var XO={kernelName:ni,backendName:"cpu",kernelFunc:qO};function KO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=c7({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c}});if(i){let A=f;f=od({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(h){let A=f;f=e1(n,f,h,o,m),n.disposeIntermediateTensorInfo(A)}return f}var ZO={kernelName:ai,backendName:"cpu",kernelFunc:KO};function YO(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,d,u,p]=C.prepareAndValidate(a,r);if(d===0)return n.makeTensorInfo(l,a.dtype,[]);let c=We([d,u],a.dtype),h=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values;for(let f=0;f<d;f++){let A=[],y=0;for(let g=0;g<o;g++){let x=h[f*o+g];y+=x*p[g],A.push(x)}if(y<0||y>=s/u)throw new Error(`Invalid indices: ${A} does not index into ${a.shape}`);for(let g=0;g<u;g++)c.values[f*u+g]=m[y*u+g]}return n.makeTensorInfo(l,c.dtype,c.values)}var JO={kernelName:ko,backendName:"cpu",kernelFunc:YO};function QO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;ve([r,s],"gatherV2");let l=o;o==null&&(l=0);let d=k.sizeFromShape(s.shape),u=k.parseAxisParam(i,r.shape)[0],p=C.segment_util.collectGatherOpShapeInfo(r,s,u,l),c=ct({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=ct({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,d/p.batchSize]}}),m=[p.batchSize,p.outerSize,d/p.batchSize,p.sliceSize],f=n.bufferSync(h),A=n.bufferSync(c),y=O3(A,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var ez={kernelName:wo,backendName:"cpu",kernelFunc:QO},tz=Rt((e,t)=>e>=t?1:0),nz=Ut(ks,tz,null,"bool"),az={kernelName:ks,backendName:"cpu",kernelFunc:nz};function rz(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=ct({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=f7(o,!0,n),d=ct({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),d}var sz={kernelName:Gp,backendName:"cpu",kernelFunc:rz},iz=nt(So,e=>Number.isFinite(e)?1:0,"bool"),oz={kernelName:So,backendName:"cpu",kernelFunc:iz},lz=nt(No,e=>Math.abs(e)===Infinity?1:0,"bool"),uz={kernelName:No,backendName:"cpu",kernelFunc:lz},dz=nt(To,e=>Number.isNaN(e)?1:0,"bool"),pz={kernelName:To,backendName:"cpu",kernelFunc:dz},cz=Rt((e,t)=>e<=t?1:0),hz=Ut(Co,cz,null,"bool"),fz={kernelName:Co,backendName:"cpu",kernelFunc:hz};function mz(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=P3(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var Az={kernelName:Xp,backendName:"cpu",kernelFunc:mz},yz=nt(Ro,e=>Math.log1p(e)),gz={kernelName:Ro,backendName:"cpu",kernelFunc:yz},xz=Rt((e,t)=>e&&t),bz=Ut(Mo,xz,null,"bool"),vz={kernelName:Mo,backendName:"cpu",kernelFunc:bz},wz=nt(Iu,e=>e?0:1,"bool"),kz={kernelName:Iu,backendName:"cpu",kernelFunc:wz},Iz=Rt((e,t)=>e||t),Sz=Ut(Su,Iz,null,"bool"),Nz={kernelName:Su,backendName:"cpu",kernelFunc:Sz};function Tz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;ve(r,"LRN");let d=r.shape[3],u=d-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let A=f%d,y=f-A+Math.max(0,A-s),g=f-A+Math.min(A+s,u),x=0;for(;y<=g;y++){let w=p[y];x+=w*w}return x}for(let f=0;f<c;f++){let A=m(f),y=p[f]*Math.pow(i+o*A,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var Ez={kernelName:Nu,backendName:"cpu",kernelFunc:Tz};function Cz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:d,beta:u}=a;ve(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,A=new Float32Array(p),y=p;for(let g=0;g<y;g++){let x=g%c,w=g-x+Math.max(0,x-o),b=g-x+Math.min(c,x+o+1),v=0;for(let N=w;N<b;N++)v+=Math.pow(m[N],2);v=d*v+l;for(let N=w;N<b;N++){let T=-2*d*u*m[N]*f[g]/v;g===N&&(T+=Math.pow(v,-u)),T*=h[g],A[N]+=T}}return n.makeTensorInfo(i.shape,r.dtype,A)}var Rz={kernelName:Kp,backendName:"cpu",kernelFunc:Cz};function m7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,d=l.length,u=k.parseAxisParam(s,l),p=u,c=C.getAxesPermutation(p,d),h=o.data.get(r.dataId).values;if(c!=null){let w=new Array(d);for(let b=0;b<w.length;b++)w[b]=l[c[b]];h=YA(h,l,r.dtype,c,w),p=C.getInnerMostAxes(p.length,d),l=w}ve(r,"max"),C.assertAxesAreInnerMostDims("max",p,d);let[m,f]=C.computeOutAndReduceShapes(l,p),A=k.sizeFromShape(f),y=W3(h,A,m,r.dtype),g=o.write(y,m,r.dtype),x=m;return i&&(x=C.expandShapeToKeepDim(m,u)),{dataId:g,shape:x,dtype:r.dtype}}var Mz={kernelName:Ts,backendName:"cpu",kernelFunc:m7};function Fz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;ve(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l),p;if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))p=Ba({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=t1(c,r.shape,r.dtype,h,u,"max");p=n.makeTensorInfo(u.outShape,r.dtype,m.values)}return p}var $z={kernelName:Cs,backendName:"cpu",kernelFunc:Fz};function Dz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a;ve(r,"maxPool3d");let u=C.computePool3DInfo(r.shape,s,i,1,o,l,d),p=n.data.get(r.dataId).values,c=d7(p,r.shape,r.dtype,k.computeStrides(r.shape),u,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var Oz={kernelName:Tu,backendName:"cpu",kernelFunc:Dz};function zz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=a;ve([r,s],"maxPool3DGrad");let u=C.computePool3DInfo(s.shape,i,o,1,l,d),p=n.bufferSync(s),c=xD(p,u),h=u.strideDepth,m=u.strideHeight,f=u.strideWidth,A=u.dilationDepth,y=u.dilationHeight,g=u.dilationWidth,x=u.effectiveFilterDepth,w=u.effectiveFilterHeight,b=u.effectiveFilterWidth,v=x-1-u.padInfo.front,N=b-1-u.padInfo.left,T=w-1-u.padInfo.top,R=We(s.shape,"float32"),$=n.bufferSync(r);for(let z=0;z<u.batchSize;++z)for(let P=0;P<u.inChannels;++P)for(let V=0;V<u.inDepth;++V)for(let j=0;j<u.inHeight;++j)for(let U=0;U<u.inWidth;++U){let X=V-v,G=j-T,ee=U-N,Y=0;for(let re=0;re<x;re+=A){let ne=(X+re)/h;if(!(ne<0||ne>=u.outDepth||Math.floor(ne)!==ne))for(let ie=0;ie<w;ie+=y){let Q=(G+ie)/m;if(!(Q<0||Q>=u.outHeight||Math.floor(Q)!==Q))for(let de=0;de<b;de+=g){let oe=(ee+de)/f;if(oe<0||oe>=u.outWidth||Math.floor(oe)!==oe)continue;let ye=x*w*b-1-c.get(z,ne,Q,oe,P),ce=re*w*b+ie*b+de,Ie=ye===ce?1:0;Ie!==0&&(Y+=$.get(z,ne,Q,oe,P)*Ie)}}}R.set(Y,z,V,j,U,P)}return n.makeTensorInfo(R.shape,R.dtype,R.values)}var _z={kernelName:Yp,backendName:"cpu",kernelFunc:zz};function Pz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;ve([s,i],"maxPoolGrad");let{filterSize:l,strides:d,pad:u,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,d,1,u,p),h=n.data.get(o.dataId).values,m=We(c.outShape,o.dtype,u7(h,o.shape,o.dtype,c).values),f=c.strideHeight,A=c.strideWidth,y=c.dilationHeight,g=c.dilationWidth,x=c.effectiveFilterHeight,w=c.effectiveFilterWidth,b=w-1-c.padInfo.left,v=x-1-c.padInfo.top,N=We(o.shape,"float32"),T=n.data.get(r.dataId).values,R=We(r.shape,"float32",T);for(let $=0;$<c.batchSize;++$)for(let z=0;z<c.inChannels;++z)for(let P=0;P<c.inHeight;++P)for(let V=0;V<c.inWidth;++V){let j=P-v,U=V-b,X=0;for(let G=0;G<x;G+=y){let ee=(j+G)/f;if(!(ee<0||ee>=c.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<w;Y+=g){let re=(U+Y)/A;if(re<0||re>=c.outWidth||Math.floor(re)!==re)continue;let ne=x*w-1-m.get($,ee,re,z),ie=G*w+Y,Q=ne===ie?1:0;Q!==0&&(X+=R.get($,ee,re,z)*Q)}}N.set(X,$,P,V,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var Lz={kernelName:Zp,backendName:"cpu",kernelFunc:Pz};function Wz(e,t,n,a,r){let s=k.computeStrides(t),i=t1(e,t,n,s,r,"max"),o=u7(e,t,n,r,!0,a);return[i.values,o.values]}var Bz={kernelName:Jp,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;ve(a,"MaxPoolWithArgmax");let d=l.data.get(a.dataId).values,u=C.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=Wz(d,a.shape,a.dtype,o,u),h=l.write(p,u.outShape,a.dtype),m=l.write(c,u.outShape,a.dtype);return[{dataId:h,shape:u.outShape,dtype:a.dtype},{dataId:m,shape:u.outShape,dtype:"int32"}]}};function Vz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=C.computeOutAndReduceShapes(r.shape,o)[1],d=k.sizeFromShape(l),u=[],p=n.makeTensorInfo([],"float32",new Float32Array([d]));u.push(p);let c=Pr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});u.push(c);let h=n1({inputs:{a:c,b:p},backend:n});u.push(h);let m=ld({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var jz={kernelName:Rs,backendName:"cpu",kernelFunc:Vz};function Uz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;ve(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,d=C.getAxesPermutation(l,r.shape.length),u=r;d!=null&&(u=Kn({inputs:{x:r},backend:n,attrs:{perm:d}}),l=C.getInnerMostAxes(l.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",l,u.shape.length);let[p,c]=C.computeOutAndReduceShapes(u.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),u.dtype),f=n.data.get(u.dataId).values;for(let y=0;y<m.length;++y){let g=y*h,x=f[g];for(let w=0;w<h;++w){let b=f[g+w];b<x&&(x=b)}m[y]=x}d!=null&&n.disposeIntermediateTensorInfo(u);let A=n.makeTensorInfo(p,u.dtype,m);if(i){let y=C.expandShapeToKeepDim(p,o),g=ct({inputs:{x:A},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(A),g}return A}var Hz={kernelName:Ms,backendName:"cpu",kernelFunc:Uz};function Gz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;ve(r,"mirrorPad");let o=s.map((g,x)=>g[0]+r.shape[x]+g[1]),l=s.map(g=>g[0]),d=s.map((g,x)=>g[0]+r.shape[x]),u=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,A=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let g=0;g<m;g++){let x=k.indexToLoc(g,f,A);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-u:x[b]>=d[b]&&(x[b]=(d[b]-1)*2-x[b]+u);x=x.map((b,v)=>b-l[v]);let w=k.locToIndex(x,c,h);y[g]=p[w]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var qz={kernelName:$s,backendName:"cpu",kernelFunc:Gz},Xz=Rt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),Kz=Ut(Fo,Xz),Zz={kernelName:Fo,backendName:"cpu",kernelFunc:Kz},Yz=Ji(Ug());function A7(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),d=m7({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),u=C.expandShapeToKeepDim(d.shape,l),p=ct({inputs:{x:d},backend:n,attrs:{shape:u}}),c=QA({inputs:{a:r,b:p},backend:n}),h=F3({inputs:{x:c},backend:n}),m=ld({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:u}}),A=n1({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),A}var Jz={kernelName:Ks,backendName:"cpu",kernelFunc:A7};function Qz(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;ve(r,"multinomial");let l=o?r:A7({inputs:{logits:r},backend:n,attrs:{dim:-1}}),d=l.shape[0],u=l.shape[1],p=n.data.get(l.dataId).values,c=[d,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<d;++m){let f=m*u,A=new Float32Array(u-1);A[0]=p[f];for(let x=1;x<A.length;++x)A[x]=A[x-1]+p[f+x];let y=Yz.alea(i.toString()),g=m*s;for(let x=0;x<s;++x){let w=y();h[g+x]=A.length;for(let b=0;b<A.length;b++)if(w<A[b]){h[g+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var e_={kernelName:Qp,backendName:"cpu",kernelFunc:Qz},t_=Wa.nonMaxSuppressionV3Impl;function n_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;ve(r,"NonMaxSuppression");let d=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,{selectedIndices:p}=t_(d,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var a_={kernelName:Oo,backendName:"cpu",kernelFunc:n_},r_=Wa.nonMaxSuppressionV4Impl;function s_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:d}=a;ve(r,"NonMaxSuppressionPadded");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=r_(u,p,i,o,l,d);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var i_={kernelName:zo,backendName:"cpu",kernelFunc:s_},o_=Wa.nonMaxSuppressionV5Impl;function l_(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:d}=a;ve(r,"NonMaxSuppressionWithScore");let u=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=d,{selectedIndices:A,selectedScores:y}=o_(u,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var u_={kernelName:_o,backendName:"cpu",kernelFunc:l_};function d_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;ve(r,"oneHot");let l=k.sizeFromShape(r.shape),d=new Float32Array(l*s);d.fill(o);let u=n.data.get(r.dataId).values;for(let p=0;p<l;++p)u[p]>=0&&u[p]<s&&(d[p*s+u[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",d)}var p_={kernelName:Os,backendName:"cpu",kernelFunc:d_};function uh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=uh({inputs:{x:r},backend:n}),i=El({inputs:{input:a},backend:n}),o=uh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return s1({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var c_={kernelName:tl,backendName:"cpu",kernelFunc:uh};function y7(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=xi({inputs:{input:a},backend:n}),s=y7({inputs:{x:r},backend:n}),i=El({inputs:{input:a},backend:n}),o=uh({inputs:{x:i},backend:n}),l=_n({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return s1({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var h_={kernelName:Po,backendName:"cpu",kernelFunc:y7};function g7(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return lh({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=lh({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=Cl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),d}var f_={kernelName:Lo,backendName:"cpu",kernelFunc:g7};function m_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;ve(r,"pad");let o=s.map((y,g)=>y[0]+r.shape[g]+y[1]),l=s.map(y=>y[0]),d=n.data.get(r.dataId).values,u=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),A=k.getTypedArrayFromDType(r.dtype,h);i!==0&&A.fill(i);for(let y=0;y<u;y++){let g=k.indexToLoc(y,p,c).map((w,b)=>w+l[b]),x=k.locToIndex(g,m,f);A[x]=d[y]}return{dataId:n.write(A,o,r.dtype),shape:o,dtype:r.dtype}}var x7={kernelName:zs,backendName:"cpu",kernelFunc:m_},A_=Rt((e,t)=>Math.pow(e,t)),y_=Ut(_s,A_),g_={kernelName:_s,backendName:"cpu",kernelFunc:y_};function x_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=JA(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var b_={kernelName:Eu,backendName:"cpu",kernelFunc:x_},v_=nt(Bo,e=>1/e),w_={kernelName:Bo,backendName:"cpu",kernelFunc:v_};function k_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeBilinear");let l=k.computeStrides(r.shape),[d,u]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(k.sizeFromShape([p,d,u,m])),y=[s&&d>1?c-1:c,s&&u>1?h-1:h],g=[s&&d>1?d-1:d,s&&u>1?u-1:u],x=0,w=y[0]/g[0],b=y[1]/g[1];for(let v=0;v<p;v++)for(let N=0;N<d;N++){let T;i?T=w*(N+.5)-.5:T=w*N;let R=Math.max(0,Math.floor(T)),$=T-R,z=Math.min(c-1,Math.ceil(T)),P=v*l[0]+R*l[1],V=v*l[0]+z*l[1];for(let j=0;j<u;j++){let U;i?U=b*(j+.5)-.5:U=b*j;let X=Math.max(0,Math.floor(U)),G=U-X,ee=Math.min(h-1,Math.ceil(U)),Y=P+X*l[2],re=V+X*l[2],ne=P+ee*l[2],ie=V+ee*l[2];for(let Q=0;Q<m;Q++){let de=f[Y+Q],oe=f[re+Q],ye=f[ne+Q],ce=f[ie+Q],Ie=de+(ye-de)*G,Ne=oe+(ce-oe)*G,$e=Ie+(Ne-Ie)*$;A[x++]=$e}}}return n.makeTensorInfo([p,d,u,m],"float32",A)}var I_={kernelName:Ws,backendName:"cpu",kernelFunc:k_};function S_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,d,u,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*d*u*p),f=[i&&c>1?d-1:d,i&&h>1?u-1:u],A=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/A[0],g=f[1]/A[1],x=n.data.get(s.dataId).values,w=0;for(let b=0;b<l;b++){let v=b*o[0];for(let N=0;N<c;N++){let T=N*y,R=Math.floor(T),$=Math.min(Math.ceil(T),d-1),z=v+R*o[1],P=v+$*o[1],V=T-R,j=1-V;for(let U=0;U<h;U++){let X=U*g,G=Math.floor(X),ee=Math.min(Math.ceil(X),u-1),Y=X-G,re=1-Y,ne=z+G*o[2],ie=z+ee*o[2],Q=P+G*o[2],de=P+ee*o[2],oe=j*re,ye=j*Y,ce=V*re,Ie=V*Y;for(let Ne=0;Ne<p;Ne++){let $e=x[w++];m[ne+Ne]+=$e*oe,m[ie+Ne]+=$e*ye,m[Q+Ne]+=$e*ce,m[de+Ne]+=$e*Ie}}}}return n.makeTensorInfo([l,u,d,p],"float32",m)}var N_={kernelName:nc,backendName:"cpu",kernelFunc:S_};function T_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;ve(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[d,u]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,A=new Float32Array(p*d*u*m),y=[s&&d>1?c-1:c,s&&u>1?h-1:h],g=[s&&d>1?d-1:d,s&&u>1?u-1:u],x=y[0]/g[0],w=y[1]/g[1],b=0;for(let v=0;v<p;v++){let N=v*l[0];for(let T=0;T<d;T++){let R=i?x*(T+.5):x*T,$=Math.min(c-1,s?Math.round(R):Math.floor(R));i&&($=Math.max(0,$));let z=N+$*l[1];for(let P=0;P<u;P++){let V=i?w*(P+.5):w*P,j=Math.min(h-1,s?Math.round(V):Math.floor(V));i&&(j=Math.max(0,j));let U=z+j*l[2];for(let X=0;X<m;X++){let G=f[U+X];A[b++]=G}}}}return n.makeTensorInfo([p,d,u,m],r.dtype,A)}var E_={kernelName:Cu,backendName:"cpu",kernelFunc:T_};function C_(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;ve([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[d,u,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(d*u*p*c),A=n.data.get(s.dataId).values,y=[i&&h>1?u-1:u,i&&m>1?p-1:p],g=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/g[0],w=y[1]/g[1],b=1/x,v=1/w,N=Math.ceil(b)*2+2,T=Math.ceil(v)*2+2;for(let R=0;R<d;R++){let $=R*o[0];for(let z=0;z<u;z++){let P=$+z*o[1],V=Math.floor(z*b),j=Math.floor(V-N/2);for(let U=0;U<p;U++){let X=P+U*o[2],G=Math.floor(U*v),ee=Math.floor(G-T/2);for(let Y=0;Y<c;Y++){let re=0;for(let ne=0;ne<N;ne++){let ie=ne+j;if(ie<0||ie>=h)continue;let Q=$+ie*l[1],de=ie*x,oe=Math.min(u-1,i?Math.round(de):Math.floor(de));if(z===oe)for(let ye=0;ye<T;ye++){let ce=ye+ee;if(ce<0||ce>=m)continue;let Ie=Q+ce*l[2],Ne=ce*w,$e=Math.min(p-1,i?Math.round(Ne):Math.floor(Ne));U===$e&&(re+=A[Ie+Y])}}f[X+Y]=re}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var R_={kernelName:tc,backendName:"cpu",kernelFunc:C_};function M_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;ve(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Ba({inputs:{x:r},backend:n});let l=new Dt(r.shape,r.dtype),d=n.bufferSync(r);for(let u=0;u<l.size;u++){let p=l.indexToLoc(u),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(d.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var F_={kernelName:Vs,backendName:"cpu",kernelFunc:M_},$_={kernelName:nl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[d,u,p,c]=a.shape,[h,m]=C.getImageCenter(i,u,p),f=255,A=Math.sin(r),y=Math.cos(r),g=o.data.get(a.dataId).values;for(let x=0;x<d;x++){let w=x*p*u*c;for(let b=0;b<u;b++){let v=b*(p*c);for(let N=0;N<p;N++){let T=N*c;for(let R=0;R<c;R++){let $=[d,b,N,R],z=$[2],P=$[1],V=(z-h)*y-(P-m)*A,j=(z-h)*A+(P-m)*y;V=Math.round(V+h),j=Math.round(j+m);let U=s;if(typeof s!="number"&&(R===3?U=f:U=s[R]),V>=0&&V<p&&j>=0&&j<u){let G=j*(p*c),ee=V*c,Y=w+G+ee+R;U=g[Y]}let X=w+v+T+R;l[X]=U}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},D_=nt(js,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),O_={kernelName:js,backendName:"cpu",kernelFunc:D_};function b7(e,t,n,a,r,s,i,o,l,d){let u=[a/r,r],p=e.values,c=t.values;if(a===0)return We(n,t.dtype);let h=We(u,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],A=0;for(let y=0;y<i;y++){let g=p[m*i+y];f.push(g),A+=g*o[y]}if(A<0||A>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)d?h.values[A*r+y]+=c[m*r+y]:h.values[A*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function z_(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:d,strides:u,outputSize:p}=C.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=b7(h,m,i,p,d,l,o,u,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var __={kernelName:jo,backendName:"cpu",kernelFunc:z_};function P_(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;ve([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,u=sa(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),u),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=d[m];return n.makeTensorInfo(r.shape,u,p)}var L_={kernelName:Uo,backendName:"cpu",kernelFunc:P_},W_=C.SELU_SCALEALPHA,B_=C.SELU_SCALE,V_=nt(Ho,e=>e>=0?B_*e:W_*(Math.exp(e)-1)),j_={kernelName:Ho,backendName:"cpu",kernelFunc:V_},U_=nt(Xo,e=>e<0?-1:e>0?1:0),H_={kernelName:Xo,backendName:"cpu",kernelFunc:U_},G_=nt(Hs,e=>Math.sin(e)),q_={kernelName:Hs,backendName:"cpu",kernelFunc:G_},X_=nt(qo,e=>Math.sinh(e)),K_={kernelName:qo,backendName:"cpu",kernelFunc:X_},Z_=11920928955078125e-23,v7=Math.log(Z_)+2,Y_=nt(Ko,e=>{let t=e>-v7,n=e<v7,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),J_={kernelName:Ko,backendName:"cpu",kernelFunc:Y_};function Q_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;ve([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<r.shape.length;++A)l.push([0,0]);let d=x7.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),u=C.getReshaped(d.shape,s,o,!1),p=C.getPermuted(u.length,s.length,!1),c=C.getReshapedPermuted(d.shape,s,o,!1),h=ct({inputs:{x:d},backend:n,attrs:{shape:u}}),m=Kn({inputs:{x:h},backend:n,attrs:{perm:p}}),f=ct({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var eP={kernelName:Ru,backendName:"cpu",kernelFunc:Q_};function tP(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,u=n.data.get(i.dataId).values[0],[p,c,h,m,f]=q3(o,a.shape,a.dtype,l,r.dtype,d,u);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var nP={kernelName:ac,backendName:"cpu",kernelFunc:tP};function aP(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[d,u,p]=X3(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(u,a.dtype,d),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var rP={kernelName:rc,backendName:"cpu",kernelFunc:aP};function sP(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:d,sliceSize:u,strides:p,outputSize:c}=C.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),A=n.data.get(i.dataId).values[0],y=b7(m,f,o,c,u,d,l,p,A,h);return n.makeTensorInfo(o,y.dtype,y.values)}var iP={kernelName:sc,backendName:"cpu",kernelFunc:sP};function oP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let c=[...u];c[o]=p;let h=bi({inputs:{x:r},backend:n,attrs:{begin:d,size:c}});return d[o]+=p,h})}var lP={kernelName:Zo,backendName:"cpu",kernelFunc:oP},uP=nt(qs,e=>Math.sqrt(e)),dP={kernelName:qs,backendName:"cpu",kernelFunc:uP},pP={kernelName:Mu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;ve(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},cP=nt(Nr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),hP={kernelName:Nr,backendName:"cpu",kernelFunc:cP};function fP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a;ve(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(r.shape,s,i,o,l,d,u,p,c),x=ct({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=bi({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=ct({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else{let v=n.bufferSync(x),N=Z3(g,v,f,m);w=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=ct({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var mP={kernelName:Yo,backendName:"cpu",kernelFunc:fP},AP=nt(Js,e=>Math.tan(e)),yP={kernelName:Js,backendName:"cpu",kernelFunc:AP},gP=nt(Qs,e=>Math.tanh(e)),xP={kernelName:Qs,backendName:"cpu",kernelFunc:gP};function bP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;ve(r,"tile");let i=J3(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var vP={kernelName:Sr,backendName:"cpu",kernelFunc:bP};function wP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;ve(r,"topk");let o=n.data.get(r.dataId).values,[l,d]=Q3(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(d.shape,d.dtype,d.values)]}var kP={kernelName:Jo,backendName:"cpu",kernelFunc:wP};function IP(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:d}=n,[u,p,c,h]=r.shape,[m,f]=d!=null?d:[p,c],A=[u,m,f,h],y=k.computeStrides(r.shape),g=y[0],x=y[1],w=y[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(A));b.fill(l);let v=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let T=0;T<u;++T){let R=s.shape[0]===1?N:N.subarray(T*8,T*8+8);for(let $=0;$<m;++$)for(let z=0;z<f;++z)for(let P=0;P<h;++P){let V,j=R[6]*z+R[7]*$+1;if(j===0)continue;let U=(R[0]*z+R[1]*$+R[2])/j,X=(R[3]*z+R[4]*$+R[5])/j,G=w7(U,c,o),ee=w7(X,p,o);switch(i){case"nearest":V=RP(v,p,c,g,x,w,T,ee,G,P,l);break;case"bilinear":V=MP(v,p,c,g,x,w,T,ee,G,P,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*g+$*x+z*w+P;b[Y]=V}return a.makeTensorInfo(A,r.dtype,b)}return{dataId:a.write(b,A,r.dtype),shape:r.shape,dtype:r.dtype}}var SP={kernelName:Qo,backendName:"cpu",kernelFunc:IP};function w7(e,t,n){switch(n){case"reflect":return NP(e,t);case"wrap":return TP(e,t);case"nearest":return CP(e,t);case"constant":default:return EP(e,t)}}function NP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function TP(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function EP(e,t){return e}function CP(e,t){return k.clamp(0,e,t-1)}function ud(e,t,n,a,r,s,i,o,l,d,u){let p=i*a+o*r+l*s+d;return 0<=o&&o<t&&0<=l&&l<n?e[p]:u}function RP(e,t,n,a,r,s,i,o,l,d,u){let p=Math.round(o),c=Math.round(l);return ud(e,t,n,a,r,s,i,p,c,d,u)}function MP(e,t,n,a,r,s,i,o,l,d,u){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*ud(e,t,n,a,r,s,i,p,c,d,u)+(l-c)*ud(e,t,n,a,r,s,i,p,m,d,u),A=(m-l)*ud(e,t,n,a,r,s,i,h,c,d,u)+(l-c)*ud(e,t,n,a,r,s,i,h,m,d,u);return(h-o)*f+(o-p)*A}function FP(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;ve(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:d}=e7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([d.length],"int32",d)]}var $P={kernelName:ic,backendName:"cpu",kernelFunc:FP};function DP(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),d=0;for(let h=0;h<i;h++)h!==s&&(l[d++]=r.shape[h]);let u=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){u[s]=h;let m=bi({inputs:{x:r},backend:n,attrs:{begin:u,size:p}});c[h]=ct({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var OP={kernelName:el,backendName:"cpu",kernelFunc:DP};function zP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;ve(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,d=[],u=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=lh({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,u.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),A=n.makeTensorInfo([],"int32",f),y=h7({inputs:{a:A,b:c},backend:n}),g=Pr({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=ih({inputs:{a:g,b:r},backend:n}),w=ld({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});d.push(w),u.push(A),u.push(y),u.push(g),u.push(x),u.push(w)}let h=g7({inputs:d,backend:n,attrs:{axis:0}});return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var _P={kernelName:Fu,backendName:"cpu",kernelFunc:zP},PP=[q$,YF,K$,Y$,a$,Q$,tD,aD,sD,oD,uD,pD,hD,AD,gD,vD,kD,SD,TD,H$,CD,MD,$D,t$,s$,OD,JF,_D,LD,VD,UD,WD,XD,ZD,GD,JD,eO,nO,rO,iO,lO,uO,pO,hO,mO,AO,gO,yO,a1,vO,_$,kO,SO,$O,i$,DO,l$,WO,BO,jO,d$,GO,XO,ZO,JO,ez,c$,az,QF,sz,PD,oz,uz,pz,P$,f$,fz,Az,A$,gz,vz,kz,Nz,Ez,Rz,g$,$z,Oz,_z,Lz,Bz,Mz,jz,Hz,b$,qz,Zz,e_,w$,I$,a_,i_,u_,N$,p_,h_,f_,x7,g_,W$,C$,b_,e$,w_,B$,V$,U$,I_,N_,E_,R_,F_,$_,O_,M$,__,L_,j_,j$,H_,q_,K_,F$,Jz,J_,eP,nP,rP,iP,lP,dP,pP,D$,hP,mP,z$,xO,yP,xP,vP,kP,T$,SP,$P,OP,_P,c_];for(let e of PP)ri(e);var k7={};Fe(k7,{assertNotComplex:()=>Ml,bindCanvasToFramebuffer:()=>ZP,bindColorTextureToFramebuffer:()=>ch,bindTextureToProgramUniformSampler:()=>P7,bindTextureUnit:()=>O7,bindVertexBufferToProgramAttribute:()=>l1,callAndCheck:()=>xe,canBeRepresented:()=>I7,createFragmentShader:()=>T7,createFramebuffer:()=>D7,createProgram:()=>E7,createStaticIndexBuffer:()=>M7,createStaticVertexBuffer:()=>R7,createTexture:()=>F7,createVertexShader:()=>N7,getBatchDim:()=>wi,getExtensionOrThrow:()=>hd,getFramebufferErrorMessage:()=>L7,getMaxTexturesInShader:()=>j7,getNumChannels:()=>XP,getProgramUniformLocation:()=>_7,getProgramUniformLocationOrThrow:()=>z7,getRowsCols:()=>ki,getShapeAs3D:()=>hh,getTextureShapeFromLogicalShape:()=>B7,getWebGLDisjointQueryTimerVersion:()=>U7,getWebGLErrorMessage:()=>S7,getWebGLMaxTextureSize:()=>V7,hasExtension:()=>Yn,isCapableOfRenderingToFloatTexture:()=>H7,isDownloadFloatTextureEnabled:()=>G7,isReshapeFree:()=>md,isWebGLFenceEnabled:()=>q7,isWebGLVersionEnabled:()=>d1,linkProgram:()=>C7,resetMaxTextureSize:()=>YP,resetMaxTexturesInShader:()=>JP,unbindColorTextureFromFramebuffer:()=>u1,unbindTextureUnit:()=>KP,validateFramebuffer:()=>fd,validateProgram:()=>ph,validateTextureSize:()=>$7});var vi={},i1={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function dh(e,t){vi[e]=t}function Va(e){if(!(e in vi)){let n=WP(e);if(n!==null)vi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=vi[e];return t.isContextLost()?(delete vi[e],Va(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),vi[e])}function LP(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function WP(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=LP(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete vi[e]},!1),e===1?t.getContext("webgl",i1)||t.getContext("experimental-webgl",i1):t.getContext("webgl2",i1)}var dd;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(dd||(dd={}));var Zn;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Zn||(Zn={}));var Qt;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Qt||(Qt={}));function pd(e,t){return[t,e]}function BP(e,t){return e*t}function cd(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Rl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function VP(e,t){let[n,a]=Rl(e,t);return n*a*4}function o1(e,t){let n=e,a,r,s,i,o,l,d,u,p,c;return J().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,d=4,u=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,d=4,u=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:d,defaultNumChannels:u,textureTypeHalfFloat:p,textureTypeFloat:c}}function xe(e,t){let n=t();return J().getBool("DEBUG")&&jP(e),n}function jP(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+S7(e,t))}var UP=596e-10,HP=65504;function I7(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||UP<Math.abs(e)&&Math.abs(e)<HP)}function S7(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function hd(e,t){return lr(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function N7(e,t){let n=lr(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function T7(e,t){let n=lr(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(xe(e,()=>e.shaderSource(n,t)),xe(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw qP(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var GP=/ERROR: [0-9]+:([0-9]+):/g;function qP(e,t){let n=GP.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),d=i.slice(a-1,a),u=i.slice(a);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${k.rightPad(d[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(u.join(`
`))}function E7(e){return lr(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function C7(e,t){if(xe(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function ph(e,t){if(xe(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function R7(e,t){let n=lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function M7(e,t){let n=lr(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),xe(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function XP(){return J().getNumber("WEBGL_VERSION")===2?1:4}function F7(e){return lr(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function $7(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function D7(e){return lr(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function l1(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),xe(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),xe(e,()=>e.enableVertexAttribArray(o)),!0)}function O7(e,t,n){W7(e,n),xe(e,()=>e.activeTexture(e.TEXTURE0+n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function KP(e,t){W7(e,t),xe(e,()=>e.activeTexture(e.TEXTURE0+t)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function z7(e,t,n){return lr(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function _7(e,t,n){return e.getUniformLocation(t,n)}function P7(e,t,n,a){xe(e,()=>O7(e,t,a)),xe(e,()=>e.uniform1i(n,a))}function ZP(e){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),xe(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function ch(e,t,n){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function u1(e,t){xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),xe(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function fd(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+L7(e,t))}function L7(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function lr(e,t,n){let a=xe(e,()=>t());if(a==null)throw new Error(n);return a}function W7(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function wi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function ki(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function hh(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[wi(e),...ki(e)]),t}function B7(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=wi(e),s=2,i=2;return e.length&&([s,i]=ki(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function fh(e){return e%2==0}function md(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||fh(n)&&fh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&fh(e[0])&&fh(t[0])}var mh,Ah;function V7(e){if(mh==null){let t=Va(e);mh=t.getParameter(t.MAX_TEXTURE_SIZE)}return mh}function YP(){mh=null}function JP(){Ah=null}function j7(e){if(Ah==null){let t=Va(e);Ah=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Ah)}function U7(e){if(e===0)return 0;let t,n=Va(e);return Yn(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Yn(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Yn(e,t){return e.getExtension(t)!=null}function d1(e){try{if(Va(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function H7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Yn(t,"OES_texture_float"))return!1}else if(!Yn(t,"EXT_color_buffer_float"))return!1;return p1(t)}function G7(e){if(e===0)return!1;let t=Va(e);if(e===1){if(!Yn(t,"OES_texture_float")||!Yn(t,"WEBGL_color_buffer_float"))return!1}else{if(Yn(t,"EXT_color_buffer_float"))return p1(t);let n="EXT_color_buffer_half_float";if(Yn(t,n)){let a=t.getExtension(n);return QP(t,a)}return!1}return p1(t)}function p1(e){let t=o1(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function QP(e,t){let n=o1(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function q7(e){return e!==2?!1:Va(e).fenceSync!=null}function Ml(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=J();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>d1(2)?2:d1(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>V7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>j7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:U7(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Bu.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>H7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>G7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>q7(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Bu.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function dn(){let e,t,n,a,r,s,i,o,l,d;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
bool isnan_custom(float val) {
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",d=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,d=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:d}}function Ii(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function c1(e){let t=k.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}var X7=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,eL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=dd.DENSE;let t=cd(e),n=dn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${n.output} = result;
}
`}},tL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=dd.DENSE;let t=cd(e),n=dn();this.outputShape=e,this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${Ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${n.output} = result;
}
`}},nL=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Zn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
${X7}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},aL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zn.DOWNLOAD;let t=dn();this.outputShape=e,this.userCode=`
${X7}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},rL=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=dn(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
${c1(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / ${s};
int c = imod(flatIndex, ${s});
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
vec4 values = ${a.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${a.output} = vec4(${i}, 0., 0., 0.);
}
`}},sL=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=dn(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let d=0;d<=1;d++){let u=l*2+d;i+=`
localCoords = coords;
if(localCoords[2] + ${d} < ${e[2]}) {
localCoords[2] += ${d};
if(localCoords[1] + ${l} < ${e[1]}) {
localCoords[1] += ${l};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
r = flatIndex / ${s};
c = imod(flatIndex, ${s});
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
values = ${a.texture2D}(A, uv);
if(offset == 0) {
result[${u}] = values[0];
} else if(offset == 1) {
result[${u}] = values[1];
} else if(offset == 2) {
result[${u}] = values[2];
} else {
result[${u}] = values[3];
}
}
}
`}this.userCode=`
${c1(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${i}
${a.output} = ${o};
}
`}},K7={};Fe(K7,{bindVertexProgramAttributeStreams:()=>rv,createBufferFromOutputTexture:()=>ov,createFloat16MatrixTexture:()=>ev,createFloat16PackedMatrixTexture:()=>av,createFloat32MatrixTexture:()=>Q7,createIndexBuffer:()=>J7,createPackedMatrixTexture:()=>nv,createUnsignedBytesMatrixTexture:()=>tv,createVertexBuffer:()=>Y7,createVertexShader:()=>Z7,downloadByteEncodedFloatMatrixFromOutputTexture:()=>uv,downloadFloat32MatrixFromBuffer:()=>lv,downloadMatrixFromPackedOutputTexture:()=>pv,downloadPackedMatrixFromBuffer:()=>dv,getInternalFormatForFloat16MatrixTexture:()=>f1,getInternalFormatForFloat16PackedMatrixTexture:()=>y1,getInternalFormatForFloat32MatrixTexture:()=>h1,getInternalFormatForPackedMatrixTexture:()=>A1,getInternalFormatForUnsignedBytesMatrixTexture:()=>m1,uploadDenseMatrixToTexture:()=>sv,uploadPixelDataToTexture:()=>iv});function Z7(e){let t=dn(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return N7(e,n)}function Y7(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return R7(e,t)}function J7(e){let t=new Uint16Array([0,1,2,2,1,3]);return M7(e,t)}function Ad(e,t,n,a,r,s){$7(t,n);let i=F7(e),o=e.TEXTURE_2D;return xe(e,()=>e.bindTexture(o,i)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),xe(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),xe(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function h1(e){return e.internalFormatFloat}function Q7(e,t,n,a){let[r,s]=pd(t,n);return Ad(e,r,s,h1(a),a.textureFormatFloat,e.FLOAT)}function f1(e){return e.internalFormatHalfFloat}function ev(e,t,n,a){let[r,s]=pd(t,n);return Ad(e,r,s,f1(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function m1(e){return e.downloadTextureFormat}function tv(e,t,n,a){let[r,s]=pd(t,n);return Ad(e,r,s,m1(a),e.RGBA,e.UNSIGNED_BYTE)}function A1(e){return e.internalFormatPackedFloat}function nv(e,t,n,a){let[r,s]=Rl(t,n);return Ad(e,r,s,A1(a),e.RGBA,e.FLOAT)}function y1(e){return e.internalFormatPackedHalfFloat}function av(e,t,n,a){let[r,s]=Rl(t,n);return Ad(e,r,s,y1(a),e.RGBA,a.textureTypeHalfFloat)}function rv(e,t,n){let a=0,r=3*4,s=3*4+2*4;return xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),l1(e,t,"clipSpacePos",n,3,s,a)&&l1(e,t,"uv",n,2,s,r)}function sv(e,t,n,a,r,s){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function iv(e,t,n){xe(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):xe(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),xe(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function ov(e,t,n,a){let r=e.createBuffer();xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return xe(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),xe(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function lv(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function uv(e,t,n,a){let[r,s]=pd(t,n),i=4,o=new Uint8Array(BP(t*n,i));return xe(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function dv(e,t,n,a,r,s,i,o){let l=e,d=new Float32Array(VP(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,d),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),d}function pv(e,t,n){let a=new Float32Array(t*n*4);return xe(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var yh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,dh(t,e)):this.gl=Va(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=hd(this.gl,r),Yn(this.gl,s))this.textureHalfFloatExtension=hd(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Yn(this.gl,a))this.colorBufferHalfFloatExtension=hd(this.gl,a);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Yn(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Yn(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Y7(this.gl),this.indexBuffer=J7(this.gl),this.framebuffer=D7(this.gl),this.textureConfig=o1(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;xe(e,()=>e.finish()),xe(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),xe(e,()=>e.deleteFramebuffer(this.framebuffer)),xe(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),xe(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),xe(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Q7(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),ev(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),tv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),iv(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),sv(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),av(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),nv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(u1(this.gl,this.framebuffer),this.outputTexture=null),xe(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>uv(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return dv(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return lv(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=ov(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>pv(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=T7(t,e);this.vertexShader==null&&(this.vertexShader=Z7(t));let a=E7(t);return xe(t,()=>t.attachShader(a,this.vertexShader)),xe(t,()=>t.attachShader(a,n)),C7(t,a),this.debug&&ph(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=rv(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&xe(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&ph(this.gl,this.program),xe(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?z7(this.gl,e,t):_7(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),xe(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),P7(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Rl(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&ph(this.gl,this.program),fd(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),xe(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),xe(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=hd(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=iL(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),ch(this.gl,e,this.framebuffer),this.debug&&fd(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(ch(this.gl,this.outputTexture,this.framebuffer),this.debug&&fd(this.gl)):u1(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;ch(a,e,this.framebuffer),this.debug&&fd(a),this.outputTexture=e,xe(a,()=>a.viewport(0,0,t,n)),xe(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),xe(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function iL(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:cv}=C;function oL(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
`),i=e.map(h=>lL(h,t,a)).join(`
`),o=t.texShape,l=dn(),d=pL(l),u,p,c=fL(l);return t.isPacked?(u=uL(t.logicalShape,o),p=hL(l)):(u=dL(t.logicalShape,o),p=cL(l)),a&&(c+=gL),[c,d,p,s,u,i,n].join(`
`)}function Fl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return RL(e);case 1:return FL(e);case 2:return DL(e);case 3:return zL(e);case 4:return PL(e);case 5:return LL(e);case 6:return WL(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function hv(e){switch(e.shapeInfo.logicalShape.length){case 0:return CL(e);case 1:return ML(e);case 2:return $L(e);case 3:return OL(e);default:return _L(e)}}function lL(e,t,n=!1){let a="";n?a+=hv(e):a+=Fl(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=BL(e,t):a+=VL(e,t)),a}function uL(e,t){switch(e.length){case 0:return fv();case 1:return xL(e,t);case 2:return TL(e,t);case 3:return vL(e,t);default:return kL(e,t)}}function dL(e,t){switch(e.length){case 0:return fv();case 1:return bL(e,t);case 2:return EL(e,t);case 3:return wL(e,t);case 4:return IL(e,t);case 5:return SL(e,t);case 6:return NL(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function pL(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function cL(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function hL(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function fL(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${mL}
${AL}
${yL}
`}var mL=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,AL=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,yL=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,gL=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function fv(){return`
int getOutputCoords() {
return 0;
}
`}function xL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
int getOutputCoords() {
return 2 * int(resultUV.x * ${n[1]}.0);
}
`:n[1]===1?`
int getOutputCoords() {
return 2 * int(resultUV.y * ${n[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
}
`}function bL(e,t){return t[0]===1?`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function vL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec3(b, r, c);
}
`}function wL(e,t){let n=Ii(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec3(r, c, d);
}
`}function kL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
int b${l} = index / ${s};
index -= b${l} * ${s};
`+i,o=`b${l}, `+o;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
${i}
int b = index / ${r};
index -= b * ${r};
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec${e.length}(${o});
}
`}function IL(e,t){let n=Ii(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
return ivec4(r, c, d, d2);
}
`}function SL(e,t){let n=Ii(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function NL(e,t){let n=Ii(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function TL(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
}
`;let a=Math.ceil(e[1]/2);return`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${n[0]}, ${n[1]}));
int index = resTexRC.x * ${n[1]} + resTexRC.y;
int r = 2 * (index / ${a});
int c = imod(index, ${a}) * 2;
return ivec2(r, c);
}
`}function EL(e,t){return k.arraysEqual(e,t)?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function Si(e){return`offset${e}`}function CL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=dn();return`
vec4 ${n}() {
return ${a.texture2D}(${t}, halfCR);
}
`}function RL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
float ${n}() {
return sampleTexture(${t}, halfCR);
}
`;let[s,i]=e.shapeInfo.texShape,o=Si(t);return`
float ${n}() {
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
return sampleTexture(${t}, uv);
}
`}function ML(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=dn();return`
vec4 ${n}(int index) {
vec2 uv = packedUVfrom1D(
${r[0]}, ${r[1]}, index);
return ${s.texture2D}(${t}, uv);
}
`}function FL(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
float ${n}(int index) {
${$l(e)}
}
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
float ${n}(int index) {
return sampleTexture(${t}, halfCR);
}
`;let i=Si(t);return s===1?`
float ${n}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
return sampleTexture(${t}, uv);
}
`:r===1?`
float ${n}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
return sampleTexture(${t}, uv);
}
`:`
float ${n}(int index) {
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
return sampleTexture(${t}, uv);
}
`}function $L(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=dn();if(r!=null&&k.arraysEqual(t,r))return`
vec4 ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
return ${o.texture2D}(${n}, uv);
}
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],d=Math.ceil(t[1]/2);return`
vec4 ${a}(int row, int col) {
vec2 uv = packedUVfrom2D(${d}, ${l[0]}, ${l[1]}, row, col);
return ${o.texture2D}(${n}, uv);
}
`}function DL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
float ${a}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Dl(e,o),c=["row","col"];return`
${Fl(p)}
float ${a}(int row, int col) {
return ${a}(${Ol(c,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
${$l(e)}
}
`;let l=r[0],d=r[1],u=Si(n);return d===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
return sampleTexture(${n}, uv);
}
`:l===1?`
float ${a}(int row, int col) {
float index = dot(vec3(row, col, ${u}), vec3(${t[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${d}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${a}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${t[1]} + col + ${u};
vec2 uv = uvFromFlat(${l}, ${d}, index);
return sampleTexture(${n}, uv);
}
`}function OL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Dl(e,p),m=["b","row","col"];return`
${hv(h)}
vec4 ${a}(int b, int row, int col) {
return ${a}(${Ol(m,c)});
}
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),d=l*Math.ceil(t[1]/2),u=dn();return`
vec4 ${a}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${i}, ${o}, ${d}, ${l}, b, row, col);
return ${u.texture2D}(${n}, uv);
}
`}function zL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Dl(e,l),f=["row","col","depth"];return`
${Fl(m)}
float ${a}(int row, int col, int depth) {
return ${a}(${Ol(f,o)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${r}, ${s}, 1)));
${$l(e)}
}
`;let d=e.shapeInfo.texShape,u=d[0],p=d[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
float ${a}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${s}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;if(p===s&&c==null)return`
float ${a}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${u}.0);
return sampleTexture(${n}, uv);
}
`;let h=Si(n);return`
float ${a}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${r} + col * ${s} + depth + ${h};
vec2 uv = uvFromFlat(${u}, ${p}, index);
return sampleTexture(${n}, uv);
}
`}function _L(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],d=Math.ceil(t[n-1]/2),u=d*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${u} + (row / 2) * ${d} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,u*=t[n-m-1],c=`b${m} * ${u} + `+c;let h=dn();return`
vec4 ${r}(${p}) {
int index = ${c};
int texR = index / ${l};
int texC = index - texR * ${l};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
return ${h.texture2D}(${a}, uv);
}
`}function PL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Dl(e,o),f=["row","col","depth","depth2"];return`
${Fl(m)}
float ${a}(int row, int col, int depth, int depth2) {
return ${a}(${Ol(f,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${s}, ${r}, 1)));
${$l(e)}
}
`;let d=e.shapeInfo.flatOffset,u=e.shapeInfo.texShape,p=u[0],c=u[1];if(c===i&&d==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;if(c===r&&d==null)return`
float ${a}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${t[1]*t[2]}, ${t[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${c}.0, ${p}.0);
return sampleTexture(${n}, uv);
}
`;let h=Si(n);return`
float ${a}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${s} +
depth * ${r} + depth2;
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
return sampleTexture(${n}, uv);
}
`}function LL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:d}=k.squeezeShape(t);if(l.length<t.length){let f=Dl(e,l),A=["row","col","depth","depth2","depth3"];return`
${Fl(f)}
float ${a}(int row, int col, int depth, int depth2, int depth3) {
return ${a}(${Ol(A,d)});
}
`}if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${o}, ${i}, ${s}, ${r})) +
depth3;
${$l(e)}
}
`;let u=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${i}, ${s}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&u==null)return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${c}.0);
return sampleTexture(${n}, uv);
}
`;let m=Si(n);return`
float ${a}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${o} + col * ${i} + depth * ${s} +
depth2 * ${r} + depth3 + ${m};
vec2 uv = uvFromFlat(${c}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function WL(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let A=Dl(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${Fl(A)}
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${a}(${Ol(y,s)});
}
`}let i=t[5],o=t[4]*i,l=t[3]*o,d=t[2]*l,u=t[1]*d;if(e.shapeInfo.isUniform)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${u}, ${d}, ${l}, ${o})) +
dot(
vec2(depth3, depth4),
vec2(${i}, 1)));
${$l(e)}
}
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===u&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${d}, ${l}, ${o}, ${i})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(m===i&&p==null)return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${m}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let f=Si(n);return`
float ${a}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${u} + col * ${d} + depth * ${l} +
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
vec2 uv = uvFromFlat(${h}, ${m}, index);
return sampleTexture(${n}, uv);
}
`}function $l(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function BL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=cv(e.shapeInfo.logicalShape,t.logicalShape),l=lt(i),d=i-s,u,p=["x","y","z","w","u","v"];s===0?u="":i<2&&o.length>=1?u="coords = 0;":u=o.map(A=>`coords.${p[A+d]} = 0;`).join(`
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((A,y)=>`coords.${p[y+d]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!f)i===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(o.length){let A=s-2,y=s-1;o.indexOf(A)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(A)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${u}
vec4 outputValue = get${a}(${c});
${h}
}
`}function VL(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let d=lt(l),u=cv(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&u.length>=1?c="coords = 0;":c=u.map(f=>`coords.${h[f+p]} = 0;`).join(`
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,A)=>`coords.${h[A+p]}`).join(", "),`
float ${r}() {
${d} coords = getOutputCoords();
${c}
return get${a}(${m});
}
`}function lt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Dl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Ol(e,t){return t.map(n=>e[n]).join(", ")}function jL(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=oL(s,o,r,t.packedInputs),d=e.createProgram(l),u=null,p=e.getUniformLocation(d,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(u=e.getUniformLocation(d,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(d,m,f),c[`offset${m}`]=e.getUniformLocation(d,`offset${m}`,f)}return{program:t,source:l,webGLProgram:d,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:u,nanLoc:p}}function mv(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function UL(e,t,n,a,r){mv(t.inShapeInfos,n),mv([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let d=t.program.variableNames[l],u=t.uniformLocations[d],p=t.uniformLocations[`offset${d}`];if(u!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(u,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(u,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,u,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function HL(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:GL,bincountImpl:Av,bincountReduceImpl:qL,ceilImpl:XL,concatImpl:KL,expImpl:ZL,expm1Impl:YL,floorImpl:JL,gatherV2Impl:QL,greaterImpl:eW,lessImpl:tW,linSpaceImpl:nW,logImpl:aW,maxImpl:rW,maximumImpl:sW,minimumImpl:iW,multiplyImpl:oW,negImpl:lW,prodImpl:uW,rangeImpl:dW,rsqrtImpl:pW,simpleAbsImpl:yv,sliceImpl:cW,sparseFillEmptyRowsImpl:hW,sparseReshapeImpl:fW,stridedSliceImpl:mW,subImpl:AW,tileImpl:yW,topKImpl:gW,transposeImpl:g1,uniqueImpl:xW}=GA;function gv(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function pn(e,t){return t===1?[e]:gv(e,t)}function bW(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var vW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let n=pn("rc",t),a=lt(t),r=kW(t,e,n),s=IW(t,e[e.length-1],e[e.length-2],n),i=SW(e,n);this.userCode=`
void main() {
${a} rc = getOutputCoords();
if(${r}) {
setOutput(vec4(0));
} else {
${s}
setOutput(vec4(${i}));
}
}
`}}};function wW(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function kW(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function IW(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
int r = ${r[0]};
int c = ${r[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${t};
bool rEdge = rp1 >= ${n};
`}function SW(e,t){let n=e.length,a=wW(n,t);return n===1?`getA(rc),
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
0, 0`:`getA(${a[0]}),
cEdge ? 0. : getA(${a[1]}),
rEdge ? 0. : getA(${a[2]}),
rEdge || cEdge ? 0. : getA(${a[3]})`}var xv=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${a}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${a>0?"}":""}
`}this.userCode=`
${NW(t)}
${c1(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${e[1]};
int cols = ${e[2]};
${n}
setOutput(result);
}
`}};function NW(e){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${Ii(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var TW=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=vv(t,n),r=wv(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=bv(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===Qt.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===Qt.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===Qt.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===Qt.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=vv(n,a),s=wv(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=bv(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],d=l.indexOf(e);if(d<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(d,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function EW(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function bv(e,t,n,a,r){let s=CW(t,a),i;if(r){let[l,d]=Rl(e[0],e[1]);i=l*d}else{let[l,d]=pd(e[0],e[1]);i=l*d}let o=EW(n,s);return i*o}function CW(e,t){switch(e){case Qt.PACKED_2X2_FLOAT32:return A1(t);case Qt.PACKED_2X2_FLOAT16:return y1(t);case Qt.UNPACKED_FLOAT32:return h1(t);case Qt.UNPACKED_FLOAT16:return f1(t);case Qt.PACKED_4X1_UNSIGNED_BYTE:return m1(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function RW(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Qt.PACKED_2X2_FLOAT32:Qt.UNPACKED_FLOAT32:e?Qt.PACKED_2X2_FLOAT16:Qt.UNPACKED_FLOAT16}function vv(e,t){if(e===Zn.UPLOAD)return Qt.PACKED_2X2_FLOAT32;if(e===Zn.RENDER||e==null)return RW(t);if(e===Zn.DOWNLOAD||e===Zn.PIXELS)return Qt.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function wv(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Lr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xa="if (isnan(x)) return x;",MW="return x;",kv="return abs(x);",FW="return (x >= 0.0) ? x : (exp(x) - 1.0);",$W=xa+`
return (x < 0.0) ? 0.0 : x;
`,DW=xa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,gh="return x;",OW="return 1.0 / (1.0 + exp(-1.0 * x));",zW="return x;",_W=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,PW=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,LW=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,WW="return 1.0 / (1.0 + exp(-1.0 * x));",zl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},BW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=pn("rc",t),a=lt(t),r=bW(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${i}));
}
`}},VW=Wa.whereImpl,jW=1e-7,UW=1e-4,x1={};function HW(e){return e in x1||(x1[e]={}),x1[e]}var GW=128,qW=600;function XW(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*qW/1024/1024}var _l=class extends fu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Va(J().getNumber("WEBGL_VERSION"));this.binaryCache=HW(J().getNumber("WEBGL_VERSION")),this.gpgpu=new yh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new TW(this.gpgpu),this.numMBBeforeWarning=XW(),this.texData=new Np(this,nr())}nextDataId(){return _l.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:Zn.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:Zn.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new zl(i,gh):p=new Lr(i,gh);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,d;l&&(d=k.now());let u;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);u=C.mergeRealAndImagArrays(p,c)}else u=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-d),this.convertAndCacheOnCPU(e,u)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new zl(a,gh):h=new Lr(a,gh);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,d;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){d=this.decode(e);let h=this.texData.get(d.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...cd(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let u;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];u=C.mergeRealAndImagArrays(m,f)}else if(l==null)u=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);u=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}d!=null&&this.disposeIntermediateTensorInfo(d);let p=this.convertAndCacheOnCPU(e,u),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&nr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!I7(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...cd(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=J().getBool("WEBGL_PACK")&&a===!0,i=s?hh(t):t,o=s?new aL(i):new nL(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),d=this.texData.get(l.dataId),u=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(d.texture,d.texShape[0],d.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),u}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,d)=>({name:s[d],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let d=this.texData.get(e);d.texture=null,d.texShape=null,d.isPacked=!1,d.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=GW){return J().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){C.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return VW(e.shape,t)}packedUnaryOp(e,t,n){let a=new zl(e.shape,t),r=this.compileAndRun(a,[e],n);return nr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=yv(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,kv,e.dtype);let t=new Lr(e.shape,kv),n=this.compileAndRun(t,[e]);return nr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return nr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new BW(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new vW(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[wi(e.shape),...ki(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[wi(t),...ki(t)],s=new xv(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=hh(a),i;n?i=new tL(s):i=new eL(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===dd.DENSE){let f=cd(e.outputShape);i.texShape=f.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(f.dataId);if(A.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=f.shape)}else if(!!A.isPacked!=!!e.packedInputs)f=A.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),A=this.texData.get(f.dataId);else if(A.isPacked&&!md(A.shape,f.shape)){let y=f,g=f.shape;f.shape=A.shape,f=this.packedReshape(f,g),o.push(f),A=this.texData.get(f.dataId),y.shape=g}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let d={shape:s.shape,texData:i,isUniform:!1},u=HL(e,l,d),p=this.getAndSaveBinary(u,()=>jL(this.gpgpu,e,l,d)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),UL(this.gpgpu,p,l,d,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=J().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=W(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Se(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?jW:UW}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,d;l&&(d=k.now());let u=t.texShape;if(u==null&&(u=B7(n,o),t.texShape=u),r!=null){let p=hh(n),c,h=u[1],m=u[0],f=r instanceof Uint8Array;o?([h,m]=Rl(u[0],u[1]),c=new sL(p,[m,h],f)):c=new rL(p,[m,h],f);let A=this.makeTensorInfo([m,h],a);f?this.texData.get(A.dataId).usage=Zn.PIXELS:this.texData.get(A.dataId).usage=Zn.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),h,m,r);let y=!0,g=this.runWebGLProgram(c,[A],a,null,y),x=this.texData.get(g.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(g.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-d)}else{let p=this.acquireTexture(u,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=KW(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};_l.nextDataId=0;function KW(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var Iv="3.6.0";function Sv(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Bu.isBrowser()&&pl("webgl",()=>new _l,2);var ZW={forceHalfFloat:Sv},Nv=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,Pl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},xh=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,yd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=C.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(s=`
${lt(r)} coords = getOutputCoords();
`,r===1)s+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=pn("coords",r);s+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${s}
setOutput(result);
}
`}};function Pn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var YW={kernelName:Is,backendName:"webgl",kernelFunc:Pn};function Wr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Pn({inputs:{x:a},backend:n}),l=Pn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var JW={kernelName:$p,backendName:"webgl",kernelFunc:Wr},Tv="return (a < 0.) ? b * a : a;",Ev=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function QW(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new yd(Ev,r.shape,i.shape):new Pl(Tv,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var eB={kernelName:Ss,backendName:"webgl",kernelFunc:QW},Cv="return (a < 0.) ? b * a : a;",Rv=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function tB(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new yd(Rv,a.shape,r.shape):new Pl(Cv,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var nB={kernelName:Ps,backendName:"webgl",kernelFunc:tB},Mv="if (isnan(x)) return x;",aB=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,rB=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let d=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,u;return d?u=new zl(i.shape,t):u=new Lr(i.shape,e),o.runWebGLProgram(u,[i],l)}}function en({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:d}=i,u=o;if(a&&l.dtype==="complex64"){let m=u.texData.get(l.dataId),f=u.texData.get(d.dataId),[A,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[w,b]=x,v={dataId:w.dataId,dtype:w.dtype,shape:l.shape},N={dataId:b.dataId,dtype:b.dtype,shape:d.shape},T=new Pl(e,l.shape,d.shape);return u.runWebGLProgram(T,[v,N],sa(w.dtype,b.dtype))}),g=Wr({inputs:{real:A,imag:y},backend:u});return u.disposeIntermediateTensorInfo(A),u.disposeIntermediateTensorInfo(y),g}let p=s||sa(l.dtype,d.dtype);if(u.shouldExecuteOnCPU([l,d])&&r!=null){let m=u.texData.get(l.dataId),f=u.texData.get(d.dataId),[A,y]=r(l.shape,d.shape,m.values,f.values,p),g=u.makeTensorInfo(y,p),x=u.texData.get(g.dataId);return x.values=A,g}let c=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new yd(t,l.shape,d.shape,n):h=new Pl(e,l.shape,d.shape),u.runWebGLProgram(h,[l,d],p)}}function bh(e,t=!1){if(e==="linear")return t?zW:MW;if(e==="relu")return t?PW:$W;if(e==="elu")return t?_W:FW;if(e==="relu6")return t?LW:DW;if(e==="prelu")return t?Rv:Cv;if(e==="leakyrelu")return t?Ev:Tv;if(e==="sigmoid")return t?WW:OW;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Fv=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let d=a?e[1]:e[2],u=Math.ceil(d/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",A="";i&&(o?f=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${i}
}`:l?f=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${i}
}`:f=`vec4 activation(vec4 x) {
${i}
}`,A="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let g="rc.x",x="rc.x";e[0]<t[0]?g=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${f}
const float sharedDimension = ${u}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${u}; i++) {
int batchA = ${g};
int batchB = ${x};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${c});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${m[0]});
result += (${h[1]} * ${m[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${A}
setOutput(result);
}
`}},$v={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Dv=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=C.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},Ov="return a * b;";function b1(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=C.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),d=new Dv($v.REAL,a.shape,r.shape),u=new Dv($v.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(d,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=Wr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[d,u]=oW(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(u,s),c=n.texData.get(p.dataId);return c.values=d,p}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new yd(Ov,a.shape,r.shape):i=new Pl(Ov,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var sB={kernelName:Ds,backendName:"webgl",kernelFunc:b1};function iB(e,t,n){let a=[wi(e.shape),...ki(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[wi(t),...ki(t)],i=new xv(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),d=k.sizeFromShape(l);k.assert(o===d,()=>`The new shape (${l}) has ${d} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let u=i.texData.get(r.dataId);return u.isPacked&&!md(r.shape,l)&&!(u.texture!==null&&md(u.shape,l))?iB(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var oB={kernelName:Vo,backendName:"webgl",kernelFunc:Ae},zv=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let u=1/t;l=`sumValue += dot(values * ${k.isInt(u)?u.toPrecision(2):u}, ones);`}let d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${i}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${i};
if (${o===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${o===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${o===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},lB=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let d=Math.floor(n/4)*4,u=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${o}(values, minMaxValue);
}
`,c="vec4";t==="all"?(i="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,c="bvec4"):t==="any"&&(i="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,c="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${i};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${i});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${d}; i += 4) {
int inIdx = inOffset + i;
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${d};
if (${u===1}) {
${c} values = ${c}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${u===2}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${u===3}) {
${c} values = ${c}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function uB(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=C.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Ni(e,t,n,a){let r=uB(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:d}=r[i],u,p;n==="mean"?u=i===0?new zv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d},o):new zv({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d}):u=new lB({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:d},n),p=s,s=a.runWebGLProgram(u,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var dB=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=pB(t);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function pB(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var cB=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let d=0;d<n.length;d++)n[d]=e[t[d]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=lt(this.rank),r=gv("rc",this.rank),s=new Array(this.rank);for(let d=0;d<t.length;d++)s[t[d]]=r[d];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
void main() {
${a} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${o}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${o}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function vh(e,t,n){let a=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new cB(e.shape,t):new dB(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function hB(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=C.getAxesPermutation(o,s),d=l!=null,u=e;d&&(u=vh(e,l,a),o=C.getInnerMostAxes(o.length,s)),C.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=C.computeOutAndReduceShapes(u.shape,o),h=p;n&&(h=C.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,A=Ae({inputs:{x:u},attrs:{shape:[f,m]},backend:a}),y=cc(e.dtype),g=Ni(A,y,"sum",a),x=Ae({inputs:{x:g},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(A),a.disposeIntermediateTensorInfo(g),d&&a.disposeIntermediateTensorInfo(u),x}function wh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return hB(r,s,i,n)}var fB={kernelName:Xs,backendName:"webgl",kernelFunc:wh};function cn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let u=0;u<l.length;u++)l[u]=r.shape[s[u]];let d;if(i.shouldExecuteOnCPU([r])){let u=i.texData.get(r.dataId).values,p=g1(u,r.shape,r.dtype,s,l);d=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(d.dataId);c.values=p}else d=vh(r,s,i);return d}var mB={kernelName:ei,backendName:"webgl",kernelFunc:cn},_v=1e3;function kh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let d=e.shape.length,u=t.shape.length,p=n?e.shape[d-2]:e.shape[d-1],c=a?t.shape[u-1]:t.shape[u-2],h=n?e.shape[d-1]:e.shape[d-2],m=a?t.shape[u-2]:t.shape[u-1],f=e.shape.slice(0,-2),A=t.shape.slice(0,-2),y=k.sizeFromShape(f),g=k.sizeFromShape(A),x=y===g||y===1||g===1;k.assert(d>=2&&u>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${A}).`);let w=(y>g?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,p,h]:[y,h,p],v=a?[g,m,c]:[g,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),T=Ae({inputs:{x:t},backend:r,attrs:{shape:v}}),R=[N,T],$=Math.max(y,g),z=n?N.shape[1]:N.shape[2],P=s!=null,V=i!=null,j=l==="leakyrelu",U=l!=null?bh(l,!0):null,X=P||V||j||U!=null,G;if((h===1||m===1)&&z>_v&&X===!1){let Y=N,re=T;n&&(Y=cn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),R.push(Y)),a&&(re=cn({inputs:{x:T},backend:r,attrs:{perm:[0,2,1]}}),R.push(re));let ne=m!==1,ie=m===1,Q=Y;ne&&(Q=Ae({inputs:{x:Y},backend:r,attrs:{shape:[$,z,1]}}),R.push(Q));let de=m===1?2:1,oe=re;ie&&(oe=Ae({inputs:{x:re},backend:r,attrs:{shape:[$,1,z]}}),R.push(oe));let ye=b1({inputs:{a:Q,b:oe},backend:r});G=wh({inputs:{x:ye},backend:r,attrs:{axis:de,keepDims:!0}}),R.push(ye)}else{let Y=sa(e.dtype,t.dtype),re=new Fv(b,v,[$,h,m],n,a,P,U,V,j),ne=[N,T];if(s!=null&&ne.push(s),V&&ne.push(i),j){let ie=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));ne.push(ie),R.push(ie)}G=r.runWebGLProgram(re,ne,Y)}let ee=Ae({inputs:{x:G},backend:r,attrs:{shape:w}});R.push(G);for(let Y of R)r.disposeIntermediateTensorInfo(Y);return ee}function AB(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a;return kh({a:r,b:s,transposeA:l,transposeB:d,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:u})}var yB={kernelName:ti,backendName:"webgl",kernelFunc:AB},Pv="return abs(x);";function gB(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=yv(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new zl(a.shape,Pv):r=new Lr(a.shape,Pv),n.runWebGLProgram(r,[a],a.dtype)}var xB={kernelName:to,backendName:"webgl",kernelFunc:gB},bB=xa+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,vB=qe({opSnippet:bB}),wB={kernelName:no,backendName:"webgl",kernelFunc:vB},kB=xa+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,IB=qe({opSnippet:kB}),SB={kernelName:ao,backendName:"webgl",kernelFunc:IB},Lv="return a + b;",NB=en({opSnippet:Lv,packedOpSnippet:Lv,supportsComplex:!0,cpuKernelImpl:GL}),TB={kernelName:kr,backendName:"webgl",kernelFunc:NB},EB=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${a};
setOutput(result);
}
`}},CB=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${a};
setOutput(result);
}
`}};function Ih(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Pn({inputs:{x:a[0]},backend:n});if(a.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Ih({inputs:a.slice(0,o),backend:n}),d=Ih({inputs:a.slice(o),backend:n});return Ih({inputs:[l,d],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>sa(o,l)),s=a.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new CB(a[0].shape,s):new EB(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var RB={kernelName:os,backendName:"webgl",kernelFunc:Ih};function MB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,o)),C.assertAxesAreInnerMostDims("all",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"all",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var FB={kernelName:ro,backendName:"webgl",kernelFunc:MB};function $B(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,o)),C.assertAxesAreInnerMostDims("any",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"any",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var DB={kernelName:so,backendName:"webgl",kernelFunc:$B},OB=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${a};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${a}; i++) {
int inIdx = ${o};
float candidate = getA(batch, inIdx);
if (candidate ${i} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},zB=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=lt(o),d=pn("coords",o),u,p;if(s===1){p=o+1;let N=lt(p);u=`
${N} sourceLocR = ${N}(${d.join()}, 0);
++${d[o-1]};
${N} sourceLocG = ${N}(${d.join()}, 0);
++${d[o-2]};
${N} sourceLocA = ${N}(${d.join()}, 0);
--${d[o-1]};
${N} sourceLocB = ${N}(${d.join()}, 0);
--${d[o-2]};`}else p=o,u=`
${l} sourceLocR = coords;
++${d[o-1]};
${l} sourceLocG = coords;
++${d[o-2]};
${l} sourceLocA = coords;
--${d[o-1]};
${l} sourceLocB = coords;
--${d[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=pn("sourceLocR",p-1).concat("inIdx.r"),A=pn("sourceLocG",p-1).concat("inIdx.g"),y=pn("sourceLocB",p-1).concat("inIdx.b"),g=pn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",w=a?"":`
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
getBestIndicesAChannel(${A.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${g.join()})));`,b=`vec4(
getAChannel(${f.join()}),
hasNextCol ? getAChannel(${A.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${g.join()}) : 0.)`,v=a?"":`
float getBestIndicesAChannel(${m.join()}) {
return getChannel(getBestIndicesA(${c.join()}),
vec2(${c.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${m.join()}) {
return getChannel(getA(${c.join()}),
vec2(${c.slice(-2).join()}));
}
${v}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${d[o-1]} < ${i[o-1]-1};
bool hasNextRow = ${d[o-2]} < ${i[o-2]-1};
${u}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${b};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${w}
vec4 candidate = ${b};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function Wv(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=C.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new OB(o,n,a==null),d=[t];a!=null&&d.push(a);let u=e.runWebGLProgram(l,d,"int32");if(u.shape[1]===1)return u;let p=Wv(e,t,n,u);return e.disposeIntermediateTensorInfo(u),p}function Bv(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=C.computeOptimalWindowSize(s),o=new zB(r,i,n,a==null),l=a==null?[t]:[t,a],d=e.runWebGLProgram(o,l,"int32");if(d.shape.length===t.shape.length){let u=Bv(e,t,n,d);return e.disposeIntermediateTensorInfo(d),u}return d}function Vv(e,t,n,a){let r=[n];if(C.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=C.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),d=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(d);let u=Wv(e,d,a);s.push(u);let p=Ae({inputs:{x:u},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return Bv(e,t,a)}function _B(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let u=Vv(n,l,i[0],"max");return d.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var PB={kernelName:ls,backendName:"webgl",kernelFunc:_B};function LB(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=C.getAxesPermutation(i,r.shape.length),l=r,d=[];o!=null&&(l=cn({inputs:{x:r},backend:n,attrs:{perm:o}}),d.push(l),i=C.getInnerMostAxes(i.length,l.shape.length)),C.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let u=Vv(n,l,i[0],"min");return d.forEach(p=>n.disposeIntermediateTensorInfo(p)),u}var WB={kernelName:yu,backendName:"webgl",kernelFunc:LB},BB=xa+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,VB=qe({opSnippet:BB}),jB={kernelName:io,backendName:"webgl",kernelFunc:VB},UB=xa+"return log(x + sqrt(x * x + 1.0));",HB=qe({opSnippet:UB}),GB={kernelName:oo,backendName:"webgl",kernelFunc:HB},qB=xa+`
return atan(x);
`,XB=qe({opSnippet:qB}),KB={kernelName:lo,backendName:"webgl",kernelFunc:XB},ZB=aB+`
return atan(a, b);
`,YB=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+rB+`
return result;
`,JB=en({opSnippet:ZB,packedOpSnippet:YB}),QB={kernelName:po,backendName:"webgl",kernelFunc:JB},eV=xa+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,tV=qe({opSnippet:eV}),nV={kernelName:uo,backendName:"webgl",kernelFunc:tV},gd=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,d=e.dilationWidth,u=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${d}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${N} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?f:A:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let g="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let w=Math.floor(s/4)*4,b=s%4,v=`
if (${m}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${g}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${i}, ${o});
const ivec2 pads = ivec2(${c}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${u};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${w}; wC += 4) {
int xC = xCCorner + wC * ${d};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
getValue(batch, xR, xC + 2 * ${d}, d),
getValue(batch, xR, xC + 3 * ${d}, d)
);
${v}
}
int xC = xCCorner + ${w};
if (${b===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${v}
} else if (${b===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
initializationValue,
initializationValue
);
${v}
} else if (${b===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${d}, d),
getValue(batch, xR, xC + 2 * ${d}, d),
initializationValue
);
${v}
}
}
setOutput(${x});
}
`}},v1=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,d=e.dilationDepth,u=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,A=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let g=t==="avg",x="0.0";if(g||(x="-1.0 / 1e-20"),n){let R=">=";this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${A}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${c};
wD += ${d}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${m};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${R} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
wR * ${m} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let w="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let v=Math.floor(s/4)*4,N=s%4,T=`
if (${g}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${w}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${i}, ${o}, ${l});
const ivec3 pads = ivec3(${f}, ${A}, ${y});
const float initializationValue = ${x};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${x});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${c};
wD += ${d}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${u}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${v}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${T}
}
int xC = xCCorner + ${v};
if (${N===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${T}
} else if (${N===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${T}
} else if (${N===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${T}
}
}
setOutput(${b});
}
}
`}};function aV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ml(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:r},backend:n});let p=new gd(u,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var rV={kernelName:us,backendName:"webgl",kernelFunc:aV};function sV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:d}=a,u=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,u,o,l,d),c=new v1(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var iV={kernelName:gu,backendName:"webgl",kernelFunc:sV},oV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,d=o-1-e.padInfo.top,u=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${d}, ${u});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${o};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${i}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},lV=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,d=e.dilationWidth,u=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=u-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,A=1/(t*n*a);this.userCode=`
const ivec3 pads = ivec3(${h}, ${m}, ${f});
const float avgMultiplier = float(${A});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${u};
wD += ${o}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${c};
wC += ${d}) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function uV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:d,dimRoundingMode:u}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,d,u),h=new lV(c);return n.runWebGLProgram(h,[r],i.dtype)}var dV={kernelName:Mp,backendName:"webgl",kernelFunc:uV};function pV(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;Ml([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:d}=a,u=C.computePool2DInfo(i.shape,o,l,1,d),p=new oV(u);return n.runWebGLProgram(p,[r],i.dtype)}var cV={kernelName:Rp,backendName:"webgl",kernelFunc:pV};function hV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return kh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var fV={kernelName:ds,backendName:"webgl",kernelFunc:hV},mV=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${i};
float scale = ${o};
float inv = scale * inversesqrt(variance + float(${s}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},AV=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],C.assertAndGetBroadcastShape(e,t),C.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(C.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(C.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${i};
vec4 scale = ${o};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
setOutput((x - mean) * inv + offset);
}
`}},yV=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let d=[a,r,s],u=null;i!=null&&(u=i.shape,d.push(i));let p=null;o!=null&&(p=o.shape,d.push(o));let c=J().getBool("WEBGL_PACK_NORMALIZATION")?new AV(a.shape,r.shape,s.shape,u,p,l):new mV(a.shape,r.shape,s.shape,u,p,l);return t.runWebGLProgram(c,d,d[0].dtype)},gV={kernelName:ws,backendName:"webgl",kernelFunc:yV},xV=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=`uniform int start[${this.rank}];`,a=bV(this.rank),r,s=e.map((i,o)=>`sourceLoc.${w1[o]} = start[${o}] + coords.${w1[o]};`);r=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${s.join(`
`)}
`,this.userCode=`
${n}
void main() {
${r}
setOutput(getSource(${a}));
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},w1=["x","y","z","w","u","v"];function bV(e){if(e===1)return"sourceLoc";if(e<=6)return w1.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var vV=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=lt(this.rank),n=pn("coords",this.rank),a=pn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
result.x = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.y = ${s};
--${a[this.rank-1]};
}
`,o=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${a[this.rank-2]};
result.z = ${s};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${a[this.rank-1]};
result.w = ${s};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((d,u)=>`start[${u}]`).join()});`:e.map((d,u)=>`${a[u]} = ${n[u]} + start[${u}];`).join(`
`);this.userCode=`
uniform int start[${this.rank}];
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${i}
${o}
setOutput(result);
}
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function wV(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=on.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function xd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=on.parseSliceParams(r,s,i);if(on.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=cW(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:d}=n.texData.get(r.dataId),u=on.isSliceContinous(r.shape,o,l);if(d||!u){let p=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new vV(l):new xV(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),wV(r,o,l,n)}var kV={kernelName:Go,backendName:"webgl",kernelFunc:xd},IV=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,x)=>g*x),l=C.getReshaped(r.shape,s,o),d=C.getPermuted(l.length,s.length),u=C.getReshapedPermuted(r.shape,s,o),p=C.getSliceBeginCoords(i,s.length),c=C.getSliceSize(u,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:d}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:u}}),y=xd({inputs:{x:A},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(A),h.forEach(g=>n.disposeIntermediateTensorInfo(g)),y},SV={kernelName:xu,backendName:"webgl",kernelFunc:IV};function NV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),d=Av(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}var TV={kernelName:Fp,backendName:"webgl",kernelFunc:NV},EV="return float(a != b);",jv=en({opSnippet:EV,dtype:"bool"}),CV={kernelName:Do,backendName:"webgl",kernelFunc:jv};function bd(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.real},backend:n})}var RV={kernelName:ec,backendName:"webgl",kernelFunc:bd},MV="return float(int(x));";function FV(e,t){let n=new Lr(e.shape,MV),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function k1(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Pn({inputs:{x:r},backend:n});let i=Ct(r.shape),o=k1({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Wr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=bd({inputs:{input:r},backend:n}),o=k1({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Pn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return FV(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=jv({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var $V={kernelName:ps,backendName:"webgl",kernelFunc:k1},Uv="return ceil(x);",DV=qe({opSnippet:Uv,packedOpSnippet:Uv,cpuKernelImpl:XL}),OV={kernelName:cs,backendName:"webgl",kernelFunc:DV},zV=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},_V=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
uniform float minVal;
uniform float maxVal;
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function PV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;J().getBool("WEBGL_PACK_CLIP")?o=new _V(r.shape):o=new zV(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var LV={kernelName:Ir,backendName:"webgl",kernelFunc:PV},WV=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function Hv(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function BV(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new WV(a.shape),i=[Hv(a,r.complexTensorInfos.real),Hv(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var VV={kernelName:bu,backendName:"webgl",kernelFunc:BV},jV=class{constructor(e){this.outputShape=[],this.outputShape=C.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},UV=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=C.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=lt(a),s=pn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],d=i.slice(-2),u=i.join(),p=`if (${l} < ${o[0]}) {
return getChannel(
getT0(${u}), vec2(${d.join()}));
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
return getChannel(
getT${m}(${Sh(i,l,f)}),
vec2(${Sh(d,l,f)}));
}`}let c=o.length,h=o[o.length-1];p+=`
return getChannel(
getT${c}(${Sh(i,l,h)}),
vec2(${Sh(d,l,h)}));`,this.userCode=`
float getValue(${i.map(m=>"int "+m)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
${s[a-1]} = ${s[a-1]} + 1;
if (${s[a-1]} < ${n[a-1]}) {
result.g = getValue(${s});
}
${s[a-2]} = ${s[a-2]} + 1;
if (${s[a-2]} < ${n[a-2]}) {
result.a = getValue(${s});
}
${s[a-1]} = ${s[a-1]} - 1;
if (${s[a-2]} < ${n[a-2]} &&
${s[a-1]} < ${n[a-1]}) {
result.b = getValue(${s});
}
setOutput(result);
}
`}};function Sh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Nh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Pn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var HV={kernelName:qp,backendName:"webgl",kernelFunc:Nh};function Ll(e,t,n){let a=e[0].dtype;if(a==="complex64"){let u=e.map(f=>bd({inputs:{input:f},backend:n})),p=e.map(f=>Nh({inputs:{input:f},backend:n})),c=Ll(u,t,n),h=Ll(p,t,n),m=Wr({inputs:{real:c,imag:h},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let u=e.map(y=>{let g=k.sizeFromShape(y.shape.slice(t));return Ae({inputs:{x:y},backend:n,attrs:{shape:[-1,g]}})}),p=u.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=C.computeOutShape(u.map(y=>y.shape),1),h=u[0].shape[0]===1,m=KL(p,c,a,h),f=C.computeOutShape(e.map(y=>y.shape),t),A=n.makeTensorInfo(f,a,m);return u.forEach(y=>n.disposeIntermediateTensorInfo(y)),A}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),p=Ll(e.slice(0,u),t,n),c=Ll(e.slice(u),t,n),h=Ll([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new UV(e.map(p=>p.shape),t);return n.runWebGLProgram(u,e,a)}let{tensors2D:s,outShape:i}=GV(e,t,n),o=new jV(s.map(u=>u.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(u=>n.disposeIntermediateTensorInfo(u));let d=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),d}function GV(e,t,n){let a=C.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function Gv(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=C.computeOutShape(t.map(d=>d.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(d=>k.sizeFromShape(d.shape)>0);if(o.length===1)return Pn({inputs:{x:o[0]},backend:n});let l=o.map(d=>d.shape);return C.assertParamsConsistent(l,s),Ll(o,s,n)}var qV={kernelName:co,backendName:"webgl",kernelFunc:Gv},qv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,d=e.dilationHeight,u=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",A=f?1:2,y=f?2:3,g=f?3:1,x="",w="";n&&(a?x=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?x=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:x=`
float activation(float x) {
${n}
}
`,w="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${x}
const ivec2 strides = ivec2(${o}, ${l});
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${g}];
ivec2 xRCCorner =
ivec2(coords[${A}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${d};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${f}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${m===1}) {
if (${f}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${m===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${f}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${m===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${f}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${b}
${w}
setOutput(result);
}
`}},XV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,d=e.dilationWidth,u=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${s}, ${i});
const ivec3 pads = ivec3(${t}, ${n}, ${a});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${u}; wF++) {
int xF = xFCorner + wF * ${o};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${c}; wC++) {
int xC = xCCorner + wC * ${d};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${m===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${m===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${m===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},KV=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:d,dilationHeight:u,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=dn(),A=p==="channelsLast",y=A?0:1,g=A?1:2,x="";for(let w=0;w<=1;w++)for(let b=0;b<=1;b++)x+=`
blockIndex = rc.y + ${b};
pos = rc.x + ${w};
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
d0 = offsetY + ${u} * (pos / ${m});
if(d0 < ${t[y]} && d0 >= 0) {
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
d1 = offsetX + ${d} * (int(mod(float(pos), ${m}.) / ${r}.));
if(d1 < ${t[g]} && d1 >= 0) {
ch = int(mod(float(pos), ${r}.));
if (${A}) {
innerDims = vec2(d1, ch);
result[${w*2+b}] = getChannel(
getA(d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${w*2+b}] = getChannel(
getA(ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec2 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${x}
${f.output} = result;
}
`}};function Xv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,d=a.texData.get(e.dataId),u=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,A,y=[],g=(p===1||c===1)&&u>_v,x=l[2]%2!=0&&!!d.isPacked;if(g||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let w=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,w,n.inChannels]}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=kh({a:b,b:v,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=Ae({inputs:{x:N},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(v),y.push(N)}else{let w=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,w,n.inChannels],dtype:e.dtype},v=d.shape;d.shape=d.shape.slice(),d.shape[d.shape.length-2]++,k.assert(md(d.shape,b.shape),()=>`packed reshape ${d.shape} to ${b.shape} isn't free`);let N=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let T=kh({a:b,b:N,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),R=a.texData.get(T.dataId);k.assert(R.isPacked,()=>"batchMatMul result is expected to be packed"),d.shape=v,R.shape=n.outShape,A=Pn({inputs:{x:T},backend:a}),A.shape=n.outShape,y.push(T)}for(let w of y)a.disposeIntermediateTensorInfo(w);return A}function Kv({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:d,inChannels:u,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*d*u,A=c*p,y=[f,A],g=!0,x=!1,w=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),v=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});w.push(b),w.push(v);let N=new KV(y,b.shape,n),T=a.runWebGLProgram(N,[b],"float32"),R=Ae({inputs:{x:T},backend:a,attrs:{shape:[1,y[0],y[1]]}});w.push(T),w.push(R);let $=r!=null,z=s!=null,P=o==="leakyrelu",V=o?bh(o,!0):null,j=new Fv(R.shape,v.shape,[1,A,n.outChannels],g,x,$,V,z,P),U=[R,v];if(r&&U.push(r),z&&U.push(s),P){let Y=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));U.push(Y),w.push(Y)}let X=a.runWebGLProgram(j,U,"float32"),G=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],ee=Ae({inputs:{x:X},backend:a,attrs:{shape:G}});w.push(X);for(let Y of w)a.disposeIntermediateTensorInfo(Y);return ee}function ZV(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:d,dimRoundingMode:u}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=Xv({x:r,filter:s,convInfo:c,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=Kv({x:r,filter:s,convInfo:c,backend:n});else{let f=new qv(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var YV={kernelName:hs,backendName:"webgl",kernelFunc:ZV},JV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${s}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},QV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,d=s?2:3,u=s?3:1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${u}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${d}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${s}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},ej=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${a} - ${i};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},tj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,d=a-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${o}, ${l}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${i}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${a} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,filterShape:u}=a,p=C.convertConv2DDataFormat(l),c=C.computeConv2DInfo(r.shape,u,i,1,o,d,!1,p),h=new JV(c);return n.runWebGLProgram(h,[r,s],"float32")}var aj={kernelName:Dp,backendName:"webgl",kernelFunc:nj};function rj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:d,dimRoundingMode:u}=a,p=C.convertConv2DDataFormat(d),c=C.computeConv2DInfo(i,s.shape,o,1,l,u,!1,p),h=new QV(c);return n.runWebGLProgram(h,[r,s],"float32")}var sj={kernelName:fs,backendName:"webgl",kernelFunc:rj};function ij(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,d=C.computeConv3DInfo(r.shape,s.shape,i,l,o),u=new XV(d);return n.runWebGLProgram(u,[r,s],"float32")}var oj={kernelName:vu,backendName:"webgl",kernelFunc:ij};function lj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,d=C.computeConv3DInfo(r.shape,l,i,1,o),u=new ej(d);return n.runWebGLProgram(u,[r,s],"float32")}var uj={kernelName:Op,backendName:"webgl",kernelFunc:lj};function dj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,d=C.computeConv3DInfo(l,s.shape,o,1,i),u=new tj(d);return n.runWebGLProgram(u,[r,s],"float32")}var pj={kernelName:zp,backendName:"webgl",kernelFunc:dj},cj=Mv+`
return cos(x);
`,hj=qe({opSnippet:cj}),fj={kernelName:ms,backendName:"webgl",kernelFunc:hj},mj=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,Aj=qe({opSnippet:mj}),yj={kernelName:ho,backendName:"webgl",kernelFunc:Aj},gj=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[d]=t,[u,p]=n;this.outputShape=[d,u,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,A,y]=u>1?[`${(i-1)/(u-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[g,x,w]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
const float height_ratio = float(${f});
const float width_ratio = float(${g});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${s}) {
return;
}
float height_scale = ${A};
float width_scale = ${x};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${w};
if( in_x < 0.0 || in_x > ${m} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${c} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},xj=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:d}=a,u=new gj(r.shape,s.shape,o,l,d);return n.runWebGLProgram(u,[r,s,i],"float32")},bj={kernelName:fo,backendName:"webgl",kernelFunc:xj},Zv=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${Yv(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
uniform float index;
void main() {
${lt(a)} coords = getOutputCoords();
int end = ${Jv(a,"coords")};
float val = ${r};
int pow2 = int(pow(2.0, index));
if (${i}) {
int idx = ${o};
${Jv(a,"coords")} = idx;
val += getX(${Yv(a,"coords")});
}
setOutput(val);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Yv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Jv(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function vj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,d=C.getAxesPermutation([s],l),u=r;d!=null&&(u=cn({inputs:{x:r},backend:n,attrs:{perm:d}}));let p=C.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=u.shape[p],h=Pn({inputs:{x:u},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new Zv(u.shape,!1,o),A=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,A),n.disposeIntermediateTensorInfo(y)}if(i){let m=new Zv(u.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(d!=null){let m=C.getUndoAxesPermutation(d),f=cn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(u),f}return h}var wj={kernelName:As,backendName:"webgl",kernelFunc:vj};function kj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),d=n.readSync(s.dataId),u=Av(l,d,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}else if(r.shape.length===2){let l=n.bufferSync(r),d=n.bufferSync(s),u=qL(l,d,i,o);return n.makeTensorInfo(u.shape,s.dtype,u.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Ij={kernelName:_p,backendName:"webgl",kernelFunc:kj},Sj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Nj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],d=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=d*s,h=u/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new Sj(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var Tj={kernelName:mo,backendName:"webgl",kernelFunc:Nj},Qv=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,d=e.strideHeight,u=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,A="",y="";n&&(a?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,y="result = activation(result);");let g=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${d}, ${u});
const ivec2 pads = ivec2(${o}, ${l});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${f};
int q = d2 - d1 * ${f};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${h}; wR++) {
int xR = xRCorner + wR * ${p};
if (xR < 0 || xR >= ${s}) {
continue;
}
for (int wC = 0; wC < ${m}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${i}) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${g}
${y}
setOutput(result);
}
`}},ew=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,d=e.padInfo.left,u=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,A=f,y=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
vec4 xTexelC${b*2};
int xTexelC${b*2}Ready;
vec4 xC${b};`;for(let b=0;b<m;b++){for(let v=0;v<f;v++)y+=`
xTexelC${v*2} = vec4(0.0);
xTexelC${v*2}Ready = 0;
xC${v} = vec4(0.0);`;y+=`
xR = xRCorner + ${b*c};
if (xR >=0 && xR < ${i}) {
`;for(let v=0;v<(A+1)/2;v++){let N=v*2,T=N*h;if(y+=`
xC = xCCorner + ${T};
`,p===1){if(N<f&&(d%2==1?(y+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
xTexelC${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${T}.zw = vec2(0.0);
}
xTexelC${T}Ready = 1;
}
`,h===1&&T>0?y+=`
xC${N} = vec4(xTexelC${T-2}.zw, xTexelC${T}.xy);
`:y+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < ${o}) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
previous.zw = vec2(0.0);
}
xC${N} = vec4(previous.zw, xTexelC${T}.xy);
} else {
xC${N} = vec4(0.0, 0.0, xTexelC${T}.xy);
}
`):y+=`
if (xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
xTexelC${T} = getX(batch, xR, xC, d1);
if (xC + 1 >= ${o}) {
xTexelC${T}.zw = vec2(0.0);
}
xTexelC${T}Ready = 1;
}
xC${N} = xTexelC${T};
`,T+1<f)){let R=d%2==0?k.nearestLargerEven(h):h;h%2==0&&d%2==1||h%2!=0&&d%2!=1?(y+=`
xCOffset = xC + ${d%2} + ${R};
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${T+2}.zw = vec2(0.0);
}
xTexelC${T+2}Ready = 1;
}
`,h>1&&(y+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
xTexelC${T} = getX(batch, xR, xCOffset, d1);
xTexelC${T}Ready = 1;
}
`),y+=`
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.xy);
`):R===1?y+=`
xC${N+1} = xTexelC${T};
`:y+=`
xCOffset = xC + ${R};
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= ${o}) {
xTexelC${T+2}.zw = vec2(0.0);
}
xTexelC${T+2}Ready = 1;
}
xC${N+1} = xTexelC${T+2};
`}}else T<f&&(d%2==1?(y+=`
xCOffset = xC + 1 - ${p};
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T}Ready == 0) {
xTexelC${T} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= ${o}) {
xTexelC${T}.zw = vec2(0.0);
}
xTexelC${T}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${T+2}Ready == 0) {
xTexelC${T+2} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= ${o}) {
xTexelC${T+2}.zw = vec2(0.0);
}
xTexelC${T+2}Ready = 1;
}
xC${N} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
`,T+1<f&&(y+=`
final = vec4(0.0);
xCOffset = xC + 1 + ${p};
if(xCOffset >= 0 && xCOffset < ${o}) {
final = getX(batch, xR, xCOffset, d1);
}
xC${N+1} = vec4(xTexelC${T+2}.xy, final.xy);
`)):(y+=`
if(xC >= 0 && xC < ${o} && xTexelC${T}Ready == 0) {
xTexelC${T} = getX(batch, xR, xC, d1);
if (xC + 1 >= ${o}) {
xTexelC${T}.zw = vec2(0.0);
}
xTexelC${T}Ready = 1;
}
xCOffset = xC + ${p};
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${T+2}Ready == 0) {
xTexelC${T+2} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= ${o}) {
xTexelC${T+2}.zw = vec2(0.);
}
xTexelC${T+2}Ready = 1;
}
xC${N} = vec4(
xTexelC${T}.xy, xTexelC${T+2}.xy);
`,T+1<f&&(y+=`
xC${N+1} = vec4(xTexelC${T}.zw, xTexelC${T+2}.zw);
`)));N<f&&(y+=`
wTexel = getW(${b}, ${T}, d1, q);
dotProd += xC${N} * vec4(wTexel.xz, wTexel.xz);
`,T+1<f&&(y+=`
wTexel = getW(${b}, ${T+1}, d1, q);
dotProd += xC${N+1} * vec4(wTexel.xz, wTexel.xz);
`))}y+=`
}
`}let g="",x="";n&&(a?g=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?g=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:g=`vec4 activation(vec4 x) {
${n}
}`,x="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${g}
const ivec2 strides = ivec2(${u}, ${p});
const ivec2 pads = ivec2(${l}, ${d});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${s};
int q = d2 - d1 * ${s};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${y}
vec4 result = dotProd - vec4(0.000000000000001);
${w}
${x}
setOutput(result);
}
`}};function Ej(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:d}=a,u=l;u==null&&(u=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(i,u),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let p=C.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!0),c;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new ew(p):c=new Qv(p),n.runWebGLProgram(c,[r,s],"float32")}var Cj={kernelName:ys,backendName:"webgl",kernelFunc:Ej},Rj=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${s} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Mj=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${s}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${o}; dm++) {
int d2 = d1 * ${o} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Fj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,filterShape:u}=a,p=C.computeConv2DInfo(r.shape,u,i,o,l,d,!0),c=new Rj(p);return n.runWebGLProgram(c,[r,s],"float32")}var $j={kernelName:Pp,backendName:"webgl",kernelFunc:Fj};function Dj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:d,inputShape:u}=a,p=C.computeConv2DInfo(u,s.shape,i,o,l,d,!0),c=new Mj(p);return n.runWebGLProgram(c,[r,s],"float32")}var Oj={kernelName:Lp,backendName:"webgl",kernelFunc:Dj},zj=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function _j(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new zj(s),l=n.runWebGLProgram(o,[i],i.dtype),d=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),d}var Pj={kernelName:Wp,backendName:"webgl",kernelFunc:_j},Lj=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:d}=e,{top:u,left:p}=a;this.userCode=`
const ivec2 strides = ivec2(${r}, ${s});
const ivec2 pads = ivec2(${u}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${i}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${o}; w++) {
int wIn = wBeg + w * ${d};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Wj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,d=C.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),u,p=new Lj(d);u=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:u},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(u),c}var Bj={kernelName:wu,backendName:"webgl",kernelFunc:Wj};function Vj(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=C.decodeEinsumEquation(r,s.length);C.checkEinsumDimSizes(i.length,l,s);let{path:d,steps:u}=C.getEinsumComputePath(o,l),p=u.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let A of u[f]){let{permutationIndices:y,expandDims:g}=C.getEinsumPermutation(h,l[A]),x;C.isIdentityPermutation(y)?x=s[A]:(x=cn({inputs:{x:s[A]},backend:n,attrs:{perm:y}}),m.push(x));let w=x.shape.slice();for(let b=0;b<g.length;++b)w.splice(g[b],0,1);k.arraysEqual(x.shape,w)||(x=Ae({inputs:{x},backend:n,attrs:{shape:w}}),m.push(x)),c===null?c=x:(c=b1({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(d[f]>=0&&(c=wh({inputs:{x:c},backend:n,attrs:{axis:d[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var jj={kernelName:jp,backendName:"webgl",kernelFunc:Vj},Uj="return (x >= 0.0) ? x : (exp(x) - 1.0);",Hj=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Gj=qe({opSnippet:Uj,packedOpSnippet:Hj}),qj={kernelName:Ao,backendName:"webgl",kernelFunc:Gj},Xj="return (b >= 1.0) ? a : a * (b + 1.0);",Kj=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,Zj=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new yd(Kj,a.shape,r.shape):new Pl(Xj,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},Yj={kernelName:Up,backendName:"webgl",kernelFunc:Zj},Jj=`
return vec4(equal(a, b));
`,Qj="return float(a == b);",eU=en({opSnippet:Qj,packedOpSnippet:Jj,dtype:"bool"}),tU={kernelName:go,backendName:"webgl",kernelFunc:eU},nU=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${C.ERF_P};
float a1 = ${C.ERF_A1};
float a2 = ${C.ERF_A2};
float a3 = ${C.ERF_A3};
float a4 = ${C.ERF_A4};
float a5 = ${C.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,aU=qe({opSnippet:nU}),rU={kernelName:yo,backendName:"webgl",kernelFunc:aU},tw="return exp(x);",nw=qe({opSnippet:tw,packedOpSnippet:tw,cpuKernelImpl:ZL}),sU={kernelName:xs,backendName:"webgl",kernelFunc:nw};function I1(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var iU={kernelName:xo,backendName:"webgl",kernelFunc:I1},aw="return exp(x) - 1.0;",oU=qe({opSnippet:aw,packedOpSnippet:aw,cpuKernelImpl:YL}),lU={kernelName:bo,backendName:"webgl",kernelFunc:oU},rw=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${i}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${a});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${a}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${s};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function sw(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,d=new rw("real",l,t),u=new rw("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(d,p,"float32"),h=n.runWebGLProgram(u,p,"float32"),m=Wr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function uU(e){let{inputs:t,backend:n}=e,{input:a}=t;return sw(a,!1,n)}var dU={kernelName:Hp,backendName:"webgl",kernelFunc:uU},pU=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
uniform float value;
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function S1(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new pU(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var cU={kernelName:ku,backendName:"webgl",kernelFunc:S1},hU=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},fU={kernelName:vo,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new hU(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},iw="return floor(x);",mU=qe({opSnippet:iw,packedOpSnippet:iw,cpuKernelImpl:JL}),AU={kernelName:bs,backendName:"webgl",kernelFunc:mU},yU=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,gU=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,xU=en({opSnippet:yU,packedOpSnippet:gU,dtype:"int32"}),bU={kernelName:vs,backendName:"webgl",kernelFunc:xU},vU=class{constructor(e){this.variableNames=["A"];let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},wU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=dn(),[n,a]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${a}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},kU={kernelName:oc,backendName:"webgl",kernelFunc:IU},Wl;function IU(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,d]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],u=[d,l],p=[d,l,s];(o||i)&&(Wl==null&&(Wl=document.createElement("canvas").getContext("2d")),Wl.canvas.width=l,Wl.canvas.height=d,Wl.drawImage(r,0,0,l,d),r=Wl.canvas);let c=n.makeTensorInfo(u,"int32");n.texData.get(c.dataId).usage=Zn.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=J().getBool("WEBGL_PACK")?new wU(p):new vU(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function SU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dataFormat:u,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=C.convertConv2DDataFormat(u),A=C.computeConv2DInfo(r.shape,s.shape,l,p,d,c,!1,f),y,g=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))y=Xv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(J().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=Kv({x:r,filter:s,convInfo:A,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let w=i!=null,b=o!=null,v=h==="leakyrelu",N=h?bh(h,!1):null,T=new qv(A,w,N,b,v),R=[r,s];if(i&&R.push(i),o&&R.push(o),v){let $=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));R.push($),g.push($)}y=n.runWebGLProgram(T,R,"float32")}let x=Ae({inputs:{x:y},backend:n,attrs:{shape:A.outShape}});return g.push(y),g.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var NU={kernelName:ni,backendName:"webgl",kernelFunc:SU};function TU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=u;f==null&&(f=[1,1]),k.assert(C.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let A=C.computeConv2DInfo(r.shape,s.shape,l,f,d,p,!0),y=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,g=c?bh(c,y):null,x=[r,s],w=i!=null,b=o!=null,v=c==="leakyrelu";if(w&&x.push(i),b&&x.push(o),v){let R=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(R),m.push(R)}let N;y?N=new ew(A,w,g,b,v):N=new Qv(A,w,g,b,v);let T=n.runWebGLProgram(N,x,"float32");return m.forEach(R=>n.disposeIntermediateTensorInfo(R)),T}var EU={kernelName:ai,backendName:"webgl",kernelFunc:TU},CU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=lt(t.length),r=lt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
${a} strides = ${a}(${this.strides});
void main() {
${r} coords = getOutputCoords();
int flattenIndex = 0;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
flattenIndex += index * ${s};
}
setOutput(getX(flattenIndex, coords[1]));
}
`}};function RU(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],[o,l,d,u]=C.prepareAndValidate(a,r),p=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),c=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/d,d]}}),h=new CU(i,u,[l,d]),m=n.runWebGLProgram(h,[c,p],c.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(m),f}var MU={kernelName:ko,backendName:"webgl",kernelFunc:RU},FU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=lt(this.rank),a=$U(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
setOutput(getA(${a}));
}
`}};function $U(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function DU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[d.batchSize,u/d.batchSize]}});p.push(c),p.push(h);let m=[d.batchSize,d.outerSize,u/d.batchSize,d.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let g=n.bufferSync(h),x=n.bufferSync(c),w=QL(x,g,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(d.outputShape,w.dtype,w.values)}let f=new FU(c.shape,m),A=n.runWebGLProgram(f,[c,h],c.dtype);p.push(A);let y=Ae({inputs:{x:A},backend:n,attrs:{shape:d.outputShape}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),y}var OU={kernelName:wo,backendName:"webgl",kernelFunc:DU},zU="return float(a > b);",_U=`
return vec4(greaterThan(a, b));
`,PU=en({opSnippet:zU,packedOpSnippet:_U,cpuKernelImpl:eW,dtype:"bool"}),LU={kernelName:Io,backendName:"webgl",kernelFunc:PU},WU="return float(a >= b);",BU=`
return vec4(greaterThanEqual(a, b));
`,VU=en({opSnippet:WU,packedOpSnippet:BU,dtype:"bool"}),jU={kernelName:ks,backendName:"webgl",kernelFunc:VU};function UU(e){let{inputs:t,backend:n}=e,{input:a}=t;return sw(a,!0,n)}var HU={kernelName:Gp,backendName:"webgl",kernelFunc:UU},GU="return float(!isnan(x) && !isinf(x));",qU=qe({opSnippet:GU,dtype:"bool"}),XU={kernelName:So,backendName:"webgl",kernelFunc:qU},KU="return float(isinf(x));",ZU=qe({opSnippet:KU,dtype:"bool"}),YU={kernelName:No,backendName:"webgl",kernelFunc:ZU},JU="return float(isnan(x));",QU=qe({opSnippet:JU,dtype:"bool"}),eH={kernelName:To,backendName:"webgl",kernelFunc:QU},tH="return float(a < b);",nH=`
return vec4(lessThan(a, b));
`,aH=en({opSnippet:tH,packedOpSnippet:nH,cpuKernelImpl:tW,dtype:"bool"}),rH={kernelName:Eo,backendName:"webgl",kernelFunc:aH},sH="return float(a <= b);",iH=`
return vec4(lessThanEqual(a, b));
`,oH=en({opSnippet:sH,packedOpSnippet:iH,dtype:"bool"}),lH={kernelName:Co,backendName:"webgl",kernelFunc:oH};function uH(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=nW(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var dH={kernelName:Xp,backendName:"webgl",kernelFunc:uH},pH=`if (x < 0.0) return NAN;
return log(x);`,cH=`
vec4 result = log(x);
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
result.r = isNaN.r == 1.0 ? NAN : result.r;
result.g = isNaN.g == 1.0 ? NAN : result.g;
result.b = isNaN.b == 1.0 ? NAN : result.b;
result.a = isNaN.a == 1.0 ? NAN : result.a;
return result;
`,hH=qe({opSnippet:pH,packedOpSnippet:cH,cpuKernelImpl:aW}),fH={kernelName:Ns,backendName:"webgl",kernelFunc:hH},mH="return log(1.0 + x);",AH=qe({opSnippet:mH}),yH={kernelName:Ro,backendName:"webgl",kernelFunc:AH},gH="return float(a >= 1.0 && b >= 1.0);",xH=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,bH=en({opSnippet:gH,packedOpSnippet:xH,dtype:"bool"}),vH={kernelName:Mo,backendName:"webgl",kernelFunc:bH},wH="return float(!(x >= 1.0));",kH=qe({opSnippet:wH}),IH={kernelName:Iu,backendName:"webgl",kernelFunc:kH},SH="return float(a >= 1.0 || b >= 1.0);",NH=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,TH=en({opSnippet:SH,packedOpSnippet:NH,dtype:"bool"}),EH={kernelName:Su,backendName:"webgl",kernelFunc:TH},CH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${s}; j <= ${s}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${i}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${o};
setOutput(val);
}
`}},RH=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${s};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${s}; j <= ${s}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${o};
setOutput(result);
}
`}},MH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,d=J().getBool("WEBGL_PACK_NORMALIZATION")?new RH(r.shape,s,i,o,l):new CH(r.shape,s,i,o,l);return n.runWebGLProgram(d,[r],r.dtype)},FH={kernelName:Nu,backendName:"webgl",kernelFunc:MH},$H=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${a}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${a})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},DH=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:d,beta:u}=a,p=new $H(r.shape,o,l,d,u);return n.runWebGLProgram(p,[r,s,i],r.dtype)},OH={kernelName:Kp,backendName:"webgl",kernelFunc:DH};function zH(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function ow(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=u!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let g=n.texData.get(h.dataId).values,x=new Array(o);for(let v=0;v<x.length;v++)x[v]=r.shape[u[v]];let w=g1(g,r.shape,r.dtype,u,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=w}else h=vh(r,u,n);d=C.getInnerMostAxes(d.length,o)}C.assertAxesAreInnerMostDims("max",d,o);let[m,f]=C.computeOutAndReduceShapes(h.shape,d),A=m;i&&(A=C.expandShapeToKeepDim(m,l));let y;if(c){let g=n.texData.get(h.dataId).values,x=rW(g,k.sizeFromShape(f),A,r.dtype);y=n.makeTensorInfo(A,r.dtype);let w=n.texData.get(y.dataId);w.values=x}else y=zH(h,f,A,n);return p&&n.disposeIntermediateTensorInfo(h),y}var _H={kernelName:Ts,backendName:"webgl",kernelFunc:ow},PH=Nv+`
return max(a, b);
`,LH=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+xh+`
return result;
`,WH=en({opSnippet:PH,packedOpSnippet:LH,cpuKernelImpl:sW}),BH={kernelName:Es,backendName:"webgl",kernelFunc:WH};function VH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;Ml(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,d=1;k.assert(C.eitherStridesOrDilationsAreOne(i,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let u=C.computePool2DInfo(r.shape,s,i,d,o,l);if(u.filterWidth===1&&u.filterHeight===1&&k.arraysEqual(u.inShape,u.outShape))return Pn({inputs:{x:r},backend:n});let p=new gd(u,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var jH={kernelName:Cs,backendName:"webgl",kernelFunc:VH};function UH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:d}=a,u=[1,1,1],p=C.computePool3DInfo(r.shape,s,i,u,o,d,l),c=new v1(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var HH={kernelName:Tu,backendName:"webgl",kernelFunc:UH},GH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
const ivec2 pads = ivec2(${i}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${s} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},qH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,d=e.effectiveFilterWidth,u=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=d-1-e.padInfo.left,h=o*l*d-1;this.userCode=`
const ivec3 pads = ivec3(${u}, ${p}, ${c});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${o};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${i}) {
float dyC = float(dyCCorner + wC) / ${a}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${d} +
wR * ${d} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function XH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:d,dimRoundingMode:u}=a,p=[1,1,1],c=C.computePool3DInfo(i.shape,o,l,p,d,u),h=new v1(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new qH(c),A=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),A}var KH={kernelName:Yp,backendName:"webgl",kernelFunc:XH};function ZH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;Ml([s,i],"maxPoolGrad");let{filterSize:l,strides:d,pad:u,dimRoundingMode:p}=a,c=C.computePool2DInfo(o.shape,l,d,1,u,p),h=!0,m=new gd(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),A=new GH(c),y=n.runWebGLProgram(A,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var YH={kernelName:Zp,backendName:"webgl",kernelFunc:ZH};function JH(e,t,n,a){let r=new gd(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new gd(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var QH={kernelName:Jp,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let d=[1,1];k.assert(C.eitherStridesOrDilationsAreOne(s,d),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${d}'`);let u=C.computePool2DInfo(a.shape,r,s,d,i),[p,c]=JH(a,o,u,l);return[p,c]}};function eG(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Ni(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var tG={kernelName:Rs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),d=l,u=C.getAxesPermutation(d,o),p=u!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,w=new Array(o);for(let N=0;N<w.length;N++)w[N]=a.shape[u[N]];let b=g1(x,a.shape,a.dtype,u,w);m=i.makeTensorInfo(w,a.dtype);let v=i.texData.get(m.dataId);v.values=b}else m=vh(a,u,i);h.push(m),d=C.getInnerMostAxes(d.length,o)}C.assertAxesAreInnerMostDims("sum",d,o);let[f,A]=C.computeOutAndReduceShapes(m.shape,d),y=f;r&&(y=C.expandShapeToKeepDim(f,l));let g=eG(m,A,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return g}};function nG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),d=l,u=C.getAxesPermutation(d,o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),d=C.getInnerMostAxes(d.length,r.shape.length)),C.assertAxesAreInnerMostDims("min",d,o);let[c,h]=C.computeOutAndReduceShapes(p.shape,d),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),A=Ni(f,f.dtype,"min",n),y;if(i){let g=C.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:A},backend:n,attrs:{shape:g}})}else y=Ae({inputs:{x:A},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(A),u!=null&&n.disposeIntermediateTensorInfo(p),y}var aG={kernelName:Ms,backendName:"webgl",kernelFunc:nG},rG=Nv+`
return min(a, b);
`,sG=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+xh+`
return result;
`,iG=en({opSnippet:rG,packedOpSnippet:sG,cpuKernelImpl:iW}),oG={kernelName:Fs,backendName:"webgl",kernelFunc:iG},lG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((d,u)=>d[0]+e[u]+d[1]);let a=e.length,r=lt(a),s=t.map(d=>d[0]).join(","),i=t.map((d,u)=>d[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${a}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${o}));
}
`}},uG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=lt(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=pn("rc",a),l=pn("source",a),d=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${d}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;c=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${d}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${u});
}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${u});
${o[a-1]} += 1;
if(${d}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${u});
}
}
`}this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${c}
setOutput(result);
}
`}},dG=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new uG(a.shape,r,s):new lG(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},pG={kernelName:$s,backendName:"webgl",kernelFunc:dG},cG=`if (b == 0.0) return NAN;
return mod(a, b);`,hG=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+xh+`
return result;
`,fG=en({opSnippet:cG,packedOpSnippet:hG}),mG={kernelName:Fo,backendName:"webgl",kernelFunc:fG},AG=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
uniform float seed;
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},yG=`
if (a == b) {
return 1.0;
};
return a / b;`,gG=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,lw=en({opSnippet:yG,packedOpSnippet:gG,checkOutOfBounds:!0}),xG={kernelName:gs,backendName:"webgl",kernelFunc:lw},uw="return a - b;",dw=en({opSnippet:uw,packedOpSnippet:uw,supportsComplex:!0,cpuKernelImpl:AW}),bG={kernelName:Ys,backendName:"webgl",kernelFunc:dw};function pw(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=ow({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=C.expandShapeToKeepDim(o.shape,i),d=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),u=dw({inputs:{a:r,b:d},backend:n}),p=nw({inputs:{x:u},backend:n}),c=wh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=lw({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var vG={kernelName:Ks,backendName:"webgl",kernelFunc:pw};function wG(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:pw({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),d=l.shape[0],u=l.shape[1],p=new AG(d,u,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var kG={kernelName:Qp,backendName:"webgl",kernelFunc:wG},cw="return -x;";function IG(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=lW(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new zl(a.shape,cw):r=new Lr(a.shape,cw),n.runWebGLProgram(r,[a],a.dtype)}var SG={kernelName:$o,backendName:"webgl",kernelFunc:IG},NG=Wa.nonMaxSuppressionV3Impl;function TG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,d=n.readSync(r.dataId),u=n.readSync(s.dataId),{selectedIndices:p}=NG(d,u,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var EG={kernelName:Oo,backendName:"webgl",kernelFunc:TG},CG=Wa.nonMaxSuppressionV4Impl;function RG(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:d}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=CG(u,p,i,o,l,d);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var MG={kernelName:zo,backendName:"webgl",kernelFunc:RG},FG=Wa.nonMaxSuppressionV5Impl;function $G(e){C.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:d}=a,u=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=d,{selectedIndices:A,selectedScores:y}=FG(u,p,c,h,m,f);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var DG={kernelName:_o,backendName:"webgl",kernelFunc:$G},OG=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${a}), float(${n}),
float(index == coords.y)));
}
`}},zG=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),d=new OG(l,s,i,o),u=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(d,[u],r.dtype);n.disposeIntermediateTensorInfo(u);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},_G={kernelName:Os,backendName:"webgl",kernelFunc:zG};function Th(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=bd({inputs:{input:a},backend:n}),s=Th({inputs:{x:r},backend:n}),i=Nh({inputs:{input:a},backend:n}),o=Th({inputs:{x:i},backend:n}),l=Wr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return S1({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var PG={kernelName:tl,backendName:"webgl",kernelFunc:Th};function hw(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=bd({inputs:{input:a},backend:n}),s=hw({inputs:{x:r},backend:n}),i=Nh({inputs:{input:a},backend:n}),o=Th({inputs:{x:i},backend:n}),l=Wr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return S1({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var LG={kernelName:Po,backendName:"webgl",kernelFunc:hw};function WG(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return I1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=I1({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=Gv({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeIntermediateTensorInfo(u)),d}var BG={kernelName:Lo,backendName:"webgl",kernelFunc:WG},VG=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,d)=>l[0]+e[d]+l[1]);let a=e.length,r=lt(a),s=t.map(l=>l[0]).join(","),i=t.map((l,d)=>l[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
int start = ${s};
int end = ${i};
uniform float value;
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${s});
${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${o}));
}
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},jG=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=lt(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=pn("rc",a),l=pn("source",a),d=`${o[a-1]} < ${this.outputShape[a-1]}`,u=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
if(${d}) {
`,a===1?"":`}
rc = outputLoc;
${o[a-2]} += 1;
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
if(${d}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
${p[m]}
if (${c}) {
result[${m}] = float(value);
} else {
${r} source = rc - start;
result[${m}] = getChannel(getX(${l.join()}), ${u});
}
`;h+=a===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${s});
const ${r} end = ${r}(${i});
uniform float value;
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},fw=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jG(r.shape,s,i):new VG(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},UG={kernelName:zs,backendName:"webgl",kernelFunc:fw},HG=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,GG=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+xh+`
return result;
`,qG=en({opSnippet:HG,packedOpSnippet:GG}),XG={kernelName:_s,backendName:"webgl",kernelFunc:qG};function KG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],d=k.parseAxisParam(s,r.shape),u=d,p=C.getAxesPermutation(u,o),c=r;p!=null&&(c=cn({inputs:{x:r},backend:n,attrs:{perm:p}}),u=C.getInnerMostAxes(u.length,o),l.push(c)),C.assertAxesAreInnerMostDims("prod",u,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:A,outDtype:y}=uW(c.shape,c.dtype,m,u);h=n.makeTensorInfo(A,y,f)}else{let[m,f]=C.computeOutAndReduceShapes(c.shape,u),A=k.sizeFromShape(f),y=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,A]}}),g=cc(r.dtype),x=Ni(y,g,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=C.expandShapeToKeepDim(h.shape,d);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var ZG={kernelName:Wo,backendName:"webgl",kernelFunc:KG},mw=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=dW(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},YG={kernelName:Eu,backendName:"webgl",kernelFunc:mw},JG="return 1.0 / x;",QG=qe({opSnippet:JG}),eq={kernelName:Bo,backendName:"webgl",kernelFunc:QG},tq=xa+`
return (x < 0.0) ? 0.0 : x;
`,nq=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,aq=qe({opSnippet:tq,packedOpSnippet:nq}),rq={kernelName:Ls,backendName:"webgl",kernelFunc:aq},sq=xa+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,iq=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,oq=qe({opSnippet:sq,packedOpSnippet:iq}),lq={kernelName:Bs,backendName:"webgl",kernelFunc:oq},uq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${d[0]/u[0]},
${d[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},dq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${d[0]/u[0]},
${d[1]/u[1]},
${d[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function pq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new dq(r.shape,l,d,s,i):new uq(r.shape,l,d,s,i);return n.runWebGLProgram(u,[r],"float32")}var cq={kernelName:Ws,backendName:"webgl",kernelFunc:pq},hq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],d=o[0]/l[0],u=o[1]/l[1],p=1/d,c=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${d});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function fq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new hq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var mq={kernelName:nc,backendName:"webgl",kernelFunc:fq},Aq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${d[0]/u[0]},
${d[1]/u[1]});
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},yq=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let d=[a&&t>1?i-1:i,a&&n>1?o-1:o],u=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${d[0]/u[0]},
${d[1]/u[1]},
${d[1]/u[1]});
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
${o}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${c};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function gq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,u=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new yq(r.shape,l,d,s,i):new Aq(r.shape,l,d,s,i);return n.runWebGLProgram(u,[r],r.dtype)}var xq={kernelName:Cu,backendName:"webgl",kernelFunc:gq},bq=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],d=o[0]/l[0],u=o[1]/l[1],p=1/d,c=1/u,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${d});
const float widthScale = float(${u});
const float invHeightScale = float(${p});
const float invWidthScale = float(${c});
const int winHeight = int(${h});
const int winWidth = int(${m});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${s}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${i}) {
continue;
}
float sourceFracRow =
float(${o[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${o[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${a}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function vq(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new bq(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var wq={kernelName:tc,backendName:"webgl",kernelFunc:vq},kq=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=lt(n);this.userCode=`
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},Iq=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=pn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=lt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${i} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${o(a.slice())};
if(${r}){
result.g = ${l(a.slice())};
}
if(${s}) {
result.b = ${d(a.slice())};
if(${r}) {
result.a = ${u(a.slice())};
}
}
setOutput(result);
}
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function d(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function u(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,g)=>c(g,h)),f=m.join(","),A=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${A}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function Sq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Pn({inputs:{x:r},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Iq(r.shape,o):new kq(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var Nq={kernelName:Vs,backendName:"webgl",kernelFunc:Sq},Tq=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
uniform vec4 params;
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},Eq={kernelName:nl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new Tq(a.shape,s),[d,u]=C.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(d,u,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},Cq=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Rq=qe({opSnippet:Cq}),Mq={kernelName:js,backendName:"webgl",kernelFunc:Rq},Fq="return inversesqrt(x);",$q=qe({opSnippet:Fq,cpuKernelImpl:pW}),Dq={kernelName:Us,backendName:"webgl",kernelFunc:$q},Aw=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=lt(r.length),l=lt(s.length),d="";n===1?d="i":n===2&&(d="i, j");let u=`getIndices(${d})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${o} strides = ${o}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${u});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${c};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Oq(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:d,strides:u,outputSize:p}=C.calculateShapes(s,r,i),c=[p/d,d];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,d]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new Aw(l,o,h.shape.length,m.shape.length,u,c),y=n.runWebGLProgram(A,[m,h,f],m.dtype),g=Ae({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),g}var zq={kernelName:jo,backendName:"webgl",kernelFunc:Oq},_q=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let d=0;d<t.length;d++)l.push(`${i[d]}`),d<e&&o.push(`${i[d]}`);a=o.join(),r=l.join()}let s=lt(n);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
float cVal = getC(${a});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function Pq(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new _q(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],sa(r.dtype,s.dtype))}var Lq={kernelName:Uo,backendName:"webgl",kernelFunc:Pq},Wq=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${C.SELU_SCALEALPHA};
float scale = ${C.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,Bq=qe({opSnippet:Wq}),Vq={kernelName:Ho,backendName:"webgl",kernelFunc:Bq},jq="return 1.0 / (1.0 + exp(-1.0 * x));",Uq=qe({opSnippet:jq}),Hq={kernelName:Gs,backendName:"webgl",kernelFunc:Uq},Gq=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,qq=qe({opSnippet:Gq}),Xq={kernelName:Xo,backendName:"webgl",kernelFunc:qq},Kq=Mv+`
return sin(x);
`,Zq=qe({opSnippet:Kq}),Yq={kernelName:Hs,backendName:"webgl",kernelFunc:Zq},Jq=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,Qq=qe({opSnippet:Jq}),eX={kernelName:qo,backendName:"webgl",kernelFunc:Qq},tX=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,nX=qe({opSnippet:tX}),aX={kernelName:Ko,backendName:"webgl",kernelFunc:nX},rX=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,g)=>y*g),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let d=[],u=fw({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=C.getReshaped(u.shape,s,o,!1),c=C.getPermuted(p.length,s.length,!1),h=C.getReshapedPermuted(u.shape,s,o,!1),m=Ae({inputs:{x:u},backend:n,attrs:{shape:p}}),f=cn({inputs:{x:m},backend:n,attrs:{perm:c}}),A=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return d.push(u),d.push(m),d.push(f),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),A},sX={kernelName:Ru,backendName:"webgl",kernelFunc:rX};function iX(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),d=n.readSync(s.dataId),u=n.readSync(i.dataId)[0],[p,c,h,m,f]=hW(o,a.shape,a.dtype,l,r.dtype,d,u);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(A=>Number(A)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var oX={kernelName:ac,backendName:"webgl",kernelFunc:iX};function lX(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[d,u,p]=fW(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(u,a.dtype,d),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var uX={kernelName:rc,backendName:"webgl",kernelFunc:lX};function dX(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:d,strides:u,outputSize:p}=C.calculateShapes(s,r,o),c=!1,h=new Aw(d,l,r.shape.length,s.shape.length,u,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var pX={kernelName:sc,backendName:"webgl",kernelFunc:dX};function cX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=r.shape.length,u=new Array(d).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=xd({inputs:{x:r},backend:n,attrs:{begin:u,size:h}});return u[o]+=c,m})}var hX={kernelName:Zo,backendName:"webgl",kernelFunc:cX},fX="return sqrt(x);",mX=qe({opSnippet:fX}),AX={kernelName:qs,backendName:"webgl",kernelFunc:mX},yX="return x * x;",gX=qe({opSnippet:yX}),xX={kernelName:Mu,backendName:"webgl",kernelFunc:gX},yw="return (a - b) * (a - b);",bX=en({opSnippet:yw,packedOpSnippet:yw}),vX={kernelName:Zs,backendName:"webgl",kernelFunc:bX};function wX({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=xa+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,s=new Lr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var kX={kernelName:Nr,backendName:"webgl",kernelFunc:wX},IX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=lt(n.length),s=lt(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,d)=>(o++,n.length===1?`coords * strides[${d}] + begin[${d}]`:`coords[${o-1}] * strides[${d}] + begin[${d}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${s} coords = getOutputCoords();
setOutput(getX(${i}));
}
`}};function SX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:A,newShape:y,outShape:g}=on.sliceInfo(r.shape,s,i,o,l,d,u,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:y}}),w;if(h){let v=xd({inputs:{x},backend:n,attrs:{begin:m,size:A}});w=Ae({inputs:{x:v},backend:n,attrs:{shape:g}}),n.disposeIntermediateTensorInfo(v)}else if(g.some(v=>v===0))w=n.makeTensorInfo(g,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let v=n.texData.get(x.dataId).values,N=We(x.shape,x.dtype,v),T=mW(g,N,f,m);w=n.makeTensorInfo(g,x.dtype,T.values)}else{let v=new IX(m,f,g);w=n.runWebGLProgram(v,[x],x.dtype)}let b=Ae({inputs:{x:w},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(w),b}var NX={kernelName:Yo,backendName:"webgl",kernelFunc:SX},TX="return tan(x);",EX=qe({opSnippet:TX}),CX={kernelName:Js,backendName:"webgl",kernelFunc:EX},RX=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,MX=qe({opSnippet:RX}),FX={kernelName:Qs,backendName:"webgl",kernelFunc:MX},$X=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=lt(this.rank),r=DX(e);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function DX(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function gw(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,d=We(r.shape,r.dtype,l),u=yW(d,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new $X(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var OX={kernelName:Sr,backendName:"webgl",kernelFunc:gw};function zX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,d]=gW(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(d.shape,d.dtype,d.values)]}var _X={kernelName:Jo,backendName:"webgl",kernelFunc:zX},PX=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${o} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${o} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${i} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function LX(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:d}=a,[u,p,c,h]=r.shape,[m,f]=d!=null?d:[p,c],A=[u,m,f,h],y=new PX(p,c,i,o,l,A);return n.runWebGLProgram(y,[r,s],"float32")}var WX={kernelName:Qo,backendName:"webgl",kernelFunc:LX};function BX(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;Ml(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:d}=xW(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([d.length],"int32",d)]}var VX={kernelName:ic,backendName:"webgl",kernelFunc:BX};function jX(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],d=new Array(o-1),u=0;for(let f=0;f<o;f++)f!==s&&(d[u++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let A=xd({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=Ae({inputs:{x:A},backend:n,attrs:{shape:d}});m[f]=y,p.push(A)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var UX={kernelName:el,backendName:"webgl",kernelFunc:jX},HX=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",d=Math.floor(n/4)*4,u=n%4,p=`
sumValue += dot(values, segFilter);
`,c="";r%n>0&&(c=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${o};
float getValue(int batch, int inIdx) {
${c}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${s})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${s})));
float sumValue = 0.0;
for (int i = 0; i < ${d}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${d};
if (${u===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${u===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${u===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function GX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],d=0,u=C.getAxesPermutation([d],o),p=r;u!=null&&(p=cn({inputs:{x:r},backend:n,attrs:{perm:u}}),l.push(p),d=C.getInnerMostAxes(1,o)[0]);let c=C.segment_util.computeOutShape(p.shape,d,i),h=k.sizeFromShape([p.shape[d]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=cc(r.dtype),A=(w,b,v,N,T)=>{let R=w.shape[0],$=w.shape[1],z=C.segment_util.segOpComputeOptimalWindowSize($,T),P={windowSize:z,inSize:$,batchSize:R,numSegments:T},V=new HX(P,b),j=n.compileAndRun(V,[w,v],N);if(l.push(j),j.shape[1]===T)return j;let U=mw({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=gw({inputs:{x:U},backend:n,attrs:{reps:[$/z]}});return l.push(U),l.push(X),A(j,b,X,N,T)},y=A(m,"unsortedSegmentSum",s,f,i),g=Ae({inputs:{x:y},backend:n,attrs:{shape:c}}),x=g;if(u!=null){l.push(g);let w=C.getUndoAxesPermutation(u);x=cn({inputs:{x},backend:n,attrs:{perm:w}})}return l.forEach(w=>n.disposeIntermediateTensorInfo(w)),x}var qX={kernelName:Fu,backendName:"webgl",kernelFunc:GX},XX=[FH,OH,yB,xB,wB,SB,TB,RB,FB,DB,PB,WB,jB,GB,QB,KB,nV,iV,rV,dV,cV,fV,gV,SV,TV,$V,OV,LV,VV,JW,qV,aj,sj,YV,uj,pj,oj,fj,yj,bj,wj,Ij,Tj,$j,Oj,Cj,Pj,Bj,jj,qj,Yj,tU,rU,sU,iU,lU,dU,cU,fU,AU,bU,kU,NU,EU,MU,OU,LU,jU,YW,HU,HV,XU,YU,eH,eB,rH,lH,dH,yH,fH,vH,IH,EH,_H,HH,jH,KH,YH,QH,BH,tG,aG,oG,pG,mG,kG,sB,SG,EG,MG,DG,CV,_G,LG,BG,UG,XG,nB,ZG,YG,RV,xG,eq,lq,rq,oB,cq,mq,xq,wq,Nq,Eq,Mq,Dq,zq,Lq,Vq,Hq,Xq,Yq,eX,kV,vG,aX,sX,oX,uX,pX,hX,AX,xX,vX,kX,NX,bG,fB,CX,FX,OX,_X,WX,mB,VX,UX,qX,PG];for(let e of XX)ri(e);var In;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(In||(In={}));var vd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(vd||(vd={}));var xw;function KX(e){xw=e.wasm.cwrap(ti,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function ZX(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:d,activation:u,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);m=T.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,A=vd[u];if(A==null)throw new Error(`${u} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],g=d?s.shape[1]:s.shape[2],x=r.shape[0],w=n.makeOutput([x,y,g],r.dtype),b=n.dataIdMap.get(w.dataId).id,v=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return xw(c,v,r.shape.length,h,N,s.shape.length,l,d,A,m,f,p||0,b),w}var YX={kernelName:ti,backendName:"wasm",setupFunc:KX,kernelFunc:ZX};function hn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),d=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,d),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var JX=hn(to);function fn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:d,b:u}=l,p=o.dataIdMap.get(d.dataId).id,c=o.dataIdMap.get(u.dataId).id,h=n!=null?n:d.dtype,m=C.assertAndGetBroadcastShape(d.shape,u.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let A=new Uint8Array(new Int32Array(d.shape).buffer),y=new Uint8Array(new Int32Array(u.shape).buffer),g=o.dataIdMap.get(f.dataId).id,x=()=>a(p,A,d.shape.length,c,y,u.shape.length,In[d.dtype],g);if(t&&d.dtype==="float32")return x(),f;let w=C.getBroadcastDims(d.shape,m),b=C.getBroadcastDims(u.shape,m),v=w.every((T,R)=>T===R),N=b.every((T,R)=>T===R);if(v&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${d.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var QX=!0,eK=fn(kr,QX),bw;function tK(e){bw=e.wasm.cwrap(os,null,["array","number","number","number"])}function nK(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return bw(s,r.length,In[a.dtype],i),a}var aK={kernelName:os,backendName:"wasm",setupFunc:tK,kernelFunc:nK};function Eh(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var rK={kernelName:Is,backendName:"wasm",kernelFunc:Eh},vw;function sK(e){vw=e.wasm.cwrap(ei,null,["number","array","number","number","number","array","number"])}function Ch(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=oK(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=iK(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Eh({inputs:t,backend:n});return m.shape=o,m}let d=n.makeOutput(o,l.dtype),u=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(d.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return vw(u,h,l.shape.length,In[l.dtype],p,c,s.length),d}function iK(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function oK(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var lK={kernelName:ei,backendName:"wasm",kernelFunc:Ch,setupFunc:sK};function Br(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=C.getAxesPermutation(i,r),l=null,d=!1;if(o!=null){let u=new Array(r);for(let c=0;c<u.length;c++)u[c]=a[o[c]];i=C.getInnerMostAxes(i.length,r),l=Ch({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(d=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:d}}var ww;function uK(e){ww=e.wasm.cwrap(ro,null,["number, number, number"])}function dK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Br(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("all",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;ww(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var pK={kernelName:ro,backendName:"wasm",setupFunc:uK,kernelFunc:dK},kw;function cK(e){kw=e.wasm.cwrap(so,null,["number, number, number"])}function hK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Br(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("any",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;kw(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var fK={kernelName:so,backendName:"wasm",setupFunc:cK,kernelFunc:hK},Iw;function mK(e){Iw=e.wasm.cwrap(ls,null,["number","number","number","number","number"])}function AK(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:d,axes:u,inputWasTransposed:p}=Br(s,r,t);if(p){let y=t.dataIdMap.get(d.dataId).id;y!==i&&(l=d,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),A=l.shape[u[0]];return Iw(o,In[l.dtype],f,A,m),p&&t.disposeData(d.dataId),h}var yK={kernelName:ls,backendName:"wasm",kernelFunc:AK,setupFunc:mK},Sw;function gK(e){Sw=e.wasm.cwrap(us,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xK(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=n,u=C.computePool2DInfo(r.shape,i,o,1,l,d),p=u.filterHeight,c=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.strideHeight,g=u.strideWidth,x=u.inChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);if(u.dilationWidth!==1||u.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${u.dilationHeight}, ${u.dilationWidth}].`);let w=a.makeOutput(u.outShape,"float32"),b=a.dataIdMap.get(w.dataId).id;return Sw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,b),w}var bK={kernelName:us,backendName:"wasm",setupFunc:gK,kernelFunc:xK};function ba(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var vK={kernelName:Vo,backendName:"wasm",kernelFunc:ba},Nw;function wK(e){Nw=e.wasm.cwrap(ds,null,["number","array","number","number","array","number","number","number","number"])}function kK(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,d=s.shape.length,u=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[d-1]:s.shape[d-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[d-2]:s.shape[d-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),A=k.sizeFromShape(m),y=k.sizeFromShape(f),g=A===y||A===1||y===1;k.assert(l>=2&&d>=2&&g,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(A>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(u===p,()=>`Error in matMul: inner shapes (${u}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let w=i?[A,u,c]:[A,c,u],b=o?[y,h,p]:[y,p,h],v=ba({inputs:{x:r},backend:n,attrs:{shape:w}}),N=ba({inputs:{x:s},backend:n,attrs:{shape:b}}),T=n.dataIdMap.get(v.dataId).id,R=n.dataIdMap.get(N.dataId).id,$=i?v.shape[2]:v.shape[1],z=o?N.shape[1]:N.shape[2],P=Math.max(A,y),V=n.makeOutput([P,$,z],v.dtype),j=n.dataIdMap.get(V.dataId).id,U=new Uint8Array(new Int32Array(v.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return Nw(T,U,v.shape.length,R,X,N.shape.length,i,o,j),n.disposeData(v.dataId),n.disposeData(N.dataId),V.shape=x,V}var IK={kernelName:ds,backendName:"wasm",setupFunc:wK,kernelFunc:kK};function Rh(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var SK={kernelName:ps,backendName:"wasm",kernelFunc:Rh},NK=hn(cs),Tw;function TK(e){Tw=e.wasm.cwrap(Ir,null,["number","number","number","number"])}function EK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(l.dataId).id;return Tw(o,s,i,d),l}var CK={kernelName:Ir,backendName:"wasm",setupFunc:TK,kernelFunc:EK};function Ew(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=C.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Eh({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(C.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let w=k.sizeFromShape(x.shape.slice(a));return ba({inputs:{x},backend:n,attrs:{shape:[-1,w]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=C.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,A=KA(m,r,t[0].dtype,f),y=C.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let g=n.dataIdMap.get(i.dataId);return g.stringBytes=C.fromStringArrayToUint8(A),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),d=0,u=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return d+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*d;for(let f=0;f<p.length;f++){let A=u[f],y=h*A,g=p[f].subarray(y,y+A);c.set(g,m),m+=A}}return i}var RK={kernelName:co,backendName:"wasm",kernelFunc:Ew},Cw;function MK(e){Cw=e.wasm.cwrap(hs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function FK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:d,pad:u,dimRoundingMode:p,dataFormat:c}=n,h=C.convertConv2DDataFormat(c),m=C.computeConv2DInfo(r.shape,s.shape,l,d,u,p,!1,h),f=m.filterHeight,A=m.filterWidth,y=m.padInfo.top,g=m.padInfo.right,x=m.padInfo.bottom,w=m.padInfo.left,b=m.dilationHeight,v=m.dilationWidth,N=m.strideHeight,T=m.strideWidth,R=m.inChannels,$=m.outChannels,z=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let P=a.makeOutput(m.outShape,"float32"),V=a.dataIdMap.get(P.dataId).id;return Cw(i,r.shape[0],r.shape[1],r.shape[2],o,f,A,y,g,x,w,z,b,v,N,T,R,$,V),P}var $K={kernelName:hs,backendName:"wasm",setupFunc:MK,kernelFunc:FK},Rw;function DK(e){Rw=e.wasm.cwrap(fs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function OK(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:d,inputShape:u}=a,p=1,c=C.convertConv2DDataFormat(l),h=C.computeConv2DInfo(u,s.shape,i,p,o,d,!1,c),{batchSize:m,filterHeight:f,filterWidth:A,inChannels:y,inHeight:g,inWidth:x,outChannels:w,outHeight:b,outWidth:v,strideHeight:N,strideWidth:T}=h,R=f-1-h.padInfo.top,$=A-1-h.padInfo.left,z=h.dataFormat==="channelsLast",P=k.computeStrides(h.inShape),V=k.computeStrides(r.shape),[j,U,X]=k.computeStrides(s.shape),G=P[0],ee=z?P[1]:P[2],Y=z?P[2]:1,re=z?1:P[1],ne=V[0],ie=z?V[1]:V[2],Q=z?V[2]:1,de=z?1:V[1],oe=t.makeOutput(h.inShape,"float32"),ye=t.dataIdMap.get(oe.dataId).id,ce=t.dataIdMap.get(r.dataId).id,Ie=t.dataIdMap.get(s.dataId).id;return Rw(ce,Ie,m,f,A,g,x,y,b,v,w,N,T,R,$,j,U,X,G,ee,Y,re,ne,ie,Q,de,ye),oe}var zK={kernelName:fs,backendName:"wasm",setupFunc:DK,kernelFunc:OK},_K=hn(ms),N1;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(N1||(N1={}));var Mw;function PK(e){Mw=e.wasm.cwrap(fo,null,["number","number","number","number","array","number","number","number","number","number"])}function LK(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:d}=n,u=l.shape[0],[p,c]=i,h=[u,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=Rh({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let A=m.id,y=t.dataIdMap.get(l.dataId).id,g=t.dataIdMap.get(d.dataId).id,x=t.makeOutput(h,"float32"),w=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return Mw(A,y,g,u,b,p,c,N1[r],s,w),f!=null&&t.disposeData(f.dataId),x}var WK={kernelName:fo,backendName:"wasm",setupFunc:PK,kernelFunc:LK},Fw;function BK(e){Fw=e.wasm.cwrap(As,null,["number","number","number","number","number","number"])}function VK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let d=C.getAxesPermutation([s],l),u=r;d!==null&&(u=Ch({inputs:{x:r},attrs:{perm:d},backend:n}));let p=C.getInnerMostAxes(1,l)[0];C.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(u.shape,u.dtype),h=u.shape[p],m=n.dataIdMap.get(u.dataId).id,f=n.dataIdMap.get(c.dataId).id;Fw(m,i?1:0,o?1:0,h,f,In[r.dtype]);let A=c;if(d!==null){let y=C.getUndoAxesPermutation(d);A=Ch({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(u.dataId),n.disposeData(c.dataId)}return A}var jK={kernelName:As,backendName:"wasm",setupFunc:BK,kernelFunc:VK},$w;function UK(e){$w=e.wasm.cwrap(mo,null,["number","number","number","array","number","array","array","number","number"])}function HK(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],d=i==="NHWC"?r.shape[2]:r.shape[3],u=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=d*s,h=u/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),A=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),w=t.dataIdMap.get(f.dataId).id;return $w(A,s,i==="NHWC"?1:0,y,r.shape.length-1,g,x,m.length,w),f}var GK={kernelName:mo,backendName:"wasm",setupFunc:UK,kernelFunc:HK},Dw;function qK(e){Dw=e.wasm.cwrap(ys,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function XK(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:d,pad:u,dimRoundingMode:p}=n,c=d==null?[1,1]:d,h=C.computeConv2DInfo(r.shape,s.shape,l,c,u,p,!0),m=h.filterHeight,f=h.filterWidth,A=h.padInfo.top,y=h.padInfo.right,g=h.padInfo.bottom,x=h.padInfo.left,w=h.dilationHeight,b=h.dilationWidth,v=h.strideHeight,N=h.strideWidth,T=h.inChannels,R=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let z=a.makeOutput(h.outShape,"float32"),P=a.dataIdMap.get(z.dataId).id;return Dw(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,A,y,g,x,$,w,b,v,N,T,R,P),z}var KK={kernelName:ys,backendName:"wasm",setupFunc:qK,kernelFunc:XK},ZK=!1,YK=fn(go,ZK,"bool"),JK=hn(xs);function T1(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),ba({inputs:{x:r},backend:a,attrs:{shape:o}})}var QK={kernelName:xo,backendName:"wasm",kernelFunc:T1};function eZ(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var tZ={kernelName:ku,backendName:"wasm",kernelFunc:eZ},Ow;function nZ(e){Ow=e.wasm.cwrap(vo,null,["number","number","number","number","number","number"])}function aZ(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,d,u]=a.shape;return Ow(s,o,l,d,u,i),r}var rZ={kernelName:vo,backendName:"wasm",kernelFunc:aZ,setupFunc:nZ},sZ=hn(bs),iZ=!1,oZ=fn(vs,iZ),zw;function lZ(e){zw=e.wasm.cwrap(ws,null,["number","number","number","number","number","number","number"])}function uZ(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:d}=n,u=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=d!=null?t.dataIdMap.get(d.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let A=t.dataIdMap.get(f.dataId).id;return zw(u,p,c,h,m,r,A),f}var dZ={kernelName:ws,backendName:"wasm",setupFunc:lZ,kernelFunc:uZ},_w;function pZ(e){_w=e.wasm.cwrap(ni,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function cZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,u,d,c),A=vd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,P=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return _w(y,G,ee,Y,g,b,v,w,N,T,R,$,X,z,P,V,j,U,x,A,ie,m||0,ne),re}var hZ={kernelName:ni,backendName:"wasm",setupFunc:pZ,kernelFunc:cZ},Pw;function fZ(e){Pw=e.wasm.cwrap(ai,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function mZ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:d,dilations:u,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=C.computeConv2DInfo(r.shape,s.shape,l,u,d,c,!0),A=vd[h];if(A==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,g=a.dataIdMap.get(s.dataId).id,x=f.outChannels,w=0;if(i!=null){let Q=a.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${x})`);w=Q.id}let b=f.filterHeight,v=f.filterWidth,N=f.padInfo.top,T=f.padInfo.right,R=f.padInfo.bottom,$=f.padInfo.left,z=f.dilationHeight,P=f.dilationWidth,V=f.strideHeight,j=f.strideWidth,U=f.inChannels,X=f.padInfo.type==="SAME"?1:0,G=f.batchSize,ee=f.inHeight,Y=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let re=a.makeOutput(f.outShape,"float32"),ne=a.dataIdMap.get(re.dataId).id,ie=o==null?0:a.dataIdMap.get(o.dataId).id;return Pw(y,G,ee,Y,g,b,v,w,N,T,R,$,X,z,P,V,j,U,x,A,ie,m||0,ne),re}var AZ={kernelName:ai,backendName:"wasm",setupFunc:fZ,kernelFunc:mZ},Lw;function yZ(e){Lw=e.wasm.cwrap(ko,null,["number","number","number","number","number","number","array","number"])}function gZ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=Hm.prepareAndValidate(a,r),d=t.makeOutput(s,a.dtype);if(i===0)return d;let u=r.shape,p=u[u.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(d.dataId).id;return Lw(c,In[a.dtype],h,i,p,o,m,f),d}var xZ={kernelName:ko,backendName:"wasm",setupFunc:yZ,kernelFunc:gZ},Ww;function bZ(e){Ww=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function vZ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],d=C.segment_util.collectGatherOpShapeInfo(r,s,l,o),u=ba({inputs:{x:r},attrs:{shape:[d.batchSize,d.outerSize,d.dimSize,d.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=ba({inputs:{x:s},attrs:{shape:[d.batchSize,p/d.batchSize]},backend:t}),h=[d.batchSize,d.outerSize,p/d.batchSize,d.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=u.shape.length-1,A=t.dataIdMap.get(u.dataId).id,y=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(u.shape)).buffer),w=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return Ww(A,In[r.dtype],x,f,y,d.batchSize,w,g),t.disposeData(u.dataId),t.disposeData(c.dataId),m.shape=d.outputShape,m}var wZ={kernelName:wo,backendName:"wasm",setupFunc:bZ,kernelFunc:vZ},kZ=!1,IZ=fn(Io,kZ,"bool"),SZ=!1,NZ=fn(ks,SZ,"bool"),Bw;function TZ(e){Bw=e.wasm.cwrap(Ss,null,["number","number","number"])}function EZ(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;Bw(r,n,i)}return s}var CZ={kernelName:Ss,backendName:"wasm",setupFunc:TZ,kernelFunc:EZ},RZ=!1,MZ=fn(Eo,RZ,"bool"),FZ=!1,$Z=fn(Co,FZ,"bool"),DZ=hn(Ns),OZ=!1,zZ=fn(Mo,OZ,"bool"),Vw;function _Z(e){Vw=e.wasm.cwrap(Ts,null,["number, number, number"])}function PZ(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:d,axes:u,originalAxes:p,inputWasTransposed:c}=Br(i,r,t);if(c){let g=t.dataIdMap.get(d.dataId).id;l=d,o=g}let h=l.shape.length;C.assertAxesAreInnerMostDims("max",u,h);let[m,f]=C.computeOutAndReduceShapes(l.shape,u),A=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let g=t.dataIdMap.get(y.dataId).id;Vw(o,A,g)}if(c&&t.disposeData(d.dataId),s){let g=C.expandShapeToKeepDim(y.shape,p);y.shape=g}return y}var LZ={kernelName:Ts,backendName:"wasm",setupFunc:_Z,kernelFunc:PZ},WZ=!1,BZ=fn(Es,WZ),jw;function VZ(e){jw=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function jZ(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:d}=n,u=C.computePool2DInfo(r.shape,i,o,1,l,d),p=u.filterHeight,c=u.filterWidth,h=u.padInfo.top,m=u.padInfo.right,f=u.padInfo.bottom,A=u.padInfo.left,y=u.dilationHeight,g=u.dilationWidth,x=u.strideHeight,w=u.strideWidth,b=u.inChannels,v=u.outChannels;if(u.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${u.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(u.outShape,"float32"),T=a.dataIdMap.get(N.dataId).id;return jw(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,A,y,g,x,w,b,v,T),N}var UZ={kernelName:Cs,backendName:"wasm",setupFunc:VZ,kernelFunc:jZ},Uw;function HZ(e){Uw=e.wasm.cwrap(Rs,null,["number, number, number"])}function GZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Br(i,r,t),m=p;if(h){let w=t.dataIdMap.get(u.dataId).id;w!==o&&(d=u,l=w,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("mean",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=k.sizeFromShape(A),g=d;d.dtype!=="float32"&&(g=Rh({backend:t,inputs:{x:d},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(g.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(d.shape)!==0){let w=t.dataIdMap.get(x.dataId).id;Uw(l,y,w)}if(h&&t.disposeData(u.dataId),s){let w=C.expandShapeToKeepDim(x.shape,c);x.shape=w}return d.dtype!=="float32"&&t.disposeData(g.dataId),x}var qZ={kernelName:Rs,backendName:"wasm",setupFunc:HZ,kernelFunc:GZ},Hw;function XZ(e){Hw=e.wasm.cwrap(Ms,null,["number, number, number"])}function KZ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Br(i,r,t);if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x)}let m=d.shape.length;C.assertAxesAreInnerMostDims("min",p,m);let[f,A]=C.computeOutAndReduceShapes(d.shape,p),y=k.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(k.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Hw(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var ZZ={kernelName:Ms,backendName:"wasm",setupFunc:XZ,kernelFunc:KZ},YZ=!1,JZ=fn(Fs,YZ),E1;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(E1||(E1={}));var Gw;function QZ(e){Gw=e.wasm.cwrap($s,null,["number","array","number","number","array","array","number","number"])}function eY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return Gw(i,d,t.shape.length,In[t.dtype],c,h,E1[r],l),o}var tY={kernelName:$s,backendName:"wasm",kernelFunc:eY,setupFunc:QZ},nY=!0,aY=fn(Ds,nY),rY=hn($o);function C1(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var qw;function sY(e){qw=e.wasm.cwrap(Oo,"number",["number","number","number","number","number"])}function iY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,d=t.dataIdMap.get(o.dataId).id,u=t.dataIdMap.get(l.dataId).id,p=qw(d,u,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=C1(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var oY={kernelName:Oo,backendName:"wasm",setupFunc:sY,kernelFunc:iY},Xw;function lY(e){Xw=e.wasm.cwrap(zo,"number",["number","number","number","number","number","bool"])}function uY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:d}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(d.dataId).id,c=Xw(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=C1(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([],"int32",A);return[y,g]}var dY={kernelName:zo,backendName:"wasm",setupFunc:lY,kernelFunc:uY},Kw;function pY(e){Kw=e.wasm.cwrap(_o,"number",["number","number","number","number","number","number"])}function cY(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:d}=n,u=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(d.dataId).id,c=Kw(u,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:A}=C1(t,c);t.wasm._free(A);let y=t.makeOutput([m],"int32",h),g=t.makeOutput([m],"float32",f);return[y,g]}var hY={kernelName:_o,backendName:"wasm",setupFunc:pY,kernelFunc:cY},fY=!1,mY=fn(Do,fY,"bool"),Zw;function AY(e){Zw=e.wasm.cwrap(Os,null,["number","number","number","number","number"])}function yY(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),d=n.dataIdMap.get(l.dataId).id,u=n.dataIdMap.get(r.dataId).id;return Zw(u,s,i,o,d),l}var gY={kernelName:Os,backendName:"wasm",setupFunc:AY,kernelFunc:yY};function xY(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var bY={kernelName:Po,backendName:"wasm",kernelFunc:xY};function vY(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return T1({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(u=>{k.assertShapesMatch(s,u.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===u.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(u=>{let p=T1({inputs:{input:u},backend:n,attrs:{dim:r}});return o.push(p),p}),d=Ew({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(u=>n.disposeData(u.dataId)),d}var wY={kernelName:Lo,backendName:"wasm",kernelFunc:vY},Yw;function kY(e){Yw=e.wasm.cwrap(zs,null,["number","array","number","number","array","array","number","number"])}function IY(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(t.shape).buffer),u=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(u).buffer),h=new Uint8Array(new Int32Array(p).buffer);return Yw(i,d,t.shape.length,In[t.dtype],c,h,r,l),o}var SY={kernelName:zs,backendName:"wasm",kernelFunc:IY,setupFunc:kY},NY=!1,TY=fn(_s,NY),Jw;function EY(e){Jw=e.wasm.cwrap(Ps,null,["number","number","number"])}function CY(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return Jw(s,i,l),o}var RY={kernelName:Ps,backendName:"wasm",setupFunc:EY,kernelFunc:CY},Qw;function MY(e){Qw=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function FY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Br(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("prod",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(k.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;Qw(l,y,In[g.dtype],x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var $Y={kernelName:Wo,backendName:"wasm",setupFunc:MY,kernelFunc:FY},DY=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=JA(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},OY={kernelName:Eu,backendName:"wasm",kernelFunc:DY},zY=!0,_Y=fn(gs,zY),PY=hn(Ls),LY=hn(Bs),e6;function WY(e){e6=e.wasm.cwrap(Ws,null,["number","number","number","number","number","number","number","number","number","number"])}function BY(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,d]=o,[u,p,c,h]=r.shape,m=[u,l,d,h],f=t.dataIdMap.get(r.dataId),A;f.dtype!=="float32"&&(A=Rh({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(A.dataId));let y=f.id,g=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return g;let x=t.dataIdMap.get(g.dataId).id;return e6(y,u,p,c,h,l,d,s?1:0,i?1:0,x),A!=null&&t.disposeData(A.dataId),g}var VY={kernelName:Ws,backendName:"wasm",setupFunc:WY,kernelFunc:BY},t6;function jY(e){t6=e.wasm.cwrap(Vs,null,["number","array","number","array","number","number"])}function UY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Eh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);t6(l,u,i.length,p,r.shape.length,d);let c=ba({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var HY={kernelName:Vs,backendName:"wasm",kernelFunc:UY,setupFunc:jY},n6;function GY(e){n6=e.wasm.cwrap(nl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function qY(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,A]=C.getImageCenter(o,c,h),y=i===0,g=255,x=typeof i=="number"?[i,i,i,y?0:g]:[...i,g],w=new Uint8Array(new Int32Array(x).buffer);return n6(d,p,c,h,m,s,f,A,w,x.length,u),l}var XY={kernelName:nl,backendName:"wasm",kernelFunc:qY,setupFunc:GY},KY=hn(js),ZY=hn(Us),a6;function YY(e){a6=e.wasm.cwrap(jo,null,["number","number","number","number","number","number","array","number","number"])}function JY(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:d,sliceSize:u,strides:p,outputSize:c}=Gm.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),A=t.dataIdMap.get(o.dataId).id;return a6(h,m,In[s.dtype],l,d,u,f,c,A),o}var QY={kernelName:jo,backendName:"wasm",setupFunc:YY,kernelFunc:JY},r6;function eJ(e){r6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function tJ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,d=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(d.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return r6(i,o,l,h,u),d}var nJ={kernelName:Uo,backendName:"wasm",kernelFunc:tJ,setupFunc:eJ},s6;function aJ(e){s6=e.wasm.cwrap(Gs,null,["number","number"])}function rJ(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||s6(a,s),r}var sJ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:aJ,kernelFunc:rJ},iJ=hn(Hs);function Mh(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=on.parseSliceParams(t,n,a),o=on.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),d=r.makeOutput(i,t.dtype),u=k.computeStrides(t.shape),p=r.dataIdMap.get(d.dataId);if(o){let m=on.computeFlatOffset(s,u);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(d).set(l.subarray(m,m+k.sizeFromShape(i))),d}if(t.dtype==="string"){let m=oh(l,s,i,t.shape,t.dtype);return p.stringBytes=m,d}let c=r.typedArrayFromHeap(d),h=t.shape.length;if(h===2)oJ(l,u[0],c,s,i);else if(h===3)lJ(l,u[0],u[1],c,s,i);else if(h===4)uJ(l,u[0],u[1],u[2],c,s,i);else{let m=oh(l,s,i,t.shape,t.dtype);c.set(m)}return d}function oJ(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let d=i;d<l;d++){let u=d*t+o;n.set(e.subarray(u,u+r[1]),s),s+=r[1]}}function lJ(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],d=r[2],u=o+s[0],p=l+s[1];for(let c=o;c<u;c++)for(let h=l;h<p;h++){let m=c*t+h*n+d;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function uJ(e,t,n,a,r,s,i){let o=0,l=s[0],d=s[1],u=s[2],p=l+i[0],c=d+i[1],h=u+i[2],m=s[3];for(let f=l;f<p;f++)for(let A=d;A<c;A++)for(let y=u;y<h;y++){let g=f*t+A*n+y*a+m;r.set(e.subarray(g,g+i[3]),o),o+=i[3]}}var dJ={kernelName:Go,backendName:"wasm",kernelFunc:Mh},i6;function pJ(e){i6=e.wasm.cwrap(Ks,null,["number","number","number","number"])}function cJ(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||i6(r,i,o,l),s}var hJ={kernelName:Ks,backendName:"wasm",setupFunc:pJ,kernelFunc:cJ};function fJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=C.prepareSplitSize(r,s,o),d=new Array(r.shape.length).fill(0),u=r.shape.slice();return l.map(p=>{let c=[...u];c[o]=p;let h=Mh({inputs:{x:r},attrs:{begin:d,size:c},backend:a});return d[o]+=p,h})}var mJ={kernelName:Zo,backendName:"wasm",kernelFunc:fJ},AJ=hn(qs),yJ=hn(Mu),gJ=!0,xJ=fn(Zs,gJ),o6;function bJ(e){o6=e.wasm.cwrap(Nr,null,["number","number","number"])}function vJ(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return o6(i,r,l),o}var wJ={kernelName:Nr,backendName:"wasm",setupFunc:bJ,kernelFunc:vJ},l6;function kJ(e){l6=e.wasm.cwrap(Yo,null,["number","array","number","array","array","array","array","array","number","number"])}function IJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:d,ellipsisMask:u,newAxisMask:p,shrinkAxisMask:c}=a,h=C.slice_util.maskToAxes(u);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(u!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(u!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=C.slice_util.maskToAxes(p),A=r.shape.slice();f.forEach($=>{s[$]=0,i[$]=1,A.splice($,0,1)});let y=ba({inputs:{x:r},attrs:{shape:A},backend:t}),{begin:g,end:x,strides:w}=C.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,d,u);s=g,i=x,o=w;let b=C.slice_util.maskToAxes(c);b.forEach($=>{i[$]=s[$]+1,o[$]=1});let v=C.slice_util.computeOutShape(s,i,o),N=v.filter(($,z)=>b.indexOf(z)===-1);if(o.every($=>$===1)){let $=Mh({inputs:{x:y},attrs:{begin:s,size:v},backend:t});t.disposeData(y.dataId);let z=ba({inputs:{x:$},attrs:{shape:N},backend:t});return t.disposeData($.dataId),z}let T=t.makeOutput(N,"float32");if(!N.some($=>$===0)){let $=t.dataIdMap.get(y.dataId).id,z=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),P=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),j=new Uint8Array(new Int32Array(o).buffer),U=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;l6($,z,y.shape.length,P,V,j,U,X,N.length,G)}t.disposeData(y.dataId);let R=ba({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),R}var SJ={kernelName:Yo,backendName:"wasm",setupFunc:kJ,kernelFunc:IJ},NJ=!0,TJ=fn(Ys,NJ),u6;function EJ(e){u6=e.wasm.cwrap(Xs,null,["number, number, number"])}function CJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,d=i,{transposed:u,axes:p,originalAxes:c,inputWasTransposed:h}=Br(i,r,t),m=p;if(h){let x=t.dataIdMap.get(u.dataId).id;x!==o&&(d=u,l=x,m=C.getInnerMostAxes(m.length,d.shape.length))}C.assertAxesAreInnerMostDims("sum",m,d.shape.length);let[f,A]=C.computeOutAndReduceShapes(d.shape,m),y=k.sizeFromShape(A),g=t.makeOutput(f,d.dtype);if(k.sizeFromShape(d.shape)!==0){let x=t.dataIdMap.get(g.dataId).id;u6(l,y,x)}if(h&&t.disposeData(u.dataId),s){let x=C.expandShapeToKeepDim(g.shape,c);g.shape=x}return g}var RJ={kernelName:Xs,backendName:"wasm",setupFunc:EJ,kernelFunc:CJ},MJ=hn(Js),FJ=hn(Qs),d6;function $J(e){d6=e.wasm.cwrap(Sr,null,["number","array","number","array","number","number"])}function DJ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),d=new Uint8Array(new Int32Array(o).buffer),u=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(u.dataId).id;return d6(s,l,r.shape.length,d,o.length,In[u.dtype],p),u}var OJ={kernelName:Sr,backendName:"wasm",setupFunc:$J,kernelFunc:DJ},p6;function zJ(e){p6=e.wasm.cwrap(Jo,null,["number","array","number","number","number","bool","number","number"])}var _J=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let d=t.makeOutput(l,a.dtype),u=t.dataIdMap.get(d.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return p6(i,o,a.shape.length,In[a.dtype],r,s,u,c),[d,p]},PJ={kernelName:Jo,backendName:"wasm",setupFunc:zJ,kernelFunc:_J},c6;function LJ(e){c6=e.wasm.cwrap(Qo,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function WJ(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:d}=a,[u,p,c,h]=r.shape,[m,f]=d!=null?d:[p,c],A=[u,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),g=t.makeOutput(A,r.dtype),x=t.dataIdMap.get(g.dataId).id,w=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,v=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return c6(w,b,s.shape[0]>1,u,m,f,h,c,p,y,r.shape.length-1,v,N,l,x),g}var BJ={kernelName:Qo,backendName:"wasm",setupFunc:LJ,kernelFunc:WJ};function VJ(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),d=0;for(let h=0;h<o;h++)h!==s&&(l[d++]=r.shape[h]);let u=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<u.length;h++)p[s]=h,u[h]=Mh({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return u.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var jJ={kernelName:el,backendName:"wasm",kernelFunc:VJ};function UJ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var HJ={kernelName:tl,backendName:"wasm",kernelFunc:UJ},GJ=[JX,eK,aK,pK,fK,yK,bK,IK,SK,NK,CK,RK,$K,zK,_K,WK,jK,GK,KK,YK,JK,QK,tZ,rZ,sZ,oZ,YX,dZ,hZ,AZ,xZ,wZ,IZ,NZ,rK,CZ,MZ,$Z,DZ,zZ,LZ,BZ,UZ,qZ,ZZ,JZ,tY,aY,rY,oY,dY,hY,mY,gY,bY,wY,SY,TY,RY,$Y,OY,_Y,PY,LY,vK,VY,HY,XY,ZY,KY,QY,nJ,sJ,iJ,dJ,hJ,mJ,AJ,yJ,xJ,wJ,SJ,TJ,RJ,MJ,FJ,OJ,PJ,BJ,lK,jJ,HJ];for(let e of GJ)ri(e);var R1=J();R1.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));R1.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(R1.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var h6=Ji(iI()),qJ='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',XJ=Ji(oI()),f6=class extends fu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Np(this,nr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let d=t;this.dataIdMap.set(e,{id:s,stringBytes:d,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return YJ(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function KJ(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function m6(e,t,n){if(Fh!=null)return Fh;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),kd!=null&&kd[a]!=null?kd[a]:n+a}async function ZJ(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let d=qJ,u=new Blob([d],{type:"application/javascript"});return URL.createObjectURL(u)}return o.endsWith(".wasm")?m6(e,t,wd!=null?wd:l):l+o},M1&&(r.instantiateWasm=KJ(m6(e,t,wd!=null?wd:"")));let s=!1;r.onAbort=()=>{s||Id||(Id=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&Fh==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+h6.default.toString()],{type:"text/javascript"}),i=(0,h6.default)(r)):i=(0,XJ.default)(r),i.then(o=>{s=!0,Id=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function YJ(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var JJ=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Fh=null,wd=null,kd={},Id=!1,M1=!1;function QJ(e,t=!1){if(Jm("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Id)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Fh=e,M1=t}function eQ(e,t=!1){if(Id)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")wd=e;else{kd=e;let n=JJ.filter(a=>kd[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}M1=t}var A6="3.6.0",tQ=2;pl("wasm",async()=>{let{wasm:e}=await ZJ();return new f6(e)},tQ);Z().prototype.abs=function(){return this.throwIfDisposed(),Ot(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),eA(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),tA(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),se(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),bc(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),Uu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Hu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),nA(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),H(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),H(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),H(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),H(this,[e,t,n,a])};Z().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),H(this,[e,t,n,a,r])};Z().prototype.asin=function(){return this.throwIfDisposed(),aA(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),rA(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),sA(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),iA(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),oA(this)};Z().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),qu(this,e,t,n,a)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Xu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),ci(this,e,t,n,a,r)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),hl(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),fe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),cA(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),kn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Le&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),wc(this,e,t,n,a,r,s)};Z().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),kc(this,e,t,n,a,r)};Z().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ar(this,e,t,n,a,r,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Ku(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Ic(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Sc(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),mA(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),ml(this,e,t,n,a,r,s)};Z().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),AA(this,e,t,n,a,r)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),yA(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Wb(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),Al(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Fr(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),gA(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),ln(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),xA(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),rd(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),H(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),gl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),gc(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),hi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Dr(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),Mn(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),kl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Vc(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),Vb(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),jb(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),vA(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),Zu(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),Or(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Tc(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),wA(this,e,t,n,a)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Gb(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Rc(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),SA(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),Fn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),Ec(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),oa(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),Yu(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),Mc(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Zb(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Be(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),Ju(this,e,t,n,a)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),Xn(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Pa(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),wt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),xl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),bl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),TA(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),EA(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),_(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),vt(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Gc(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),Ai(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),ul(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Dn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),rr(this,e,t)};Z().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),Qb(this,e,t,n,a,r)};Z().prototype.pow=function(e){return this.throwIfDisposed(),sr(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),ed(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),$c(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),MA(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),La(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Dc(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),H(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),H(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),y3(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),g3(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),On(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),sd(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Oc(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),zc(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),_c(this)};Z().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),FA(this,e,t,n,a,r,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),wn(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),$A(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Pc(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),Lc(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),ad(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),fi(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Qu(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),an(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),Jt(this)};Z().prototype.square=function(){return this.throwIfDisposed(),st(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),jc(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),zr(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Le?[this,e]:[this,...e];return zn(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Il(this,e)};Z().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),OA(this,e,t,n,a,r,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),ge(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),zA(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),pi(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),$r(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),fe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),fe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),fe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),_A(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),Ze(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Hc(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),PA(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),la(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),nn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Ue(this)};var y6={kernelName:to,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,Il(fe(n,"float32"),-1))}}},nQ={kernelName:no,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=st(fe(n,"float32")),r=Jt(ge(Se(1),a));return vt(me(e,r))}}}},aQ={kernelName:ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(ge(st(fe(n,"float32")),1));return me(e,a)}}}},rQ={kernelName:kr,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},sQ={kernelName:os,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},iQ={kernelName:ls,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},oQ={kernelName:yu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ue(n)}}},lQ={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Jt(ge(Se(1),st(fe(n,"float32")))))}}},uQ={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Jt(se(Se(1),st(fe(n,"float32"))));return me(e,a)}}}},dQ={kernelName:po,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=se(st(n),st(a)),i=_(e,me(a,s)),o=zt(n.shape,r);return o.length>0&&(i=ke(i,o)),H(i,n.shape)},b:()=>{let s=se(st(n),st(a)),i=vt(_(e,me(n,s))),o=zt(a.shape,r);return o.length>0&&(i=ke(i,o)),H(i,a.shape)}}}},pQ={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(st(fe(n,"float32")),1))}}},cQ={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ge(Se(1),st(fe(n,"float32"))))}}};function hQ(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,d=o,u=!1;o.rank===4&&(u=!0,l=H(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),d=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(d.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${d.rank}.`),s!=null&&F(Vt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:d},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=D.runKernel(Mp,p,c);return u?H(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var fQ=O({avgPool3dGrad_:hQ}),mQ={kernelName:gu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>fQ(e,a,r,s,i,o)}}};function AQ(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,d=!1;i.rank===3&&(d=!0,o=H(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=H(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let u={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=D.runKernel(Rp,u,p);return d?H(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var yQ=O({avgPoolGrad_:AQ}),gQ={kernelName:us,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>yQ(e,a,r,s,i)}}},xQ={kernelName:ds,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Be(e,r,!1,!0),b:()=>Be(a,e,!0,!1)}:!s&&i?{a:()=>Be(e,r,!1,!1),b:()=>Be(e,a,!0,!1)}:s&&!i?{a:()=>Be(r,e,!1,!0),b:()=>Be(a,e,!1,!1)}:{a:()=>Be(r,e,!0,!0),b:()=>Be(e,a,!0,!0)}}},bQ={kernelName:xu,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>Qu(e,a,r)}}},vQ={kernelName:Dx,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>ke(e,o,!0)}}},wQ={kernelName:ps,gradFunc:e=>({x:()=>e.clone()})},kQ={kernelName:cs,gradFunc:e=>({x:()=>Ue(e)})},IQ={kernelName:Ir,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>nn(oa(Dr(a,r),Or(a,s)),e,Ue(e))}}},SQ={kernelName:bu,inputsToSave:["x"],gradFunc:y6.gradFunc},NQ={kernelName:co,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ra(r,t[0].shape)[0],i=a.map(o=>o[s]);return an(e,i,s).map(o=>()=>o)}},TQ={kernelName:hs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Mr(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>hA(a.shape,e,r,i,o,l),filter:()=>VA(a,e,r.shape,i,o,l)}}},EQ={kernelName:fs,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ar(e,r,s,i,o,1,l),filter:()=>VA(e,a,r.shape,s,i,o,l)}}};function CQ(e,t,n,a,r){let s=e;e.rank===4&&(s=H(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=H(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return D.runKernel(Op,o,l)}var RQ=O({conv3DBackpropFilter_:CQ}),MQ={kernelName:vu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;F(Mr(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>_b(i.shape,e,o,r,s),filter:()=>RQ(i,e,o.shape,r,s)}}},FQ={kernelName:ms,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(vt(Pc(fe(n,"float32"))),e)}}},$Q={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Lc(fe(n,"float32")),e)}}},DQ={kernelName:As,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=Kb([r],a.rank),l=Sc(e,r,s,!i);return o!=null&&(l=Ze(l,o)),l}}}},OQ={kernelName:ys,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;F(Mr(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,d]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(d.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${d.rank}.`),F(l.shape[3]===d.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),F(za(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&F(Vt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>d3(l.shape,e,d,r,s,a,i),filter:()=>u3(l,e,d.shape,r,s,a,i)}}},zQ={kernelName:wu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>D.runKernel(Bp,s,n),filter:()=>D.runKernel(Vp,i,n)}}},_Q={kernelName:Ao,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>D.runKernel(Up,a)}}},PQ={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=_(qn(vt(st(n))),2/Math.sqrt(Math.PI));return{x:()=>_(e,a)}}},LQ={kernelName:xs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,n)}}},WQ={kernelName:xo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>H(e,n.shape)}}},BQ={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,qn(n))}}},VQ={kernelName:bs,gradFunc:e=>({x:()=>Ue(e)})},jQ={kernelName:vs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=st(a);return vt(me(s,fe(o,"float32")))}}}},UQ={kernelName:ws,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?Se(1):o,d=zt(s.shape,r.shape),u=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)u.push(r.shape[f]);u.push(1)}let p=ge(r,s),c=_(e,l),h=zc(se(i,Se(a))),m=_(_(_(h,h),h),Se(-.5));return{x:()=>s.rank===1?H(_(_(e,$r(H(h,[1,1,1,s.shape[0]]),u)),l),r.shape):H(_(_(e,h),l),r.shape),mean:()=>{let f=_(_(h,Se(-1)),c);return s.rank===1&&(f=ke(f,d)),H(f,s.shape)},variance:()=>{let f=_(_(m,p),c);return s.rank===1&&(f=ke(f,d)),H(f,s.shape)},scale:()=>{let f=_(p,h),A=_(e,f);return s.rank===1&&(A=ke(A,d)),H(A,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=ke(f,d)),H(f,s.shape)}}}},HQ={kernelName:wo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ra(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,d=o.slice(0,i),u=d.length,p=o.slice(s,o.length).slice(1),c=p.length,h=g6(0,u),m=g6(u+1,u+1+c),f=x6([d,[l],p]),A=H(e,f),y=H(r,[l]),g=x6([[u],h,m]),x=Ze(A,g),w=PA(x,y,a.shape[i]),b=IA(g);return w=Ze(w,b),w},indices:()=>r}}};function g6(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function x6(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var GQ={kernelName:ks,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ue(n),b:()=>Ue(a)}}},qQ={kernelName:Is,gradFunc:e=>({x:()=>fe(e,"float32")})},XQ={kernelName:So,gradFunc:e=>({x:()=>Ue(e)})},KQ={kernelName:No,gradFunc:e=>({x:()=>Ue(e)})},ZQ={kernelName:To,gradFunc:e=>({x:()=>Ue(e)})},YQ={kernelName:Ss,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Mn(a,0);return{x:()=>nn(s,e,_(e,r))}}},JQ={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,se(n,1))}}},QQ={kernelName:Ns,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,fe(n,"float32"))}}},eee={kernelName:Ox,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=qn(a);return ge(e,_(ke(e,r,s),i))}}}};function tee(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return D.runKernel(Kp,o,l)}var nee=O({localResponseNormalizationBackprop_:tee}),aee={kernelName:Nu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>nee(a,r,e,s,i,o,l)}}};function b6(e,t,n,a){return t.rank<n.rank&&(t=H(t,mi(t.shape,a))),e.rank<n.rank&&(e=H(e,mi(e.shape,a))),{x:()=>_(e,fe(Fr(n,t),e.dtype))}}var v6={kernelName:Ts,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ra(r,s.shape),l=b6(e,i,s,o);return{x:()=>l.x()}}},ree={kernelName:Es,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>_(e,fe(Dr(n,a),"float32")),b:()=>_(e,fe(Tc(n,a),"float32"))}}};function see(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),d=M(n,"output","maxPool3dGrad"),u=o,p=l,c=d,h=!1;l.rank===4&&(h=!0,u=H(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=H(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=H(d,[1,d.shape[0],d.shape[1],d.shape[2],d.shape[3]])),F(u.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${u.rank}.`),F(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),F(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:u,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},A=D.runKernel(Yp,m,f);return h?H(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var iee=O({maxPool3dGrad_:see}),oee={kernelName:Tu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>iee(e,a,r,s,i,o,l)}}};function lee(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),d=M(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Vt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let u={dy:o,input:l,output:d},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return D.runKernel(Zp,u,p)}var uee=O({maxPoolGrad_:lee}),dee={kernelName:Cs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>uee(e,a,r,s,i,o)}}},pee={kernelName:Rs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ra(r,a.shape),i=Xb(a.shape,s)[1],o=Nt(i);return{x:()=>{let l=a.shape.slice();s.forEach(u=>{l[u]=1});let d=H(e,l);return me(_(d,$n(a.shape,"float32")),o)}}}},cee={kernelName:Ms,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ra(r,s.shape),l=b6(e,i,s,o);return{x:()=>l.x()}}},hee={kernelName:Fs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>_(e,fe(Or(n,a),"float32")),b:()=>_(e,fe(Mn(n,a),"float32"))}}},fee={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},mee={kernelName:Fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=zt(n.shape,r);return s.length>0?H(ke(e,s),n.shape):e},b:()=>{let s=_(e,vt(gl(me(n,a)))),i=zt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},Aee={kernelName:Ds,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=_(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);return i.length>0?H(ke(s,i),a.shape):s}}}},yee={kernelName:$o,gradFunc:e=>({x:()=>vt(e)})},gee={kernelName:Os,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ct(n.shape,"float32")}}},xee={kernelName:Po,gradFunc:e=>({x:()=>Ue(e)})},bee={kernelName:Lo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return la(e,a).map(r=>()=>r)}},w6={kernelName:zs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},vee={kernelName:_s,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=pt(s.shape,i.shape);return{a:()=>{let l=fe(i,"float32"),d=_(e,_(l,sr(s,ge(l,Se(1))))),u=zt(s.shape,o);return u.length>0&&(d=ke(d,u)),H(d,s.shape)},b:()=>{let l=Mn(s,0),d=nn(l,Fn(s),Ue(s)),u=_(e,_(r,d)),p=zt(i.shape,o);return p.length>0&&(u=ke(u,p)),H(u,i.shape)}}}},wee={kernelName:Ps,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Mn(n,0);return{x:()=>nn(r,e,_(e,a)),alpha:()=>{let s=nn(r,Ue(e),_(e,n)),i=zt(a.shape,e.shape);return i.length>0&&(s=ke(s,i)),H(s,a.shape)}}}},kee={kernelName:gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=me(e,fe(a,"float32")),i=zt(n.shape,r);return i.length>0?H(ke(s,i),n.shape):s},b:()=>{let s=_(e,fe(n,"float32")),i=zt(a.shape,r);i.length>0&&(s=H(ke(s,i),a.shape));let o=st(a);return vt(me(s,fe(o,"float32")))}}}},Iee={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,vt(st(n)))}}},See={kernelName:Bs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=_(Or(n,6),Il(n));return{x:()=>_(e,fe(a,"float32"))}}},Nee={kernelName:Ls,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,fe(Il(n),"float32"))}}},Tee={kernelName:Vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>H(e,n.shape)}}},Eee={kernelName:Ws,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(nc,r,n)}}},Cee={kernelName:Cu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>D.runKernel(tc,r,n)}}},Ree={kernelName:Vs,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ra(a,e.shape);return{x:()=>On(e,r)}}},Mee={kernelName:js,gradFunc:e=>({x:()=>Ue(e)})},Fee={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>vt(me(e,_(sr(n,1.5),2)))}}},$ee={kernelName:Uo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>fe(Ue(n),"float32"),t:()=>_(e,fe(n,e.dtype)),e:()=>_(e,fe(Yu(n),e.dtype))}}},Dee={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Mn(n,Se(0)),r=Se(w3),s=Se(k3),i=_(e,s),o=_(_(e,r),qn(fe(n,"float32")));return nn(a,i,o)}}}},Oee={kernelName:Gs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,_(n,ge(Se(1),n)))}}},zee={kernelName:Xo,gradFunc:e=>({x:()=>Ue(e)})},_ee={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Ku(fe(n,"float32")),e)}}},Pee={kernelName:qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(Ic(fe(n,"float32")),e)}}},Lee={kernelName:Go,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=wb(a,r,s),d=[];for(let u=0;u<e.rank;u++)d.push([o[u],i[u]-o[u]-l[u]]);return{x:()=>rr(e,d)}}},Wee={kernelName:Ks,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=_(e,a);return{logits:()=>ge(i,_(ke(i,[r],s),a))}}},Bee={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,wn(n))}}},k6={kernelName:Ru,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>Xu(e,a,r)}}},I6={kernelName:Zo,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>ot(e,a)}}},Vee={kernelName:qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,_(Jt(fe(n,"float32")),2))}}},jee={kernelName:Mu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(e,_(fe(n,"float32"),2))}}},Uee={kernelName:Zs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=Se(2);return{a:()=>_(e,_(r,ge(n,a))),b:()=>_(e,_(r,ge(a,n)))}}},Hee={kernelName:Nr,gradFunc:e=>({x:()=>Ue(e)})},Gee={kernelName:Ys,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=pt(n.shape,a.shape);return{a:()=>{let s=e,i=zt(n.shape,r);return i.length>0&&(s=ke(s,i)),H(s,n.shape)},b:()=>{let s=e,i=zt(a.shape,r);return i.length>0&&(s=ke(s,i)),H(vt(s),a.shape)}}}},qee={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ra(s,a.shape).forEach(l=>{r[l]=1});let i=H(e,r),o=_(i,$n(a.shape,"float32"));return{x:()=>o}}},Xee={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,st(Ku(n)))}}},Kee={kernelName:Qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_(ge(Se(1),st(n)),e)}}},Zee={kernelName:Sr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ue(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=se(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let d=0;d<r[3];++d)s=se(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],d*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},Yee={kernelName:ei,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=IA(r);return{x:()=>Ze(e,s)}}},Jee={kernelName:el,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>zn(e,r)}}},Qee={kernelName:Fu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>ete(e,n)}}};function ete(e,t){let n=Pa(t,Ue(t)),a=hi(e,n),r=Dr(t,Se(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=ln(r,o+1);r=oa(r,$n(a.shape,"bool"));let i=Ue(a);return nn(r,a,i)}var tte={kernelName:tl,gradFunc:e=>({x:()=>Ue(e)})},nte=[y6,nQ,aQ,rQ,sQ,iQ,oQ,lQ,uQ,dQ,pQ,cQ,mQ,gQ,xQ,bQ,vQ,wQ,kQ,IQ,SQ,NQ,EQ,TQ,MQ,FQ,$Q,DQ,OQ,zQ,kee,_Q,PQ,LQ,WQ,BQ,jQ,VQ,UQ,HQ,GQ,qQ,XQ,KQ,ZQ,YQ,JQ,QQ,eee,aee,v6,v6,ree,oee,dee,pee,cee,hee,fee,mee,Aee,yee,gee,xee,bee,w6,w6,vee,wee,Iee,See,Nee,Tee,Eee,Cee,Ree,Mee,Fee,$ee,Dee,Oee,zee,_ee,Pee,Lee,Wee,Bee,k6,k6,I6,I6,Vee,Uee,jee,Hee,Gee,qee,Xee,Kee,Zee,Yee,Jee,Qee,tte];for(let e of nte)zx(e);var S6={};Fe(S6,{maxNorm:()=>ite,minMaxNorm:()=>ute,nonNeg:()=>lte,unitNorm:()=>ote});var F1;function _t(){return F1==null&&(F1=Tb().epsilon()),F1}function va(){return"channelsLast"}var ur=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,ur.prototype)}},wa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,wa.prototype)}},B=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,B.prototype)}},Oe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Oe.prototype)}},N6=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,N6.prototype)}};function Ti(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function ja(e,t){if(!e)throw new N6(t)}function T6(e,t){let n=0;for(let a of e)a===t&&n++;return n}function Sn(e){return e.length===1?e[0]:e}function ht(e){return Array.isArray(e)?e:[e]}function dr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Ei(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ua={};function $1(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function D1(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>D1(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:D1(a))}}}function Sd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ua)i=ua[s];else if(i=t[s],i==null)throw new B(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new B(`${a}: Improper config format: ${JSON.stringify(s)}.
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ua?[o,l]=ua.className:i in t&&([o,l]=t[i]),o==null)throw new B(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let d={};for(let h of Object.keys(ua))d[h]=ua[h];for(let h of Object.keys(n))d[h]=n[h];let u=s.config;u.customObjects=d;let p=Object.assign({},ua);for(let h of Object.keys(n))ua[h]=n[h];D1(s.config);let c=l(o,s.config,n,r);return ua=Object.assign({},p),c}else{let d=Object.assign({},ua);for(let p of Object.keys(n))ua[p]=n[p];let u=new o(s.config);return ua=Object.assign({},d),u}}}function ate(e,t){return e<t?-1:e>t?1:0}function $h(e,t){return-1*ate(e,t)}function Vr(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function rte(e){if(e==null)throw new B(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Ci(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new B(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function O1(e,t,n=0,a=Infinity){return ja(n>=0),ja(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Ht(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Ht(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${E6(e)}.`)}function E6(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>E6(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function ste(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function C6(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function z1(e,t){return W(()=>Jt(ke(_(e,e),t,!0)))}var Nd=class extends ae.Serializable{getConfig(){return{}}},_1=class extends Nd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=z1(e,this.axis),n=kn(t,0,this.maxValue);return _(e,me(n,se(_t(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};_1.className="MaxNorm";ae.registerClass(_1);var P1=class extends Nd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>me(e,se(_t(),z1(e,this.axis))))}getConfig(){return{axis:this.axis}}};P1.className="UnitNorm";ae.registerClass(P1);var L1=class extends Nd{apply(e){return La(e)}};L1.className="NonNeg";ae.registerClass(L1);var W1=class extends Nd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return W(()=>{let t=z1(e,this.axis),n=se(_(this.rate,kn(t,this.minValue,this.maxValue)),_(1-this.rate,t));return _(e,me(n,se(_t(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};W1.className="MinMaxNorm";ae.registerClass(W1);var R6={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Pt(e){return $1(e)}function M6(e,t={}){return Sd(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function Lt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in R6?R6[e]:e,config:{}};return M6(t)}else return e instanceof Nd?e:M6(e)}function ite(e){return new _1(e)}function ote(e){return new P1(e)}function lte(){return new L1}function ute(e){return new W1(e)}var F6={};Fe(F6,{constant:()=>Fte,glorotNormal:()=>Lte,glorotUniform:()=>Pte,heNormal:()=>Wte,heUniform:()=>Bte,identity:()=>zte,leCunNormal:()=>Vte,leCunUniform:()=>jte,ones:()=>Mte,orthogonal:()=>Ute,randomNormal:()=>Dte,randomUniform:()=>$te,truncatedNormal:()=>Ote,varianceScaling:()=>_te,zeros:()=>Rte});var dte=["channelsFirst","channelsLast"],pte=["nearest","bilinear"],cte=["valid","same","causal"],hte=["max","avg"],fte=["sum","mul","concat","ave"],Bl=new Map;function Et(e){Ci(dte,"DataFormat",e)}function mte(e){Ci(pte,"InterpolationFormat",e)}function Jn(e){Ci(cte,"PaddingMode",e)}function $6(e){Ci(hte,"PoolMode",e)}var Td=[],D6="/";function Ri(e,t){Td.push(e);try{let n=t();return Td.pop(),n}catch(n){throw Td.pop(),n}}function Ate(){return Td.length===0?"":Td.join(D6)+D6}function O6(e){if(!_6(e))throw new Error("Not a valid tensor name: '"+e+"'");return Ate()+e}function z6(e){if(!_6(e))throw new Error("Not a valid tensor name: '"+e+"'");Bl.has(e)||Bl.set(e,0);let t=Bl.get(e);if(Bl.set(e,Bl.get(e)+1),t>0){let n=`${e}_${t}`;return Bl.set(n,1),n}else return e}var yte=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function _6(e){return!!e.match(yte)}function gte(e){return e===parseInt(e.toString(),10)}function jr(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function P6(e){return e=Array.isArray(e)?new Float32Array(e):e,Tt(e)}function Vl(e){return xl(P6(e)).dataSync()[0]}function Ur(e){return Xn(P6(e)).dataSync()[0]}function ka(e,t){if(t<e)throw new B(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Ed(e,t){return e.asType(t)}function Cd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function xte(e,t){return W(()=>{if(e.shape.length!==2)throw new B(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Cd(e,1);return j1(n,[1,t,1])})}function bte(e){let t=[jr(e.shape)];return e.reshape(t)}function vte(e){if(e.rank<=1)throw new B(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],jr(e.shape,1)];return e.reshape(t)}function Mi(e,t,n){return W(()=>{switch(e.rank){case 1:return Wc(e,t,n);case 2:return DA(e,[t,0],[n,e.shape[1]]);case 3:return Bc(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return nd(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new B(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function B1(e,t,n){return W(()=>{switch(e.rank){case 1:return Wc(e,t,n);case 2:return DA(e,[0,t],[e.shape[0],n]);case 3:return Bc(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return nd(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Dh(e,t,n,a){return W(()=>{switch(e.rank){case 1:return Wc(e,t,n);case 2:switch(a){case 1:return Mi(e,t,n);case 2:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Mi(e,t,n);case 2:return Bc(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Mi(e,t,n);case 2:return nd(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return nd(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return B1(e,t,n);default:throw new B(`The axis is not within the rank of the tensor ${a}`)}default:throw new B(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function V1(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function L6(e,t){switch(e.rank){case 1:return Db([e,t]);case 2:return fl([e,t],0);case 3:return Ob([e,t],0);case 4:return zb([e,t],0);default:throw new B(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function j1(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new B(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return $r(e,t)}function Oh(e,t=0,n=1,a,r){return e3(e,t,n,a,r)}function Ua(e,t,n,a){if(e.rank<2||t.rank<2)throw new Oe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new Oe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return _r.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?U1(e.rank,a,va()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),d=[...i,o],u=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(u).reshape([l,-1]);let p=[...r,...d],c=!1,h=!1;return _r.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?U1(e.rank,a,va()):null,activation:n}).reshape(p)}}function W6(e,t,n){return W(()=>(Array.isArray(t)?t=Tt(t,"int32"):t=t.toInt(),hi(e,t,n)))}function Rd(e){return _(e,e)}function U1(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new B(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new B(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ia(e,t,n){return W(()=>(n==null&&(n=va()),Et(n),e.add(U1(e.rank,t,n))))}function wte(e,t=1){if(t!==1)throw new Oe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Al(e)}function kte(e){return W(()=>me(e,Ot(e).add(1)))}function B6(e,t,n,a){return W(()=>o3(e,t,n,a))}function Ite(e){return W(()=>{let t=se(.5,_(.2,e));return kn(t,0,1)})}function Md(e,t,n=!1){return n?e():t()}var Ste=["fanIn","fanOut","fanAvg"],Nte=["normal","uniform","truncatedNormal"];function Tte(e){Ci(Ste,"FanMode",e)}function Ete(e){Ci(Nte,"Distribution",e)}var da=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},H1=class extends da{apply(e,t){return Ct(e,t)}};H1.className="Zeros";ae.registerClass(H1);var zh=class extends da{apply(e,t){return $n(e,t)}};zh.className="Ones";ae.registerClass(zh);var G1=class extends da{constructor(e){super();if(typeof e!="object")throw new B(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new B(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return W(()=>_(Se(this.value),$n(e,t)))}getConfig(){return{value:this.value}}};G1.className="Constant";ae.registerClass(G1);var q1=class extends da{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return vl(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};q1.className="RandomUniform";ae.registerClass(q1);var X1=class extends da{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`randomNormal does not support dType ${t}.`);return Oh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};X1.className="RandomNormal";ae.registerClass(X1);var K1=class extends da{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`truncatedNormal does not support dType ${t}.`);return Uc(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};K1.className="TruncatedNormal";ae.registerClass(K1);var Z1=class extends da{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return W(()=>{if(e.length!==2||e[0]!==e[1])throw new B("Identity matrix initializer can only be used for 2D square matrices.");return _(this.gain,bA(e[0]))})}getConfig(){return{gain:this.gain}}};Z1.className="Identity";ae.registerClass(Z1);function Cte(e,t="channelsLast"){let n,a;if(Et(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=jr(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=jr(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=jr(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Nn=class extends da{constructor(e){super();if(e.scale<0)throw new B(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,Tte(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Ete(this.distribution),this.seed=e.seed}apply(e,t){let n=Cte(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Oe(`${this.getClassName()} does not support dType ${t}.`);return Uc(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return vl(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Nn.className="VarianceScaling";ae.registerClass(Nn);var _h=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};_h.className="GlorotUniform";ae.registerClass(_h);var Ph=class extends Nn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};Ph.className="GlorotNormal";ae.registerClass(Ph);var Lh=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};Lh.className="HeNormal";ae.registerClass(Lh);var Wh=class extends Nn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};Wh.className="HeUniform";ae.registerClass(Wh);var Bh=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};Bh.className="LeCunNormal";ae.registerClass(Bh);var Vh=class extends Nn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Nn.className}};Vh.className="LeCunNormal";ae.registerClass(Vh);var Y1=class extends da{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Oe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return W(()=>{if(e.length<2)throw new Oe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=Oh(n,0,1,"float32"),r=b3.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),_(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Y1.className="Orthogonal";ae.registerClass(Y1);var V6={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function j6(e,t={}){return Sd(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function kt(e){return $1(e)}function mt(e){if(typeof e=="string"){let t=e in V6?V6[e]:e;if(t==="GlorotNormal")return new Ph;if(t==="GlorotUniform")return new _h;if(t==="HeNormal")return new Lh;if(t==="HeUniform")return new Wh;if(t==="LeCunNormal")return new Bh;if(t==="LeCunUniform")return new Vh;{let n={};return n.className=t,n.config={},j6(n)}}else return e instanceof da?e:j6(e)}function Rte(){return new H1}function Mte(){return new zh}function Fte(e){return new G1(e)}function $te(e){return new q1(e)}function Dte(e){return new X1(e)}function Ote(e){return new K1(e)}function zte(e){return new Z1(e)}function _te(e){return new Nn(e)}function Pte(e){return new _h(e)}function Lte(e){return new Ph(e)}function Wte(e){return new Lh(e)}function Bte(e){return new Wh(e)}function Vte(e){return new Bh(e)}function jte(e){return new Vh(e)}function Ute(e){return new Y1(e)}var U6={};Fe(U6,{Layer:()=>Ge,RNN:()=>qa,RNNCell:()=>Wd,activation:()=>Nae,add:()=>Oae,alphaDropout:()=>gre,average:()=>zae,averagePooling1d:()=>m2,averagePooling2d:()=>A2,averagePooling3d:()=>y2,avgPool1d:()=>Hae,avgPool2d:()=>qae,avgPool3d:()=>Kae,avgPooling1d:()=>Gae,avgPooling2d:()=>Xae,avgPooling3d:()=>Zae,batchNormalization:()=>Vae,bidirectional:()=>dre,concatenate:()=>_ae,conv1d:()=>yae,conv2d:()=>gae,conv2dTranspose:()=>xae,conv3d:()=>bae,conv3dTranspose:()=>vae,convLstm2d:()=>ire,convLstm2dCell:()=>ore,cropping2D:()=>kae,dense:()=>Tae,depthwiseConv2d:()=>Sae,dot:()=>Bae,dropout:()=>Eae,elu:()=>pae,embedding:()=>Dae,flatten:()=>Rae,gaussianDropout:()=>yre,gaussianNoise:()=>Are,globalAveragePooling1d:()=>Yae,globalAveragePooling2d:()=>Jae,globalMaxPool1d:()=>cre,globalMaxPool2d:()=>hre,globalMaxPooling1d:()=>Q4,globalMaxPooling2d:()=>e8,gru:()=>ere,gruCell:()=>tre,input:()=>k4,inputLayer:()=>dae,layerNormalization:()=>jae,leakyReLU:()=>hae,lstm:()=>nre,lstmCell:()=>are,masking:()=>xre,maxPool1d:()=>fre,maxPool2d:()=>mre,maxPooling1d:()=>t8,maxPooling2d:()=>n8,maxPooling3d:()=>Qae,maximum:()=>Pae,minimum:()=>Lae,multiply:()=>Wae,permute:()=>$ae,prelu:()=>fae,reLU:()=>cae,repeatVector:()=>Mae,reshape:()=>Fae,rnn:()=>lre,separableConv2d:()=>wae,simpleRNN:()=>rre,simpleRNNCell:()=>sre,softmax:()=>mae,spatialDropout1d:()=>Cae,stackedRNNCells:()=>ure,thresholdedReLU:()=>Aae,timeDistributed:()=>pre,upSampling2d:()=>Iae,zeroPadding2d:()=>Uae});var Hte=0;function H6(){return Hte++}var jh={};function Uh(e=""){return e in jh||(jh[e]=0),jh[e]+=1,e+jh[e].toString()}function J1(e){return Array.isArray(e)&&Array.isArray(e[0])}function Hh(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function _e(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new B(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function at(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new B(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Gh(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var G6="Variable",q6=class{constructor(e,t="float32",n=G6,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=H6(),n=n==null?G6:n,this.originalName=O6(n),this.name=z6(this.originalName),this.trainable_=a,this.constraint=r,this.val=n3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),Gte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function Gte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Q1(e){return e.map(t=>t.read())}function ey(e){e.forEach(t=>{t[0].write(t[1])})}var Mt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Sa=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=H6(),s!=null&&(this.originalName=O6(s),this.name=z6(this.originalName)),this.rank=t.length}},qte=0,qh=class{constructor(e,t){this.callArgs=t,this.id=qte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Xte=0,Ge=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Xte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=dr(n)+"_"+Uh(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new wa(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new B(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Sn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Sn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ur(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ur(`Layer ${this.name} is not connected, no input to return.`);return Sn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ur(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ur(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Sn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=ht(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=ht(this.inputSpec);if(e.length!==t.length)throw new B(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new B(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),d=r.axes[o],u=l>=0?i[l]:i[i.length+l];if(d!=null&&[d,null].indexOf(u)===-1)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${d} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new B(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=ht(e),a=!0;for(let s of n)if(!(s instanceof Sa)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Sa){r=!1;break}if(a===r)throw new B("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ri(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of ht(e))s.push(i.shape);this.build(Sn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=ht(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Sn(o),this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Kte(e),i=this.computeOutputShape(s),o,l=Zte(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((d,u)=>new Sa(l,d,this,ht(e),t,this.name,u)):o=new Sa(l,i,this,ht(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Oe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ur(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ur(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new wa(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Gh(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Q1(e?this.trainableWeights:this.weights)}setWeights(e){W(()=>{let t=this.weights;if(t.length!==e.length)throw new B(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Q1(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new B(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}ey(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new B(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=mt("zeros"));let o=a.apply(t,n),l=new q6(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=ht(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=ht(e);t=ht(t),n=ht(n),a=ht(a),r=Hh(r),s=Hh(s);let l=[],d=[],u=[];for(let p of o)l.push(p.sourceLayer),d.push(p.nodeIndex),u.push(p.tensorIndex);new qh({outboundLayer:this,inboundLayers:l,nodeIndices:d,tensorIndices:u,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Kte(e){e=ht(e);let t=[];for(let n of e)t.push(n.shape);return Sn(t)}function Zte(e){return"float32"}function X6(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],d=X6(i,o,l);for(let u of d)r.indexOf(u)===-1&&r.push(u)}return r}}}var jl=class extends Ge{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Uh("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new B("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new B("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new B("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Sa(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new qh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new B(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};jl.className="InputLayer";ae.registerClass(jl);function K6(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new B("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new jl({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Hr(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];Ee(a)}}function Z6(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var Y6;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(Y6||(Y6={}));var Yte=125,Ul=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},J6=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Jte=class extends Ul{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=W(()=>se(this.totals[a],_(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:W(()=>{let a=_(me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),jt(t[n])}))}},Q6=class extends Ul{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},e4=class extends Ul{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=Yte),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=ste(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await Hr(n),a.push(this.yield(e,t,n))),a.push(ah()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Hr(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Hr(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(ah()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Hr(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Hr(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(ah()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Hr(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Hr(e),await this.trainEnd(e))}};function t4(e,t){return e==null&&(e={}),e instanceof Ul?[e]:Array.isArray(e)&&e[0]instanceof Ul?e:ht(e).map(n=>new e4(n,t))}var pa=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),pa.checkForDuplicate(t),pa.constructors[e]==null&&(pa.constructors[e]=[]),pa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in pa.constructors)pa.constructors[+t].forEach(n=>{if(n===e)throw new B("Duplicate callback constructor.")})}static clear(){pa.constructors={}}static createCallbacks(e){let t=[];for(let n in pa.constructors){let a=+n;e>=a&&t.push(...pa.constructors[a])}return t.map(n=>new n)}};pa.constructors={};function n4(e,t,n,a,r,s,i,o,l){let d=new Q6,u=[new Jte,...pa.createCallbacks(t)];e!=null&&u.push(...e),u.push(d);let p=new J6(u);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:d}}function Na(e,t={},n=!1){return Sd(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Xh(e,t){return W(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=ke(Rd(e),t,!0),a=yl(n.shape,_t()),r=Jt(Pa(n,a));return me(e,r)})}function Fi(e,t){return W(()=>wt(Rd(ge(t,e)),-1))}function Kh(e,t){return W(()=>wt(Ot(ge(t,e)),-1))}function Hl(e,t){return W(()=>{let n=ge(e,t),a=kn(Ot(e),_t(),Number.MAX_VALUE),r=Ot(me(n,a));return _(100,wt(r,-1))})}function Qte(e,t){return W(()=>{let n=kn(t,_t(),Number.MAX_VALUE),a=Fn(se(1,n)),r=kn(e,_t(),Number.MAX_VALUE),s=Fn(se(1,r));return wt(Rd(ge(a,s)),-1)})}function ene(e,t){return W(()=>{let n=Pa(0,ge(1,_(e,t)));return wt(Rd(n),-1)})}function tne(e,t){return W(()=>{let n=Pa(0,ge(1,_(e,t)));return wt(n,-1)})}function nne(e,t){return W(()=>{let n=ke(_(e,t),-1),a=Xn(_(ge(1,e),t),-1);return Pa(0,se(1,ge(a,n)))})}function ane(e,t){return W(()=>{let n=Math.log(2),a=ge(t,e),r=ge(se(a,fi(_(-2,a))),n);return wt(r,-1)})}function Fd(e,t,n=!1){return W(()=>{if(n)t=ad(t);else{let a=ke(t,t.shape.length-1,!0);t=me(t,a)}return t=kn(t,_t(),1-_t()),vt(ke(_(e.toFloat(),Fn(t)),t.shape.length-1))})}function Zh(e,t,n=!1){return W(()=>{let a=gl(bte(e)).toInt();t=kn(t,_t(),1-_t());let r=t.shape,s=ul(a,r[r.length-1]).reshape(r);return Fd(s,t,n)})}function rne(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new B(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return W(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function Yh(e,t){return W(()=>{let n;return n=kn(t,_t(),1-_t()),n=Fn(me(n,ge(1,n))),wt(rne(e,n),-1)})}function sne(e,t){return W(()=>{let n=kn(e,_t(),1),a=kn(t,_t(),1);return ke(_(e,Fn(me(n,a))),-1)})}function ine(e,t){return W(()=>{let n=Fn(se(_t(),t));return wt(ge(t,_(e,n)),-1)})}function ty(e,t){return W(()=>{let n=Xh(e,-1),a=Xh(t,-1),r=_(n,a);return vt(ke(r,-1))})}var Jh={meanSquaredError:Fi,meanAbsoluteError:Kh,meanAbsolutePercentageError:Hl,meanSquaredLogarithmicError:Qte,squaredHinge:ene,hinge:tne,categoricalHinge:nne,logcosh:ane,categoricalCrossentropy:Fd,sparseCategoricalCrossentropy:Zh,binaryCrossentropy:Yh,kullbackLeiblerDivergence:sne,poisson:ine,cosineProximity:ty};function ny(e){if(typeof e=="string"){if(e in Jh)return Jh[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new B(t)}else return e}function ay(e,t){return W(()=>{let n=_(.5,Dn(t)),a=Ed(Mn(t,n),e.dtype);return wt(Fr(e,a),-1)})}function ry(e,t){return W(()=>Ed(Fr(Hu(e,-1),Hu(t,-1)),"float32"))}function a4(e,t){return W(()=>oa(e.equal(1),t.equal(1)).sum().cast("float32"))}function one(e,t){return W(()=>oa(e.equal(1),t.equal(0)).sum().cast("float32"))}function lne(e,t){return W(()=>oa(e.equal(0),t.equal(1)).sum().cast("float32"))}function r4(e,t){return W(()=>{let n=a4(e,t),a=lne(e,t),r=n.add(a);return nn(Mn(r,0),n.div(r),0).cast("float32")})}function une(e,t){return W(()=>{let n=a4(e,t),a=one(e,t),r=n.add(a);return nn(Mn(r,0),n.div(r),0).cast("float32")})}function s4(e,t){return Yh(e,t)}function i4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Fr(e,t).asType("float32")}var dne=Fi,pne=Fi,cne=Kh,hne=Kh,fne=Hl,mne=Hl,sy=Fd,Ane=ty,o4=Zh,Qh={binaryAccuracy:ay,categoricalAccuracy:ry,precision:r4,categoricalCrossentropy:sy,sparseCategoricalCrossentropy:o4,mse:dne,MSE:pne,mae:cne,MAE:hne,mape:fne,MAPE:mne,cosine:Ane};function yne(e){if(typeof e=="string"&&e in Qh)return Qh[e];if(typeof e!="string"&&e!=null)return e;throw new B(`Unknown metric ${e}`)}function e0(e){if(ja(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Jh))if(Jh[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Qh))if(Qh[n]===e){t=n;break}return t!==void 0?t:e.name}}function gne(e){let t={Adagrad:()=>gi.adagrad(.01),Adadelta:()=>gi.adadelta(1,.95,_t()),Adam:()=>gi.adam(.001,.9,.999,_t()),Adamax:()=>gi.adamax(.002,.9,.999,_t(),0),RMSProp:()=>gi.rmsprop(.001,.9,0,_t()),SGD:()=>gi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new B(`Unknown Optimizer ${e}`)}var l4=1*1024*1024;function u4(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!iy(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>l4&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${l4}.`)}}function iy(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!iy(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!iy(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function xne(e,t,n,a=console.log){let r=vne(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(u=>Math.floor(t*u)));let i;if(!r){s.push("Receives inputs"),i=[];for(let u in e.nodesByDepth)i.push(...e.nodesByDepth[u])}a("_".repeat(t)),t0(s,n,a),a("=".repeat(t));let o=e.layers;for(let u=0;u<o.length;++u)r?wne(o[u],n,a):kne(o[u],n,i,a),a((u===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=bne(e),d=Gh(e.nonTrainableWeights);a(`Total params: ${l+d}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${d}`),a("_".repeat(t))}function bne(e){let t;return e.collectedTrainableWeights!=null?t=Gh(e.collectedTrainableWeights):t=Gh(e.trainableWeights),t}function vne(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function t0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function wne(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];t0(i,t,n)}function kne(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(u){r="multiple"}let s=[];for(let u of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(u)===-1))for(let p=0;p<u.inboundLayers.length;++p){let c=u.inboundLayers[p].name,h=u.nodeIndices[p],m=u.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],d=[`${i} (${o})`,r,e.countParams().toString(),l];t0(d,t,a);for(let u=1;u<s.length;++u)t0(["","","",s[u]],t,a)}function d4(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function $d(e,t){if(e===null)return null;if(typeof e=="string")return Ei(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];d4(t,r,s)?n.push(s):n.push($d(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Ei(a);n[s]=$d(r,s)}}return n}}function oy(e,t){if(e==null)return null;if(typeof e=="string")return dr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];d4(t,r,s)?n.push(s):n.push(oy(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=dr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=oy(r,a)}return n}}var ly="3.6.0";function Ine(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return fe(t,e.dtype)}catch(n){throw new B(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var $i=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof $i)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Ine(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new B(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Sa){if(this.id2Value[e.id]==null)throw new B(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new B(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Ee(this.id2Mask)}},uy={},p4={};function Dd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],d=t.names();for(let m of o)d.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let u=o.join(",")+"|"+t.names().join(","),p,c;if(uy[u]==null){let m=Sne(i,t);p=m.sorted,c=m.recipientCounts,uy[u]=p,p4[u]=c}p=uy[u],c={},r||Object.assign(c,p4[u]);let h=new $i(t);for(let m=0;m<p.length;++m){if(a!=null){let R=yc().numTensors;R>a.maxNumTensors&&(a.maxNumTensors=R),R<a.minNumTensors&&(a.minNumTensors=R)}let f=p[m],A=f.sourceLayer;if(A instanceof jl)continue;let y=[],g=[],x=[],w=!1;for(let R of f.inputs){let $=h.getValue(R),z=h.getMask(R);y.push($),g.push(z),z!=null&&(w=!0),r||(c[R.name]--,c[R.name]===0&&!t.hasKey(R)&&o.indexOf(R.name)===-1&&!$.isDisposed&&R.sourceLayer.stateful!==!0&&x.push($))}w&&(n=n||{},n.mask=g[0]);let b=ht(A.apply(y,n)),v=null;A.supportsMasking&&(v=A.computeMask(y,g));let N=Tne(f),T=Array.isArray(N)?N:[N];for(let R=0;R<T.length;++R){h.hasKey(T[R])||h.add(T[R],b[R],Array.isArray(v)?v[0]:v);let $=o.indexOf(T[R].name);$!==-1&&(l[$]=b[R])}r||Ee(x)}return h.disposeMasks(),s?l:l[0]}function Sne(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=c4(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=c4(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(d=>a[l].add(d))}}return{sorted:n,recipientCounts:Nne(a)}}function Nne(e){let t={};for(let n in e)t[n]=e[n].size;return t}function c4(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let d of o.inputs)r[d.name]==null&&(r[d.name]=new Set),r[d.name].add(o.name),!n.has(d.name)&&s.push(d)}}return{sorted:a,recipientMap:r}}function Tne(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var Ha=class extends Ge{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=Uh(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Vr(this.inputs).length!==this.inputs.length)throw new B(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Vr(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;this.outputLayers.push(g),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(w)}for(let y of this.inputs){let g=y.sourceLayer,x=y.nodeIndex,w=y.tensorIndex;ja(x===0,"input layer has >1 nodes"),ja(w===0,"input layer has >1 tensors"),this.inputLayers.push(g),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(w)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let g=this.inputLayers[y];if(!(g instanceof jl))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${g.getClassName()}.`);this.inputNames.push(g.name),this.feedInputShapes.push(g.batchInputShape),this.feedInputNames.push(g.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,g,x,w,b,v)=>{(w==null||b==null||v==null)&&(w=y.sourceLayer,b=y.nodeIndex,v=y.tensorIndex);let N=w.inboundNodes[b];if(x.indexOf(N)!==-1)throw new wa(`The tensor ${y.name} at layer "${w.name}" is part of a cycle.`);if(g.indexOf(N)!==-1)return;this.containerNodes.add(Ha.nodeKey(w,b)),w.id in s||(s[w.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let T=N.inboundLayers.length;for(let R=0;R<T;R++){let $=N.inputTensors[R],z=N.inboundLayers[R],P=N.nodeIndices[R],V=N.tensorIndices[R];o($,g,x,z,P,V)}for(g.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],d=[];for(let y of this.outputs)o(y,l,d);let u=i.slice().reverse();for(let y of u){n[y.id]=y,y.id in t||(t[y.id]=0);let g=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];g=Math.max(g,x),a[y.outboundLayer.id]=g,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=g;for(let w=0;w<y.inboundLayers.length;w++){let b=y.inboundLayers[w],v=y.nodeIndices[w],N=b.inboundNodes[v],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(g+1,T),n[N.id]=N}}let p={};for(let y in t){let g=t[y];g in p||(p[g]=[]),p[g].push(n[y])}let c={};for(let y in a){let g=a[y];g in c||(c[g]=[]),c[g].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort($h);this.layers=[];for(let y of h){let g=c[y];g.sort((x,w)=>{let b=s[x.id],v=s[w.id];return b<v?-1:b>v?1:0});for(let x of g)x instanceof Ha&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(y=>parseInt(y,10)).sort($h);let m=this.inputs.slice(),f=[];for(let y of h)for(let g of p[y]){let x=g.outboundLayer;if(x!=null){for(let w of g.inputTensors)if(m.indexOf(w)===-1)throw new wa(`Graph disconnected: cannot obtain value for tensor ${w} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let w of g.outputTensors)m.push(w);f.push(x.name)}}this.nodesByDepth=p;let A=this.layers.map(y=>y.name);for(let y of A){let g=A.filter(x=>x===y).length;if(g!==1)throw new wa(`The name "${y}" is used ${g} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new qh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new B("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new B(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new B(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new B(`${s.length} of ${a} weights are not set: ${s}`)}ey(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ly}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=oy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return W(()=>{e=ht(e);let n=new $i;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Dd(this.outputs,n,t)})}computeMask(e,t){return W(()=>{e=ht(e);let n;return t==null?n=Ti(null,e.length):n=ht(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Hh(e);if(t.length!==this.inputLayers.length)throw new B(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],d=o.name+"_0_0";n[d]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort($h);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let d=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(d.id)!==-1)continue;let u=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],A=l.nodeIndices[m],y=l.tensorIndices[m],g=`${f.name}_${A}_${y}`,x=n[g];u.push(x)}let p=d.computeOutputShape(Sn(u)),c=Hh(p),h=d.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${d.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],d=this.outputLayersTensorIndices[i],u=`${o.name}_${l}_${d}`;s.push(u)}for(let i=0;i<s.length;i++){let o=s[i];ja(o in n),r.push(n[o])}return Sn(r)}runInternalGraph(e,t){t==null&&(t=Ti(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],d=e[o],u=t[o];n[l.id]=[d,u]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort($h);for(let o of a){let l=this.nodesByDepth[o];for(let d of l){let u=d.outboundLayer,p=d.inputTensors,c=d.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,A,y,g;if(d.callArgs!=null&&(m=d.callArgs),h.length===1){let[x,w]=h[0];m.mask==null&&(m.mask=w),y=ht(u.call(x,m)),g=ht(u.computeMask(x,w)),f=[x],A=[w]}else f=h.map(x=>x[0]),A=h.map(x=>x[1]),m.mask==null&&(m.mask=A),y=ht(u.call(f,m)),g=ht(u.computeMask(f,A));if(u.activityRegularizer)throw new Oe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let w=c[x],b=y[x],v=g[x];n[w.id]=[b,v]}}}}let r=[],s=[],i=[];for(let o of this.outputs){ja(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,d]=n[o.id];i.push(l.shape),r.push(l),s.push(d)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof Ha?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=Ha.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new B(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new B("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new B(`No such layer: ${e}`)}calculateLosses(){return W(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=Ha.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let u=0;u<s.inboundNodes.length;u++){let p=s.inboundNodes[u],c=Ha.nodeKey(s,u),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let A=p.inboundLayers[f],y=p.nodeIndices[f],g=p.tensorIndices[f],x=Ha.nodeKey(A,y),w=t[x];w==null&&(w=0),m.push([A.name,w,g,h])}l.push(m)}}}let d={};d.name=s.name,d.className=i,d.config=o,d.inboundNodes=l,n.push(d)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Ha.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let d=t[l];d==null&&(d=0);let u=this.inputLayersTensorIndices[s];a.push([i.name,d,u])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Ha.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let d=t[l];d==null&&(d=0);let u=this.outputLayersTensorIndices[s];r.push([i.name,d,u])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,A){f.name in s?s[f.name].push(A):s[f.name]=[A]}function o(f,A){let y=[],g;for(let x of A){let w=x[0],b=x[1],v=x[2];if(g=x[3]==null?{}:x[3],!(w in r)){i(f,A);return}let N=r[w];if(N.inboundNodes.length<=b){i(f,A);return}let T=N.inboundNodes[b];y.push(T.outputTensors[v])}y.length>0&&f.apply(Sn(y),g)}function l(f){let A=f.name,y=Na(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[A]=y,f.inboundNodes.forEach(g=>{if(!(g instanceof Array))throw new B(`Corrupted configuration, expected array for nodeData: ${g}`);i(y,g)})}let d=t.name,u=t.layers;for(let f of u)l(f);for(;!rte(s);)for(let f of u){let A=r[f.name];if(A.name in s){let y=s[A.name];delete s[A.name];for(let g of y)o(A,g)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;p.push(x[g])}let m=t.outputLayers;for(let f of m){let A=f[0],y=f[1],g=f[2];ja(A in r);let x=r[A].inboundNodes[y].outputTensors;c.push(x[g])}return new e({inputs:p,outputs:c,name:d})}get stateful(){if(this._stateful)throw new B("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){W(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Ene(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function h4(e,t){return Ene(e,t,"classWeight")}async function f4(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=W(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());Ee(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Tt(i,"float32")}else return null}function Cne(e,t){return _(e,t)}var Rne=32;function m4(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=A4("input",e.inputNames,n),i=A4("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function A4(e,t,n){if(n instanceof Le)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new B(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function Mne(e){if(e.length===3)throw new Oe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function Fne(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(y4(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=Mne(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),d;r?d=l.slice().concat(l.map(A=>"val_"+A)):d=l.slice();let u=t4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=n4(u,p,n.epochs,null,null,$ne(t,n),null,r,d);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let A={};await c.onEpochBegin(m);let y=0,g=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:w,ys:b}=m4(e,x.value),v={};v.batch=g,v.size=w[0].shape[0],await c.onBatchBegin(g,v);let N=[];if(n.classWeight!=null){let $=h4(n.classWeight,e.outputNames);for(let z=0;z<$.length;++z)N.push(await f4(b[z],null,$[z]))}let T=w.concat(b).concat(N),R=o(T);Ee(T);for(let $=0;$<l.length;++$){let z=l[$],P=R[$];v[z]=P,jt(P)}await c.onBatchEnd(g,v),Z6(v),g++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let w;y4(n.validationData)?w=ht(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):w=ht(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?Rne:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)A[`val_${e.metricsNames[b]}`]=w[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,A),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function $ne(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function y4(e){return typeof e.iterator=="function"}function Dne(e){return typeof e.next=="function"}async function One(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new Oe("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Dne(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let d=await i.next();if(s=W(()=>{if(d.value){let{xs:u,ys:p}=m4(e,d.value),c=u.concat(p),h=W(()=>r(c));if(Ee(c),l===0)for(let f=0;f<h.length;++f)s.push(Se(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let A=h[f],y=s[f];s[f]=W(()=>se(s[f],_(m,A))),l>0&&Ee(y)}Ee(h),o+=m,++l}return s}),d.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let d=0;d<s.length;++d){let u=s[d];s[d]=me(s[d],o),Ee(u)}return Sn(s)}function dy(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Od(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Mi(a,t,n-t)):Mi(e,t,n-t)}function py(e,t){return W(()=>e==null?null:Array.isArray(e)?e.map(n=>py(n,t)):W6(e,t.dtype==="int32"?t:t.toInt()))}function cy(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function zne(e,t,n,a,r,s,i,o,l,d,u,p,c,h,m){r==null&&(r=32),s==null&&(s=1),u==null&&(u=!0),c==null&&(c=0);let f=!1;if(l!=null&&d!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new B("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;A!=null&&(y=ka(0,A)),i==null&&(i=1);let{callbackList:g,history:x}=n4(o,i,s,c,A,h,r,f,p);g.setModel(e),e.history=x,await g.onTrainBegin(),e.stopTraining_=!1;for(let w=c;w<s;++w){await g.onEpochBegin(w);let b={};if(h!=null)throw new Oe("stepsPerEpoch mode is not implemented yet.");{if(u==="batch")throw new Oe("batch shuffling is not implemneted yet");u&&k.shuffle(y);let v=Tt(y),N=cy(A,r);for(let T=0;T<N.length;++T){let R={};if(await g.onBatchBegin(T,R),W(()=>{let $=N[T][0],z=N[T][1],P=Mi(v,$,z-$);R.batch=T,R.size=z-$;let V=py(n,P),j=t(V);for(let U=0;U<a.length;++U){let X=a[U],G=j[U];R[X]=G,jt(G)}if(T===N.length-1&&f){let U=e.testLoop(l,d,r);for(let X=0;X<a.length;++X){let G=a[X],ee=U[X];jt(ee),b["val_"+G]=ee}}}),await g.onBatchEnd(T,R),Z6(R),e.stopTraining_)break}v.dispose()}if(await g.onEpochEnd(w,b),e.stopTraining_)break}return await g.onTrainEnd(),await e.history.syncData(),e.history}async function _ne(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,d,u;try{let p=a.batchSize==null?32:a.batchSize;dy(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],u=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new Oe("validationData including sample weights is not supported yet."):new B(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let v=!0,N=await e.standardizeUserData(i,o,null,null,v,p);l=N[0],d=N[1],f=l.concat(d)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let v=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];l=Od(r,v,N),r=Od(r,0,v),d=Od(s,v,N),s=Od(s,0,v),f=l.concat(d)}else a.validationSteps!=null&&(m=!0);let A=r.concat(s).concat(u);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),g=e.getDedupedMetricsNames(),x,w;m?(e.makeTestFunction(),x=e.testFunction,w=g.slice().concat(g.map(v=>"val_"+v))):(x=null,f=[],w=g.slice());let b=t4(a.callbacks,a.yieldEvery);return await zne(e,y,A,g,p,a.epochs,a.verbose,b,x,f,a.shuffle,w,a.initialEpoch,null,null)}finally{e.isTraining=!1,Di(r,t),Di(s,n),Di(l,i),Di(d,o),u!=null&&Ee(u)}}function g4(e){let t=[];e instanceof Le&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Cd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Di(e,t){if(e==null)return;let n=[];if(t instanceof Le)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Le)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function Pne(e){return e instanceof Le}function hy(e){return Array.isArray(e)}function x4(e){return!Pne(e)&&!hy(e)}function b4(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(hy(e)&&e.length>0)i=!0;else if(x4(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new B(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(x4(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new B(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(hy(e)){if(e=e,e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new B(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=g4(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let d=o.shape[l],u=n[i][l];if(u!=null&&u>=0&&d!==u)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Lne(e,t,n){let a=Vr(e.map(s=>s.shape[0]));a.sort();let r=Vr(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new B(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new B(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new B(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function Wne(e,t,n){let a=[Fi,Yh,Fd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Fd&&s.shape[s.shape.length-1]===1)throw new B(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),d=o.slice(1);for(let u=0;u<l.length;++u){let p=l[u],c=d[u];if(c!=null&&p!==c)throw new B(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function v4(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new B(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new B(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new B(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let d=o.shape[l],u=n[i][l];if(u!=null&&u!==d)throw new B(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Bne(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Vne="layers-model",pr=class extends Ha{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new B("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");xne(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=gne(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof or))throw new B("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new B(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(ny(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new B(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>ny(s))}else{let s=ny(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ri("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Bne(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ri("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",d,u,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===Yh?["accuracy","acc"].indexOf(c)!==-1?u=ay:["crossentropy","ce"].indexOf(c)!==-1&&(u=s4):this.lossFunctions[s]===Zh?["accuracy","acc"].indexOf(c)!==-1?u=i4:["crossentropy","ce"].indexOf(c)!==-1&&(u=o4):["accuracy","acc"].indexOf(c)!==-1?u=ry:["crossentropy","ce"].indexOf(c)!==-1&&(u=sy);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=u,d=l+f}else p=yne(c),d=l+e0(c);let h;Ri(d,()=>{h=p}),r(s,d,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;dy(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return Sn(l)}finally{Di(s[0],e),Di(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),One(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new B(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new B(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new B("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new $i;if(e instanceof Le&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new B(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new B(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Dd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ti(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new B(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return W(()=>{let a=this.checkNumSamples(e);if(n)throw new Oe("Verbose predictLoop() is not implemented yet.");let r=cy(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)W(()=>{let o=r[i][0],l=r[i][1],d=Od(e,o,l),u=[];if(Array.isArray(d))for(let c=0;c<d.length;++c)u.push({key:this.inputs[c],value:d[c]});else u.push({key:this.inputs[0],value:d});let p=new $i(u);return Dd(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return Sn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=g4(e);v4(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return dy(a),this.predictLoop(n,a)}finally{Di(n,e)}}predictOnBatch(e){v4(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new wa("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===Zh?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=b4(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=b4(t,this.feedOutputNames,r,!1,"target"),Lne(e,t,null),Wne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new B(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let d=h4(a,this.outputNames);l=[];for(let u=0;u<d.length;++u)l.push(await f4(o[u],null,d[u]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return W(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new Oe("Verbose mode is not implemented yet.");if(r!=null)throw new Oe("steps mode in testLoop() is not implemented yet");{let o=cy(s,n),l=Tt(ka(0,s));for(let d=0;d<o.length;++d){let u=o[d][0],p=o[d][1],c=Mi(l,u,p-u),h=py(t,c),m=e(h);if(d===0)for(let f=0;f<m.length;++f)i.push(Se(0));for(let f=0;f<m.length;++f){let A=m[f];i[f]=se(i[f],_(p-u,A))}}for(let d=0;d<i.length;++d)i[d]=me(i[d],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;T6(e,a)>1&&(r+=`_${T6(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let d=[];for(let h=0;h<this.inputs.length;++h)d.push({key:this.inputs[h],value:n[h]});let u=new $i(d),p=Dd(this.outputs,u,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=Cne(m,r[h]));let f=wt(m);t.push(f),h===0?c=m:c=se(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],A=this.metricsTensors[h][1];m=wt(f(a[A],p[A]))}jt(m),s.push(m)}return c=wt(c),this.calculateLosses().forEach(h=>{c=se(c,h)}),c},o=this.collectedTrainableWeights.map(d=>d.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>W(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new $i(s),o=Dd(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let d=this.lossFunctions[l],u=wt(d(r[l],o[l]));l===0?n=u:n=se(n,u),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let d=this.metricsTensors[l][0],u=this.metricsTensors[l][1],p=wt(d(r[u],o[u]));t.push(p)}return t})}async fit(e,t,n={}){return _ne(this,e,t,n)}async fitDataset(e,t){return Fne(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Ee(s),Sn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=yc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-yc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=dr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>dr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=dr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[dr(e0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>dr(e0(e)));{let e={};for(let t in this.metrics)e[t]=dr(e0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=$d(e.optimizer_config),n=Na(t),a;if(typeof e.loss=="string")a=Ei(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Ei(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Ei(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Ei(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Ei(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=vn.getSaveHandlers(e);if(i.length===0)throw new B(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new B(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new B("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await vn.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Vne,generatedBy:`TensorFlow.js tfjs-layers v${ly}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await vn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=vn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;u4(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){u4(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};pr.className="Model";ae.registerClass(pr);var w4=class extends pr{};w4.className="Functional";ae.registerClass(w4);async function jne(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=$d(n),r=Na(a,t);if(e.weightsManifest!=null){let s=await vn.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),Ee(s)}return r}async function Une(e,t){if(t==null&&(t={}),typeof e=="string"){let n=vn.getLoadHandlers(e,t);if(n.length===0)n.push(vn.browserHTTPRequest(e,t));else if(n.length>1)throw new B(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Hne(e,void 0,t)}async function Hne(e,t,n){if(n==null&&(n={}),e.load==null)throw new B("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Na($d(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new B("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:d,optimizerWeights:u}=Gne(a.weightData,a.weightSpecs);o.loadWeights(d,s),o.optimizer!=null&&u.length>0&&await o.optimizer.setWeights(u),Ee(d),Ee(u.map(p=>p.tensor))}return o}function Gne(e,t){let n=vn.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var Gl=class extends pr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Uh("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new B(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Gl||e instanceof pr,n;if(t){if(n=e,n.outputs.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new B("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new B("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=K6({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new B(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new B("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=X6(this.outputs[0])}this.inboundNodes=[],new qh({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ti(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(at(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new pr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new wa("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new B("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Gl))throw new Oe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Na(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new B("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new B("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Gl.className="Sequential";ae.registerClass(Gl);function qne(e){return new pr(e)}function Xne(e){return new Gl(e)}function Kne(e,t){return t==null&&(t={}),Une(e,t)}function k4(e){return K6(e)}function Zne(e,t){pa.registerCallbackConstructor(e,t)}var Tn=class extends ae.Serializable{getConfig(){return{}}},I4=class extends Tn{apply(e,t=1){return wte(e,t)}};I4.className="elu";ae.registerClass(I4);var S4=class extends Tn{apply(e){return _c(e)}};S4.className="selu";ae.registerClass(S4);var N4=class extends Tn{apply(e){return La(e)}};N4.className="relu";ae.registerClass(N4);var T4=class extends Tn{apply(e){return W(()=>bl(6,La(e)))}};T4.className="relu6";ae.registerClass(T4);var E4=class extends Tn{apply(e){return e}};E4.className="linear";ae.registerClass(E4);var C4=class extends Tn{apply(e){return wn(e)}};C4.className="sigmoid";ae.registerClass(C4);var R4=class extends Tn{apply(e){return Ite(e)}};R4.className="hardSigmoid";ae.registerClass(R4);var M4=class extends Tn{apply(e){return fi(e)}};M4.className="softplus";ae.registerClass(M4);var F4=class extends Tn{apply(e){return kte(e)}};F4.className="softsign";ae.registerClass(F4);var $4=class extends Tn{apply(e){return pi(e)}};$4.className="tanh";ae.registerClass($4);var fy=class extends Tn{apply(e,t=-1){return ad(e,t)}};fy.className="softmax";ae.registerClass(fy);var D4=class extends Tn{apply(e,t=-1){return Rc(e,t)}};D4.className="logSoftmax";ae.registerClass(D4);var O4=class extends Tn{apply(e,t=1){return W(()=>wn(e.mul(t)).mul(e))}};O4.className="swish";ae.registerClass(O4);var z4=class extends Tn{apply(e){return W(()=>_(e,pi(fi(e))))}};z4.className="mish";ae.registerClass(z4);function Gr(e){return e.getClassName()}function my(e,t={}){return Sd(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function qr(e){if(e==null){let t={};return t.className="linear",t.config={},my(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},my(t)}else return e instanceof Tn?e:my(e)}function Ay(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var _4=class extends ae.Serializable{},zd=class extends _4{constructor(e){super();Ay(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return W(()=>{let t=Ct([1]);return this.hasL1&&(t=se(t,ke(_(this.l1,Ot(e))))),this.hasL2&&(t=se(t,ke(_(this.l2,Rd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};zd.className="L1L2";ae.registerClass(zd);function Yne(e){return Ay(e),new zd({l1:e!=null?e.l1:null,l2:0})}function Jne(e){return Ay(e),new zd({l2:e!=null?e.l2:null,l1:0})}var P4={l1l2:"L1L2"};function ut(e){return $1(e)}function L4(e,t={}){return Sd(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function At(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in P4?P4[e]:e,config:{}};return L4(t)}else return e instanceof _4?e:L4(e)}var yy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=_e(e);let n=La(e);return this.maxValue!=null&&(n=kn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yy.className="ReLU";ae.registerClass(yy);var gy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return Zu(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};gy.className="LeakyReLU";ae.registerClass(gy);var xy=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=mt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=At(e.alphaRegularizer),this.alphaConstraint=Lt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new B(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=at(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new Mt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=_e(e),ed(e,this.alpha.read())}getConfig(){let e={alphaInitializer:kt(this.alphaInitializer),alphaRegularizer:ut(this.alphaRegularizer),alphaConstraint:Pt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};xy.className="PReLU";ae.registerClass(xy);var by=class extends Ge{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Oe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=_e(e);return Al(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};by.className="ELU";ae.registerClass(by);var vy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=_e(e);return n.mul(Ed(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};vy.className="ThresholdedReLU";ae.registerClass(vy);var wy=class extends Ge{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new fy().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=_e(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};wy.className="Softmax";ae.registerClass(wy);function ql(e,t,n){if(typeof e=="number")return Ti(e,t);if(e.length!==t)throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!gte(r))throw new B(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function Ta(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function Ga(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+Ur([n-t,0]);else if(a==="same")e=e*t;else throw new B(`Unsupport padding mode: ${a}.`);return e}function ky(e,t){return W(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,1]):e))}function W4(e,t){return W(()=>(Et(t),t==="channelsFirst"?Ze(e,[0,2,3,4,1]):e))}function Qne(e,t,n,a=1,r="valid",s,i=1){return W(()=>{if(s==null&&(s=va()),Et(s),e.shape.length!==3)throw new B(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new B(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new B(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Ze(e,[0,2,1])),r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=wc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=Ia(o,n)),o})}function B4(e,t,n,a=[1,1],r="valid",s,i,o=null){return W(()=>{if(s==null&&(s=va()),Et(s),e.rank!==3&&e.rank!==4)throw new B(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new B(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=ky(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=_r.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Ze(l,[0,3,1,2])),l})}function eae(e,t,n,a=[1,1,1],r="valid",s,i){return W(()=>{if(s==null&&(s=va()),Et(s),e.rank!==4&&e.rank!==5)throw new B(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new B(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=W4(e,s);if(r==="causal")throw new Oe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=fA(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Ia(o,n)),s==="channelsFirst"&&(o=Ze(o,[0,4,1,2,3])),o})}var Iy=class extends Ge{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Iy.verifyArgs(t),this.rank=e,Ht(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Oe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=ql(t.kernelSize,e,"kernelSize"),this.strides=ql(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,Jn(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Et(this.dataFormat),this.activation=qr(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=mt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Lt(t.biasConstraint),this.biasRegularizer=At(t.biasRegularizer),this.activityRegularizer=At(t.activityRegularizer),this.dilationRate=ql(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new B(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new B(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new B(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(ja("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,3))throw new B(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:Gr(this.activation),useBias:this.useBias,biasInitializer:kt(this.biasInitializer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},_d=class extends Iy{constructor(e,t){super(e,t);this.kernel=null,_d.verifyArgs(t),this.filters=t.filters,Ht(this.filters,"filters"),this.kernelInitializer=mt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Lt(t.kernelConstraint),this.kernelRegularizer=At(t.kernelRegularizer)}build(e){e=at(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n,a=this.bias==null?null:this.bias.read(),r=C6(this.activation.getClassName());if(r!=null&&this.rank===2)n=B4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=Qne(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=B4(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=eae(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Oe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=at(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=Ta(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:kt(this.kernelInitializer),kernelRegularizer:ut(this.kernelRegularizer),kernelConstraint:Pt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new B(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Pd=class extends _d{constructor(e){super(2,e);Pd.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,2))throw new B(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Pd.className="Conv2D";ae.registerClass(Pd);var Ld=class extends _d{constructor(e){super(3,e);Ld.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new B(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};Ld.className="Conv3D";ae.registerClass(Ld);var Sy=class extends Pd{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==4)throw new B("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==4)throw new B(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],d=this.kernelSize[0],u=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=Ga(o,p,d,this.padding),m=Ga(l,c,u,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,1]));let A=kc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=Ze(A,[0,3,1,2])),this.bias!=null&&(A=Ia(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=Ga(t[a],o,s,this.padding),t[r]=Ga(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Sy.className="Conv2DTranspose";ae.registerClass(Sy);var Ny=class extends Ld{constructor(e){super(e);if(this.inputSpec=[new Mt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new B(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=at(e),e.length!==5)throw new B("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new B("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Mt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{let n=_e(e);if(n.shape.length!==5)throw new B(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],d=a[s],u=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],A=this.strides[2],y=Ga(l,m,p,this.padding),g=Ga(d,f,c,this.padding),x=Ga(u,A,h,this.padding),w=[r,y,g,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Ze(n,[0,2,3,4,1]));let b=Pb(n,this.kernel.read(),w,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Ze(b,[0,4,1,2,3])),this.bias!==null&&(b=Ia(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=at(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],d=this.strides[0],u=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=Ga(t[a],d,i,this.padding),t[r]=Ga(t[r],u,o,this.padding),t[s]=Ga(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ny.className="Conv3DTranspose";ae.registerClass(Ny);var V4=class extends _d{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new B("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new B("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new B(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=At(t.depthwiseRegularizer),this.depthwiseConstraint=Lt(t.depthwiseConstraint),this.pointwiseInitializer=mt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=At(t.pointwiseRegularizer),this.pointwiseConstraint=Lt(t.pointwiseConstraint)}build(e){if(e=at(e),e.length<this.rank+2)throw new B(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Mt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return W(()=>{e=_e(e);let n;if(this.rank===1)throw new Oe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Ze(e,[0,2,3,1])),n=FA(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Ze(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.pointwiseInitializer=kt(this.pointwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.pointwiseRegularizer=ut(this.pointwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseConstraint),e.pointwiseConstraint=Pt(this.pointwiseConstraint),e}};V4.className="SeparableConv";var Ty=class extends V4{constructor(e){super(2,e)}};Ty.className="SeparableConv2D";ae.registerClass(Ty);var n0=class extends _d{constructor(e){super(1,e);n0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!O1(e.kernelSize,"number",1,1))throw new B(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};n0.className="Conv1D";ae.registerClass(n0);var Ey=class extends Ge{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return W(()=>{if(e=_e(e),this.dataFormat==="channelsLast"){let n=Dh(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Dh(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Dh(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Dh(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Ey.className="Cropping2D";ae.registerClass(Ey);var Cy=class extends Ge{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,mte(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return W(()=>{let n=_e(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Ze(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Ze(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Cy.className="UpSampling2D";ae.registerClass(Cy);function tae(e,t,n=[1,1],a="valid",r,s){return W(()=>{r==null&&(r=va()),Et(r);let i=ky(e,r);if(e.rank!==4)throw new B(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new B(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=ml(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}var Ry=class extends Iy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=mt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Lt(e.depthwiseConstraint),this.depthwiseRegularizer=At(e.depthwiseRegularizer)}build(e){if(e=at(e),e.length<4)throw new B(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new B(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{e=_e(e);let n=tae(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ia(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=Ta(t,this.kernelSize[0],this.padding,this.strides[0]),s=Ta(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=kt(this.depthwiseInitializer),e.depthwiseRegularizer=ut(this.depthwiseRegularizer),e.depthwiseConstraint=Pt(this.depthwiseRegularizer),e}};Ry.className="DepthwiseConv2D";ae.registerClass(Ry);function j4(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new B("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function U4(e,t,n,a=!1,r,s,i=!1,o=!1){return W(()=>{let l=t.shape.length;if(l<3)throw new B(`Input should be at least 3D, but is ${l}D.`);let d=[1,0].concat(ka(2,l));if(t=Ze(t,d),s!=null)throw new Oe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=ln(r,-1)),r=Ze(r,d)),a&&(t=On(t,0),r!=null&&(r=On(r,0)));let u=[],p,c=n,h=t.shape[0],m=la(t),f;r!=null&&(f=la(r));for(let y=0;y<h;++y){let g=m[y],x=W(()=>e(g,c));if(r==null)p=x[0],c=x[1];else{let w=W(()=>{let b=f[y],v=Dn(b).sub(b),N=x[0].mul(b).add(c[0].mul(v)),T=c.map((R,$)=>x[1][$].mul(b).add(R.mul(v)));return{output:N,newStates:T}});p=w.output,c=w.newStates}o&&u.push(p)}let A;return o&&(A=zn(u,1)),[p,A,c]})}var qa=class extends Ge{constructor(e){super(e);let t;if(e.cell==null)throw new B("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new s0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new B("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Mt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return ka(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){J1(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return W(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Oe("Constants support is not implemented in RNN yet.");J1(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new Mt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new Oe("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new B(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Mt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ur("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_=[Ct([n,this.cell.stateSize])];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>Ct([n,a])):this.states_[0]=Ct([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new B(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>jt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=j4(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Mt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Sa){let o=[e].concat(s),l=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=l;let u=super.apply(o,t);return this.inputSpec=d,u}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=_e(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new B(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=U4((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],d=o[1],u=o[2];this.stateful&&this.resetStates(u,a);let p=this.returnSequences?d:l;return this.returnState?[p].concat(u):p})}getInitialState(e){return W(()=>{let t=Ct(e.shape);return t=ke(t,[1,2]),t=Cd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?j1(t,[1,n]):t):this.cell.stateSize>1?[j1(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===qa.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Na(a,n);return new e(Object.assign(t,{cell:r}))}};qa.className="RNN";ae.registerClass(qa);var Wd=class extends Ge{},a0=class extends Wd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=qr(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Vl([1,Ur([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vl([1,Ur([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Dn(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Dn(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=Ua(_(e,s),this.kernel.read()):r=Ua(e,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),i!=null&&(n=_(n,i));let o=se(r,Ua(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};a0.className="SimpleRNNCell";ae.registerClass(a0);var My=class extends qa{constructor(e){e.cell=new a0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};My.className="SimpleRNN";ae.registerClass(My);var r0=class extends Wd{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new B("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Ht(this.units,"units"),this.activation=qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Vl([1,Ur([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vl([1,Ur([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=at(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return W(()=>{if(e=e,e.length!==2)throw new B(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Dn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Dn(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=_(e,r[0]));let d=Ua(e,this.kernel.read());this.useBias&&(d=Ia(d,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=_(a,s[0]));let u=this.recurrentKernel.read(),[p,c]=an(u,[2*this.units,this.units],u.rank-1),h=Ua(a,p),[m,f,A]=an(d,3,d.rank-1),[y,g]=an(h,2,h.rank-1);i=this.recurrentActivation.apply(se(m,y)),o=this.recurrentActivation.apply(se(f,g));let x=Ua(_(o,a),c);l=this.activation.apply(se(A,x));let w=se(_(i,a),_(se(1,vt(i)),l));return[w,w]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gr(this.activation),recurrentActivation:Gr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};r0.className="GRUCell";ae.registerClass(r0);var Fy=class extends qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new r0(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fy.className="GRU";ae.registerClass(Fy);var Bd=class extends Wd{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Ht(this.units,"units"),this.activation=qr(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=qr(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=mt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=At(e.kernelRegularizer),this.recurrentRegularizer=At(e.recurrentRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.kernelConstraint=Lt(e.kernelConstraint),this.recurrentConstraint=Lt(e.recurrentConstraint),this.biasConstraint=Lt(e.biasConstraint),this.dropout=Vl([1,Ur([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Vl([1,Ur([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=at(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends da{apply(i,o){let l=r.apply([s]),d=new zh().apply([s]),u=r.apply([s*2]);return L6(L6(l,d),u)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new B(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Dn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Dn(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,d,u;0<this.dropout&&this.dropout<1&&(e=_(e,s[0]));let p=Ua(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=_(a,i[0])),p=se(p,Ua(a,this.recurrentKernel.read())),this.useBias&&(p=Ia(p,this.bias.read()));let[c,h,m,f]=an(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),d=se(_(l,r),_(o,this.activation.apply(m))),u=this.recurrentActivation.apply(f);let A=_(u,this.activation.apply(d));return[A,A,d]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:Gr(this.activation),recurrentActivation:Gr(this.recurrentActivation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),recurrentInitializer:kt(this.recurrentInitializer),biasInitializer:kt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ut(this.kernelRegularizer),recurrentRegularizer:ut(this.recurrentRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),recurrentConstraint:Pt(this.recurrentConstraint),biasConstraint:Pt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Bd.className="LSTMCell";ae.registerClass(Bd);var $y=class extends qa{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Bd(e),super(e)}call(e,t){return W(()=>{this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};$y.className="LSTM";ae.registerClass($y);var s0=class extends Wd{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return W(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){J1(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ri(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Na(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Q1(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}ey(t)}};s0.className="StackedRNNCells";ae.registerClass(s0);function Xr(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>B6(t(),n),i=()=>Md(s,t,a);return!r||r<=1?jt(i().clone()):Array(r).fill(void 0).map(i).map(o=>jt(o.clone()))}var nae=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},H4=class extends qa{constructor(e){if(e.unroll)throw new Oe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Oe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Mt({ndim:5})]}call(e,t){return W(()=>{if(this.cell.dropoutMask!=null&&(Ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new B("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return W(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=Ct(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){W(()=>{if(!this.stateful)throw new ur("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new B("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_=[Ct(r)];else if(e==null)Ee(this.states_),this.keptStates!=null&&(Ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ct(r)):this.states_[0]=Ct(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new B(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Ee(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new B(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>jt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],d=e[o?4:3],u=Ta(l,a[0],r,s[0],i[0]),p=Ta(d,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,u,p]:[u,p,n]]}};H4.className="ConvRNN2D";var i0=class extends Bd{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Ht(this.filters,"filters"),this.kernelSize=ql(n,2,"kernelSize"),this.kernelSize.forEach(o=>Ht(o,"kernelSize")),this.strides=ql(a||1,2,"strides"),this.strides.forEach(o=>Ht(o,"strides")),this.padding=r||"valid",Jn(this.padding),this.dataFormat=s||"channelsLast",Et(this.dataFormat),this.dilationRate=ql(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Ht(o,"dilationRate"))}build(e){var t;e=at(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new B(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,d=this.filters;o=new(t=class extends da{apply(u,p){let c=l.apply([d]),h=$n([d]),m=l.apply([d*2]);return V1([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return W(()=>{if(e.length!==3)throw new B(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=Xr({ones:()=>Dn(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,re,ne)=>!re||!re[ne]?Y:_(re[ne],Y),d=l(a,o,0),u=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=Xr({ones:()=>Dn(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),A=l(r,h,2),y=l(r,h,3),g=3,[x,w,b,v]=an(this.kernel.read(),i,g),[N,T,R,$]=this.useBias?an(this.bias.read(),i):[null,null,null,null];d=this.inputConv(d,x,N,this.padding),u=this.inputConv(u,w,T,this.padding),p=this.inputConv(p,b,R,this.padding),c=this.inputConv(c,v,$,this.padding);let[z,P,V,j]=an(this.recurrentKernel.read(),i,g);m=this.recurrentConv(m,z),f=this.recurrentConv(f,P),A=this.recurrentConv(A,V),y=this.recurrentConv(y,j);let U=this.recurrentActivation.apply(se(d,m)),X=this.recurrentActivation.apply(se(u,f)),G=se(_(X,s),_(U,this.activation.apply(se(p,A)))),ee=_(this.recurrentActivation.apply(se(c,y)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=nae(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=ar(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ia(r,n,this.dataFormat):r}recurrentConv(e,t){return ar(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};i0.className="ConvLSTM2DCell";ae.registerClass(i0);var Dy=class extends H4{constructor(e){let t=new i0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};Dy.className="ConvLSTM2D";ae.registerClass(Dy);var o0=class extends Ge{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Md(()=>B6(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};o0.className="Dropout";ae.registerClass(o0);var Oy=class extends o0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Oy.className="SpatialDropout1D";ae.registerClass(Oy);var zy=class extends Ge{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Ht(this.units,"units"),this.activation=qr(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=mt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=mt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Lt(e.kernelConstraint),this.biasConstraint=Lt(e.biasConstraint),this.kernelRegularizer=At(e.kernelRegularizer),this.biasRegularizer=At(e.biasRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=at(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=at(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=C6(this.activation.getClassName()),r;return a!=null?r=Ua(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=Ua(n,this.kernel.read()),this.bias!=null&&(r=Ia(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:Gr(this.activation),useBias:this.useBias,kernelInitializer:kt(this.kernelInitializer),biasInitializer:kt(this.biasInitializer),kernelRegularizer:ut(this.kernelRegularizer),biasRegularizer:ut(this.biasRegularizer),activityRegularizer:ut(this.activityRegularizer),kernelConstraint:Pt(this.kernelConstraint),biasConstraint:Pt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};zy.className="Dense";ae.registerClass(zy);var _y=class extends Ge{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=at(e);for(let t of e.slice(1))if(t==null)throw new B(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],jr(e,1)]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return vte(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};_y.className="Flatten";ae.registerClass(_y);var Py=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.activation=qr(e.activation)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.activation.apply(n)})}getConfig(){let e={activation:Gr(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Py.className="Activation";ae.registerClass(Py);var Ly=class extends Ge{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return W(()=>(e=_e(e),xte(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Ly.className="RepeatVector";ae.registerClass(Ly);var Wy=class extends Ge{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new B("Can only specifiy one unknown dimension.");else r*=l}let i=jr(e);if(s!==null){if(r===0||i%r!=0)throw new B(n);a[s]=i/r}else if(i!==r)throw new B(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Wy.className="Reshape";ae.registerClass(Wy);var By=class extends Ge{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=ka(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Mt({ndim:this.dims.length+1})]}computeOutputShape(e){e=at(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Ze(_e(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};By.className="Permute";ae.registerClass(By);var Vy=class extends Ge{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=_e(e),a=-1;return Uu(Ai(n,this.maskValue),a)}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e),a=-1,r=!0,s=Uu(Ai(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};Vy.className="Masking";ae.registerClass(Vy);var jy=class extends Ge{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(ht(e.inputLength))}this.inputDim=e.inputDim,Ht(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Ht(this.outputDim,"outputDim"),this.embeddingsInitializer=mt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=At(e.embeddingsRegularizer),this.activityRegularizer=At(e.activityRegularizer),this.embeddingsConstraint=Lt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return W(()=>this.maskZero?(e=_e(e),Ai(e,Ue(e))):null)}computeOutputShape(e){if(e=at(e),this.inputLength==null)return[...e,this.outputDim];let t=ht(this.inputLength);if(t.length!==e.length-1)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new B(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return n.dtype!=="int32"&&(n=Ed(n,"int32")),W6(this.embeddings.read(),n.as1D()).reshape(at(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:kt(this.embeddingsInitializer),embeddingsRegularizer:ut(this.embeddingsRegularizer),activityRegularizer:ut(this.activityRegularizer),embeddingsConstraint:Pt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};jy.className="Embedding";ae.registerClass(jy);var Oi=class extends Ge{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Oe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new B("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[at(e)]),e=e,e.length<2)throw new B(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Vr(t),t.length>1)throw new B(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&Vr(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return W(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=Ur(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Cd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let d=o.shape,u=d[0],p=d.slice(1).concat([u]),c=o.reshape([u].concat(jr(d.slice(1))));c=Ze(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let d=ka(1,l).concat([0]);n.push(Ze(o,d)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,d=o[l-1],u=[d].concat(o.slice(0,o.length-1));s=Ze(s.reshape([-1,d]),[1,0]).reshape(u)}else if(i>1){let o=[i-1].concat(ka(0,i-1));s=Ze(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=Vr(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return W(()=>{if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an Array");if(!Array.isArray(e))throw new B("`inputs` should be an Array");if(t.length!==e.length)throw new B(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:ln(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=oa(n,t[a]);return n})}},Uy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return t})}};Uy.className="Add";ae.registerClass(Uy);var Hy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=_(t,e[n]);return t})}};Hy.className="Multiply";ae.registerClass(Hy);var Gy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=se(t,e[n]);return _(1/e.length,t)})}};Gy.className="Average";ae.registerClass(Gy);var qy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Pa(t,e[n]);return t})}};qy.className="Maximum";ae.registerClass(qy);var Xy=class extends Oi{constructor(e){super(e)}mergeFunction(e){return W(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=bl(t,e[n]);return t})}};Xy.className="Minimum";ae.registerClass(Xy);var Ky=class extends Oi{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new B("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new B("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return W(()=>V1(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new B("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new B("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new B("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new B(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return W(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Dn(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(ln(t[s],-1)):a.push(t[s]);let r=ot(a,this.axis);return bc(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Concatenate";ae.registerClass(Ky);function Vd(e,t){for(;e<0;)e+=t;return e}function aae(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Oe("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Oe("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return W(()=>{let i;if(a>r){i=a-r;let l=[];for(let d=0;d<i;++d)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let d=0;d<i;++d)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,d=s[1]===t.shape.length-1;o=e.matMul(t,l,d)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let d=[];for(let u=l;u<l+i;++u)d.push(u);o=o.squeeze(d)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Zy=class extends Oi{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new B(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new B(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>Vd(r,e[s].shape.length)):a=[Vd(this.axes,t.shape.length),Vd(this.axes,n.shape.length)],this.normalize&&(t=Xh(t,a[0]),n=Xh(n,a[1])),aae(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[Vd(this.axes,e.length),Vd(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Oe("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zy.className="Dot";ae.registerClass(Zy);var Yy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return Md(()=>Oh(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yy.className="GaussianNoise";ae.registerClass(Yy);var Jy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{this.invokeCallHook(e,t);let n=_e(e);return this.rate>0&&this.rate<1?Md(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(Oh(n.shape,1,a))},()=>n,t.training||!1):n})}};Jy.className="GaussianDropout";ae.registerClass(Jy);var Qy=class extends Ge{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||_e(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return W(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Md(()=>{let a=_e(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=Dr(vl(n),this.rate);o=Ed(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,d=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(d)},()=>_e(e),t.training||!1)}return e})}};Qy.className="AlphaDropout";ae.registerClass(Qy);function jd(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=Mb(e,t,n,a,r,s);else if(e.rank===3)i=Fb(e,t,n,a,r,s);else if(e.rank===4)i=$b(e,t,n,a,r,s);else throw new Oe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function rae(e,t,n,a,r=.001){return W(()=>{let s=Fc(e,a),i=s.mean,o=s.variance;return[jd(e,i,o,n,t,r),i,o]})}function sae(e,t,n,a,r=.001){return W(()=>{let s=Fc(e,a),i=s.mean,o=s.variance,l=[];for(let h of ka(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let d=i.reshape(l),u=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[jd(e,d,u,c,p,r),i,o]})}function iae(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),ka(0,e.rank-1))?rae(e,t,n,a,r):sae(e,t,n,a,r)}var e2=class extends Ge{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.movingMeanInitializer=mt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=mt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Lt(e.betaConstraint),this.gammaConstraint=Lt(e.gammaConstraint),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer)}build(e){e=at(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new B(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Mt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return W(()=>{let n=t.training==null?!1:t.training,a=_e(e),r=a.shape,s=r.length,i=ka(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ti(1,s);l[o]=r[o];let d=i.slice();d.sort();let u=!k.arraysEqual(d,ka(0,s).slice(0,s-1)),p=()=>{if(u){let A=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),g=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return jd(a,A,y,g,x,this.epsilon)}else return jd(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=iae(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(A,y,g)=>{W(()=>{let x=1-g,w=A.read(),b=w.sub(y).mul(x);A.write(w.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),movingMeanInitializer:kt(this.movingMeanInitializer),movingVarianceInitializer:kt(this.movingVarianceInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer),betaConstraint:Pt(this.betaConstraint),gammaConstraint:Pt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};e2.className="BatchNormalization";ae.registerClass(e2);var t2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=mt(e.betaInitializer||"zeros"),this.gammaInitializer=mt(e.gammaInitializer||"ones"),this.betaRegularizer=At(e.betaRegularizer),this.gammaRegularizer=At(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=at(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Vr(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=_e(e),a=n.shape,r=a.length;return W(()=>{let s=!0,{mean:i,variance:o}=Fc(n,this.axis,s),l=Ti(1,r);for(let m of this.axis)l[m]=a[m];let d=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,u=d(this.gamma.read()),p=d(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),u=u.tile(h),p=p.tile(h),jd(n,i,o,p,u,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:kt(this.betaInitializer),gammaInitializer:kt(this.gammaInitializer),betaRegularizer:ut(this.betaRegularizer),gammaRegularizer:ut(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};t2.className="LayerNormalization";ae.registerClass(t2);function oae(e,t,n){return W(()=>{if(e.rank!==4)throw new B(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new B("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=va()),n!=="channelsLast"&&n!=="channelsFirst")throw new B(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],rr(e,a)})}var n2=class extends Ge{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?va():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new B(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new B(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new B(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=at(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return W(()=>oae(_e(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};n2.className="ZeroPadding2D";ae.registerClass(n2);function l0(e,t,n,a,r,s){return W(()=>{Et(r),$6(s),Jn(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=ky(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=Ju(e,t,n,o):i=qu(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,3,1,2])),i})}function G4(e,t,n,a,r,s){return W(()=>{Et(r),$6(s),Jn(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=va()),s==null&&(s="max"),e=W4(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=NA(e,t,n,o):i=dA(e,t,n,o),r==="channelsFirst"&&(i=Ze(i,[0,4,1,2,3])),i})}var q4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new B(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Ht(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new B(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,Jn(this.padding),this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){e=at(e);let t=Ta(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return W(()=>{this.invokeCallHook(e,t),e=Cd(_e(e),2);let n=this.poolingFunction(_e(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return zr(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},a2=class extends q4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),l0(e,t,n,a,r,"max")}};a2.className="MaxPooling1D";ae.registerClass(a2);var r2=class extends q4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),l0(e,t,n,a,r,"avg")}};r2.className="AveragePooling1D";ae.registerClass(r2);var X4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new B(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Jn(this.padding),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},s2=class extends X4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),l0(e,t,n,a,r,"max")}};s2.className="MaxPooling2D";ae.registerClass(s2);var i2=class extends X4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),l0(e,t,n,a,r,"avg")}};i2.className="AveragePooling2D";ae.registerClass(i2);var K4=class extends Ge{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new B(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Ht(this.poolSize,"poolSize"),Ht(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),Jn(this.padding),this.inputSpec=[new Mt({ndim:5})]}computeOutputShape(e){e=at(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Ta(t,this.poolSize[0],this.padding,this.strides[0]),n=Ta(n,this.poolSize[1],this.padding,this.strides[1]),a=Ta(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return W(()=>(this.invokeCallHook(e,t),this.poolingFunction(_e(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},o2=class extends K4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),G4(e,t,n,a,r,"max")}};o2.className="MaxPooling3D";ae.registerClass(o2);var l2=class extends K4{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Et(r),Jn(a),G4(e,t,n,a,r,"avg")}};l2.className="AveragePooling3D";ae.registerClass(l2);var Z4=class extends Ge{constructor(e){super(e);this.inputSpec=[new Mt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Oe}},u2=class extends Z4{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return wt(n,1)})}};u2.className="GlobalAveragePooling1D";ae.registerClass(u2);var d2=class extends Z4{constructor(e){super(e||{})}call(e,t){return W(()=>{let n=_e(e);return Xn(n,1)})}};d2.className="GlobalMaxPooling1D";ae.registerClass(d2);var Y4=class extends Ge{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Et(this.dataFormat),this.inputSpec=[new Mt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Oe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},p2=class extends Y4{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?wt(n,[1,2]):wt(n,[2,3])})}};p2.className="GlobalAveragePooling2D";ae.registerClass(p2);var c2=class extends Y4{call(e,t){return W(()=>{let n=_e(e);return this.dataFormat==="channelsLast"?Xn(n,[1,2]):Xn(n,[2,3])})}};c2.className="GlobalMaxPooling2D";ae.registerClass(c2);var J4=class extends Ge{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Na(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},h2=class extends J4{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=at(e),e.length<3)throw new B(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=at(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return W(()=>(e=_e(e),U4((n,a)=>[_e(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};h2.className="TimeDistributed";ae.registerClass(h2);function lae(e){Ci(fte,"BidirectionalMergeMode",e)}var uae="concat",f2=class extends J4{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Na(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Na(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?uae:e.mergeMode,lae(this.mergeMode),e.weights)throw new Oe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):Sn(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=j4(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new B("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let d=n.map(u=>new Mt({shape:u.shape}));this.forwardLayer.stateSpec=d.slice(0,l/2),this.backwardLayer.stateSpec=d.slice(l/2),i.push(...d)}if(a!=null)throw new Oe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Sa;for(let l of s)if(l instanceof Sa!==o)throw new B("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),d=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=d;let p=super.apply(l,t);return this.inputSpec=u,p}else return super.apply(e,t)}call(e,t){return W(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=On(r,1));let i;return this.mergeMode==="concat"?i=V1([a,r]):this.mergeMode==="sum"?i=se(a,r):this.mergeMode==="ave"?i=_(.5,se(a,r)):this.mergeMode==="mul"?i=_(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ri(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ri(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Na(t.layer);if(delete t.layer,t.numConstants!=null)throw new Oe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};f2.className="Bidirectional";ae.registerClass(f2);function dae(e){return new jl(e)}function pae(e){return new by(e)}function cae(e){return new yy(e)}function hae(e){return new gy(e)}function fae(e){return new xy(e)}function mae(e){return new wy(e)}function Aae(e){return new vy(e)}function yae(e){return new n0(e)}function gae(e){return new Pd(e)}function xae(e){return new Sy(e)}function bae(e){return new Ld(e)}function vae(e){return new Ny(e)}function wae(e){return new Ty(e)}function kae(e){return new Ey(e)}function Iae(e){return new Cy(e)}function Sae(e){return new Ry(e)}function Nae(e){return new Py(e)}function Tae(e){return new zy(e)}function Eae(e){return new o0(e)}function Cae(e){return new Oy(e)}function Rae(e){return new _y(e)}function Mae(e){return new Ly(e)}function Fae(e){return new Wy(e)}function $ae(e){return new By(e)}function Dae(e){return new jy(e)}function Oae(e){return new Uy(e)}function zae(e){return new Gy(e)}function _ae(e){return new Ky(e)}function Pae(e){return new qy(e)}function Lae(e){return new Xy(e)}function Wae(e){return new Hy(e)}function Bae(e){return new Zy(e)}function Vae(e){return new e2(e)}function jae(e){return new t2(e)}function Uae(e){return new n2(e)}function m2(e){return new r2(e)}function Hae(e){return m2(e)}function Gae(e){return m2(e)}function A2(e){return new i2(e)}function qae(e){return A2(e)}function Xae(e){return A2(e)}function y2(e){return new l2(e)}function Kae(e){return y2(e)}function Zae(e){return y2(e)}function Yae(e){return new u2(e)}function Jae(e){return new p2(e)}function Q4(e){return new d2(e)}function e8(e){return new c2(e)}function t8(e){return new a2(e)}function n8(e){return new s2(e)}function Qae(e){return new o2(e)}function ere(e){return new Fy(e)}function tre(e){return new r0(e)}function nre(e){return new $y(e)}function are(e){return new Bd(e)}function rre(e){return new My(e)}function sre(e){return new a0(e)}function ire(e){return new Dy(e)}function ore(e){return new i0(e)}function lre(e){return new qa(e)}function ure(e){return new s0(e)}function dre(e){return new f2(e)}function pre(e){return new h2(e)}var cre=Q4,hre=e8,fre=t8,mre=n8;function Are(e){return new Yy(e)}function yre(e){return new Jy(e)}function gre(e){return new Qy(e)}function xre(e){return new Vy(e)}var a8={};Fe(a8,{MAPE:()=>Rre,MSE:()=>$re,binaryAccuracy:()=>bre,binaryCrossentropy:()=>vre,categoricalAccuracy:()=>kre,categoricalCrossentropy:()=>Ire,cosineProximity:()=>Tre,mape:()=>Mre,meanAbsoluteError:()=>Ere,meanAbsolutePercentageError:()=>Cre,meanSquaredError:()=>Fre,mse:()=>Dre,precision:()=>Sre,recall:()=>Nre,sparseCategoricalAccuracy:()=>wre});function bre(e,t){return ay(e,t)}function vre(e,t){return s4(e,t)}function wre(e,t){return i4(e,t)}function kre(e,t){return ry(e,t)}function Ire(e,t){return sy(e,t)}function Sre(e,t){return r4(e,t)}function Nre(e,t){return une(e,t)}function Tre(e,t){return ty(e,t)}function Ere(e,t){return Kh(e,t)}function Cre(e,t){return Hl(e,t)}function Rre(e,t){return Hl(e,t)}function Mre(e,t){return Hl(e,t)}function Fre(e,t){return Fi(e,t)}function $re(e,t){return Fi(e,t)}function Dre(e,t){return Fi(e,t)}var r8={};Fe(r8,{modelFromJSON:()=>jne});var s8={};Fe(s8,{l1:()=>zre,l1l2:()=>Ore,l2:()=>_re});function Ore(e){return new zd(e)}function zre(e){return Yne(e)}function _re(e){return Jne(e)}var i8=class extends Ul{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof pr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function u0(e,t){return e<t}function o8(e,t){return e>t}var l8=class extends i8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Oe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=u0:this.mode==="max"?this.monitorFunc=o8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=o8:this.monitorFunc=u0,this.monitorFunc===u0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===u0?Infinity:-Infinity}async onEpochEnd(e,t){await Hr(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Pre(e){return new l8(e)}var Lre={earlyStopping:Pre},Ea;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(Ea||(Ea={}));var u8;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(u8||(u8={}));var g2={};function Wre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};g2[e]=n}function d8(e){return g2[e]}function Bre(e){delete g2[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return mn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>mn(p,n,a,r));let d=mn(t.inputNames.slice(o)[0],n,a,r),u=d.dataSync();return s.type==="number"?u[0]:k.toNestedArray(d.shape,u)}let i=t.attrParams[e];return i&&i.value}function mn(e,t,n,a){let[r,s]=Ln(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[d0(r,o)]);return i!==void 0?t[d0(r,i)][s]:void 0}function Vre(e,t,n){return t[d0(e,n.currentContextId)]}function cr(e,t){let[n,a]=Ln(e);return[d0(n,t&&t.currentContextId),a]}function d0(e,t){return t?`${e}-${t}`:e}function Ln(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function p0(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function hr(e){return e.kept?e:Oa(e)}var p8={};Fe(p8,{json:()=>jre});var jre=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],c8={};Fe(c8,{json:()=>Ure});var Ure=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],h8={};Fe(h8,{json:()=>Hre});var Hre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],f8={};Fe(f8,{json:()=>Gre});var Gre=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],m8={};Fe(m8,{json:()=>qre});var qre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],A8={};Fe(A8,{json:()=>Xre});var Xre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],y8={};Fe(y8,{json:()=>Kre});var Kre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],g8={};Fe(g8,{json:()=>Zre});var Zre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],x8={};Fe(x8,{json:()=>Yre});var Yre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],b8={};Fe(b8,{json:()=>Jre});var Jre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],v8={};Fe(v8,{json:()=>Qre});var Qre=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],w8={};Fe(w8,{json:()=>ese});var ese=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],k8={};Fe(k8,{json:()=>tse});var tse=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],I8={};Fe(I8,{json:()=>nse});var nse=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],S8={};Fe(S8,{json:()=>ase});var ase=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],N8={};Fe(N8,{json:()=>rse});var rse=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],T8={};Fe(T8,{json:()=>sse});var sse=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],E8=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[p8,c8,h8,f8,m8,A8,y8,v8,b8,g8,w8,k8,I8,S8,N8,T8,x8],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],d={},u={};t!=null&&(d=this.mapSignatureEntries(t.inputs),u=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach(A=>{let[y]=cr(A);f.inputs.push(i[y]),i[y].children.push(f)})}),Object.keys(u).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(u).forEach(m=>{let[f]=cr(m),A=i[f];A!=null&&(A.signatureKey=u[m],l.push(A))}),Object.keys(d).length>0?Object.keys(d).forEach(m=>{let[f]=cr(m),A=i[f];A&&(A.signatureKey=d[m],o.push(A))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=d8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=x2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=x2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=T2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=T2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=v2(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=v2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=N2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=N2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=b2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=b2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=C2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=C2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=S2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=S2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=E2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=E2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=k2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=k2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=I2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=I2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=R8(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=R8(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((d,u)=>(d[u.name]=this.mapNode(u),u.op==="Const"&&a.push(d[u.name]),d),{}));let s=[],i=[];e.signature.inputArg.forEach(d=>{let[u]=cr(d.name),p={name:u,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:w2(d.type),type:"dtype"}},children:[]};p.signatureKey=d.name,s.push(p),r[u]=p}),Object.keys(r).forEach(d=>{let u=r[d];u.inputNames.forEach(p=>{let[c]=cr(p);u.inputs.push(r[c]),r[c].children.push(u)})});let o=e.ret;e.signature.outputArg.forEach(d=>{let[u,p]=cr(o[d.name]),c=r[u];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function ise(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function C8(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):ise(e);return t?n:n.toLowerCase()}function x2(e,t,n,a=!1){let r=e[t];return r!=null?C8(r.s,a):n}function b2(e,t,n){let a=e[t];return a?a.b:n}function v2(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function w2(e){switch(typeof e=="string"&&(e=Ea[e]),e){case Ea.DT_FLOAT:return"float32";case Ea.DT_INT32:case Ea.DT_INT64:case Ea.DT_INT8:case Ea.DT_UINT8:return"int32";case Ea.DT_BOOL:return"bool";case Ea.DT_DOUBLE:return"float32";case Ea.DT_STRING:return"string";default:return null}}function R8(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function k2(e,t,n){let a=e[t];return a&&a.type?w2(a.type):n}function I2(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>w2(r)):n}function M8(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function S2(e,t,n){let a=e[t];return a&&a.shape?M8(a.shape):n}function N2(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function T2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>C8(s,a)):n}function E2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>M8(r)):n}function C2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var ose=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return mn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return mn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return v2(this.node.rawAttrs,e,t);if(n.s!=null)return x2(this.node.rawAttrs,e,t);if(n.b!=null)return b2(this.node.rawAttrs,e,t);if(n.shape!=null)return S2(this.node.rawAttrs,e,t);if(n.type!=null)return k2(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return N2(this.node.rawAttrs,e,t);if(n.list.s!=null)return T2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return E2(this.node.rawAttrs,e,t);if(n.list.b!=null)return C2(this.node.rawAttrs,e,t);if(n.list.type!=null)return I2(this.node.rawAttrs,e,t)}return t}},lse=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[se(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[xc(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[EA(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[_(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[yA(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[gc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ge(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[bl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Pa(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[sr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[jc(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},use=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Ot(I("x",e,t,n))];case"Acos":return[eA(I("x",e,t,n))];case"Acosh":return[tA(I("x",e,t,n))];case"Asin":return[aA(I("x",e,t,n))];case"Asinh":return[rA(I("x",e,t,n))];case"Atan":return[sA(I("x",e,t,n))];case"Atan2":return[iA(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[oA(I("x",e,t,n))];case"Ceil":return[cA(I("x",e,t,n))];case"Complex":return[Tr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[Ku(I("x",e,t,n))];case"Cosh":return[Ic(I("x",e,t,n))];case"Elu":return[Al(I("x",e,t,n))];case"Erf":return[gA(I("x",e,t,n))];case"Exp":return[qn(I("x",e,t,n))];case"Expm1":return[xA(I("x",e,t,n))];case"Floor":return[gl(I("x",e,t,n))];case"Log":return[Fn(I("x",e,t,n))];case"Log1p":return[Ec(I("x",e,t,n))];case"Imag":return[Nc(I("x",e,t,n))];case"Neg":return[vt(I("x",e,t,n))];case"Reciprocal":return[MA(I("x",e,t,n))];case"Real":return[td(I("x",e,t,n))];case"Relu":return[La(I("x",e,t,n))];case"Round":return[Oc(I("x",e,t,n))];case"Selu":return[_c(I("x",e,t,n))];case"Sigmoid":return[wn(I("x",e,t,n))];case"Sin":return[Pc(I("x",e,t,n))];case"Sign":return[$A(I("x",e,t,n))];case"Sinh":return[Lc(I("x",e,t,n))];case"Softplus":return[fi(I("x",e,t,n))];case"Sqrt":return[Jt(I("x",e,t,n))];case"Square":return[st(I("x",e,t,n))];case"Tanh":return[pi(I("x",e,t,n))];case"Tan":return[zA(I("x",e,t,n))];case"ClipByValue":return[kn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[Dc(I("x",e,t,n))];case"Rsqrt":return[zc(mn(e.inputNames[0],t,n))];case"Prod":return[$c(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[Zu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[ed(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[vA(mn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ca(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function F8(e){return!(typeof e=="number"||e.some(t=>t<0))}function Ud(e,t,n){let a=R2(e,n),r=!F8(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=R2(s.shape,a)}),!F8(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function R2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var dse=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Se(0),jt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ca(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,jt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return ia([],[0].concat(this.elementShape));let n=this.readMany(e);return ca(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),zn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ia([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ca(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,la(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];W(()=>{t=H(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],d=[0,l,0],u=[1,e[o],r];s[o]=H(Re(t,d,u),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Hd=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ca(t,r.shape,"TensorList shape mismatch: "),jt(r)}),this.idTensor=Se(0),this.maxNumElements=a,jt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Hd([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ca(e,this.elementShape,"TensorList shape mismatch: ");let a=Ud(this.elementShape,this.tensors,e);return W(()=>{let r=this.tensors.map(s=>H(s,a));return zn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=Ud(this.elementShape,this.tensors,e),a=this.tensors.pop();return ca(a.shape,e,"TensorList shape mismatch: "),H(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ca(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");jt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ca(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=Ud(this.elementShape,this.tensors,t);return H(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ca(this.elementShape,t.shape,"TensorList shape mismatch: "),jt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ca(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=Ud(this.elementShape,this.tensors,n);return e.length===0?ia([],[0].concat(a)):W(()=>{let r=e.map(s=>H(this.tensors[s],a));return zn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ca(this.elementShape,t,"TensorList shape mismatch: ");let n=Ud(this.elementShape,this.tensors,t);return this.size()===0?ia([],[0].concat(n)):W(()=>{let a=this.tensors.map(r=>H(r,n));return ot(a,0)})}};function pse(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ca(r,t,"TensorList shape mismatch: ");let s=la(e);return new Hd(s,t,a)}function cse(e,t,n){return new Hd([],e,t,n)}function hse(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new Hd([],n,e.dtype,a),i=la(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function fse(e,t,n){let a=0,r=t.map(u=>(a+=u,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=R2(s,n),o=a===0?0:e.size/a,l=W(()=>{let u=[];e=H(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];u[p]=H(Re(e,h,m),i)}return e.dispose(),u}),d=new Hd([],n,e.dtype,t.length);for(let u=0;u<l.length;u++)d.setItem(u,l[u]);return d}var mse=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(u=>u.id),l=await i[0].data();i.forEach(u=>{!u.kept&&o.indexOf(u.id)===-1&&u.dispose()});let d=s;for(;l[0];){let u=d;d=await n.functionMap[a].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);let p=d.map(h=>h.id);u.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(d,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return d}case"LoopCond":{let a=I("pred",e,t,n);return[hr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=hr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>mn(r,t,n)!==void 0);if(a){let r=mn(a,t,n);return[hr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[hr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[hr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[hr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),d=I("name",e,t,n),u=new dse(d,r,a,s,l,i,o);return n.addTensorArray(u),[u.idTensor,Se(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[Se(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=hse(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=cse(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=pse(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=fse(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function $8(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=a==="fusedbatchnorm",l=I("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=I("strides",e,t,n),u=p0(e,t,n),p=I("dataFormat",e,t,n).toUpperCase(),c=I("dilations",e,t,n),[h,m]=I("args",e,t,n),f=I("leakyreluAlpha",e,t,n);return{stride:d,pad:u,dataFormat:p,dilations:c,biasArg:h,preluArg:m,activationFunc:r,leakyreluAlpha:f}}var Ase=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[wc(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=p0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[ar(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:d,leakyreluAlpha:u}=$8(e,t,n);return[_r.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:d,preluActivationWeights:l,leakyreluAlpha:u})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:d,leakyreluAlpha:u}=$8(e,t,n);return[_r.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:d,preluActivationWeights:l,leakyreluAlpha:u})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=p0(e,t,n);return[kc(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=p0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[ml(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[fA(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[qu(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[Ju(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Yb(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[dA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[NA(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],d=s[2];return[AA(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,d],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},yse=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[yl(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[Ub(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[Jb(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[ul(a,r,s,i)]}case"Ones":return[$n(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Dn(I("x",e,t,n))];case"RandomUniform":return[vl(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[wl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[Uc(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[Ct(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ue(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function M2(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var gse=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=M2(e,t,n),d=await Ye.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[d.selectedIndices,d.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=M2(e,t,n),l=I("padToMaxOutputSize",e,t,n),d=await Ye.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[d.selectedIndices,d.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=M2(e,t,n);return[await Ye.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=fe(I("condition",e,t,n),"bool"),r=[await LA(a)];return a.dispose(),r}case"ListDiff":return t3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},xse=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=_A(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=Hc(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=Hc(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bse=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[mn(e.name,t,n)||a];case"Placeholder":return[mn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let d=I("x",e,t,n);return[hr(d)]}case"IdentityN":return I("x",e,t,n).map(d=>hr(d));case"Snapshot":let r=I("x",e,t,n);return[hr(r)];case"Shape":return[Tt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(d=>Tt(d.shape));case"Size":return[Se(I("x",e,t,n).size,"int32")];case"Rank":return[Se(I("x",e,t,n).rank,"int32")];case"NoOp":return[Se(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let d=0;d<i.length;d++)console.log(Array.prototype.slice.call(i[d].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vse=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Se(0),this.tensorMap=new Map,jt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Se(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),W(()=>{let a=la(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];jt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return W(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return zn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},wse=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new vse(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},kse=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[Ye.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[Ye.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ise=(e,t,n)=>{switch(e.op){case"Equal":return[Fr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ai(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Mn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[Dr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Tc(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Or(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[oa(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[Yu(I("a",e,t,n))];case"LogicalOr":return[Mc(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[nn(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Sse=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Be(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[Bb(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Ze(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[d,u]=I("args",e,t,n);return[_r.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:d,activation:r,preluActivationWeights:u,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nse=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[ci(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[ci(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[wA(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[ad(I("x",e,t,n))];case"LogSoftmax":return[Rc(I("x",e,t,n))];case"SparseToDense":return[WA(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Tse=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Xn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[wt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[xl(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ke(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[bc(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Uu(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[Hu(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[nA(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[$c(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Sc(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[pA(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),d=I("binaryOutput",e,t,n);return[Lb(i,o,l,d)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ese=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[ot(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[hi(a,fe(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[hi(s,fe(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[On(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[On(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),d=I("newAxisMask",e,t,n),u=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[OA(p,a,r,s,i,o,l,d,u)]}case"Pack":return W(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=zr(r[0]).shape,o=r.map(l=>{let d=k.arraysEqual(l.shape,s);if(!d&&!k.arraysEqual(zr(l).shape,i))throw new Error("the input tensors shape does not match");return d?l:H(l,s)});return[zn(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return la(r,a)}case"Tile":{let a=I("reps",e,t,n);return[$r(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return an(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[s3(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[i3(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[WA(a,s,r,s.dtype===i.dtype?i:fe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Cse=(e,t,n)=>{switch(e.op){case"SparseReshape":{let{outputIndices:a,outputShape:r}=v3.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Rse=(e,t,n)=>{switch(e.op){case"FFT":return[rd(I("x",e,t,n))];case"IFFT":return[kl(I("x",e,t,n))];case"RFFT":return[sd(I("x",e,t,n))];case"IRFFT":return[Vc(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Mse=(e,t,n)=>{switch(e.op){case"Cast":return[fe(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[ln(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[zr(I("x",e,t,n),a)]}case"Reshape":return[H(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[TA(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[rr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[Qu(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[Xu(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[mA(I("x",e,t,n),a,r)]}case"BroadcastTo":return[hl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function D8(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return W(()=>lse(s,i,o));case"basic_math":return W(()=>use(s,i,o));case"control":return mse(s,i,o);case"convolution":return W(()=>Ase(s,i,o));case"creation":return W(()=>yse(s,i,o));case"dynamic":return gse(s,i,o);case"evaluation":return W(()=>xse(s,i,o));case"image":return W(()=>kse(s,i,o));case"graph":return W(()=>bse(s,i,o));case"logical":return W(()=>Ise(s,i,o));case"matrices":return W(()=>Sse(s,i,o));case"normalization":return W(()=>Nse(s,i,o));case"reduction":return W(()=>Tse(s,i,o));case"slice_join":return W(()=>Ese(s,i,o));case"sparse":return W(()=>Cse(s,i,o));case"spectral":return W(()=>Rse(s,i,o));case"transformation":return W(()=>Mse(s,i,o));case"hash_table":return wse(s,i,o,a);case"custom":let l=d8(s.op);if(l&&l.customExecutor)return l.customExecutor(new ose(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var O8=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function z8(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,d=Object.keys(e).map(c=>Ln(c)[0]),u=[];a!=null&&(u=a.map(c=>Ln(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((_8(c)||zse(c)||_se(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&d.indexOf(c.name)===-1&&u.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Fse(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(u=>Ln(u)[0]).map(u=>e.nodes[u]),o=e.initNodes;i.forEach(u=>{a.has(u.name)&&s.push(u)}),e.weights.forEach(u=>{a.has(u.name)&&s.push(u)}),o!=null&&o.forEach(u=>{a.has(u.name)&&s.push(u)});let l=new Set,d=[];for(;s.length>0;){let u=s.pop();l.add(u.name),t[u.name]||d.push(u),u.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return d}var $se=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Dse=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Ose=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function _8(e){return $se.indexOf(e.op)>=0}function zse(e){return Dse.indexOf(e.op)>=0}function _se(e){return Ose.indexOf(e.op)>=0}var F2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new F2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=z8(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return Fse(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(u=>this.graph.nodes[Ln(u)[0]]),r=t.map(u=>Ln(u)[0]),s=r.map(u=>this.graph.nodes[u]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},d={};return W(()=>{let u=new O8(this.weightMap,l,d,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,A]=Ln(m),y=[];y[A]=e[m],p[f]=y});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let A=D8(f,p,u,this._resourceManager);if(k.isPromise(A))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=A,this.checkTensorForDisposal(f.name,f,p,u,c,r,h)}}return this.parent==null&&u.dispose(c),t.map(m=>mn(m,p,u))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Vre(o.name,n,a);l!=null&&l.forEach(d=>{if(d&&!d.kept&&!r.has(d.id)){let u=i[d.id];u===1?(d.dispose(),delete i[d.id]):u!=null&&i[d.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new O8(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>mn(p,i,s)),l=o.map(p=>p.id),d=Object.keys(e).map(p=>e[p].id),u=new Set([...l,...d,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!u.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(u),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(g=>this.graph.nodes[Ln(g)[0]]),i=n.map(g=>Ln(g)[0]),o=i.map(g=>this.graph.nodes[g]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:d,dynamicNode:u,syncInputs:p}=z8(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(g=>({node:g,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(g=>{let[x,w]=Ln(g),b=[];b[w]=e[g],h[x]=b});let m={},f=this.getFrozenTensorIds(h),A={};for(;c.length>0;){let g=this.processStack(s,c,t,h,A,f,i,m,l);await Promise.all(g)}u==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(g=>!_8(g)&&!mn(g.name,h,t)).map(g=>g.name);if(y.length>0){let g="";throw u!=null&&(g=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${d}]. ${g}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let d=[];for(;t.length>0;){let u=t.pop();n.currentContext=u.contexts;let p="";if(u.node.op==="Enter"&&I("isConstant",u.node,a,n)&&([p]=cr(u.node.name,n)),a[u.node.name]==null){let c=D8(u.node,a,n,this._resourceManager);p||([p]=cr(u.node.name,n));let h=n.currentContext;k.isPromise(c)?d.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,u.node,a,n,s,i,o),this.processChildNodes(u.node,t,n,a,r,l))}else this.processChildNodes(u.node,t,n,a,r,l)}return d}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=cr(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!mn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Ln(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Ln(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Ln(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Pse=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Lse="?tfjs-format=file",Wse="model.json",P8=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Pse}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=vn.browserHTTPRequest(e,this.loadOptions);else{let t=vn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(vn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=vn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new F2(E8.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=E8.Instance.transformGraph(e.modelInitializer);this.initializer=new F2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=vn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Le)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Gt(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${Wse}${Lse}`);let n=new P8(e,t);return await n.load(),n}var Bse="3.6.0",L8={};Fe(L8,{CSVDataset:()=>Y8,Dataset:()=>Kl,FileDataSource:()=>rk,TextLineDataset:()=>X8,URLDataSource:()=>sk,array:()=>die,csv:()=>vie,func:()=>wie,generator:()=>kie,microphone:()=>Sie,version_data:()=>Nie,webcam:()=>Iie,zip:()=>pie});var Vse=Ji(Hg()),jse=Ji(Hg());function Use(e,t){return c0(e,t)}function c0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(Xl(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=c0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Hse(e,t=B8){return W8(e,t)}function W8(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(Xl(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(d=>d[i]),l=W8(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function B8(e){return e===null?null:Xl(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function V8(e,t){let n=new Map;c0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return c0(e,t,n)}function Xl(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Le))}function Gse(e){return e==null||qse(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Le||k.isTypedArray(e)}function qse(e){return e===null||typeof e!="object"&&typeof e!="function"}function Xse(e){return Use(e,Kse)}function Kse(e){return e instanceof Le?{value:e.clone(),recurse:!1}:Xl(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var j8=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},$2=class extends j8{constructor(){super($2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};$2.INITIAL_CAPACITY=32;function U8(e){return new Jse(e)}function D2(e){return new Qse(e)}function Zse(e,t){return new G8(e,t)}function Yse(e,t=Kr.FAIL){return new lie(e,t)}var qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new iie(this,e)}filter(e){return new rie(this,e)}map(e){return new sie(this,e)}mapAsync(e){return new H8(this,e)}serialMapAsync(e){return new H8(this,e).serial()}flatmap(e){return new oie(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new aie(this,e,t)}columnMajorBatch(e,t=!0,n=B8){return this.rowMajorBatch(e,t).map(a=>Hse(a,n))}concatenate(e,t){return new G8(U8([this,e]),t)}take(e){return e<0||e==null?this:new nie(this,e)}skip(e){return e<0||e==null?this:new tie(this,e)}prefetch(e){return new q8(this,e)}shuffle(e,t){return new uie(this,e,t)}serial(){return new eie(this)}},Jse=class extends qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Xse(e),done:!1}}},Qse=class extends qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},eie=class extends qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},tie=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Ee(e.value)}return this.upstream.next()}},nie=class extends qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},aie=class extends qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},rie=class extends qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Ee(e.value)}}},sie=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},iie=class extends qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},H8=class extends qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Aa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Aa.getTensorsInContainer(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},O2=class extends qt{constructor(){super();this.outputQueue=new $2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},oie=class extends O2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Aa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Aa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Aa.isTensorInList(r,a)||r.dispose();return!0}},G8=class extends qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Kr;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Kr||(Kr={}));var lie=class extends qt{constructor(e,t=Kr.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await V8(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Kr.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Kr.SHORTEST:return{value:null,done:!0};case Kr.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},q8=class extends qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new j8(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},uie=class extends q8{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=jse.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Kl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Wn(async()=>(await n.iterator()).columnMajorBatch(e,t,cie),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Wn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Wn(async()=>(await t.iterator()).filter(a=>W(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Wn(async()=>(await t.iterator()).map(n=>W(()=>e(n))),this.size)}mapAsync(e){let t=this;return Wn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Wn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Wn(async()=>{let a=D2(async()=>({value:await t.iterator(),done:!1}));return Zse(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Wn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Vse.alea(t||k.now().toString());return Wn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Wn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Kl.MAX_BUFFER_SIZE=1e4;function Wn(e,t=null){return new class extends Kl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function die(e){return Wn(async()=>U8(e),e.length)}function pie(e){if(!Xl(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Wn(async()=>{let n=await V8(e,a=>{if(a instanceof Kl)return{value:a.iterator(),recurse:!1};if(Xl(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Yse(n,Kr.SHORTEST)},t)}function cie(e){if(e===null)return null;let t=e[0];return Gse(t)?{value:hie(e),recurse:!1}:{value:null,recurse:!0}}function hie(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Le?zn(e):ia(e)}var X8=class extends Kl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},h0='"',Gd=Symbol("out"),K8=Symbol("field"),f0=Symbol("quote"),z2=Symbol("quoteafterquote"),Z8=Symbol("quoteinquote"),Y8=class extends Kl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new X8(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let d=Number(o);if(isNaN(d))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=d;else switch(i.dtype){case"float32":l=d;break;case"int32":l=Math.floor(d);break;case"bool":l=this.getBoolean(o);break;default:l=d}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=Gd;for(let i=0;i<r;i++)switch(s){case Gd:switch(e.charAt(i)){case h0:a=i+1,s=f0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Gd;break;default:s=K8,a=i;break}break;case K8:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=Gd,a=i+1;break;default:}break;case f0:switch(e.charAt(i)){case h0:s=z2;break;default:}break;case z2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=Gd,a=i+1;break;case h0:s=f0;break;default:s=Z8;break}break;case Z8:switch(e.charAt(i)){case h0:s=f0;break;default:}break;default:}if(s===z2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},J8=class extends qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new J8(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),ia(n,t)}},Q8=class extends qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Tt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=ga([s,r,o,i],[1,4])}else this.cropBox=ga([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new Q8(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=li.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return W(()=>{let t=ln(fe(e,"float32"),0),n;n=Ye.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return H(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},ek=class{},tk=class extends qt{split(e){return new fie(this,e)}},fie=class extends tk{constructor(e,t){super();this.upstream=e,this.impl=new mie(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},mie=class extends O2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Aie=class extends qt{decodeUTF8(){return new yie(this)}},yie=class extends tk{constructor(e){super();this.upstream=e,this.impl=new gie(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},gie=class extends O2{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=mI();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},nk=class extends Aie{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function xie(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=bie(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new nk(s,t)}else throw new Error(r.statusText)}var bie=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function ak(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var rk=class extends ek{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(ak(this.input)&&J().get("IS_NODE")){let e=Yi("fs");this.input=e.readFileSync(this.input.substr(7))}return new nk(this.input,this.options)}},sk=class extends ek{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return ak(this.url)?new rk(this.url,this.fileOptions).iterator():xie(this.url,this.fileOptions)}};function vie(e,t={}){return new Y8(new sk(e),t)}function wie(e){let t=D2(e);return Wn(async()=>t)}function kie(e){return Wn(async()=>{let t=await e();return D2(()=>t.next())})}async function Iie(e,t){return Q8.create(e,t)}async function Sie(e){return J8.create(e)}var Nie="3.6.0",Tie={tfjs:(hm==null?void 0:hm.version)||void 0,"tfjs-core":(fm==null?void 0:fm.version)||void 0,"tfjs-data":(mm==null?void 0:mm.version)||void 0,"tfjs-layers":(Am==null?void 0:Am.version)||void 0,"tfjs-converter":(ym==null?void 0:ym.version)||void 0,"tfjs-backend-cpu":t7||void 0,"tfjs-backend-webgl":Iv||void 0,"tfjs-backend-wasm":A6||void 0};var Bn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function ik(){if(!Qm(Bn.name)){he("backend registration:",Bn.name);try{Bn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Bn.width,Bn.height):document.createElement("canvas")}catch(e){he("error: cannot create canvas:",e);return}try{Bn.gl=Bn.canvas.getContext("webgl2",Bn.webGLattr)}catch(e){he("error: cannot get WebGL2 context:",e);return}try{dh(2,Bn.gl)}catch(e){he("error: cannot set WebGL2 context:",e);return}try{let e=new yh(Bn.gl);pl(Bn.name,()=>new _l(e),Bn.priority)}catch(e){he("error: cannot register WebGL backend:",e);return}try{rl("webgl").forEach(t=>{let n={...t,backendName:Bn.name};ri(n)})}catch(e){he("error: cannot update WebGL backend registration:",e);return}try{ma.set("WEBGL_VERSION",2)}catch(e){he("error: cannot set WebGL backend flags:",e);return}he("backend registered:",Bn.name)}}var G2={};fa(G2,{load:()=>H2,predict:()=>U2,triangulation:()=>gk,uvmap:()=>xk});function ok(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function Xd(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Zl(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Yl(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function m0(e,t=1.5){let n=Zl(e),a=Xd(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function A0(e){let t=Zl(e),n=Xd(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function _2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var lk=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var y0=[[1,0,0],[0,1,0],[0,0,1]];function Eie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function P2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Eie(n)}function uk(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function Zr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Cie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function dk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Zr(e[r],Cie(t,s)))}return n}function g0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=uk(t[0],t[1]),i=dk(s,r),o=uk(-t[0],-t[1]);return dk(i,o)}function pk(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Zr(t[0],n),-Zr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function ck(e,t){return[Zr(e,t[0]),Zr(e,t[1])]}function hk(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let d=r*(l+.5);for(let u=0;u<i;u++){let p=r*(u+.5);for(let c=0;c<o;c++)n.push([p,d])}}}return n}var fk=6;function Rie(e,t,n){let a=Re(e,[0,1],[-1,2]),r=se(a,t),s=Re(e,[0,3],[-1,2]),i=me(s,n),o=me(r,n),l=me(i,2),d=ge(o,l),u=se(o,l),p=_(d,n),c=_(u,n);return fl([p,c],1)}var mk=class{constructor(t,n){this.model=t,this.anchorsData=hk(t.inputs[0].shape[1]),this.anchors=ga(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=W(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),u=this.model.execute(d),p;if(Array.isArray(u)){let f=u.sort((x,w)=>x.size-w.size),A=ot([f[0],f[2]],2),y=ot([f[1],f[3]],2);p=ot([y,A],1).squeeze(0)}else p=u.squeeze();let c=Rie(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=wn(h).squeeze().dataSync();return[p,c,m]}),s=await Ye.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let d=r[i[l]];if(d>this.config.face.detector.minConfidence){let u=Re(a,[i[l],0],[1,-1]),p=lk(u);u.dispose();let c=this.anchorsData[i[l]],h=W(()=>Re(n,[i[l],fk-1],[1,-1]).squeeze().reshape([fk,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:d})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function Ak(e){let t=await Gt(Yt(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new mk(t,e);return!t||!t.modelUrl?he("load model failed:",e.face.detector.modelPath):e.debug&&he("load model:",t.modelUrl),n}var Xa={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},L2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Kd=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],zi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Mie=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Fie=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],$ie=[33,133,362,263,1,78,308],Aoe=Mie.map(e=>Kd[e]),yoe=Fie.map(e=>Kd[e]),goe=$ie.map(e=>Kd[e]);var W2=Xa.leftEyeLower0,B2=Xa.rightEyeLower0,Jl={leftBounds:[W2[0],W2[W2.length-1]],rightBounds:[B2[0],B2[B2.length-1]]},x0={count:468,mouth:13,symmetryLine:[13,Xa.midwayBetweenEyes[0]]},yk={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Ql={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function b0(e,t,n,a){for(let r=0;r<L2.length;r++){let{key:s,indices:i}=L2[r],o=Xa[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let d=i[l];e[o[l]]=[t[d][0],t[d][1],(t[d][2]+e[o[l]][2])/2]}}}var V2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=Xd({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?g0(a,[0,0]):y0,l=a!==0?i.map(p=>[...ck(p,o),p[2]]):i,d=a!==0?pk(r):y0,u=[...Zl({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+Zr(u,d[0])),Math.round(p[1]+Zr(u,d[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[Jl.leftBounds[0]][2],a=t[Jl.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=A0(m0(_2([t[a],t[r]]),this.irisEnlarge)),o=Xd(i),l=Ye.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&ma.flags.IS_BROWSER&&(l=Ye.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<Ql.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],d=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],d])}return{rawCoords:s,iris:s.slice(Ql.index)}}getAdjustedIrisCoords(t,n,a){let r=t[Xa[`${a}EyeUpper0`][Ql.upperCenter]][2],s=t[Xa[`${a}EyeLower0`][Ql.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let d=i;return l===2?d=r:l===4&&(d=s),[o[0],o[1],d]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,!n.videoOptimized||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=ok({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=m0(o),d=A0(l),u=this.storedBoxes[i].landmarks.arraySync(),p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...d,confidence:p,landmarks:u}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=W(()=>this.storedBoxes.map((i,o)=>{let l,d=0,u;if(n.face.detector.rotation&&n.face.mesh.enabled&&ma.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=x0.count?x0.symmetryLine:yk.symmetryLine;d=P2(i.landmarks[w],i.landmarks[b]);let v=Zl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[v[0]/t.shape[2],v[1]/t.shape[1]],T=Ye.rotateWithOffset(t,d,0,N);u=g0(-d,v),n.face.mesh.enabled?l=Yl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.meshSize,this.meshSize]).div(255):l=Yl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.boxSize,this.boxSize]).div(255)}else{u=y0;let w=t.clone();n.face.mesh.enabled?l=Yl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.meshSize,this.meshSize]).div(255):l=Yl({startPoint:i.startPoint,endPoint:i.endPoint},w,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,p,c]=this.meshDetector.execute(l),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=H(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:w,boxSize:b,crop:v}=this.getEyeBox(f,l,Jl.leftBounds[0],Jl.leftBounds[1],!0),{box:N,boxSize:T,crop:R}=this.getEyeBox(f,l,Jl.rightBounds[0],Jl.rightBounds[1]),z=this.irisModel.predict(ot([v,R])).dataSync(),P=z.slice(0,Ql.numCoordinates*3),{rawCoords:V,iris:j}=this.getEyeCoords(P,w,b,!0),U=z.slice(Ql.numCoordinates*3),{rawCoords:X,iris:G}=this.getEyeCoords(U,N,T),ee=this.getLeftToRightEyeDepthDifference(f);Math.abs(ee)<30?(b0(f,V,"left",null),b0(f,X,"right",null)):ee<1?b0(f,V,"left",["EyeUpper0","EyeLower0"]):b0(f,X,"right",["EyeUpper0","EyeLower0"]);let Y=this.getAdjustedIrisCoords(f,j,"left"),re=this.getAdjustedIrisCoords(f,G,"right");f=f.concat(Y).concat(re)}let A=this.transformRawCoords(f,i,d,u),y=i.confidence;if(i=m0(_2(A),1.5),i.confidence=y,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&ma.flags.IS_BROWSER){let[w,b]=i.landmarks.length>=x0.count?x0.symmetryLine:yk.symmetryLine;d=P2(i.landmarks[w],i.landmarks[b]);let v=Zl({startPoint:i.startPoint,endPoint:i.endPoint}),N=[v[0]/t.shape[2],v[1]/t.shape[1]],T=Ye.rotateWithOffset(t.toFloat(),d,0,N);u=g0(-d,v),l=Yl({startPoint:i.startPoint,endPoint:i.endPoint},T,[this.meshSize,this.meshSize]).div(255)}let g={mesh:A,box:i,faceConfidence:h,boxConfidence:i.confidence,image:l},x=A0(i);return x.confidence=i.confidence,x.faceConfidence=h,this.storedBoxes[o]=x,g}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Wt=[null,null,null],j2;async function U2(e,t){let n=await j2.predict(e,t),a=[];for(let r of n||[]){if(!r||r.isDisposedInternal)continue;let s=r.mesh.map(d=>[d[0]/e.shape[2],d[1]/e.shape[1],d[2]/j2.meshSize]),i={};if(r.mesh&&r.mesh.length>0)for(let d of Object.keys(Xa))i[d]=Xa[d].map(u=>r.mesh[u]);let o=r.box?[Math.max(0,r.box.startPoint[0]),Math.max(0,r.box.startPoint[1]),Math.min(e.shape[2],r.box.endPoint[0])-Math.max(0,r.box.startPoint[0]),Math.min(e.shape[1],r.box.endPoint[1])-Math.max(0,r.box.startPoint[1])]:0,l=r.box?[r.box.startPoint[0]/e.shape[2],r.box.startPoint[1]/e.shape[1],(r.box.endPoint[0]-r.box.startPoint[0])/e.shape[2],(r.box.endPoint[1]-r.box.startPoint[1])/e.shape[1]]:[];a.push({confidence:Math.round(100*r.faceConfidence||100*r.boxConfidence||0)/100,boxConfidence:Math.round(100*r.boxConfidence)/100,faceConfidence:Math.round(100*r.faceConfidence)/100,box:o,boxRaw:l,mesh:r.mesh,meshRaw:s,annotations:i,image:r.image}),r.coords&&r.coords.dispose()}return a}async function H2(e){return!Wt[0]&&e.face.enabled||!Wt[1]&&e.face.mesh.enabled||!Wt[2]&&e.face.iris.enabled?(Wt=await Promise.all([!Wt[0]&&e.face.enabled?Ak(e):null,!Wt[1]&&e.face.mesh.enabled?Gt(Yt(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Wt[2]&&e.face.iris.enabled?Gt(Yt(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Wt[1]||!Wt[1].modelUrl?he("load model failed:",e.face.mesh.modelPath):e.debug&&he("load model:",Wt[1].modelUrl)),e.face.iris.enabled&&(!Wt[2]||!Wt[1].modelUrl?he("load model failed:",e.face.iris.modelPath):e.debug&&he("load model:",Wt[2].modelUrl))):e.debug&&(he("cached model:",Wt[0].model.modelUrl),he("cached model:",Wt[1].modelUrl),he("cached model:",Wt[2].modelUrl)),j2=new V2(Wt[0],Wt[1],Wt[2]),Wt}var gk=zi,xk=Kd;var Z2={};fa(Z2,{load:()=>K2,predict:()=>w0});var Die=["angry","disgust","fear","happy","sad","surprise","neutral"],Ca,q2=[],v0=Number.MAX_SAFE_INTEGER,X2=[.2989,.587,.114];async function K2(e){return Ca?e.debug&&he("cached model:",Ca.modelUrl):(Ca=await Gt(Yt(e.modelBasePath,e.face.emotion.modelPath)),!Ca||!Ca.modelUrl?he("load model failed:",e.face.emotion.modelPath):e.debug&&he("load model:",Ca.modelUrl)),Ca}async function w0(e,t){return Ca?v0<t.face.emotion.skipFrames&&t.videoOptimized&&q2.length>0?(v0++,q2):(t.videoOptimized?v0=0:v0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=Ye.resizeBilinear(e,[Ca.inputs[0].shape[2],Ca.inputs[0].shape[1]],!1),[r,s,i]=an(a,3,3);a.dispose();let o=_(r,X2[0]),l=_(s,X2[1]),d=_(i,X2[2]);r.dispose(),s.dispose(),i.dispose();let u=xc([o,l,d]);o.dispose(),l.dispose(),d.dispose();let p=W(()=>u.sub(.5).mul(2));u.dispose();let c=[];if(t.face.emotion.enabled){let h=await Ca.predict(p),m=h.dataSync();Ee(h);for(let f=0;f<m.length;f++)m[f]>t.face.emotion.minConfidence&&c.push({score:Math.min(.99,Math.trunc(100*m[f])/100),emotion:Die[f]});c.sort((f,A)=>A.score-f.score)}p.dispose(),q2=c,n(c)})):null}var eg={};fa(eg,{enhance:()=>Q2,load:()=>Y2,match:()=>bk,predict:()=>S0,similarity:()=>J2});var Qn,k0={age:0},I0=Number.MAX_SAFE_INTEGER;async function Y2(e){return Qn?e.debug&&he("cached model:",Qn.modelUrl):(Qn=await Gt(Yt(e.modelBasePath,e.face.description.modelPath)),!Qn||!Qn.modelUrl?he("load model failed:",e.face.description.modelPath):e.debug&&he("load model:",Qn.modelUrl)),Qn}function J2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function bk(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=J2(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function Q2(e){return W(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Le))return null;let a=[[.05,.15,.85,.85]];return(n.shape.length===3?Ye.cropAndResize(ln(n,0),a,[0],[Qn.inputs[0].shape[2],Qn.inputs[0].shape[1]]):Ye.cropAndResize(n,a,[0],[Qn.inputs[0].shape[2],Qn.inputs[0].shape[1]])).mul(255)})}async function S0(e,t){return Qn?I0<t.face.description.skipFrames&&t.videoOptimized&&k0.age&&k0.age>0?(I0++,k0):(t.videoOptimized?I0=0:I0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=Q2(e),r,s={age:0,gender:"unknown",genderConfidence:0,descriptor:[]};t.face.description.enabled&&(r=await Qn.predict(a)),Ee(a),r&&(W(()=>{let i=r.find(p=>p.shape[1]===1).dataSync(),o=Math.trunc(200*Math.abs(i[0]-.5))/100;o>t.face.description.minConfidence&&(s.gender=i[0]<=.5?"female":"male",s.genderConfidence=Math.min(.99,o));let l=r.find(p=>p.shape[1]===100).argMax(1).dataSync()[0],d=r.find(p=>p.shape[1]===100).dataSync();s.age=Math.round(d[l-1]>d[l+1]?10*l-100*d[l-1]:10*l+100*d[l+1])/10;let u=r.find(p=>p.shape[1]===1024);s.descriptor=[...u.dataSync()]}),r.forEach(i=>Ee(i))),k0=s,n(s)})):null}var Oie=(e,t)=>{let n=A=>A*180/Math.PI,a=A=>{let y=Math.sqrt(A[0]*A[0]+A[1]*A[1]+A[2]*A[2]);return A[0]/=y,A[1]/=y,A[2]/=y,A},r=(A,y)=>{let g=A[0]-y[0],x=A[1]-y[1],w=A[2]-y[2];return[g,x,w]},s=(A,y)=>{let g=A[1]*y[2]-A[2]*y[1],x=A[2]*y[0]-A[0]*y[2],w=A[0]*y[1]-A[1]*y[0];return[g,x,w]},i=A=>{let[y,g,x,w,b,v,N,T,R]=A,$,z,P;return w<1?w>-1?(P=Math.asin(w),z=Math.atan2(-N,y),$=Math.atan2(-v,b)):(P=-Math.PI/2,z=-Math.atan2(T,R),$=0):(P=Math.PI/2,z=Math.atan2(T,R),$=0),{pitch:2*-$,yaw:2*-z,roll:2*-P}},o=A=>{let y=(x,w,b,v)=>Math.atan2(v-w,b-x);return{pitch:y(A[10][1],A[10][2],A[152][1],A[152][2]),yaw:y(A[33][0],A[33][2],A[263][0],A[263][2]),roll:y(A[33][0],A[33][1],A[263][0],A[263][1])}},l=e.meshRaw;if(!l||l.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1]};let d=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[l[10],l[152],l[234],l[454]].map(A=>[A[0]*t[0]/d,A[1]*t[1]/d,A[2]]),p=a(r(u[1],u[0])),c=a(r(u[3],u[2])),h=a(s(c,p));c=s(p,h);let m=[c[0],c[1],c[2],p[0],p[1],p[2],h[0],h[1],h[2]];return{angle:i(m),matrix:m}},tg=async(e,t)=>{var u,p,c,h,m,f;let n,a,r,s,i,o,l=[];e.state="run:face",n=it();let d=await U2(t,e.config);if(e.perf.face=Math.trunc(it()-n),!d)return[];for(let A of d){if(e.analyze("Get Face"),!A.image||A.image.isDisposedInternal){he("Face object is disposed:",A.image);continue}let y=Oie(A,[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?w0(A.image,e.config):{}:(e.state="run:emotion",n=it(),s=e.config.face.emotion.enabled?await w0(A.image,e.config):{},e.perf.emotion=Math.trunc(it()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?S0(A,e.config):[]:(e.state="run:description",n=it(),o=e.config.face.description.enabled?await S0(A.image,e.config):[],e.perf.embedding=Math.trunc(it()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((u=A==null?void 0:A.annotations)==null?void 0:u.leftEyeIris)&&((p=A==null?void 0:A.annotations)==null?void 0:p.rightEyeIris)&&(delete A.annotations.leftEyeIris,delete A.annotations.rightEyeIris);let g=((c=A.annotations)==null?void 0:c.leftEyeIris)&&((h=A.annotations)==null?void 0:h.rightEyeIris)?11.7*Math.max(Math.abs(A.annotations.leftEyeIris[3][0]-A.annotations.leftEyeIris[1][0]),Math.abs(A.annotations.rightEyeIris[4][1]-A.annotations.rightEyeIris[2][1])):0;l.push({...A,age:o.age,gender:o.gender,genderConfidence:o.genderConfidence,embedding:o.descriptor,emotion:s,iris:g!==0?Math.trunc(g)/100:0,rotation:y,tensor:e.config.face.detector.return?(m=A.image)==null?void 0:m.squeeze():null}),(f=A.image)==null||f.dispose(),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.perf.face&&delete e.perf.face,e.perf.age&&delete e.perf.age,e.perf.gender&&delete e.perf.gender,e.perf.emotion&&delete e.perf.emotion),l};var ug={};fa(ug,{load:()=>lg,predict:()=>og});var Zd=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],vk=Zd.length,Yd=Zd.reduce((e,t,n)=>(e[t]=n,e),{}),zie=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],_ie=zie.map(([e,t])=>[Yd[e],Yd[t]]),wk=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function kk(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function Ik(e,[t,n],[a,r]){let s=(o,l,d)=>({score:o.score,box:[Math.trunc(o.box[0]*d),Math.trunc(o.box[1]*l),Math.trunc(o.box[2]*d),Math.trunc(o.box[3]*l)],keypoints:o.keypoints.map(({score:u,part:p,position:c})=>({score:u,part:p,position:{x:Math.trunc(c.x*d),y:Math.trunc(c.y*l)}}))});return e.map(o=>s(o,t/a,n/r))}var ng=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function ag(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+vk)}}function rg(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=ag(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function sg(e,t,n){return e<t?t:e>n?n:e}function Sk(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function ig(e,t){return{x:e.x+t.x,y:e.y+t.y}}var N0=1,eu=16,Pie=50**2;function Nk(e,t,n,a,r,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,g,x)=>({y:sg(Math.round(y.y/eu),0,g-1),x:sg(Math.round(y.x/eu),0,x-1)}),[d,u]=a.shape,p=l(t.position,d,u),c=o(p),m=ig(t.position,c);for(let y=0;y<i;y++){let g=l(m,d,u),x=ag(g.y,g.x,n,r);m=ig({x:g.x*eu,y:g.y*eu},{x:x.x,y:x.y})}let f=l(m,d,u),A=a.get(f.y,f.x,n);return{position:m,part:Zd[n],score:A}}function Lie(e,t,n,a,r){let s=wk.map(([c,h])=>[Yd[c],Yd[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],d=i.length,u=new Array(l),p=rg(e.part,eu,n);u[e.part.id]={score:e.score,part:Zd[e.part.id],position:p};for(let c=d-1;c>=0;--c){let h=i[c],m=o[c];u[h]&&!u[m]&&(u[m]=Nk(c,u[h],m,t,n,r))}for(let c=0;c<d;++c){let h=o[c],m=i[c];u[h]&&!u[m]&&(u[m]=Nk(c,u[h],m,t,n,a))}return u}function Wie(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-N0,0),d=Math.min(n+N0+1,s);for(let u=l;u<d;++u){let p=Math.max(a-N0,0),c=Math.min(a+N0+1,i);for(let h=p;h<c;++h)if(r.get(u,h,e)>t){o=!1;break}if(!o)break}return o}function Bie(e,t){let[n,a,r]=t.shape,s=new ng(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let d=t.get(i,o,l);d<e||Wie(l,d,i,o,t)&&s.enqueue({score:d,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function Tk(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?Sk(n,t,s.y,s.x)<=Pie:!1})}function Vie(e,t){return t.reduce((a,{position:r,score:s},i)=>(Tk(e,r,i)||(a+=s),a),0)/t.length}function Ek(e,t,n,a,r,s){let i=[],o=Bie(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),d=rg(l.part,eu,e);if(Tk(i,d,l.part.id))continue;let u=Lie(l,t,e,n,a);u=u.filter(h=>h.score>s);let p=Vie(i,u),c=kk(u);p>s&&i.push({keypoints:u,box:c,score:Math.round(100*p)/100})}return i}var ha,jie=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function og(e,t){let n=W(()=>{let o=e.resizeBilinear([ha.inputs[0].shape[2],ha.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),d=ha.execute(o,jie).map(u=>u.squeeze([0]));return d[1]=d[1].sigmoid(),d}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await Ek(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Ik(r,[e.shape[1],e.shape[2]],[ha.inputs[0].shape[2],ha.inputs[0].shape[1]])}async function lg(e){return ha?e.debug&&he("cached model:",ha.modelUrl):(ha=await Gt(Yt(e.modelBasePath,e.body.modelPath)),!ha||!ha.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",ha.modelUrl)),ha}var Ag={};fa(Ag,{load:()=>mg,predict:()=>fg});function T0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Jd(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function Ck(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return Ye.cropAndResize(t,s,[0],n)}function Rk(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function E0(e,t=1.5){let n=Jd(e),a=T0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function C0(e){let t=Jd(e),n=T0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var Mk=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var dg=class{constructor(t){var n;this.model=t,this.anchors=Mk.map(a=>[a.x,a.y]),this.anchorsTensor=ga(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Tt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Tt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return W(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=se(me(n,this.inputSizeTensor),this.anchorsTensor),s=me(a,this.doubleInputSizeTensor),i=_(ge(r,s),this.inputSizeTensor),o=_(se(r,s),this.inputSizeTensor);return fl([i,o],1)})}normalizeLandmarks(t,n){return W(()=>{let a=se(me(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return _(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=a.squeeze();a.dispose();let s=W(()=>wn(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let d=await Ye.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),u=d.arraySync();s.dispose(),d.dispose();let p=[];for(let c of u)if(i[c]>=n.hand.minConfidence){let h=Re(l,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=W(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=W(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let d=l.box.dataSync(),u=d.slice(0,2),p=d.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(Rk({startPoint:u,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function Uie(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function Fk(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Uie(n)}var $k=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Yr(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Hie(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function Dk(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(Yr(e[r],Hie(t,s)))}return n}function pg(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=$k(t[0],t[1]),i=Dk(s,r),o=$k(-t[0],-t[1]);return Dk(i,o)}function Ok(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-Yr(t[0],n),-Yr(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function cg(e,t){return[Yr(e,t[0]),Yr(e,t[1])]}var Gie=5,zk=1.65,_k=[0,5,9,13,17,1,2],qie=0,Xie=2,hg=class{constructor(t,n){var a;this.handDetector=t,this.landmarkDetector=n,this.inputSize=(a=this.landmarkDetector)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>cg([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return E0(C0(r),Gie)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=E0(C0(n),zk);a.palmLandmarks=[];for(let r=0;r<_k.length;r++)a.palmLandmarks.push(t[_k[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=T0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=pg(a,[0,0]),d=o.map(h=>[...cg(h,l),h[2]]),u=Ok(r),p=[...Jd(n),1],c=[Yr(p,u[0]),Yr(p,u[1])];return d.map(h=>[h[0]+c[0],h[1]+c[1],h[2]])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?Fk(o.palmLandmarks[qie],o.palmLandmarks[Xie]):0,d=Jd(o),u=[d[0]/t.shape[2],d[1]/t.shape[1]],p=n.hand.rotation?Ye.rotateWithOffset(t,l,0,u):t.clone(),c=pg(-l,d),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=Ck(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[A,y]=await this.landmarkDetector.predict(f);f.dispose();let g=A.dataSync()[0];if(A.dispose(),g>=n.hand.minConfidence){let x=H(y,[-1,3]),w=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(w,h,l,c),v=this.getBoxForHandLandmarks(b);this.storedBoxes[i]=v;let N={landmarks:b,confidence:g,box:{topLeft:v.startPoint,bottomRight:v.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=E0(C0(o),zk),d={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(d)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var Pk={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},Jr,Qr,Lk;async function fg(e,t){let n=await Lk.estimateHands(e,t);if(!n)return[];let a=[];for(let r of n){let s={};if(r.landmarks)for(let l of Object.keys(Pk))s[l]=Pk[l].map(d=>r.landmarks[d]);let i=r.box?[Math.max(0,r.box.topLeft[0]),Math.max(0,r.box.topLeft[1]),Math.min(e.shape[2],r.box.bottomRight[0])-Math.max(0,r.box.topLeft[0]),Math.min(e.shape[1],r.box.bottomRight[1])-Math.max(0,r.box.topLeft[1])]:[],o=[r.box.topLeft[0]/e.shape[2],r.box.topLeft[1]/e.shape[1],(r.box.bottomRight[0]-r.box.topLeft[0])/e.shape[2],(r.box.bottomRight[1]-r.box.topLeft[1])/e.shape[1]];a.push({confidence:Math.round(100*r.confidence)/100,box:i,boxRaw:o,landmarks:r.landmarks,annotations:s})}return a}async function mg(e){!Jr||!Qr?([Jr,Qr]=await Promise.all([e.hand.enabled?Gt(Yt(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Gt(Yt(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!Jr||!Jr.modelUrl?he("load model failed:",e.hand.detector.modelPath):e.debug&&he("load model:",Jr.modelUrl),!Qr||!Qr.modelUrl?he("load model failed:",e.hand.skeleton.modelPath):e.debug&&he("load model:",Qr.modelUrl))):(e.debug&&he("cached model:",Jr.modelUrl),e.debug&&he("cached model:",Qr.modelUrl));let t=new dg(Jr);return Lk=new hg(t,Qr),[Jr,Qr]}var xg={};fa(xg,{load:()=>yg,predict:()=>gg});var Wk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],Bk=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var En;async function yg(e){return En?e.debug&&he("cached model:",En.modelUrl):(En=await Gt(Yt(e.modelBasePath,e.body.modelPath)),En.width=parseInt(En.signature.inputs["input_1:0"].tensorShape.dim[2].size),En.height=parseInt(En.signature.inputs["input_1:0"].tensorShape.dim[1].size),!En||!En.modelUrl?he("load model failed:",e.body.modelPath):e.debug&&he("load model:",En.modelUrl)),En}async function gg(e,t){if(!En||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},a=Ye.resizeBilinear(e,[En.width,En.height],!1),r=me(a,[255]);a.dispose();let s=await En.predict(r),i=s.find(p=>p.size===195||p.size===155).dataSync();s.forEach(p=>p.dispose()),r.dispose();let o=[],l=i.length===195?Wk:Bk,d=5;for(let p=0;p<i.length/d;p++)o.push({id:p,part:l[p],position:{x:Math.trunc(n.width*i[d*p+0]/255),y:Math.trunc(n.height*i[d*p+1]/255),z:Math.trunc(i[d*p+2])+0},score:(100-Math.trunc(100/(1+Math.exp(i[d*p+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[d*p+4]))))/100});return[{score:o.reduce((p,c)=>c.score>p?c.score:p,0),keypoints:o}]}var kg={};fa(kg,{load:()=>vg,predict:()=>wg});var R0=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Cn,bg=[],M0=Number.MAX_SAFE_INTEGER,F0=2.5;async function vg(e){if(Cn)e.debug&&he("cached model:",Cn.modelUrl);else{Cn=await Gt(Yt(e.modelBasePath,e.object.modelPath));let t=Object.values(Cn.modelSignature.inputs);if(Cn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Cn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Cn||!Cn.modelUrl?he("load model failed:",e.object.modelPath):e.debug&&he("load model:",Cn.modelUrl)}return Cn}async function Kie(e,t,n,a){let r=0,s=[];for(let d of[1,2,4])W(()=>{var A,y;let u=d*13,p=(A=e.find(g=>g.shape[1]===u**2&&g.shape[2]===R0.length))==null?void 0:A.squeeze(),c=(y=e.find(g=>g.shape[1]===u**2&&g.shape[2]<R0.length))==null?void 0:y.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let g=0;g<p.shape[0];g++)for(let x=0;x<p.shape[1];x++){let w=f[g][x];if(w>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(g%u))/u,v=(.5+Math.trunc(g/u))/u,N=m[g].map(U=>U*(u/d/t)),[T,R]=[b-F0/d*N[0],v-F0/d*N[1]],[$,z]=[b+F0/d*N[2]-T,v+F0/d*N[3]-R],P=[T,R,$,z];P=P.map(U=>Math.max(0,Math.min(U,1)));let V=[P[0]*n[0],P[1]*n[1],P[2]*n[0],P[3]*n[1]],j={id:r++,strideSize:d,score:Math.round(100*w)/100,class:x+1,label:R0[x].label,center:[Math.trunc(n[0]*b),Math.trunc(n[1]*v)],centerRaw:[b,v],box:V.map(U=>Math.trunc(U)),boxRaw:P};s.push(j)}}});e.forEach(d=>Ee(d));let i=s.map(d=>d.boxRaw),o=s.map(d=>d.score),l=[];if(i&&i.length>0){let d=await Ye.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=d.dataSync(),Ee(d)}return s=s.filter((d,u)=>l.includes(u)).sort((d,u)=>u.score-d.score),s}async function wg(e,t){return Cn?M0<t.object.skipFrames&&t.videoOptimized&&bg.length>0?(M0++,bg):(t.videoOptimized?M0=0:M0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=Ye.resizeBilinear(e,[Cn.inputSize,Cn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await Cn.predict(i)),i.dispose();let l=await Kie(o,Cn.inputSize,a,t);bg=l,n(l)})):null}var Vk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},jk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},Uk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),d=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(d=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].annotations.rightEyeIris[0][0],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].annotations.leftEyeIris[0][0];(c>.033||p>.033)&&(d=!1),c>.033&&t.push({iris:n,gesture:"looking right"}),p>.033&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].annotations.rightEyeIris[0][1],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].annotations.leftEyeIris[0][1];(m<.015||h<.015||m>.03||h>.03)&&(d=!1),(m<.015||h<.015)&&t.push({iris:n,gesture:"looking down"}),(m>.03||h>.03)&&t.push({iris:n,gesture:"looking up"}),d&&t.push({iris:n,gesture:"looking center"})}return t},Hk=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};var Sg={};fa(Sg,{process:()=>Ig});function Zie(e,t,n){let a=function(o,l,d){let u=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(u,(p,c)=>(d[c]=0,p))},r=function(o,l){let d=e.createShader(l);if(e.shaderSource(d,o),e.compileShader(d),!e.getShaderParameter(d,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(d));return d};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function Gk(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,d=null,u=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let v=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:v})},this.reset=function(){i=[]};let A=function(b,v){if(!(b===o&&v===l)){if(c.width=b,o=b,c.height=v,l=v,!d){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);d=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,d),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,v){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let T=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,T);let R=f.createTexture();return f.bindTexture(f.TEXTURE_2D,R),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,v,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,R,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:R}},g=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var R,$;let v=null,N=null,T=!1;t===0?v=n:v=(R=g(r))==null?void 0:R.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,T=t%2==0):(r=(r+1)%2,N=($=g(r))==null?void 0:$.fbo),f.bindTexture(f.TEXTURE_2D,v),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(u.uniform.flipY,T?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(A(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let v=0;v<i.length;v++){a=v===i.length-1;let N=i[v];N.func.apply(this,N.args||[])}return c};let w=function(b){if(h[b])return u=h[b],f.useProgram(u.id),u;let v={};v.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
`),v.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
`),u=new Zie(f,v.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return f.enableVertexAttribArray(u.attribute.pos),f.vertexAttribPointer(u.attribute.pos,2,f.FLOAT,!1,T,0*N),f.enableVertexAttribArray(u.attribute.uv),f.vertexAttribPointer(u.attribute.uv,2,f.FLOAT,!1,T,2*N),h[b]=u,u};p.colorMatrix=function(b){let v=new Float32Array(b);v[4]/=255,v[9]/=255,v[14]/=255,v[19]/=255;let N=v[18]===1&&v[3]===0&&v[8]===0&&v[13]===0&&v[15]===0&&v[16]===0&&v[17]===0&&v[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,T=w(N);f.uniform1fv(T.uniform.m,v),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
`),p.brightness=function(b){let v=(b||0)+1;p.colorMatrix([v,0,0,0,0,0,v,0,0,0,0,0,v,0,0,0,0,0,1,0])},p.saturation=function(b){let v=(b||0)*2/3+1,N=(v-1)*-.5;p.colorMatrix([v,N,N,0,0,N,v,N,0,0,N,N,v,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let v=(b||0)+1,N=-128*(v-1);p.colorMatrix([v,0,0,0,N,0,v,0,0,N,0,0,v,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let v=Math.cos(b),N=Math.sin(b),T=.213,R=.715,$=.072;p.colorMatrix([T+v*(1-T)+N*-T,R+v*-R+N*-R,$+v*-$+N*(1-$),0,0,T+v*-T+N*.143,R+v*(1-R)+N*.14,$+v*-$+N*-.283,0,0,T+v*-T+N*-(1-T),R+v*-R+N*R,$+v*(1-$)+N*$,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let v=new Float32Array(b),N=1/o,T=1/l,R=w(p.convolution.SHADER);f.uniform1fv(R.uniform.m,v),f.uniform2f(R.uniform.px,N,T),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let v=b||1;p.convolution.call(this,[0,-1*v,0,-1*v,1+4*v,-1*v,0,-1*v,0])},p.emboss=function(b){let v=b||1;p.convolution.call(this,[-2*v,-1*v,0,-1*v,1,1*v,0,1*v,2*v])},p.blur=function(b){let v=b/7/o,N=b/7/l,T=w(p.blur.SHADER);f.uniform2f(T.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(T.uniform.px,v,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
`),p.pixelate=function(b){let v=b/o,N=b/l,T=w(p.pixelate.SHADER);f.uniform2f(T.uniform.size,v,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
`)}var $0=2048,Ce,yt,Ft;function Ig(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Le)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Le)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Oa(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=r,o=s;if(i>$0&&(i=$0,o=i*s/r),o>$0&&(o=$0,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ce||(Ce==null?void 0:Ce.width)!==i||(Ce==null?void 0:Ce.height)!==o)&&(Ce=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ce==null?void 0:Ce.width)!==i&&(Ce.width=i),(Ce==null?void 0:Ce.height)!==o&&(Ce.height=o));let l=Ce.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height),t.filter.enabled){if((!Ft||!yt||Ce.width!==yt.width||(Ce==null?void 0:Ce.height)!==(yt==null?void 0:yt.height))&&(yt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ce==null?void 0:Ce.width,Ce==null?void 0:Ce.height):document.createElement("canvas"),(yt==null?void 0:yt.width)!==(Ce==null?void 0:Ce.width)&&(yt.width=Ce==null?void 0:Ce.width),(yt==null?void 0:yt.height)!==(Ce==null?void 0:Ce.height)&&(yt.height=Ce==null?void 0:Ce.height),Ft=ma.flags.IS_BROWSER?new Gk({canvas:yt}):null),!Ft)return{tensor:null,canvas:Ce};Ft.reset(),Ft.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Ft.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Ft.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Ft.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Ft.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Ft.addFilter("hue",t.filter.hue),t.filter.negative&&Ft.addFilter("negative"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.vintage&&Ft.addFilter("brownie"),t.filter.sepia&&Ft.addFilter("sepia"),t.filter.kodachrome&&Ft.addFilter("kodachrome"),t.filter.technicolor&&Ft.addFilter("technicolor"),t.filter.polaroid&&Ft.addFilter("polaroid"),t.filter.pixelate!==0&&Ft.addFilter("pixelate",t.filter.pixelate),Ft.apply(Ce)}else yt=Ce,Ft&&(Ft=null);let d;if(yt.data){let p=[yt.height,yt.width,3];d=mc(yt.data,p,"int32")}else if(yt instanceof ImageData)d=li.fromPixels(yt);else if(t.backend==="webgl"||t.backend==="humangl"){let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0),d=li.fromPixels(p)}else{let p=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");p.width=i,p.height=o;let c=p.getContext("2d");c==null||c.drawImage(yt,0,0);let h=c==null?void 0:c.getImageData(0,0,i,o);d=li.fromPixels(h)}let u=d.toFloat();n=u.expandDims(0),d.dispose(),u.dispose()}let a=t.filter.return?yt:null;return{tensor:n,canvas:a}}var Tg={};fa(Tg,{all:()=>Jie,body:()=>Kk,canvas:()=>Yie,face:()=>Xk,gesture:()=>qk,hand:()=>Zk,object:()=>Yk,options:()=>_i});var _i={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!1,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1,calculateHandBox:!0};function D0(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function Pi(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function Ng(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t)e.strokeStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&a[2]?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.3)`:n.color,e.lineTo(a[0],parseInt(a[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function Qd(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){Ng(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function qk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let d=o[1]>0?`#${o[1]}`:"",u=`${o[0]} ${d}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(u,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(u,6,0+s*a.lineHeight),s+=1}}}async function Xk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let s of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&(a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a));let i=[];if(i.push(`face confidence: ${Math.trunc(100*s.confidence)}%`),s.genderConfidence&&i.push(`${s.gender||""} ${Math.trunc(100*s.genderConfidence)}% confident`),s.age&&i.push(`age: ${s.age||""}`),s.iris&&i.push(`iris distance: ${s.iris}`),s.emotion&&s.emotion.length>0){let o=s.emotion.map(l=>`${Math.trunc(100*l.score)}% ${l.emotion}`);i.push(o.join(" "))}s.rotation&&s.rotation.angle&&s.rotation.angle.roll&&i.push(`roll: ${Math.trunc(100*s.rotation.angle.roll)/100} yaw:${Math.trunc(100*s.rotation.angle.yaw)/100} pitch:${Math.trunc(100*s.rotation.angle.pitch)/100}`),i.length===0&&i.push("face"),r.fillStyle=a.color;for(let o=i.length-1;o>=0;o--){let l=Math.max(s.box[0],0),d=o*a.lineHeight+s.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i[o],l+5,d+16)),r.fillStyle=a.labelColor,r.fillText(i[o],l+4,d+15)}if(r.lineWidth=1,s.mesh&&s.mesh.length>0){if(a.drawPoints)for(let o of s.mesh)D0(r,o[0],o[1],o[2],a);if(a.drawPolygons){r.lineWidth=1;for(let o=0;o<zi.length/3;o++){let l=[zi[o*3+0],zi[o*3+1],zi[o*3+2]].map(d=>s.mesh[d]);Ng(r,l,a)}if(s.annotations&&s.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.leftEyeIris[3][0]-s.annotations.leftEyeIris[1][0])/2,l=Math.abs(s.annotations.leftEyeIris[4][1]-s.annotations.leftEyeIris[2][1])/2;r.ellipse(s.annotations.leftEyeIris[0][0],s.annotations.leftEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(s.annotations&&s.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let o=Math.abs(s.annotations.rightEyeIris[3][0]-s.annotations.rightEyeIris[1][0])/2,l=Math.abs(s.annotations.rightEyeIris[4][1]-s.annotations.rightEyeIris[2][1])/2;r.ellipse(s.annotations.rightEyeIris[0][0],s.annotations.rightEyeIris[0][1],o,l,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}}}}}var es=[];async function Kk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let s=0;s<t.length;s++){if(!es[s]&&a.bufferedOutput&&(es[s]={...t[s]}),r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&(Pi(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[s].score}%`,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2]))),a.drawPoints)for(let i=0;i<t[s].keypoints.length;i++)r.fillStyle=a.useDepth&&t[s].keypoints[i].position.z?`rgba(${127.5+2*t[s].keypoints[i].position.z}, ${127.5-2*t[s].keypoints[i].position.z}, 255, 0.5)`:a.color,a.bufferedOutput?(es[s].keypoints[i][0]=(es[s].keypoints[i][0]+t[s].keypoints[i].position.x)/2,es[s].keypoints[i][1]=(es[s].keypoints[i][1]+t[s].keypoints[i].position.y)/2,D0(r,es[s].keypoints[i][0],es[s].keypoints[i][1],0,a)):D0(r,t[s].keypoints[i].position.x,t[s].keypoints[i].position.y,0,a);if(a.drawLabels&&(r.font=a.font,t[s].keypoints))for(let i of t[s].keypoints)r.fillStyle=a.useDepth&&i.position.z?`rgba(${127.5+2*i.position.z}, ${127.5-2*i.position.z}, 255, 0.5)`:a.color,r.fillText(`${i.part} ${Math.trunc(100*i.score)}%`,i.position.x+4,i.position.y+4);if(a.drawPolygons&&t[s].keypoints){let i,o=[];o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),Qd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),o.length===4&&Ng(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftKnee"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftAnkle"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftHeel"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftFoot"),i&&o.push([i.position.x,i.position.y]),Qd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightHip"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightKnee"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightAnkle"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightHeel"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightFoot"),i&&o.push([i.position.x,i.position.y]),Qd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="leftShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftElbow"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftWrist"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="leftPalm"),i&&o.push([i.position.x,i.position.y]),Qd(r,o,a),o.length=0,i=t[s].keypoints.find(l=>l.part==="rightShoulder"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightElbow"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightWrist"),i&&o.push([i.position.x,i.position.y]),i=t[s].keypoints.find(l=>l.part==="rightPalm"),i&&o.push([i.position.x,i.position.y]),Qd(r,o,a)}}}}async function Zk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes){r.strokeStyle=a.color,r.fillStyle=a.color;let i;if(!a.calculateHandBox)i=a.useRawBoxes?s.boxRaw:s.box;else if(i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],s.landmarks&&s.landmarks.length>0){for(let o of s.landmarks)o[0]<i[0]&&(i[0]=o[0]),o[1]<i[1]&&(i[1]=o[1]),o[0]>i[2]&&(i[2]=o[0]),o[1]>i[3]&&(i[3]=o[1]);i[2]-=i[0],i[3]-=i[1]}a.useRawBoxes?Pi(r,e.width*i[0],e.height*i[1],e.width*i[2],e.height*i[3],a):Pi(r,i[0],i[1],i[2],i[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",i[0]+3,1+i[1]+a.lineHeight,i[2])),r.fillStyle=a.labelColor,r.fillText("hand",i[0]+2,0+i[1]+a.lineHeight,i[2])),r.stroke()}if(a.drawPoints&&s.landmarks&&s.landmarks.length>0)for(let i of s.landmarks)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,D0(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function Yk(e,t,n){let a=Hn(_i,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,a.useRawBoxes?Pi(r,e.width*s.boxRaw[0],e.height*s.boxRaw[1],e.width*s.boxRaw[2],e.height*s.boxRaw[3],a):Pi(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function Yie(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Jie(e,t,n){let a=Hn(_i,n);!t||!e||e instanceof HTMLCanvasElement&&(Xk(e,t.face,a),Kk(e,t.body,a),Zk(e,t.hand,a),qk(e,t.gesture,a),Yk(e,t.object,a))}var O0=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,z0=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;var Jk="1.8.5";var tu,ep,tp,Li,_0,np,P0,L0,W0,Qk=class{constructor(t={}){Fa(this,tu,void 0);Fa(this,ep,void 0);Fa(this,tp,void 0);Fa(this,Li,void 0);this.analyze=(...t)=>{if(!na(this,ep))return;let n=this.tf.engine().state.numTensors,a=na(this,tu);rs(this,tu,n);let r=n-a;r!==0&&he(...t,r)};Fa(this,_0,t=>{if(!na(this,tp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Le))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});Fa(this,np,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=it();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&he("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&he("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&he("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&he(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&he("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&ik();try{await this.tf.setBackend(this.config.backend)}catch(r){he("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&(he("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&he(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.perf.backend=Math.trunc(it()-a)}});Fa(this,P0,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(O0);break;case"full":n=await t(z0);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});Fa(this,L0,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+O0;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+z0;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));Fa(this,W0,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(O0)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(z0)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&he("Warmup tfjs-node not loaded");return a});this.tf=qd,this.draw=Tg,this.version=Jk,this.config=Hn(Bg,t),this.state="idle",rs(this,tu,0),rs(this,ep,!1),rs(this,tp,!1),rs(this,Li,!0),this.perf={},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,faceres:null},this.image=n=>Ig(n,this.config),this.classes={facemesh:G2,emotion:Z2,faceres:eg,body:this.config.body.modelPath.includes("posenet")?ug:xg,hand:Ag,nanodet:kg},this.faceTriangulation=gk,this.faceUVMap=xk,this.sysinfo=Vg()}similarity(t,n){return J2(t,n)}enhance(t){return Q2(t)}match(t,n,a=0){return bk(t,n,a)}async load(t={}){this.state="load";let n=it();t&&(this.config=Hn(this.config,t)),na(this,Li)&&(this.config.debug&&he(`version: ${this.version}`),this.config.debug&&he(`tfjs version: ${this.tf.version_core}`),this.config.debug&&he("platform:",this.sysinfo.platform),this.config.debug&&he("agent:",this.sysinfo.agent),await na(this,np).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&he("configuration:",this.config),this.config.debug&&he("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet,this.models.faceres]=await Promise.all([this.models.face||(this.config.face.enabled?H2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?K2(this.config):null),this.models.handpose||(this.config.hand.enabled?mg(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?lg(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?yg(this.config):null),this.models.nanodet||(this.config.object.enabled?vg(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?Y2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await H2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await K2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await mg(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await lg(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await yg(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await vg(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await Y2(this.config))),na(this,Li)&&(this.config.debug&&he("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),rs(this,Li,!1));let a=Math.trunc(it()-n);a>(this.perf.load||0)&&(this.perf.load=a)}async detect(t,n={}){return new Promise(async a=>{this.state="config";let r;this.config=Hn(this.config,n),this.state="check";let s=na(this,_0).call(this,t);s&&(he(s,t),a({error:s}));let i=it();await na(this,np).call(this),await this.load();let o;t&&this.config.videoOptimized&&typeof window!="undefined"&&typeof WorkerGlobalScope!="undefined"&&(typeof HTMLImageElement!="undefined"&&t instanceof HTMLImageElement||typeof Image!="undefined"&&t instanceof Image||typeof ImageData!="undefined"&&t instanceof ImageData||typeof ImageBitmap!="undefined"&&Sg instanceof ImageBitmap)&&(he("disabling video optimization"),o=this.config.videoOptimized,this.config.videoOptimized=!1),r=it();let l=Ig(t,this.config);if(!l||!l.tensor){he("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}this.perf.image=Math.trunc(it()-r),this.analyze("Get Image:");let d,u,p,c,h;this.config.async?(p=this.config.face.enabled?tg(this,l.tensor):[],this.perf.face&&delete this.perf.face):(this.state="run:face",r=it(),p=this.config.face.enabled?await tg(this,l.tensor):[],h=Math.trunc(it()-r),h>0&&(this.perf.face=h)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?og(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(d=this.config.body.enabled?gg(l.tensor,this.config):[]),this.perf.body&&delete this.perf.body):(this.state="run:body",r=it(),this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?await og(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")&&(d=this.config.body.enabled?await gg(l.tensor,this.config):[]),h=Math.trunc(it()-r),h>0&&(this.perf.body=h)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(u=this.config.hand.enabled?fg(l.tensor,this.config):[],this.perf.hand&&delete this.perf.hand):(this.state="run:hand",r=it(),u=this.config.hand.enabled?await fg(l.tensor,this.config):[],h=Math.trunc(it()-r),h>0&&(this.perf.hand=h)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(c=this.config.object.enabled?wg(l.tensor,this.config):[],this.perf.object&&delete this.perf.object):(this.state="run:object",r=it(),c=this.config.object.enabled?await wg(l.tensor,this.config):[],h=Math.trunc(it()-r),h>0&&(this.perf.object=h)),this.analyze("End Object:"),this.config.async&&([p,d,u,c]=await Promise.all([p,d,u,c])),Ee(l.tensor);let m=[];this.config.gesture.enabled&&(r=it(),m=[...jk(p),...Vk(d),...Hk(u),...Uk(p)],this.config.async?this.perf.gesture&&delete this.perf.gesture:this.perf.gesture=Math.trunc(it()-r)),o&&(this.config.videoOptimized=o),this.perf.total=Math.trunc(it()-i),this.state="idle";let f={face:p,body:d,hand:u,gesture:m,object:c,performance:this.perf,canvas:l.canvas};a(f)})}async warmup(t={}){let n=it();if(t&&(this.config=Hn(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a=this.config.videoOptimized;this.config.videoOptimized=!1;let r;typeof createImageBitmap=="function"?r=await na(this,P0).call(this):typeof Image!="undefined"?r=await na(this,L0).call(this):r=await na(this,W0).call(this),this.config.videoOptimized=a;let s=it();return this.config.debug&&he("Warmup",this.config.warmup,Math.round(s-n),"ms",r),r}};tu=new WeakMap,ep=new WeakMap,tp=new WeakMap,Li=new WeakMap,_0=new WeakMap,np=new WeakMap,P0=new WeakMap,L0=new WeakMap,W0=new WeakMap;return eoe;})();
/**
* @license
* Copyright 2017 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2018 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* =============================================================================
*/
/**
* @license
* Copyright 2019 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google Inc. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2020 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the License);
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/**
* @license
* Copyright 2021 Google LLC. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
* =============================================================================
*/
/** @license See the LICENSE file. */