mirror of https://github.com/vladmandic/human
5156 lines
1.3 MiB
5156 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
|
|
var q8=Object.create,Eh=Object.defineProperty,X8=Object.getPrototypeOf,K8=Object.prototype.hasOwnProperty,Z8=Object.getOwnPropertyNames,Y8=Object.getOwnPropertyDescriptor;var gf=e=>Eh(e,"__esModule",{value:!0});var e5=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),or=(e,t)=>{for(var n in t)Eh(e,n,{get:t[n],enumerable:!0})},J8=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of Z8(t))!K8.call(e,r)&&r!=="default"&&Eh(e,r,{get:()=>t[r],enumerable:!(n=Y8(t,r))||n.enumerable});return e},Ch=e=>J8(gf(Eh(e!=null?q8(X8(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e);var t5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)},ye=(e,t,n)=>(t5(e,t,"read from private field"),n?n.call(e):t.get(e)),oa=(e,t,n,r)=>(t5(e,t,"write to private field"),r?r.call(e,n):t.set(e,n),n);var q6=e5(G6=>{gf(G6);or(G6,{MediaPipeFaceMesh:()=>Wy,load:()=>Jae});var Wy=class{constructor(t,n,r,a){this.facePipeline=new Ly(t,n,r),this.config=a}async estimateFaces(t,n){let r=await this.facePipeline.predict(t,n),a=[];for(let s of r||[]){if(s.isDisposedInternal)continue;let i=s.coords?s.coords.arraySync():[],o=i.map(h=>[h[0]/t.shape[2],h[1]/t.shape[1],h[2]/this.facePipeline.meshSize]),l={};if(i&&i.length>0)for(let h of Object.keys(ea))l[h]=ea[h].map(d=>i[d]);let u=s.box?[Math.max(0,s.box.startPoint[0]),Math.max(0,s.box.startPoint[1]),Math.min(t.shape[1],s.box.endPoint[0])-Math.max(0,s.box.startPoint[0]),Math.min(t.shape[2],s.box.endPoint[1])-Math.max(0,s.box.startPoint[1])]:0,c=s.box?[s.box.startPoint[0]/t.shape[2],s.box.startPoint[1]/t.shape[1],(s.box.endPoint[0]-s.box.startPoint[0])/t.shape[2],(s.box.endPoint[1]-s.box.startPoint[1])/t.shape[1]]:[];a.push({confidence:s.faceConfidence||s.boxConfidence||0,boxConfidence:s.boxConfidence,faceConfidence:s.faceConfidence,box:u,boxRaw:c,mesh:i,meshRaw:o,annotations:l,image:s.image?s.image.clone():null}),s.coords&&s.coords.dispose(),s.image&&s.image.dispose()}return a}},Bi=[null,null,null];async function Jae(e){Bi=await Promise.all([!Bi[0]&&e.face.enabled?L6(e):null,!Bi[1]&&e.face.mesh.enabled?Ft(e.face.mesh.modelPath,{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Bi[2]&&e.face.iris.enabled?Ft(e.face.iris.modelPath,{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]);let t=new Wy(Bi[0],Bi[1],Bi[2],e);return e.face.mesh.enabled&&e.debug&&Me(`load model: ${e.face.mesh.modelPath.match(/\/(.*)\./)[1]}`),e.face.iris.enabled&&e.debug&&Me(`load model: ${e.face.iris.modelPath.match(/\/(.*)\./)[1]}`),t}G6.triangulation=Wi});var F0=e5(u2=>{gf(u2);or(u2,{NUM_KEYPOINTS:()=>rse,connectedPartIndices:()=>sse,partChannels:()=>ose,partIds:()=>c2,partNames:()=>nse,poseChain:()=>ise});var nse=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],rse=u2.partNames.length,c2=u2.partNames.reduce((e,t,n)=>(e[t]=n,e),{}),ase=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],sse=ase.map(([e,t])=>[c2[e],c2[t]]),ise=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]],ose=["left_face","right_face","right_upper_leg_front","right_lower_leg_back","right_upper_leg_back","left_lower_leg_front","left_upper_leg_front","left_upper_leg_back","left_lower_leg_back","right_feet","right_lower_leg_front","left_feet","torso_front","torso_back","right_upper_arm_front","right_upper_arm_back","right_lower_arm_back","left_lower_arm_front","left_upper_arm_front","left_upper_arm_back","left_lower_arm_back","right_hand","right_lower_arm_front","left_hand"]});function Me(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function n5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);n&&n[0]&&(e=n[0].match(/\(([^()]+)\)/g)[0].replace(/\(|\)/g,""),t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," "))}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var Rh={};or(Rh,{Abs:()=>io,Acos:()=>oo,Acosh:()=>lo,AdadeltaOptimizer:()=>rp,AdagradOptimizer:()=>ap,AdamOptimizer:()=>sp,AdamaxOptimizer:()=>ip,Add:()=>Fa,AddN:()=>ms,All:()=>zh,Any:()=>Ph,ArgMax:()=>As,ArgMin:()=>xu,Asin:()=>uo,Asinh:()=>co,Atan:()=>ho,Atan2:()=>fo,Atanh:()=>po,AvgPool:()=>gs,AvgPool3D:()=>wu,AvgPool3DGrad:()=>Wh,AvgPoolGrad:()=>Lh,BackendWasm:()=>j3,BatchMatMul:()=>ys,BatchToSpaceND:()=>bu,Bincount:()=>Bh,BroadcastTo:()=>x5,Callback:()=>Ov,CallbackList:()=>$7,Cast:()=>xs,Ceil:()=>ws,ClipByValue:()=>Ma,Complex:()=>Vh,ComplexAbs:()=>_u,Concat:()=>mo,Conv2D:()=>bs,Conv2DBackpropFilter:()=>Uh,Conv2DBackpropInput:()=>_s,Conv3D:()=>vu,Conv3DBackpropFilterV2:()=>Hh,Conv3DBackpropInputV2:()=>jh,Cos:()=>vs,Cosh:()=>Ao,CropAndResize:()=>go,Cumsum:()=>ks,CustomCallback:()=>O7,DataStorage:()=>Mh,DenseBincount:()=>Gh,DepthToSpace:()=>yo,DepthwiseConv2dNative:()=>Is,DepthwiseConv2dNativeBackpropFilter:()=>qh,DepthwiseConv2dNativeBackpropInput:()=>Xh,Diag:()=>Kh,Dilation2D:()=>ku,Dilation2DBackpropFilter:()=>Yh,Dilation2DBackpropInput:()=>Zh,ENV:()=>_r,EarlyStopping:()=>Pv,Elu:()=>xo,EluGrad:()=>Jh,Environment:()=>g5,Equal:()=>bo,Erf:()=>wo,Exp:()=>Ss,ExpandDims:()=>_o,Expm1:()=>vo,FFT:()=>Qh,Fill:()=>Iu,FlipLeftRight:()=>ko,Floor:()=>Ts,FloorDiv:()=>Es,FromPixels:()=>fd,FusedBatchNorm:()=>Cs,FusedConv2D:()=>li,FusedDepthwiseConv2D:()=>ui,GPGPUContext:()=>vp,GatherNd:()=>No,GatherV2:()=>Io,GraphModel:()=>f6,Greater:()=>So,GreaterEqual:()=>Rs,History:()=>D7,IFFT:()=>ed,Identity:()=>Fs,Imag:()=>td,InputSpec:()=>Qt,IsFinite:()=>To,IsInf:()=>Eo,IsNan:()=>Co,KernelBackend:()=>Au,LRN:()=>Tu,LRNGrad:()=>rd,LayerVariable:()=>E7,LayersModel:()=>ya,LeakyRelu:()=>Ms,Less:()=>Ro,LessEqual:()=>Fo,LinSpace:()=>nd,Log:()=>$s,Log1p:()=>Mo,LogSoftmax:()=>w5,LogicalAnd:()=>$o,LogicalNot:()=>Nu,LogicalOr:()=>Su,MathBackendCPU:()=>cp,MathBackendWebGL:()=>Wl,Max:()=>Ds,MaxPool:()=>zs,MaxPool3D:()=>Eu,MaxPool3DGrad:()=>sd,MaxPoolGrad:()=>ad,MaxPoolWithArgmax:()=>id,Maximum:()=>Os,Mean:()=>Ps,Min:()=>Ls,Minimum:()=>Ws,MirrorPad:()=>Cu,Mod:()=>Do,MomentumOptimizer:()=>op,Multinomial:()=>od,Multiply:()=>Bs,Neg:()=>Oo,NonMaxSuppressionV3:()=>Po,NonMaxSuppressionV4:()=>Lo,NonMaxSuppressionV5:()=>Wo,NotEqual:()=>zo,OP_SCOPE_SUFFIX:()=>R5,OneHot:()=>Vs,OnesLike:()=>Bo,Optimizer:()=>fa,Pack:()=>Vo,PadV2:()=>Us,Pool:()=>Qk,Pow:()=>Hs,Prelu:()=>js,Prod:()=>Uo,RMSPropOptimizer:()=>lp,RNN:()=>Jr,Range:()=>Ru,Rank:()=>Tf,Real:()=>ld,RealDiv:()=>Ns,Reciprocal:()=>Ho,Reduction:()=>gn,Relu:()=>Gs,Relu6:()=>Xs,Reshape:()=>jo,ResizeBilinear:()=>qs,ResizeBilinearGrad:()=>cd,ResizeNearestNeighbor:()=>Fu,ResizeNearestNeighborGrad:()=>ud,Reverse:()=>Ks,RotateWithOffset:()=>sl,Round:()=>Zs,Rsqrt:()=>Ys,SGDOptimizer:()=>hc,ScatterNd:()=>Go,Select:()=>qo,Selu:()=>Xo,Sequential:()=>Zl,Sigmoid:()=>Qs,Sign:()=>Yo,Sin:()=>Js,Sinh:()=>Zo,Slice:()=>Ko,Softmax:()=>ni,Softplus:()=>Jo,SpaceToBatchND:()=>Mu,SparseToDense:()=>hd,SplitV:()=>Qo,Sqrt:()=>ei,Square:()=>$u,SquaredDifference:()=>ri,Step:()=>Da,StridedSlice:()=>el,Sub:()=>ai,Sum:()=>ti,SymbolicTensor:()=>Rr,Tan:()=>tl,Tanh:()=>si,Tensor:()=>qe,TensorBuffer:()=>Bt,Tile:()=>$a,TopK:()=>nl,Transform:()=>dd,Transpose:()=>ii,Unique:()=>pd,Unpack:()=>rl,UnsortedSegmentSum:()=>Du,Variable:()=>Vu,ZerosLike:()=>al,_FusedMatMul:()=>oi,abs:()=>Vt,acos:()=>em,acosh:()=>tm,add:()=>ie,addN:()=>Wa,all:()=>Nd,any:()=>qu,argMax:()=>Xu,argMin:()=>nm,asin:()=>rm,asinh:()=>am,atan:()=>sm,atan2:()=>im,atanh:()=>om,avgPool:()=>Zu,avgPool3d:()=>cm,backend:()=>dx,backend_util:()=>R,basicLSTMCell:()=>RN,batchNorm:()=>Ai,batchNorm2d:()=>Ax,batchNorm3d:()=>gx,batchNorm4d:()=>yx,batchToSpaceND:()=>Yu,bincount:()=>xx,booleanMaskAsync:()=>OE,broadcastTo:()=>Ju,browser:()=>pl,buffer:()=>Ue,callbacks:()=>nre,cast:()=>xe,ceil:()=>hm,clipByValue:()=>Sn,clone:()=>Lr,complex:()=>Oa,concat:()=>ot,concat1d:()=>wx,concat2d:()=>yl,concat3d:()=>bx,concat4d:()=>_x,constraints:()=>n7,conv1d:()=>Td,conv2d:()=>ca,conv2dTranspose:()=>Ed,conv3d:()=>pm,conv3dTranspose:()=>QN,copyRegisteredKernels:()=>n9,cos:()=>Qu,cosh:()=>Cd,cosineWindow:()=>Wm,cumsum:()=>Rd,customGrad:()=>Vr,data:()=>m6,denseBincount:()=>kx,deprecationWarn:()=>Jf,depthToSpace:()=>fm,depthwiseConv2d:()=>xl,deregisterOp:()=>are,device_util:()=>Hu,diag:()=>oS,dilation2d:()=>mm,disableDeprecationWarnings:()=>jI,dispose:()=>Re,disposeVariables:()=>GI,div:()=>_e,divNoNan:()=>Am,dot:()=>Ix,dropout:()=>Gx,elu:()=>wl,enableDebugMode:()=>HI,enableProdMode:()=>UI,enclosingPowerOfTwo:()=>qx,engine:()=>Wr,env:()=>J,equal:()=>Va,erf:()=>gm,exp:()=>Qn,expandDims:()=>mn,expm1:()=>ym,eye:()=>xm,fft:()=>uc,fill:()=>ec,findBackend:()=>Qf,findBackendFactory:()=>JI,floor:()=>bl,floorDiv:()=>Id,forceHalfFloat:()=>a_,fused:()=>Ga,gather:()=>gi,gatherND:()=>jx,gather_util:()=>jf,getBackend:()=>ZI,getGradient:()=>If,getKernel:()=>md,getKernelsForBackend:()=>ol,gpgpu_util:()=>Tb,grad:()=>OS,grads:()=>zS,greater:()=>hr,greaterEqual:()=>Ha,ifft:()=>Nl,imag:()=>Fd,image:()=>Ke,inTopKAsync:()=>qE,initializers:()=>u7,input:()=>_7,io:()=>Nn,irfft:()=>Xd,isFinite:()=>Nx,isInf:()=>Sx,isNaN:()=>Tx,keep:()=>Zt,kernel_impls:()=>Gr,layers:()=>b7,leakyRelu:()=>tc,less:()=>Md,lessEqual:()=>yi,linalg:()=>sw,linspace:()=>Ex,loadGraphModel:()=>Ft,loadLayersModel:()=>_ne,localResponseNormalization:()=>wm,log:()=>zn,log1p:()=>$d,logSigmoid:()=>Rx,logSoftmax:()=>Od,logSumExp:()=>vm,logicalAnd:()=>dr,logicalNot:()=>nc,logicalOr:()=>zd,logicalXor:()=>Dx,losses:()=>cR,matMul:()=>Ye,math:()=>q5,max:()=>er,maxPool:()=>rc,maxPool3d:()=>km,maxPoolWithArgmax:()=>Ox,maximum:()=>Ur,mean:()=>Tt,memory:()=>kd,metrics:()=>Mv,min:()=>vl,minimum:()=>kl,mirrorPad:()=>Im,mod:()=>Nm,model:()=>wne,models:()=>$v,moments:()=>Pd,movingAverage:()=>LE,mul:()=>O,multiRNNCell:()=>dT,multinomial:()=>zx,neg:()=>St,nextFrame:()=>up,norm:()=>Jd,notEqual:()=>wi,oneHot:()=>dl,ones:()=>Hr,onesLike:()=>Pn,op:()=>D,outerProduct:()=>gT,pad:()=>ha,pad1d:()=>wT,pad2d:()=>_T,pad3d:()=>kT,pad4d:()=>NT,pool:()=>Px,pow:()=>da,prelu:()=>sc,print:()=>B5,prod:()=>Ld,profile:()=>Jn,rand:()=>DT,randomGamma:()=>LT,randomNormal:()=>Lx,randomUniform:()=>Il,range:()=>Wd,ready:()=>KI,real:()=>ic,reciprocal:()=>Em,registerBackend:()=>ml,registerCallbackConstructor:()=>vne,registerGradient:()=>b5,registerKernel:()=>ci,registerOp:()=>rre,regularizers:()=>Dv,relu:()=>jr,relu6:()=>Bd,removeBackend:()=>YI,reshape:()=>j,reverse:()=>Ln,reverse1d:()=>XT,reverse2d:()=>ZT,reverse3d:()=>JT,reverse4d:()=>eE,rfft:()=>cc,round:()=>Cm,rsqrt:()=>Vd,scalar:()=>Ne,scatterND:()=>Hx,scatter_util:()=>Gf,selu:()=>Ud,separableConv2d:()=>Rm,sequential:()=>bne,serialization:()=>ae,setBackend:()=>XI,setPlatform:()=>QI,setWasmPath:()=>gY,setWasmPaths:()=>yY,setWebGLContext:()=>xp,setdiff1dAsync:()=>Wx,shared:()=>Hm,sigmoid:()=>On,sign:()=>Fm,signal:()=>uR,sin:()=>Hd,sinh:()=>jd,slice:()=>$e,slice1d:()=>Gd,slice2d:()=>Mm,slice3d:()=>qd,slice4d:()=>oc,slice_util:()=>fn,softmax:()=>lc,softplus:()=>_l,spaceToBatchND:()=>ac,sparseToDense:()=>Lm,spectral:()=>lR,split:()=>Ht,sqrt:()=>an,square:()=>ht,squaredDifference:()=>Kd,squeeze:()=>ja,stack:()=>An,step:()=>Sl,stridedSlice:()=>$m,sub:()=>be,sum:()=>Fe,sumOutType:()=>xd,tan:()=>Dm,tanh:()=>gl,tensor:()=>Ir,tensor1d:()=>hn,tensor2d:()=>En,tensor3d:()=>_d,tensor4d:()=>NE,tensor5d:()=>SE,tensor6d:()=>TE,tensor_util:()=>vr,test_util:()=>ux,tidy:()=>L,tile:()=>Ua,time:()=>qI,topk:()=>Om,train:()=>_i,transpose:()=>it,truncatedNormal:()=>Zd,unique:()=>Yd,unregisterGradient:()=>t9,unregisterKernel:()=>e9,unsortedSegmentSum:()=>zm,unstack:()=>pr,upcastType:()=>cr,util:()=>v,valueAndGrad:()=>PS,valueAndGrads:()=>LS,variable:()=>Bx,variableGrads:()=>Cx,version:()=>Uae,version_converter:()=>rae,version_core:()=>VI,version_cpu:()=>Dw,version_layers:()=>ug,version_wasm:()=>q3,version_webgl:()=>r_,webgl:()=>DL,webgl_util:()=>nb,where:()=>Tn,whereAsync:()=>Pm,zeros:()=>Ot,zerosLike:()=>Xe});var Q8=Object.create,Fh=Object.defineProperty,ek=Object.getPrototypeOf,tk=Object.prototype.hasOwnProperty,nk=Object.getOwnPropertyNames,rk=Object.getOwnPropertyDescriptor,ak=e=>Fh(e,"__esModule",{value:!0}),It=(e,t)=>()=>(t||(t={exports:{}},e(t.exports,t)),t.exports),We=(e,t)=>{for(var n in t)Fh(e,n,{get:t[n],enumerable:!0})},sk=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of nk(t))!tk.call(e,r)&&r!=="default"&&Fh(e,r,{get:()=>t[r],enumerable:!(n=rk(t,r))||n.enumerable});return e},ro=e=>sk(ak(Fh(e!=null?Q8(ek(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),ik=It(()=>{}),ok=It((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=h.toString();for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),lk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),uk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),ck=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hk=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,g,y=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A<w;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(g=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;h.w=g,h.X=y,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),dk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),r5=It(()=>{}),pk=It((e,t)=>{(function(n,r){var a=this,s=256,i=6,o=52,l="random",u=r.pow(s,i),c=r.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=y(g(x.entropy?[_,b(n)]:_==null?w():_,3),T),M=new m(T),z=function(){for(var B=M.g(i),V=u,U=0;B<c;)B=(B+U)*s,V*=s,U=M.g(1);for(;B>=h;)B/=2,V/=2,U>>>=1;return(B+U)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,y(b(M.S),n),(x.pass||N||function(B,V,U,H){return H&&(H.S&&A(H,M),B.state=function(){return A(M,{})}),U?(r[l]=B,V):B})(z,E,"global"in x?x.global:this==r,x.state)}r["seed"+l]=f;function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(_=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+_[E%N]+(x=z[E])],z[M]=x;(T.g=function(B){for(var V,U=0,H=T.i,X=T.j,G=T.S;B--;)V=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+V])+(G[X]=V)];return T.i=H,T.j=X,U})(s)}function A(_,x){return x.i=_.i,x.j=_.j,x.S=_.S.slice(),x}function g(_,x){var N=[],T=typeof _,E;if(x&&T=="object")for(E in _)try{N.push(g(_[E],x-1))}catch(M){}return N.length?N:T=="string"?_:_+"\0"}function y(_,x){for(var N=_+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function w(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(a.crypto||a.msCrypto).getRandomValues(_)),b(_)}catch(T){var x=a.navigator,N=x&&x.plugins;return[+new Date,a,N,a.screen,b(n)]}}function b(_){return String.fromCharCode.apply(0,_)}if(y(r.random(),n),typeof t=="object"&&t.exports){t.exports=f;try{p=r5()}catch(_){}}else typeof define=="function"&&define.amd&&define(function(){return f})})([],Math)}),a5=It((e,t)=>{var n=ok(),r=lk(),a=uk(),s=ck(),i=hk(),o=dk(),l=pk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),mu=It(()=>{}),fk=It(()=>{}),mk=It(()=>{}),Ak=It((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};function s(){return Q.buffer!=He&&nn(Q.buffer),bn}function i(){return Q.buffer!=He&&nn(Q.buffer),kt}function o(){return Q.buffer!=He&&nn(Q.buffer),_n}function l(){return Q.buffer!=He&&nn(Q.buffer),Kn}function u(){return Q.buffer!=He&&nn(Q.buffer),pn}var c=typeof a!="undefined"?a:{},h,d;c.ready=new Promise(function(I,S){h=I,d=S});var p={},f;for(f in c)c.hasOwnProperty(f)&&(p[f]=c[f]);var m=[],A="./this.program",g=function(I,S){throw S},y=!1,w=!1,b=!1,_=!1;y=typeof window=="object",w=typeof importScripts=="function",b=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",_=!y&&!b&&!w;var x=c.ENVIRONMENT_IS_PTHREAD||!1;x&&(He=c.buffer);var N="";function T(I){return c.locateFile?c.locateFile(I,N):N+I}var E,M,z,B,V,U;if(b){w?N=mu().dirname(N)+"/":N=__dirname+"/",E=function(I,S){return V||(V=require("fs")),U||(U=mu()),I=U.normalize(I),V.readFileSync(I,S?null:"utf8")},z=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S},process.argv.length>1&&(A=process.argv[1].replace(/\\/g,"/")),m=process.argv.slice(2),process.on("uncaughtException",function(I){if(!(I instanceof fu))throw I}),process.on("unhandledRejection",aa),g=function(I){process.exit(I)},c.inspect=function(){return"[Emscripten Module object]"};var H;try{H=fk()}catch(I){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),I}global.Worker=H.Worker}else _?(typeof read!="undefined"&&(E=function(I){return read(I)}),z=function(I){var S;return typeof readbuffer=="function"?new Uint8Array(readbuffer(I)):(S=read(I,"binary"),me(typeof S=="object"),S)},typeof scriptArgs!="undefined"?m=scriptArgs:typeof arguments!="undefined"&&(m=arguments),typeof quit=="function"&&(g=function(I){quit(I)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(y||w)&&(w?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof r!="undefined"&&r&&(N=r),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",b?(E=function(I,S){return V||(V=require("fs")),U||(U=mu()),I=U.normalize(I),V.readFileSync(I,S?null:"utf8")},z=function(I){var S=E(I,!0);return S.buffer||(S=new Uint8Array(S)),me(S.buffer),S}):(E=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.send(null),S.responseText},w&&(z=function(I){var S=new XMLHttpRequest;return S.open("GET",I,!1),S.responseType="arraybuffer",S.send(null),new Uint8Array(S.response)}),M=function(I,S,P){var q=new XMLHttpRequest;q.open("GET",I,!0),q.responseType="arraybuffer",q.onload=function(){if(q.status==200||q.status==0&&q.response){S(q.response);return}P()},q.onerror=P,q.send(null)}),B=function(I){document.title=I});b&&typeof performance=="undefined"&&(global.performance=mk().performance);var X=c.print||console.log.bind(console),G=c.printErr||console.warn.bind(console);for(f in p)p.hasOwnProperty(f)&&(c[f]=p[f]);p=null,c.arguments&&(m=c.arguments),c.thisProgram&&(A=c.thisProgram),c.quit&&(g=c.quit);var ee=Atomics.load,Y=Atomics.store,se=Atomics.compareExchange,ne;c.wasmBinary&&(ne=c.wasmBinary);var le=c.noExitRuntime||!0;typeof WebAssembly!="object"&&aa("no native wasm support detected");var Q,pe,ue=!1,ge;function me(I,S){I||aa("Assertion failed: "+S)}function Se(I){var S=c["_"+I];return me(S,"Cannot call unknown function "+I+", make sure it is exported"),S}function Ee(I,S,P,q,fe){var ce={string:function(In){var no=0;if(In!=null&&In!==0){var Q2=(In.length<<2)+1;no=Qi(Q2),at(In,no,Q2)}return no},array:function(In){var no=Qi(In.length);return et(In,no),no}};function de(In){return S==="string"?ze(In):S==="boolean"?Boolean(In):In}var ke=Se(I),st=[],Xt=0;if(q)for(var Lt=0;Lt<q.length;Lt++){var Ea=ce[P[Lt]];Ea?(Xt===0&&(Xt=pu()),st[Lt]=Ea(q[Lt])):st[Lt]=q[Lt]}var to=ke.apply(null,st);return to=de(to),Xt!==0&&Ji(Xt),to}function Oe(I,S,P,q){P=P||[];var fe=P.every(function(de){return de==="number"}),ce=S!=="string";return ce&&fe&&!q?Se(I):function(){return Ee(I,S,P,arguments,q)}}function Le(I,S,P){for(var q=S+P,fe="";!(S>=q);){var ce=I[S++];if(!ce)return fe;if(!(ce&128)){fe+=String.fromCharCode(ce);continue}var de=I[S++]&63;if((ce&224)==192){fe+=String.fromCharCode((ce&31)<<6|de);continue}var ke=I[S++]&63;if((ce&240)==224?ce=(ce&15)<<12|de<<6|ke:ce=(ce&7)<<18|de<<12|ke<<6|I[S++]&63,ce<65536)fe+=String.fromCharCode(ce);else{var st=ce-65536;fe+=String.fromCharCode(55296|st>>10,56320|st&1023)}}return fe}function ze(I,S){return I?Le(i(),I,S):""}function rt(I,S,P,q){if(!(q>0))return 0;for(var fe=P,ce=P+q-1,de=0;de<I.length;++de){var ke=I.charCodeAt(de);if(ke>=55296&&ke<=57343){var st=I.charCodeAt(++de);ke=65536+((ke&1023)<<10)|st&1023}if(ke<=127){if(P>=ce)break;S[P++]=ke}else if(ke<=2047){if(P+1>=ce)break;S[P++]=192|ke>>6,S[P++]=128|ke&63}else if(ke<=65535){if(P+2>=ce)break;S[P++]=224|ke>>12,S[P++]=128|ke>>6&63,S[P++]=128|ke&63}else{if(P+3>=ce)break;S[P++]=240|ke>>18,S[P++]=128|ke>>12&63,S[P++]=128|ke>>6&63,S[P++]=128|ke&63}}return S[P]=0,P-fe}function at(I,S,P){return rt(I,i(),S,P)}function ct(I){for(var S=0,P=0;P<I.length;++P){var q=I.charCodeAt(P);q>=55296&&q<=57343&&(q=65536+((q&1023)<<10)|I.charCodeAt(++P)&1023),q<=127?++S:q<=2047?S+=2:q<=65535?S+=3:S+=4}return S}function et(I,S){s().set(I,S)}function mt(I,S){return I%S>0&&(I+=S-I%S),I}var He,bn,kt,Xn,tn,_n,Kn,Dn,pn;function nn(I){He=I,c.HEAP8=bn=new Int8Array(I),c.HEAP16=Xn=new Int16Array(I),c.HEAP32=_n=new Int32Array(I),c.HEAPU8=kt=new Uint8Array(I),c.HEAPU16=tn=new Uint16Array(I),c.HEAPU32=Kn=new Uint32Array(I),c.HEAPF32=Dn=new Float32Array(I),c.HEAPF64=pn=new Float64Array(I)}var Or=c.INITIAL_MEMORY||16777216;if(x)Q=c.wasmMemory,He=c.buffer;else if(c.wasmMemory)Q=c.wasmMemory;else if(Q=new WebAssembly.Memory({initial:Or/65536,maximum:2147483648/65536,shared:!0}),!(Q.buffer instanceof SharedArrayBuffer))throw G("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),b&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Q&&(He=Q.buffer),Or=He.byteLength,nn(He);var sr,ir=[],va=[],na=[],ka=[],ji=[],br=!1,ih=!1;x||va.push({func:function(){_h()}}),x&&(br=!0);function t1(){if(!x){if(c.preRun)for(typeof c.preRun=="function"&&(c.preRun=[c.preRun]);c.preRun.length;)uh(c.preRun.shift());qi(ir)}}function oh(){br=!0,qi(va)}function n1(){x||qi(na)}function lh(){x||(ih=!0)}function vn(){if(!x){if(c.postRun)for(typeof c.postRun=="function"&&(c.postRun=[c.postRun]);c.postRun.length;)r1(c.postRun.shift());qi(ji)}}function uh(I){ir.unshift(I)}function r1(I){ji.unshift(I)}var ra=0,Ia=null,cs=null;function a1(I){me(!x,"addRunDependency cannot be used in a pthread worker"),ra++,c.monitorRunDependencies&&c.monitorRunDependencies(ra)}function s1(I){if(ra--,c.monitorRunDependencies&&c.monitorRunDependencies(ra),ra==0&&(Ia!==null&&(clearInterval(Ia),Ia=null),cs)){var S=cs;cs=null,S()}}c.preloadedImages={},c.preloadedAudios={};function aa(I){c.onAbort&&c.onAbort(I),x&&console.error("Pthread aborting at "+new Error().stack),I+="",G(I),ue=!0,ge=1,I="abort("+I+"). Build with -s ASSERTIONS=1 for more info.";var S=new WebAssembly.RuntimeError(I);throw d(S),S}function ch(I,S){return String.prototype.startsWith?I.startsWith(S):I.indexOf(S)===0}var Gi="data:application/octet-stream;base64,";function hh(I){return ch(I,Gi)}var i1="file://";function dh(I){return ch(I,i1)}var kn="tfjs-backend-wasm-threaded-simd.wasm";hh(kn)||(kn=T(kn));function o1(I){try{if(I==kn&&ne)return new Uint8Array(ne);if(z)return z(I);throw"both async and sync fetching of the wasm failed"}catch(S){aa(S)}}function ph(){if(!ne&&(y||w)){if(typeof fetch=="function"&&!dh(kn))return fetch(kn,{credentials:"same-origin"}).then(function(I){if(!I.ok)throw"failed to load wasm binary file at '"+kn+"'";return I.arrayBuffer()}).catch(function(){return o1(kn)});if(M)return new Promise(function(I,S){M(kn,function(P){I(new Uint8Array(P))},S)})}return Promise.resolve().then(function(){return o1(kn)})}function l1(){var I={a:J1};function S(de,ke){var st=de.exports;if(c.asm=st,sr=c.asm.F,pe=ke,!x){var Xt=Te.unusedWorkers.length;Te.unusedWorkers.forEach(function(Lt){Te.loadWasmModuleToWorker(Lt,function(){--Xt||s1("wasm-instantiate")})})}}x||a1("wasm-instantiate");function P(de){S(de.instance,de.module)}function q(de){return ph().then(function(ke){return WebAssembly.instantiate(ke,I)}).then(de,function(ke){G("failed to asynchronously prepare wasm: "+ke),aa(ke)})}function fe(){return!ne&&typeof WebAssembly.instantiateStreaming=="function"&&!hh(kn)&&!dh(kn)&&typeof fetch=="function"?fetch(kn,{credentials:"same-origin"}).then(function(de){var ke=WebAssembly.instantiateStreaming(de,I);return ke.then(P,function(st){return G("wasm streaming compile failed: "+st),G("falling back to ArrayBuffer instantiation"),q(P)})}):q(P)}if(c.instantiateWasm)try{var ce=c.instantiateWasm(I,S);return ce}catch(de){return G("Module.instantiateWasm callback failed with error: "+de),!1}return fe().catch(d),{}}var fh={8991:function(I,S){setTimeout(function(){q2(I,S)},0)}};function u1(){Te.initRuntime()}function qi(I){for(;I.length>0;){var S=I.shift();if(typeof S=="function"){S(c);continue}var P=S.func;typeof P=="number"?S.arg===void 0?sr.get(P)():sr.get(P)(S.arg):P(S.arg===void 0?null:S.arg)}}function Xi(I,S){if(I<=0||I>s().length||I&!0||S<0)return-28;if(S==0)return 0;S>=2147483647&&(S=Infinity);var P=Atomics.load(o(),eo>>2),q=0;if(P==I){var fe=Atomics.compareExchange(o(),eo>>2,P,0);if(fe==P&&(--S,q=1,S<=0))return 1}var ce=Atomics.notify(o(),I>>2,S);if(ce>=0)return ce+q;throw"Atomics.notify returned an unexpected value "+ce}c._emscripten_futex_wake=Xi;function c1(I){if(x)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in killThread!";o()[I+12>>2]=0;var S=Te.pthreads[I];S.worker.terminate(),Te.freeThreadData(S),Te.runningWorkers.splice(Te.runningWorkers.indexOf(S.worker),1),S.worker.pthread=void 0}function h1(I){if(x)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cancelThread!";var S=Te.pthreads[I];S.worker.postMessage({cmd:"cancel"})}function d1(I){if(x)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!I)throw"Internal Error! Null pthread_ptr in cleanupThread!";o()[I+12>>2]=0;var S=Te.pthreads[I];if(S){var P=S.worker;Te.returnWorkerToPool(P)}}var Te={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var I=8,S=0;S<I;++S)Te.allocateUnusedWorker()},initRuntime:function(){for(var I=ds(228),S=0;S<228/4;++S)l()[I/4+S]=0;o()[I+12>>2]=I;var P=I+152;o()[P>>2]=P;for(var q=ds(512),S=0;S<128;++S)l()[q/4+S]=0;Atomics.store(l(),I+100>>2,q),Atomics.store(l(),I+40>>2,I),Sh(I,!w,1),G2(I)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Te.threadExitHandlers.length>0;)Te.threadExitHandlers.pop()();x&&Yi()&&j2()},threadExit:function(I){var S=Yi();S&&(Atomics.store(l(),S+4>>2,I),Atomics.store(l(),S+0>>2,1),Atomics.store(l(),S+56>>2,1),Atomics.store(l(),S+60>>2,0),Te.runExitHandlers(),Xi(S+0,2147483647),Sh(0,0,0),x&&postMessage({cmd:"exit"}))},threadCancel:function(){Te.runExitHandlers();var I=Yi();Atomics.store(l(),I+4>>2,-1),Atomics.store(l(),I+0>>2,1),Xi(I+0,2147483647),Sh(0,0,0),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var I in Te.pthreads){var S=Te.pthreads[I];S&&S.worker&&Te.returnWorkerToPool(S.worker)}Te.pthreads={};for(var P=0;P<Te.unusedWorkers.length;++P){var q=Te.unusedWorkers[P];q.terminate()}Te.unusedWorkers=[];for(var P=0;P<Te.runningWorkers.length;++P){var q=Te.runningWorkers[P],S=q.pthread;Te.freeThreadData(S),q.terminate()}Te.runningWorkers=[]},freeThreadData:function(I){if(I){if(I.threadInfoStruct){var S=o()[I.threadInfoStruct+100>>2];o()[I.threadInfoStruct+100>>2]=0,du(S),du(I.threadInfoStruct)}I.threadInfoStruct=0,I.allocatedOwnStack&&I.stackBase&&du(I.stackBase),I.stackBase=0,I.worker&&(I.worker.pthread=null)}},returnWorkerToPool:function(I){Te.runWithoutMainThreadQueuedCalls(function(){delete Te.pthreads[I.pthread.threadInfoStruct],Te.unusedWorkers.push(I),Te.runningWorkers.splice(Te.runningWorkers.indexOf(I),1),Te.freeThreadData(I.pthread),I.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(I){o()[J2>>2]=0;try{I()}finally{o()[J2>>2]=1}},receiveObjectTransfer:function(I){},loadWasmModuleToWorker:function(I,S){I.onmessage=function(P){var q=P.data,fe=q.cmd;if(I.pthread&&(Te.currentProxiedOperationCallerThread=I.pthread.threadInfoStruct),q.targetThread&&q.targetThread!=Yi()){var ce=Te.pthreads[q.targetThread];ce?ce.worker.postMessage(P.data,q.transferList):console.error('Internal error! Worker sent a message "'+fe+'" to target pthread '+q.targetThread+", but that thread no longer exists!"),Te.currentProxiedOperationCallerThread=void 0;return}if(fe==="processQueuedMainThreadWork")ff();else if(fe==="spawnThread")wh(P.data);else if(fe==="cleanupThread")d1(q.thread);else if(fe==="killThread")c1(q.thread);else if(fe==="cancelThread")h1(q.thread);else if(fe==="loaded")I.loaded=!0,S&&S(I),I.runPthread&&(I.runPthread(),delete I.runPthread);else if(fe==="print")X("Thread "+q.threadId+": "+q.text);else if(fe==="printErr")G("Thread "+q.threadId+": "+q.text);else if(fe==="alert")alert("Thread "+q.threadId+": "+q.text);else if(fe==="exit"){var de=I.pthread&&Atomics.load(l(),I.pthread.threadInfoStruct+64>>2);de&&Te.returnWorkerToPool(I)}else if(fe==="exitProcess")try{G8(q.returnCode)}catch(ke){if(ke instanceof fu)return;throw ke}else fe==="cancelDone"?Te.returnWorkerToPool(I):fe==="objectTransfer"?Te.receiveObjectTransfer(P.data):P.data.target==="setimmediate"?I.postMessage(P.data):G("worker sent an unknown command "+fe);Te.currentProxiedOperationCallerThread=void 0},I.onerror=function(P){G("pthread sent an error! "+P.filename+":"+P.lineno+": "+P.message)},b&&(I.on("message",function(P){I.onmessage({data:P})}),I.on("error",function(P){I.onerror(P)}),I.on("exit",function(P){})),I.postMessage({cmd:"load",urlOrBlob:c.mainScriptUrlOrBlob||r,wasmMemory:Q,wasmModule:pe})},allocateUnusedWorker:function(){var I=T("tfjs-backend-wasm-threaded-simd.worker.js");Te.unusedWorkers.push(new Worker(I))},getNewWorker:function(){return Te.unusedWorkers.length==0&&(Te.allocateUnusedWorker(),Te.loadWasmModuleToWorker(Te.unusedWorkers[0])),Te.unusedWorkers.length>0?Te.unusedWorkers.pop():null},busySpinWait:function(I){for(var S=performance.now()+I;performance.now()<S;);}};function p1(I,S){Z2(I,S),Ji(I)}c.establishStackSpace=p1;function f1(){return le}c.getNoExitRuntime=f1;function m1(I,S){return sr.get(I)(S)}c.invokeEntryPoint=m1;function A1(I,S,P,q){aa("Assertion failed: "+ze(I)+", at: "+[S?ze(S):"unknown filename",P,q?ze(q):"unknown function"])}function g1(I,S){var P=_main(I,S)}var hs;b?hs=function(){var I=process.hrtime();return I[0]*1e3+I[1]/1e6}:x?hs=function(){return performance.now()-c.__performance_now_clock_drift}:typeof dateNow!="undefined"?hs=dateNow:hs=function(){return performance.now()};function y1(I){return o()[U2()>>2]=I,I}function x1(I,S){if(x)return Na(1,1,I,S)}function w1(I,S){if(I==S)postMessage({cmd:"processQueuedMainThreadWork"});else if(x)postMessage({targetThread:I,cmd:"processThreadQueue"});else{var P=Te.pthreads[I],q=P&&P.worker;if(!q)return;q.postMessage({cmd:"processThreadQueue"})}return 1}function b1(){aa()}function _1(I,S,P){var q=S1(S,P);return fh[I].apply(null,q)}function v1(I,S){}function k1(I,S,P){if(I<=0||I>s().length||I&!0)return-28;if(y){if(Atomics.load(o(),I>>2)!=S)return-6;for(var q=performance.now(),fe=q+P,ce=Atomics.exchange(o(),eo>>2,I);;){if(q=performance.now(),q>fe)return ce=Atomics.exchange(o(),eo>>2,0),-73;if(ce=Atomics.exchange(o(),eo>>2,0),ce==0)break;if(ff(),Atomics.load(o(),I>>2)!=S)return-6;ce=Atomics.exchange(o(),eo>>2,I)}return 0}else{var de=Atomics.wait(o(),I>>2,S,P);if(de==="timed-out")return-73;if(de==="not-equal")return-6;if(de==="ok")return 0;throw"Atomics.wait returned an unexpected value "+de}}function I1(I,S,P){i().copyWithin(I,S,S+P)}function N1(){return b?require("os").cpus().length:navigator.hardwareConcurrency}function Na(I,S){for(var P=arguments.length-2,q=pu(),fe=P,ce=Qi(fe*8),de=ce>>3,ke=0;ke<P;ke++){var st=arguments[2+ke];u()[de+ke]=st}var Xt=K2(I,fe,ce,S);return Ji(q),Xt}var iu=[],ou=[];function S1(I,S){ou.length=0;var P;for(S>>=2;P=i()[I++];){var q=P<105;q&&S&1&&S++,ou.push(q?u()[S++>>1]:o()[S]),++S}return ou}function T1(I,S,P){iu.length=S;for(var q=P>>3,fe=0;fe<S;fe++)iu[fe]=u()[q+fe];var ce=I<0,de=ce?fh[-I-1]:Y1[I];return de.apply(null,iu)}function E1(){return i().length}function C1(I){try{return Q.grow(I-He.byteLength+65535>>>16),nn(Q.buffer),1}catch(S){}}function R1(I){var S=E1();if(I<=S)return!1;var P=2147483648;if(I>P)return!1;for(var q=1;q<=4;q*=2){var fe=S*(1+.2/q);fe=Math.min(fe,I+100663296);var ce=Math.min(P,mt(Math.max(I,fe),65536)),de=C1(ce);if(de)return!0}return!1}var Ve={inEventHandler:0,removeAllEventListeners:function(){for(var I=Ve.eventHandlers.length-1;I>=0;--I)Ve._removeHandler(I);Ve.eventHandlers=[],Ve.deferredCalls=[]},registerRemoveEventListeners:function(){Ve.removeEventListenersRegistered||(ka.push(Ve.removeAllEventListeners),Ve.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(I,S,P){function q(de,ke){if(de.length!=ke.length)return!1;for(var st in de)if(de[st]!=ke[st])return!1;return!0}for(var fe in Ve.deferredCalls){var ce=Ve.deferredCalls[fe];if(ce.targetFunction==I&&q(ce.argsList,P))return}Ve.deferredCalls.push({targetFunction:I,precedence:S,argsList:P}),Ve.deferredCalls.sort(function(de,ke){return de.precedence<ke.precedence})},removeDeferredCalls:function(I){for(var S=0;S<Ve.deferredCalls.length;++S)Ve.deferredCalls[S].targetFunction==I&&(Ve.deferredCalls.splice(S,1),--S)},canPerformEventHandlerRequests:function(){return Ve.inEventHandler&&Ve.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(Ve.canPerformEventHandlerRequests())for(var I=0;I<Ve.deferredCalls.length;++I){var S=Ve.deferredCalls[I];Ve.deferredCalls.splice(I,1),--I,S.targetFunction.apply(null,S.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(I,S){for(var P=0;P<Ve.eventHandlers.length;++P)Ve.eventHandlers[P].target==I&&(!S||S==Ve.eventHandlers[P].eventTypeString)&&Ve._removeHandler(P--)},_removeHandler:function(I){var S=Ve.eventHandlers[I];S.target.removeEventListener(S.eventTypeString,S.eventListenerFunc,S.useCapture),Ve.eventHandlers.splice(I,1)},registerOrRemoveHandler:function(I){var S=function(q){++Ve.inEventHandler,Ve.currentEventHandler=I,Ve.runDeferredCalls(),I.handlerFunc(q),Ve.runDeferredCalls(),--Ve.inEventHandler};if(I.callbackfunc)I.eventListenerFunc=S,I.target.addEventListener(I.eventTypeString,S,I.useCapture),Ve.eventHandlers.push(I),Ve.registerRemoveEventListeners();else for(var P=0;P<Ve.eventHandlers.length;++P)Ve.eventHandlers[P].target==I.target&&Ve.eventHandlers[P].eventTypeString==I.eventTypeString&&Ve._removeHandler(P--)},queueEventHandlerOnThread_iiii:function(I,S,P,q,fe){var ce=pu(),de=Qi(12);o()[de>>2]=P,o()[de+4>>2]=q,o()[de+8>>2]=fe,mf(0,I,637534208,S,q,de),Ji(ce)},getTargetThreadForEventCallback:function(I){switch(I){case 1:return 0;case 2:return Te.currentProxiedOperationCallerThread;default:return I}},getNodeNameForTarget:function(I){return I?I==window?"#window":I==screen?"#screen":I&&I.nodeName?I.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function F1(I){var S=ct(I)+1,P=ds(S);return at(I,P,S),P}function M1(I,S,P,q){var fe=pu(),ce=Qi(12),de=0;S&&(de=F1(S)),o()[ce>>2]=de,o()[ce+4>>2]=P,o()[ce+8>>2]=q,mf(0,I,657457152,0,de,ce),Ji(fe)}function $1(I,S,P,q){S=S?ze(S):"",M1(I,S,P,q)}function D1(I){return I>2?ze(I):I}var O1=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function z1(I){I=D1(I);var S=O1[I]||(typeof document!="undefined"?document.querySelector(I):void 0);return S}function lu(I){return z1(I)}function mh(I,S,P){var q=lu(I);if(!q)return-4;if(q.canvasSharedPtr&&(o()[q.canvasSharedPtr>>2]=S,o()[q.canvasSharedPtr+4>>2]=P),q.offscreenCanvas||!q.controlTransferredOffscreen){q.offscreenCanvas&&(q=q.offscreenCanvas);var fe=!1;if(q.GLctxObject&&q.GLctxObject.GLctx){var ce=q.GLctxObject.GLctx.getParameter(2978);fe=ce[0]===0&&ce[1]===0&&ce[2]===q.width&&ce[3]===q.height}q.width=S,q.height=P,fe&&q.GLctxObject.GLctx.viewport(0,0,S,P)}else if(q.canvasSharedPtr){var de=o()[q.canvasSharedPtr+8>>2];return $1(de,I,S,P),1}else return-4;return 0}function Ah(I,S,P){return x?Na(2,1,I,S,P):mh(I,S,P)}function P1(I,S,P){var q=lu(I);return q?mh(I,S,P):Ah(I,S,P)}function L1(I){}function W1(I,S){}function B1(I){var S=I.getExtension("ANGLE_instanced_arrays");if(S)return I.vertexAttribDivisor=function(P,q){S.vertexAttribDivisorANGLE(P,q)},I.drawArraysInstanced=function(P,q,fe,ce){S.drawArraysInstancedANGLE(P,q,fe,ce)},I.drawElementsInstanced=function(P,q,fe,ce,de){S.drawElementsInstancedANGLE(P,q,fe,ce,de)},1}function V1(I){var S=I.getExtension("OES_vertex_array_object");if(S)return I.createVertexArray=function(){return S.createVertexArrayOES()},I.deleteVertexArray=function(P){S.deleteVertexArrayOES(P)},I.bindVertexArray=function(P){S.bindVertexArrayOES(P)},I.isVertexArray=function(P){return S.isVertexArrayOES(P)},1}function U1(I){var S=I.getExtension("WEBGL_draw_buffers");if(S)return I.drawBuffers=function(P,q){S.drawBuffersWEBGL(P,q)},1}function H1(I){return!!(I.multiDrawWebgl=I.getExtension("WEBGL_multi_draw"))}var nt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(I){nt.lastError||(nt.lastError=I)},getNewId:function(I){for(var S=nt.counter++,P=I.length;P<S;P++)I[P]=null;return S},getSource:function(I,S,P,q){for(var fe="",ce=0;ce<S;++ce){var de=q?o()[q+ce*4>>2]:-1;fe+=ze(o()[P+ce*4>>2],de<0?void 0:de)}return fe},createContext:function(I,S){var P=I.getContext("webgl",S);if(!P)return 0;var q=nt.registerContext(P,S);return q},registerContext:function(I,S){var P=ds(8);o()[P+4>>2]=Yi();var q={handle:P,attributes:S,version:S.majorVersion,GLctx:I};return I.canvas&&(I.canvas.GLctxObject=q),nt.contexts[P]=q,(typeof S.enableExtensionsByDefault=="undefined"||S.enableExtensionsByDefault)&&nt.initExtensions(q),P},makeContextCurrent:function(I){return nt.currentContext=nt.contexts[I],c.ctx=Sa=nt.currentContext&&nt.currentContext.GLctx,!(I&&!Sa)},getContext:function(I){return nt.contexts[I]},deleteContext:function(I){nt.currentContext===nt.contexts[I]&&(nt.currentContext=null),typeof Ve=="object"&&Ve.removeAllHandlersOnTarget(nt.contexts[I].GLctx.canvas),nt.contexts[I]&&nt.contexts[I].GLctx.canvas&&(nt.contexts[I].GLctx.canvas.GLctxObject=void 0),du(nt.contexts[I].handle),nt.contexts[I]=null},initExtensions:function(I){if(I||(I=nt.currentContext),!I.initExtensionsDone){I.initExtensionsDone=!0;var S=I.GLctx;B1(S),V1(S),U1(S),S.disjointTimerQueryExt=S.getExtension("EXT_disjoint_timer_query"),H1(S);var P=S.getSupportedExtensions()||[];P.forEach(function(q){q.indexOf("lose_context")<0&&q.indexOf("debug")<0&&S.getExtension(q)})}},populateUniformTable:function(I){for(var S=nt.programs[I],P=nt.programInfos[I]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},q=P.uniforms,fe=Sa.getProgramParameter(S,35718),ce=0;ce<fe;++ce){var de=Sa.getActiveUniform(S,ce),ke=de.name;P.maxUniformLength=Math.max(P.maxUniformLength,ke.length+1),ke.slice(-1)=="]"&&(ke=ke.slice(0,ke.lastIndexOf("[")));var st=Sa.getUniformLocation(S,ke);if(st){var Xt=nt.getNewId(nt.uniforms);q[ke]=[de.size,Xt],nt.uniforms[Xt]=st;for(var Lt=1;Lt<de.size;++Lt){var Ea=ke+"["+Lt+"]";st=Sa.getUniformLocation(S,Ea),Xt=nt.getNewId(nt.uniforms),nt.uniforms[Xt]=st}}}}},j1=["default","low-power","high-performance"];function G1(I,S){var P=S>>2,q=o()[P+(24>>2)],fe={alpha:!!o()[P+(0>>2)],depth:!!o()[P+(4>>2)],stencil:!!o()[P+(8>>2)],antialias:!!o()[P+(12>>2)],premultipliedAlpha:!!o()[P+(16>>2)],preserveDrawingBuffer:!!o()[P+(20>>2)],powerPreference:j1[q],failIfMajorPerformanceCaveat:!!o()[P+(28>>2)],majorVersion:o()[P+(32>>2)],minorVersion:o()[P+(36>>2)],enableExtensionsByDefault:o()[P+(40>>2)],explicitSwapControl:o()[P+(44>>2)],proxyContextToMainThread:o()[P+(48>>2)],renderViaOffscreenBackBuffer:o()[P+(52>>2)]},ce=lu(I);if(!ce||fe.explicitSwapControl)return 0;var de=nt.createContext(ce,fe);return de}function q1(I,S){return G1(I,S)}var Ki={mappings:{},buffers:[null,[],[]],printChar:function(I,S){var P=Ki.buffers[I];S===0||S===10?((I===1?X:G)(Le(P,0)),P.length=0):P.push(S)},varargs:void 0,get:function(){Ki.varargs+=4;var I=o()[Ki.varargs-4>>2];return I},getStr:function(I){var S=ze(I);return S},get64:function(I,S){return I}};function gh(I){return x?Na(3,1,I):0}function yh(I,S,P,q,fe){if(x)return Na(4,1,I,S,P,q,fe)}function xh(I,S,P,q){if(x)return Na(5,1,I,S,P,q);for(var fe=0,ce=0;ce<P;ce++){for(var de=o()[S+ce*8>>2],ke=o()[S+(ce*8+4)>>2],st=0;st<ke;st++)Ki.printChar(I,i()[de+st]);fe+=ke}return o()[q>>2]=fe,0}function X1(I){var S=Te.threadExitHandlers.pop();I&&S()}function K1(I,S){Te.threadExitHandlers.push(function(){sr.get(I)(S)})}function wh(I){if(x)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var S=Te.getNewWorker();if(S.pthread!==void 0)throw"Internal error!";if(!I.pthread_ptr)throw"Internal error, no pthread ptr!";Te.runningWorkers.push(S);for(var P=ds(128*4),q=0;q<128;++q)o()[P+q*4>>2]=0;var fe=I.stackBase+I.stackSize,ce=Te.pthreads[I.pthread_ptr]={worker:S,stackBase:I.stackBase,stackSize:I.stackSize,allocatedOwnStack:I.allocatedOwnStack,threadInfoStruct:I.pthread_ptr},de=ce.threadInfoStruct>>2;Atomics.store(l(),de+(64>>2),I.detached),Atomics.store(l(),de+(100>>2),P),Atomics.store(l(),de+(40>>2),ce.threadInfoStruct),Atomics.store(l(),de+(80>>2),I.stackSize),Atomics.store(l(),de+(76>>2),fe),Atomics.store(l(),de+(104>>2),I.stackSize),Atomics.store(l(),de+(104+8>>2),fe),Atomics.store(l(),de+(104+12>>2),I.detached);var ke=H2(),st=ke+40;Atomics.store(l(),de+(172>>2),st),S.pthread=ce;var Xt={cmd:"run",start_routine:I.startRoutine,arg:I.arg,threadInfoStruct:I.pthread_ptr,stackBase:I.stackBase,stackSize:I.stackSize};S.runPthread=function(){Xt.time=performance.now(),S.postMessage(Xt,I.transferList)},S.loaded&&(S.runPthread(),delete S.runPthread)}function Z1(I,S,P,q){if(typeof SharedArrayBuffer=="undefined")return G("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!I)return G("pthread_create called with a null thread pointer!"),28;var fe=[],ce=0;if(x&&(fe.length===0||ce))return X2(687865856,I,S,P,q);if(ce)return ce;var de=0,ke=0,st=0;S&&S!=-1?(de=o()[S>>2],de+=81920,ke=o()[S+8>>2],st=o()[S+12>>2]!==0):de=2097152;var Xt=ke==0;Xt?ke=Y2(16,de):(ke-=de,me(ke>0));for(var Lt=ds(228),Ea=0;Ea<228>>2;++Ea)l()[(Lt>>2)+Ea]=0;o()[I>>2]=Lt,o()[Lt+12>>2]=Lt;var to=Lt+152;o()[to>>2]=to;var In={stackBase:ke,stackSize:de,allocatedOwnStack:Xt,detached:st,startRoutine:P,pthread_ptr:Lt,arg:q,transferList:fe};return x?(In.cmd="spawnThread",postMessage(In,fe)):wh(In),0}function bh(I){if(x)return Na(6,1,I);switch(I){case 30:return 16384;case 85:var S=2147483648;return S/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return y1(28),-1}x||Te.initMainThreadBlock();var Sa,Y1=[null,x1,Ah,gh,yh,xh,bh],J1={e:A1,r:g1,x:w1,b:b1,y:_1,j:v1,c:k1,d:Xi,f:hs,p:I1,z:N1,u:T1,q:R1,v:P1,i:L1,t:W1,w:q1,m:gh,n:yh,g:xh,o:u1,a:Q||c.wasmMemory,k:X1,l:K1,h:Z1,s:bh},V2=l1(),_h=c.___wasm_call_ctors=function(){return(_h=c.___wasm_call_ctors=c.asm.A).apply(null,arguments)},Q1=c._init=function(){return(Q1=c._init=c.asm.B).apply(null,arguments)},ef=c._register_tensor=function(){return(ef=c._register_tensor=c.asm.C).apply(null,arguments)},tf=c._dispose_data=function(){return(tf=c._dispose_data=c.asm.D).apply(null,arguments)},nf=c._dispose=function(){return(nf=c._dispose=c.asm.E).apply(null,arguments)},rf=c._Abs=function(){return(rf=c._Abs=c.asm.G).apply(null,arguments)},af=c._Add=function(){return(af=c._Add=c.asm.H).apply(null,arguments)},sf=c._AddN=function(){return(sf=c._AddN=c.asm.I).apply(null,arguments)},of=c._ArgMax=function(){return(of=c._ArgMax=c.asm.J).apply(null,arguments)},lf=c._AvgPool=function(){return(lf=c._AvgPool=c.asm.K).apply(null,arguments)},uf=c._BatchMatMul=function(){return(uf=c._BatchMatMul=c.asm.L).apply(null,arguments)},cf=c._Ceil=function(){return(cf=c._Ceil=c.asm.M).apply(null,arguments)},hf=c._ClipByValue=function(){return(hf=c._ClipByValue=c.asm.N).apply(null,arguments)},df=c._Conv2D=function(){return(df=c._Conv2D=c.asm.O).apply(null,arguments)},vh=c._Conv2DBackpropInput=function(){return(vh=c._Conv2DBackpropInput=c.asm.P).apply(null,arguments)},kh=c._Cos=function(){return(kh=c._Cos=c.asm.Q).apply(null,arguments)},uu=c._CropAndResize=function(){return(uu=c._CropAndResize=c.asm.R).apply(null,arguments)},Zi=c._Cumsum=function(){return(Zi=c._Cumsum=c.asm.S).apply(null,arguments)},pf=c._DepthToSpace=function(){return(pf=c._DepthToSpace=c.asm.T).apply(null,arguments)},cu=c._DepthwiseConv2dNative=function(){return(cu=c._DepthwiseConv2dNative=c.asm.U).apply(null,arguments)},K=c._Equal=function(){return(K=c._Equal=c.asm.V).apply(null,arguments)},re=c._Exp=function(){return(re=c._Exp=c.asm.W).apply(null,arguments)},Ce=c._FlipLeftRight=function(){return(Ce=c._FlipLeftRight=c.asm.X).apply(null,arguments)},tt=c._Floor=function(){return(tt=c._Floor=c.asm.Y).apply(null,arguments)},Ct=c._FloorDiv=function(){return(Ct=c._FloorDiv=c.asm.Z).apply(null,arguments)},yt=c._FusedBatchNorm=function(){return(yt=c._FusedBatchNorm=c.asm._).apply(null,arguments)},Ge=c._FusedConv2D=function(){return(Ge=c._FusedConv2D=c.asm.$).apply(null,arguments)},Ze=c._FusedDepthwiseConv2D=function(){return(Ze=c._FusedDepthwiseConv2D=c.asm.aa).apply(null,arguments)},rn=c._Gather=function(){return(rn=c._Gather=c.asm.ba).apply(null,arguments)},sa=c._GatherNd=function(){return(sa=c._GatherNd=c.asm.ca).apply(null,arguments)},ia=c._Greater=function(){return(ia=c._Greater=c.asm.da).apply(null,arguments)},Ih=c._GreaterEqual=function(){return(Ih=c._GreaterEqual=c.asm.ea).apply(null,arguments)},hu=c._LeakyRelu=function(){return(hu=c._LeakyRelu=c.asm.fa).apply(null,arguments)},Zn=c._Less=function(){return(Zn=c._Less=c.asm.ga).apply(null,arguments)},Ta=c._LessEqual=function(){return(Ta=c._LessEqual=c.asm.ha).apply(null,arguments)},Nh=c._Log=function(){return(Nh=c._Log=c.asm.ia).apply(null,arguments)},t8=c._LogicalAnd=function(){return(t8=c._LogicalAnd=c.asm.ja).apply(null,arguments)},n8=c._Max=function(){return(n8=c._Max=c.asm.ka).apply(null,arguments)},r8=c._MaxPool=function(){return(r8=c._MaxPool=c.asm.la).apply(null,arguments)},a8=c._Maximum=function(){return(a8=c._Maximum=c.asm.ma).apply(null,arguments)},s8=c._Mean=function(){return(s8=c._Mean=c.asm.na).apply(null,arguments)},i8=c._Min=function(){return(i8=c._Min=c.asm.oa).apply(null,arguments)},o8=c._Minimum=function(){return(o8=c._Minimum=c.asm.pa).apply(null,arguments)},l8=c._Multiply=function(){return(l8=c._Multiply=c.asm.qa).apply(null,arguments)},u8=c._Neg=function(){return(u8=c._Neg=c.asm.ra).apply(null,arguments)},c8=c._NonMaxSuppressionV3=function(){return(c8=c._NonMaxSuppressionV3=c.asm.sa).apply(null,arguments)},h8=c._NonMaxSuppressionV4=function(){return(h8=c._NonMaxSuppressionV4=c.asm.ta).apply(null,arguments)},d8=c._NonMaxSuppressionV5=function(){return(d8=c._NonMaxSuppressionV5=c.asm.ua).apply(null,arguments)},p8=c._NotEqual=function(){return(p8=c._NotEqual=c.asm.va).apply(null,arguments)},f8=c._OneHot=function(){return(f8=c._OneHot=c.asm.wa).apply(null,arguments)},m8=c._PadV2=function(){return(m8=c._PadV2=c.asm.xa).apply(null,arguments)},A8=c._Pow=function(){return(A8=c._Pow=c.asm.ya).apply(null,arguments)},g8=c._Prelu=function(){return(g8=c._Prelu=c.asm.za).apply(null,arguments)},y8=c._Prod=function(){return(y8=c._Prod=c.asm.Aa).apply(null,arguments)},x8=c._RealDiv=function(){return(x8=c._RealDiv=c.asm.Ba).apply(null,arguments)},w8=c._Relu=function(){return(w8=c._Relu=c.asm.Ca).apply(null,arguments)},b8=c._Relu6=function(){return(b8=c._Relu6=c.asm.Da).apply(null,arguments)},_8=c._ResizeBilinear=function(){return(_8=c._ResizeBilinear=c.asm.Ea).apply(null,arguments)},v8=c._Reverse=function(){return(v8=c._Reverse=c.asm.Fa).apply(null,arguments)},k8=c._RotateWithOffset=function(){return(k8=c._RotateWithOffset=c.asm.Ga).apply(null,arguments)},I8=c._Round=function(){return(I8=c._Round=c.asm.Ha).apply(null,arguments)},N8=c._Rsqrt=function(){return(N8=c._Rsqrt=c.asm.Ia).apply(null,arguments)},S8=c._ScatterNd=function(){return(S8=c._ScatterNd=c.asm.Ja).apply(null,arguments)},T8=c._SelectV2=function(){return(T8=c._SelectV2=c.asm.Ka).apply(null,arguments)},E8=c._Sigmoid=function(){return(E8=c._Sigmoid=c.asm.La).apply(null,arguments)},C8=c._Sin=function(){return(C8=c._Sin=c.asm.Ma).apply(null,arguments)},R8=c._Softmax=function(){return(R8=c._Softmax=c.asm.Na).apply(null,arguments)},F8=c._Sqrt=function(){return(F8=c._Sqrt=c.asm.Oa).apply(null,arguments)},M8=c._Square=function(){return(M8=c._Square=c.asm.Pa).apply(null,arguments)},$8=c._SquaredDifference=function(){return($8=c._SquaredDifference=c.asm.Qa).apply(null,arguments)},D8=c._Step=function(){return(D8=c._Step=c.asm.Ra).apply(null,arguments)},O8=c._StridedSlice=function(){return(O8=c._StridedSlice=c.asm.Sa).apply(null,arguments)},z8=c._Sub=function(){return(z8=c._Sub=c.asm.Ta).apply(null,arguments)},P8=c._Sum=function(){return(P8=c._Sum=c.asm.Ua).apply(null,arguments)},L8=c._Tanh=function(){return(L8=c._Tanh=c.asm.Va).apply(null,arguments)},W8=c._Tile=function(){return(W8=c._Tile=c.asm.Wa).apply(null,arguments)},B8=c._TopK=function(){return(B8=c._TopK=c.asm.Xa).apply(null,arguments)},V8=c._Transpose=function(){return(V8=c._Transpose=c.asm.Ya).apply(null,arguments)},U8=c.__FusedMatMul=function(){return(U8=c.__FusedMatMul=c.asm.Za).apply(null,arguments)},ds=c._malloc=function(){return(ds=c._malloc=c.asm._a).apply(null,arguments)},du=c._free=function(){return(du=c._free=c.asm.$a).apply(null,arguments)},U2=c.___errno_location=function(){return(U2=c.___errno_location=c.asm.ab).apply(null,arguments)},H2=c._emscripten_get_global_libc=function(){return(H2=c._emscripten_get_global_libc=c.asm.bb).apply(null,arguments)},Yi=c._pthread_self=function(){return(Yi=c._pthread_self=c.asm.cb).apply(null,arguments)},j2=c.___pthread_tsd_run_dtors=function(){return(j2=c.___pthread_tsd_run_dtors=c.asm.db).apply(null,arguments)},ff=c._emscripten_main_thread_process_queued_calls=function(){return(ff=c._emscripten_main_thread_process_queued_calls=c.asm.eb).apply(null,arguments)},H8=c._emscripten_current_thread_process_queued_calls=function(){return(H8=c._emscripten_current_thread_process_queued_calls=c.asm.fb).apply(null,arguments)},G2=c._emscripten_register_main_browser_thread_id=function(){return(G2=c._emscripten_register_main_browser_thread_id=c.asm.gb).apply(null,arguments)},q2=c.__emscripten_do_dispatch_to_thread=function(){return(q2=c.__emscripten_do_dispatch_to_thread=c.asm.hb).apply(null,arguments)},X2=c._emscripten_sync_run_in_main_thread_4=function(){return(X2=c._emscripten_sync_run_in_main_thread_4=c.asm.ib).apply(null,arguments)},K2=c._emscripten_run_in_main_runtime_thread_js=function(){return(K2=c._emscripten_run_in_main_runtime_thread_js=c.asm.jb).apply(null,arguments)},mf=c.__emscripten_call_on_thread=function(){return(mf=c.__emscripten_call_on_thread=c.asm.kb).apply(null,arguments)},j8=c._emscripten_tls_init=function(){return(j8=c._emscripten_tls_init=c.asm.lb).apply(null,arguments)},Sh=c.__emscripten_thread_init=function(){return(Sh=c.__emscripten_thread_init=c.asm.mb).apply(null,arguments)},pu=c.stackSave=function(){return(pu=c.stackSave=c.asm.nb).apply(null,arguments)},Ji=c.stackRestore=function(){return(Ji=c.stackRestore=c.asm.ob).apply(null,arguments)},Qi=c.stackAlloc=function(){return(Qi=c.stackAlloc=c.asm.pb).apply(null,arguments)},Z2=c._emscripten_stack_set_limits=function(){return(Z2=c._emscripten_stack_set_limits=c.asm.qb).apply(null,arguments)},Y2=c._memalign=function(){return(Y2=c._memalign=c.asm.rb).apply(null,arguments)},J2=c.__emscripten_allow_main_runtime_queued_calls=9880,eo=c.__emscripten_main_thread_futex=11368;c.cwrap=Oe,c.PThread=Te,c.PThread=Te,c.wasmMemory=Q,c.ExitStatus=fu;var Th;function fu(I){this.name="ExitStatus",this.message="Program terminated with exit("+I+")",this.status=I}cs=function I(){Th||Af(),Th||(cs=I)};function Af(I){if(I=I||m,ra>0)return;if(x){h(c),postMessage({cmd:"loaded"});return}if(t1(),ra>0)return;function S(){Th||(Th=!0,c.calledRun=!0,!ue&&(oh(),n1(),h(c),c.onRuntimeInitialized&&c.onRuntimeInitialized(),vn()))}c.setStatus?(c.setStatus("Running..."),setTimeout(function(){setTimeout(function(){c.setStatus("")},1),S()},1)):S()}c.run=Af;function G8(I,S){if(!(S&&le&&I===0)){if(!S&&x)throw postMessage({cmd:"exitProcess",returnCode:I}),new fu(I);le||(Te.terminateAllThreads(),ge=I,lh(),c.onExit&&c.onExit(I),ue=!0),g(I,new fu(I))}}if(c.preInit)for(typeof c.preInit=="function"&&(c.preInit=[c.preInit]);c.preInit.length>0;)c.preInit.pop()();return x&&(le=!1,Te.initWorker()),Af(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),gk=It((e,t)=>{var n=function(){var r=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(r=r||__filename),function(a){a=a||{};var s=typeof a!="undefined"?a:{},i,o;s.ready=new Promise(function(K,re){i=K,o=re});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var c=[],h="./this.program",d=function(K,re){throw re},p=!1,f=!1,m=!1,A=!1;p=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",A=!p&&!m&&!f;var g="";function y(K){return s.locateFile?s.locateFile(K,g):g+K}var w,b,_,x,N,T;m?(f?g=mu().dirname(g)+"/":g=__dirname+"/",w=function(K,re){return N||(N=require("fs")),T||(T=mu()),K=T.normalize(K),N.readFileSync(K,re?null:"utf8")},_=function(K){var re=w(K,!0);return re.buffer||(re=new Uint8Array(re)),X(re.buffer),re},process.argv.length>1&&(h=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(K){if(!(K instanceof pf))throw K}),process.on("unhandledRejection",br),d=function(K){process.exit(K)},s.inspect=function(){return"[Emscripten Module object]"}):A?(typeof read!="undefined"&&(w=function(K){return read(K)}),_=function(K){var re;return typeof readbuffer=="function"?new Uint8Array(readbuffer(K)):(re=read(K,"binary"),X(typeof re=="object"),re)},typeof scriptArgs!="undefined"?c=scriptArgs:typeof arguments!="undefined"&&(c=arguments),typeof quit=="function"&&(d=function(K){quit(K)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(p||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),r&&(g=r),g.indexOf("blob:")!==0?g=g.substr(0,g.lastIndexOf("/")+1):g="",w=function(K){var re=new XMLHttpRequest;return re.open("GET",K,!1),re.send(null),re.responseText},f&&(_=function(K){var re=new XMLHttpRequest;return re.open("GET",K,!1),re.responseType="arraybuffer",re.send(null),new Uint8Array(re.response)}),b=function(K,re,Ce){var tt=new XMLHttpRequest;tt.open("GET",K,!0),tt.responseType="arraybuffer",tt.onload=function(){if(tt.status==200||tt.status==0&&tt.response){re(tt.response);return}Ce()},tt.onerror=Ce,tt.send(null)},x=function(K){document.title=K});var E=s.print||console.log.bind(console),M=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(c=s.arguments),s.thisProgram&&(h=s.thisProgram),s.quit&&(d=s.quit);var z;s.wasmBinary&&(z=s.wasmBinary);var B=s.noExitRuntime||!0;typeof WebAssembly!="object"&&br("no native wasm support detected");var V,U=!1,H;function X(K,re){K||br("Assertion failed: "+re)}function G(K){var re=s["_"+K];return X(re,"Cannot call unknown function "+K+", make sure it is exported"),re}function ee(K,re,Ce,tt,Ct){var yt={string:function(Zn){var Ta=0;if(Zn!=null&&Zn!==0){var Nh=(Zn.length<<2)+1;Ta=uu(Nh),pe(Zn,Ta,Nh)}return Ta},array:function(Zn){var Ta=uu(Zn.length);return ue(Zn,Ta),Ta}};function Ge(Zn){return re==="string"?le(Zn):re==="boolean"?Boolean(Zn):Zn}var Ze=G(K),rn=[],sa=0;if(tt)for(var ia=0;ia<tt.length;ia++){var Ih=yt[Ce[ia]];Ih?(sa===0&&(sa=vh()),rn[ia]=Ih(tt[ia])):rn[ia]=tt[ia]}var hu=Ze.apply(null,rn);return hu=Ge(hu),sa!==0&&kh(sa),hu}function Y(K,re,Ce,tt){Ce=Ce||[];var Ct=Ce.every(function(Ge){return Ge==="number"}),yt=re!=="string";return yt&&Ct&&!tt?G(K):function(){return ee(K,re,Ce,arguments,tt)}}var se=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function ne(K,re,Ce){for(var tt=re+Ce,Ct=re;K[Ct]&&!(Ct>=tt);)++Ct;if(Ct-re>16&&K.subarray&&se)return se.decode(K.subarray(re,Ct));for(var yt="";re<Ct;){var Ge=K[re++];if(!(Ge&128)){yt+=String.fromCharCode(Ge);continue}var Ze=K[re++]&63;if((Ge&224)==192){yt+=String.fromCharCode((Ge&31)<<6|Ze);continue}var rn=K[re++]&63;if((Ge&240)==224?Ge=(Ge&15)<<12|Ze<<6|rn:Ge=(Ge&7)<<18|Ze<<12|rn<<6|K[re++]&63,Ge<65536)yt+=String.fromCharCode(Ge);else{var sa=Ge-65536;yt+=String.fromCharCode(55296|sa>>10,56320|sa&1023)}}return yt}function le(K,re){return K?ne(Ee,K,re):""}function Q(K,re,Ce,tt){if(!(tt>0))return 0;for(var Ct=Ce,yt=Ce+tt-1,Ge=0;Ge<K.length;++Ge){var Ze=K.charCodeAt(Ge);if(Ze>=55296&&Ze<=57343){var rn=K.charCodeAt(++Ge);Ze=65536+((Ze&1023)<<10)|rn&1023}if(Ze<=127){if(Ce>=yt)break;re[Ce++]=Ze}else if(Ze<=2047){if(Ce+1>=yt)break;re[Ce++]=192|Ze>>6,re[Ce++]=128|Ze&63}else if(Ze<=65535){if(Ce+2>=yt)break;re[Ce++]=224|Ze>>12,re[Ce++]=128|Ze>>6&63,re[Ce++]=128|Ze&63}else{if(Ce+3>=yt)break;re[Ce++]=240|Ze>>18,re[Ce++]=128|Ze>>12&63,re[Ce++]=128|Ze>>6&63,re[Ce++]=128|Ze&63}}return re[Ce]=0,Ce-Ct}function pe(K,re,Ce){return Q(K,Ee,re,Ce)}function ue(K,re){Se.set(K,re)}function ge(K,re){return K%re>0&&(K+=re-K%re),K}var me,Se,Ee,Oe,Le,ze,rt,at,ct;function et(K){me=K,s.HEAP8=Se=new Int8Array(K),s.HEAP16=Oe=new Int16Array(K),s.HEAP32=ze=new Int32Array(K),s.HEAPU8=Ee=new Uint8Array(K),s.HEAPU16=Le=new Uint16Array(K),s.HEAPU32=rt=new Uint32Array(K),s.HEAPF32=at=new Float32Array(K),s.HEAPF64=ct=new Float64Array(K)}var mt=s.INITIAL_MEMORY||16777216,He,bn=[],kt=[],Xn=[],tn=[],_n=!1;kt.push({func:function(){ph()}});function Kn(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Or(s.preRun.shift());Ia(bn)}function Dn(){_n=!0,Ia(kt)}function pn(){Ia(Xn)}function nn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)sr(s.postRun.shift());Ia(tn)}function Or(K){bn.unshift(K)}function sr(K){tn.unshift(K)}var ir=0,va=null,na=null;function ka(K){ir++,s.monitorRunDependencies&&s.monitorRunDependencies(ir)}function ji(K){if(ir--,s.monitorRunDependencies&&s.monitorRunDependencies(ir),ir==0&&(va!==null&&(clearInterval(va),va=null),na)){var re=na;na=null,re()}}s.preloadedImages={},s.preloadedAudios={};function br(K){s.onAbort&&s.onAbort(K),K+="",M(K),U=!0,H=1,K="abort("+K+"). Build with -s ASSERTIONS=1 for more info.";var re=new WebAssembly.RuntimeError(K);throw o(re),re}function ih(K,re){return String.prototype.startsWith?K.startsWith(re):K.indexOf(re)===0}var t1="data:application/octet-stream;base64,";function oh(K){return ih(K,t1)}var n1="file://";function lh(K){return ih(K,n1)}var vn="tfjs-backend-wasm.wasm";oh(vn)||(vn=y(vn));function uh(K){try{if(K==vn&&z)return new Uint8Array(z);if(_)return _(K);throw"both async and sync fetching of the wasm failed"}catch(re){br(re)}}function r1(){if(!z&&(p||f)){if(typeof fetch=="function"&&!lh(vn))return fetch(vn,{credentials:"same-origin"}).then(function(K){if(!K.ok)throw"failed to load wasm binary file at '"+vn+"'";return K.arrayBuffer()}).catch(function(){return uh(vn)});if(b)return new Promise(function(K,re){b(vn,function(Ce){K(new Uint8Array(Ce))},re)})}return Promise.resolve().then(function(){return uh(vn)})}function ra(){var K={a:kn};function re(Ge,Ze){var rn=Ge.exports;s.asm=rn,V=s.asm.g,et(V.buffer),He=s.asm.m,ji("wasm-instantiate")}ka("wasm-instantiate");function Ce(Ge){re(Ge.instance)}function tt(Ge){return r1().then(function(Ze){return WebAssembly.instantiate(Ze,K)}).then(Ge,function(Ze){M("failed to asynchronously prepare wasm: "+Ze),br(Ze)})}function Ct(){return!z&&typeof WebAssembly.instantiateStreaming=="function"&&!oh(vn)&&!lh(vn)&&typeof fetch=="function"?fetch(vn,{credentials:"same-origin"}).then(function(Ge){var Ze=WebAssembly.instantiateStreaming(Ge,K);return Ze.then(Ce,function(rn){return M("wasm streaming compile failed: "+rn),M("falling back to ArrayBuffer instantiation"),tt(Ce)})}):tt(Ce)}if(s.instantiateWasm)try{var yt=s.instantiateWasm(K,re);return yt}catch(Ge){return M("Module.instantiateWasm callback failed with error: "+Ge),!1}return Ct().catch(o),{}}function Ia(K){for(;K.length>0;){var re=K.shift();if(typeof re=="function"){re(s);continue}var Ce=re.func;typeof Ce=="number"?re.arg===void 0?He.get(Ce)():He.get(Ce)(re.arg):Ce(re.arg===void 0?null:re.arg)}}function cs(){br()}function a1(K,re,Ce){Ee.copyWithin(K,re,re+Ce)}function s1(){return Ee.length}function aa(K){try{return V.grow(K-me.byteLength+65535>>>16),et(V.buffer),1}catch(re){}}function ch(K){var re=s1(),Ce=2147483648;if(K>Ce)return!1;for(var tt=1;tt<=4;tt*=2){var Ct=re*(1+.2/tt);Ct=Math.min(Ct,K+100663296);var yt=Math.min(Ce,ge(Math.max(K,Ct),65536)),Ge=aa(yt);if(Ge)return!0}return!1}var Gi={mappings:{},buffers:[null,[],[]],printChar:function(K,re){var Ce=Gi.buffers[K];re===0||re===10?((K===1?E:M)(ne(Ce,0)),Ce.length=0):Ce.push(re)},varargs:void 0,get:function(){Gi.varargs+=4;var K=ze[Gi.varargs-4>>2];return K},getStr:function(K){var re=le(K);return re},get64:function(K,re){return K}};function hh(K){return 0}function i1(K,re,Ce,tt,Ct){}function dh(K,re,Ce,tt){for(var Ct=0,yt=0;yt<Ce;yt++){for(var Ge=ze[re+yt*8>>2],Ze=ze[re+(yt*8+4)>>2],rn=0;rn<Ze;rn++)Gi.printChar(K,Ee[Ge+rn]);Ct+=Ze}return ze[tt>>2]=Ct,0}var kn={a:cs,d:a1,e:ch,f:hh,c:i1,b:dh},o1=ra(),ph=s.___wasm_call_ctors=function(){return(ph=s.___wasm_call_ctors=s.asm.h).apply(null,arguments)},l1=s._init=function(){return(l1=s._init=s.asm.i).apply(null,arguments)},fh=s._register_tensor=function(){return(fh=s._register_tensor=s.asm.j).apply(null,arguments)},u1=s._dispose_data=function(){return(u1=s._dispose_data=s.asm.k).apply(null,arguments)},qi=s._dispose=function(){return(qi=s._dispose=s.asm.l).apply(null,arguments)},Xi=s._Abs=function(){return(Xi=s._Abs=s.asm.n).apply(null,arguments)},c1=s._Add=function(){return(c1=s._Add=s.asm.o).apply(null,arguments)},h1=s._AddN=function(){return(h1=s._AddN=s.asm.p).apply(null,arguments)},d1=s._ArgMax=function(){return(d1=s._ArgMax=s.asm.q).apply(null,arguments)},Te=s._AvgPool=function(){return(Te=s._AvgPool=s.asm.r).apply(null,arguments)},p1=s._BatchMatMul=function(){return(p1=s._BatchMatMul=s.asm.s).apply(null,arguments)},f1=s._Ceil=function(){return(f1=s._Ceil=s.asm.t).apply(null,arguments)},m1=s._ClipByValue=function(){return(m1=s._ClipByValue=s.asm.u).apply(null,arguments)},A1=s._Conv2D=function(){return(A1=s._Conv2D=s.asm.v).apply(null,arguments)},g1=s._Conv2DBackpropInput=function(){return(g1=s._Conv2DBackpropInput=s.asm.w).apply(null,arguments)},hs=s._Cos=function(){return(hs=s._Cos=s.asm.x).apply(null,arguments)},y1=s._CropAndResize=function(){return(y1=s._CropAndResize=s.asm.y).apply(null,arguments)},x1=s._Cumsum=function(){return(x1=s._Cumsum=s.asm.z).apply(null,arguments)},w1=s._DepthToSpace=function(){return(w1=s._DepthToSpace=s.asm.A).apply(null,arguments)},b1=s._DepthwiseConv2dNative=function(){return(b1=s._DepthwiseConv2dNative=s.asm.B).apply(null,arguments)},_1=s._Equal=function(){return(_1=s._Equal=s.asm.C).apply(null,arguments)},v1=s._Exp=function(){return(v1=s._Exp=s.asm.D).apply(null,arguments)},k1=s._FlipLeftRight=function(){return(k1=s._FlipLeftRight=s.asm.E).apply(null,arguments)},I1=s._Floor=function(){return(I1=s._Floor=s.asm.F).apply(null,arguments)},N1=s._FloorDiv=function(){return(N1=s._FloorDiv=s.asm.G).apply(null,arguments)},Na=s._FusedBatchNorm=function(){return(Na=s._FusedBatchNorm=s.asm.H).apply(null,arguments)},iu=s._FusedConv2D=function(){return(iu=s._FusedConv2D=s.asm.I).apply(null,arguments)},ou=s._FusedDepthwiseConv2D=function(){return(ou=s._FusedDepthwiseConv2D=s.asm.J).apply(null,arguments)},S1=s._Gather=function(){return(S1=s._Gather=s.asm.K).apply(null,arguments)},T1=s._GatherNd=function(){return(T1=s._GatherNd=s.asm.L).apply(null,arguments)},E1=s._Greater=function(){return(E1=s._Greater=s.asm.M).apply(null,arguments)},C1=s._GreaterEqual=function(){return(C1=s._GreaterEqual=s.asm.N).apply(null,arguments)},R1=s._LeakyRelu=function(){return(R1=s._LeakyRelu=s.asm.O).apply(null,arguments)},Ve=s._Less=function(){return(Ve=s._Less=s.asm.P).apply(null,arguments)},F1=s._LessEqual=function(){return(F1=s._LessEqual=s.asm.Q).apply(null,arguments)},M1=s._Log=function(){return(M1=s._Log=s.asm.R).apply(null,arguments)},$1=s._LogicalAnd=function(){return($1=s._LogicalAnd=s.asm.S).apply(null,arguments)},D1=s._Max=function(){return(D1=s._Max=s.asm.T).apply(null,arguments)},O1=s._MaxPool=function(){return(O1=s._MaxPool=s.asm.U).apply(null,arguments)},z1=s._Maximum=function(){return(z1=s._Maximum=s.asm.V).apply(null,arguments)},lu=s._Mean=function(){return(lu=s._Mean=s.asm.W).apply(null,arguments)},mh=s._Min=function(){return(mh=s._Min=s.asm.X).apply(null,arguments)},Ah=s._Minimum=function(){return(Ah=s._Minimum=s.asm.Y).apply(null,arguments)},P1=s._Multiply=function(){return(P1=s._Multiply=s.asm.Z).apply(null,arguments)},L1=s._Neg=function(){return(L1=s._Neg=s.asm._).apply(null,arguments)},W1=s._NonMaxSuppressionV3=function(){return(W1=s._NonMaxSuppressionV3=s.asm.$).apply(null,arguments)},B1=s._NonMaxSuppressionV4=function(){return(B1=s._NonMaxSuppressionV4=s.asm.aa).apply(null,arguments)},V1=s._NonMaxSuppressionV5=function(){return(V1=s._NonMaxSuppressionV5=s.asm.ba).apply(null,arguments)},U1=s._NotEqual=function(){return(U1=s._NotEqual=s.asm.ca).apply(null,arguments)},H1=s._OneHot=function(){return(H1=s._OneHot=s.asm.da).apply(null,arguments)},nt=s._PadV2=function(){return(nt=s._PadV2=s.asm.ea).apply(null,arguments)},j1=s._Pow=function(){return(j1=s._Pow=s.asm.fa).apply(null,arguments)},G1=s._Prelu=function(){return(G1=s._Prelu=s.asm.ga).apply(null,arguments)},q1=s._Prod=function(){return(q1=s._Prod=s.asm.ha).apply(null,arguments)},Ki=s._RealDiv=function(){return(Ki=s._RealDiv=s.asm.ia).apply(null,arguments)},gh=s._Relu=function(){return(gh=s._Relu=s.asm.ja).apply(null,arguments)},yh=s._Relu6=function(){return(yh=s._Relu6=s.asm.ka).apply(null,arguments)},xh=s._ResizeBilinear=function(){return(xh=s._ResizeBilinear=s.asm.la).apply(null,arguments)},X1=s._Reverse=function(){return(X1=s._Reverse=s.asm.ma).apply(null,arguments)},K1=s._RotateWithOffset=function(){return(K1=s._RotateWithOffset=s.asm.na).apply(null,arguments)},wh=s._Round=function(){return(wh=s._Round=s.asm.oa).apply(null,arguments)},Z1=s._Rsqrt=function(){return(Z1=s._Rsqrt=s.asm.pa).apply(null,arguments)},bh=s._ScatterNd=function(){return(bh=s._ScatterNd=s.asm.qa).apply(null,arguments)},Sa=s._SelectV2=function(){return(Sa=s._SelectV2=s.asm.ra).apply(null,arguments)},Y1=s._Sigmoid=function(){return(Y1=s._Sigmoid=s.asm.sa).apply(null,arguments)},J1=s._Sin=function(){return(J1=s._Sin=s.asm.ta).apply(null,arguments)},V2=s._Softmax=function(){return(V2=s._Softmax=s.asm.ua).apply(null,arguments)},_h=s._Sqrt=function(){return(_h=s._Sqrt=s.asm.va).apply(null,arguments)},Q1=s._Square=function(){return(Q1=s._Square=s.asm.wa).apply(null,arguments)},ef=s._SquaredDifference=function(){return(ef=s._SquaredDifference=s.asm.xa).apply(null,arguments)},tf=s._Step=function(){return(tf=s._Step=s.asm.ya).apply(null,arguments)},nf=s._StridedSlice=function(){return(nf=s._StridedSlice=s.asm.za).apply(null,arguments)},rf=s._Sub=function(){return(rf=s._Sub=s.asm.Aa).apply(null,arguments)},af=s._Sum=function(){return(af=s._Sum=s.asm.Ba).apply(null,arguments)},sf=s._Tanh=function(){return(sf=s._Tanh=s.asm.Ca).apply(null,arguments)},of=s._Tile=function(){return(of=s._Tile=s.asm.Da).apply(null,arguments)},lf=s._TopK=function(){return(lf=s._TopK=s.asm.Ea).apply(null,arguments)},uf=s._Transpose=function(){return(uf=s._Transpose=s.asm.Fa).apply(null,arguments)},cf=s.__FusedMatMul=function(){return(cf=s.__FusedMatMul=s.asm.Ga).apply(null,arguments)},hf=s._malloc=function(){return(hf=s._malloc=s.asm.Ha).apply(null,arguments)},df=s._free=function(){return(df=s._free=s.asm.Ia).apply(null,arguments)},vh=s.stackSave=function(){return(vh=s.stackSave=s.asm.Ja).apply(null,arguments)},kh=s.stackRestore=function(){return(kh=s.stackRestore=s.asm.Ka).apply(null,arguments)},uu=s.stackAlloc=function(){return(uu=s.stackAlloc=s.asm.La).apply(null,arguments)};s.cwrap=Y;var Zi;function pf(K){this.name="ExitStatus",this.message="Program terminated with exit("+K+")",this.status=K}na=function K(){Zi||cu(),Zi||(na=K)};function cu(K){if(K=K||c,ir>0||(Kn(),ir>0))return;function re(){Zi||(Zi=!0,s.calledRun=!0,!U&&(Dn(),pn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),nn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),re()},1)):re()}if(s.run=cu,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return cu(),a.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),yk=It((e,t)=>{(function(n,r,a){function s(u){var c=this,h=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=h(" "),c.s1=h(" "),c.s2=h(" "),c.s0-=h(u),c.s0<0&&(c.s0+=1),c.s1-=h(u),c.s1<0&&(c.s1+=1),c.s2-=h(u),c.s2<0&&(c.s2+=1),h=null}function i(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function o(u,c){var h=new s(u),d=c&&c.state,p=h.next;return p.int32=function(){return h.next()*4294967296|0},p.double=function(){return p()+(p()*2097152|0)*11102230246251565e-32},p.quick=p,d&&(typeof d=="object"&&i(d,h),p.state=function(){return i(h,{})}),p}function l(){var u=4022871197,c=function(h){h=String(h);for(var d=0;d<h.length;d++){u+=h.charCodeAt(d);var p=.02519603282416938*u;u=p>>>0,p-=u,p*=u,u=p>>>0,p-=u,u+=p*4294967296}return(u>>>0)*23283064365386963e-26};return c}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),xk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),wk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var h=0;h<c.length+64;h++)u.x^=c.charCodeAt(h)|0,h==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),bk=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.x,d=u.i,p,f,m;return p=h[d],p^=p>>>7,f=p^p<<24,p=h[d+1&7],f^=p^p>>>10,p=h[d+3&7],f^=p^p>>>3,p=h[d+4&7],f^=p^p<<7,p=h[d+7&7],p=p^p<<13,f^=p^p<<9,h[d]=f,u.i=d+1&7,f};function c(h,d){var p,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,p=0;p<d.length;++p)m[p&7]=m[p&7]<<15^d.charCodeAt(p)+m[p+1&7]<<13;for(;m.length<8;)m.push(0);for(p=0;p<8&&m[p]===0;++p);for(p==8?f=m[7]=-1:f=m[p],h.x=m,h.i=0,p=256;p>0;--p)h.next()}c(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.x&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),_k=It((e,t)=>{(function(n,r,a){function s(l){var u=this;u.next=function(){var h=u.w,d=u.X,p=u.i,f,m;return u.w=h=h+1640531527|0,m=d[p+34&127],f=d[p=p+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[p]=m^f,u.i=p,m+(h^h>>>16)|0};function c(h,d){var p,f,m,A,g,y=[],w=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,w=Math.max(w,d.length)),m=0,A=-32;A<w;++A)d&&(f^=d.charCodeAt((A+32)%d.length)),A===0&&(g=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,A>=0&&(g=g+1640531527|0,p=y[A&127]^=f+g,m=p==0?m+1:0);for(m>=128&&(y[(d&&d.length||0)&127]=-1),m=127,A=4*128;A>0;--A)f=y[m+34&127],p=y[m=m+1&127],f^=f<<13,p^=p<<17,f^=f>>>15,p^=p>>>12,y[m]=f^p;h.w=g,h.X=y,h.i=m}c(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(h.X&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),vk=It((e,t)=>{(function(n,r,a){function s(l){var u=this,c="";u.next=function(){var d=u.b,p=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^p,p=p-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^p,u.c=p=p-f|0,u.d=f<<16^p>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var h=0;h<c.length+20;h++)u.b^=c.charCodeAt(h)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var c=new s(l),h=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var p=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(p+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,h&&(typeof h=="object"&&i(h,c),d.state=function(){return i(c,{})}),d}r&&r.exports?r.exports=o:a&&a.amd?a(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),kk=It((e,t)=>{(function(n,r,a){var s=256,i=6,o=52,l="random",u=a.pow(s,i),c=a.pow(2,o),h=c*2,d=s-1,p;function f(_,x,N){var T=[];x=x==!0?{entropy:!0}:x||{};var E=y(g(x.entropy?[_,b(r)]:_==null?w():_,3),T),M=new m(T),z=function(){for(var B=M.g(i),V=u,U=0;B<c;)B=(B+U)*s,V*=s,U=M.g(1);for(;B>=h;)B/=2,V/=2,U>>>=1;return(B+U)/V};return z.int32=function(){return M.g(4)|0},z.quick=function(){return M.g(4)/4294967296},z.double=z,y(b(M.S),r),(x.pass||N||function(B,V,U,H){return H&&(H.S&&A(H,M),B.state=function(){return A(M,{})}),U?(a[l]=B,V):B})(z,E,"global"in x?x.global:this==a,x.state)}function m(_){var x,N=_.length,T=this,E=0,M=T.i=T.j=0,z=T.S=[];for(N||(_=[N++]);E<s;)z[E]=E++;for(E=0;E<s;E++)z[E]=z[M=d&M+_[E%N]+(x=z[E])],z[M]=x;(T.g=function(B){for(var V,U=0,H=T.i,X=T.j,G=T.S;B--;)V=G[H=d&H+1],U=U*s+G[d&(G[H]=G[X=d&X+V])+(G[X]=V)];return T.i=H,T.j=X,U})(s)}function A(_,x){return x.i=_.i,x.j=_.j,x.S=_.S.slice(),x}function g(_,x){var N=[],T=typeof _,E;if(x&&T=="object")for(E in _)try{N.push(g(_[E],x-1))}catch(M){}return N.length?N:T=="string"?_:_+"\0"}function y(_,x){for(var N=_+"",T,E=0;E<N.length;)x[d&E]=d&(T^=x[d&E]*19)+N.charCodeAt(E++);return b(x)}function w(){try{var _;return p&&(_=p.randomBytes)?_=_(s):(_=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(_)),b(_)}catch(T){var x=n.navigator,N=x&&x.plugins;return[+new Date,n,N,n.screen,b(r)]}}function b(_){return String.fromCharCode.apply(0,_)}if(y(a.random(),r),typeof t=="object"&&t.exports){t.exports=f;try{p=r5()}catch(_){}}else typeof define=="function"&&define.amd?define(function(){return f}):a["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}),s5=It((e,t)=>{var n=yk(),r=xk(),a=wk(),s=bk(),i=_k(),o=vk(),l=kk();l.alea=n,l.xor128=r,l.xorwow=a,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Ik=It(()=>{}),Nk="3.3.0",Sk="3.3.0",Tk="3.3.0",Ek="3.3.0",Ck="3.3.0",Rk=1e-7,Fk=1e-4,Mh=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Au=class{refCount(e){return lr("refCount")}incRef(e){return lr("incRef")}timerAvailable(){return!0}time(e){return lr("time")}read(e){return lr("read")}readSync(e){return lr("readSync")}numDataIds(){return lr("numDataIds")}disposeData(e,t){return lr("disposeData")}write(e,t,n){return lr("write")}move(e,t,n,r,a){return lr("move")}memory(){return lr("memory")}floatPrecision(){return lr("floatPrecision")}epsilon(){return this.floatPrecision()===32?Rk:Fk}dispose(){return lr("dispose")}};function lr(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function i5(e){let t=e.length,n=0,r=0;for(;t>0;)r=Math.random()*t|0,t--,n=e[t],e[t]=e[r],e[r]=n}function Mk(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,r,a,s=0;for(;n>0;)s=Math.random()*n|0,n--,r=e[n],a=t[n],e[n]=e[s],t[n]=t[s],e[s]=r,t[s]=a}function gu(e,t,n){return Math.max(e,Math.min(t,n))}function $k(e){return e%2==0?e:e+1}function Dk(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Ok(e,t){let n=Math.random();return t*n+(1-n)*e}function zk(e,t){let n=0;for(let r=0;r<e.length;r++){let a=Number(e[r])-Number(t[r]);n+=a*a}return n}function F(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function un(e,t,n=""){F(la(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ps(e){F(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function fs(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||cn(e)&&!n)for(let r=0;r<e.length;++r)fs(e[r],t,n);else t.push(e);return t}function Wt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Pk(e){return e.length===0}function la(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function Kt(e){return e%1==0}function Lk(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function Wk(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function Bk(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return i5(t),t}function yu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function Vk(e,t=r=>0,n){return new Promise((r,a)=>{let s=0,i=()=>{if(e()){r();return}s++;let o=t(s);if(n!=null&&s>=n){a();return}setTimeout(i,o)};i()})}function Uk(e,t){let n=1,r=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(r!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${r} and dim ${s}`);r=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(r===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let a=e.slice();return a[r]=t/n,a}function ur(e,t){let n=t.length;return e=e==null?t.map((r,a)=>a):[].concat(e),F(e.every(r=>r>=-n&&r<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),F(e.every(r=>Kt(r)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(r=>r<0?n+r:r)}function o5(e,t){let n=[],r=[],a=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||a?null:ur(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),r.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),r.push(o))}return{newShape:n,keptDims:r}}function l5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function u5(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function c5(e,t){for(let n=0;n<e.length;n++){let r=e[n];if(isNaN(r)||!isFinite(r))throw Error(`A tensor of type ${t} being uploaded contains ${r}.`)}}function h5(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function Hk(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function cn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function yf(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function d5(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Ca(e){return typeof e=="string"||e instanceof String}function p5(e){return typeof e=="boolean"}function f5(e){return typeof e=="number"}function $h(e){return Array.isArray(e)?$h(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":f5(e)?"float32":Ca(e)?"string":p5(e)?"bool":"float32"}function Ra(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Dh(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ao(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let r=t-3;r>=0;--r)n[r]=n[r+1]*e[r+1];return n}function m5(e,t,n){let r=new Array;if(t.length===1){let a=t[0];for(let s=0;s<a;s++)r[s]=n[e+s]}else{let a=t[0],s=t.slice(1),i=s.reduce((o,l)=>o*l);for(let o=0;o<a;o++)r[o]=m5(e+o*i,s,n)}return r}function so(e,t){if(e.length===0)return t[0];let n=e.reduce((r,a)=>r*a);if(n===0)return[];if(n!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}.`);return m5(0,e,t)}function xf(e,t){let n=Oh(e,t);for(let r=0;r<n.length;r++)n[r]=1;return n}function Oh(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function jk(e,t){let n=e.reduce((r,a)=>r*a,1);if(t==null||t==="float32")return so(e,new Float32Array(n));if(t==="int32")return so(e,new Int32Array(n));if(t==="bool")return so(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function wf(e){e.forEach(t=>{F(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function Gk(e,t,n){if(t===0)return 0;if(t===1)return e[0];let r=e[e.length-1];for(let a=0;a<e.length-1;++a)r+=n[a]*e[a];return r}function qk(e,t,n){if(t===0)return[];if(t===1)return[e];let r=new Array(t);for(let a=0;a<r.length-1;++a)r[a]=Math.floor(e/n[a]),e-=r[a]*n[a];return r[r.length-1]=e,r}function bf(e){return e&&e.then&&typeof e.then=="function"}var A5="tfjsflags",g5=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let r=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${r}.`),this.set(e,r)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(bf(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=Xk(this.global.location.search);A5 in e&&e[A5].split(",").forEach(t=>{let[n,r]=t.split(":");this.urlFlags[n]=Kk(n,r)})}};function Xk(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...r)=>(Zk(t,r[0],r[1]),r.join("="))),t}function Zk(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function Kk(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function J(){return _r}var _r=null;function Yk(e){_r=e}var _f;function y5(){if(_f==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");_f=e}return _f}function Jk(){let e=y5();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function vf(e,t){let n=Jk();if(n.has(e))return n.get(e);{let r=t();return n.set(e,r),n.get(e)}}var io="Abs",oo="Acos",lo="Acosh",Fa="Add",ms="AddN",zh="All",Ph="Any",As="ArgMax",xu="ArgMin",uo="Asin",co="Asinh",ho="Atan",po="Atanh",fo="Atan2",gs="AvgPool",Lh="AvgPoolGrad",wu="AvgPool3D",Wh="AvgPool3DGrad",ys="BatchMatMul",bu="BatchToSpaceND",Bh="Bincount",x5="BroadcastTo",xs="Cast",ws="Ceil",Ma="ClipByValue",Vh="Complex",_u="ComplexAbs",mo="Concat",bs="Conv2D",Uh="Conv2DBackpropFilter",_s="Conv2DBackpropInput",vu="Conv3D",Hh="Conv3DBackpropFilterV2",jh="Conv3DBackpropInputV2",vs="Cos",Ao="Cosh",ks="Cumsum",go="CropAndResize",Gh="DenseBincount",yo="DepthToSpace",Is="DepthwiseConv2dNative",qh="DepthwiseConv2dNativeBackpropFilter",Xh="DepthwiseConv2dNativeBackpropInput",Kh="Diag",ku="Dilation2D",Zh="Dilation2DBackpropInput",Yh="Dilation2DBackpropFilter",Ns="RealDiv",xo="Elu",Jh="EluGrad",wo="Erf",bo="Equal",Ss="Exp",_o="ExpandDims",vo="Expm1",Qh="FFT",Iu="Fill",ko="FlipLeftRight",Ts="Floor",Es="FloorDiv",Cs="FusedBatchNorm",Io="GatherV2",No="GatherNd",So="Greater",Rs="GreaterEqual",Fs="Identity",ed="IFFT",td="Imag",To="IsFinite",Eo="IsInf",Co="IsNan",Ms="LeakyRelu",Ro="Less",Fo="LessEqual",nd="LinSpace",$s="Log",Mo="Log1p",$o="LogicalAnd",Nu="LogicalNot",Su="LogicalOr",w5="LogSoftmax",Tu="LRN",rd="LRNGrad",Ds="Max",Os="Maximum",zs="MaxPool",ad="MaxPoolGrad",Eu="MaxPool3D",sd="MaxPool3DGrad",id="MaxPoolWithArgmax",Ps="Mean",Ls="Min",Ws="Minimum",Cu="MirrorPad",Do="Mod",od="Multinomial",Bs="Multiply",Oo="Neg",zo="NotEqual",Po="NonMaxSuppressionV3",Lo="NonMaxSuppressionV4",Wo="NonMaxSuppressionV5",Bo="OnesLike",Vs="OneHot",Vo="Pack",Us="PadV2",Qk="Pool",Hs="Pow",js="Prelu",Uo="Prod",Ru="Range",ld="Real",Ho="Reciprocal",Gs="Relu",jo="Reshape",Fu="ResizeNearestNeighbor",ud="ResizeNearestNeighborGrad",qs="ResizeBilinear",cd="ResizeBilinearGrad",Xs="Relu6",Ks="Reverse",Zs="Round",Ys="Rsqrt",Go="ScatterNd",qo="Select",Xo="Selu",Ko="Slice",Js="Sin",Zo="Sinh",Yo="Sign",Qs="Sigmoid",Jo="Softplus",ei="Sqrt",ti="Sum",Mu="SpaceToBatchND",Qo="SplitV",ni="Softmax",ri="SquaredDifference",$u="Square",ai="Sub",hd="SparseToDense",el="StridedSlice",tl="Tan",si="Tanh",$a="Tile",nl="TopK",dd="Transform",ii="Transpose",pd="Unique",rl="Unpack",Du="UnsortedSegmentSum",al="ZerosLike",Da="Step",fd="FromPixels",sl="RotateWithOffset",oi="_FusedMatMul",li="FusedConv2D",ui="FusedDepthwiseConv2D",il=vf("kernelRegistry",()=>new Map),Ou=vf("gradRegistry",()=>new Map);function md(e,t){let n=kf(e,t);return il.get(n)}function If(e){return Ou.get(e)}function ol(e){let t=il.entries(),n=[];for(;;){let{done:r,value:a}=t.next();if(r)break;let[s,i]=a,[o]=s.split("_");o===e&&n.push(i)}return n}function ci(e){let{kernelName:t,backendName:n}=e,r=kf(t,n);il.has(r)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),il.set(r,e)}function b5(e){let{kernelName:t}=e;Ou.has(t)&&J().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Ou.set(t,e)}function e9(e,t){let n=kf(e,t);if(!il.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);il.delete(n)}function t9(e){if(!Ou.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ou.delete(e)}function n9(e,t){ol(e).forEach(n=>{let r=Object.assign({},n,{backendName:t});ci(r)})}function kf(e,t){return`${t}_${e}`}var v={};We(v,{arraysEqual:()=>la,assert:()=>F,assertNonNegativeIntegerDimensions:()=>wf,assertNonNull:()=>ps,assertShapesMatch:()=>un,bytesFromStringArray:()=>d5,bytesPerElement:()=>yf,checkConversionForErrors:()=>c5,clamp:()=>gu,computeStrides:()=>ao,createScalarValue:()=>r9,createShuffledIndices:()=>Bk,decodeString:()=>gd,distSquared:()=>zk,encodeString:()=>Pu,fetch:()=>a9,flatten:()=>fs,getArrayFromDType:()=>u5,getTypedArrayFromDType:()=>l5,hasEncodingLoss:()=>Hk,indexToLoc:()=>qk,inferDtype:()=>$h,inferFromImplicitShape:()=>Uk,isBoolean:()=>p5,isFunction:()=>Ra,isInt:()=>Kt,isNumber:()=>f5,isPromise:()=>bf,isScalarShape:()=>Pk,isString:()=>Ca,isTypedArray:()=>cn,isValidDtype:()=>h5,locToIndex:()=>Gk,makeOnesTypedArray:()=>xf,makeZerosNestedTypedArray:()=>jk,makeZerosTypedArray:()=>Oh,nearestDivisor:()=>Dh,nearestLargerEven:()=>$k,now:()=>zu,parseAxisParam:()=>ur,randUniform:()=>Ok,repeatedTry:()=>Vk,rightPad:()=>yu,shuffle:()=>i5,shuffleCombo:()=>Mk,sizeFromShape:()=>Wt,sizeToSquarishShape:()=>Wk,squeezeShape:()=>o5,sum:()=>Dk,tanh:()=>Lk,toNestedArray:()=>so,toTypedArray:()=>Ad});function r9(e,t){return t==="string"?Pu(e):Ad([e],t)}function s9(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function Ad(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=fs(e)),J().getBool("DEBUG")&&c5(e,t),s9(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let r=0;r<n.length;++r)Math.round(e[r])!==0&&(n[r]=1);return n}else throw new Error(`Unknown data type ${t}`)}function zu(){return J().platform.now()}function a9(e,t){return J().platform.fetch(e,t)}function Pu(e,t="utf-8"){return t=t||"utf-8",J().platform.encode(e,t)}function gd(e,t="utf-8"){return t=t||"utf-8",J().platform.decode(e,t)}var l9=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new o9)}profileKernel(e,t,n){let r,a=()=>{r=n()},s,i=zu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(a);else{a();for(let o of r)o.dataSync();s=Promise.resolve({kernelMs:zu()-i})}if(J().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<r.length;o++){let l=r[o];l.data().then(u=>{i9(u,l.dtype,e)})}return{kernelName:e,outputs:r,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:r,inputs:a,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),r,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],a,o[2])})})}};function i9(e,t,n){if(t!=="float32")return!1;for(let r=0;r<e.length;r++){let a=e[r];if(isNaN(a)||!isFinite(a))return console.warn(`Found ${a} in the result of '${n}'`),!0}return!1}var o9=class{logKernelProfile(e,t,n,r,a,s){let i=typeof r=="number"?yu(`${r}ms`,9):r.error,o=yu(e,25),l=t.rank,u=t.size,c=yu(t.shape.toString(),14),h="";for(let d in a){let p=a[d];if(p!=null){let f=p.shape||t.shape,m=f.length;h+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${o} %c${i} %c${l}D ${c} %c${u} %c${h} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function u9(e,t,n){let r={},a={};for(let l=0;l<t.length;l++)r[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let h in c){let d=c[h],p=!1;for(let f=0;f<t.length;f++)if(r[d.id]){u.outputs.forEach(m=>r[m.id]=!0),p=!0,a[u.id]=!0;break}if(p)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let h=0;h<u.outputs.length;h++)if(s[u.outputs[h].id]){for(let d in c)s[c[d].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(a[u.id]&&i[u.id]){let c={};for(let d in u.inputs){let p=u.inputs[d];r[p.id]&&(c[d]=p)}let h=Object.assign({},u);h.inputs=c,h.outputs=u.outputs,o.push(h)}}return o}function c9(e,t,n,r){for(let a=t.length-1;a>=0;a--){let s=t[a],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=s.inputs[l];if(!la(u.shape,c.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let h=e[c.id];e[c.id]=r(h,u),h.dispose()}}}}var _5=20,Lu=3,Nf=7;function d9(e,t,n,r){let a=ao(t),s=h9(e,t,n,a),i=t.length,o=yd(e,t,n,a,s),l=["Tensor"];return r&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function h9(e,t,n,r){let a=Wt(t),s=r[r.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?Bu(e):e;if(o>1)for(let u=0;u<a/s;u++){let c=u*s;for(let h=0;h<s;h++)i[h]=Math.max(i[h],Wu(l[c+h],0,n).length)}return i}function Wu(e,t,n){let r;return Array.isArray(e)?r=`${parseFloat(e[0].toFixed(Nf))} + ${parseFloat(e[1].toFixed(Nf))}j`:Ca(e)?r=`'${e}'`:n==="bool"?r=v5(e):r=parseFloat(e.toFixed(Nf)).toString(),yu(r,t)}function v5(e){return e===0?"false":"true"}function yd(e,t,n,r,a,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=Bu(e);return[Wu(m[0],0,n)]}return n==="bool"?[v5(e[0])]:[e[0].toString()]}if(l===1){if(o>_5){let A=Lu*i,g=Array.from(e.slice(0,A)),y=Array.from(e.slice((o-Lu)*i,o*i));return n==="complex64"&&(g=Bu(g),y=Bu(y)),["["+g.map((w,b)=>Wu(w,a[b],n)).join(", ")+", ..., "+y.map((w,b)=>Wu(w,a[o-Lu+b],n)).join(", ")+"]"]}let m=n==="complex64"?Bu(e):Array.from(e);return["["+m.map((A,g)=>Wu(A,a[g],n)).join(", ")+"]"]}let u=t.slice(1),c=r.slice(1),h=r[0]*i,d=[];if(o>_5){for(let m=0;m<Lu;m++){let A=m*h,g=A+h;d.push(...yd(e.slice(A,g),u,n,c,a,!1))}d.push("...");for(let m=o-Lu;m<o;m++){let A=m*h,g=A+h;d.push(...yd(e.slice(A,g),u,n,c,a,m===o-1))}}else for(let m=0;m<o;m++){let A=m*h,g=A+h;d.push(...yd(e.slice(A,g),u,n,c,a,m===o-1))}let p=l===2?",":"";d[0]="["+d[0]+p;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+p;let f=`,
|
|
`;for(let m=2;m<l;m++)f+=`
|
|
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(s?"":f),d}function Bu(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Bt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Wt(e),n!=null){let r=n.length;F(r===this.size,()=>`Length of values '${r}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||u5(t,this.size),this.strides=ao(e)}set(e,...t){t.length===0&&(t=[0]),F(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let r of e){if(r<0||r>=this.shape[t]){let a=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(a)}t++}let n=e[e.length-1];for(let r=0;r<e.length-1;++r)n+=this.strides[r]*e[r];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return zr().makeTensor(this.values,this.shape,this.dtype)}},zr=null,ll=null,p9=null;function f9(e){zr=e}function m9(e){ll=e}function A9(e){p9=e}var qe=class{constructor(e,t,n,r){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Wt(e),this.strides=ao(e),this.dataId=n,this.id=r,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return ll.buffer(this.shape,this.dtype,e)}bufferSync(){return ll.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return so(this.shape,e)}arraySync(){return so(this.shape,this.dataSync())}async data(){this.throwIfDisposed();let e=zr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>gd(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=zr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>gd(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await zr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(zr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return ll.print(this,e)}clone(){return this.throwIfDisposed(),ll.clone(this)}toString(e=!1){let t=this.dataSync();return d9(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),ll.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),zr().makeVariable(this,e,t,n)}};Object.defineProperty(qe,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function Z(){return vf("Tensor",()=>qe)}Z();var Vu=class extends qe{constructor(e,t,n,r){super(e.shape,e.dtype,e.dataId,r);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!la(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);zr().disposeTensor(this),this.dataId=e.dataId,zr().incRef(this,null)}dispose(){zr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Vu,Symbol.hasInstance,{value:e=>e instanceof qe&&e.assign!=null&&e.assign instanceof Function});var vr={};We(vr,{assertTypesMatch:()=>k5,getTensorsInContainer:()=>Sf,isTensorInList:()=>g9,makeTypesMatch:()=>Nt});var Tf;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Tf||(Tf={}));var Ef;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(Ef||(Ef={}));var Cf;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(Cf||(Cf={}));var Rf;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(Rf||(Rf={}));var Ff;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(Ff||(Ff={}));var y9={float32:Rf,int32:Ef,bool:Cf,complex64:Ff};function cr(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return y9[e][t]}function xd(e){return cr(e,"int32")}function Nt(e,t){if(e.dtype===t.dtype)return[e,t];let n=cr(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function k5(e,t){F(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function g9(e,t){return t.some(n=>n.id===e.id)}function Sf(e){let t=[],n=new Set;return I5(e,t,n),t}function I5(e,t,n){if(e==null)return;if(e instanceof qe){t.push(e);return}if(!x9(e))return;let r=e;for(let a in r){let s=r[a];n.has(s)||(n.add(s),I5(s,t,n))}}function x9(e){return Array.isArray(e)||typeof e=="object"}function Mf(e){return e.kernelName!=null}var N5=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Uu=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new N5}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new l9(this.backendInstance),!0}setupRegisteredKernels(){ol(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){ol(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Au)&&typeof n.then=="function"){let r=++this.pendingBackendInitId,a=n.then(s=>r<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(r<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=a,{success:a,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:r,asyncInit:a}=this.initializeBackend(n);if(a||r)return{name:n,asyncInit:a}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),r=n.backend,a=this.readSync(t),s=r.refCount(t);r.disposeData(t,!0),n.backend=e,e.move(t,a,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let r;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(r),()=>(r=t(),r instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),r))}scopedRun(e,t,n){e();try{let r=n();return t(),r}catch(r){throw t(),r}}nextTensorId(){return Uu.nextTensorId++}nextVariableId(){return Uu.nextVariableId++}clone(e){let t=$.runKernel(Fs,{x:e}),n={x:e},r=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return $.runKernel(xs,o,l)}}),a=[];return this.addTapeNode(this.state.activeScope.name,n,[t],r,a,{}),t}runKernel(e,t,n){if(md(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let r=this.backend.numDataIds(),a=0;n.forEach(o=>{a+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=r-t-a-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],r=this.isTapeOn(),a=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=Mf(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(Mf(e)){let{kernelName:p,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let A=md(p,this.backendName);F(A!=null,()=>`Cannot find registered kernel '${p}' for backend '${this.backendName}'`),i=()=>{let g=this.backend.numDataIds();o=A.kernelFunc({inputs:f,attrs:m,backend:this.backend});let y=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(p,g,y);let w=y.map(b=>{if(b.rank!=null)return b;let{dataId:_,shape:x,dtype:N}=b;return this.makeTensorFromDataId(_,x,N)});if(r){let b=this.getTensorsForGradient(p,f,w);n=this.saveTensorsForBackwardMode(b)}return w}}else{let{forwardFunc:p}=e,f=m=>{!r||(n=m.map(A=>this.keep(this.clone(A))))};i=()=>{let m=this.backend.numDataIds();o=this.tidy(()=>p(this.backend,f));let A=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,A),A}}let{inputs:u,attrs:c}=e,h=Mf(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(d=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),r&&this.addTapeNode(l,u,t,h,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-a,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(p=>u[p]!=null?u[p].shape:null),outputShapes:t.map(p=>p.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let r=If(e);if(r!=null){let a=r.inputsToSave||[],s=r.outputsToSave||[],i;r.saveAllInputs?(F(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=a.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,r){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",r=r||this.backend;let a=e;n==="string"&&Ca(e[0])&&(a=e.map(o=>Pu(o)));let s=r.write(a,t,n),i=new qe(t,n,s,this.nextTensorId());if(this.trackTensor(i,r),n==="string"){let o=this.state.tensorInfo.get(s),l=d5(a);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,r){n=n||"float32";let a=new qe(t,n,e,this.nextTensorId());return this.trackTensor(a,r),a}makeVariable(e,t=!0,n,r){n=n||this.nextVariableId().toString(),r!=null&&r!==e.dtype&&(e=e.cast(r));let a=new Vu(e,t,n,this.nextTensorId());if(this.state.registeredVariables[a.name]!=null)throw new Error(`Variable with name ${a.name} was already registered`);return this.state.registeredVariables[a.name]=a,this.incRef(a,this.backend),a}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*yf(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Vu||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*yf(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(r=>r.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let r of this.state.activeProfile.kernels)r.kernelTimeMs=await r.kernelTimeMs,r.extraInfo=await r.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,r,a,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:a},o=If(e);o!=null&&(r=o.gradFunc),r!=null&&(i.gradient=l=>(l=l.map((u,c)=>{if(u==null){let h=n[c],d=Oh(h.size,h.dtype);return this.makeTensor(d,h.shape,h.dtype)}return u}),r(l.length>1?l:l[0],a,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=Sf(e),n=new Set(t.map(a=>a.id));for(let a=0;a<this.state.activeScope.track.length;a++){let s=this.state.activeScope.track[a];!s.kept&&!n.has(s.id)&&s.dispose()}let r=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(a=>{!a.kept&&a.scopeId===r.id&&this.track(a)})}gradients(e,t,n,r=!1){if(F(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let a=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));F(a instanceof qe,()=>"The result y returned by f() must be a tensor.");let s=u9(this.state.activeTape,t,a);if(!r&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[a.id]=n==null?w9(a.shape):n,c9(i,s,l=>this.tidy(l),b9);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:a,grads:o}})}customGrad(e){return F(Ra(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{F(t.every(i=>i instanceof qe),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,r={};t.forEach((i,o)=>{r[o]=i});let a=(i,o)=>(n=e(...t,o),F(n.value instanceof qe,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),F(Ra(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];F(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),F(u.every(h=>h instanceof qe),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((h,d)=>{c[d]=()=>h}),c};return this.runKernelFunc({forwardFunc:a,backwardsFunc:s,inputs:r})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=zu(),n=await this.backend.time(e);return n.wallMs=zu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new N5;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Uu.nextTensorId=0;Uu.nextVariableId=0;function w9(e){let t=xf(Wt(e),"float32");return $.makeTensor(t,e,"float32")}function S5(){let e=y5();if(e._tfengine==null){let t=new g5(e);e._tfengine=new Uu(t)}return Yk(e._tfengine.ENV),f9(()=>e._tfengine),e._tfengine}var $=S5();function b9(e,t){let n={a:e,b:t};return $.runKernel(Fa,n)}var Hu={};We(Hu,{isBrowser:()=>T5,isMobile:()=>_9});function v9(){return typeof navigator!="undefined"&&navigator!=null}function _9(){if(v9()){let e=navigator.userAgent||navigator.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(e)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(e.substr(0,4))}return!1}function T5(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var kr=J();kr.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});kr.registerFlag("IS_BROWSER",()=>T5());kr.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");kr.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));kr.registerFlag("PROD",()=>!1);kr.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>kr.getBool("DEBUG"));kr.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);kr.registerFlag("IS_TEST",()=>!1);kr.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);kr.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Pr(e,t){let n=e;if(cn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let r=[];for(;Array.isArray(n)||cn(n)&&t!=="string";)r.push(n.length),n=n[0];return Array.isArray(e)&&J().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&E5(e,r,[]),r}function E5(e,t,n){if(n=n||[],!Array.isArray(e)&&!cn(e)){F(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}F(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),F(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let r=t.slice(1);for(let a=0;a<e.length;++a)E5(e[a],r,n.concat(a))}function C5(e,t,n,r){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${r}' must be ${e} tensor, but got ${t} tensor`)}}function C(e,t,n,r="numeric"){if(e instanceof qe)return C5(r,e.dtype,t,n),e;let a=$h(e);if(a!=="string"&&["bool","int32","float32"].indexOf(r)>=0&&(a=r),C5(r,a,t,n),e==null||!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Pr(e,a);!cn(e)&&!Array.isArray(e)&&(e=[e]);let i=a!=="string"?Ad(e,a):fs(e,[],!0);return $.makeTensor(i,s,a)}function ju(e,t,n,r="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,s)=>C(a,`${t}[${s}]`,n,r))}var R5="__op";function D(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],r=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+R5;let a=(...s)=>{$.startScope(n);try{let i=r(...s);return bf(i)&&console.error("Cannot return a Promise inside of tidy."),$.endScope(i),i}catch(i){throw $.endScope(null),i}};return Object.defineProperty(a,"name",{value:n,configurable:!0}),a}function k9(e,t){let n=C(e,"real","complex"),r=C(t,"imag","complex");un(n.shape,r.shape,`real and imag shapes, ${n.shape} and ${r.shape}, must match in call to tf.complex().`);let a={real:n,imag:r};return $.runKernel(Vh,a)}var Oa=D({complex_:k9});function za(e,t,n,r){if(r==null&&(r=$h(e)),r==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!cn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){wf(t);let a=Wt(t),s=Wt(n);F(a===s,()=>`Based on the provided shape, [${t}], the tensor should have ${a} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Wt(t.slice(i)):!0;F(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!cn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=r!=="string"?Ad(e,r):fs(e,[],!0),$.makeTensor(e,t,r)}function Ir(e,t,n){let r=Pr(e,n);return za(e,t,r,n)}var $f={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},wd=4;async function N9(e,t){let n=[],r=[],a=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<a.length;++i){let o=a[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async h=>{let d=await l.bytes(),p=d.reduce((A,g)=>A+g.length,0)+wd*d.length,f=new Uint8Array(p),m=0;for(let A=0;A<d.length;A++){let g=d[A],y=new Uint8Array(new Uint32Array([g.length]).buffer);f.set(y,m),m+=wd,f.set(g,m),m+=g.length}h(f)});r.push(c)}else r.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(r);return{data:I9(s),specs:n}}function F5(e,t){let n={},r,a=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Wt(l),c;if("quantization"in s){let h=s.quantization;if(h.dtype==="uint8"||h.dtype==="uint16"){if(!("min"in h&&"scale"in h))throw new Error(`Weight ${s.name} with quantization ${h.dtype} doesn't have corresponding metadata min and scale.`)}else if(h.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${h.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${h.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=$f[h.dtype],p=e.slice(a,a+u*d),f=h.dtype==="uint8"?new Uint8Array(p):new Uint16Array(p);if(o==="float32")if(h.dtype==="uint8"||h.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=A*h.scale+h.min}}else if(h.dtype==="float16")r===void 0&&(r=S9()),c=r(f);else throw new Error(`Unsupported quantization type ${h.dtype} for weight type float32.`);else if(o==="int32"){if(h.dtype!=="uint8"&&h.dtype!=="uint16")throw new Error(`Unsupported quantization type ${h.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let A=f[m];c[m]=Math.round(A*h.scale+h.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*d}else if(o==="string"){let h=Wt(s.shape);c=[];for(let d=0;d<h;d++){let p=new Uint32Array(e.slice(a,a+wd))[0];a+=wd;let f=new Uint8Array(e.slice(a,a+p));c.push(f),a+=p}}else{let h=$f[o],d=e.slice(a,a+u*h);if(o==="float32")c=new Float32Array(d);else if(o==="int32")c=new Int32Array(d);else if(o==="bool")c=new Uint8Array(d);else if(o==="complex64"){c=new Float32Array(d);let p=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let g=0;g<p.length;g++)p[g]=c[g*2],f[g]=c[g*2+1];let m=Ir(p,l,"float32"),A=Ir(f,l,"float32");n[i]=Oa(m,A),m.dispose(),A.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);a+=u*h}o!=="complex64"&&(n[i]=Ir(c,l,o))}return n}function I9(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let r=new Uint8Array(t),a=0;return n.forEach(s=>{r.set(new Uint8Array(s.buffer),a),a+=s.byteLength}),r.buffer}var Df=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function M5(e){return Df?Buffer.byteLength(e):new Blob([e]).size}function T9(e){if(Df)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let r=0,a=t.length;r<a;r++)n+=String.fromCharCode(t[r]);return btoa(n)}function E9(e){if(Df){let r=Buffer.from(e,"base64");return r.buffer.slice(r.byteOffset,r.byteOffset+r.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let r=0;r<t.length;++r)n.set([t.charCodeAt(r)],r);return n.buffer}function Of(e){if(e.length===1)return e[0];let t=0;e.forEach(a=>{t+=a.byteLength});let n=new Uint8Array(t),r=0;return e.forEach(a=>{n.set(new Uint8Array(a),r),r+=a.byteLength}),n.buffer}function $5(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function Gu(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:M5(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:M5(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function C9(){let e=n=>{let r=n<<13,a=0;for(;(r&8388608)==0;)a-=8388608,r<<=1;return r&=~8388608,a+=947912704,r|a},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function R9(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function F9(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function S9(){let e=C9(),t=R9(),n=F9();return r=>{let a=new ArrayBuffer(4*r.length),s=new Uint32Array(a);for(let i=0;i<r.length;i++){let o=r[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(a)}}var Rt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Rt.instance==null&&(Rt.instance=new Rt),Rt.instance}static registerSaveRouter(e){Rt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Rt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Rt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Rt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let r=[];return(t==="load"?Rt.getInstance().loadRouters:Rt.getInstance().saveRouters).forEach(a=>{let s=a(e,n);s!==null&&r.push(s)}),r}},M9=e=>Rt.registerSaveRouter(e),$9=e=>Rt.registerLoadRouter(e),D9=e=>Rt.getSaveHandlers(e),O9=(e,t)=>Rt.getLoadHandlers(e,t),zf="tensorflowjs",Pf=1,hi="models_store",Pa="model_info_store";function D5(){if(!J().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function Lf(e){let t=e.result;t.createObjectStore(hi,{keyPath:"modelPath"}),t.createObjectStore(Pa,{keyPath:"modelPath"})}var di=class{constructor(e){if(this.indexedDB=D5(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,r)=>{let a=this.indexedDB.open(zf,Pf);a.onupgradeneeded=()=>Lf(a),a.onsuccess=()=>{let s=a.result;if(t==null){let i=s.transaction(hi,"readonly"),o=i.objectStore(hi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),r(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),r(o.error)),i.oncomplete=()=>s.close()}else{let i=Gu(t),o=s.transaction(Pa,"readwrite"),l=o.objectStore(Pa),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),c;u.onsuccess=()=>{c=s.transaction(hi,"readwrite");let h=c.objectStore(hi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});h.onsuccess=()=>n({modelArtifactsInfo:i}),h.onerror=d=>{l=o.objectStore(Pa);let p=l.delete(this.modelPath);p.onsuccess=()=>(s.close(),r(h.error)),p.onerror=f=>(s.close(),r(h.error))}},u.onerror=h=>(s.close(),r(u.error)),o.oncomplete=()=>{c==null?s.close():c.oncomplete=()=>s.close()}}},a.onerror=s=>r(a.error)})}};di.URL_SCHEME="indexeddb://";var O5=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(di.URL_SCHEME)?z9(e.slice(di.URL_SCHEME.length)):null;Rt.registerSaveRouter(O5);Rt.registerLoadRouter(O5);function z9(e){return new di(e)}function P9(e){return e.startsWith(di.URL_SCHEME)?e.slice(di.URL_SCHEME.length):e}var L9=class{constructor(){this.indexedDB=D5()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(zf,Pf);n.onupgradeneeded=()=>Lf(n),n.onsuccess=()=>{let r=n.result,a=r.transaction(Pa,"readonly"),s=a.objectStore(Pa).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(r.close(),t(s.error)),a.oncomplete=()=>r.close()},n.onerror=r=>t(n.error)})}async removeModel(e){return e=P9(e),new Promise((t,n)=>{let r=this.indexedDB.open(zf,Pf);r.onupgradeneeded=()=>Lf(r),r.onsuccess=()=>{let a=r.result,s=a.transaction(Pa,"readwrite"),i=s.objectStore(Pa),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return a.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),c=()=>{l=a.transaction(hi,"readwrite");let h=l.objectStore(hi).delete(e);h.onsuccess=()=>t(o.result.modelArtifactsInfo),h.onerror=d=>n(o.error)};u.onsuccess=c,u.onerror=h=>(c(),a.close(),n(o.error))}},o.onerror=u=>(a.close(),n(o.error)),s.oncomplete=()=>{l==null?a.close():l.oncomplete=()=>a.close()}},r.onerror=a=>n(r.error)})}},ua="/",ul="tensorflowjs_models",z5="info",W9="model_topology",B9="weight_specs",V9="weight_data",U9="model_metadata";function P5(e){return{info:[ul,e,z5].join(ua),topology:[ul,e,W9].join(ua),weightSpecs:[ul,e,B9].join(ua),weightData:[ul,e,V9].join(ua),modelMetadata:[ul,e,U9].join(ua)}}function H9(e){let t=e.split(ua);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(ua)}function j9(e){return e.startsWith(pi.URL_SCHEME)?e.slice(pi.URL_SCHEME.length):e}var pi=class{constructor(e){if(!J().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=P5(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),r=Gu(e);try{this.LS.setItem(this.keys.info,JSON.stringify(r)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,T9(e.weightData));let a={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(a)),{modelArtifactsInfo:r}}catch(a){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${r.modelTopologyBytes}, weightSpecsBytes=${r.weightSpecsBytes}, weightDataBytes=${r.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let r=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(r==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=r;let a=this.LS.getItem(this.keys.modelMetadata);if(a!=null){let i=JSON.parse(a);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=E9(s),t}};pi.URL_SCHEME="localstorage://";var L5=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(pi.URL_SCHEME)?G9(e.slice(pi.URL_SCHEME.length)):null;Rt.registerSaveRouter(L5);Rt.registerLoadRouter(L5);function G9(e){return new pi(e)}var q9=class{constructor(){F(J().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),F(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=ul+ua,n=ua+z5;for(let r=0;r<this.LS.length;++r){let a=this.LS.key(r);if(a.startsWith(t)&&a.endsWith(n)){let s=H9(a);e[s]=JSON.parse(this.LS.getItem(a))}}return e}async removeModel(e){e=j9(e);let t=P5(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},cl="://",Yn=class{constructor(){this.managers={}}static getInstance(){return Yn.instance==null&&(Yn.instance=new Yn),Yn.instance}static registerManager(e,t){F(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(cl)&&(e=e.slice(0,e.indexOf(cl))),F(e.length>0,()=>"scheme must not be an empty string.");let n=Yn.getInstance();F(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function bd(e){if(e.indexOf(cl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${Yn.getSchemes().join(",")}`);return{scheme:e.split(cl)[0],path:e.split(cl)[1]}}async function W5(e,t,n=!1){F(e!==t,()=>`Old path and new path are the same: '${e}'`);let r=Rt.getLoadHandlers(e);F(r.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),F(r.length<2,()=>`Copying failed because more than one (${r.length}) load handlers for source URL ${e}.`);let a=r[0],s=Rt.getSaveHandlers(t);F(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),F(s.length<2,()=>`Copying failed because more than one (${r.length}) save handlers for destination URL ${t}.`);let i=s[0],o=bd(e).scheme,l=bd(e).path,u=o===bd(e).scheme,c=await a.load();n&&u&&await Yn.getManager(o).removeModel(l);let h=await i.save(c);return n&&!u&&await Yn.getManager(o).removeModel(l),h.modelArtifactsInfo}async function X9(){let e=Yn.getSchemes(),t={};for(let n of e){let r=await Yn.getManager(n).listModels();for(let a in r){let s=n+cl+a;t[s]=r[a]}}return t}async function K9(e){let t=bd(e);return Yn.getManager(t.scheme).removeModel(t.path)}async function Z9(e,t){return W5(e,t,!1)}async function Y9(e,t){return W5(e,t,!0)}var J9=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(J().get("IS_BROWSER")){J().setPlatform("browser",new J9);try{Yn.registerManager(pi.URL_SCHEME,new q9)}catch(e){}try{Yn.registerManager(di.URL_SCHEME,new L9)}catch(e){}}var Q9={importFetch:()=>ik()},Wf,eI=class{constructor(){this.util=require("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return J().global.fetch!=null?J().global.fetch(e,t):(Wf==null&&(Wf=Q9.importFetch()),Wf(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};J().get("IS_NODE")&&J().setPlatform("node",new eI);function Ue(e,t="float32",n){return t=t||"float32",wf(e),new Bt(e,t,n)}function tI(e,t){let n=C(e,"x","cast");if(!h5(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let r={x:n},a={dtype:t};return $.runKernel(xs,r,a)}var xe=D({cast_:tI});function nI(e){let t={x:C(e,"x","clone","string_or_numeric")};return $.runKernel(Fs,t)}var Lr=D({clone_:nI});function B5(e,t=!1){console.log(e.toString(t))}S5();var rI={buffer:Ue,cast:xe,clone:Lr,print:B5};m9(rI);var Nn={};We(Nn,{browserFiles:()=>aI,browserHTTPRequest:()=>iI,concatenateArrayBuffers:()=>Of,copyModel:()=>Z9,decodeWeights:()=>F5,encodeWeights:()=>N9,fromMemory:()=>oI,getLoadHandlers:()=>O9,getModelArtifactsInfoForJSON:()=>Gu,getSaveHandlers:()=>D9,http:()=>Vf,isHTTPScheme:()=>Bf,listModels:()=>X9,loadWeights:()=>sI,moveModel:()=>Y9,registerLoadRouter:()=>$9,registerSaveRouter:()=>M9,removeModel:()=>K9,weightsLoaderFactory:()=>V5,withSaveHandler:()=>lI});var uI="model",cI=".json",hI=".weights.bin";function U5(e){return new Promise(t=>setTimeout(t)).then(e)}var hl=class{constructor(e){if(!J().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(hl.URL_SCHEME)&&(e=e.slice(hl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=uI),this.modelTopologyFileName=e+cI,this.weightDataFileName=e+hI}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer);let a=window.URL.createObjectURL(new Blob([JSON.stringify(r)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=a,await U5(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await U5(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:Gu(e)}}}};hl.URL_SCHEME="downloads://";var dI=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,r)=>{let a=new FileReader;a.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){r(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){r(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(p){r(p);return}let c=[],h=[],d=[];l.forEach(p=>{p.paths.forEach(f=>{h.push(f),d.push(null)}),c.push(...p.weights)}),l.forEach(p=>{p.paths.forEach(f=>{let m=new FileReader;m.onload=A=>{let g=A.target.result,y=h.indexOf(f);if(d[y]=g,d.indexOf(null)===-1){let w={modelTopology:o,weightSpecs:c,weightData:Of(d),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(w.signature=i.signature),i.userDefinedMetadata!=null&&(w.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(w.modelInitializer=i.modelInitializer),n(w)}},m.onerror=A=>r(`Failed to weights data from file of path '${f}'.`),m.readAsArrayBuffer(u[f])})})},a.onerror=s=>r(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),a.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],r=t.map(s=>$5(s.name)),a={};for(let s of e)s.paths.forEach(i=>{let o=$5(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),r.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);a[i]=t[r.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return a}},fI=e=>J().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(hl.URL_SCHEME)?pI(e.slice(hl.URL_SCHEME.length)):null;Rt.registerSaveRouter(fI);function pI(e="model"){return new hl(e)}function aI(e){return new dI(e)}function H5(e,t,n,r){i(e),n=n==null?0:n,r=r==null?1:r,o(n,r);let a=0,s=l=>(l.then(u=>{let c=n+ ++a/e.length*(r-n);return t(c),u}),l);function i(l){F(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){F(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),F(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),F(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function j5(e,t){t==null&&(t={});let n=t.fetchFunc==null?J().platform.fetch:t.fetchFunc,r=e.map(u=>n(u,t.requestInit,{isBinary:!0})),a=0,s=.5,i=(t.onProgress==null?await Promise.all(r):await H5(r,t.onProgress,a,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await H5(i,t.onProgress,o,l)}async function sI(e,t="",n,r){return V5(a=>j5(a,{requestInit:r}))(e,t,n)}function V5(e){return async(t,n="",r)=>{let a=t.map(()=>!1),s={},i=r!=null?r.map(()=>!1):[],o=[];if(t.forEach((p,f)=>{let m=0;p.weights.forEach(A=>{let g="quantization"in A?A.quantization.dtype:A.dtype,y=$f[g]*Wt(A.shape),w=()=>{a[f]=!0,s[f]==null&&(s[f]=[]),s[f].push({manifestEntry:A,groupOffset:m,sizeBytes:y})};r!=null?r.forEach((b,_)=>{b===A.name&&(w(),i[_]=!0)}):w(),o.push(A.name),m+=y})}),!i.every(p=>p)){let p=r.filter((f,m)=>!i[m]);throw new Error(`Could not find weights in manifest with names: ${p.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=a.reduce((p,f,m)=>(f&&p.push(m),p),[]),u=[];l.forEach(p=>{t[p].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),h={},d=0;return l.forEach(p=>{let f=t[p].paths.length,m=0;for(let w=0;w<f;w++)m+=c[d+w].byteLength;let A=new ArrayBuffer(m),g=new Uint8Array(A),y=0;for(let w=0;w<f;w++){let b=new Uint8Array(c[d+w]);g.set(b,y),y+=b.byteLength}s[p].forEach(w=>{let b=A.slice(w.groupOffset,w.groupOffset+w.sizeBytes),_=F5(b,[w.manifestEntry]);for(let x in _)h[x]=_[x]}),d+=f}),h}}var mI="application/octet-stream",AI="application/json",Uf=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(F(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=J().platform.fetch,F(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&F(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],r={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(r)],{type:AI}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:mI}),"model.weights.bin");let a=await this.fetch(this.path,t);if(a.ok)return{modelArtifactsInfo:Gu(e),responses:[a]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${a.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(p){let f=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?f+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":f+=" Please make sure the server is serving valid JSON for this request.",new Error(f)}let n=t.modelTopology,r=t.weightsManifest,a=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&r==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,c;r!=null&&([u,c]=await this.loadWeights(r));let h={modelTopology:n,weightSpecs:u,weightData:c,generatedBy:a,convertedBy:s,format:i};o!=null&&(h.signature=o),l!=null&&(h.userDefinedMetadata=l);let d=t.modelInitializer;return d&&(h.modelInitializer=d),h}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,r]=gI(t),a=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(c)):i.push(a+c+r);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await j5(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,Of(l)]}};Uf.URL_SCHEME_REGEX=/^https?:\/\//;function gI(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),r=e.substring(0,t),a=n>t?e.substring(n):"";return[r+"/",a]}function Bf(e){return e.match(Uf.URL_SCHEME_REGEX)!=null}var G5=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(r=>Bf(r)):n=Bf(e),n)return Vf(e,t)}return null};Rt.registerSaveRouter(G5);Rt.registerLoadRouter(G5);function Vf(e,t){return new Uf(e,t)}function iI(e,t){return Vf(e,t)}var Hf=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},yI=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function oI(e,t,n,r){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new Hf(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hf({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new Hf({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:r}))}function lI(e){return new yI(e)}var q5={};We(q5,{confusionMatrix:()=>xI});function wI(e,t,n=!1,r=!1){let a=C(e,"a","matMul"),s=C(t,"b","matMul");[a,s]=Nt(a,s);let i={a,b:s},o={transposeA:n,transposeB:r};return $.runKernel(ys,i,o)}var Ye=D({matMul_:wI});function bI(e,t,n=1,r=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let a={indices:C(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:r};return $.runKernel(Vs,a,s)}var dl=D({oneHot_:bI});function _I(e,t){let n=C(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{F(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let r={x:n},a={perm:t};return $.runKernel(ii,r,a)}var it=D({transpose_:_I});function vI(e,t,n){let r=C(e,"labels","confusionMatrix"),a=C(t,"predictions","confusionMatrix");F(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),F(r.rank===1,()=>`Expected the rank of labels to be 1, but got ${r.rank}`),F(a.rank===1,()=>`Expected the rank of predictions to be 1, but got ${a.rank}`),F(r.shape[0]===a.shape[0],()=>`Mismatch in the number of examples: ${r.shape[0]} vs. ${a.shape[0]}. Labels and predictions should have the same number of elements.`),F(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=dl(xe(r,"int32"),n),i=dl(xe(a,"int32"),n),o=it(s),l=Ye(o,i);return xe(l,"int32")}var xI=D({confusionMatrix_:vI}),pl={};We(pl,{fromPixels:()=>NI,fromPixelsAsync:()=>kI,toPixels:()=>II});function _d(e,t,n){if(ps(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let r=Pr(e,n);if(r.length!==3&&r.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return za(e,t,r,n)}var fl;function X5(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,r=!1,a=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)r=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)a=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(a){let d=2;if(a&&e.readyState<d)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(md(fd,$.backendName)!=null){let d={pixels:e},p={numChannels:t};return $.runKernel(fd,d,p)}let[l,u]=a?[e.videoWidth,e.videoHeight]:[e.width,e.height],c;i?c=e.getContext("2d").getImageData(0,0,l,u).data:r||n?c=e.data:(s||a||o)&&(fl==null&&(fl=document.createElement("canvas").getContext("2d")),fl.canvas.width=l,fl.canvas.height=u,fl.drawImage(e,0,0,l,u),c=fl.getImageData(0,0,l,u).data);let h;if(t===4)h=new Int32Array(c);else{let d=l*u;h=new Int32Array(d*t);for(let p=0;p<d;p++)for(let f=0;f<t;++f)h[p*t+f]=c[p*4+f]}return _d(h,[u,l,t],"int32")}function SI(e){return e!=null&&e.data instanceof Uint8Array}function TI(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function EI(e){return e!=null&&e.width!==0&&e.height!==0}function CI(e){return TI()&&!(e instanceof ImageBitmap)&&EI(e)&&!SI(e)}async function kI(e,t=3){let n=null;if(J().getBool("WRAP_TO_IMAGEBITMAP")&&CI(e)){let r;try{r=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(a){r=null}r!=null&&r.width===e.width&&r.height===e.height?n=r:n=e}else n=e;return X5(n,t)}async function II(e,t){let n=C(e,"img","toPixels");if(!(e instanceof qe)){let u=n;n=xe(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[r,a]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(a*r*4);for(let u=0;u<r*a;++u){let c=[0,0,0,255];for(let d=0;d<s;d++){let p=i[u*s+d];if(n.dtype==="float32"){if(p<0||p>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${p}.`)}else if(n.dtype==="int32"&&(p<0||p>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${p}.`);s===1?(c[0]=p*o,c[1]=p*o,c[2]=p*o):c[d]=p*o}let h=u*4;l[h+0]=Math.round(c[0]),l[h+1]=Math.round(c[1]),l[h+2]=Math.round(c[2]),l[h+3]=Math.round(c[3])}if(t!=null){t.width=a,t.height=r;let u=t.getContext("2d"),c=new ImageData(l,a,r);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var NI=D({fromPixels_:X5}),jf={};We(jf,{prepareAndValidate:()=>K5});function K5(e,t){let n=e.shape.length,r=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(r<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${r}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[r-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[r-1]} vs. ${n}`);if(Wt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let a=t.shape,s=a[a.length-1],i=1;for(let h=0;h<a.length-1;++h)i*=a[h];let o=e.shape,l=a.slice();l.pop();let u=1;for(let h=s;h<n;++h)u*=o[h],l.push(o[h]);let c=[...ao(e.shape).map(h=>h/u),1].slice(0,s);return[l,i,u,c]}var Gf={};We(Gf,{calculateShapes:()=>Z5,validateInput:()=>Xf,validateUpdateShape:()=>qf});function qf(e,t,n){let r=t.rank>1?t.shape[t.rank-1]:1,a=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${r}, and batchDim: ${a}.`;if(n.rank<a)throw new Error(s+` update.rank < ${a}. `);if(e.length<r+(n.rank-a))throw new Error(s+` Output shape length < ${r+(n.rank-a)}`);if(n.rank!==a+e.length-r)throw new Error(s+` update.rank != ${a+e.length-r}`);for(let i=0;i<a;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-a;++i)if(n.shape[i+a]!==e[i+r])throw new Error(s+` updates.shape[${i+a}] (${n.shape[i+a]}) != shape[${i+a}] (${e[i+a]})`)}function Xf(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}qf(n,t,e)}function Z5(e,t,n){let r=t.shape.length,a=r>1?t.shape[r-1]:1,s=n.length,i=1;for(let h=a;h<s;++h)i*=n[h];let o=a<1?1:a,l=Wt(t.shape)/o,u=[...ao(n.slice(0,a)),1],c=Wt(n);return{sliceRank:a,numUpdates:l,sliceSize:i,strides:u,outputSize:c}}var fn={};We(fn,{assertParamsValid:()=>RI,computeFlatOffset:()=>MI,computeOutShape:()=>Y5,getNormalizedAxes:()=>Q5,isSliceContinous:()=>FI,maskToAxes:()=>vd,parseSliceParams:()=>sx,sliceInfo:()=>$I,startForAxis:()=>rx,startIndicesWithElidedDims:()=>ex,stopForAxis:()=>ax,stopIndicesWithElidedDims:()=>tx,stridesForAxis:()=>nx,stridesWithElidedDims:()=>J5});function RI(e,t,n){let r=e.shape.length;F(r===t.length,()=>`Error in slice${r}D: Length of begin ${t} must match the rank of the array (${r}).`),F(r===n.length,()=>`Error in slice${r}D: Length of size ${n} must match the rank of the array (${r}).`);for(let a=0;a<r;++a)F(t[a]+n[a]<=e.shape[a],()=>`Error in slice${r}D: begin[${a}] + size[${a}] (${t[a]+n[a]}) would overflow input.shape[${a}] (${e.shape[a]})`)}function vd(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Y5(e,t,n){let r=[];for(let a=0;a<e.length;a++)r[a]=Math.ceil((t[a]-e[a])/n[a]);return r}function J5(e,t,n,r){let a=[...e];for(let s=a.length;s<r.length;s++)a.push(1);for(let s=0;s<n;s++)s===0?a[t]=1:(a.splice(t,0,1),a.pop());return a}function ix(e,t,n){return n<=e?n:n-(t-1)}function ox(e,t){let n=[];for(let r=0;r<e;r++)n.push(t+r);return n}function Q5(e,t,n,r,a,s,i,o,l){let u=e.length,c=new Array(u),h=new Array(u),d=new Array(u);if(t.length&&n>0){let p=t[0],f=n+1;c=ex(i,p,f,r,e),h=tx(o,p,f,a,e),d=J5(s,p,f,e)}else for(let p=0;p<u;p++)c[p]=rx(i,r,s,e,p,l),h[p]=ax(o,a,s,e,p,l),d[p]=nx(s,p,l);return{begin:c,end:h,strides:d}}function ex(e,t,n,r,a){let s=[...a],i=ox(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=ix(t,n,o),u=r[l];e&1<<l&&(u=0),s[o]=u}return s}function tx(e,t,n,r,a){let s=[...a],i=ox(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=ix(t,n,o),u=r[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=a[o];s[o]<0&&(s[o]+=l),s[o]=gu(0,s[o],a[o])}return s}function nx(e,t,n){let r=e[t];return(n&1<<t||r==null)&&(r=1),r}function rx(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),i=gu(0,i,l-1),i}function ax(e,t,n,r,a,s){let i=t[a],o=n[a]||1;(e&1<<a||s&1<<a||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=r[a];return i<0&&(i+=l),o>0?i=gu(0,i,l):i=gu(-1,i,l-1),i}function FI(e,t,n){let r=n.length;for(let a=0;a<n.length;a++)if(n[a]>1){r=a;break}for(let a=r+1;a<n.length;a++)if(t[a]>0||n[a]!==e[a])return!1;return!0}function MI(e,t){let n=e.length>0?e[e.length-1]:1;for(let r=0;r<e.length-1;r++)n+=e[r]*t[r];return n}function sx(e,t,n){let r,a=e.shape.length;typeof t=="number"?r=[t,...new Array(a-1).fill(0)]:t.length<a?r=t.concat(new Array(a-t.length).fill(0)):r=t.slice(),r.forEach(i=>{F(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(a).fill(-1):typeof n=="number"?s=[n,...new Array(a-1).fill(-1)]:n.length<a?s=n.concat(new Array(a-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(F(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-r[o])),[r,s]}function $I(e,t,n,r,a,s,i,o,l){let u=t.slice(),c=n.slice(),h=r;r==null&&(h=new Array(u.length));let d=vd(i);if(d.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let p=e.length-u.length,f=vd(o),m=e.slice();f.forEach(x=>{u[x]=0,c[x]=1,m.splice(x,0,1)});let{begin:A,end:g,strides:y}=Q5(m,d,p,u,c,h,a,s,i);u=A,c=g,h=y;let w=vd(l);w.forEach(x=>{c[x]=u[x]+1,h[x]=1});let b=Y5(u,c,h),_=b.filter((x,N)=>w.indexOf(N)===-1);return{nonStrided:h.every(x=>x===1),$begin:u,$end:c,$strides:h,size:b,newShape:m,outShape:_}}var ae={};We(ae,{Serializable:()=>lx,SerializationMap:()=>fi,registerClass:()=>La});var lx=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},fi=class{constructor(){this.classNameMap={}}static getMap(){return fi.instance==null&&(fi.instance=new fi),fi.instance}static register(e){fi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function La(e){F(e.className!=null,()=>"Class being registered does not have the static className property defined."),F(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),F(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),fi.register(e)}var ux={};We(ux,{TEST_EPSILON_FLOAT16:()=>cx,encodeStrings:()=>hx,expectArrayBuffersEqual:()=>WI,expectArraysClose:()=>DI,expectArraysEqual:()=>zI,expectNumbersClose:()=>PI,expectPromiseToFail:()=>OI,expectValuesInRange:()=>LI,testEpsilon:()=>Kf});var BI=.001,cx=.1;function DI(e,t,n){return n==null&&(n=Kf()),Zf(e,t,(r,a)=>Yf(r,a,n))}function Kf(){return $.backend.floatPrecision()===32?BI:cx}function Zf(e,t,n){let r=!0;if((cn(e)||cn(t))&&(r=!1),cn(e)&&cn(t)&&(r=!0),r){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Pr(e),o=Pr(t);if(!la(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let a=cn(e)?e:fs(e),s=cn(t)?t:fs(t);if(a.length!==s.length)throw new Error(`Arrays have different lengths actual: ${a.length} vs expected: ${s.length}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=a[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${a}.
|
|
Expected: ${s}.`)}}function OI(e,t){e().then(()=>t.fail(),()=>t())}function zI(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Ca(e)||Ca(e[0])||Ca(t)||Ca(t[0])?Zf(e,n,(r,a)=>r==a):Zf(e,t,(r,a)=>Yf(r,a,0))}function PI(e,t,n){if(n==null&&(n=Kf()),!Yf(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function Yf(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function LI(e,t,n){for(let r=0;r<e.length;r++)if(e[r]<t||e[r]>n)throw new Error(`Value out of range:${e[r]} low: ${t}, high: ${n}`)}function WI(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function hx(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?hx(n):e[t]=Pu(n)}return e}var VI="3.3.0";function UI(){J().set("PROD",!0)}function HI(){J().set("DEBUG",!0)}function jI(){J().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Jf(e){J().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}A9(Jf);function GI(){$.disposeVariables()}function Wr(){return $}function kd(){return $.memory()}function Jn(e){return $.profile(e)}function L(e,t){return $.tidy(e,t)}function Re(e){Sf(e).forEach(t=>t.dispose())}function Zt(e){return $.keep(e)}function qI(e){return $.time(e)}function XI(e){return $.setBackend(e)}function KI(){return $.ready()}function ZI(){return $.backendName}function YI(e){$.removeBackend(e)}function Qf(e){return $.findBackend(e)}function JI(e){return $.findBackendFactory(e)}function ml(e,t,n=1){return $.registerBackend(e,t,n)}function dx(){return $.backend}function QI(e,t){J().setPlatform(e,t)}function eN(e,t){let n=C(e,"a","add"),r=C(t,"b","add");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Fa,a)}var ie=D({add_:eN});function tN(e,t){let n=C(e,"a","floorDiv"),r=C(t,"b","floorDiv");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Es,a)}var Id=D({floorDiv_:tN});function nN(e,t){let n=C(e,"a","div"),r=C(t,"b","div");if([n,r]=Nt(n,r),n.dtype==="int32"&&r.dtype==="int32")return Id(n,r);let a={a:n,b:r},s={};return $.runKernel(Ns,a,s)}var _e=D({div_:nN});function rN(e,t){let n=C(e,"a","mul"),r=C(t,"b","mul");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Bs,a)}var O=D({mul_:rN});function aN(e){let t=C(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return $.runKernel(_u,n)}else{let n={x:t};return $.runKernel(io,n)}}var Vt=D({abs_:aN});function sN(e){let t={x:C(e,"x","acos")};return $.runKernel(oo,t)}var em=D({acos_:sN});function iN(e){let t={x:C(e,"x","acosh")};return $.runKernel(lo,t)}var tm=D({acosh_:iN});function oN(e){F(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),F(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((a,s)=>C(a,`tensors${s}`,"addN")),n=t[0];t.forEach(a=>{if(a.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(a=>{if(!la(a.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let r=t;return $.runKernel(ms,r)}var Wa=D({addN_:oN});function lN(e,t=null,n=!1){let r={x:C(e,"x","all","bool")},a={axis:t,keepDims:n};return $.runKernel(zh,r,a)}var Nd=D({all_:lN});function uN(e,t=null,n=!1){let r={x:C(e,"x","any","bool")},a={axis:t,keepDims:n};return $.runKernel(Ph,r,a)}var qu=D({any_:uN});function cN(e,t=0){let n={x:C(e,"x","argMax")},r={axis:t};return $.runKernel(As,n,r)}var Xu=D({argMax_:cN});function hN(e,t=0){let n={x:C(e,"x","argMin")},r={axis:t};return $.runKernel(xu,n,r)}var nm=D({argMin_:hN});function dN(e){let t={x:C(e,"x","asin")};return $.runKernel(uo,t)}var rm=D({asin_:dN});function pN(e){let t={x:C(e,"x","asinh")};return $.runKernel(co,t)}var am=D({asinh_:pN});function fN(e){let t={x:C(e,"x","atan")};return $.runKernel(ho,t)}var sm=D({atan_:fN});function mN(e,t){let n=C(e,"a","atan2"),r=C(t,"b","atan2");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(fo,a)}var im=D({atan2_:mN});function AN(e){let t={x:C(e,"x","atanh")};return $.runKernel(po,t)}var om=D({atanh_:AN});function gN(e,t,n,r,a="NHWC",s){let i=e[3],o=[...t,i],l=px(a);return Ku(e,o,n,s,r,null,null,l)}function fx(e,t,n,r,a,s,i="channelsLast"){let[o,l]=Sd(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return Ku(e,u,n,r,a,s,!1,i)}function yN(e,t,n,r,a,s,i="NDHWC"){let[o,l,u]=lm(t),c,h;if(i==="NDHWC")h="channelsLast",c=[o,l,u,e[4],e[4]];else if(i==="NCDHW")h="channelsFirst",c=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return mx(e,c,n,r,a,!1,h,s)}function Ku(e,t,n,r,a,s,i=!1,o="channelsLast"){let[l,u,c,h]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,h]=e;else if(o==="channelsFirst")[l,h,u,c]=e;else throw new Error(`Unknown dataFormat ${o}`);let[d,p,,f]=t,[m,A]=Sd(n),[g,y]=Sd(r),w=Al(d,g),b=Al(p,y),{padInfo:_,outHeight:x,outWidth:N}=xN(a,u,c,m,A,w,b,s,o),T=i?f*h:f,E;return o==="channelsFirst"?E=[l,T,x,N]:o==="channelsLast"&&(E=[l,x,N,T]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:c,inChannels:h,outHeight:x,outWidth:N,outChannels:T,padInfo:_,strideHeight:m,strideWidth:A,filterHeight:d,filterWidth:p,effectiveFilterHeight:w,effectiveFilterWidth:b,dilationHeight:g,dilationWidth:y,inShape:e,outShape:E,filterShape:t}}function mx(e,t,n,r,a,s=!1,i="channelsLast",o){let[l,u,c,h,d]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,h,d]=e;else if(i==="channelsFirst")[l,d,u,c,h]=e;else throw new Error(`Unknown dataFormat ${i}`);let[p,f,m,,A]=t,[g,y,w]=lm(n),[b,_,x]=lm(r),N=Al(p,b),T=Al(f,_),E=Al(m,x),{padInfo:M,outDepth:z,outHeight:B,outWidth:V}=wN(a,u,c,h,g,y,w,N,T,E,o),U=s?A*d:A,H;return i==="channelsFirst"?H=[l,U,z,B,V]:i==="channelsLast"&&(H=[l,z,B,V,U]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:c,inWidth:h,inChannels:d,outDepth:z,outHeight:B,outWidth:V,outChannels:U,padInfo:M,strideDepth:g,strideHeight:y,strideWidth:w,filterDepth:p,filterHeight:f,filterWidth:m,effectiveFilterDepth:N,effectiveFilterHeight:T,effectiveFilterWidth:E,dilationDepth:b,dilationHeight:_,dilationWidth:x,inShape:e,outShape:H,filterShape:t}}function bN(e,t,n,r,a){r==null&&(r=um(e,t,n));let s=e[0],i=e[1],o=mi((s-t+2*r)/n+1,a),l=mi((i-t+2*r)/n+1,a);return[o,l]}function _N(e,t,n,r,a,s){a==null&&(a=um(e,t,r));let i=e[0],o=e[1],l=e[2],u=mi((i-t+2*a)/r+1,s),c=mi((o-t+2*a)/r+1,s),h=mi((l-t+2*a)/r+1,s);return[u,c,h,n]}function um(e,t,n,r=1){let a=Al(t,r);return Math.floor((e[0]*(n-1)-n+a)/2)}function Sd(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function lm(e){return typeof e=="number"?[e,e,e]:e}function Al(e,t){return t<=1?e:e+(e-1)*(t-1)}function xN(e,t,n,r,a,s,i,o,l){let u,c,h;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let d=bN([t,n],s,r,e,o);c=d[0],h=d[1]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/a);let d=Math.max(0,(c-1)*r+s-t),p=Math.max(0,(h-1)*a+i-n),f=Math.floor(d/2),m=d-f,A=Math.floor(p/2),g=p-A;u={top:f,bottom:m,left:A,right:g,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-s+1)/r),h=Math.ceil((n-i+1)/a);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],p=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:p,left:f,right:m,type:d===0&&p===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=mi((t-s+d+p)/r+1,o),h=mi((n-i+f+m)/a+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:h}}function wN(e,t,n,r,a,s,i,o,l,u,c){let h,d,p,f;if(typeof e=="number"){h={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let m=_N([t,n,r,1],o,1,a,e,c);d=m[0],p=m[1],f=m[2]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/s),f=Math.ceil(r/i);let m=(d-1)*a+o-t,A=(p-1)*s+l-n,g=(f-1)*i+u-r,y=Math.floor(m/2),w=m-y,b=Math.floor(A/2),_=A-b,x=Math.floor(g/2),N=g-x;h={top:b,bottom:_,left:x,right:N,front:y,back:w,type:"SAME"}}else if(e==="valid")h={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-o+1)/a),p=Math.ceil((n-l+1)/s),f=Math.ceil((r-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:h,outDepth:d,outHeight:p,outWidth:f}}function mi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ba(e){let[t,n,r]=Sd(e);return t===1&&n===1&&r===1}function Br(e,t){return Ba(e)||Ba(t)}function px(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function vN(e,t){let n={x:C(e,"x","reshape","string_or_numeric")},r={shape:t};return $.runKernel(jo,n,r)}var j=D({reshape_:vN});function kN(e,t,n,r,a){let s=C(e,"x","avgPool","float32"),i=1;F(Br(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),a!=null&&F(Kt(r),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(gs,u,c);return h=xe(h,s.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Zu=D({avgPool_:kN});function IN(e,t,n,r,a,s="NDHWC"){let i=C(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Kt(r),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(wu,u,c);return h=xe(h,o.dtype),l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var cm=D({avgPool3d_:IN});function NN(e,t=0){F(e.length>=1,()=>"Pass at least one tensor to concat");let n=ju(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Lr(n[0]);let r=n,a={axis:t};return $.runKernel(mo,r,a)}var ot=D({concat_:NN});function SN(e){let t={x:C(e,"x","sigmoid")};return $.runKernel(Qs,t)}var On=D({sigmoid_:SN});function TN(e,t,n){let r=C(e,"x","slice","string_or_numeric");if(r.rank===0)throw new Error("Slicing scalar is not possible");let a={x:r},s={begin:t,size:n};return $.runKernel(Ko,a,s)}var $e=D({slice_:TN});function EN(e){let t={x:C(e,"x","tanh")};return $.runKernel(si,t)}var gl=D({tanh_:EN});function CN(e,t,n,r,a,s){let i=C(e,"forgetBias","basicLSTMCell"),o=C(t,"lstmKernel","basicLSTMCell"),l=C(n,"lstmBias","basicLSTMCell"),u=C(r,"data","basicLSTMCell"),c=C(a,"c","basicLSTMCell"),h=C(s,"h","basicLSTMCell"),d=ot([u,h],1),p=Ye(d,o),f=ie(p,l),m=f.shape[0],A=f.shape[1]/4,g=[m,A],y=$e(f,[0,0],g),w=$e(f,[0,A],g),b=$e(f,[0,A*2],g),_=$e(f,[0,A*3],g),x=ie(O(On(y),gl(w)),O(c,On(ie(i,b)))),N=O(gl(x),On(_));return[x,N]}var RN=D({basicLSTMCell_:CN});function FN(e,t,n){let r=C(e,"x","batchToSpaceND"),a=t.reduce((o,l)=>o*l);F(r.rank>=1+t.length,()=>`input rank is ${r.rank} but should be > than blockShape.length ${t.length}`),F(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),F(r.shape[0]%a==0,()=>`input tensor batch is ${r.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${a}`);let s={x:r},i={blockShape:t,crops:n};return $.runKernel(bu,s,i)}var Yu=D({batchToSpaceND_:FN});function MN(e){let t;return e.rank===0||e.rank===1?t=j(e,[1,1,1,e.size]):e.rank===2?t=j(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function $N(e,t,n,r,a,s){s==null&&(s=.001);let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;r!=null&&(c=C(r,"offset","batchNorm")),F(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),F(c==null||o.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),F(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let h={x:MN(i),scale:u,offset:c,mean:o,variance:l},d={varianceEpsilon:s},p=$.runKernel(Cs,h,d);return j(p,i.shape)}var Ai=D({batchNorm_:$N});function DN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),F(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),F(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Ai(i,o,l,c,u,s)}var Ax=D({batchNorm2d_:DN});function ON(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),F(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),F(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Ai(i,o,l,c,u,s)}var gx=D({batchNorm3d_:ON});function zN(e,t,n,r,a,s){let i=C(e,"x","batchNorm"),o=C(t,"mean","batchNorm"),l=C(n,"variance","batchNorm"),u;a!=null&&(u=C(a,"scale","batchNorm"));let c;return r!=null&&(c=C(r,"offset","batchNorm")),F(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),F(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),F(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&F(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&F(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Ai(i,o,l,c,u,s)}var yx=D({batchNorm4d_:zN});function PN(e,t,n){let r=C(e,"x","bincount"),a=C(t,"weights","bincount");F(r.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${r.dtype}`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(a.size===r.size||a.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${r.shape}, weights shape: ${a.shape}.`);let s={x:r,weights:a},i={size:n};return $.runKernel(Bh,s,i)}var xx=D({bincount_:PN});function LN(e,t){let n=C(e,"broadcastTo","x"),r=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=j(n,l)}let a=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(a[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Lr(n);let i={x:n},o={reps:s};return $.runKernel($a,i,o)}var Ju=D({broadcastTo_:LN});function WN(e){let t={x:C(e,"x","ceil")};return $.runKernel(ws,t)}var hm=D({ceil_:WN});function BN(e,t,n){let r=C(e,"x","clipByValue");F(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let a={x:r},s={clipValueMin:t,clipValueMax:n};return $.runKernel(Ma,a,s)}var Sn=D({clipByValue_:BN});function VN(e){return ot(e,0)}var wx=D({concat1d_:VN});function UN(e,t){return ot(e,t)}var yl=D({concat2d_:UN});function HN(e,t){return ot(e,t)}var bx=D({concat3d_:HN});function jN(e,t){return ot(e,t)}var _x=D({concat4d_:jN});function GN(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","conv2d"),l=C(t,"filter","conv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&F(Kt(r),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h=a==="NHWC"?u.shape[3]:u.shape[1];F(h===l.shape[2],()=>`Error in conv2d: depth of input (${h}) must match input depth for filter ${l.shape[2]}.`),F(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let d={x:u,filter:l},p={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},f=$.runKernel(bs,d,p);return c?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var ca=D({conv2d_:GN});function qN(e,t,n,r,a="NWC",s=1,i){let o=C(e,"x","conv1d"),l=C(t,"filter","conv1d"),u=o,c=!1;o.rank===2&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1]])),F(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),F(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&F(Kt(r),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),F(Br(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),F(a==="NWC",()=>`Error in conv1d: got dataFormat of ${a} but only NWC is currently supported.`);let h=j(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=j(u,[u.shape[0],1,u.shape[1],u.shape[2]]),p=ca(d,h,[1,n],r,"NHWC",[1,s],i);return c?j(p,[p.shape[2],p.shape[3]]):j(p,[p.shape[0],p.shape[2],p.shape[3]])}var Td=D({conv1d_:qN});function XN(e,t,n,r,a,s="NHWC",i){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),F(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),F(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),F(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=s==="NHWC"?o[3]:o[1],h=s==="NHWC"?l.shape[3]:l.shape[1];F(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),F(h===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${h}) must match output depth for filter ${n.shape[3]}.`),i!=null&&F(Kt(a),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let d={dy:l,filter:n},p={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,inputShape:o},f=$.runKernel(_s,d,p);return u?j(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var dm=D({conv2DBackpropInput_:XN});function KN(e,t,n,r,a,s){let i=C(e,"x","conv2dTranspose"),o=C(t,"filter","conv2dTranspose");return dm(n,i,o,r,a,"NHWC",s)}var Ed=D({conv2dTranspose_:KN});function ZN(e,t,n,r,a="NDHWC",s=[1,1,1]){let i=C(e,"x","conv3d"),o=C(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),F(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),F(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),F(Br(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NDHWC",()=>`Error in conv3d: got dataFormat of ${a} but only NDHWC is currently supported.`);let c={x:l,filter:o},h={strides:n,pad:r,dataFormat:a,dilations:s},d=$.runKernel(vu,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var pm=D({conv3d_:ZN});function YN(e,t,n,r,a){F(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];F(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),F(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),F(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),F(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),F(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:i,filter:n},h={pad:a,strides:r,inputShape:s},d=$.runKernel(jh,c,h);return o?j(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var vx=D({conv3DBackpropInput_:YN});function JN(e,t,n,r,a){let s=C(e,"x","conv3dTranspose"),i=C(t,"filter","conv3dTranspose");return vx(n,s,i,r,a)}var QN=D({conv3dTranspose_:JN});function eS(e){let t={x:C(e,"x","cos")};return $.runKernel(vs,t)}var Qu=D({cos_:eS});function tS(e){let t={x:C(e,"x","cosh")};return $.runKernel(Ao,t)}var Cd=D({cosh_:tS});function nS(e,t=0,n=!1,r=!1){let a={x:C(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:r};return $.runKernel(ks,a,s)}var Rd=D({cumsum_:nS});function rS(e,t,n,r=!1){let a=C(e,"x","denseBincount"),s=C(t,"weights","denseBincount");F(a.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${a.dtype}`),F(a.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${a.rank}.`),F(n>=0,()=>`size must be non-negative, but got ${n}.`),F(s.size===a.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${a.shape}, weights shape: ${s.shape}.`);let i={x:a,weights:s},o={size:n,binaryOutput:r};return $.runKernel(Gh,i,o)}var kx=D({denseBincount_:rS});function aS(e,t,n="NHWC"){let r=C(e,"x","depthToSpace"),a=n==="NHWC"?r.shape[1]:r.shape[2],s=n==="NHWC"?r.shape[2]:r.shape[3],i=n==="NHWC"?r.shape[3]:r.shape[1];F(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${a} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${r.shape}`),F(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${r.shape}`);let o={x:r},l={blockSize:t,dataFormat:n};return $.runKernel(yo,o,l)}var fm=D({depthToSpace_:aS});function sS(e,t,n,r,a="NHWC",s=[1,1],i){let o=C(e,"x","depthwiseConv2d"),l=C(t,"filter","depthwiseConv2d"),u=o,c=!1;o.rank===3&&(c=!0,u=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),F(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),F(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&F(Kt(r),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let h={x:u,filter:l},d={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i},p=$.runKernel(Is,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var xl=D({depthwiseConv2d_:sS});function iS(e){let t={x:C(e,"x","diag")};return $.runKernel(Kh,t)}var oS=D({diag_:iS});function lS(e,t,n,r,a=[1,1],s="NHWC"){let i=C(e,"x","dilation2d"),o=C(t,"filter","dilation2d");F(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),F(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),F(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let c={x:l,filter:o},h={strides:n,pad:r,dilations:a},d=$.runKernel(ku,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var mm=D({dilation2d_:lS});function uS(e,t){let n=e.length,r=[];for(let a=0;a<n;a++){let s=n-1-a,i=e[s]||1;(t[t.length-1-a]||1)>1&&i===1&&r.unshift(s)}return r}function Ut(e,t){let n=[];for(let r=0;r<t.length;r++){let a=e[e.length-r-1],s=t.length-r-1,i=t[s];(a==null||a===1&&i>1)&&n.unshift(s)}return n}function xt(e,t){let n=[],r=Math.max(e.length,t.length);for(let a=0;a<r;a++){let s=e[e.length-a-1];s==null&&(s=1);let i=t[t.length-a-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function cS(e,t){let n=C(e,"a","equal"),r=C(t,"b","equal");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(bo,a)}var Va=D({equal_:cS});function hS(e,t,n){let r=C(t,"a","where"),a=C(n,"b","where"),s=C(e,"condition","where","bool"),i=xt(r.shape,a.shape),o=Ju(r,i),l=Ju(a,i);s.rank===1&&F(s.shape[0]===r.shape[0],()=>"The first dimension of `a` must match the size of `condition`."),s.rank!==1&&un(s.shape,l.shape,"Error in where: ");let u={condition:s,t:o,e:l};return $.runKernel(qo,u)}var Tn=D({where_:hS});function dS(e){let t={x:C(e,"x","zerosLike")};return $.runKernel(al,t)}var Xe=D({zerosLike_:dS});function pS(e,t){let n=C(e,"a","div"),r=C(t,"b","div");[n,r]=Nt(n,r);let a=_e(n,r),s=Xe(a),i=Va(r,s);return Tn(i,s,a)}var Am=D({divNoNan_:pS});function fS(e,t){let n=C(e,"t1","dot"),r=C(t,"t2","dot");F((n.rank===1||n.rank===2)&&(r.rank===1||r.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${r.rank}.`);let a=n.rank===1?n.size:n.shape[1],s=r.rank===1?r.size:r.shape[0];if(F(a===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${a} and ${s}.`),n.rank===1&&r.rank===1){let i=j(n,[1,-1]),o=j(r,[-1,1]),l=Ye(i,o);return j(l,[])}else if(n.rank===1&&r.rank===2){let i=j(n,[1,-1]),o=j(r,[r.shape[0],r.shape[1]]),l=Ye(i,o);return j(l,[l.size])}else if(n.rank===2&&r.rank===1){let i=j(r,[-1,1]),o=Ye(n,i);return j(o,[o.size])}else{let i=j(r,[r.shape[0],r.shape[1]]);return Ye(n,i)}}var Ix=D({dot_:fS});function mS(e){let t={x:C(e,"x","elu")};return $.runKernel(xo,t)}var wl=D({elu_:mS});function AS(e){let t=C(e,"x","erf");F(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=xe(t,"float32"));let n={x:t};return $.runKernel(wo,n)}var gm=D({erf_:AS});function gS(e){let t={x:C(e,"x","exp")};return $.runKernel(Ss,t)}var Qn=D({exp_:gS});function yS(e,t=0){let n=C(e,"x","expandDims","string_or_numeric");F(t<=n.rank,()=>"Axis must be <= rank of the tensor");let r={input:n},a={dim:t};return $.runKernel(_o,r,a)}var mn=D({expandDims_:yS});function xS(e){let t={x:C(e,"x","expm1")};return $.runKernel(vo,t)}var ym=D({expm1_:xS});function wS(e,t){let n=C(e,"x","tile","string_or_numeric");F(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let r={x:n},a={reps:t};return $.runKernel($a,r,a)}var Ua=D({tile_:wS});function bS(e,t,n,r="float32"){t==null&&(t=e);let a=Ue([e,t],r),s=e<=t?e:t;for(let o=0;o<s;++o)a.set(1,o,o);let i=j(a.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Ua(mn(i,0),[n[0],1,1]);if(n.length===2)return Ua(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ua(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var xm=D({eye_:bS});function ec(e,t,n){let r={shape:e,value:t,dtype:n};return $.runKernel(Iu,{},r)}function _S(e){let t={x:C(e,"x","floor")};return $.runKernel(Ts,t)}var bl=D({floor_:_S});function vS(e,t,n=0,r=0){let a=C(e,"x","gather"),s=C(t,"indices","gather","int32"),i={x:a,indices:s},o={axis:n,batchDims:r};return $.runKernel(Io,i,o)}var gi=D({gather_:vS});function kS(e,t){let n=C(e,"a","greater"),r=C(t,"b","greater");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(So,a)}var hr=D({greater_:kS});function IS(e,t){let n=C(e,"a","greaterEqual"),r=C(t,"b","greaterEqual");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Rs,a)}var Ha=D({greaterEqual_:IS});function NS(e){let t={input:C(e,"input","imag")};return $.runKernel(td,t)}var Fd=D({imag_:NS});function SS(e){let t={x:C(e,"x","isFinite")};return $.runKernel(To,t)}var Nx=D({isFinite_:SS});function TS(e){let t={x:C(e,"x","isInf")};return $.runKernel(Eo,t)}var Sx=D({isInf_:TS});function ES(e){let t={x:C(e,"x","isNaN")};return $.runKernel(Co,t)}var Tx=D({isNaN_:ES});function CS(e,t=.2){let n={x:C(e,"x","leakyRelu")},r={alpha:t};return $.runKernel(Ms,n,r)}var tc=D({leakyRelu_:CS});function RS(e,t){let n=C(e,"a","less"),r=C(t,"b","less");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ro,a)}var Md=D({less_:RS});function FS(e,t){let n=C(e,"a","lessEqual"),r=C(t,"b","lessEqual");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Fo,a)}var yi=D({lessEqual_:FS});function Ex(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let r={start:e,stop:t,num:n};return $.runKernel(nd,{},r)}function MS(e,t=5,n=1,r=1,a=.5){let s=C(e,"x","localResponseNormalization");F(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),F(Kt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=j(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:r,beta:a},c=$.runKernel(Tu,l,u);return o?j(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var wm=D({localResponseNormalization_:MS});function $S(e){let t={x:C(e,"x","log")};return $.runKernel($s,t)}var zn=D({log_:$S});function DS(e){let t={x:C(e,"x","log1p")};return $.runKernel(Mo,t)}var $d=D({log1p_:DS});function OS(e){return F(Ra(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let r=C(t,"x","tf.grad","string_or_numeric"),a=n!=null?C(n,"dy","tf.grad"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(r),[r],a);return a!=null&&un(s.shape,a.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Dd(i),i[0]})}}function zS(e){return F(Ra(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{F(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let r=ju(t,"args","tf.grads","string_or_numeric"),a=n!=null?C(n,"dy","tf.grads"):null;return $.tidy(()=>{let{value:s,grads:i}=$.gradients(()=>e(...r),r,a);return a!=null&&un(s.shape,a.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Dd(i),i})}}function PS(e){return F(Ra(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{F(t instanceof qe,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),F(n==null||n instanceof qe,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:r,value:a}=$.gradients(()=>e(t),[t],n);return Dd(r),{grad:r[0],value:a}}}function LS(e){return F(Ra(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{F(Array.isArray(t)&&t.every(a=>a instanceof qe),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),F(n==null||n instanceof qe,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let r=$.gradients(()=>e(...t),t,n);return n!=null&&un(r.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Dd(r.grads),r}}function Cx(e,t){F(Ra(e),()=>"The f passed in variableGrads(f) must be a function"),F(t==null||Array.isArray(t)&&t.every(u=>u instanceof Vu),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in $.registeredVariables)t.push($.registeredVariables[u])}let r=n?t.filter(u=>!u.trainable):null,a=t.length;t=t.filter(u=>u.trainable),F(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${a} variables is trainable.`);let s=!0,{value:i,grads:o}=$.gradients(e,t,null,s);F(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),F(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,c)=>{o[c]!=null&&(l[u.name]=o[c])}),r!=null&&r.forEach(u=>l[u.name]=null),{value:i,grads:l}}function Vr(e){return $.customGrad(e)}function Dd(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function WS(e){let t={x:C(e,"x","neg")};return $.runKernel(Oo,t)}var St=D({neg_:WS});function BS(e){let t={x:C(e,"x","softplus")};return $.runKernel(Jo,t)}var _l=D({softplus_:BS});function VS(e){let t=C(e,"x","logSigmoid");return Vr(n=>({value:St(_l(St(n))),gradFunc:r=>O(r,On(St(n)))}))(t)}var Rx=D({logSigmoid_:VS});function US(e,t=null,n=!1){let r={x:C(e,"x","max")},a={reductionIndices:t,keepDims:n};return $.runKernel(Ds,r,a)}var er=D({max_:US});function HS(e,t){let n=C(e,"a","sub"),r=C(t,"b","sub");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(ai,a)}var be=D({sub_:HS});function jS(e,t=null,n=!1){let r=C(e,"x","sum");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(ti,a,s)}var Fe=D({sum_:jS});function GS(e,t=-1){let n=C(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return Vr((r,a)=>{let s=!0,i=er(r,t,!0),o=be(r,i),l=be(xe(o,"float32"),zn(Fe(Qn(o),t,s)));return a([l]),{value:l,gradFunc:(u,c)=>{let[h]=c,d=!0,p=Qn(h);return be(u,O(Fe(u,t,d),p))}}})(n)}var Od=D({logSoftmax_:GS});function bm(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Fx(e,t,n){let r=e.length+t.length,a=[],s=0,i=0;for(let o=0;o<r;o++)n.indexOf(o)===-1?a.push(e[s++]):a.push(t[i++]);return a}function Mx(e,t){let n=[],r=e.length;for(let s=0;s<r;s++)t.indexOf(s)===-1&&n.push(e[s]);let a=t.map(s=>e[s]);return[n,a]}function xi(e,t){let n=t.map(r=>1);return Fx(e,n,t)}function qS(e,t,n){F(bm(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function $x(e,t){if(bm(e,t))return null;let n=[];for(let r=0;r<t;++r)e.indexOf(r)===-1&&n.push(r);return e.forEach(r=>n.push(r)),n}function _m(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function XS(e,t){let n=[];for(let r=t-e;r<t;++r)n.push(r);return n}function KS(e,t=null,n=!1){let r=C(e,"x","logSumExp"),a=ur(t,r.shape),s=er(r,a,!0),i=be(r,s),o=Qn(i),l=Fe(o,a),u=zn(l),c=ie(j(s,u.shape),u);if(n){let h=xi(c.shape,a);return j(c,h)}return c}var vm=D({logSumExp_:KS});function ZS(e,t){let n=C(e,"a","logicalAnd","bool"),r=C(t,"b","logicalAnd","bool");xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel($o,a)}var dr=D({logicalAnd_:ZS});function YS(e){let t={x:C(e,"x","logicalNot","bool")};return $.runKernel(Nu,t)}var nc=D({logicalNot_:YS});function JS(e,t){let n=C(e,"a","logicalOr","bool"),r=C(t,"b","logicalOr","bool");xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Su,a)}var zd=D({logicalOr_:JS});function QS(e,t){let n=C(e,"a","logicalXor","bool"),r=C(t,"b","logicalXor","bool");return xt(n.shape,r.shape),dr(zd(e,t),nc(dr(e,t)))}var Dx=D({logicalXor_:QS});function eT(e,t,n,r,a){let s=C(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),F(Br(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),a!=null&&F(Kt(r),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a},h=$.runKernel(zs,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var rc=D({maxPool_:eT});function tT(e,t=[1,1,1],n,r,a,s="NDHWC"){let i=C(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),F(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),F(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),a!=null&&F(Kt(r),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${a} but got pad ${r}.`);let u={x:o},c={filterSize:t,strides:n,pad:r,dimRoundingMode:a,dataFormat:s},h=$.runKernel(Eu,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var km=D({maxPool3d_:tT});function nT(e,t,n,r,a=!1){let s={x:C(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:r,includeBatchInIndex:a},o=$.runKernel(id,s,i);return{result:o[0],indexes:o[1]}}var Ox=D({maxPoolWithArgmax_:nT});function rT(e,t){let n=C(e,"a","maximum"),r=C(t,"b","maximum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Os,a)}var Ur=D({maximum_:rT});function aT(e,t=null,n=!1){let r={x:C(e,"x","mean")},a={axis:t,keepDims:n};return $.runKernel(Ps,r,a)}var Tt=D({mean_:aT});function sT(e,t=null,n=!1){let r={x:C(e,"x","min")},a={axis:t,keepDims:n};return $.runKernel(Ls,r,a)}var vl=D({min_:sT});function iT(e,t){let n=C(e,"a","minimum"),r=C(t,"b","minimum");[n,r]=Nt(n,r),n.dtype==="bool"&&(n=xe(n,"int32"),r=xe(r,"int32")),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(Ws,a)}var kl=D({minimum_:iT});function oT(e,t,n){F(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let r=C(e,"x","mirrorPad");if(r.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");F(t.length===r.rank,()=>`Padding doesn't match input. Must be ${r.rank}. Got ${t.length}.`);let a=n==="reflect"?1:0;for(let o=0;o<r.rank;o++)F(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),F(t[o][0]>=0&&t[o][0]<=r.shape[o]-a&&t[o][1]>=0&&t[o][1]<=r.shape[o]-a,()=>`Padding in dimension ${o} cannot be greater than or equal to ${r.shape[o]-a} or less than 0 for input of shape ${r.shape}`);let s={paddings:t,mode:n},i={x:r};return $.runKernel(Cu,i,s)}var Im=D({mirrorPad_:oT});function lT(e,t){let n=C(e,"a","mod"),r=C(t,"b","mod");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Do,a)}var Nm=D({mod_:lT});function uT(e){let t=C(e,"x","square"),n={};return $.runKernel("Square",{x:t},n)}var ht=D({square_:uT});function cT(e,t=null,n=!1){e=C(e,"x","moments");let r=ur(t,e.shape),a=Tt(e,r,n),s=a.shape;n||(s=xi(a.shape,r));let i=ht(be(xe(e,"float32"),j(a,s))),o=Tt(i,r,n);return{mean:a,variance:o}}var Pd=D({moments_:cT});function hT(e,t,n,r){let a=C(t,"data","multiRNNCell"),s=ju(n,"c","multiRNNCell"),i=ju(r,"h","multiRNNCell"),o=a,l=[];for(let h=0;h<e.length;h++){let d=e[h](o,s[h],i[h]);l.push(d[0]),l.push(d[1]),o=d[1]}let u=[],c=[];for(let h=0;h<l.length;h+=2)u.push(l[h]),c.push(l[h+1]);return[u,c]}var dT=D({multiRNNCell_:hT});function pT(e,t,n,r=!1){let a=C(e,"logits","multinomial"),s=a.size,i=a.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?j(a,[1,-1]):a},l={numSamples:t,seed:n,normalized:r},u=$.runKernel(od,o,l);return i===1?j(u,[u.size]):u}var zx=D({multinomial_:pT});function fT(e,t){let n=C(e,"a","notEqual"),r=C(t,"b","notEqual");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r};return $.runKernel(zo,a)}var wi=D({notEqual_:fT});function Ot(e,t="float32"){if(t==="complex64"){let r=Ot(e,"float32"),a=Ot(e,"float32");return Oa(r,a)}let n=Oh(Wt(e),t);return $.makeTensor(n,e,t)}function Hr(e,t="float32"){if(t==="complex64"){let r=Hr(e,"float32"),a=Ot(e,"float32");return Oa(r,a)}let n=xf(Wt(e),t);return $.makeTensor(n,e,t)}function mT(e){let t={x:C(e,"x","onesLike")};return $.runKernel(Bo,t)}var Pn=D({onesLike_:mT});function AT(e,t){let n=C(e,"v1","outerProduct"),r=C(t,"v2","outerProduct");F(n.rank===1&&r.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${r.rank}.`);let a=j(n,[-1,1]),s=j(r,[1,-1]);return Ye(a,s)}var gT=D({outerProduct_:AT});function yT(e,t,n=0){let r=C(e,"x","pad");if(r.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let a={paddings:t,constantValue:n},s={x:r};return $.runKernel(Us,s,a)}var ha=D({pad_:yT});function xT(e,t,n=0){return F(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),ha(e,[t],n)}var wT=D({pad1d_:xT});function bT(e,t,n=0){return F(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var _T=D({pad2d_:bT});function vT(e,t,n=0){return F(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var kT=D({pad3d_:vT});function IT(e,t,n=0){return F(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),ha(e,t,n)}var NT=D({pad4d_:IT});function ST(e,t,n){let r=C(e,"x","spaceToBatchND");F(r.rank>=1+t.length,()=>`input rank ${r.rank} should be > than [blockShape] ${t.length}`),F(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),F(r.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${r.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let a={x:r},s={blockShape:t,paddings:n};return $.runKernel(Mu,a,s)}var ac=D({spaceToBatchND_:ST});function CT(e,t,n,r,a,s){a==null&&(a=[1,1]),s==null&&(s=1),r===0&&(r="valid");let i=C(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]])),F(Br(s,a),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${a}'`);let u=fx(o.shape,t,s,a,r),c=[u.dilationHeight,u.dilationWidth],h;r==="same"?h=ET([u.filterHeight,u.filterWidth],c):h=[[0,0],[0,0]];let d=c[0]===1&&c[1]===1,[p,f]=TT([u.inHeight,u.inWidth],c,h),m=d?r:"valid",A=d?o:ac(o,c,p),g=(n==="avg"?()=>Zu(A,t,s,m):()=>rc(A,t,s,m))(),y=d?g:Yu(g,c,f);return l?j(y,[y.shape[1],y.shape[2],y.shape[3]]):y}function TT(e,t,n){let r=n.map(c=>c[0]),a=n.map(c=>c[1]),s=e.concat(r,a),i=t.map((c,h)=>(c-s[h]%c)%c),o=a.map((c,h)=>c+i[h]),l=t.map((c,h)=>[r[h],o[h]]),u=t.map((c,h)=>[0,i[h]]);return[l,u]}function ET(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),r=n.map(s=>Math.floor(s/2)),a=n.map((s,i)=>s-r[i]);return n.map((s,i)=>[r[i],a[i]])}var Px=D({pool_:CT});function RT(e,t){let n=C(e,"base","pow"),r=C(t,"exp","pow");[n,r]=Nt(n,r);let a={a:n,b:r};return $.runKernel(Hs,a)}var da=D({pow_:RT});function FT(e,t){let n=C(e,"x","prelu"),r=C(t,"alpha","prelu"),a={x:n,alpha:r};return $.runKernel(js,a)}var sc=D({prelu_:FT});function MT(e,t=null,n=!1){let r=C(e,"x","prod");r.dtype==="bool"&&(r=xe(r,"int32"));let a={x:r},s={axis:t,keepDims:n};return $.runKernel(Uo,a,s)}var Ld=D({prod_:MT});function $T(e,t,n){let r=Wt(e),a=null;if(n==null||n==="float32")a=new Float32Array(r);else if(n==="int32")a=new Int32Array(r);else if(n==="bool")a=new Uint8Array(r);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<r;s++)a[s]=t();return $.makeTensor(a,e,n)}var DT=D({rand_:$T}),Sm=ro(a5()),Tm=class{constructor(e,t,n,r,a){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=r,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=a||Math.random();this.random=Sm.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let r=this.nextVal;return this.nextVal=NaN,r}let e,t,n=!1;for(;!n;){let r,a,s;do r=2*this.random()-1,a=2*this.random()-1,s=r*r+a*a;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*r*i,t=this.mean+this.stdDev*a*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},OT=class{constructor(e,t,n,r){this.alpha=e,this.beta=1/t,this.dtype=n;let a=r||Math.random();this.randu=Sm.alea(a.toString()),this.randn=new Tm(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,r,a,s;for(;;){do r=this.randn.nextValue(),s=1+this.c*r;while(s<=0);if(s*=s*s,e=r*r,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),a=this.randu(),a<t||Math.log(a)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},zT=class{constructor(e=0,t=1,n,r){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,r==null&&(r=Math.random()),typeof r=="number"&&(r=r.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=Sm.alea(r)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function PT(e,t,n=1,r="float32",a){if(n==null&&(n=1),r==null&&(r="float32"),r!=="float32"&&r!=="int32")throw new Error(`Unsupported data type ${r}`);let s=new OT(t,n,r,a),i=Ue(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var LT=D({randomGamma_:PT});function WT(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error(`Unsupported data type ${r}`);let s=new Tm(t,n,r,!1,a),i=Ue(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Lx=D({randomNormal_:WT});function BT(e,t=0,n=1,r="float32",a){let s=Ue(e,r),i=new zT(t,n,null,a);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var Il=D({randomUniform_:BT});function Wd(e,t,n=1,r="float32"){if(n===0)throw new Error("Cannot have a step of zero");let a={start:e,stop:t,step:n,dtype:r};return $.runKernel(Ru,{},a)}function VT(e){let t={input:C(e,"input","real")};return $.runKernel(ld,t)}var ic=D({real_:VT});function UT(e){let t={x:C(e,"x","reciprocal")};return $.runKernel(Ho,t)}var Em=D({reciprocal_:UT});function HT(e){let t={x:C(e,"x","relu")};return $.runKernel(Gs,t)}var jr=D({relu_:HT});function jT(e){let t={x:C(e,"x","relu6")};return $.runKernel(Xs,t)}var Bd=D({relu6_:jT});function GT(e,t){let n={x:C(e,"x","reverse")},r={dims:t};return $.runKernel(Ks,n,r)}var Ln=D({reverse_:GT});function qT(e){let t=C(e,"x","reverse");return F(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Ln(t,0)}var XT=D({reverse1d_:qT});function KT(e,t){let n=C(e,"x","reverse");return F(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Ln(n,t)}var ZT=D({reverse2d_:KT});function YT(e,t){let n=C(e,"x","reverse");return F(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Ln(n,t)}var JT=D({reverse3d_:YT});function QT(e,t){let n=C(e,"x","reverse");return F(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Ln(n,t)}var eE=D({reverse4d_:QT});function tE(e){let t={x:C(e,"x","round")};return $.runKernel(Zs,t)}var Cm=D({round_:tE});function nE(e){let t={x:C(e,"x","rsqrt")};return $.runKernel(Ys,t)}var Vd=D({rsqrt_:nE});function Ne(e,t){if((cn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&cn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return za(e,[],[],t)}function rE(e){let t={x:C(e,"x","selu")};return $.runKernel(Xo,t)}var Ud=D({selu_:rE});function aE(e,t,n,r,a,s=[1,1],i="NHWC"){let o=C(e,"x","separableConv2d"),l=C(t,"depthwiseFilter","separableConv2d"),u=C(n,"pointwiseFilter","separableConv2d"),c=o,h=!1;if(o.rank===3&&(h=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");F(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),F(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),F(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),F(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],p=l.shape[3];F(u.shape[2]===d*p,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*p}, but got ${u.shape[2]}.`);let f=xl(c,l,r,a,i,s),m=ca(f,u,1,"valid",i);return h?j(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var Rm=D({separableConv2d_:aE});async function sE(e,t){let n=C(e,"x","setdiff1d"),r=C(t,"y","setdiff1d");F(n.dtype===r.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${r.dtype}).`),F(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),F(r.rank===1,()=>`y should be 1D tensor, but got y (${r.shape}).`);let a=await n.data(),s=await r.data(),i=new Set(s),o=0;for(let c=0;c<a.length;c++)i.has(a[c])||o++;let l=new Bt([o],n.dtype),u=new Bt([o],"int32");for(let c=0,h=0;c<a.length;c++)i.has(a[c])||(l.values[h]=a[c],u.values[h]=c,h++);return[l.toTensor(),u.toTensor()]}var Wx=sE;function iE(e){let t={x:C(e,"x","sign")};return $.runKernel(Yo,t)}var Fm=D({sign_:iE});function oE(e){let t={x:C(e,"x","sin")};return $.runKernel(Js,t)}var Hd=D({sin_:oE});function lE(e){let t={x:C(e,"x","sinh")};return $.runKernel(Zo,t)}var jd=D({sinh_:lE});function uE(e,t,n){let r=C(e,"x","slice1d");return F(r.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${r.rank} tensor`),$e(r,[t],[n])}var Gd=D({slice1d_:uE});function cE(e,t,n){let r=C(e,"x","slice2d");return F(r.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var Mm=D({slice2d_:cE});function hE(e,t,n){let r=C(e,"x","slice3d");return F(r.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var qd=D({slice3d_:hE});function dE(e,t,n){let r=C(e,"x","slice4d");return F(r.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${r.rank} tensor`),$e(r,t,n)}var oc=D({slice4d_:dE});function pE(e,t=-1){let n=C(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let r={logits:n},a={dim:t};return $.runKernel(ni,r,a)}var lc=D({softmax_:pE});function fE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(Qh,t)}var uc=D({fft_:fE});function mE(e){F(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return $.runKernel(ed,t)}var Nl=D({ifft_:mE});function AE(e){let t=e.shape[e.shape.length-1],n=e.size/t,r;if(t<=2){let a=j(e,[n,t]);r=Nl(a)}else{let a=[n,2*(t-1)],s=j(ic(e),[n,t]),i=j(Fd(e),[n,t]),o=Ln($e(s,[0,1],[n,t-2]),1),l=O(Ln($e(i,[0,1],[n,t-2]),1),Ne(-1)),u=ot([s,o],1),c=ot([i,l],1),h=j(Oa(u,c),[a[0],a[1]]);r=Nl(h)}if(r=ic(r),e.rank===3&&e.shape[0]!==0){let a=r,s=e.shape[0];r=j(r,[s,r.shape[0]/s,r.shape[1]]),a.dispose()}return r}var Xd=D({irfft_:AE});function gE(e,t,n=0){let r={x:C(e,"x","split")},a={numOrSizeSplits:t,axis:n};return $.runKernel(Qo,r,a)}var Ht=D({split_:gE});function yE(e,t){F(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],r=e.size/n,a;if(t!=null&&t<n){let f=e.shape.map(A=>0),m=e.shape.map(A=>A);m[e.shape.length-1]=t,a=$e(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,a=ot([e,Ot(f)],e.shape.length-1),n=t}else a=e;let s=Xe(a),i=j(Oa(a,s),[r,n]),o=uc(i),l=Math.floor(n/2)+1,u=ic(o),c=Fd(o),h=Ht(u,[l,n-l],u.shape.length-1),d=Ht(c,[l,n-l],c.shape.length-1),p=a.shape.slice();return p[a.shape.length-1]=l,j(Oa(h[0],d[0]),p)}var cc=D({rfft_:yE});function xE(e){let t={x:C(e,"x","sqrt")};return $.runKernel(ei,t)}var an=D({sqrt_:xE});function wE(e,t){let n=C(e,"a","squaredDifference"),r=C(t,"b","squaredDifference");[n,r]=Nt(n,r),xt(n.shape,r.shape);let a={a:n,b:r},s={};return $.runKernel(ri,a,s)}var Kd=D({squaredDifference_:wE});function bE(e,t){let n=C(e,"x","squeeze");return j(n,o5(n.shape,t).newShape)}var ja=D({squeeze_:bE});function _E(e,t=0){let n=ju(e,"tensors","stack","string_or_numeric");F(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&F(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let r=n,a={axis:t};return $.runKernel(Vo,r,a)}var An=D({stack_:_E});function vE(e,t=0){let n={x:C(e,"x","step")},r={alpha:t};return $.runKernel(Da,n,r)}var Sl=D({step_:vE});function kE(e,t,n,r,a=0,s=0,i=0,o=0,l=0){let u={x:C(e,"x","stridedSlice")},c={begin:t,end:n,strides:r,beginMask:a,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return $.runKernel(el,u,c)}var $m=D({stridedSlice_:kE});function IE(e){let t={x:C(e,"x","tan")};return $.runKernel(tl,t)}var Dm=D({tan_:IE});function hn(e,t){ps(e);let n=Pr(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return za(e,null,n,t)}function En(e,t,n){if(ps(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let r=Pr(e,n);if(r.length!==2&&r.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return za(e,t,r,n)}function NE(e,t,n){if(ps(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let r=Pr(e,n);if(r.length!==4&&r.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return za(e,t,r,n)}function SE(e,t,n){if(ps(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let r=Pr(e,n);if(r.length!==5&&r.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return za(e,t,r,n)}function TE(e,t,n){if(ps(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let r=Pr(e,n);if(r.length!==6&&r.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(r.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||r,za(e,t,r,n)}function EE(e,t=1,n=!0){let r=C(e,"x","topk");if(r.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let a=r.shape[r.shape.length-1];if(t>a)throw new Error(`'k' passed to topk() must be <= the last dimension (${a}) but got ${t}`);let s={x:r},i={k:t,sorted:n},[o,l]=$.runKernel(nl,s,i);return{values:o,indices:l}}var Om=D({topk_:EE});function CE(e,t=0,n=1,r,a){if(r!=null&&r==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new Tm(t,n,r,!0,a),i=Ue(e,r);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var Zd=D({truncatedNormal_:CE});function RE(e,t=0){let n=C(e,"x","unique","string_or_numeric");F(n.rank>0,()=>"The input tensor must be at least 1D");let r={x:n},a={axis:t},[s,i]=$.runKernel(pd,r,a);return{values:s,indices:i}}var Yd=D({unique_:RE});function FE(e,t,n){let r=C(e,"x","unsortedSegmentSum"),a=C(t,"segmentIds","unsortedSegmentSum","int32");F(Kt(n),()=>"numSegments must be of dtype int");let s={x:r,segmentIds:a},i={numSegments:n};return $.runKernel(Du,s,i)}var zm=D({unsortedSegmentSum_:FE});function ME(e,t=0){let n=C(e,"x","unstack","string_or_numeric");F(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let r={value:n},a={axis:t};return $.runKernel(rl,r,a)}var pr=D({unstack_:ME});function Bx(e,t=!0,n,r){return $.makeVariable(e,t,n,r)}function Vx(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let r=Ue(e,"int32"),a=Ue([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=r.indexToLoc(n[s]),o=s*e.length;a.values.set(i,o)}return a.toTensor()}async function $E(e){let t=C(e,"condition","whereAsync","bool"),n=await t.data(),r=Vx(t.shape,n);return e!==t&&t.dispose(),r}var Pm=$E;async function DE(e,t,n){let r=C(e,"tensor","boolMask"),a=C(t,"mask","boolMask","bool"),s=n==null?0:n,i=a.rank,o=r.shape;F(i>0,()=>"mask cannot be scalar"),un(o.slice(s,s+i),a.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=s;m<s+i;m++)l*=o[m];let u=o.slice(0,s).concat([l],o.slice(s+i)),c=j(r,u),h=j(a,[-1]),d=await Pm(h),p=ja(d,[1]),f=gi(c,p,s);return e!==r&&r.dispose(),t!==a&&a.dispose(),p.dispose(),c.dispose(),h.dispose(),d.dispose(),f}var OE=DE;function zE(e,t="euclidean",n=null,r=!1){e=C(e,"x","norm");let a=Ux(e,t,n),s=a.shape;if(r){let i=ur(n,e.shape);s=xi(a.shape,i)}return j(a,s)}function Ux(e,t,n=null){if(e.rank===0)return Vt(e);if(e.rank!==1&&n===null)return Ux(j(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Fe(Vt(e),n);if(t===Infinity)return er(Vt(e),n);if(t===-Infinity)return vl(Vt(e),n);if(t==="euclidean"||t===2)return an(Fe(da(Vt(e),Ne(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return er(Fe(Vt(e),n[0]),n[1]-1);if(t===Infinity)return er(Fe(Vt(e),n[1]),n[0]);if(t===-Infinity)return vl(Fe(Vt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return an(Fe(ht(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Jd=D({norm_:zE});function PE(e,t,n,r,a=!0){let s=C(e,"v","movingAverage"),i=C(t,"x","movingAverage"),o=C(n,"decay","movingAverage");k5(s,i),F(la(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=Ne(1),u=be(l,o),c=O(be(i,s),u);if(a){F(r!=null,()=>"When using zeroDebias: true, step is required.");let h=C(r,"step","movingAverage");c=_e(c,be(l,da(o,h)))}return ie(s,c)}var LE=D({movingAverage_:PE});function WE(e,t,n){let r=C(e,"indices","scatterND","int32"),a=C(t,"updates","scatterND");Xf(a,r,n);let s={indices:r,updates:a},i={shape:n};return $.runKernel(Go,s,i)}var Hx=D({scatterND_:WE});function BE(e,t,n,r){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let a=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===a))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${a}]`);if(t.dtype!==r.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function VE(e,t,n,r=0){let a=C(e,"sparseIndices","sparseToDense","int32"),s=C(t,"sparseValues","sparseToDense"),i=C(r,"defaultValue","sparseToDense",s.dtype);BE(a,s,n,i);let o={sparseIndices:a,sparseValues:s,defaultValue:i},l={outputShape:n};return $.runKernel(hd,o,l)}var Lm=D({sparseToDense_:VE});function UE(e,t){let n=C(t,"indices","gatherND","int32"),r={params:C(e,"x","gatherND"),indices:n};return $.runKernel(No,r)}var jx=D({gatherND_:UE});function HE(e,t){if(t==null)return e.shape.slice();if(la(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let r=0;r<e.shape.length;r++)t[r]==null&&e.shape[r]!=null?n.push(e.shape[r]):n.push(t[r]);return n}return t}function jE(e,t,n,r){let a=C(e,"x","dropout");if(F(a.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${a.dtype} tensor instead.`),F(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof qe?a.clone():a;let s=HE(a,n),i=1-t,o=_e(bl(ie(Il(s,0,1,"float32",r),i)),i);return O(a,o)}var Gx=D({dropout_:jE});function qx(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Wm(e,t,n){let r=1-e%2,a=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+r-1);a[s]=t-n*Math.cos(i)}return hn(a,"float32")}async function GE(e,t,n=1){let r=C(e,"predictions","inTopK"),a=C(t,"targets","inTopK");F(r.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${r.rank}`),F(r.rank-1===a.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${r.rank} and targets rank ${a.rank}`),un(r.shape.slice(0,r.shape.length-1),a.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=r.shape[r.shape.length-1];F(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await r.data(),o=await a.data(),[l,u]=[i.length/s,s],c=l5("bool",l);for(let h=0;h<l;h++){let d=h*u,p=i.subarray(d,d+u),f=[];for(let m=0;m<p.length;m++)f.push({value:p[m],index:m});f.sort((m,A)=>A.value-m.value),c[h]=0;for(let m=0;m<n;m++)if(f[m].index===o[h]){c[h]=1;break}}return e!==r&&r.dispose(),t!==a&&a.dispose(),Ir(c,a.shape,"bool")}var qE=GE,Ga={};We(Ga,{conv2d:()=>XE,depthwiseConv2d:()=>KE,matMul:()=>ZE});function YE(e,t,n,r,a,s="NHWC",i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]])),F(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),F(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),F(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],c=s==="NHWC"?l.shape[3]:l.shape[1];F(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),F(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),i!=null&&F(Kt(a),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let h={x:o,dy:l},d={strides:r,pad:a,dataFormat:s,dimRoundingMode:i,filterShape:n};return $.runKernel(Uh,h,d)}var Bm=D({conv2DBackpropFilter_:YE});function Qd(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return O(e,Sl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function ep(e,t){let n=t,r=Ut(e.shape,t.shape);return r.length>0&&(n=Fe(n,r)),j(n,e.shape)}function tp(e,t,n,r){if(t==="linear")return e;if(t==="relu")return jr(e);if(t==="elu")return wl(e);if(t==="relu6")return Bd(e);if(t==="prelu")return sc(e,n);if(t==="leakyrelu")return tc(e,r);throw new Error(`Unknown fused activation ${t}.`)}var np=(e,t)=>!(e>0)||t==="linear";function JE({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",np($.state.gradientDepth,l)===!1){let _=ca(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),tp(_,l,u,c)}let h=C(e,"x","conv2d"),d=C(t,"filter","conv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),i!=null&&F(Kt(r),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`),F(p.shape[3]===d.shape[2],()=>`Error in conv2d: depth of input (${p.shape[3]}) must match input depth for filter ${d.shape[2]}.`),F(Br(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),F(a==="NHWC",()=>`Error in conv2d: got dataFormat of ${a} but only NHWC is currently supported.`);let m=Ku(p.shape,d.shape,n,s,r,i),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let g;u!=null&&(g=C(u,"prelu weights","fused conv2d"));let y=(_,x)=>{let[N,T,E,M]=x,z=Qd(_,E,l);F(Ba(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let B=dm(T.shape,z,N,n,r),V=Bm(T,z,N.shape,n,r),U=[B,V];if(M!=null){let H=ep(M,z);U.push(H)}return U},w={x:p,filter:d,bias:A,preluActivationWeights:g},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Vr((_,x,N)=>{let T=$.runKernel(li,w,b);return N([x,_,T]),f&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:y}})(p,d):Vr((_,x,N,T)=>{let E=$.runKernel(li,w,b);return T([x,_,E,N]),f&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,d,A)}var XE=D({fusedConv2d_:JE});function QE(e,t,n,r,a,s=[1,1],i){let o=e;e.rank===3&&(o=j(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,filterShape:n};return $.runKernel(qh,u,c)}var Xx=D({depthwiseConv2dNativeBackpropFilter_:QE});function eC(e,t,n,r,a,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=j(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},c={strides:r,pad:a,dimRoundingMode:i,dilations:s,inputShape:e},h=$.runKernel(Xh,u,c);return l?j(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Kx=D({depthwiseConv2dNativeBackpropInput_:eC});function tC({x:e,filter:t,strides:n,pad:r,dataFormat:a="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(np($.state.gradientDepth,l)===!1){let _=xl(e,t,n,r,a,s,i);return o!=null&&(_=ie(_,o)),tp(_,l,u,c)}let h=C(e,"x","depthwiseConv2d"),d=C(t,"filter","depthwiseConv2d"),p=h,f=!1;h.rank===3&&(f=!0,p=j(h,[1,h.shape[0],h.shape[1],h.shape[2]])),F(p.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${p.rank}.`),F(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),F(p.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${p.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),s==null&&(s=[1,1]),F(Br(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&F(Kt(r),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${r}.`);let m=Ku(p.shape,d.shape,n,s,r,i,!0),A;o!=null&&(A=C(o,"bias","fused conv2d"),[A]=Nt(A,h),xt(m.outShape,A.shape));let g;u!=null&&(g=C(u,"prelu weights","fused depthwiseConv2d"));let y=(_,x)=>{F(Ba(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,T,E,M]=x,z=Qd(_,E,l),B=Kx(T.shape,z,N,n,r,s,i),V=Xx(T,z,N.shape,n,r,s,i);if(M!=null){let U=ep(A,z);return[B,V,U]}return[B,V]},w={x:p,filter:d,bias:A,preluActivationWeights:g},b={strides:n,pad:r,dataFormat:a,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:c};return o==null?Vr((_,x,N)=>{let T=$.runKernel(ui,w,b);return N([x,_,T]),f&&(T=j(T,[T.shape[1],T.shape[2],T.shape[3]])),{value:T,gradFunc:y}})(p,d):Vr((_,x,N,T)=>{let E=$.runKernel(ui,w,b);return T([x,_,E,N]),f&&(E=j(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:y}})(p,d,A)}var KE=D({fusedDepthwiseConv2d_:tC});function nC({a:e,b:t,transposeA:n=!1,transposeB:r=!1,bias:a,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(np($.state.gradientDepth,s)===!1){let M=Ye(e,t,n,r);return a!=null&&(M=ie(M,a)),tp(M,s,i,o)}let l=C(e,"a","fused matMul"),u=C(t,"b","fused matMul");[l,u]=Nt(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],h=r?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],p=r?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),A=Wt(f),g=Wt(m);F(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),F(la(f,m),()=>`Error in fused matMul: outer dimensions (${f}) and (${m}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),F(c===h,()=>`Error in fused matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${r} must match.`);let y=l.shape.slice(0,-2).concat([d,p]),w=n?j(l,[A,c,d]):j(l,[A,d,c]),b=r?j(u,[g,p,h]):j(u,[g,h,p]),_;a!=null&&(_=C(a,"bias","fused matMul"),[_]=Nt(_,l),xt(y,_.shape));let x;i!=null&&(x=C(i,"prelu weights","fused matMul"));let N=(M,z)=>{let[B,V,U,H]=z,X=Qd(j(M,U.shape),U,s),G,ee;if(!n&&!r?(G=Ye(X,V,!1,!0),ee=Ye(B,X,!0,!1)):!n&&r?(G=Ye(X,V,!1,!1),ee=Ye(X,B,!0,!1)):n&&!r?(G=Ye(V,X,!1,!0),ee=Ye(B,X,!1,!1)):(G=Ye(V,X,!0,!0),ee=Ye(X,B,!0,!0)),a!=null){let Y=ep(H,X);return[G,ee,Y]}else return[G,ee]},T={a:w,b,bias:_,preluActivationWeights:x},E={transposeA:n,transposeB:r,activation:s,leakyreluAlpha:o};return a==null?Vr((M,z,B)=>{let V=$.runKernel(oi,T,E);return B([M,z,V]),{value:j(V,y),gradFunc:N}})(w,b):Vr((M,z,B,V)=>{let U=$.runKernel(oi,T,E);return V([M,z,U,B]),{value:j(U,y),gradFunc:N}})(w,b,_)}var ZE=D({fusedMatMul_:nC});function rC(e){return Wm(e,.54,.46)}var aC=D({hammingWindow_:rC});function sC(e){return Wm(e,.5,.5)}var Zx=D({hannWindow_:sC});function iC(e,t,n,r=!1,a=0){let s=0,i=[];for(;s+t<=e.size;)i.push($e(e,s,t)),s+=n;if(r)for(;s<e.size;){let o=s+t-e.size,l=ot([$e(e,s,t-o),ec([o],a)]);i.push(l),s+=n}return i.length===0?En([],[0,t]):j(ot(i),[i.length,t])}var Yx=D({frame_:iC});function oC(e,t,n,r,a=Zx){r==null&&(r=qx(t));let s=Yx(e,t,n),i=O(s,a(t)),o=[];for(let l=0;l<s.shape[0];l++)o.push(cc($e(i,[l,0],[1,t]),r));return ot(o)}var lC=D({stft_:oC});function uC(e,t,n,r,a="bilinear",s=0){let i=C(e,"image","cropAndResize"),o=C(t,"boxes","cropAndResize","float32"),l=C(n,"boxInd","cropAndResize","int32"),u=o.shape[0];F(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),F(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),F(r.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${r.length}.`),F(r[0]>=1&&r[1]>=1,()=>`cropSize must be atleast [1,1], but was ${r}`),F(a==="bilinear"||a==="nearest",()=>`method must be bilinear or nearest, but was ${a}`);let c={image:i,boxes:o,boxInd:l},h={method:a,extrapolationValue:s,cropSize:r};return $.runKernel(go,c,h)}var cC=D({cropAndResize_:uC});function hC(e){let t=C(e,"image","flipLeftRight","float32");F(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return $.runKernel(ko,n,{})}var dC=D({flipLeftRight_:hC});function pC(e,t,n=0,r=.5){let a=C(e,"image","rotateWithOffset","float32");F(a.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${a.rank}.`);let s={image:a},i={radians:t,fillValue:n,center:r};return $.runKernel(sl,s,i)}var fC=D({rotateWithOffset_:pC});function Tl(e,t,n,r,a,s){r==null&&(r=.5),a==null&&(a=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),F(0<=r&&r<=1,()=>`iouThreshold must be in [0, 1], but was '${r}'`),F(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),F(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),F(t.rank===1,()=>"scores must be a 1D tensor"),F(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),F(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s}}function mC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppression"),i=C(t,"scores","nonMaxSuppression"),o=Tl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:r,scoreThreshold:a};return $.runKernel(Po,{boxes:s,scores:i},l)}var AC=D({nonMaxSuppression_:mC});function yC(e,t,n){let r=gC(e,t,n),a=r<0?-(r+1):r;e.splice(a,0,t)}function gC(e,t,n){return wC(e,t,n||xC)}function xC(e,t){return e>t?1:e<t?-1:0}function wC(e,t,n){let r=0,a=e.length,s=0,i=!1;for(;r<a;){s=r+(a-r>>>1);let o=n(t,e[s]);o>0?r=s+1:(a=s,i=!o)}return i?r:-r-1}function Jx(e,t,n,r,a){return Vm(e,t,n,r,a,0)}function Qx(e,t,n,r,a,s){return Vm(e,t,n,r,a,0,!1,s,!0)}function ew(e,t,n,r,a,s){return Vm(e,t,n,r,a,s,!0)}function Vm(e,t,n,r,a,s,i=!1,o=!1,l=!1){let u=[];for(let A=0;A<t.length;A++)t[A]>a&&u.push({score:t[A],boxIndex:A,suppressBeginIndex:0});u.sort(tw);let c=s>0?-.5/s:0,h=[],d=[];for(;h.length<n&&u.length>0;){let A=u.pop(),{score:g,boxIndex:y,suppressBeginIndex:w}=A;if(g<a)break;let b=!1;for(let _=h.length-1;_>=w;--_){let x=bC(e,y,h[_]);if(x>=r){b=!0;break}if(A.score=A.score*_C(r,c,x),A.score<=a)break}A.suppressBeginIndex=h.length,b||(A.score===g?(h.push(y),d.push(A.score)):A.score>a&&yC(u,A,tw))}let p=h.length,f=n-p;o&&f>0&&(h.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:h};return i&&(m.selectedScores=d),l&&(m.validOutputs=p),m}function bC(e,t,n){let r=e.subarray(t*4,t*4+4),a=e.subarray(n*4,n*4+4),s=Math.min(r[0],r[2]),i=Math.min(r[1],r[3]),o=Math.max(r[0],r[2]),l=Math.max(r[1],r[3]),u=Math.min(a[0],a[2]),c=Math.min(a[1],a[3]),h=Math.max(a[0],a[2]),d=Math.max(a[1],a[3]),p=(o-s)*(l-i),f=(h-u)*(d-c);if(p<=0||f<=0)return 0;let m=Math.max(s,u),A=Math.max(i,c),g=Math.min(o,h),y=Math.min(l,d),w=Math.max(g-m,0)*Math.max(y-A,0);return w/(p+f-w)}function _C(e,t,n){let r=Math.exp(t*n*n);return n<=e?r:0}function tw(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function vC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY){let s=C(e,"boxes","nonMaxSuppressionAsync"),i=C(t,"scores","nonMaxSuppressionAsync"),o=Tl(s,i,n,r,a);n=o.maxOutputSize,r=o.iouThreshold,a=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],c=l[1],{selectedIndices:h}=Jx(u,c,n,r,a);return s!==e&&s.dispose(),i!==t&&i.dispose(),hn(h,"int32")}var kC=vC;function IC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},c={maxOutputSize:n,iouThreshold:r,scoreThreshold:a,softNmsSigma:s},h=$.runKernel(Wo,u,c);return{selectedIndices:h[0],selectedScores:h[1]}}var NC=D({nonMaxSuppressionWithScore_:IC});async function SC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=0){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,r,a,s);n=l.maxOutputSize,r=l.iouThreshold,a=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),c=u[0],h=u[1],{selectedIndices:d,selectedScores:p}=ew(c,h,n,r,a,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:hn(d,"int32"),selectedScores:hn(p)}}var TC=SC;function EC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppression"),o=C(t,"scores","nonMaxSuppression"),l=Tl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,d={boxes:i,scores:o},p={maxOutputSize:u,iouThreshold:c,scoreThreshold:h,padToMaxOutputSize:s},f=$.runKernel(Lo,d,p);return{selectedIndices:f[0],validOutputs:f[1]}}var CC=D({nonMaxSuppressionPadded_:EC});async function RC(e,t,n,r=.5,a=Number.NEGATIVE_INFINITY,s=!1){let i=C(e,"boxes","nonMaxSuppressionAsync"),o=C(t,"scores","nonMaxSuppressionAsync"),l=Tl(i,o,n,r,a,null),u=l.maxOutputSize,c=l.iouThreshold,h=l.scoreThreshold,[d,p]=await Promise.all([i.data(),o.data()]),{selectedIndices:f,validOutputs:m}=Qx(d,p,u,c,h,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:hn(f,"int32"),validOutputs:Ne(m,"int32")}}var FC=RC;function MC(e,t,n=!1,r=!1){let a=C(e,"images","resizeBilinear");F(a.rank===3||a.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),F(r===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(qs,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var nw=D({resizeBilinear_:MC});function $C(e,t,n=!1,r=!1){let a=C(e,"images","resizeNearestNeighbor");F(a.rank===3||a.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${a.rank}.`),F(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),F(a.dtype==="float32"||a.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),F(r===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=a,i=!1;a.rank===3&&(i=!0,s=j(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:r,size:t},u=$.runKernel(Fu,o,l);return i?j(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var rw=D({resizeNearestNeighbor_:$C});function DC(e,t,n="nearest",r="constant",a=0,s){let i=C(e,"image","transform","float32"),o=C(t,"transforms","transform","float32");F(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),F(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),F(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:r,fillValue:a,outputShape:s};return $.runKernel(dd,l,u)}var OC=D({transform_:DC});function zC(e,t,n){F(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),F(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let r=C(e,"a","bandPart");F(r.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${r.rank}.`);let a=r.shape,[s,i]=r.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=j(Wd(0,s,1,"int32"),[-1,1]),l=Wd(0,i,1,"int32"),u=be(o,l),c=dr(yi(u,Ne(+t,"int32")),Ha(u,Ne(-n,"int32"))),h=Ot([s,i],r.dtype);return j(An(pr(j(r,[-1,s,i])).map(d=>Tn(c,d,h))),a)}var PC=D({bandPart_:zC});function LC(e){let t;if(Array.isArray(e)){t=!1,F(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let a=e[0].shape[0];for(let s=1;s<e.length;++s)F(e[s].shape[0]===a,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${a})`)}else t=!0,e=Ht(e,e.shape[0],0).map(a=>ja(a,[0]));F(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],r=e;for(let a=0;a<e.length;++a)n.push($.tidy(()=>{let s=r[a];if(a>0)for(let i=0;i<a;++i){let o=O(Fe(O(n[i],s)),n[i]);s=be(s,o)}return _e(s,Jd(s,"euclidean"))}));return t?An(n,0):n}var WC=D({gramSchmidt_:LC});function BC(e,t=!1){if(F(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return aw(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),r=pr(j(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),a=[],s=[];r.forEach(l=>{let[u,c]=aw(l,t);a.push(u),s.push(c)});let i=j(An(a,0),e.shape),o=j(An(s,0),e.shape);return[i,o]}}function aw(e,t=!1){return $.tidy(()=>{F(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],r=e.shape[1],a=xm(n),s=Lr(e),i=En([[1]],[1,1]),o=Lr(i),l=n>=r?r:n;for(let u=0;u<l;++u){let c=s,h=o,d=a;[o,s,a]=$.tidy(()=>{let p=$e(s,[u,u],[n-u,1]),f=Jd(p),m=$e(s,[u,u],[1,1]),A=Tn(hr(m,0),En([[-1]]),En([[1]])),g=be(m,O(A,f)),y=_e(p,g);y.shape[0]===1?o=Lr(i):o=ot([i,$e(y,[1,0],[y.shape[0]-1,y.shape[1]])],0);let w=St(_e(Ye(A,g),f)),b=$e(s,[u,0],[n-u,r]),_=O(w,o),x=it(o);if(u===0)s=be(b,Ye(_,Ye(x,b)));else{let E=be(b,Ye(_,Ye(x,b)));s=ot([$e(s,[0,0],[u,r]),E],0)}let N=it(_),T=$e(a,[0,u],[n,a.shape[1]-u]);if(u===0)a=be(T,Ye(Ye(T,o),N));else{let E=be(T,Ye(Ye(T,o),N));a=ot([$e(a,[0,0],[n,u]),E],1)}return[o,s,a]}),Re([c,h,d])}return!t&&n>r&&(a=$e(a,[0,0],[n,r]),s=$e(s,[0,0],[r,r])),[a,s]})}var VC=D({qr_:BC}),gn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(gn||(gn={}));function UC(e,t,n=gn.SUM_BY_NONZERO_WEIGHTS){let r=C(e,"losses","computeWeightedLoss"),a=null;t!=null&&(a=C(t,"weights","computeWeightedLoss"));let s=a==null?r:O(r,a);if(n===gn.NONE)return s;if(n===gn.SUM)return Fe(s);if(n===gn.MEAN){if(a==null)return Tt(s);{let i=r.size/a.size,o=_e(Fe(s),Fe(a));return i>1?_e(o,Ne(i)):o}}if(n===gn.SUM_BY_NONZERO_WEIGHTS){if(a==null)return _e(Fe(s),Ne(r.size));{let i=O(a,Hr(r.shape)),o=xe(Fe(wi(i,Ne(0))),"float32");return _e(Fe(s),o)}}throw Error(`Unknown reduction: ${n}`)}var pa=D({computeWeightedLoss_:UC});function HC(e,t,n,r=gn.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","absoluteDifference"),s=C(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=C(n,"weights","absoluteDifference")),un(a.shape,s.shape,"Error in absoluteDifference: ");let o=Vt(be(a,s));return pa(o,i,r)}var jC=D({absoluteDifference_:HC});function GC(e,t,n,r,a=gn.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","cosineDistance"),i=C(t,"predictions","cosineDistance"),o=null;r!=null&&(o=C(r,"weights","cosineDistance")),un(s.shape,i.shape,"Error in cosineDistance: ");let l=Ne(1),u=be(l,Fe(O(s,i),n,!0));return pa(u,o,a)}var qC=D({cosineDistance_:GC});function XC(e,t,n,r=gn.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","hingeLoss"),s=C(t,"predictions","hingeLoss"),i=null;n!=null&&(i=C(n,"weights","hingeLoss")),un(a.shape,s.shape,"Error in hingeLoss: ");let o=Ne(1);a=be(O(Ne(2),a),o);let l=jr(be(o,O(a,s)));return pa(l,i,r)}var KC=D({hingeLoss_:XC});function ZC(e,t,n,r=1,a=gn.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","huberLoss"),i=C(t,"predictions","huberLoss"),o=null;n!=null&&(o=C(n,"weights","huberLoss")),un(s.shape,i.shape,"Error in huberLoss: ");let l=Ne(r),u=Vt(be(i,s)),c=kl(u,l),h=be(u,c),d=ie(O(Ne(.5),ht(c)),O(l,h));return pa(d,o,a)}var YC=D({huberLoss_:ZC});function JC(e,t,n,r=1e-7,a=gn.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"labels","logLoss"),i=C(t,"predictions","logLoss"),o=null;n!=null&&(o=C(n,"weights","logLoss")),un(s.shape,i.shape,"Error in logLoss: ");let l=Ne(1),u=Ne(r),c=St(O(s,zn(ie(i,u)))),h=O(be(l,s),zn(ie(be(l,i),u))),d=be(c,h);return pa(d,o,a)}var QC=D({logLoss_:JC});function eR(e,t,n,r=gn.SUM_BY_NONZERO_WEIGHTS){let a=C(e,"labels","meanSquaredError"),s=C(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=C(n,"weights","meanSquaredError")),un(a.shape,s.shape,"Error in meanSquaredError: ");let o=Kd(a,s);return pa(o,i,r)}var tR=D({meanSquaredError_:eR});function nR(e,t){let n=C(e,"labels","sigmoidCrossEntropyWithLogits"),r=C(t,"logits","sigmoidCrossEntropyWithLogits");un(n.shape,r.shape,"Error in sigmoidCrossEntropyWithLogits: ");let a=jr(r),s=O(r,n),i=$d(Qn(St(Vt(r))));return ie(be(a,s),i)}function rR(e,t,n,r=0,a=gn.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"multiClassLabels","sigmoidCrossEntropy"),i=C(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","sigmoidCrossEntropy")),un(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),r>0){let u=Ne(r),c=Ne(1),h=Ne(.5);s=ie(O(s,be(c,u)),O(h,u))}let l=nR(s,i);return pa(l,o,a)}var aR=D({sigmoidCrossEntropy_:rR});function sR(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return Vr((r,a,s)=>{let i=vm(a,[n],!0),o=be(xe(a,"float32"),i);s([r,o]);let l=St(O(o,r));return{value:Fe(l,[n]),gradFunc:(u,c)=>{let[h,d]=c,p=xi(u.shape,[n]);return[O(j(u,p),be(xe(h,"float32"),Qn(d))),O(j(u,p),be(Qn(d),xe(h,"float32")))]}}})(e,t)}function iR(e,t,n,r=0,a=gn.SUM_BY_NONZERO_WEIGHTS){let s=C(e,"onehotLabels","softmaxCrossEntropy"),i=C(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=C(n,"weights","softmaxCrossEntropy")),un(s.shape,i.shape,"Error in softmaxCrossEntropy: "),r>0){let u=Ne(r),c=Ne(1),h=Ne(s.shape[1]);s=ie(O(s,be(c,u)),_e(u,h))}let l=sR(s,i);return pa(l,o,a)}var oR=D({softmaxCrossEntropy_:iR}),lR={fft:uc,ifft:Nl,rfft:cc,irfft:Xd},uR={hammingWindow:aC,hannWindow:Zx,frame:Yx,stft:lC},Ke={flipLeftRight:dC,resizeNearestNeighbor:rw,resizeBilinear:nw,rotateWithOffset:fC,cropAndResize:cC,nonMaxSuppression:AC,nonMaxSuppressionAsync:kC,nonMaxSuppressionWithScore:NC,nonMaxSuppressionWithScoreAsync:TC,nonMaxSuppressionPadded:CC,nonMaxSuppressionPaddedAsync:FC,transform:OC},sw={bandPart:PC,gramSchmidt:WC,qr:VC},cR={absoluteDifference:jC,computeWeightedLoss:pa,cosineDistance:qC,hingeLoss:KC,huberLoss:YC,logLoss:QC,meanSquaredError:tR,sigmoidCrossEntropy:aR,softmaxCrossEntropy:oR},fa=class extends lx{minimize(e,t=!1,n){let{value:r,grads:a}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:a[i.name]}));this.applyGradients(s)}else this.applyGradients(a);return Re(a),t?r:(r.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Cx(e,t)}dispose(){this.iterations_!=null&&Re(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ne(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(fa,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var rp=class extends fa{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:L(()=>Xe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;L(()=>{let l=ie(O(i,this.rho),O(ht(s),1-this.rho)),u=O(_e(an(ie(o,this.epsilon)),an(ie(i,this.epsilon))),s),c=ie(O(o,this.rho),O(ht(u),1-this.rho));i.assign(l),o.assign(c);let h=ie(O(u,-this.learningRate),r);r.assign(h)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(Re(this.accumulatedGrads.map(e=>e.variable)),Re(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};rp.className="Adadelta";La(rp);var ap=class extends fa{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:L(()=>ec(r.shape,this.initialAccumulatorValue).variable(i))}}let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let s=this.accumulatedGrads[n].variable;L(()=>{let i=ie(s,ht(a));s.assign(i);let o=ie(O(_e(a,an(ie(i,$.backend.epsilon()))),-this.learningRate),r);r.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&Re(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};ap.className="Adagrad";La(ap);var sp=class extends fa{constructor(e,t,n,r=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],L(()=>{this.accBeta1=Ne(t).variable(),this.accBeta2=Ne(n).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=be(1,this.accBeta1),r=be(1,this.accBeta2);t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:L(()=>Xe(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${a}/v`,variable:L(()=>Xe(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedSecondMoment[s].variable,h=ie(O(u,this.beta1),O(l,1-this.beta1)),d=ie(O(c,this.beta2),O(ht(l),1-this.beta2)),p=_e(h,n),f=_e(d,r);u.assign(h),c.assign(d);let m=ie(O(_e(p,ie(an(f),this.epsilon)),-this.learningRate),i);i.assign(m)}),this.accBeta1.assign(O(this.accBeta1,this.beta1)),this.accBeta2.assign(O(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&Re(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),L(()=>{this.accBeta1.assign(da(this.beta1,this.iterations_+1)),this.accBeta2.assign(da(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};sp.className="Adam";La(sp);var ip=class extends fa{constructor(e,t,n,r=null,a=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=r,this.decay=a,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],L(()=>{this.iteration=Ne(0).variable(),this.accBeta1=Ne(t).variable()}),r==null&&(this.epsilon=$.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);L(()=>{let n=be(1,this.accBeta1),r=_e(-this.learningRate,ie(O(this.iteration,this.decay),1));t.forEach((a,s)=>{let i=$.registeredVariables[a],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${a}/m`,variable:Xe(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${a}/v`,variable:Xe(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[a];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,c=this.accumulatedWeightedInfNorm[s].variable,h=ie(O(u,this.beta1),O(l,1-this.beta1)),d=O(c,this.beta2),p=Vt(l),f=Ur(d,p);u.assign(h),c.assign(f);let m=ie(O(_e(r,n),_e(h,ie(f,this.epsilon))),i);i.assign(m)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(O(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&Re(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&Re(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};ip.className="Adamax";La(ip);var hc=class extends fa{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let a=$.registeredVariables[t];L(()=>{let s=ie(O(this.c,r),a);a.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Zt(Ne(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};hc.className="SGD";La(hc);var op=class extends hc{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ne(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:L(()=>Xe(r).variable(i))}}let a=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&L(()=>{let i,o=ie(O(this.m,a),s);this.useNesterov?i=ie(O(this.c,ie(s,O(o,this.m))),r):i=ie(O(this.c,o),r),a.assign(o),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&Re(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};op.className="Momentum";La(op);var lp=class extends fa{constructor(e,t=.9,n=0,r=null,a=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=r,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=a,r==null&&(this.epsilon=$.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let r=$.registeredVariables[t],a=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:L(()=>Xe(r).variable(a))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:L(()=>Xe(r).variable(a))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;L(()=>{let l=ie(O(i,this.decay),O(ht(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,c=ie(O(u,this.decay),O(s,1-this.decay)),h=_e(O(s,this.learningRate),an(be(l,ie(ht(c),this.epsilon)))),d=ie(O(o,this.momentum),h);i.assign(l),u.assign(c),o.assign(d);let p=be(r,d);r.assign(p)}else{let u=ie(O(i,this.decay),O(ht(s),1-this.decay)),c=ie(O(o,this.momentum),_e(O(s,this.learningRate),an(ie(u,this.epsilon))));i.assign(u),o.assign(c);let h=be(r,c);r.assign(h)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&Re(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&Re(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&Re(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(r=>({originalName:r.name,variable:r.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};lp.className="RMSProp";La(lp);var bi=class{static sgd(e){return new hc(e)}static momentum(e,t,n=!1){return new op(e,t,n)}static rmsprop(e,t=.9,n=0,r=null,a=!1){return new lp(e,t,n,r,a)}static adam(e=.001,t=.9,n=.999,r=null){return new sp(e,t,n,r)}static adadelta(e=.001,t=.95,n=null){return new rp(e,t,n)}static adamax(e=.002,t=.9,n=.999,r=null,a=0){return new ip(e,t,n,r,a)}static adagrad(e,t=.1){return new ap(e,t)}},_i={sgd:bi.sgd,momentum:bi.momentum,adadelta:bi.adadelta,adagrad:bi.adagrad,rmsprop:bi.rmsprop,adamax:bi.adamax,adam:bi.adam},hR=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function up(){return new Promise(e=>hR(()=>e()))}var R={};We(R,{ERF_A1:()=>_R,ERF_A2:()=>vR,ERF_A3:()=>kR,ERF_A4:()=>IR,ERF_A5:()=>NR,ERF_P:()=>bR,PARALLELIZE_THRESHOLD:()=>Um,SELU_SCALE:()=>ow,SELU_SCALEALPHA:()=>iw,applyActivation:()=>tp,assertAndGetBroadcastShape:()=>xt,assertAxesAreInnerMostDims:()=>qS,assertParamsConsistent:()=>dR,assignToTypedArray:()=>$R,axesAreInnerMostDims:()=>bm,calculateShapes:()=>Z5,combineLocations:()=>Fx,complexWithEvenIndex:()=>RR,complexWithOddIndex:()=>FR,computeConv2DInfo:()=>Ku,computeConv3DInfo:()=>mx,computeDefaultPad:()=>um,computeDilation2DInfo:()=>gN,computeOptimalWindowSize:()=>fR,computeOutAndReduceShapes:()=>Mx,computeOutShape:()=>pR,computePool2DInfo:()=>fx,computePool3DInfo:()=>yN,convertConv2DDataFormat:()=>px,eitherStridesOrDilationsAreOne:()=>Br,expandShapeToKeepDim:()=>xi,exponent:()=>OR,exponents:()=>DR,fromStringArrayToUint8:()=>LR,fromUint8ToStringArray:()=>PR,getAxesPermutation:()=>$x,getBroadcastDims:()=>uS,getComplexWithIndex:()=>MR,getFusedBiasGradient:()=>ep,getFusedDyActivation:()=>Qd,getImageCenter:()=>mR,getInnerMostAxes:()=>XS,getPermuted:()=>gR,getReductionAxes:()=>Ut,getReshaped:()=>AR,getReshapedPermuted:()=>yR,getSliceBeginCoords:()=>xR,getSliceSize:()=>wR,getUndoAxesPermutation:()=>_m,log:()=>TR,mergeRealAndImagArrays:()=>ER,prepareAndValidate:()=>K5,prepareSplitSize:()=>zR,segment_util:()=>lw,shouldFuse:()=>np,slice_util:()=>fn,splitRealAndImagArrays:()=>CR,tupleValuesAreOne:()=>Ba,upcastType:()=>cr,validateInput:()=>Xf,validateUpdateShape:()=>qf,warn:()=>SR});function dR(e,t){let n=e[0].length;e.forEach((a,s)=>{F(a.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),F(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let r=e[0];e.forEach((a,s)=>{for(let i=0;i<n;i++)F(i===t||a[i]===r[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${a}) does not match the shape of the rest (${r}) along the non-concatenated axis ${s}.`)})}function pR(e,t){let n=e[0].slice();for(let r=1;r<e.length;r++)n[t]+=e[r][t];return n}var Um=30;function fR(e){return e<=Um?e:Dh(e,Math.floor(Math.sqrt(e)))}function mR(e,t,n){let r=n*(typeof e=="number"?e:e[0]),a=t*(typeof e=="number"?e:e[1]);return[r,a]}function AR(e,t,n,r=!0){let a=[];if(r)a=a.concat(t.slice(0)),a.push(e[0]/n),a=a.concat(e.slice(1));else{a=a.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)a=a.concat([e[i+1]/t[i],t[i]]);a=a.concat(e.slice(s+1))}return a}function gR(e,t,n=!0){let r=[];if(n){r.push(t);for(let a=t+1;a<e;++a)a<=2*t?(r.push(a),r.push(a-(t+1))):r.push(a)}else{let a=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):a.push(i);r.push(...a),r.push(0),r.push(...s)}return r}function yR(e,t,n,r=!0){let a=[];r?a.push(e[0]/n):a.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?r?a.push(t[s-1]*e[s]):a.push(e[s]/t[s-1]):a.push(e[s]);return a}function xR(e,t){let n=[0];for(let r=0;r<t;++r)n.push(e[r][0]);return n}function wR(e,t,n){let r=e.slice(0,1);for(let a=0;a<n;++a)r.push(e[a+1]-t[a][0]-t[a][1]);return r}var iw=1.7580993408473768,ow=1.0507009873554805,bR=.3275911,_R=.254829592,vR=-.284496736,kR=1.421413741,IR=-1.453152027,NR=1.061405429;function SR(...e){J().getBool("IS_TEST")||console.warn(...e)}function TR(...e){J().getBool("IS_TEST")||console.log(...e)}function ER(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let r=0;r<n.length;r+=2)n[r]=e[r/2],n[r+1]=t[r/2];return n}function CR(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let r=0;r<e.length;r+=2)t[r/2]=e[r],n[r/2]=e[r+1];return{real:t,imag:n}}function RR(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=0;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function FR(e){let t=Math.floor(e.length/4),n=new Float32Array(t),r=new Float32Array(t);for(let a=2;a<e.length;a+=4)n[Math.floor(a/4)]=e[a],r[Math.floor(a/4)]=e[a+1];return{real:n,imag:r}}function MR(e,t){let n=e[t*2],r=e[t*2+1];return{real:n,imag:r}}function $R(e,t,n,r){e[r*2]=t,e[r*2+1]=n}function DR(e,t){let n=new Float32Array(e/2),r=new Float32Array(e/2);for(let a=0;a<Math.ceil(e/2);a++){let s=(t?2:-2)*Math.PI*(a/e);n[a]=Math.cos(s),r[a]=Math.sin(s)}return{real:n,imag:r}}function OR(e,t,n){let r=(n?2:-2)*Math.PI*(e/t),a=Math.cos(r),s=Math.sin(r);return{real:a,imag:s}}function zR(e,t,n=0){let r=[];if(typeof t=="number")F(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),r=new Array(t).fill(e.shape[n]/t);else{let a=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);F(a<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}F(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),r=t}return r}var lw={};We(lw,{collectGatherOpShapeInfo:()=>VR,computeOutShape:()=>BR,segOpComputeOptimalWindowSize:()=>WR});function WR(e,t){let n=!1,r;for(e<=Um?(r=e,n=!0):r=Dh(e,Math.floor(Math.sqrt(e)));!n;)r>t||r===e?n=!0:r=Dh(e,r+1);return r}function BR(e,t,n){let r=[],a=e.length;for(let s=0;s<a;s++)s!==t?r.push(e[s]):r.push(n);return r}function VR(e,t,n,r){let a=t.shape.length,s=e.shape.length;if(r!==0&&(r<-a||r>a))throw new Error(`Expect batchDims in the range of [-${a}, ${a}], but got ${r}`);if(r<0&&(r+=a),r>s)throw new Error(`batchDims (${r}) must be less than rank(x) (
|
|
${s}).`);if(n<r)throw new Error(`batchDims (${r}) must be less than or equal to axis (${n}).`);for(let h=0;h<r;++h)if(e.shape[h]!==t.shape[h])throw new Error(`x.shape[${h}]: ${e.shape[h]} should be equal to indices.shape[${h}]: ${t.shape[h]}.`);let i=e.shape[n],o=[],l=1,u=1,c=1;for(let h=0;h<r;++h)o.push(e.shape[h]),l*=e.shape[h];for(let h=r;h<n;h++)o.push(e.shape[h]),u*=e.shape[h];for(let h=r;h<a;h++)o.push(t.shape[h]);for(let h=n+1;h<s;h++)o.push(e.shape[h]),c*=e.shape[h];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:i,outputShape:o}}function PR(e){try{return e.map(t=>gd(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function LR(e){return e.map(t=>Pu(t))}var Gr={};We(Gr,{nonMaxSuppressionV3Impl:()=>Jx,nonMaxSuppressionV4Impl:()=>Qx,nonMaxSuppressionV5Impl:()=>ew,whereImpl:()=>Vx});function Ie(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var UR=Gr.whereImpl,cp=class extends Au{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Mh(this,Wr())}nextDataId(){return cp.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,J().get("IS_NODE")&&R.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let r={id:this.nextDataId()};return this.data.set(r,{values:e,dtype:n,refCount:1}),r}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return{dataId:r,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,r,a){this.data.set(e,{values:t,dtype:r,refCount:a})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let r=this.readSync(n.real.dataId),a=this.readSync(n.imag.dataId);return R.mergeRealAndImagArrays(r,a)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}makeOutput(e,t,n){let r=this.write(e,t,n);return Wr().makeTensorFromDataId(r,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Ie([e],"where");let t=this.readSync(e.dataId);return UR(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};cp.nextDataId=0;var Hm={};We(Hm,{addImpl:()=>cw,bincountImpl:()=>jm,bincountReduceImpl:()=>hw,ceilImpl:()=>dw,concatImpl:()=>Gm,expImpl:()=>pw,expm1Impl:()=>fw,floorImpl:()=>mw,gatherV2Impl:()=>Aw,greaterImpl:()=>gw,lessImpl:()=>yw,linSpaceImpl:()=>xw,logImpl:()=>ww,maxImpl:()=>bw,maximumImpl:()=>_w,minimumImpl:()=>vw,multiplyImpl:()=>qm,negImpl:()=>kw,notEqualImpl:()=>Iw,prodImpl:()=>Nw,rangeImpl:()=>Km,rsqrtImpl:()=>Sw,simpleAbsImpl:()=>uw,sliceImpl:()=>hp,squaredDifferenceImpl:()=>Tw,stridedSliceImpl:()=>Ew,subImpl:()=>Cw,tileImpl:()=>Rw,topKImpl:()=>Fw,transposeImpl:()=>Xm,uniqueImpl:()=>Mw});function uw(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var HR=e=>{let{x:t}=e.inputs,n=e.backend;Ie(t,"abs");let r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId).values;return r=uw(a),n.makeOutput(r,t.shape,"float32")},jR={kernelName:io,backendName:"cpu",kernelFunc:HR};function zt(e){return(t,n,r,a,s)=>{let i=R.assertAndGetBroadcastShape(t,n),o=i.length,l=v.computeStrides(i),u=v.sizeFromShape(i),c=v.getTypedArrayFromDType(s,u),h=t.length,d=n.length,p=v.computeStrides(t),f=v.computeStrides(n),m=R.getBroadcastDims(t,i),A=R.getBroadcastDims(n,i);if(m.length+A.length===0)for(let g=0;g<c.length;++g)c[g]=e(r[g%r.length],a[g%a.length]);else for(let g=0;g<c.length;++g){let y=v.indexToLoc(g,o,l),w=y.slice(-h);m.forEach(N=>w[N]=0);let b=v.locToIndex(w,h,p),_=y.slice(-d);A.forEach(N=>_[N]=0);let x=v.locToIndex(_,d,f);c[g]=e(r[b],a[x])}return[c,i]}}function Wn(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,o=n.makeTensorInfo(r.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(r.shape,"float32",s),imag:n.makeTensorInfo(a.shape,"float32",i)},o}var GR={kernelName:Vh,backendName:"cpu",kernelFunc:Wn};function dp(e,t,n="float32"){if(n==="complex64"){let a=dp(e,t,"float32"),s=dp(e,t,"float32");return Wn({inputs:{real:a,imag:s},backend:e})}let r=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,r)}function qr(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var qR={kernelName:Fs,backendName:"cpu",kernelFunc:qr};function vi(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.real,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var XR={kernelName:ld,backendName:"cpu",kernelFunc:vi};function qa(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return qr({inputs:{x:a},backend:n});let i=dp(n,a.shape,a.dtype),o=qa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Wn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=vi({inputs:{input:a},backend:n}),o=qa({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=qr({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(a.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(a.shape,"int32",o)}if(s==="bool"){let i=n.data.get(a.dataId).values,o=v.toTypedArray([0],a.dtype),[l,u]=zt((c,h)=>c!==h?1:0)(a.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var KR={kernelName:xs,backendName:"cpu",kernelFunc:qa};function Yt(e,t,n,r){return n==null?({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;Ie([i,o],e);let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}:({inputs:a,backend:s})=>{let{a:i,b:o}=a,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=qa({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),h=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,p=l.data.get(h.dataId).values,f=l.data.get(d.dataId).values,m=qa({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),A=l.data.get(m.dataId),g=A.complexTensorInfos.real,y=A.complexTensorInfos.imag,w=l.data.get(g.dataId).values,b=l.data.get(y.dataId).values,[_,x,N]=n(i.shape,o.shape,p,f,w,b),T=l.makeTensorInfo(N,"float32",_),E=l.makeTensorInfo(N,"float32",x),M=Wn({inputs:{real:T,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(T),l.disposeIntermediateTensorInfo(E),M}else{let u=l.data.get(i.dataId).values,c=l.data.get(o.dataId).values,h=r||i.dtype,[d,p]=t(i.shape,o.shape,u,c,h);return l.makeTensorInfo(p,h,d)}}}function Zm(e){return(t,n,r,a,s,i)=>{let o=R.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(o),u=o.length,c=v.computeStrides(o),h=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),p=R.getBroadcastDims(t,o),f=R.getBroadcastDims(n,o),m=R.mergeRealAndImagArrays(r,a),A=R.mergeRealAndImagArrays(s,i),g=t.length,y=v.computeStrides(t),w=n.length,b=v.computeStrides(n);if(p.length+f.length===0)for(let _=0;_<h.length;_++){let x=_%m.length,N=_%A.length,T=e(m[x*2],m[x*2+1],A[N*2],A[N*2+1]);h[_]=T.real,d[_]=T.imag}else for(let _=0;_<h.length;_++){let x=v.indexToLoc(_,u,c),N=x.slice(-g);p.forEach(B=>N[B]=0);let T=v.locToIndex(N,g,y),E=x.slice(-w);f.forEach(B=>E[B]=0);let M=v.locToIndex(E,w,b),z=e(m[T*2],m[T*2+1],A[M*2],A[M*2+1]);h[_]=z.real,d[_]=z.imag}return[h,d,o]}}var cw=zt((e,t)=>e+t),ZR=Zm((e,t,n,r)=>({real:e+n,imag:t+r})),dc=Yt(Fa,cw,ZR),YR={kernelName:Fa,backendName:"cpu",kernelFunc:dc};function jm(e,t,n,r,a){let s=v.sizeFromShape(r),i=v.makeZerosTypedArray(a,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=a||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function hw(e,t,n,r=!1){let a=e.shape[0],s=e.shape[1],i=Ue([a,n],t.dtype);for(let o=0;o<a;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(r?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function El(e){return(t,n,r)=>{let a=v.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)a[s]=e(t[s],r);return a}}function lt(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=v.sizeFromShape(i.shape),c=n||i.dtype,h=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)h[d]=t(l[d],a);return o.makeTensorInfo(i.shape,c,h)}}function Cl(e,t,n){return({inputs:r,attrs:a,backend:s})=>{let{x:i}=r;if(Ie(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,c=t(l,u,a);return o.makeTensorInfo(i.shape,u,c)}}var dw=El(e=>Math.ceil(e)),JR=Cl(ws,dw),QR={kernelName:ws,backendName:"cpu",kernelFunc:JR};function Gm(e,t,n,r){let a=v.getArrayFromDType(n,v.sizeFromShape(t));if(r&&n!=="string"){let s=0;e.forEach(i=>{let o=v.sizeFromShape(i.shape);a.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?R.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let c=u*t[1]+s;for(let h=0;h<i.shape[1];++h)a[c+h]=o[l++]}s+=i.shape[1]})}return a}var pw=El(e=>Math.exp(e)),$w=Cl(Ss,pw),eF={kernelName:Ss,backendName:"cpu",kernelFunc:$w},fw=El(e=>Math.expm1(e)),tF=Cl(vo,fw),nF={kernelName:vo,backendName:"cpu",kernelFunc:tF},mw=El(e=>Math.floor(e)),rF=Cl(Ts,mw),aF={kernelName:Ts,backendName:"cpu",kernelFunc:rF};function Aw(e,t,n){let r=Ue(n,e.dtype);for(let a=0;a<r.size;++a){let s=r.indexToLoc(a).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);r.values[a]=e.values[u]}return r}var gw=zt((e,t)=>e>t?1:0),sF=Yt(So,gw,null,"bool"),iF={kernelName:So,backendName:"cpu",kernelFunc:sF},yw=zt((e,t)=>e<t?1:0),oF=Yt(Ro,yw,null,"bool"),lF={kernelName:Ro,backendName:"cpu",kernelFunc:oF};function xw(e,t,n){let r=(t-e)/(n-1),a=v.makeZerosTypedArray(n,"float32");a[0]=e;for(let s=1;s<a.length;s++)a[s]=a[s-1]+r;return a}var ww=El(e=>Math.log(e)),uF=Cl($s,ww),cF={kernelName:$s,backendName:"cpu",kernelFunc:uF};function bw(e,t,n,r){let a=v.getTypedArrayFromDType(r,v.sizeFromShape(n));for(let s=0;s<a.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];u>o&&(o=u)}a[s]=o}return a}var _w=zt((e,t)=>Math.max(e,t)),hF=Yt(Os,_w),dF={kernelName:Os,backendName:"cpu",kernelFunc:hF},vw=zt((e,t)=>Math.min(e,t)),pF=Yt(Ws,vw),fF={kernelName:Ws,backendName:"cpu",kernelFunc:pF},qm=zt((e,t)=>e*t),mF=Zm((e,t,n,r)=>({real:e*n-t*r,imag:e*r+t*n})),Ym=Yt(Bs,qm,mF),AF={kernelName:Bs,backendName:"cpu",kernelFunc:Ym};function kw(e,t,n){let r=v.createScalarValue(-1,n);return qm([],t,r,e,n)}function gF(e){let{inputs:t,backend:n}=e,{x:r}=t;Ie(r,"neg");let a=n.data.get(r.dataId).values,[s,i]=kw(a,r.shape,r.dtype);return n.makeTensorInfo(i,r.dtype,s)}var yF={kernelName:Oo,backendName:"cpu",kernelFunc:gF},Iw=zt((e,t)=>e!==t?1:0),xF=Yt(zo,Iw,null,"bool"),wF={kernelName:zo,backendName:"cpu",kernelFunc:xF};function Xm(e,t,n,r,a){let s=t.length,i=v.sizeFromShape(t),o=v.computeStrides(t),l=v.computeStrides(a),u=v.getTypedArrayFromDType(n,v.sizeFromShape(a));for(let c=0;c<i;++c){let h=v.indexToLoc(c,s,o),d=new Array(h.length);for(let f=0;f<d.length;f++)d[f]=h[r[f]];let p=v.locToIndex(d,s,l);u[p]=e[c]}return u}function fr(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{perm:s}=n;Ie(a,"transpose");let i=a.shape.length,o=new Array(i);for(let c=0;c<o.length;c++)o[c]=a.shape[s[c]];let l=r.data.get(a.dataId).values,u=Xm(l,a.shape,a.dtype,s,o);return{dataId:r.write(u,o,a.dtype),shape:o,dtype:a.dtype}}var bF={kernelName:ii,backendName:"cpu",kernelFunc:fr};function Nw(e,t,n,r){let[a,s]=R.computeOutAndReduceShapes(e,r),i=cr(t,"int32"),o=v.makeZerosTypedArray(v.sizeFromShape(a),i),l=v.sizeFromShape(s);for(let u=0;u<o.length;++u){let c=u*l,h=1;for(let d=0;d<l;++d)h*=n[c+d];o[u]=h}return{outVals:o,outShape:a,outDtype:i}}function _F(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"prod");let o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=R.getAxesPermutation(l,o),c=l,h=a,d=[];u!=null&&(h=fr({inputs:{x:a},backend:n,attrs:{perm:u}}),d.push(h),c=R.getInnerMostAxes(c.length,o));let p=n.data.get(h.dataId).values,{outVals:f,outShape:m,outDtype:A}=Nw(h.shape,h.dtype,p,c),g=m;return i&&(g=R.expandShapeToKeepDim(m,l)),d.forEach(y=>n.disposeIntermediateTensorInfo(y)),n.makeTensorInfo(g,A,f)}var vF={kernelName:Uo,backendName:"cpu",kernelFunc:_F};function Km(e,t,n,r){let a=e===t,s=e<t&&n<0,i=t<e&&n>1;if(a||s||i)return v.makeZerosTypedArray(0,r);let o=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(o,r);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var Sw=El(e=>1/Math.sqrt(e)),kF=Cl(Ys,Sw),IF={kernelName:Ys,backendName:"cpu",kernelFunc:kF};function hp(e,t,n,r,a){let s=fn.isSliceContinous(r,t,n),i=v.sizeFromShape(n),o=v.computeStrides(r);if(s){let h=fn.computeFlatOffset(t,o);return a==="string"?e.slice(h,h+i):e.subarray(h,h+i)}let l=a==="string"?R.fromUint8ToStringArray(e):e,u=Ue(r,a,l),c=Ue(n,a);for(let h=0;h<c.size;++h){let d=c.indexToLoc(h),p=d.map((f,m)=>f+t[m]);c.set(u.get(...p),...d)}return a==="string"?R.fromStringArrayToUint8(c.values):c.values}function ki(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r;Ie(a,"slice");let[o,l]=fn.parseSliceParams(a,s,i);fn.assertParamsValid(a,o,l);let u=n.data.get(a.dataId).values,c=hp(u,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,c)}var NF={kernelName:Ko,backendName:"cpu",kernelFunc:ki},Tw=zt((e,t)=>{let n=e-t;return n*n}),SF=Yt(ri,Tw),TF={kernelName:ri,backendName:"cpu",kernelFunc:SF};function Ew(e,t,n,r){let a=Ue(e,t.dtype);for(let s=0;s<a.size;s++){let i=a.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+r[l];a.set(t.get(...o),...i)}return a}var Cw=zt((e,t)=>e-t),EF=Zm((e,t,n,r)=>({real:e-n,imag:t-r})),Jm=Yt(ai,Cw,EF),CF={kernelName:ai,backendName:"cpu",kernelFunc:Jm};function Rw(e,t){let n=new Array(e.rank);for(let a=0;a<n.length;a++)n[a]=e.shape[a]*t[a];let r=Ue(n,e.dtype);for(let a=0;a<r.values.length;++a){let s=r.indexToLoc(a),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);r.values[a]=e.values[o]}return r}function Fw(e,t,n,r,a){let s=t[t.length-1],[i,o]=[e.length/s,s],l=v.getTypedArrayFromDType(n,i*r),u=v.getTypedArrayFromDType("int32",i*r);for(let h=0;h<i;h++){let d=h*o,p=e.subarray(d,d+o),f=[];for(let y=0;y<p.length;y++)f.push({value:p[y],index:y});f.sort((y,w)=>w.value-y.value);let m=h*r,A=l.subarray(m,m+r),g=u.subarray(m,m+r);for(let y=0;y<r;y++)A[y]=f[y].value,g[y]=f[y].index}let c=t.slice();return c[c.length-1]=r,[Ue(c,n,l),Ue(c,"int32",u)]}function Mw(e,t,n,r){let a=v.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let f=0;f<a;f++)s[0]*=n[f];s[1]=n[a];for(let f=a+1;f<n.length;f++)s[2]*=n[f];let i={},o=new Int32Array(n[a]),l=new Bt(s,r,e),u=[],c=s[0]===1&&s[2]===1;for(let f=0;f<n[a];f++){let m;if(c)m=e[f].toString();else{let A=[];for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)A.push(l.get(g,f,y));m=A.join(",")}if(i[m]!==void 0)o[f]=i[m];else{let A=Object.keys(i).length;i[m]=A,o[f]=A,u.push(f)}}let h=s.slice();h[1]=Object.keys(i).length;let d=new Bt(h,r);u.forEach((f,m)=>{for(let A=0;A<s[0];A++)for(let g=0;g<s[2];g++)d.set(l.get(A,f,g),A,m,g)});let p=n.slice();return p[a]=h[1],{outputValues:d.values,outputShape:p,indices:o}}var Dw="3.3.0";ml("cpu",()=>new cp,1);var Ow=lt(xo,e=>e>=0?e:Math.exp(e)-1),RF={kernelName:xo,backendName:"cpu",kernelFunc:Ow};function zw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r;Ie([a],"leakyRelu");let i=v.sizeFromShape(a.shape),o=n.data.get(a.dataId).values,l=v.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(a.shape,"float32",l)}var FF={kernelName:Ms,backendName:"cpu",kernelFunc:zw},MF=zt((e,t)=>e<0?t*e:e);function Pw(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t;Ie([r,a],"prelu");let s=n.data.get(r.dataId).values,i=n.data.get(a.dataId).values,[o,l]=MF(r.shape,a.shape,s,i,r.dtype);return n.makeTensorInfo(l,r.dtype,o)}var $F={kernelName:js,backendName:"cpu",kernelFunc:Pw},Lw=lt(Gs,e=>Math.max(0,e)),DF={kernelName:Gs,backendName:"cpu",kernelFunc:Lw},Ww=lt(Xs,e=>Math.min(Math.max(0,e),6)),OF={kernelName:Xs,backendName:"cpu",kernelFunc:Ww};function Qm(e,t,n,r,a){if(n==="linear")return qr({inputs:{x:t},backend:e});if(n==="relu")return Lw({inputs:{x:t},backend:e});if(n==="elu")return Ow({inputs:{x:t},backend:e});if(n==="relu6")return Ww({inputs:{x:t},backend:e});if(n==="prelu")return Pw({inputs:{x:t,alpha:r},backend:e});if(n==="leakyrelu")return zw({inputs:{x:t},backend:e,attrs:{alpha:a}});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function wt(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=v.sizeFromShape(a.shape),o=v.inferFromImplicitShape(s,i),l=v.sizeFromShape(o);v.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${a.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(a.dataId);let u=n.data.get(a.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,h=u.complexTensorInfos.imag;c.shape=o,h.shape=o}return{dataId:a.dataId,shape:o,dtype:a.dtype}}var zF={kernelName:jo,backendName:"cpu",kernelFunc:wt};function Bw(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;Ie([a,s],"matMul");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),g=v.sizeFromShape(m),y=A===g||A===1||g===1;v.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>g?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],_=o?[g,p,h]:[g,h,p],x=wt({inputs:{x:a},backend:n,attrs:{shape:b}}),N=wt({inputs:{x:s},backend:n,attrs:{shape:_}}),T=i?x.shape[1]:x.shape[2],E=i?x.shape[2]:x.shape[1],M=o?N.shape[1]:N.shape[2],z=Math.max(A,g),B=n.data.get(x.dataId).values,V=n.data.get(N.dataId).values,U=v.computeStrides(x.shape),H=v.computeStrides(N.shape),[X,G,ee]=i?[U[0],1,U[1]]:[U[0],U[1],1],[Y,se,ne]=o?[1,H[1],H[0]]:[H[1],1,H[0]],le=E*M,Q=Ue([z,E,M],x.dtype),pe=Q.values,ue=n.blockSize;for(let ge=0;ge<z;ge++)for(let me=0;me<E;me+=ue)for(let Se=0;Se<M;Se+=ue)for(let Ee=0;Ee<T;Ee+=ue){let Oe=Math.min(me+ue,E),Le=Math.min(Se+ue,M),ze=Math.min(Ee+ue,T);for(let rt=me;rt<Oe;rt++)for(let at=Se;at<Le;at++){let ct=0;for(let et=Ee;et<ze;et++){let mt=Math.min(ge,A-1)*X,He=Math.min(ge,g-1)*ne,bn=B[mt+rt*G+et*ee],kt=V[et*Y+at*se+He];ct+=bn*kt}pe[ge*le+(rt*M+at)]+=ct}}return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(w,Q.dtype,Q.values)}var PF={kernelName:ys,backendName:"cpu",kernelFunc:Bw};function LF(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d,p,f,m=[];d=Bw({inputs:{a,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(p=dc({inputs:{a:d,b:i},backend:n}),m.push(d),d=p),c&&(f=Qm(n,d,c,o,h),m.push(d),d=f);for(let A of m)n.disposeIntermediateTensorInfo(A);return d}var WF={kernelName:oi,backendName:"cpu",kernelFunc:LF},BF=lt(oo,e=>Math.acos(e)),VF={kernelName:oo,backendName:"cpu",kernelFunc:BF},UF=lt(lo,e=>Math.acosh(e)),HF={kernelName:lo,backendName:"cpu",kernelFunc:UF};function jF(e){let{inputs:t,backend:n}=e,r=t;Ie(t,"addN");let a=r.map(o=>n.data.get(o.dataId).values),s=Ue(r[0].shape,r[0].dtype),i=s.values;for(let o=0;o<r.length;o++){let l=a[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var GF={kernelName:ms,backendName:"cpu",kernelFunc:jF};function qF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"all");let o=v.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=fr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("all",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,w=m[y];for(let b=0;b<p;++b){let _=m[y+b];w=w&&_}f[g]=w}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let g=R.expandShapeToKeepDim(h,o),y=wt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var XF={kernelName:zh,backendName:"cpu",kernelFunc:qF};function KF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"any");let o=v.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=fr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("any",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,w=m[y];for(let b=0;b<p;++b){let _=m[y+b];w=w||_}f[g]=w}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let g=R.expandShapeToKeepDim(h,o),y=wt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var ZF={kernelName:Ph,backendName:"cpu",kernelFunc:KF};function YF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;Ie(a,"argMax");let i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=fr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*f,y=m[g],w=0;for(let b=0;b<f;++b){let _=m[g+b];_>y&&(y=_,w=b)}p[A]=w}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var JF={kernelName:As,backendName:"cpu",kernelFunc:YF};function QF(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r;Ie(a,"argMin");let i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=fr({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],R.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[c,h]=R.computeOutAndReduceShapes(l.shape,i),d=v.sizeFromShape(c),p=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(h),m=n.data.get(l.dataId).values;for(let A=0;A<p.length;++A){let g=A*f,y=m[g],w=0;for(let b=0;b<f;++b){let _=m[g+b];_<y&&(y=_,w=b)}p[A]=w}return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(c,"int32",p)}var eM={kernelName:xu,backendName:"cpu",kernelFunc:QF},tM=lt(uo,e=>Math.asin(e)),nM={kernelName:uo,backendName:"cpu",kernelFunc:tM},rM=lt(co,e=>Math.asinh(e)),aM={kernelName:co,backendName:"cpu",kernelFunc:rM},sM=lt(ho,e=>Math.atan(e)),iM={kernelName:ho,backendName:"cpu",kernelFunc:sM},oM=zt((e,t)=>Math.atan2(e,t)),lM=Yt(fo,oM),uM={kernelName:fo,backendName:"cpu",kernelFunc:lM},cM=lt(po,e=>Math.atanh(e)),hM={kernelName:po,backendName:"cpu",kernelFunc:cM};function eA(e,t,n,r,a,s){let i=a.strideHeight,o=a.strideWidth,l=a.dilationHeight,u=a.dilationWidth,c=a.effectiveFilterHeight,h=a.effectiveFilterWidth,d=a.padInfo.top,p=a.padInfo.left,f=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=Ue(a.outShape,n),A=m.values,g=a.outShape[1]*a.outShape[2]*a.outShape[3],y=a.outShape[2]*a.outShape[3],w=a.outShape[3];for(let b=0;b<a.batchSize;++b){let _=b*g,x=b*r[0];for(let N=0;N<a.inChannels;++N)for(let T=0;T<a.outHeight;++T){let E=T*i-d,M=Math.max(0,E),z=Math.min(a.inHeight,c+E),B=_+T*y;for(let V=0;V<a.outWidth;++V){let U=V*o-p,H=Math.max(0,U),X=Math.min(a.inWidth,h+U),G=f,ee=0,Y=0;for(let ne=M;ne<z;ne+=l){let le=x+ne*r[1];for(let Q=H;Q<X;Q+=u){let pe=le+Q*r[2],ue=e[pe+N];s==="max"&&ue>G?G=ue:s==="avg"&&(ee+=ue,Y++)}if(isNaN(G))break}let se=B+V*w+N;A[se]=s==="avg"?ee/Y:G}}}return m}function Vw(e,t,n,r,a=!1,s=!1){let i=Ue(r.outShape,"int32"),o=r.strideHeight,l=r.strideWidth,u=r.dilationHeight,c=r.dilationWidth,h=r.effectiveFilterHeight,d=r.effectiveFilterWidth,p=r.padInfo.top,f=r.padInfo.left,m=Ue(t,n,e);for(let A=0;A<r.batchSize;++A)for(let g=0;g<r.inChannels;++g)for(let y=0;y<r.outHeight;++y){let w=y*o-p,b=w;for(;b<0;)b+=u;let _=Math.min(r.inHeight,h+w);for(let x=0;x<r.outWidth;++x){let N=x*l-f,T=N;for(;T<0;)T+=c;let E=Math.min(r.inWidth,d+N),M=Number.NEGATIVE_INFINITY,z=-1;for(let B=b;B<_;B+=u){let V=B-w;for(let U=T;U<E;U+=c){let H=U-N,X=m.get(A,B,U,g);X>M&&(M=X,a?z=s?((A*r.inHeight+B)*r.inWidth+U)*r.inChannels+g:(B*r.inWidth+U)*r.inChannels+g:z=V*d+H)}}i.set(z,A,y,x,g)}}return i}function Uw(e,t,n,r,a,s){let i=a.strideDepth,o=a.strideHeight,l=a.strideWidth,u=a.dilationDepth,c=a.dilationHeight,h=a.dilationWidth,d=a.effectiveFilterDepth,p=a.effectiveFilterHeight,f=a.effectiveFilterWidth,m=a.padInfo.front,A=a.padInfo.top,g=a.padInfo.left,y=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,w=Ue(a.outShape,n),b=w.values,_=a.outShape[1]*a.outShape[2]*a.outShape[3]*a.outShape[4],x=a.outShape[2]*a.outShape[3]*a.outShape[4],N=a.outShape[3]*a.outShape[4],T=a.outShape[4];for(let E=0;E<a.batchSize;++E){let M=E*_,z=E*r[0];for(let B=0;B<a.inChannels;++B)for(let V=0;V<a.outDepth;++V){let U=V*i-m,H=U;for(;H<0;)H+=u;let X=Math.min(a.inDepth,d+U),G=M+V*x;for(let ee=0;ee<a.outHeight;++ee){let Y=ee*o-A,se=Y;for(;se<0;)se+=c;let ne=Math.min(a.inHeight,p+Y),le=G+ee*N;for(let Q=0;Q<a.outWidth;++Q){let pe=Q*l-g,ue=pe;for(;ue<0;)ue+=h;let ge=Math.min(a.inWidth,f+pe),me=le+Q*T,Se=y,Ee=0,Oe=0;for(let ze=H;ze<X;ze+=u){let rt=z+ze*r[1];for(let at=se;at<ne;at+=c){let ct=rt+at*r[2];for(let et=ue;et<ge;et+=h){let mt=ct+et*r[3],He=e[mt+B];if(s==="max"&&He>Se?Se=He:s==="avg"&&(Ee+=He,Oe++),isNaN(Se))break}if(isNaN(Se))break}if(isNaN(Se))break}let Le=me+B;b[Le]=s==="avg"?Ee/Oe:Se}}}}return w}function dM(e,t){let n=Ue(t.outShape,"int32"),r=t.strideDepth,a=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,h=t.effectiveFilterWidth,d=t.padInfo.front,p=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let A=0;A<t.inChannels;++A)for(let g=0;g<t.outDepth;++g){let y=g*r-d,w=y;for(;w<0;)w+=i;let b=Math.min(t.inDepth,u+y);for(let _=0;_<t.outHeight;++_){let x=_*a-p,N=x;for(;N<0;)N+=o;let T=Math.min(t.inHeight,c+x);for(let E=0;E<t.outWidth;++E){let M=E*s-f,z=M;for(;z<0;)z+=l;let B=Math.min(t.inWidth,h+M),V=Number.NEGATIVE_INFINITY,U=-1;for(let H=w;H<b;H+=i){let X=H-y;for(let G=N;G<T;G+=o){let ee=G-x;for(let Y=z;Y<B;Y+=l){let se=Y-M,ne=e.get(m,H,G,Y,A);ne>=V&&(V=ne,U=X*c*h+ee*c+se)}}}n.set(U,m,g,_,E,A)}}}return n}function pM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ie(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=eA(d,a.shape,a.dtype,p,c,"avg");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var fM={kernelName:gs,backendName:"cpu",kernelFunc:pM};function mM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;Ie(a,"avgPool3d");let c=R.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Uw(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var AM={kernelName:wu,backendName:"cpu",kernelFunc:mM};function gM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;Ie([a,s],"avgPool3DGrad");let c=R.computePool3DInfo(s.shape,i,o,1,l,u),h=c.strideDepth,d=c.strideHeight,p=c.strideWidth,f=c.filterDepth,m=c.filterHeight,A=c.filterWidth,g=c.dilationDepth,y=c.dilationHeight,w=c.dilationWidth,b=c.effectiveFilterDepth,_=c.effectiveFilterHeight,x=c.effectiveFilterWidth,N=b-1-c.padInfo.front,T=x-1-c.padInfo.left,E=_-1-c.padInfo.top,M=Ue(s.shape,"float32"),z=1/(f*m*A),B=n.bufferSync(a);for(let V=0;V<c.batchSize;++V)for(let U=0;U<c.inChannels;++U)for(let H=0;H<c.inDepth;++H)for(let X=0;X<c.inHeight;++X)for(let G=0;G<c.inWidth;++G){let ee=H-N,Y=X-E,se=G-T,ne=0;for(let le=0;le<b;le+=g){let Q=(ee+le)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=y){let ue=(Y+pe)/d;if(!(ue<0||ue>=c.outHeight||Math.floor(ue)!==ue))for(let ge=0;ge<x;ge+=w){let me=(se+ge)/p;me<0||me>=c.outWidth||Math.floor(me)!==me||(ne+=B.get(V,Q,ue,me,U))}}}M.set(ne*z,V,H,X,G,U)}return n.makeTensorInfo(M.shape,M.dtype,M.values)}var yM={kernelName:Wh,backendName:"cpu",kernelFunc:gM};function xM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Ie([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=c.strideHeight,d=c.strideWidth,p=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,A=c.dilationWidth,g=c.effectiveFilterHeight,y=c.effectiveFilterWidth,w=y-1-c.padInfo.left,b=g-1-c.padInfo.top,_=Ue(i.shape,"float32"),x=1/(p*f),N=n.data.get(a.dataId).values,T=Ue(a.shape,"float32",N);for(let E=0;E<c.batchSize;++E)for(let M=0;M<c.inChannels;++M)for(let z=0;z<c.inHeight;++z)for(let B=0;B<c.inWidth;++B){let V=z-b,U=B-w,H=0;for(let X=0;X<g;X+=m){let G=(V+X)/h;if(!(G<0||G>=c.outHeight||Math.floor(G)!==G))for(let ee=0;ee<y;ee+=A){let Y=(U+ee)/d;Y<0||Y>=c.outWidth||Math.floor(Y)!==Y||(H+=T.get(E,G,Y,M))}}_.set(H*x,E,z,B,M)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var wM={kernelName:Lh,backendName:"cpu",kernelFunc:xM};function bM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,scale:s,offset:i,mean:o,variance:l}=t;v.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Ie([a,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=r;u==null&&(u=.001);let c=n.data.get(a.dataId).values,h=n.data.get(o.dataId).values,d=n.data.get(l.dataId).values,p=s?n.data.get(s.dataId).values:new Float32Array([1]),f=i?n.data.get(i.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),A=f.length,g=p.length,y=d.length,w=h.length,b=0,_=0,x=0,N=0;for(let T=0;T<c.length;++T)m[T]=f[b++]+(c[T]-h[_++])*p[x++]/Math.sqrt(d[N++]+u),b>=A&&(b=0),_>=w&&(_=0),x>=g&&(x=0),N>=y&&(N=0);return n.makeTensorInfo(a.shape,a.dtype,m)}var _M={kernelName:Cs,backendName:"cpu",kernelFunc:bM};function vM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;Ie([a],"batchToSpaceND");let o=s.reduce((g,y)=>g*y),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=wt({inputs:{x:a},backend:n,attrs:{shape:l}}),f=fr({inputs:{x:p},backend:n,attrs:{perm:u}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=ki({inputs:{x:m},backend:n,attrs:{begin:h,size:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var kM={kernelName:bu,backendName:"cpu",kernelFunc:vM};function IM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.data.get(a.dataId).values,l=n.data.get(s.dataId).values,u=jm(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var NM={kernelName:Bh,backendName:"cpu",kernelFunc:IM},SM=lt(Ma,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),TM={kernelName:Ma,backendName:"cpu",kernelFunc:SM},EM=e=>{let{x:t}=e.inputs,n=e.backend,r=new Float32Array(v.sizeFromShape(t.shape)),a=n.data.get(t.dataId),s=a.complexTensorInfos.real,i=a.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let c=o[u],h=l[u];r[u]=Math.hypot(c,h)}return n.makeOutput(r,t.shape,"float32")},CM={kernelName:_u,backendName:"cpu",kernelFunc:EM};function Rl(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.data.get(r.dataId).complexTensorInfos.imag,s=n.data.get(a.dataId).values;return n.makeTensorInfo(a.shape,a.dtype,s)}var RM={kernelName:td,backendName:"cpu",kernelFunc:Rl};function Fl(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(m=>m.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(m=>v.sizeFromShape(m.shape)>0);if(o.length===1)return qr({inputs:{x:o[0]},backend:n});let l=o.map(m=>m.shape);if(R.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let m=o.map(b=>vi({inputs:{input:b},backend:n})),A=o.map(b=>Rl({inputs:{input:b},backend:n})),g=Fl({inputs:m,backend:n,attrs:{axis:s}}),y=Fl({inputs:A,backend:n,attrs:{axis:s}}),w=Wn({inputs:{real:g,imag:y},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),A.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),w}let u=o.map(m=>{let A=v.sizeFromShape(m.shape.slice(s));return wt({inputs:{x:m},backend:n,attrs:{shape:[-1,A]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));i=R.computeOutShape(u.map(m=>m.shape),1);let h=u[0].shape[0]===1,d=Gm(c,i,t[0].dtype,h),p=R.computeOutShape(o.map(m=>m.shape),s),f=n.makeTensorInfo(p,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var FM={kernelName:mo,backendName:"cpu",kernelFunc:Fl};function Hw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r;Ie([a,s],"conv2d");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,A=d.dilationWidth,g=d.padInfo.left,y=d.padInfo.top,w=d.dataFormat==="channelsLast",b=new Bt(d.outShape,a.dtype),_=v.computeStrides(a.shape),x=v.computeStrides(s.shape),N=_[0],T=w?_[1]:_[2],E=w?_[2]:1,M=w?1:_[1],z=b.strides[0],B=w?b.strides[1]:b.strides[2],V=w?b.strides[2]:1,U=w?1:b.strides[1],H=n.data.get(a.dataId).values,X=n.data.get(s.dataId).values,G=b.values;for(let ee=0;ee<d.batchSize;++ee){let Y=ee*N,se=ee*z;for(let ne=0;ne<d.outHeight;++ne){let le=se+ne*B,Q=ne*d.strideHeight-y;for(let pe=0;pe<p;++pe){let ue=Q+pe*m;if(ue<0||ue>=d.inHeight)continue;let ge=pe*x[0],me=Y+ue*T;for(let Se=0;Se<d.outWidth;++Se){let Ee=le+Se*V,Oe=Se*d.strideWidth-g;for(let Le=0;Le<f;++Le){let ze=Oe+Le*A;if(ze<0||ze>=d.inWidth)continue;let rt=ge+Le*x[1],at=me+ze*E,ct=rt;for(let et=0;et<d.inChannels;++et){let mt=H[at+et*M];for(let He=0;He<d.outChannels;++He)G[Ee+He*U]+=mt*X[ct+He];ct+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,G)}var MM={kernelName:bs,backendName:"cpu",kernelFunc:Hw};function $M(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r;Ie([a,s],"conv2dBackpropFilter");let h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),{strideHeight:p,strideWidth:f,filterHeight:m,filterWidth:A}=d,g=d.dataFormat==="channelsLast",y=new Bt(d.filterShape,"float32"),w=d.padInfo.left,b=d.padInfo.top,_=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=new Bt(a.shape,a.dtype,_),T=new Bt(s.shape,s.dtype,x);for(let E=0;E<m;++E){let M=Math.max(0,Math.ceil((b-E)/p)),z=Math.min(d.outHeight,(d.inHeight+b-E)/p);for(let B=0;B<A;++B){let V=Math.max(0,Math.ceil((w-B)/f)),U=Math.min(d.outWidth,(d.inWidth+w-B)/f);for(let H=0;H<d.inChannels;++H)for(let X=0;X<d.outChannels;++X){let G=0;for(let ee=0;ee<d.batchSize;++ee)for(let Y=M;Y<z;++Y){let se=E+Y*p-b;for(let ne=V;ne<U;++ne){let le=B+ne*f-w;g?G+=N.get(ee,se,le,H)*T.get(ee,Y,ne,X):G+=N.get(ee,H,se,le)*T.get(ee,X,Y,ne)}}y.set(G,E,B,H,X)}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var DM={kernelName:Uh,backendName:"cpu",kernelFunc:$M};function OM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r;Ie([a,s],"conv2dBackpropInput");let h=v.computeStrides(s.shape),d=v.computeStrides(a.shape),p=R.convertConv2DDataFormat(u),f=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,p),m=new Bt(f.inShape,"float32"),A=m.values,g=n.data.get(a.dataId).values,y=n.data.get(s.dataId).values,[w,b,_]=h,{batchSize:x,filterHeight:N,filterWidth:T,inChannels:E,inHeight:M,inWidth:z,outChannels:B,outHeight:V,outWidth:U,strideHeight:H,strideWidth:X}=f;p=f.dataFormat;let G=N-1-f.padInfo.top,ee=T-1-f.padInfo.left,Y=p==="channelsLast",se=m.strides[0],ne=Y?m.strides[1]:m.strides[2],le=Y?m.strides[2]:1,Q=Y?1:m.strides[1],pe=d[0],ue=Y?d[1]:d[2],ge=Y?d[2]:1,me=Y?1:d[1];for(let Se=0;Se<x;++Se)for(let Ee=0;Ee<E;++Ee)for(let Oe=0;Oe<M;++Oe){let Le=Oe-G,ze=Math.max(0,Math.ceil(Le/H)),rt=Math.min(V,(N+Le)/H);for(let at=0;at<z;++at){let ct=at-ee,et=Math.max(0,Math.ceil(ct/X)),mt=Math.min(U,(T+ct)/X),He=0;for(let kt=ze;kt<rt;++kt){let Xn=kt*H-Le;for(let tn=et;tn<mt;++tn){let _n=tn*X-ct,Kn=pe*Se+ue*kt+ge*tn,Dn=w*(N-1-Xn)+b*(T-1-_n)+_*Ee;for(let pn=0;pn<B;++pn){let nn=g[Kn+me*pn],Or=y[Dn+pn];He+=nn*Or}}}let bn=se*Se+ne*Oe+le*at+Q*Ee;A[bn]=He}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var zM={kernelName:_s,backendName:"cpu",kernelFunc:OM};function PM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r;Ie([a,s],"conv3d");let u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),{filterDepth:c,filterHeight:h,filterWidth:d,dilationDepth:p,dilationHeight:f,dilationWidth:m,padInfo:A}=u,g=A.front,y=A.left,w=A.top,b=new Bt(u.outShape,a.dtype),_=n.data.get(a.dataId).values,x=n.data.get(s.dataId).values,N=b.values,T=v.computeStrides(a.shape),E=v.computeStrides(s.shape);for(let M=0;M<u.batchSize;++M){let z=M*T[0],B=M*b.strides[0];for(let V=0;V<u.outDepth;++V){let U=B+V*b.strides[1],H=V*u.strideDepth-g;for(let X=0;X<c;++X){let G=H+X*p;if(G<0||G>=u.inDepth)continue;let ee=X*E[0],Y=z+G*T[1];for(let se=0;se<u.outHeight;++se){let ne=U+se*b.strides[2],le=se*u.strideHeight-w;for(let Q=0;Q<h;++Q){let pe=le+Q*f;if(pe<0||pe>=u.inHeight)continue;let ue=ee+Q*E[1],ge=Y+pe*T[2];for(let me=0;me<u.outWidth;++me){let Se=ne+me*u.outChannels,Ee=me*u.strideWidth-y;for(let Oe=0;Oe<d;++Oe){let Le=Ee+Oe*m;if(Le<0||Le>=u.inWidth)continue;let ze=ue+Oe*E[2],rt=ge+Le*u.inChannels,at=ze;for(let ct=0;ct<u.inChannels;++ct){let et=_[rt+ct];for(let mt=0;mt<u.outChannels;++mt)N[Se+mt]+=et*x[at+mt];at+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var LM={kernelName:vu,backendName:"cpu",kernelFunc:PM};function WM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r;Ie([a,s],"conv3dBackpropFilterV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=R.computeConv3DInfo(a.shape,l,i,1,o),d=h.strideDepth,p=h.strideHeight,f=h.strideWidth,m=h.filterDepth,A=h.filterHeight,g=h.filterWidth,y=new Bt(h.filterShape,"float32"),w=y.values,[b,_,x,N]=y.strides,T=n.data.get(s.dataId).values,[E,M,z,B]=c,V=n.data.get(a.dataId).values,[U,H,X,G]=u,ee=h.padInfo.front,Y=h.padInfo.left,se=h.padInfo.top;for(let ne=0;ne<m;++ne){let le=Math.max(0,Math.ceil((ee-ne)/d)),Q=Math.min(h.outDepth,(h.inDepth+ee-ne)/d),pe=ne*b;for(let ue=0;ue<A;++ue){let ge=Math.max(0,Math.ceil((se-ue)/p)),me=Math.min(h.outHeight,(h.inHeight+se-ue)/p),Se=ue*_+pe;for(let Ee=0;Ee<g;++Ee){let Oe=Math.max(0,Math.ceil((Y-Ee)/f)),Le=Math.min(h.outWidth,(h.inWidth+Y-Ee)/f),ze=Ee*x+Se;for(let rt=0;rt<h.inChannels;++rt){let at=rt*N+ze;for(let ct=0;ct<h.outChannels;++ct){let et=0;for(let mt=0;mt<h.batchSize;++mt){let He=mt*U,bn=mt*E;for(let kt=le;kt<Q;++kt){let Xn=(ne+kt*d-ee)*H+He,tn=kt*M+bn;for(let _n=ge;_n<me;++_n){let Kn=(ue+_n*p-se)*X+Xn,Dn=_n*z+tn;for(let pn=Oe;pn<Le;++pn){let nn=(Ee+pn*f-Y)*G+Kn,Or=pn*B+Dn;et+=V[nn+rt]*T[Or+ct]}}}}w[at+ct]=et}}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var BM={kernelName:Hh,backendName:"cpu",kernelFunc:WM};function VM(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r;Ie([a],"conv3dBackpropInputV2");let u=v.computeStrides(a.shape),c=v.computeStrides(s.shape),h=R.computeConv3DInfo(l,s.shape,o,1,i),d=new Bt(h.inShape,"float32"),p=d.values,[f,m,A,g]=d.strides,y=n.data.get(a.dataId).values,[w,b,_,x]=u,N=n.data.get(s.dataId).values,[T,E,M,z]=c,{batchSize:B,filterDepth:V,filterHeight:U,filterWidth:H,inChannels:X,inDepth:G,inHeight:ee,inWidth:Y,outChannels:se,outDepth:ne,outHeight:le,outWidth:Q,strideDepth:pe,strideHeight:ue,strideWidth:ge}=h,me=V-1-h.padInfo.front,Se=U-1-h.padInfo.top,Ee=H-1-h.padInfo.left;for(let Oe=0;Oe<B;++Oe)for(let Le=0;Le<X;++Le)for(let ze=0;ze<G;++ze){let rt=ze-me,at=Math.max(0,Math.ceil(rt/pe)),ct=Math.min(ne,(V+rt)/pe);for(let et=0;et<ee;++et){let mt=et-Se,He=Math.max(0,Math.ceil(mt/ue)),bn=Math.min(le,(U+mt)/ue);for(let kt=0;kt<Y;++kt){let Xn=kt-Ee,tn=Math.max(0,Math.ceil(Xn/ge)),_n=Math.min(Q,(H+Xn)/ge),Kn=0;for(let Dn=at;Dn<ct;++Dn){let pn=Dn*pe-rt;for(let nn=He;nn<bn;++nn){let Or=nn*ue-mt;for(let sr=tn;sr<_n;++sr){let ir=sr*ge-Xn,va=w*Oe+b*Dn+_*nn+x*sr,na=T*(V-1-pn)+E*(U-1-Or)+M*(H-1-ir)+z*Le;for(let ka=0;ka<se;++ka){let ji=y[va+ka],br=N[na+ka];Kn+=ji*br}}}}p[f*Oe+m*ze+A*et+g*kt+Le]=Kn}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var UM={kernelName:jh,backendName:"cpu",kernelFunc:VM},HM=lt(vs,e=>Math.cos(e)),jM={kernelName:vs,backendName:"cpu",kernelFunc:HM},GM=lt(Ao,e=>Math.cosh(e)),qM={kernelName:Ao,backendName:"cpu",kernelFunc:GM};function XM(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,[c,h,d,p]=a.shape,f=s.shape[0],[m,A]=o,g=Ue([f,m,A,p],"float32"),y=n.data.get(s.dataId).values,w=n.data.get(i.dataId).values,b=n.data.get(a.dataId).values,_=v.computeStrides(a.shape),x=v.computeStrides(g.shape);for(let N=0;N<f;N++){let T=N*4,E=y[T],M=y[T+1],z=y[T+2],B=y[T+3],V=w[N];if(V>=c)continue;let U=m>1?(z-E)*(h-1)/(m-1):0,H=A>1?(B-M)*(d-1)/(A-1):0;for(let X=0;X<m;X++){let G=m>1?E*(h-1)+X*U:.5*(E+z)*(h-1);if(G<0||G>h-1){for(let ee=0;ee<A;ee++)for(let Y=0;Y<p;Y++){let se=Y+ee*x[2]+X*x[1]+N*x[0];g.values[se]=u}continue}if(l==="bilinear"){let ee=Math.floor(G),Y=Math.ceil(G),se=G-ee;for(let ne=0;ne<A;ne++){let le=A>1?M*(d-1)+ne*H:.5*(M+B)*(d-1);if(le<0||le>d-1){for(let ge=0;ge<p;ge++){let me=ge+ne*x[2]+X*x[1]+N*x[0];g.values[me]=u}continue}let Q=Math.floor(le),pe=Math.ceil(le),ue=le-Q;for(let ge=0;ge<p;ge++){let me=ge+Q*_[2]+ee*_[1]+V*_[0],Se=b[me];me=ge+pe*_[2]+ee*_[1]+V*_[0];let Ee=b[me];me=ge+Q*_[2]+Y*_[1]+V*_[0];let Oe=b[me];me=ge+pe*_[2]+Y*_[1]+V*_[0];let Le=b[me],ze=Se+(Ee-Se)*ue,rt=Oe+(Le-Oe)*ue;me=ge+ne*x[2]+X*x[1]+N*x[0],g.values[me]=ze+(rt-ze)*se}}}else for(let ee=0;ee<A;++ee){let Y=A>1?M*(d-1)+ee*H:.5*(M+B)*(d-1);if(Y<0||Y>d-1){for(let le=0;le<p;le++){let Q=le+ee*x[2]+X*x[1]+N*x[0];g.values[Q]=u}continue}let se=Math.round(Y),ne=Math.round(G);for(let le=0;le<p;le++){let Q=le+se*_[2]+ne*_[1]+V*_[0],pe=le+ee*x[2]+X*x[1]+N*x[0];g.values[pe]=b[Q]}}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var KM={kernelName:go,backendName:"cpu",kernelFunc:XM};function ZM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r;Ie(a,"cumsum");let l=R.getAxesPermutation([s],a.shape.length),u=a;l!=null&&(u=fr({inputs:{x:a},backend:n,attrs:{perm:l}}));let c=R.getInnerMostAxes(1,a.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let h=cr(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),h),p=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=o?(g,y)=>g+f-y-1:(g,y)=>g+y;for(let g=0;g<p.length;g+=f)for(let y=0;y<f;y++){let w=m(g,y);if(y===0)d[w]=i?0:p[w];else{let b=m(g,y-1);d[w]=i?p[b]+d[b]:p[w]+d[b]}}let A=n.makeTensorInfo(u.shape,h,d);if(l!=null){let g=R.getUndoAxesPermutation(l),y=fr({inputs:{x:A},backend:n,attrs:{perm:g}});return n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(u),y}return A}var YM={kernelName:ks,backendName:"cpu",kernelFunc:ZM};function JM(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=jm(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=hw(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var QM={kernelName:Gh,backendName:"cpu",kernelFunc:JM};function e$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=a.shape[1],u=a.shape[2],c=a.shape[3],h=l*s,d=u*s,p=c/(s*s),f=n.data.get(a.dataId).values,m=new Float32Array(o*h*d*p),A=0;for(let g=0;g<o;++g)for(let y=0;y<h;++y){let w=Math.floor(y/s),b=y%s;for(let _=0;_<d;++_){let x=Math.floor(_/s),N=_%s,T=(b*s+N)*p;for(let E=0;E<p;++E){let M=E+T+c*(x+u*(w+l*g));m[A++]=f[M]}}}return n.makeTensorInfo([o,h,d,p],a.dtype,m)}var t$={kernelName:yo,backendName:"cpu",kernelFunc:e$};function jw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r;Ie([a,s],"depthwiseConv2DNative");let c=v.computeStrides(a.shape),h=v.computeStrides(s.shape),d=l;d==null&&(d=[1,1]),v.assert(R.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=R.computeConv2DInfo(a.shape,s.shape,i,d,o,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:A,dilationWidth:g,padInfo:y}=p,w=y.left,b=y.top,_=p.outChannels/p.inChannels,x=new Bt(p.outShape,a.dtype),N=n.data.get(a.dataId).values,T=n.data.get(s.dataId).values,E=x.values;for(let M=0;M<p.batchSize;++M){let z=M*c[0],B=M*x.strides[0];for(let V=0;V<p.outHeight;++V){let U=B+V*x.strides[1],H=V*p.strideHeight-w;for(let X=0;X<f;++X){let G=H+X*A;if(G<0||G>=p.inHeight)continue;let ee=X*h[0],Y=z+G*c[1];for(let se=0;se<p.outWidth;++se){let ne=U+se*x.strides[2],le=se*p.strideWidth-b;for(let Q=0;Q<m;++Q){let pe=le+Q*g;if(pe<0||pe>=p.inWidth)continue;let ue=ee+Q*h[1],ge=Y+pe*p.inChannels,me=ne,Se=ue;for(let Ee=0;Ee<p.inChannels;++Ee){let Oe=N[ge+Ee];for(let Le=0;Le<_;++Le)E[me+Le]+=Oe*T[Se+Le];me+=_,Se+=_}}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var n$={kernelName:Is,backendName:"cpu",kernelFunc:jw};function r$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r;Ie([a,s],"depthwiseConv2dNativeBackpropFilter");let h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),{strideHeight:d,strideWidth:p,filterHeight:f,filterWidth:m}=h,A=new Bt(h.filterShape,"float32"),g=h.padInfo.left,y=h.padInfo.top,w=h.outChannels/h.inChannels,b=n.data.get(a.dataId).values,_=new Bt(a.shape,a.dtype,b),x=n.data.get(s.dataId).values,N=new Bt(s.shape,s.dtype,x);for(let T=0;T<f;++T){let E=Math.max(0,Math.ceil((y-T)/d)),M=Math.min(h.outHeight,(h.inHeight+y-T)/d);for(let z=0;z<m;++z){let B=Math.max(0,Math.ceil((g-z)/p)),V=Math.min(h.outWidth,(h.inWidth+g-z)/p);for(let U=0;U<h.outChannels;++U){let H=Math.trunc(U/w),X=U%w,G=0;for(let ee=0;ee<h.batchSize;++ee)for(let Y=E;Y<M;++Y){let se=T+Y*d-y;for(let ne=B;ne<V;++ne){let le=z+ne*p-g;G+=_.get(ee,se,le,H)*N.get(ee,Y,ne,U)}}A.set(G,T,z,H,X)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var a$={kernelName:qh,backendName:"cpu",kernelFunc:r$};function s$(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r;Ie([a,s],"depthwiseConv2DNativeBackpropInput");let h=v.computeStrides(a.shape),d=v.computeStrides(s.shape),p=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),f=new Bt(p.inShape,"float32"),m=f.values,[A,g,y]=f.strides,w=n.data.get(a.dataId).values,[b,_,x]=h,N=n.data.get(s.dataId).values,[T,E,M]=d,{batchSize:z,filterHeight:B,filterWidth:V,inChannels:U,inHeight:H,inWidth:X,outChannels:G,outHeight:ee,outWidth:Y,strideHeight:se,strideWidth:ne}=p,le=B-1-p.padInfo.top,Q=V-1-p.padInfo.left,pe=G/U;for(let ue=0;ue<z;++ue)for(let ge=0;ge<U;++ge)for(let me=0;me<H;++me){let Se=me-le,Ee=Math.max(0,Math.ceil(Se/se)),Oe=Math.min(ee,(B+Se)/se);for(let Le=0;Le<X;++Le){let ze=Le-Q,rt=Math.max(0,Math.ceil(ze/ne)),at=Math.min(Y,(V+ze)/ne),ct=0;for(let et=Ee;et<Oe;++et){let mt=et*se-Se;for(let He=rt;He<at;++He){let bn=He*ne-ze,kt=b*ue+_*et+x*He,Xn=T*(B-1-mt)+E*(V-1-bn)+M*ge;for(let tn=0;tn<pe;++tn){let _n=ge*pe+tn,Kn=w[kt+_n],Dn=N[Xn+tn];ct+=Kn*Dn}}}m[A*ue+g*me+y*Le+ge]=ct}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var i$={kernelName:Xh,backendName:"cpu",kernelFunc:s$};function o$(e){let{inputs:t,backend:n}=e,{x:r}=t,a=v.sizeFromShape(r.shape),s=n.data.get(r.dataId).values,i=Ue([a,a],r.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*a+u]=s[u];let l=[...r.shape,...r.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var l$={kernelName:Kh,backendName:"cpu",kernelFunc:o$},u$={kernelName:ku,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(r.dataId).values,c=r.shape.length,h=l.data.get(a.dataId).values,d=a.shape.length,{batchSize:p,inHeight:f,inWidth:m,inChannels:A,outHeight:g,outWidth:y,padInfo:w,strideHeight:b,strideWidth:_,filterHeight:x,filterWidth:N,dilationHeight:T,dilationWidth:E,outShape:M}=R.computeDilation2DInfo(r.shape,a.shape,s,i,"NHWC",o),z=v.sizeFromShape(M),B=M.length,V=v.getArrayFromDType(r.dtype,z);for(let U=0;U<p;++U)for(let H=0;H<g;++H){let X=H*b-w.top;for(let G=0;G<y;++G){let ee=G*_-w.left;for(let Y=0;Y<A;++Y){let se=Number.MIN_SAFE_INTEGER;for(let le=0;le<x;++le){let Q=X+le*T;if(Q>=0&&Q<f)for(let pe=0;pe<N;++pe){let ue=ee+pe*E;if(ue>=0&&ue<m){let ge=v.locToIndex([U,Q,ue,Y],c,v.computeStrides(r.shape)),me=v.locToIndex([le,pe,Y],d,v.computeStrides(a.shape)),Se=u[ge]+h[me];Se>se&&(se=Se)}}}let ne=v.locToIndex([U,H,G,Y],B,v.computeStrides(M));V[ne]=se}}}return{dataId:l.write(v.toTypedArray(V,r.dtype),M,r.dtype),shape:M,dtype:r.dtype}}},c$={kernelName:Yh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Yh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),z=v.makeZerosNestedTypedArray(a.shape,a.dtype);for(let B=0;B<d;++B)for(let V=0;V<A;++V){let U=V*w-y.top;for(let H=0;H<g;++H){let X=H*b-y.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,Y=0,se=0;for(let ne=0;ne<_;++ne){let le=U+ne*N;if(le>=0&&le<p)for(let Q=0;Q<x;++Q){let pe=X+Q*T;if(pe>=0&&pe<f){let ue=c[B][le][pe][G]+h[ne][Q][G];ue>ee&&(ee=ue,Y=ne,se=Q)}}}z[Y][se][G]+=M[B][V][H][G]}}}return{dataId:u.write(v.toTypedArray(z,r.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},h$={kernelName:Zh,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:r,filter:a,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,c=v.toNestedArray(r.shape,u.data.get(r.dataId).values),h=v.toNestedArray(a.shape,u.data.get(a.dataId).values),{batchSize:d,inHeight:p,inWidth:f,inChannels:m,outHeight:A,outWidth:g,padInfo:y,strideHeight:w,strideWidth:b,filterHeight:_,filterWidth:x,dilationHeight:N,dilationWidth:T,outShape:E}=R.computeDilation2DInfo(r.shape,a.shape,i,o,"NHWC",l);v.assert(s.rank===E.length,()=>`Error in ${Zh}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let M=v.toNestedArray(E,u.data.get(s.dataId).values),z=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let B=0;B<d;++B)for(let V=0;V<A;++V){let U=V*w-y.top;for(let H=0;H<g;++H){let X=H*b-y.left;for(let G=0;G<m;++G){let ee=Number.MIN_SAFE_INTEGER,Y=U<0?0:U,se=X<0?0:X;for(let ne=0;ne<_;++ne){let le=U+ne*N;if(le>=0&&le<p)for(let Q=0;Q<x;++Q){let pe=X+Q*T;if(pe>=0&&pe<f){let ue=c[B][le][pe][G]+h[ne][Q][G];ue>ee&&(ee=ue,Y=le,se=pe)}}}z[B][Y][se][G]+=M[B][V][H][G]}}}return{dataId:u.write(v.toTypedArray(z,r.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}};function d$(e){let{inputs:t,backend:n}=e,{dy:r,y:a}=t;Ie([r,a],"eluGrad");let s=new Float32Array(v.sizeFromShape(a.shape)),i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(a.shape,"float32",s)}var p$={kernelName:Jh,backendName:"cpu",kernelFunc:d$},f$=zt((e,t)=>e===t?1:0),Gw=Yt(bo,f$,null,"bool"),m$={kernelName:bo,backendName:"cpu",kernelFunc:Gw},A$=R.ERF_P,g$=R.ERF_A1,y$=R.ERF_A2,x$=R.ERF_A3,w$=R.ERF_A4,b$=R.ERF_A5,_$=lt(wo,e=>{let t=Math.sign(e),n=Math.abs(e),r=1/(1+A$*n);return t*(1-((((b$*r+w$)*r+x$)*r+y$)*r+g$)*r*Math.exp(-n*n))}),v$={kernelName:wo,backendName:"cpu",kernelFunc:_$};function pp(e){let{inputs:t,backend:n,attrs:r}=e,{input:a}=t,{dim:s}=r,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),wt({inputs:{x:a},backend:n,attrs:{shape:o}})}var k$={kernelName:_o,backendName:"cpu",kernelFunc:pp},I$=zt((e,t)=>e/t),tA=Yt(Ns,I$),nA={kernelName:Ns,backendName:"cpu",kernelFunc:tA};function qw(e,t,n){let r=e.shape,a=r[0],s=r[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[a,s],c=v.sizeFromShape(u),h=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let A=0;A<a;A++){let g=ki({inputs:{x:o},backend:n,attrs:{begin:[A,0],size:[1,s]}}),y=ki({inputs:{x:l},backend:n,attrs:{begin:[A,0],size:[1,s]}}),w=Wn({inputs:{real:g,imag:y},backend:n}),{real:b,imag:_}=N$(w,t,n),x=R.mergeRealAndImagArrays(b,_);for(let N=0;N<s;N++){let T=R.getComplexWithIndex(x,N);h[A*s+N]=T.real,d[A*s+N]=T.imag}n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(w)}let p=n.makeTensorInfo(u,"float32",h),f=n.makeTensorInfo(u,"float32",d),m=Wn({inputs:{real:p,imag:f},backend:n});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}function N$(e,t,n){let r=v.sizeFromShape(e.shape),a=n.data.get(e.dataId),s=n.data.get(a.complexTensorInfos.real.dataId).values,i=n.data.get(a.complexTensorInfos.imag.dataId).values;if(S$(r)){let o=rA(s,i,r,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),c=n.makeTensorInfo(l,"float32",o.imag),h=n.makeTensorInfo([],"float32",v.createScalarValue(r,"float32")),d=qr({inputs:{x:h},backend:n}),p=nA.kernelFunc({inputs:{a:u,b:h},backend:n}),f=nA.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(p.dataId).values,A=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),{real:m,imag:A}}return o}else{let o=R.mergeRealAndImagArrays(s,i),l=T$(o,r,t);return R.splitRealAndImagArrays(l)}}function S$(e){return(e&e-1)==0}function rA(e,t,n,r,a){if(n===1)return{real:e,imag:t};let s=R.mergeRealAndImagArrays(e,t),i=n/2,o=R.complexWithEvenIndex(s),l=o.real,u=o.imag,c=[l.length],h=a.makeTensorInfo(c,"float32",l),d=a.makeTensorInfo(c,"float32",u),p=Wn({inputs:{real:h,imag:d},backend:a}),f=R.complexWithOddIndex(s),m=f.real,A=f.imag,g=[m.length],y=a.makeTensorInfo(g,"float32",m),w=a.makeTensorInfo(g,"float32",A),b=Wn({inputs:{real:y,imag:w},backend:a}),_=rA(l,u,i,r,a),x=_.real,N=_.imag,T=[x.length],E=a.makeTensorInfo(T,"float32",x),M=a.makeTensorInfo(T,"float32",N),z=Wn({inputs:{real:E,imag:M},backend:a}),B=rA(m,A,i,r,a),V=B.real,U=B.imag,H=[V.length],X=a.makeTensorInfo(H,"float32",V),G=a.makeTensorInfo(H,"float32",U),ee=Wn({inputs:{real:X,imag:G},backend:a}),Y=R.exponents(n,r),se=[Y.real.length],ne=a.makeTensorInfo(se,"float32",Y.real),le=a.makeTensorInfo(se,"float32",Y.imag),Q=Wn({inputs:{real:ne,imag:le},backend:a}),pe=Ym({inputs:{a:Q,b:ee},backend:a}),ue=dc({inputs:{a:z,b:pe},backend:a}),ge=Jm({inputs:{a:z,b:pe},backend:a}),me=vi({inputs:{input:ue},backend:a}),Se=vi({inputs:{input:ge},backend:a}),Ee=Rl({inputs:{input:ue},backend:a}),Oe=Rl({inputs:{input:ge},backend:a}),Le=Fl({inputs:[me,Se],backend:a,attrs:{axis:0}}),ze=Fl({inputs:[Ee,Oe],backend:a,attrs:{axis:0}}),rt=a.data.get(Le.dataId).values,at=a.data.get(ze.dataId).values;return a.disposeIntermediateTensorInfo(h),a.disposeIntermediateTensorInfo(d),a.disposeIntermediateTensorInfo(p),a.disposeIntermediateTensorInfo(y),a.disposeIntermediateTensorInfo(w),a.disposeIntermediateTensorInfo(b),a.disposeIntermediateTensorInfo(E),a.disposeIntermediateTensorInfo(M),a.disposeIntermediateTensorInfo(z),a.disposeIntermediateTensorInfo(X),a.disposeIntermediateTensorInfo(G),a.disposeIntermediateTensorInfo(ee),a.disposeIntermediateTensorInfo(ne),a.disposeIntermediateTensorInfo(le),a.disposeIntermediateTensorInfo(Q),a.disposeIntermediateTensorInfo(pe),a.disposeIntermediateTensorInfo(ue),a.disposeIntermediateTensorInfo(ge),a.disposeIntermediateTensorInfo(me),a.disposeIntermediateTensorInfo(Ee),a.disposeIntermediateTensorInfo(Se),a.disposeIntermediateTensorInfo(Oe),a.disposeIntermediateTensorInfo(Le),a.disposeIntermediateTensorInfo(ze),{real:rt,imag:at}}function T$(e,t,n){let r=new Float32Array(t*2);for(let a=0;a<t;a++){let s=0,i=0;for(let o=0;o<t;o++){let l=R.exponent(a*o,t,n),u=R.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),R.assignToTypedArray(r,s,i,a)}return r}function E$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=wt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=qw(o,!1,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var C$={kernelName:Qh,backendName:"cpu",kernelFunc:E$};function aA(e){let{backend:t,attrs:n}=e,{shape:r,value:a,dtype:s}=n,i=s||v.inferDtype(a),o=v.getArrayFromDType(i,v.sizeFromShape(r));return R$(o,a,i),t.makeTensorInfo(r,i,o)}var F$={kernelName:Iu,backendName:"cpu",kernelFunc:aA};function R$(e,t,n){e.fill(t)}var M$={kernelName:ko,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,a=n,s=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[i,o,l,u]=r.shape,c=a.data.get(r.dataId).values;for(let h=0;h<i;h++){let d=h*l*o*u;for(let p=0;p<o;p++){let f=p*(l*u);for(let m=0;m<l;m++){let A=m*u;for(let g=0;g<u;g++){let y=[i,p,m,g][2],w=Math.round(l-y),b=d+f+A+g,_=c[b];if(w>=0&&w<l){let x=w*u,N=d+f+x+g;_=c[N]}s[b]=_}}}}return{dataId:a.write(s,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},$$=zt((e,t)=>Math.floor(e/t)),D$=Yt(Es,$$,null,"int32"),O$={kernelName:Es,backendName:"cpu",kernelFunc:D$};function z$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=Hw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=dc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Qm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var P$={kernelName:li,backendName:"cpu",kernelFunc:z$};function L$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=jw({inputs:{x:a,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d}});if(i){let A=m;m=dc({inputs:{a:m,b:i},backend:n}),n.disposeIntermediateTensorInfo(A)}if(p){let A=m;m=Qm(n,m,p,o,f),n.disposeIntermediateTensorInfo(A)}return m}var W$={kernelName:ui,backendName:"cpu",kernelFunc:L$};function B$(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=v.sizeFromShape(r.shape),i=a.shape,o=i[i.length-1],[l,u,c,h]=R.prepareAndValidate(r,a);if(u===0)return n.makeTensorInfo(l,r.dtype,[]);let d=Ue([u,c],r.dtype),p=n.data.get(a.dataId).values,f=n.data.get(r.dataId).values;for(let m=0;m<u;m++){let A=[],g=0;for(let y=0;y<o;y++){let w=p[m*o+y];g+=w*h[y],A.push(w)}if(g<0||g>=s/c)throw new Error(`Invalid indices: ${A} does not index into ${r.shape}`);for(let y=0;y<c;y++)d.values[m*c+y]=f[g*c+y]}return n.makeTensorInfo(l,d.dtype,d.values)}var V$={kernelName:No,backendName:"cpu",kernelFunc:B$};function U$(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r;Ie([a,s],"gatherV2");let l=o;o==null&&(l=0);let u=v.sizeFromShape(s.shape),c=v.parseAxisParam(i,a.shape)[0],h=R.segment_util.collectGatherOpShapeInfo(a,s,c,l),d=wt({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),p=wt({inputs:{x:s},backend:n,attrs:{shape:[h.batchSize,u/h.batchSize]}}),f=[h.batchSize,h.outerSize,u/h.batchSize,h.sliceSize],m=n.bufferSync(p),A=n.bufferSync(d),g=Aw(A,m,f);return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.makeTensorInfo(h.outputShape,g.dtype,g.values)}var H$={kernelName:Io,backendName:"cpu",kernelFunc:U$},j$=zt((e,t)=>e>=t?1:0),G$=Yt(Rs,j$,null,"bool"),q$={kernelName:Rs,backendName:"cpu",kernelFunc:G$};function X$(e){let{inputs:t,backend:n}=e,{input:r}=t,a=v.sizeFromShape(r.shape),s=r.shape[r.shape.length-1],i=a/s,o=wt({inputs:{x:r},backend:n,attrs:{shape:[i,s]}}),l=qw(o,!0,n),u=wt({inputs:{x:l},backend:n,attrs:{shape:r.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var K$={kernelName:ed,backendName:"cpu",kernelFunc:X$},Z$=lt(To,e=>Number.isFinite(e)?1:0,"bool"),Y$={kernelName:To,backendName:"cpu",kernelFunc:Z$},J$=lt(Eo,e=>Math.abs(e)===Infinity?1:0,"bool"),Q$={kernelName:Eo,backendName:"cpu",kernelFunc:J$},eD=lt(Co,e=>Number.isNaN(e)?1:0,"bool"),tD={kernelName:Co,backendName:"cpu",kernelFunc:eD},nD=zt((e,t)=>e<=t?1:0),rD=Yt(Fo,nD,null,"bool"),aD={kernelName:Fo,backendName:"cpu",kernelFunc:rD};function sD(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=xw(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var iD={kernelName:nd,backendName:"cpu",kernelFunc:sD},oD=lt(Mo,e=>Math.log1p(e)),lD={kernelName:Mo,backendName:"cpu",kernelFunc:oD},uD=zt((e,t)=>e&&t),cD=Yt($o,uD,null,"bool"),hD={kernelName:$o,backendName:"cpu",kernelFunc:cD},dD=lt(Nu,e=>e?0:1,"bool"),pD={kernelName:Nu,backendName:"cpu",kernelFunc:dD},fD=zt((e,t)=>e||t),mD=Yt(Su,fD,null,"bool"),AD={kernelName:Su,backendName:"cpu",kernelFunc:mD};function gD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r;Ie(a,"LRN");let u=a.shape[3],c=u-1,h=n.data.get(a.dataId).values,d=v.sizeFromShape(a.shape),p=new Float32Array(d);function f(m){let A=m%u,g=m-A+Math.max(0,A-s),y=m-A+Math.min(A+s,c),w=0;for(;g<=y;g++){let b=h[g];w+=b*b}return w}for(let m=0;m<d;m++){let A=f(m),g=h[m]*Math.pow(i+o*A,-l);p[m]=g}return n.makeTensorInfo(a.shape,a.dtype,p)}var yD={kernelName:Tu,backendName:"cpu",kernelFunc:gD};function xD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r;Ie(i,"LRNGrad");let h=v.sizeFromShape(i.shape),d=i.shape[3],p=n.data.get(i.dataId).values,f=n.data.get(a.dataId).values,m=n.data.get(s.dataId).values,A=new Float32Array(h),g=h;for(let y=0;y<g;y++){let w=y%d,b=y-w+Math.max(0,w-o),_=y-w+Math.min(d,w+o+1),x=0;for(let N=b;N<_;N++)x+=Math.pow(f[N],2);x=u*x+l;for(let N=b;N<_;N++){let T=-2*u*c*f[N]*m[y]/x;y===N&&(T+=Math.pow(x,-c)),T*=p[y],A[N]+=T}}return n.makeTensorInfo(i.shape,a.dtype,A)}var wD={kernelName:rd,backendName:"cpu",kernelFunc:xD};function Xw(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=n,l=a.shape,u=l.length,c=v.parseAxisParam(s,l),h=c,d=R.getAxesPermutation(h,u),p=o.data.get(a.dataId).values;if(d!=null){let b=new Array(u);for(let _=0;_<b.length;_++)b[_]=l[d[_]];p=Xm(p,l,a.dtype,d,b),h=R.getInnerMostAxes(h.length,u),l=b}Ie(a,"max"),R.assertAxesAreInnerMostDims("max",h,u);let[f,m]=R.computeOutAndReduceShapes(l,h),A=v.sizeFromShape(m),g=bw(p,A,f,a.dtype),y=o.write(g,f,a.dtype),w=f;return i&&(w=R.expandShapeToKeepDim(f,c)),{dataId:y,shape:w,dtype:a.dtype}}var bD={kernelName:Ds,backendName:"cpu",kernelFunc:Xw};function _D(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ie(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l),h;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))h=qr({inputs:{x:a},backend:n});else{let d=n.data.get(a.dataId).values,p=v.computeStrides(a.shape),f=eA(d,a.shape,a.dtype,p,c,"max");h=n.makeTensorInfo(c.outShape,a.dtype,f.values)}return h}var vD={kernelName:zs,backendName:"cpu",kernelFunc:_D};function kD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r;Ie(a,"maxPool3d");let c=R.computePool3DInfo(a.shape,s,i,1,o,l,u),h=n.data.get(a.dataId).values,d=Uw(h,a.shape,a.dtype,v.computeStrides(a.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var ID={kernelName:Eu,backendName:"cpu",kernelFunc:kD};function ND(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=r;Ie([a,s],"maxPool3DGrad");let c=R.computePool3DInfo(s.shape,i,o,1,l,u),h=n.bufferSync(s),d=dM(h,c),p=c.strideDepth,f=c.strideHeight,m=c.strideWidth,A=c.dilationDepth,g=c.dilationHeight,y=c.dilationWidth,w=c.effectiveFilterDepth,b=c.effectiveFilterHeight,_=c.effectiveFilterWidth,x=w-1-c.padInfo.front,N=_-1-c.padInfo.left,T=b-1-c.padInfo.top,E=Ue(s.shape,"float32"),M=n.bufferSync(a);for(let z=0;z<c.batchSize;++z)for(let B=0;B<c.inChannels;++B)for(let V=0;V<c.inDepth;++V)for(let U=0;U<c.inHeight;++U)for(let H=0;H<c.inWidth;++H){let X=V-x,G=U-T,ee=H-N,Y=0;for(let se=0;se<w;se+=A){let ne=(X+se)/p;if(!(ne<0||ne>=c.outDepth||Math.floor(ne)!==ne))for(let le=0;le<b;le+=g){let Q=(G+le)/f;if(!(Q<0||Q>=c.outHeight||Math.floor(Q)!==Q))for(let pe=0;pe<_;pe+=y){let ue=(ee+pe)/m;if(ue<0||ue>=c.outWidth||Math.floor(ue)!==ue)continue;let ge=w*b*_-1-d.get(z,ne,Q,ue,B),me=se*b*_+le*_+pe,Se=ge===me?1:0;Se!==0&&(Y+=M.get(z,ne,Q,ue,B)*Se)}}}E.set(Y,z,V,U,H,B)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var SD={kernelName:sd,backendName:"cpu",kernelFunc:ND};function TD(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Ie([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=n.data.get(o.dataId).values,f=Ue(d.outShape,o.dtype,Vw(p,o.shape,o.dtype,d).values),m=d.strideHeight,A=d.strideWidth,g=d.dilationHeight,y=d.dilationWidth,w=d.effectiveFilterHeight,b=d.effectiveFilterWidth,_=b-1-d.padInfo.left,x=w-1-d.padInfo.top,N=Ue(o.shape,"float32"),T=n.data.get(a.dataId).values,E=Ue(a.shape,"float32",T);for(let M=0;M<d.batchSize;++M)for(let z=0;z<d.inChannels;++z)for(let B=0;B<d.inHeight;++B)for(let V=0;V<d.inWidth;++V){let U=B-x,H=V-_,X=0;for(let G=0;G<w;G+=g){let ee=(U+G)/m;if(!(ee<0||ee>=d.outHeight||Math.floor(ee)!==ee))for(let Y=0;Y<b;Y+=y){let se=(H+Y)/A;if(se<0||se>=d.outWidth||Math.floor(se)!==se)continue;let ne=w*b-1-f.get(M,ee,se,z),le=G*b+Y,Q=ne===le?1:0;Q!==0&&(X+=E.get(M,ee,se,z)*Q)}}N.set(X,M,B,V,z)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var ED={kernelName:ad,backendName:"cpu",kernelFunc:TD};function CD(e,t,n,r,a){let s=v.computeStrides(t),i=eA(e,t,n,s,a,"max"),o=Vw(e,t,n,a,!0,r);return[i.values,o.values]}var RD={kernelName:id,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;Ie(r,"MaxPoolWithArgmax");let u=l.data.get(r.dataId).values,c=R.computePool2DInfo(r.shape,a,s,[1,1],i),[h,d]=CD(u,r.shape,r.dtype,o,c),p=l.write(h,c.outShape,r.dtype),f=l.write(d,c.outShape,r.dtype);return[{dataId:p,shape:c.outShape,dtype:r.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function fp(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"sum");let o;a.dtype==="bool"?o=qa({inputs:{x:a},backend:n,attrs:{dtype:"int32"}}):o=qr({inputs:{x:a},backend:n});let l=o.shape.length,u=v.parseAxisParam(s,o.shape),c=R.getAxesPermutation(u,l),h=u,d=o;c!=null&&(d=fr({inputs:{x:o},backend:n,attrs:{perm:c}}),h=R.getInnerMostAxes(h.length,l)),R.assertAxesAreInnerMostDims("sum",h,d.shape.length);let[p,f]=R.computeOutAndReduceShapes(d.shape,h),m=R.upcastType(d.dtype,"int32"),A=dp(n,p,m),g=v.sizeFromShape(f),y=n.data.get(A.dataId).values,w=n.data.get(d.dataId).values;for(let b=0;b<y.length;++b){let _=b*g,x=0;for(let N=0;N<g;++N)x+=w[_+N];y[b]=x}if(i){let b=R.expandShapeToKeepDim(A.shape,u),_=A;A=wt({inputs:{x:A},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(_)}return n.disposeIntermediateTensorInfo(o),c!=null&&n.disposeIntermediateTensorInfo(d),A}var FD={kernelName:ti,backendName:"cpu",kernelFunc:fp};function MD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=v.parseAxisParam(s,a.shape),l=R.computeOutAndReduceShapes(a.shape,o)[1],u=v.sizeFromShape(l),c=[],h=n.makeTensorInfo([],"float32",new Float32Array([u]));c.push(h);let d=qa({inputs:{x:a},backend:n,attrs:{dtype:"float32"}});c.push(d);let p=tA({inputs:{a:d,b:h},backend:n});c.push(p);let f=fp({inputs:{x:p},backend:n,attrs:{axis:s,keepDims:i}});return c.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var $D={kernelName:Ps,backendName:"cpu",kernelFunc:MD};function DD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;Ie(a,"min");let o=v.parseAxisParam(s,a.shape),l=o,u=R.getAxesPermutation(l,a.shape.length),c=a;u!=null&&(c=fr({inputs:{x:a},backend:n,attrs:{perm:u}}),l=R.getInnerMostAxes(l.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",l,c.shape.length);let[h,d]=R.computeOutAndReduceShapes(c.shape,l),p=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(h),c.dtype),m=n.data.get(c.dataId).values;for(let g=0;g<f.length;++g){let y=g*p,w=m[y];for(let b=0;b<p;++b){let _=m[y+b];_<w&&(w=_)}f[g]=w}u!=null&&n.disposeIntermediateTensorInfo(c);let A=n.makeTensorInfo(h,c.dtype,f);if(i){let g=R.expandShapeToKeepDim(h,o),y=wt({inputs:{x:A},backend:n,attrs:{shape:g}});return n.disposeIntermediateTensorInfo(A),y}return A}var OD={kernelName:Ls,backendName:"cpu",kernelFunc:DD};function zD(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,mode:i}=r;Ie(a,"mirrorPad");let o=s.map((y,w)=>y[0]+a.shape[w]+y[1]),l=s.map(y=>y[0]),u=s.map((y,w)=>y[0]+a.shape[w]),c=i==="reflect"?0:1,h=n.data.get(a.dataId).values,d=a.shape.length,p=v.computeStrides(a.shape),f=v.sizeFromShape(o),m=o.length,A=v.computeStrides(o),g=v.getTypedArrayFromDType(a.dtype,f);for(let y=0;y<f;y++){let w=v.indexToLoc(y,m,A);for(let _=0;_<m;_++)w[_]<l[_]?w[_]=l[_]*2-w[_]-c:w[_]>=u[_]&&(w[_]=(u[_]-1)*2-w[_]+c);w=w.map((_,x)=>_-l[x]);let b=v.locToIndex(w,d,p);g[y]=h[b]}return{dataId:n.write(g,o,a.dtype),shape:o,dtype:a.dtype}}var PD={kernelName:Cu,backendName:"cpu",kernelFunc:zD},LD=zt((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),WD=Yt(Do,LD),BD={kernelName:Do,backendName:"cpu",kernelFunc:WD},VD=ro(a5());function Kw(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=a.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=v.parseAxisParam([o],a.shape),u=Xw({inputs:{x:a},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=R.expandShapeToKeepDim(u.shape,l),h=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Jm({inputs:{a,b:h},backend:n}),p=$w({inputs:{x:d},backend:n}),f=fp({inputs:{x:p},backend:n,attrs:{axis:l,keepDims:!1}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:c}}),A=tA({inputs:{a:p,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),A}var UD={kernelName:ni,backendName:"cpu",kernelFunc:Kw};function HD(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r;Ie(a,"multinomial");let l=o?a:Kw({inputs:{logits:a},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],h=n.data.get(l.dataId).values,d=[u,s],p=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,A=new Float32Array(c-1);A[0]=h[m];for(let w=1;w<A.length;++w)A[w]=A[w-1]+h[m+w];let g=VD.alea(i.toString()),y=f*s;for(let w=0;w<s;++w){let b=g();p[y+w]=A.length;for(let _=0;_<A.length;_++)if(b<A[_]){p[y+w]=_;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",p)}var jD={kernelName:od,backendName:"cpu",kernelFunc:HD},GD=Gr.nonMaxSuppressionV3Impl;function qD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r;Ie(a,"NonMaxSuppression");let u=n.data.get(a.dataId).values,c=n.data.get(s.dataId).values,{selectedIndices:h}=GD(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var XD={kernelName:Po,backendName:"cpu",kernelFunc:qD},KD=Gr.nonMaxSuppressionV4Impl;function ZD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r;Ie(a,"NonMaxSuppressionPadded");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,{selectedIndices:d,validOutputs:p}=KD(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var YD={kernelName:Lo,backendName:"cpu",kernelFunc:ZD},JD=Gr.nonMaxSuppressionV5Impl;function QD(e){let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r;Ie(a,"NonMaxSuppressionWithScore");let c=n.data.get(a.dataId).values,h=n.data.get(s.dataId).values,d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:g}=JD(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var eO={kernelName:Wo,backendName:"cpu",kernelFunc:QD};function tO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r;Ie(a,"oneHot");let l=v.sizeFromShape(a.shape),u=new Float32Array(l*s);u.fill(o);let c=n.data.get(a.dataId).values;for(let h=0;h<l;++h)c[h]>=0&&c[h]<s&&(u[h*s+c[h]]=i);return n.makeTensorInfo([...a.shape,s],"int32",u)}var nO={kernelName:Vs,backendName:"cpu",kernelFunc:tO};function mp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(r.dtype==="complex64"){let a=vi({inputs:{input:r},backend:n}),s=mp({inputs:{x:a},backend:n}),i=Rl({inputs:{input:r},backend:n}),o=mp({inputs:{x:i},backend:n}),l=Wn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return aA({backend:n,attrs:{shape:r.shape,value:0,dtype:r.dtype}})}var rO={kernelName:al,backendName:"cpu",kernelFunc:mp};function Zw(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(r.dtype==="complex64"){let a=vi({inputs:{input:r},backend:n}),s=Zw({inputs:{x:a},backend:n}),i=Rl({inputs:{input:r},backend:n}),o=mp({inputs:{x:i},backend:n}),l=Wn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return aA({backend:n,attrs:{shape:r.shape,value:1,dtype:r.dtype}})}var aO={kernelName:Bo,backendName:"cpu",kernelFunc:Zw};function Yw(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return pp({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=pp({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=Fl({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var sO={kernelName:Vo,backendName:"cpu",kernelFunc:Yw};function iO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r;Ie(a,"pad");let o=s.map((g,y)=>g[0]+a.shape[y]+g[1]),l=s.map(g=>g[0]),u=n.data.get(a.dataId).values,c=v.sizeFromShape(a.shape),h=a.shape.length,d=v.computeStrides(a.shape),p=v.sizeFromShape(o),f=o.length,m=v.computeStrides(o),A=v.getTypedArrayFromDType(a.dtype,p);i!==0&&A.fill(i);for(let g=0;g<c;g++){let y=v.indexToLoc(g,h,d).map((b,_)=>b+l[_]),w=v.locToIndex(y,f,m);A[w]=u[g]}return{dataId:n.write(A,o,a.dtype),shape:o,dtype:a.dtype}}var Jw={kernelName:Us,backendName:"cpu",kernelFunc:iO},oO=zt((e,t)=>Math.pow(e,t)),lO=Yt(Hs,oO),uO={kernelName:Hs,backendName:"cpu",kernelFunc:lO};function cO(e){let{backend:t,attrs:n}=e,{start:r,stop:a,dtype:s,step:i}=n,o=Km(r,a,i,s);return t.makeTensorInfo([o.length],s,o)}var hO={kernelName:Ru,backendName:"cpu",kernelFunc:cO},dO=lt(Ho,e=>1/e),pO={kernelName:Ho,backendName:"cpu",kernelFunc:dO};function fO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;Ie(a,"resizeBilinear");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(v.sizeFromShape([h,u,c,f])),g=[s&&u>1?d-1:d,s&&c>1?p-1:p],y=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=0,b=g[0]/y[0],_=g[1]/y[1];for(let x=0;x<h;x++)for(let N=0;N<u;N++){let T;i?T=b*(N+.5)-.5:T=b*N;let E=Math.max(0,Math.floor(T)),M=T-E,z=Math.min(d-1,Math.ceil(T)),B=x*l[0]+E*l[1],V=x*l[0]+z*l[1];for(let U=0;U<c;U++){let H;i?H=_*(U+.5)-.5:H=_*U;let X=Math.max(0,Math.floor(H)),G=H-X,ee=Math.min(p-1,Math.ceil(H)),Y=B+X*l[2],se=V+X*l[2],ne=B+ee*l[2],le=V+ee*l[2];for(let Q=0;Q<f;Q++){let pe=m[Y+Q],ue=m[se+Q],ge=m[ne+Q],me=m[le+Q],Se=pe+(ge-pe)*G,Ee=ue+(me-ue)*G,Oe=Se+(Ee-Se)*M;A[w++]=Oe}}}return n.makeTensorInfo([h,u,c,f],"float32",A)}var mO={kernelName:qs,backendName:"cpu",kernelFunc:fO};function AO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;Ie([s,a],"resizeBilinearGrad");let o=v.computeStrides(a.shape),[l,u,c,h]=a.shape,[,d,p]=s.shape,f=new Float32Array(l*u*c*h),m=[i&&d>1?u-1:u,i&&p>1?c-1:c],A=[i&&d>1?d-1:d,i&&p>1?p-1:p],g=m[0]/A[0],y=m[1]/A[1],w=n.data.get(s.dataId).values,b=0;for(let _=0;_<l;_++){let x=_*o[0];for(let N=0;N<d;N++){let T=N*g,E=Math.floor(T),M=Math.min(Math.ceil(T),u-1),z=x+E*o[1],B=x+M*o[1],V=T-E,U=1-V;for(let H=0;H<p;H++){let X=H*y,G=Math.floor(X),ee=Math.min(Math.ceil(X),c-1),Y=X-G,se=1-Y,ne=z+G*o[2],le=z+ee*o[2],Q=B+G*o[2],pe=B+ee*o[2],ue=U*se,ge=U*Y,me=V*se,Se=V*Y;for(let Ee=0;Ee<h;Ee++){let Oe=w[b++];f[ne+Ee]+=Oe*ue,f[le+Ee]+=Oe*ge,f[Q+Ee]+=Oe*me,f[pe+Ee]+=Oe*Se}}}}return n.makeTensorInfo([l,c,u,h],"float32",f)}var gO={kernelName:cd,backendName:"cpu",kernelFunc:AO};function yO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r;Ie(a,"resizeNearestNeighbor");let l=v.computeStrides(a.shape),[u,c]=o,[h,d,p,f]=a.shape,m=n.data.get(a.dataId).values,A=new Float32Array(h*u*c*f),g=[s&&u>1?d-1:d,s&&c>1?p-1:p],y=[s&&u>1?u-1:u,s&&c>1?c-1:c],w=g[0]/y[0],b=g[1]/y[1],_=0;for(let x=0;x<h;x++){let N=x*l[0];for(let T=0;T<u;T++){let E=i?w*(T+.5):w*T,M=Math.min(d-1,s?Math.round(E):Math.floor(E));i&&(M=Math.max(0,M));let z=N+M*l[1];for(let B=0;B<c;B++){let V=i?b*(B+.5):b*B,U=Math.min(p-1,s?Math.round(V):Math.floor(V));i&&(U=Math.max(0,U));let H=z+U*l[2];for(let X=0;X<f;X++){let G=m[H+X];A[_++]=G}}}}return n.makeTensorInfo([h,u,c,f],a.dtype,A)}var xO={kernelName:Fu,backendName:"cpu",kernelFunc:yO};function wO(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r;Ie([s,a],"resizeNearestNeighborGrad");let o=v.computeStrides(a.shape),l=v.computeStrides(s.shape),[u,c,h,d]=a.shape,[,p,f]=s.shape,m=new Float32Array(u*c*h*d),A=n.data.get(s.dataId).values,g=[i&&p>1?c-1:c,i&&f>1?h-1:h],y=[i&&p>1?p-1:p,i&&f>1?f-1:f],w=g[0]/y[0],b=g[1]/y[1],_=1/w,x=1/b,N=Math.ceil(_)*2+2,T=Math.ceil(x)*2+2;for(let E=0;E<u;E++){let M=E*o[0];for(let z=0;z<c;z++){let B=M+z*o[1],V=Math.floor(z*_),U=Math.floor(V-N/2);for(let H=0;H<h;H++){let X=B+H*o[2],G=Math.floor(H*x),ee=Math.floor(G-T/2);for(let Y=0;Y<d;Y++){let se=0;for(let ne=0;ne<N;ne++){let le=ne+U;if(le<0||le>=p)continue;let Q=M+le*l[1],pe=le*w,ue=Math.min(c-1,i?Math.round(pe):Math.floor(pe));if(z===ue)for(let ge=0;ge<T;ge++){let me=ge+ee;if(me<0||me>=f)continue;let Se=Q+me*l[2],Ee=me*b,Oe=Math.min(h-1,i?Math.round(Ee):Math.floor(Ee));H===Oe&&(se+=A[Se+Y])}}m[X+Y]=se}}}}return n.makeTensorInfo(a.shape,a.dtype,m)}var bO={kernelName:ud,backendName:"cpu",kernelFunc:wO};function _O(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r;Ie(a,"reverse");let i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return qr({inputs:{x:a},backend:n});let l=new Bt(a.shape,a.dtype),u=n.bufferSync(a);for(let c=0;c<l.size;c++){let h=l.indexToLoc(c),d=h.slice();o.forEach(p=>d[p]=a.shape[p]-1-d[p]),l.set(u.get(...d),...h)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var vO={kernelName:Ks,backendName:"cpu",kernelFunc:_O},kO={kernelName:sl,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(r.shape)),[u,c,h,d]=r.shape,[p,f]=R.getImageCenter(i,c,h),m=255,A=Math.sin(a),g=Math.cos(a),y=o.data.get(r.dataId).values;for(let w=0;w<u;w++){let b=w*h*c*d;for(let _=0;_<c;_++){let x=_*(h*d);for(let N=0;N<h;N++){let T=N*d;for(let E=0;E<d;E++){let M=[u,_,N,E],z=M[2],B=M[1],V=(z-p)*g-(B-f)*A,U=(z-p)*A+(B-f)*g;V=Math.round(V+p),U=Math.round(U+f);let H=s;if(typeof s!="number"&&(E===3?H=m:H=s[E]),V>=0&&V<h&&U>=0&&U<c){let G=U*(h*d),ee=V*d,Y=b+G+ee+E;H=y[Y]}let X=b+x+T+E;l[X]=H}}}}return{dataId:o.write(l,r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},IO=lt(Zs,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),NO={kernelName:Zs,backendName:"cpu",kernelFunc:IO};function Qw(e,t,n,r,a,s,i,o,l,u){let c=[r/a,a],h=e.values,d=t.values;if(r===0)return Ue(n,t.dtype);let p=Ue(c,t.dtype);p.values.fill(l);for(let f=0;f<s;f++){let m=[],A=0;for(let g=0;g<i;g++){let y=h[f*i+g];m.push(y),A+=y*o[g]}if(A<0||A>=r/a)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let g=0;g<a;g++)u?p.values[A*a+g]+=d[f*a+g]:p.values[A*a+g]=t.rank===0?d[0]:d[f*a+g]}return p}function SO(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=!0,p=n.bufferSync(a),f=n.bufferSync(s),m=Qw(p,f,i,h,u,l,o,c,0,d);return n.makeTensorInfo(i,m.dtype,m.values)}var TO={kernelName:Go,backendName:"cpu",kernelFunc:SO};function EO(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t;Ie([r,a,s],"select");let i=r.shape.length,o=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=n.data.get(s.dataId).values,c=cr(a.dtype,s.dtype),h=v.makeZerosTypedArray(v.sizeFromShape(a.shape),c),d=0,p=i===0||i>1||a.shape.length===1?1:v.sizeFromShape(a.shape.slice(1));for(let f=0;f<o.length;f++)for(let m=0;m<p;m++)o[f]===1?h[d++]=l[f]:h[d++]=u[f];return n.makeTensorInfo(a.shape,c,h)}var CO={kernelName:qo,backendName:"cpu",kernelFunc:EO},RO=R.SELU_SCALEALPHA,FO=R.SELU_SCALE,MO=lt(Xo,e=>e>=0?FO*e:RO*(Math.exp(e)-1)),$O={kernelName:Xo,backendName:"cpu",kernelFunc:MO},DO=lt(Qs,e=>1/(1+Math.exp(-e))),OO={kernelName:Qs,backendName:"cpu",kernelFunc:DO},zO=lt(Yo,e=>e<0?-1:e>0?1:0),PO={kernelName:Yo,backendName:"cpu",kernelFunc:zO},LO=lt(Js,e=>Math.sin(e)),WO={kernelName:Js,backendName:"cpu",kernelFunc:LO},BO=lt(Zo,e=>Math.sinh(e)),VO={kernelName:Zo,backendName:"cpu",kernelFunc:BO},UO=11920928955078125e-23,eb=Math.log(UO)+2,HO=lt(Jo,e=>{let t=e>-eb,n=e<eb,r=Math.exp(e),a;return n?a=r:t?a=e:a=Math.log(1+r),a}),jO={kernelName:Jo,backendName:"cpu",kernelFunc:HO};function GO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;Ie([a],"spaceToBatchND");let o=v.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let A=1+s.length;A<a.shape.length;++A)l.push([0,0]);let u=Jw.kernelFunc({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),c=R.getReshaped(u.shape,s,o,!1),h=R.getPermuted(c.length,s.length,!1),d=R.getReshapedPermuted(u.shape,s,o,!1),p=wt({inputs:{x:u},backend:n,attrs:{shape:c}}),f=fr({inputs:{x:p},backend:n,attrs:{perm:h}}),m=wt({inputs:{x:f},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),m}var qO={kernelName:Mu,backendName:"cpu",kernelFunc:GO};function XO(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=R.calculateShapes(s,a,o),p=!1,f=n.bufferSync(a),m=n.bufferSync(s),A=n.data.get(i.dataId).values[0],g=Qw(f,m,o,d,c,u,l,h,A,p);return n.makeTensorInfo(o,g.dtype,g.values)}var KO={kernelName:hd,backendName:"cpu",kernelFunc:XO};function ZO(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=ki({inputs:{x:a},backend:n,attrs:{begin:u,size:d}});return u[o]+=h,p})}var YO={kernelName:Qo,backendName:"cpu",kernelFunc:ZO},JO=lt(ei,e=>Math.sqrt(e)),QO={kernelName:ei,backendName:"cpu",kernelFunc:JO},ez={kernelName:$u,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,r=t;Ie(n,"square");let a=r.data.get(n.dataId).values,s=new Float32Array(a.length);for(let i=0;i<a.length;++i){let o=a[i];s[i]=o*o}return{dataId:r.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},tz=lt(Da,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),nz={kernelName:Da,backendName:"cpu",kernelFunc:tz};function rz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r;Ie(a,"stridedSlice");let{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=fn.sliceInfo(a.shape,s,i,o,l,u,c,h,d),w=wt({inputs:{x:a},backend:n,attrs:{shape:g}}),b;if(p){let x=ki({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});b=wt({inputs:{x},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(x)}else if(y.some(x=>x===0))b=n.makeTensorInfo(y,a.dtype,[]);else{let x=n.bufferSync(w),N=Ew(y,x,m,f);b=n.makeTensorInfo(N.shape,N.dtype,N.values)}let _=wt({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),_}var az={kernelName:el,backendName:"cpu",kernelFunc:rz},sz=lt(tl,e=>Math.tan(e)),iz={kernelName:tl,backendName:"cpu",kernelFunc:sz},oz=lt(si,e=>Math.tanh(e)),lz={kernelName:si,backendName:"cpu",kernelFunc:oz};function uz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;Ie(a,"tile");let i=Rw(n.bufferSync(a),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var cz={kernelName:$a,backendName:"cpu",kernelFunc:uz};function hz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r;Ie(a,"topk");let o=n.data.get(a.dataId).values,[l,u]=Fw(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var dz={kernelName:nl,backendName:"cpu",kernelFunc:hz};function mz(e){let{inputs:t,attrs:n,backend:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[c,h,d,p]=a.shape,[f,m]=u!=null?u:[h,d],A=[c,f,m,p],g=v.computeStrides(a.shape),y=g[0],w=g[1],b=g[2],_=v.getTypedArrayFromDType(a.dtype,v.sizeFromShape(A));_.fill(l);let x=r.data.get(a.dataId).values,N=r.data.get(s.dataId).values;for(let T=0;T<c;++T){let E=s.shape[0]===1?N:N.subarray(T*8,T*8+8);for(let M=0;M<f;++M)for(let z=0;z<m;++z)for(let B=0;B<p;++B){let V,U=E[6]*z+E[7]*M+1;if(U===0)continue;let H=(E[0]*z+E[1]*M+E[2])/U,X=(E[3]*z+E[4]*M+E[5])/U,G=tb(H,d,o),ee=tb(X,h,o);switch(i){case"nearest":V=pz(x,h,d,y,w,b,T,ee,G,B,l);break;case"bilinear":V=fz(x,h,d,y,w,b,T,ee,G,B,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let Y=T*y+M*w+z*b+B;_[Y]=V}return r.makeTensorInfo(A,a.dtype,_)}return{dataId:r.write(_,A,a.dtype),shape:a.shape,dtype:a.dtype}}var Az={kernelName:dd,backendName:"cpu",kernelFunc:mz};function tb(e,t,n){switch(n){case"reflect":return gz(e,t);case"wrap":return yz(e,t);case"nearest":return wz(e,t);case"constant":default:return xz(e,t)}}function gz(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=2*t;n<r&&(n=r*Math.trunc(-n/r)+n),n=n<-t?n+r:-n-1}else if(n>t-1)if(t<=1)n=0;else{let r=2*t;n-=r*Math.trunc(n/r),n>=t&&(n=r-n-1)}return v.clamp(0,n,t-1)}function yz(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let r=t-1;n+=t*(Math.trunc(-n/r)+1)}else if(n>t-1)if(t<=1)n=0;else{let r=t-1;n-=t*Math.trunc(n/r)}return v.clamp(0,n,t-1)}function xz(e,t){return e}function wz(e,t){return v.clamp(0,e,t-1)}function pc(e,t,n,r,a,s,i,o,l,u,c){let h=i*r+o*a+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[h]:c}function pz(e,t,n,r,a,s,i,o,l,u,c){let h=Math.round(o),d=Math.round(l);return pc(e,t,n,r,a,s,i,h,d,u,c)}function fz(e,t,n,r,a,s,i,o,l,u,c){let h=Math.floor(o),d=Math.floor(l),p=h+1,f=d+1,m=(f-l)*pc(e,t,n,r,a,s,i,h,d,u,c)+(l-d)*pc(e,t,n,r,a,s,i,h,f,u,c),A=(f-l)*pc(e,t,n,r,a,s,i,p,d,u,c)+(l-d)*pc(e,t,n,r,a,s,i,p,f,u,c);return(p-o)*m+(o-h)*A}function bz(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Ie(s,"unique");let i=r.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=Mw(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var _z={kernelName:pd,backendName:"cpu",kernelFunc:bz};function vz(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape.length,o=a.shape[s],l=new Array(i-1),u=0;for(let p=0;p<i;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i).fill(0),h=a.shape.slice();h[s]=1;let d=new Array(o);for(let p=0;p<d.length;p++){c[s]=p;let f=ki({inputs:{x:a},backend:n,attrs:{begin:c,size:h}});d[p]=wt({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var kz={kernelName:rl,backendName:"cpu",kernelFunc:vz};function Iz(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r;Ie(a,"unsortedSegmentSum");let o=a.shape.length,l=s.shape.length,u=[],c=[],h=o-l,d=s;for(let f=0;f<h;++f){let m=pp({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<i;++f){let m=v.createScalarValue(f,"int32"),A=n.makeTensorInfo([],"int32",m),g=Gw({inputs:{a:A,b:d},backend:n}),y=qa({inputs:{x:g},backend:n,attrs:{dtype:"float32"}}),w=Ym({inputs:{a:y,b:a},backend:n}),b=fp({inputs:{x:w},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(A),c.push(g),c.push(y),c.push(w),c.push(b)}let p=Yw({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Nz={kernelName:Du,backendName:"cpu",kernelFunc:Iz},Sz=[WF,jR,VF,HF,YR,GF,XF,ZF,JF,eM,nM,aM,iM,uM,hM,fM,AM,yM,wM,PF,_M,kM,NM,KR,QR,TM,GR,CM,FM,DM,zM,MM,BM,UM,LM,jM,qM,KM,YM,QM,t$,n$,a$,i$,l$,u$,h$,c$,nA,RF,p$,m$,v$,eF,k$,nF,C$,F$,M$,aF,O$,P$,W$,V$,H$,iF,q$,qR,K$,RM,Y$,Q$,tD,FF,lF,aD,iD,cF,lD,hD,pD,AD,yD,wD,dF,vD,ID,SD,ED,RD,bD,$D,OD,fF,PD,BD,jD,AF,yF,XD,YD,eO,wF,nO,aO,sO,Jw,uO,$F,vF,hO,XR,pO,DF,OF,zF,mO,gO,xO,bO,vO,kO,NO,IF,TO,CO,$O,OO,PO,WO,VO,NF,UD,jO,qO,KO,YO,QO,ez,TF,nz,az,CF,FD,iz,lz,cz,dz,bF,Az,_z,kz,Nz,rO];for(let e of Sz)ci(e);var nb={};We(nb,{assertNotComplex:()=>Ml,bindCanvasToFramebuffer:()=>Cz,bindColorTextureToFramebuffer:()=>gp,bindTextureToProgramUniformSampler:()=>gb,bindTextureUnit:()=>fb,bindVertexBufferToProgramAttribute:()=>sA,callAndCheck:()=>ve,canBeRepresented:()=>rb,createFragmentShader:()=>ib,createFramebuffer:()=>pb,createProgram:()=>ob,createStaticIndexBuffer:()=>cb,createStaticVertexBuffer:()=>ub,createTexture:()=>hb,createVertexShader:()=>sb,getBatchDim:()=>Ii,getExtensionOrThrow:()=>fc,getFramebufferErrorMessage:()=>yb,getMaxTexturesInShader:()=>bb,getNumChannels:()=>Tz,getProgramUniformLocation:()=>Ab,getProgramUniformLocationOrThrow:()=>mb,getRowsCols:()=>Ni,getShapeAs3D:()=>yp,getTextureShapeFromLogicalShape:()=>xb,getWebGLDisjointQueryTimerVersion:()=>_b,getWebGLErrorMessage:()=>ab,getWebGLMaxTextureSize:()=>wb,hasExtension:()=>tr,isCapableOfRenderingToFloatTexture:()=>vb,isDownloadFloatTextureEnabled:()=>kb,isReshapeFree:()=>Ac,isWebGLFenceEnabled:()=>Ib,isWebGLVersionEnabled:()=>oA,linkProgram:()=>lb,resetMaxTextureSize:()=>Rz,resetMaxTexturesInShader:()=>Fz,unbindColorTextureFromFramebuffer:()=>iA,unbindTextureUnit:()=>Ez,validateFramebuffer:()=>mc,validateProgram:()=>Ap,validateTextureSize:()=>db});var Si={},lA={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function xp(e,t){Si[e]=t}function Xr(e){if(!(e in Si)){let n=Mz(e);if(n!==null)Si[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Si[e];return t.isContextLost()?(delete Si[e],Xr(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Si[e])}function $z(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Mz(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=$z(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Si[e]},!1),e===1?t.getContext("webgl",lA)||t.getContext("experimental-webgl",lA):t.getContext("webgl2",lA)}var gc;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(gc||(gc={}));var nr;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(nr||(nr={}));var sn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(sn||(sn={}));function yc(e,t){return[t,e]}function Dz(e,t){return e*t}function xc(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function $l(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Oz(e,t){let[n,r]=$l(e,t);return n*r*4}function uA(e,t){let n=e,r,a,s,i,o,l,u,c,h,d;return J().getNumber("WEBGL_VERSION")===2?(r=n.R32F,a=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,c=1,h=n.HALF_FLOAT,d=n.FLOAT):(r=e.RGBA,a=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,c=4,h=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT),l=e.RGBA,{internalFormatFloat:r,internalFormatHalfFloat:a,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:h,textureTypeFloat:d}}function ve(e,t){let n=t();return J().getBool("DEBUG")&&zz(e),n}function zz(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+ab(e,t))}var Pz=596e-10,Lz=65504;function rb(e){return!!(J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||Pz<Math.abs(e)&&Math.abs(e)<Lz)}function ab(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function fc(e,t){return ma(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function sb(e,t){let n=ma(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function ib(e,t){let n=ma(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(ve(e,()=>e.shaderSource(n,t)),ve(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw Wz(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Bz=/ERROR: [0-9]+:([0-9]+):/g;function Wz(e,t){let n=Bz.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let r=+n[1],a=e.split(`
|
|
`),s=a.length.toString().length+2,i=a.map((h,d)=>v.rightPad((d+1).toString(),s)+h),o=0;for(let h=0;h<i.length;h++)o=Math.max(i[h].length,o);let l=i.slice(0,r-1),u=i.slice(r-1,r),c=i.slice(r);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${v.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
|
|
`))}function ob(e){return ma(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function lb(e,t){if(ve(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function Ap(e,t){if(ve(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function ub(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function cb(e,t){let n=ma(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),ve(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Tz(){return J().getNumber("WEBGL_VERSION")===2?1:4}function hb(e){return ma(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function db(e,t){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let r=`[${e}x${t}]`;throw new Error("Requested texture size "+r+" is invalid.")}if(e>n||t>n){let r=`[${e}x${t}]`,a=`[${n}x${n}]`;throw new Error("Requested texture size "+r+" greater than WebGL maximum on this browser / GPU "+a+".")}}function pb(e){return ma(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function sA(e,t,n,r,a,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,r)),ve(e,()=>e.vertexAttribPointer(o,a,e.FLOAT,!1,s,i)),ve(e,()=>e.enableVertexAttribArray(o)),!0)}function fb(e,t,n){Nb(e,n),ve(e,()=>e.activeTexture(e.TEXTURE0+n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Ez(e,t){Nb(e,t),ve(e,()=>e.activeTexture(e.TEXTURE0+t)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function mb(e,t,n){return ma(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Ab(e,t,n){return e.getUniformLocation(t,n)}function gb(e,t,n,r){ve(e,()=>fb(e,t,r)),ve(e,()=>e.uniform1i(n,r))}function Cz(e){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),ve(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function gp(e,t,n){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function iA(e,t){ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),ve(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function mc(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+yb(e,t))}function yb(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function ma(e,t,n){let r=ve(e,()=>t());if(r==null)throw new Error(n);return r}function Nb(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,r=t+e.TEXTURE0;if(r<e.TEXTURE0||r>n){let a=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${a}.`)}}function Ii(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function Ni(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function yp(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[Ii(e),...Ni(e)]),t}function xb(e,t=!1){let n=J().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((a,s)=>s>=e.length-2?v.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let r=v.sizeFromShape(e);if(e.length<=1&&r<=n)return[1,r];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let a=Ii(e),s=2,i=2;return e.length&&([s,i]=Ni(e)),r=a*(s/2)*(i/2),v.sizeToSquarishShape(r).map(o=>o*2)}return v.sizeToSquarishShape(r)}function wp(e){return e%2==0}function Ac(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],r=t.slice(-1)[0];if(n===r||wp(n)&&wp(r)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&wp(e[0])&&wp(t[0])}var bp,_p;function wb(e){if(bp==null){let t=Xr(e);bp=t.getParameter(t.MAX_TEXTURE_SIZE)}return bp}function Rz(){bp=null}function Fz(){_p=null}function bb(e){if(_p==null){let t=Xr(e);_p=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,_p)}function _b(e){if(e===0)return 0;let t,n=Xr(e);return tr(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:tr(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function tr(e,t){return e.getExtension(t)!=null}function oA(e){try{if(Xr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function vb(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!tr(t,"OES_texture_float"))return!1}else if(!tr(t,"EXT_color_buffer_float"))return!1;return cA(t)}function kb(e){if(e===0)return!1;let t=Xr(e);if(e===1){if(!tr(t,"OES_texture_float")||!tr(t,"WEBGL_color_buffer_float"))return!1}else{if(tr(t,"EXT_color_buffer_float"))return cA(t);let n="EXT_color_buffer_half_float";if(tr(t,n)){let r=t.getExtension(n);return Vz(t,r)}return!1}return cA(t)}function cA(e){let t=uA(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,r,a,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function Vz(e,t){let n=uA(e,t),r=e.createTexture();e.bindTexture(e.TEXTURE_2D,r);let a=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,a,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,r,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(r),e.deleteFramebuffer(i),o}function Ib(e){return e!==2?!1:Xr(e).fenceSync!=null}function Ml(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var De=J();De.registerFlag("HAS_WEBGL",()=>De.getNumber("WEBGL_VERSION")>0);De.registerFlag("WEBGL_VERSION",()=>oA(2)?2:oA(1)?1:0);De.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);De.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>De.get("WEBGL_VERSION")===2);De.registerFlag("WEBGL_CPU_FORWARD",()=>!0);De.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);De.registerFlag("WEBGL_PACK",()=>De.getBool("HAS_WEBGL"));De.registerFlag("WEBGL_PACK_NORMALIZATION",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_CLIP",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>!1);De.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_PACK_REDUCE",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_LAZILY_UNPACK",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_CONV_IM2COL",()=>De.getBool("WEBGL_PACK"));De.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>wb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>bb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=De.getNumber("WEBGL_VERSION");return e===0?0:_b(e)});De.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>De.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!Hu.isMobile());De.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>vb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>De.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:De.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));De.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>kb(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Ib(De.getNumber("WEBGL_VERSION")));De.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>De.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);De.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});De.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>Hu.isMobile()&&De.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});function yn(){let e,t,n,r,a,s,i,o,l,u;return J().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",r="in",a="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",r="varying",a="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:r,texture2D:a,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Ti(e,t,n="index"){let r=v.computeStrides(t);return r.map((a,s)=>{let i=`int ${e[s]} = ${n} / ${a}`,o=s===r.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${a}`:`index -= ${e[s]} * ${a}`;return`${i}; ${o};`}).join("")}function hA(e){let t=v.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Sb=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,Uz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=gc.DENSE;let t=xc(e),n=yn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},Hz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=gc.DENSE;let t=xc(e),n=yn();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},jz=class{constructor(e){this.variableNames=["A"],this.outTexUsage=nr.DOWNLOAD;let t=yn();this.outputShape=e,this.userCode=`
|
|
${Sb}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},Gz=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=nr.DOWNLOAD;let t=yn();this.outputShape=e,this.userCode=`
|
|
${Sb}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},qz=class{constructor(e,t,n=!1){this.variableNames=["A"];let r=yn(),[a,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${hA(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
vec4 values = ${r.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${r.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},Xz=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let r=yn(),[a,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let c=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${a}.0);
|
|
values = ${r.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${c}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${c}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${c}] = values[2];
|
|
} else {
|
|
result[${c}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${hA(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${r.output} = ${o};
|
|
}
|
|
`}},Tb={};We(Tb,{bindVertexProgramAttributeStreams:()=>zb,createBufferFromOutputTexture:()=>Wb,createFloat16MatrixTexture:()=>Mb,createFloat16PackedMatrixTexture:()=>Ob,createFloat32MatrixTexture:()=>Fb,createIndexBuffer:()=>Rb,createPackedMatrixTexture:()=>Db,createUnsignedBytesMatrixTexture:()=>$b,createVertexBuffer:()=>Cb,createVertexShader:()=>Eb,downloadByteEncodedFloatMatrixFromOutputTexture:()=>Vb,downloadFloat32MatrixFromBuffer:()=>Bb,downloadMatrixFromPackedOutputTexture:()=>Hb,downloadPackedMatrixFromBuffer:()=>Ub,getInternalFormatForFloat16MatrixTexture:()=>pA,getInternalFormatForFloat16PackedMatrixTexture:()=>AA,getInternalFormatForFloat32MatrixTexture:()=>dA,getInternalFormatForPackedMatrixTexture:()=>mA,getInternalFormatForUnsignedBytesMatrixTexture:()=>fA,uploadDenseMatrixToTexture:()=>Pb,uploadPixelDataToTexture:()=>Lb});function Eb(e){let t=yn(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return sb(e,n)}function Cb(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return ub(e,t)}function Rb(e){let t=new Uint16Array([0,1,2,2,1,3]);return cb(e,t)}function wc(e,t,n,r,a,s){db(t,n);let i=hb(e),o=e.TEXTURE_2D;return ve(e,()=>e.bindTexture(o,i)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),ve(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),ve(e,()=>e.texImage2D(o,0,r,t,n,0,a,s,null)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function dA(e){return e.internalFormatFloat}function Fb(e,t,n,r){let[a,s]=yc(t,n);return wc(e,a,s,dA(r),r.textureFormatFloat,e.FLOAT)}function pA(e){return e.internalFormatHalfFloat}function Mb(e,t,n,r){let[a,s]=yc(t,n);return wc(e,a,s,pA(r),r.textureFormatFloat,r.textureTypeHalfFloat)}function fA(e){return e.downloadTextureFormat}function $b(e,t,n,r){let[a,s]=yc(t,n);return wc(e,a,s,fA(r),e.RGBA,e.UNSIGNED_BYTE)}function mA(e){return e.internalFormatPackedFloat}function Db(e,t,n,r){let[a,s]=$l(t,n);return wc(e,a,s,mA(r),e.RGBA,e.FLOAT)}function AA(e){return e.internalFormatPackedHalfFloat}function Ob(e,t,n,r){let[a,s]=$l(t,n);return wc(e,a,s,AA(r),e.RGBA,r.textureTypeHalfFloat)}function zb(e,t,n){let r=0,a=3*4,s=3*4+2*4;return ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),sA(e,t,"clipSpacePos",n,3,s,r)&&sA(e,t,"uv",n,2,s,a)}function Pb(e,t,n,r,a,s){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;a instanceof Uint8Array?(i=new Uint8Array(n*r*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*r*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(a),ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,r,0,e.RGBA,o,i)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Lb(e,t,n){ve(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):ve(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),ve(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Wb(e,t,n,r){let a=e.createBuffer();ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,a));let s=4*4*t*n;return ve(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),ve(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),a}function Bb(e,t,n){let r=e,a=new Float32Array(n);return r.bindBuffer(r.PIXEL_PACK_BUFFER,t),r.getBufferSubData(r.PIXEL_PACK_BUFFER,0,a),r.bindBuffer(r.PIXEL_PACK_BUFFER,null),a}function Vb(e,t,n,r){let[a,s]=yc(t,n),i=4,o=new Uint8Array(Dz(t*n,i));return ve(e,()=>e.readPixels(0,0,a,s,r.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function Ub(e,t,n,r,a,s,i,o){let l=e,u=new Float32Array(Oz(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function Hb(e,t,n){let r=new Float32Array(t*n*4);return ve(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,r)),r}var vp=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=J().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,xp(t,e)):this.gl=Xr(t);let n="WEBGL_color_buffer_float",r="EXT_color_buffer_half_float";if(J().getNumber("WEBGL_VERSION")===1){let a="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=fc(this.gl,a),tr(this.gl,s))this.textureHalfFloatExtension=fc(this.gl,s);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),tr(this.gl,r))this.colorBufferHalfFloatExtension=fc(this.gl,r);else if(J().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",tr(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(tr(this.gl,r))this.colorBufferHalfFloatExtension=this.gl.getExtension(r);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=Cb(this.gl),this.indexBuffer=Rb(this.gl),this.framebuffer=pb(this.gl),this.textureConfig=uA(this.gl,this.textureHalfFloatExtension)}get debug(){return J().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;ve(e,()=>e.finish()),ve(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),ve(e,()=>e.deleteFramebuffer(this.framebuffer)),ve(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),ve(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),ve(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Fb(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Mb(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),$b(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Lb(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,r){this.throwIfDisposed(),Pb(this.gl,e,t,n,r,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Ob(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Db(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(iA(this.gl,this.framebuffer),this.outputTexture=null),ve(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Vb(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,r,a,s){return Ub(this.gl,e,t,n,r,a,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return Bb(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let r=Wb(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),r}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(J().getBool("WEBGL_FENCE_API_ENABLED")){let r=e,a=r.fenceSync(r.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=r.clientWaitSync(a,0,0);return s===r.ALREADY_SIGNALED||s===r.CONDITION_SATISFIED},t=a}else J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>Hb(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=ib(t,e),r=Eb(t),a=ob(t);return ve(t,()=>t.attachShader(a,r)),ve(t,()=>t.attachShader(a,n)),lb(t,a),this.debug&&Ap(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=zb(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&ve(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&Ap(this.gl,this.program),ve(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?mb(this.gl,e,t):Ab(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),ve(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),gb(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[r,a]=$l(t,n);this.setOutputMatrixTextureDriver(e,r,a)}setOutputMatrixWriteRegion(e,t,n,r){this.setOutputMatrixWriteRegionDriver(n,e,r,t)}setOutputPackedMatrixWriteRegion(e,t,n,r){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&Ap(this.gl,this.program),mc(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),ve(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),ve(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=fc(this.gl,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.createQuery();return n.beginQuery(r.TIME_ELAPSED_EXT,a),a}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,r=this.getQueryTimerExtensionWebGL2(),a=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(r.GPU_DISJOINT_EXT)),a&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),r=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),r&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Kz(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),gp(this.gl,e,this.framebuffer),this.debug&&mc(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(gp(this.gl,this.outputTexture,this.framebuffer),this.debug&&mc(this.gl)):iA(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let r=this.gl;gp(r,e,this.framebuffer),this.debug&&mc(r),this.outputTexture=e,ve(r,()=>r.viewport(0,0,t,n)),ve(r,()=>r.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,r){this.throwIfDisposed(),ve(this.gl,()=>this.gl.scissor(e,t,n,r))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Kz(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:jb}=R;function aP(e,t,n,r){let a=[];e.forEach(p=>{let f=v.sizeFromShape(p.shapeInfo.logicalShape);p.shapeInfo.isUniform?a.push(`uniform float ${p.name}${f>1?`[${f}]`:""};`):(a.push(`uniform sampler2D ${p.name};`),a.push(`uniform int offset${p.name};`))});let s=a.join(`
|
|
`),i=e.map(p=>Zz(p,t,r)).join(`
|
|
`),o=t.texShape,l=yn(),u=Qz(l),c,h,d=nP(l);return t.isPacked?(c=Yz(t.logicalShape,o),h=tP(l)):(c=Jz(t.logicalShape,o),h=eP(l)),r&&(d+=rP),[d,u,h,s,c,i,n].join(`
|
|
`)}function Dl(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return sP(e);case 1:return iP(e);case 2:return oP(e);case 3:return lP(e);case 4:return uP(e);case 5:return cP(e);case 6:return hP(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function Gb(e){switch(e.shapeInfo.logicalShape.length){case 0:return dP(e);case 1:return pP(e);case 2:return fP(e);case 3:return mP(e);default:return AP(e)}}function Zz(e,t,n=!1){let r="";n?r+=Gb(e):r+=Dl(e);let a=e.shapeInfo.logicalShape,s=t.logicalShape;return a.length<=s.length&&(n?r+=gP(e,t):r+=yP(e,t)),r}function Yz(e,t){switch(e.length){case 0:return qb();case 1:return xP(e,t);case 2:return _P(e,t);case 3:return wP(e,t);default:return bP(e,t)}}function Jz(e,t){switch(e.length){case 0:return qb();case 1:return vP(e,t);case 2:return TP(e,t);case 3:return kP(e,t);case 4:return IP(e,t);case 5:return NP(e,t);case 6:return SP(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Qz(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function eP(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function tP(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function nP(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${EP}
|
|
${CP}
|
|
${RP}
|
|
`}var EP=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,CP=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,RP=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,rP=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function qb(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function xP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function vP(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function wP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function kP(e,t){let n=Ti(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function bP(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),s=a,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${a};
|
|
index -= b * ${a};
|
|
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function IP(e,t){let n=Ti(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function NP(e,t){let n=Ti(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function SP(e,t){let n=Ti(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function _P(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let r=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${r});
|
|
int c = imod(index, ${r}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function TP(e,t){return v.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Ei(e){return`offset${e}`}function dP(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=yn();return`
|
|
vec4 ${n}() {
|
|
return ${r.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function sP(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Ei(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function pP(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),r=e.shapeInfo.texShape,a=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],s=yn();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${a[0]}, ${a[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function iP(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Ol(e)}
|
|
}
|
|
`;let r=e.shapeInfo.texShape,a=r[0],s=r[1];if(s===1&&a===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Ei(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:a===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${a}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function fP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=a[0],i=a[1],o=yn();if(a!=null&&v.arraysEqual(t,a))return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${r}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function oP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(t,a)){let h=a[0],d=a[1];return`
|
|
float ${r}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=v.squeezeShape(t),o=s;if(o.length<t.length){let h=zl(e,o),d=["row","col"];return`
|
|
${Dl(h)}
|
|
float ${r}(int row, int col) {
|
|
return ${r}(${Pl(d,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Ol(e)}
|
|
}
|
|
`;let l=a[0],u=a[1],c=Ei(n);return u===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${r}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${c}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${r}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${c};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function mP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=e.shapeInfo.texShape,s=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(t[0]===1){let h=t.slice(1),d=[1,2],p=zl(e,h),f=["b","row","col"];return`
|
|
${Gb(p)}
|
|
vec4 ${r}(int b, int row, int col) {
|
|
return ${r}(${Pl(f,d)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),c=yn();return`
|
|
vec4 ${r}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${c.texture2D}(${n}, uv);
|
|
}
|
|
`}function lP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=v.squeezeShape(t),l=i;if(l.length<t.length){let f=zl(e,l),m=["row","col","depth"];return`
|
|
${Dl(f)}
|
|
float ${r}(int row, int col, int depth) {
|
|
return ${r}(${Pl(m,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${a}, ${s}, 1)));
|
|
${Ol(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,c=u[0],h=u[1],d=e.shapeInfo.flatOffset;if(h===a&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===s&&d==null)return`
|
|
float ${r}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=Ei(n);return`
|
|
float ${r}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${a} + col * ${s} + depth + ${p};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function AP(e){let t=e.shapeInfo.logicalShape,n=t.length,r=e.name,a="get"+r.charAt(0).toUpperCase()+r.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),c=u*Math.ceil(t[n-2]/2),h="int b, int row, int col",d=`b * ${c} + (row / 2) * ${u} + (col / 2)`;for(let f=2;f<n-1;f++)h=`int b${f}, `+h,c*=t[n-f-1],d=`b${f} * ${c} + `+d;let p=yn();return`
|
|
vec4 ${a}(${h}) {
|
|
int index = ${d};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${p.texture2D}(${r}, uv);
|
|
}
|
|
`}function uP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[3],s=t[2]*a,i=t[1]*s,{newShape:o,keptDims:l}=v.squeezeShape(t);if(o.length<t.length){let f=zl(e,o),m=["row","col","depth","depth2"];return`
|
|
${Dl(f)}
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
return ${r}(${Pl(m,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${a}, 1)));
|
|
${Ol(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],d=c[1];if(d===i&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(d===a&&u==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${d}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let p=Ei(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${a} + depth2;
|
|
vec2 uv = uvFromFlat(${h}, ${d}, index + ${p});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),a=t[4],s=t[3]*a,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=zl(e,l),A=["row","col","depth","depth2","depth3"];return`
|
|
${Dl(m)}
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${r}(${Pl(A,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${a})) +
|
|
depth3;
|
|
${Ol(e)}
|
|
}
|
|
`;let c=e.shapeInfo.flatOffset,h=e.shapeInfo.texShape,d=h[0],p=h[1];if(p===o&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${a}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===a&&c==null)return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Ei(n);return`
|
|
float ${r}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${a} + depth3 + ${f};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function hP(e){let t=e.shapeInfo.logicalShape,n=e.name,r="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:a,keptDims:s}=v.squeezeShape(t);if(a.length<t.length){let A=zl(e,a),g=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Dl(A)}
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${r}(${Pl(g,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${c}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Ol(e)}
|
|
}
|
|
`;let h=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],f=d[1];if(f===c&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(f===i&&h==null)return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${f}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Ei(n);return`
|
|
float ${r}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${c} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${m};
|
|
vec2 uv = uvFromFlat(${p}, ${f}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Ol(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function gP(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=jb(e.shapeInfo.logicalShape,t.logicalShape),l=dt(i),u=i-s,c,h=["x","y","z","w","u","v"];s===0?c="":i<2&&o.length>=1?c="coords = 0;":c=o.map(A=>`coords.${h[A+u]} = 0;`).join(`
|
|
`);let d="";i<2&&s>0?d="coords":d=e.shapeInfo.logicalShape.map((A,g)=>`coords.${h[g+u]}`).join(", ");let p="return outputValue;",f=v.sizeFromShape(e.shapeInfo.logicalShape)===1,m=v.sizeFromShape(t.logicalShape)===1;if(s===1&&!f&&!m)p=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(f&&!m)i===1?p=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:p=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let A=s-2,g=s-1;o.indexOf(A)>-1&&o.indexOf(g)>-1?p="return vec4(outputValue.x);":o.indexOf(A)>-1?p="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(g)>-1&&(p="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${a}() {
|
|
${l} coords = getOutputCoords();
|
|
${c}
|
|
vec4 outputValue = get${r}(${d});
|
|
${p}
|
|
}
|
|
`}function yP(e,t){let n=e.name,r=n.charAt(0).toUpperCase()+n.slice(1),a="get"+r+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(i,s))return`
|
|
float ${a}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=dt(l),c=jb(e.shapeInfo.logicalShape,t.logicalShape),h=l-o,d,p=["x","y","z","w","u","v"];o===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${p[m+h]} = 0;`).join(`
|
|
`);let f="";return l<2&&o>0?f="coords":f=e.shapeInfo.logicalShape.map((m,A)=>`coords.${p[A+h]}`).join(", "),`
|
|
float ${a}() {
|
|
${u} coords = getOutputCoords();
|
|
${d}
|
|
return get${r}(${f});
|
|
}
|
|
`}function dt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function zl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function Pl(e,t){return t.map(n=>e[n]).join(", ")}function FP(e,t,n,r){let a=t.userCode,s=n.map((p,f)=>{let m={logicalShape:p.shape,texShape:p.isUniform?null:p.texData.texShape,isUniform:p.isUniform,isPacked:p.isUniform?!1:p.texData.isPacked,flatOffset:null};return p.texData!=null&&p.texData.slice!=null&&p.texData.slice.flatOffset>0&&(m.flatOffset=p.texData.slice.flatOffset),{name:t.variableNames[f],shapeInfo:m}}),i=s.map(p=>p.shapeInfo),o={logicalShape:r.shape,texShape:r.texData.texShape,isUniform:!1,isPacked:r.texData.isPacked,flatOffset:null},l=aP(s,o,a,t.packedInputs),u=e.createProgram(l),c=null,h=e.getUniformLocation(u,"NAN",!1);J().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(u,"INFINITY",!1));let d={};for(let p=0;p<t.variableNames.length;p++){let f=t.variableNames[p],m=!1;d[f]=e.getUniformLocation(u,f,m),d[`offset${f}`]=e.getUniformLocation(u,`offset${f}`,m)}return{program:t,source:l,webGLProgram:u,uniformLocations:d,inShapeInfos:i,outShapeInfo:o,infLoc:c,nanLoc:h}}function Xb(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,r)=>{let a=n.logicalShape,s=t[r],i=s.shape;if(!v.arraysEqual(a,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${a} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!v.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function MP(e,t,n,r,a){Xb(t.inShapeInfos,n),Xb([t.outShapeInfo],[r]);let s=r.texData.texture,i=r.texData.texShape;r.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),J().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],c=t.uniformLocations[u],h=t.uniformLocations[`offset${u}`];if(c!=null){if(o.isUniform){if(v.sizeFromShape(o.shape)<2)e.gl.uniform1f(c,o.uniformValues[0]);else{let d=o.uniformValues;d instanceof Float32Array||(d=new Float32Array(d)),e.gl.uniform1fv(c,d)}return}o.texData.slice!=null&&h!=null&&e.gl.uniform1i(h,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,c,l)}}),a!=null&&a(e,t.webGLProgram),e.executeProgram()}function $P(e,t,n){let r="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;r+=`${i.shape}_${l}_${o}`});let a=e.userCode,s=e.constructor.name;return s+="_"+r+"_"+a,s}var{addImpl:DP,bincountImpl:Kb,bincountReduceImpl:OP,ceilImpl:zP,concatImpl:PP,expImpl:LP,expm1Impl:WP,floorImpl:BP,gatherV2Impl:VP,greaterImpl:UP,lessImpl:HP,linSpaceImpl:jP,logImpl:GP,maxImpl:qP,maximumImpl:XP,minimumImpl:KP,multiplyImpl:ZP,negImpl:YP,prodImpl:JP,rangeImpl:QP,rsqrtImpl:eL,simpleAbsImpl:Zb,sliceImpl:tL,stridedSliceImpl:nL,subImpl:rL,tileImpl:aL,topKImpl:sL,transposeImpl:gA,uniqueImpl:iL}=Hm;function Yb(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function xn(e,t){return t===1?[e]:Yb(e,t)}function oL(e,t){if(e===1)return"rc";let n="";for(let r=0;r<e;r++)n+=t[r],r<e-1&&(n+=",");return n}var hL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=xn("rc",t),r=dt(t),a=lL(t,e,n),s=uL(t,e[e.length-1],e[e.length-2],n),i=cL(e,n);this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
|
|
if(${a}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function dL(e,t){let n=[];for(let r=0;r<=1;r++)for(let a=0;a<=1;a++){let s=`${r===0?"r":"rp1"}, ${a===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function lL(e,t,n){if(e===1)return`rc > ${t[0]}`;let r="";for(let a=e-2;a<e;a++)r+=`${n[a]} >= ${t[a]}`,a<e-1&&(r+="||");return r}function uL(e,t,n,r){if(e===1)return"";let a=r.slice(-2);return`
|
|
int r = ${a[0]};
|
|
int c = ${a[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function cL(e,t){let n=e.length,r=dL(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${r[0]}),
|
|
cEdge ? 0. : getA(${r[1]}),
|
|
rEdge ? 0. : getA(${r[2]}),
|
|
rEdge || cEdge ? 0. : getA(${r[3]})`}var Jb=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let r=0;r<4;r++){let a="thisRC = rc;";r%2==1&&(a+="thisRC.z += 1;"),r>1&&(a+="thisRC.y += 1;"),n+=`
|
|
${a}
|
|
${r>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${r}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${r>0?"}":""}
|
|
`}this.userCode=`
|
|
${pL(t)}
|
|
${hA(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function pL(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Ti(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var fL=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let r=e_(t,n),a=t_(e,r,n);a in this.freeTextures||(this.freeTextures[a]=[]),a in this.usedTextures||(this.usedTextures[a]=[]);let s=Qb(e,r,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[a].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[a].shift();return this.usedTextures[a].push(o),o}let i;return r===sn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):r===sn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):r===sn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):r===sn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[a].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,r){if(this.freeTextures==null)return;let a=e_(n,r),s=t_(t,a,r);s in this.freeTextures||(this.freeTextures[s]=[]);let i=Qb(t,a,this.gpgpu.gl,this.gpgpu.textureConfig,r),o=J().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function mL(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function Qb(e,t,n,r,a){let s=AL(t,r),i;if(a){let[l,u]=$l(e[0],e[1]);i=l*u}else{let[l,u]=yc(e[0],e[1]);i=l*u}let o=mL(n,s);return i*o}function AL(e,t){switch(e){case sn.PACKED_2X2_FLOAT32:return mA(t);case sn.PACKED_2X2_FLOAT16:return AA(t);case sn.UNPACKED_FLOAT32:return dA(t);case sn.UNPACKED_FLOAT16:return pA(t);case sn.PACKED_4X1_UNSIGNED_BYTE:return fA(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function gL(e){return J().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?sn.PACKED_2X2_FLOAT32:sn.UNPACKED_FLOAT32:e?sn.PACKED_2X2_FLOAT16:sn.UNPACKED_FLOAT16}function e_(e,t){if(e===nr.UPLOAD)return sn.PACKED_2X2_FLOAT32;if(e===nr.RENDER||e==null)return gL(t);if(e===nr.DOWNLOAD||e===nr.PIXELS)return sn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function t_(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Xa=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Nr="if (isnan(x)) return x;",yL="return x;",n_="return abs(x);",xL="return (x >= 0.0) ? x : (exp(x) - 1.0);",wL=Nr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,bL=Nr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,kp="return x;",_L="return x;",vL=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,kL=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,IL=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Ll=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},NL=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=xn("rc",t),r=dt(t),a=oL(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${a});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},SL=Gr.whereImpl,TL=1e-7,EL=1e-4,yA={};function CL(e){return e in yA||(yA[e]={}),yA[e]}var RL=128,FL=600;function ML(){return J().global.screen==null?1024:J().global.screen.height*J().global.screen.width*window.devicePixelRatio*FL/1024/1024}var Wl=class extends Au{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.warnedAboutCPUBackend=!1,this.pendingDeletes=0,this.disposed=!1,!J().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Xr(J().getNumber("WEBGL_VERSION"));this.binaryCache=CL(J().getNumber("WEBGL_VERSION")),this.gpgpu=new vp(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new fL(this.gpgpu),this.numMBBeforeWarning=ML(),this.texData=new Mh(this,Wr())}nextDataId(){return Wl.nextDataId++}numDataIds(){return this.texData.numDataIds()+(this.cpuBackend?this.cpuBackend.numDataIds():0)-this.pendingDeletes}write(e,t,n){if((J().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||J().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let r={id:this.nextDataId()};return this.texData.set(r,{shape:t,dtype:n,values:e,usage:nr.UPLOAD,refCount:1}),r}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,r,a){if(J().getBool("DEBUG")&&this.checkNumericalProblems(t),r==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:r,values:t,usage:nr.UPLOAD,refCount:a})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:r,complexTensorInfos:a,slice:s,shape:i,isPacked:o}=t;if(s!=null){let h;o?h=new Ll(i,kp):h=new Xa(i,kp);let d=this.runWebGLProgram(h,[{dataId:e,shape:i,dtype:r}],r),p=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),p}if(n!=null)return this.convertAndCacheOnCPU(e);if(r==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(r==="complex64"){let h=this.readSync(a.real.dataId),d=this.readSync(a.imag.dataId);c=R.mergeRealAndImagArrays(h,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let p=this.pendingRead.get(e);return new Promise(f=>p.push(f))}let t=this.texData.get(e),{values:n,shape:r,slice:a,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(a!=null){let p;o?p=new Ll(r,kp):p=new Xa(r,kp);let f=this.runWebGLProgram(p,[{dataId:e,shape:r,dtype:s}],s),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(!J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&J().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&J().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let p=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(p.texture,...xc(r))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(s==="complex64"){let p=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),f=p[0],m=p[1];c=R.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let p=v.sizeFromShape(r);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,p)}u!=null&&this.disposeIntermediateTensorInfo(u);let h=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(p=>p(h)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Wr().removeDataId(e,this),this.pendingDeletes--),h}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(r=>v.decodeString(r))}catch(r){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ue(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!rb(n))throw J().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:r}=this.texData.get(e),a=v.sizeFromShape(t);if(J().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let h=this.decode(e),d=this.texData.get(h.dataId),p=this.gpgpu.downloadMatrixFromPackedTexture(d.texture,...xc(t)).subarray(0,a);return this.disposeIntermediateTensorInfo(h),p}let s=J().getBool("WEBGL_PACK")&&r===!0,i=s?yp(t):t,o=s?new Gz(i):new jz(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,a);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],r=!1;this.programTimersStack==null?(this.programTimersStack=n,r=!0):this.activeTimers.push(n),this.activeTimers=n,e();let a=v.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=v.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,r&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(a);i.kernelMs=v.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(J().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:r,usage:a,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(r,n),this.textureManager.releaseTexture(t,r,a,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}getCPUBackend(){return J().getBool("WEBGL_CPU_FORWARD")?(this.cpuBackend==null&&(this.cpuBackend=Wr().findBackend("cpu")),this.cpuBackend):null}shouldExecuteOnCPU(e,t=RL){let n=this.getCPUBackend();return!J().getBool("IS_TEST")&&!this.warnedAboutCPUBackend&&n==null&&(console.warn("Your application contains ops that are small enough to be executed on the CPU backend, however the CPU backend cannot be found. Consider importing the CPU backend (@tensorflow/tfjs-backend-cpu) for better performance."),this.warnedAboutCPUBackend=!0),n!=null&&e.every(r=>this.texData.get(r.dataId).texture==null&&v.sizeFromShape(r.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){R.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return SL(e.shape,t)}packedUnaryOp(e,t,n){let r=new Ll(e.shape,t),a=this.compileAndRun(r,[e],n);return Wr().makeTensorFromDataId(a.dataId,a.shape,a.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let r=Zb(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,r)}if(J().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,n_,e.dtype);let t=new Xa(e.shape,n_),n=this.compileAndRun(t,[e]);return Wr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let r;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let a=n.map(s=>v.encodeString(s));r=this.write(a,e,t)}else r=this.write(n,e,t);return this.texData.get(r).usage=null,{dataId:r,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:r}=this.makeTensorInfo(e,t,n);return Wr().makeTensorFromDataId(r,e,t,this)}unpackTensor(e){let t=new NL(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new hL(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[Ii(e.shape),...Ni(e.shape)],r={dtype:e.dtype,shape:n,dataId:e.dataId},a=[Ii(t),...Ni(t)],s=new Jb(a,n),i=!0,o=this.runWebGLProgram(s,[r],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:r,dtype:a}=t,s=yp(r),i;n?i=new Hz(s):i=new Uz(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:a,dataId:e}],a,null,o);return{dtype:a,shape:r,dataId:l.dataId}}runWebGLProgram(e,t,n,r,a=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===gc.DENSE){let m=xc(e.outputShape);i.texShape=m.map(A=>A*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(s.shape)===0)return i.values=v.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(m=>{if(m.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let A=this.texData.get(m.dataId);if(A.texture==null){if(!e.packedInputs&&v.sizeFromShape(m.shape)<=J().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:m.shape,texData:null,isUniform:!0,uniformValues:A.values};e.packedInputs&&(A.isPacked=!0,A.shape=m.shape)}else if(!!A.isPacked!=!!e.packedInputs)m=A.isPacked?this.unpackTensor(m):this.packTensor(m),o.push(m),A=this.texData.get(m.dataId);else if(A.isPacked&&!Ac(A.shape,m.shape)){let g=m,y=m.shape;m.shape=A.shape,m=this.packedReshape(m,y),o.push(m),A=this.texData.get(m.dataId),g.shape=y}return this.uploadToGPU(m.dataId),{shape:m.shape,texData:A,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},c=$P(e,l,u),h=this.getAndSaveBinary(c,()=>FP(this.gpgpu,e,l,u)),d=this.activeTimers!=null,p;d&&(p=this.startTimer()),MP(this.gpgpu,h,l,u,r),o.forEach(m=>this.disposeIntermediateTensorInfo(m)),d&&(p=this.endTimer(p),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(p)}));let f=J().get("WEBGL_FLUSH_THRESHOLD");if(f>0){let m=v.now();m-this.lastGlFlushTime>f&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=m)}if(!J().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&a===!1){let m=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),m}return s}compileAndRun(e,t,n,r,a=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,r,a)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(J().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=L(()=>{if(!J().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=J().getBool("DEBUG");J().set("DEBUG",!1);let t=this.abs(Ne(1e-8)).dataSync()[0];if(J().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?TL:EL}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:r,values:a,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=xb(n,o),t.texShape=c),a!=null){let h=yp(n),d,p=c[1],f=c[0],m=a instanceof Uint8Array;o?([p,f]=$l(c[0],c[1]),d=new Xz(h,[f,p],m)):d=new qz(h,[f,p],m);let A=this.makeTensorInfo([f,p],r);m?this.texData.get(A.dataId).usage=nr.PIXELS:this.texData.get(A.dataId).usage=nr.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(A.dataId),p,f,a);let g=!0,y=this.runWebGLProgram(d,[A],r,null,g),w=this.texData.get(y.dataId);t.texture=w.texture,t.texShape=w.texShape,t.isPacked=w.isPacked,t.usage=w.usage,this.disposeIntermediateTensorInfo(A),this.texData.delete(y.dataId),t.values=null,l&&(this.uploadWaitMs+=v.now()-u)}else{let h=this.acquireTexture(c,i,r,o);t.texture=h}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:r}=n;return this.releaseGPUData(e),t!=null&&(n.values=$L(t,r)),n.values}acquireTexture(e,t,n,r){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let a=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${a} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,r)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}};Wl.nextDataId=0;function $L(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let r=0;r<n.length;++r)n[r]=Math.round(e[r]);return n}else throw new Error(`Unknown dtype ${t}`)}var r_="3.3.0";function a_(){J().set("WEBGL_FORCE_F16_TEXTURES",!0)}Hu.isBrowser()&&ml("webgl",()=>new Wl,2);var DL={forceHalfFloat:a_},s_=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Bl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Ip=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,bc=class{constructor(e,t,n,r=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=R.assertAndGetBroadcastShape(t,n);let a=this.outputShape.length,s="";if(r)if(a===0||v.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${dt(a)} coords = getOutputCoords();
|
|
`,a===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=xn("coords",a);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[a-2]} + 1) >= ${this.outputShape[a-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[a-1]} + 1) >= ${this.outputShape[a-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Bn(e){let{inputs:t,backend:n}=e,{x:r}=t;return n.incRef(r.dataId),{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}var OL={kernelName:Fs,backendName:"webgl",kernelFunc:Bn};function Ka(e){let{inputs:t,backend:n}=e,{real:r,imag:a}=t,s=n.makeTensorInfo(r.shape,"complex64"),i=n.texData.get(s.dataId),o=Bn({inputs:{x:r},backend:n}),l=Bn({inputs:{x:a},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var zL={kernelName:Vh,backendName:"webgl",kernelFunc:Ka},i_="return (a < 0.) ? b * a : a;",o_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function PL(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{alpha:s}=r,i=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),o=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new bc(o_,a.shape,i.shape):new Bl(i_,a.shape,i.shape),l=n.runWebGLProgram(o,[a,i],a.dtype);return n.disposeIntermediateTensorInfo(i),l}var LL={kernelName:Ms,backendName:"webgl",kernelFunc:PL},l_="return (a < 0.) ? b * a : a;",u_=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function WL(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new bc(u_,r.shape,a.shape):new Bl(l_,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)}var BL={kernelName:js,backendName:"webgl",kernelFunc:WL},c_="if (isnan(x)) return x;",VL=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,UL=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Qe({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:r}){return({inputs:a,backend:s})=>{let{x:i}=a,o=s,l=r||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let h=o.texData.get(i.dataId),d=n(h.values,l);return o.makeTensorInfo(i.shape,l,d)}let u=J().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Ll(i.shape,t):c=new Xa(i.shape,e),o.runWebGLProgram(c,[i],l)}}function on({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:r=!1,cpuKernelImpl:a,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,c=o;if(r&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(w=>{let[b,_]=w,x={dataId:b.dataId,dtype:b.dtype,shape:l.shape},N={dataId:_.dataId,dtype:_.dtype,shape:u.shape},T=new Bl(e,l.shape,u.shape);return c.runWebGLProgram(T,[x,N],cr(b.dtype,_.dtype))}),y=Ka({inputs:{real:A,imag:g},backend:c});return c.disposeIntermediateTensorInfo(A),c.disposeIntermediateTensorInfo(g),y}let h=s||cr(l.dtype,u.dtype);if(c.shouldExecuteOnCPU([l,u])&&a!=null){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[A,g]=a(l.shape,u.shape,f.values,m.values,h),y=c.makeTensorInfo(g,h),w=c.texData.get(y.dataId);return w.values=A,y}let d=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,p;return d?p=new bc(t,l.shape,u.shape,n):p=new Bl(e,l.shape,u.shape),c.runWebGLProgram(p,[l,u],h)}}function Np(e,t=!1){if(e==="linear")return t?_L:yL;if(e==="relu")return t?kL:wL;if(e==="elu")return t?vL:xL;if(e==="relu6")return t?IL:bL;if(e==="prelu")return t?u_:l_;if(e==="leakyrelu")return t?o_:i_;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var h_=class{constructor(e,t,n,r=!1,a=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=r?e[1]:e[2],c=Math.ceil(u/2),h=r?"i * 2, rc.y":"rc.y, i * 2",d=a?"rc.z, i * 2":"i * 2, rc.z",p=r?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=a?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",A="";i&&(o?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?m=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:m=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,A="result = activation(result);");let g=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let y="rc.x",w="rc.x";e[0]<t[0]?y=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(w=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${m}
|
|
|
|
const float sharedDimension = ${c}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${c}; i++) {
|
|
int batchA = ${y};
|
|
int batchB = ${w};
|
|
vec4 a = getMatrixA(batchA, ${h});
|
|
vec4 b = getMatrixB(batchB, ${d});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${p[0]} * ${f[0]});
|
|
result += (${p[1]} * ${f[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${g}
|
|
|
|
${A}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},d_={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},p_=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=R.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},f_="return a * b;";function m_(e){let{inputs:t,backend:n}=e,{a:r,b:a}=t,s=R.upcastType(r.dtype,a.dtype);if(r.dtype==="complex64"){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),u=new p_(d_.REAL,r.shape,a.shape),c=new p_(d_.IMAG,r.shape,a.shape),h=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:r.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:r.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:a.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:a.shape}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=Ka({inputs:{real:d,imag:p},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}if(n.shouldExecuteOnCPU([r,a])){let o=n.texData.get(r.dataId),l=n.texData.get(a.dataId),[u,c]=ZP(r.shape,a.shape,o.values,l.values,s),h=n.makeTensorInfo(c,s),d=n.texData.get(h.dataId);return d.values=u,h}let i;return J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new bc(f_,r.shape,a.shape):i=new Bl(f_,r.shape,a.shape),n.runWebGLProgram(i,[r,a],s)}var HL={kernelName:Bs,backendName:"webgl",kernelFunc:m_};function jL(e,t,n){let r=[Ii(e.shape),...Ni(e.shape)],a={dtype:e.dtype,shape:r,dataId:e.dataId},s=[Ii(t),...Ni(t)],i=new Jb(s,r),o=!0,l=n.runWebGLProgram(i,[a],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function we(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{shape:s}=r,i=n,o=v.sizeFromShape(a.shape),l=v.inferFromImplicitShape(s,o),u=v.sizeFromShape(l);v.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${a.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let c=i.texData.get(a.dataId);return c.isPacked&&!Ac(a.shape,l)&&!(c.texture!==null&&Ac(c.shape,l))?jL(a,l,i):(i.incRef(a.dataId),{dataId:a.dataId,shape:l,dtype:a.dtype})}var GL={kernelName:jo,backendName:"webgl",kernelFunc:we},A_=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";a%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},qL=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:r,inSize:a,outSize:s}=e;this.outputShape=[r,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,h=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
}
|
|
`,d="vec4";t==="all"?(i="1.0",h=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,d="bvec4"):t==="any"&&(i="0.0",h=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,d="bvec4");let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${p}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
${d} values = ${d}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function XL(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],r=R.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:r,outSize:Math.ceil(n/r)})}return t}function Ci(e,t,n,r){let a=XL(e.shape),s=e;for(let i=0;i<a.length;i++){let{inSize:o,windowSize:l,outSize:u}=a[i],c,h;n==="mean"?c=i===0?new A_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new A_({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):c=new qL({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),h=s,s=r.runWebGLProgram(c,[s],t),h.dataId!==e.dataId&&r.disposeIntermediateTensorInfo(h)}return s}var ZL=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),a=KL(t);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function KL(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],r=new Array(t);for(let a=0;a<e.length;a++)r[e[a]]=n[a];return r.join()}var YL=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let r=dt(this.rank),a=Yb("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=a[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${a[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${r} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${a[this.rank-1]};
|
|
if(++${a[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Sp(e,t,n){let r=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new YL(e.shape,t):new ZL(e.shape,t);return n.runWebGLProgram(r,[e],e.dtype)}function JL(e,t,n,r){let a=t,s=e.shape.length,i=v.parseAxisParam(a,e.shape),o=i,l=R.getAxesPermutation(o,s),u=l!=null,c=e;u&&(c=Sp(e,l,r),o=R.getInnerMostAxes(o.length,s)),R.assertAxesAreInnerMostDims("sum",o,s);let[h,d]=R.computeOutAndReduceShapes(c.shape,o),p=h;n&&(p=R.expandShapeToKeepDim(h,i));let f=v.sizeFromShape(d),m=v.sizeFromShape(e.shape)/f,A=we({inputs:{x:c},attrs:{shape:[m,f]},backend:r}),g=xd(e.dtype),y=Ci(A,g,"sum",r),w=we({inputs:{x:y},attrs:{shape:p},backend:r});return r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(y),u&&r.disposeIntermediateTensorInfo(c),w}function xA(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r;return JL(a,s,i,n)}var QL={kernelName:ti,backendName:"webgl",kernelFunc:xA};function Cn(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{perm:s}=r,i=n,o=a.shape.length,l=new Array(o);for(let c=0;c<l.length;c++)l[c]=a.shape[s[c]];let u;if(i.shouldExecuteOnCPU([a])){let c=i.texData.get(a.dataId).values,h=gA(c,a.shape,a.dtype,s,l);u=i.makeTensorInfo(l,a.dtype);let d=i.texData.get(u.dataId);d.values=h}else u=Sp(a,s,i);return u}var eW={kernelName:ii,backendName:"webgl",kernelFunc:Cn},g_=1e3;function Tp({a:e,b:t,transposeA:n,transposeB:r,backend:a,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,h=n?e.shape[u-2]:e.shape[u-1],d=r?t.shape[c-1]:t.shape[c-2],p=n?e.shape[u-1]:e.shape[u-2],f=r?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),A=t.shape.slice(0,-2),g=v.sizeFromShape(m),y=v.sizeFromShape(A),w=g===y||g===1||y===1;v.assert(u>=2&&c>=2&&w,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${A}).`);let b=(g>y?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([p,f]);v.assert(h===d,()=>`Error in matMul: inner shapes (${h}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${r} must match.`);let _=n?[g,h,p]:[g,p,h],x=r?[y,f,d]:[y,d,f],N=we({inputs:{x:e},backend:a,attrs:{shape:_}}),T=we({inputs:{x:t},backend:a,attrs:{shape:x}}),E=[N,T],M=Math.max(g,y),z=n?N.shape[1]:N.shape[2],B=s!=null,V=i!=null,U=l==="leakyrelu",H=l!=null?Np(l,!0):null,X=B||V||U||H!=null,G;if((p===1||f===1)&&z>g_&&X===!1){let Y=N,se=T;n&&(Y=Cn({inputs:{x:N},backend:a,attrs:{perm:[0,2,1]}}),E.push(Y)),r&&(se=Cn({inputs:{x:T},backend:a,attrs:{perm:[0,2,1]}}),E.push(se));let ne=f!==1,le=f===1,Q=Y;ne&&(Q=we({inputs:{x:Y},backend:a,attrs:{shape:[M,z,1]}}),E.push(Q));let pe=f===1?2:1,ue=se;le&&(ue=we({inputs:{x:se},backend:a,attrs:{shape:[M,1,z]}}),E.push(ue));let ge=m_({inputs:{a:Q,b:ue},backend:a});G=xA({inputs:{x:ge},backend:a,attrs:{axis:pe,keepDims:!0}}),E.push(ge)}else{let Y=cr(e.dtype,t.dtype),se=new h_(_,x,[M,p,f],n,r,B,H,V,U),ne=[N,T];if(s!=null&&ne.push(s),V&&ne.push(i),U){let le=a.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));ne.push(le),E.push(le)}G=a.runWebGLProgram(se,ne,Y)}let ee=we({inputs:{x:G},backend:a,attrs:{shape:b}});E.push(G);for(let Y of E)a.disposeIntermediateTensorInfo(Y);return ee}function tW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r;return Tp({a,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:h,activation:c})}var nW={kernelName:oi,backendName:"webgl",kernelFunc:tW},y_="return abs(x);";function rW(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])&&r.dtype!=="complex64"){let s=n.texData.get(r.dataId),i=Zb(s.values);return n.makeTensorInfo(r.shape,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Ll(r.shape,y_):a=new Xa(r.shape,y_),n.runWebGLProgram(a,[r],r.dtype)}var aW={kernelName:io,backendName:"webgl",kernelFunc:rW},sW=Nr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,iW=Qe({opSnippet:sW}),oW={kernelName:oo,backendName:"webgl",kernelFunc:iW},lW=Nr+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,uW=Qe({opSnippet:lW}),cW={kernelName:lo,backendName:"webgl",kernelFunc:uW},x_="return a + b;",hW=on({opSnippet:x_,packedOpSnippet:x_,supportsComplex:!0,cpuKernelImpl:DP}),dW={kernelName:Fa,backendName:"webgl",kernelFunc:hW},pW=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`float v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}},fW=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((a,s)=>`T${s}`);let n=[];this.variableNames.forEach(a=>{n.push(`vec4 v${a} = get${a}AtOutCoords();`)});let r=this.variableNames.map(a=>`v${a}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${r};
|
|
setOutput(result);
|
|
}
|
|
`}};function Ep(e){let{inputs:t,backend:n}=e,r=t;if(r.length===1)return Bn({inputs:{x:r[0]},backend:n});if(r.length>J().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(r.length/2),l=Ep({inputs:r.slice(0,o),backend:n}),u=Ep({inputs:r.slice(o),backend:n});return Ep({inputs:[l,u],backend:n})}let a=r.map(o=>o.dtype).reduce((o,l)=>cr(o,l)),s=r.map(o=>o.shape),i=J().getBool("WEBGL_PACK")?new fW(r[0].shape,s):new pW(r[0].shape,s);return n.runWebGLProgram(i,r,a)}var mW={kernelName:ms,backendName:"webgl",kernelFunc:Ep};function AW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=Cn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("all",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Ci(m,m.dtype,"all",n),g;if(i){let y=R.expandShapeToKeepDim(d,l);g=we({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),g}var gW={kernelName:zh,backendName:"webgl",kernelFunc:AW};function yW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=Cn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,o)),R.assertAxesAreInnerMostDims("any",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Ci(m,m.dtype,"any",n),g;if(i){let y=R.expandShapeToKeepDim(d,l);g=we({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),g}var xW={kernelName:Ph,backendName:"webgl",kernelFunc:yW},wW=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:r,batchSize:a,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[a,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${r};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},bW=class{constructor(e,t,n,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let a=e[e.length-1],s=Math.ceil(a/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),r||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=dt(o),u=xn("coords",o),c,h;if(s===1){h=o+1;let N=dt(h);c=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else h=o,c=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let d=["x","y","z","w","u","v"].slice(0,h),p="."+d[h-1],f=d.map(N=>"int "+N),m=xn("sourceLocR",h-1).concat("inIdx.r"),A=xn("sourceLocG",h-1).concat("inIdx.g"),g=xn("sourceLocB",h-1).concat("inIdx.b"),y=xn("sourceLocA",h-1).concat("inIdx.a"),w=n==="max"?"greaterThan":"lessThan",b=r?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
|
|
getBestIndicesAChannel(${A.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()})));`,_=`vec4(
|
|
getAChannel(${m.join()}),
|
|
hasNextCol ? getAChannel(${A.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${y.join()}) : 0.)`,x=r?"":`
|
|
float getBestIndicesAChannel(${f.join()}) {
|
|
return getChannel(getBestIndicesA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${f.join()}) {
|
|
return getChannel(getA(${d.join()}),
|
|
vec2(${d.slice(-2).join()}));
|
|
}
|
|
${x}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${c}
|
|
ivec4 srcIdx = ivec4(sourceLocR${p}, sourceLocG${p},
|
|
sourceLocB${p}, sourceLocA${p}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${_};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${b}
|
|
vec4 candidate = ${_};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${w}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function w_(e,t,n,r=null){let a=t.shape[0],s=t.shape[1];r!=null&&(a=r.shape[0],s=r.shape[1]);let i=R.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:a,outSize:Math.ceil(s/i)},l=new wW(o,n,r==null),u=[t];r!=null&&u.push(r);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let h=w_(e,t,n,c);return e.disposeIntermediateTensorInfo(c),h}function b_(e,t,n,r=null){let a=r!=null?r.shape:t.shape,s=a[a.length-1],i=R.computeOptimalWindowSize(s),o=new bW(a,i,n,r==null),l=r==null?[t]:[t,r],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let c=b_(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function __(e,t,n,r){let a=[n];if(R.assertAxesAreInnerMostDims("arg"+r.charAt(0).toUpperCase()+r.slice(1),a,t.shape.length),!J().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=R.computeOutAndReduceShapes(t.shape,a),l=v.sizeFromShape(o),u=we({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let c=w_(e,u,r);s.push(c);let h=we({inputs:{x:c},backend:e,attrs:{shape:i}});return s.forEach(d=>e.disposeIntermediateTensorInfo(d)),h}return b_(e,t,r)}function _W(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Cn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let c=__(n,l,i[0],"max");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var vW={kernelName:As,backendName:"webgl",kernelFunc:_W};function kW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s}=r,i=v.parseAxisParam(s,a.shape),o=R.getAxesPermutation(i,a.shape.length),l=a,u=[];o!=null&&(l=Cn({inputs:{x:a},backend:n,attrs:{perm:o}}),u.push(l),i=R.getInnerMostAxes(i.length,l.shape.length)),R.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let c=__(n,l,i[0],"min");return u.forEach(h=>n.disposeIntermediateTensorInfo(h)),c}var IW={kernelName:xu,backendName:"webgl",kernelFunc:kW},NW=Nr+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,SW=Qe({opSnippet:NW}),TW={kernelName:uo,backendName:"webgl",kernelFunc:SW},EW=Nr+"return log(x + sqrt(x * x + 1.0));",CW=Qe({opSnippet:EW}),RW={kernelName:co,backendName:"webgl",kernelFunc:CW},FW=Nr+`
|
|
return atan(x);
|
|
`,MW=Qe({opSnippet:FW}),$W={kernelName:ho,backendName:"webgl",kernelFunc:MW},DW=VL+`
|
|
return atan(a, b);
|
|
`,OW=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+UL+`
|
|
return result;
|
|
`,zW=on({opSnippet:DW,packedOpSnippet:OW}),PW={kernelName:fo,backendName:"webgl",kernelFunc:zW},LW=Nr+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,WW=Qe({opSnippet:LW}),BW={kernelName:po,backendName:"webgl",kernelFunc:WW},_c=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,h=e.effectiveFilterWidth,d=e.padInfo.top,p=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,A=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,g="0.0";if(f||(g="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${h};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?m:A:`wR * ${h} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let y="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let b=Math.floor(s/4)*4,_=s%4,x=`
|
|
if (${f}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${y}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float initializationValue = ${g};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${g});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${c};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${b}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${x}
|
|
}
|
|
|
|
int xC = xCCorner + ${b};
|
|
if (${_===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${_===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
} else if (${_===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${x}
|
|
}
|
|
}
|
|
setOutput(${w});
|
|
}
|
|
`}},wA=class{constructor(e,t,n,r=!1,a=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,h=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,A=e.padInfo.top,g=e.padInfo.left;this.outputShape=e.outShape;let y=t==="avg",w="0.0";if(y||(w="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f};
|
|
wC += ${h}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${r?a?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${p} * ${f} +
|
|
wR * ${f} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let b="max",_=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(_="avgValue / count");let x=Math.floor(s/4)*4,N=s%4,T=`
|
|
if (${y}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${b}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${m}, ${A}, ${g});
|
|
const float initializationValue = ${w};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${w});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${c}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${x}; wC += 4) {
|
|
int xC = xCCorner + wC * ${h};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${h}, ch)
|
|
);
|
|
|
|
${T}
|
|
}
|
|
|
|
int xC = xCCorner + ${x};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${h}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${h}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${T}
|
|
}
|
|
}
|
|
setOutput(${_});
|
|
}
|
|
}
|
|
`}};function VW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ml(a,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Bn({inputs:{x:a},backend:n});let h=new _c(c,"avg",!1);return n.runWebGLProgram(h,[a],"float32")}var UW={kernelName:gs,backendName:"webgl",kernelFunc:VW};function HW(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,l,u),d=new wA(h,"avg",!1);return n.runWebGLProgram(d,[a],"float32")}var jW={kernelName:wu,backendName:"webgl",kernelFunc:HW},GW=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,c=l-1-e.padInfo.left,h=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${c});
|
|
const float avgMultiplier = float(${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},qW=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,d=e.effectiveFilterWidth,p=c-1-e.padInfo.front,f=h-1-e.padInfo.top,m=d-1-e.padInfo.left,A=1/(t*n*r);this.userCode=`
|
|
const ivec3 pads = ivec3(${p}, ${f}, ${m});
|
|
const float avgMultiplier = float(${A});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${a}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${d};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function XW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new qW(d);return n.runWebGLProgram(p,[a],i.dtype)}var KW={kernelName:Wh,backendName:"webgl",kernelFunc:XW};function ZW(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s;Ml([a,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=r,c=R.computePool2DInfo(i.shape,o,l,1,u),h=new GW(c);return n.runWebGLProgram(h,[a],i.dtype)}var YW={kernelName:Lh,backendName:"webgl",kernelFunc:ZW};function JW(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;return Tp({a,b:s,transposeA:i,transposeB:o,backend:n})}var QW={kernelName:ys,backendName:"webgl",kernelFunc:JW},eB=class{constructor(e,t,n,r,a,s){this.outputShape=[],this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="0.0";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},tB=class{constructor(e,t,n,r,a,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],R.assertAndGetBroadcastShape(e,t),R.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";r!=null&&(R.assertAndGetBroadcastShape(e,r),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";a!=null&&(R.assertAndGetBroadcastShape(e,a),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},nB=({inputs:e,backend:t,attrs:n})=>{let{x:r,mean:a,variance:s,offset:i,scale:o}=e;v.assert(a.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(i==null||a.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(o==null||a.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[r,a,s],c=null;i!=null&&(c=i.shape,u.push(i));let h=null;o!=null&&(h=o.shape,u.push(o));let d=J().getBool("WEBGL_PACK_NORMALIZATION")?new tB(r.shape,a.shape,s.shape,c,h,l):new eB(r.shape,a.shape,s.shape,c,h,l);return t.runWebGLProgram(d,u,u[0].dtype)},rB={kernelName:Cs,backendName:"webgl",kernelFunc:nB},sB=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=`uniform int start[${this.rank}];`,r=aB(this.rank),a,s=e.map((i,o)=>`sourceLoc.${bA[o]} = start[${o}] + coords.${bA[o]};`);a=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${a}
|
|
setOutput(getSource(${r}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},bA=["x","y","z","w","u","v"];function aB(e){if(e===1)return"sourceLoc";if(e<=6)return bA.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var iB=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=dt(this.rank),n=xn("coords",this.rank),r=xn("sourceLoc",this.rank),a=this.rank===1?"sourceLoc":`vec2(${r.slice(-2).join()})`,s=`getChannel(getSource(${r.join()}), ${a})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.y = ${s};
|
|
--${r[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${r[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${r[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${r[c]} = ${n[c]} + start[${c}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function oB(e,t,n,r){let a=r.texData.get(e.dataId),s=r.makeTensorInfo(n,e.dtype),i=r.texData.get(s.dataId);Object.assign(i,a),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=fn.computeFlatOffset(t,v.computeStrides(e.shape));a.slice&&(o+=a.slice.flatOffset),i.slice={flatOffset:o,origDataId:a.slice&&a.slice.origDataId||e.dataId};let l=r.dataRefCount.get(i.slice.origDataId)||1;return r.dataRefCount.set(i.slice.origDataId,l+1),s}function vc(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,size:i}=r,[o,l]=fn.parseSliceParams(a,s,i);if(fn.assertParamsValid(a,o,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,a.dtype,[]);if(n.shouldExecuteOnCPU([a])||a.dtype==="string"){let h=n.texData.get(a.dataId),d=tL(h.values,o,l,a.shape,a.dtype);return n.makeTensorInfo(l,a.dtype,d)}let{isPacked:u}=n.texData.get(a.dataId),c=fn.isSliceContinous(a.shape,o,l);if(u||!c){let h=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new iB(l):new sB(l),d=h.getCustomSetupFunc(o);return n.runWebGLProgram(h,[a],a.dtype,d)}return n.uploadToGPU(a.dataId),oB(a,o,l,n)}var lB={kernelName:Ko,backendName:"webgl",kernelFunc:vc},uB=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,crops:i}=r;v.assert(a.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,w)=>y*w),l=R.getReshaped(a.shape,s,o),u=R.getPermuted(l.length,s.length),c=R.getReshapedPermuted(a.shape,s,o),h=R.getSliceBeginCoords(i,s.length),d=R.getSliceSize(c,i,s.length),p=[],f=we({inputs:{x:a},backend:n,attrs:{shape:l}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:u}}),A=we({inputs:{x:m},backend:n,attrs:{shape:c}}),g=vc({inputs:{x:A},backend:n,attrs:{begin:h,size:d}});return p.push(f),p.push(m),p.push(A),p.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},cB={kernelName:bu,backendName:"webgl",kernelFunc:uB};function hB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i}=r,o=n.readSync(a.dataId),l=n.readSync(s.dataId),u=Kb(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var dB={kernelName:Bh,backendName:"webgl",kernelFunc:hB},pB="return float(a != b);",v_=on({opSnippet:pB,dtype:"bool"}),fB={kernelName:zo,backendName:"webgl",kernelFunc:v_};function kc(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Bn({inputs:{x:a.complexTensorInfos.real},backend:n})}var mB={kernelName:ld,backendName:"webgl",kernelFunc:kc},AB="return float(int(x));";function gB(e,t){let n=new Xa(e.shape,AB),r=t.runWebGLProgram(n,[e],"int32");return{dataId:r.dataId,shape:r.shape,dtype:r.dtype}}function _A(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dtype:s}=r;if(s==="complex64"){if(a.dtype==="complex64")return Bn({inputs:{x:a},backend:n});let i=Ot(a.shape),o=_A({inputs:{x:a},backend:n,attrs:{dtype:"float32"}}),l=Ka({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(a.dtype==="complex64"){let i=kc({inputs:{input:a},backend:n}),o=_A({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!v.hasEncodingLoss(a.dtype,s)){let i=Bn({inputs:{x:a},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return gB(a,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),o=v_({inputs:{a,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${a.dtype} to ${s}`)}var yB={kernelName:xs,backendName:"webgl",kernelFunc:_A},k_="return ceil(x);",xB=Qe({opSnippet:k_,packedOpSnippet:k_,cpuKernelImpl:zP}),wB={kernelName:ws,backendName:"webgl",kernelFunc:xB},bB=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},_B=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,r)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(r,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(r,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function vB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o;J().getBool("WEBGL_PACK_CLIP")?o=new _B(a.shape):o=new bB(a.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[a],a.dtype,l)}var kB={kernelName:Ma,backendName:"webgl",kernelFunc:vB},IB=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function I_(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function NB(e){let{inputs:t,backend:n}=e,{x:r}=t,a=n.texData.get(r.dataId),s=new IB(r.shape),i=[I_(r,a.complexTensorInfos.real),I_(r,a.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var SB={kernelName:_u,backendName:"webgl",kernelFunc:NB},TB=class{constructor(e){this.outputShape=[],this.outputShape=R.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let r=t.length,a=t[t.length-1];n.push(`else setOutput(getT${r}(yR, yC-${a}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},EB=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=R.computeOutShape(e,t);let n=this.outputShape,r=n.length,a=dt(r),s=xn("coords",r),i=["x","y","z","w","u","v"].slice(0,r);this.variableNames=e.map((f,m)=>`T${m}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let f=1;f<o.length;f++)o[f]=o[f-1]+e[f][t];let l=i[t],u=i.slice(-2),c=i.join(),h=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${c}), vec2(${u.join()}));
|
|
}`;for(let f=1;f<o.length;f++){let m=o[f-1];h+=`
|
|
if (${l} < ${o[f]} && ${l} >= ${o[f-1]}) {
|
|
return getChannel(
|
|
getT${f}(${Cp(i,l,m)}),
|
|
vec2(${Cp(u,l,m)}));
|
|
}`}let d=o.length,p=o[o.length-1];h+=`
|
|
return getChannel(
|
|
getT${d}(${Cp(i,l,p)}),
|
|
vec2(${Cp(u,l,p)}));`,this.userCode=`
|
|
float getValue(${i.map(f=>"int "+f)}) {
|
|
${h}
|
|
}
|
|
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[r-1]} = ${s[r-1]} + 1;
|
|
if (${s[r-1]} < ${n[r-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[r-2]} = ${s[r-2]} + 1;
|
|
if (${s[r-2]} < ${n[r-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[r-1]} = ${s[r-1]} - 1;
|
|
if (${s[r-2]} < ${n[r-2]} &&
|
|
${s[r-1]} < ${n[r-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Cp(e,t,n){let r=e.indexOf(t);return e.map((a,s)=>s===r?`${a} - ${n}`:a).join()}function Rp(e){let{inputs:t,backend:n}=e,{input:r}=t,a=n.texData.get(r.dataId);return Bn({inputs:{x:a.complexTensorInfos.imag},backend:n})}var CB={kernelName:td,backendName:"webgl",kernelFunc:Rp};function Vl(e,t,n){let r=e[0].dtype;if(r==="complex64"){let u=e.map(f=>kc({inputs:{input:f},backend:n})),c=e.map(f=>Rp({inputs:{input:f},backend:n})),h=Vl(u,t,n),d=Vl(c,t,n),p=Ka({inputs:{real:h,imag:d},backend:n});return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),c.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),p}if(r==="string"){let{tensors2D:u,outShape:c}=N_(e,t,n),h=u.map(A=>({vals:n.readSync(A.dataId),shape:A.shape})),d=u[0].shape[0]===1,p=PP(h,c,r,d),f=R.computeOutShape(e.map(A=>A.shape),t),m=n.makeTensorInfo(f,r,p);return u.forEach(A=>n.disposeIntermediateTensorInfo(A)),m}if(e.length>J().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let u=Math.floor(e.length/2),c=Vl(e.slice(0,u),t,n),h=Vl(e.slice(u),t,n),d=Vl([c,h],t,n);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),d}if(J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let u=new EB(e.map(c=>c.shape),t);return n.runWebGLProgram(u,e,r)}let{tensors2D:a,outShape:s}=N_(e,t,n),i=new TB(a.map(u=>u.shape)),o=n.runWebGLProgram(i,a,r);a.forEach(u=>n.disposeIntermediateTensorInfo(u));let l=we({inputs:{x:o},attrs:{shape:s},backend:n});return n.disposeIntermediateTensorInfo(o),l}function N_(e,t,n){let r=R.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>we({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:r}}function S_(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r,s=v.parseAxisParam(a,t[0].shape)[0],i=R.computeOutShape(t.map(u=>u.shape),s);if(v.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>v.sizeFromShape(u.shape)>0);if(o.length===1)return Bn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return R.assertParamsConsistent(l,s),Vl(o,s,n)}var RB={kernelName:mo,backendName:"webgl",kernelFunc:S_},T_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",A=m?1:2,g=m?2:3,y=m?3:1,w="",b="";n&&(r?w=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?w=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:w=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,b="result = activation(result);");let _=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${w}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${y}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${A}], coords[${g}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${f===1}) {
|
|
|
|
if (${m}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${p}) *
|
|
getW(wR, wC, ${p}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${p}, xR, xC) *
|
|
getW(wR, wC, ${p}, d2);
|
|
}
|
|
|
|
} else if (${f===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${f===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${p}, d2),
|
|
getW(wR, wC, ${p} + 1, d2),
|
|
getW(wR, wC, ${p} + 2, d2)
|
|
);
|
|
|
|
if (${m}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${p}),
|
|
getX(batch, xR, xC, ${p} + 1),
|
|
getX(batch, xR, xC, ${p} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${p}, xR, xC),
|
|
getX(batch, ${p} + 1, xR, xC),
|
|
getX(batch, ${p} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${_}
|
|
${b}
|
|
setOutput(result);
|
|
}
|
|
`}},FB=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,r=e.padInfo.left,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,h=e.filterHeight,d=e.filterWidth,p=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${a}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${r});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${c}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${d}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${p}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${f===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${p}) *
|
|
getW(wF, wR, wC, ${p}, d2);
|
|
} else if (${f===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${f===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${p}),
|
|
getX(batch, xF, xR, xC, ${p} + 1),
|
|
getX(batch, xF, xR, xC, ${p} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${p}, d2),
|
|
getW(wF, wR, wC, ${p} + 1, d2),
|
|
getW(wF, wR, wC, ${p} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},MB=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:r,inChannels:a,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:c,dataFormat:h}=n,{left:d,top:p}=o,f=a*r,m=yn(),A=h==="channelsLast",g=A?0:1,y=A?1:2,w="";for(let b=0;b<=1;b++)for(let _=0;_<=1;_++)w+=`
|
|
blockIndex = rc.y + ${_};
|
|
pos = rc.x + ${b};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${p};
|
|
d0 = offsetY + ${c} * (pos / ${f});
|
|
|
|
if(d0 < ${t[g]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${d}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${f}.) / ${a}.));
|
|
|
|
if(d1 < ${t[y]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${a}.));
|
|
|
|
if (${A}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${b*2+_}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${b*2+_}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${w}
|
|
|
|
${m.output} = result;
|
|
}
|
|
`}};function E_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=r.texData.get(e.dataId),c=n.inChannels,h=l[0]*l[1]*l[2],d=n.outChannels,p=n.dataFormat==="channelsLast",f=!1,m=!1,A,g=[],y=(h===1||d===1)&&c>g_,w=l[2]%2!=0&&!!u.isPacked;if(y||!J().getBool("WEBGL_LAZILY_UNPACK")||!J().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!w){let b=p?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],_=we({inputs:{x:e},backend:r,attrs:{shape:[1,b,n.inChannels]}}),x=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Tp({a:_,b:x,transposeA:f,transposeB:m,backend:r,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i});A=we({inputs:{x:N},backend:r,attrs:{shape:n.outShape}}),g.push(_),g.push(x),g.push(N)}else{let b=p?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),_={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},x=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Ac(u.shape,_.shape),()=>`packed reshape ${u.shape} to ${_.shape} isn't free`);let N=we({inputs:{x:t},backend:r,attrs:{shape:[1,n.inChannels,n.outChannels]}});g.push(N);let T=Tp({a:_,b:N,backend:r,transposeA:f,transposeB:m,bias:a,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=r.texData.get(T.dataId);v.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=x,E.shape=n.outShape,A=Bn({inputs:{x:T},backend:r}),A.shape=n.outShape,g.push(T)}for(let b of g)r.disposeIntermediateTensorInfo(b);return A}function C_({x:e,filter:t,convInfo:n,backend:r,bias:a=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:h,outHeight:d,dataFormat:p}=n,f=p==="channelsLast",m=l*u*c,A=d*h,g=[m,A],y=!0,w=!1,b=[],_=we({inputs:{x:e},backend:r,attrs:{shape:e.shape.slice(1)}}),x=we({inputs:{x:t},backend:r,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(_),b.push(x);let N=new MB(g,_.shape,n),T=r.runWebGLProgram(N,[_],"float32"),E=we({inputs:{x:T},backend:r,attrs:{shape:[1,g[0],g[1]]}});b.push(T),b.push(E);let M=a!=null,z=s!=null,B=o==="leakyrelu",V=o?Np(o,!0):null,U=new h_(E.shape,x.shape,[1,A,n.outChannels],y,w,M,V,z,B),H=[E,x];if(a&&H.push(a),z&&H.push(s),B){let Y=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));H.push(Y),b.push(Y)}let X=r.runWebGLProgram(U,H,"float32"),G=f?[1,d,h,n.outChannels]:[1,n.outChannels,d,h],ee=we({inputs:{x:X},backend:r,attrs:{shape:G}});b.push(X);for(let Y of b)r.disposeIntermediateTensorInfo(Y);return ee}function $B(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,s.shape,i,u,o,c,!1,h),p;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))p=E_({x:a,filter:s,convInfo:d,backend:n});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)p=C_({x:a,filter:s,convInfo:d,backend:n});else{let m=new T_(d);p=n.runWebGLProgram(m,[a,s],"float32")}let f=we({inputs:{x:p},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(p),f}var DB={kernelName:bs,backendName:"webgl",kernelFunc:$B},OB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},zB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,c=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${c}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},PB=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${a};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${r} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},LB=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,r=e.filterWidth,a=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=r-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${a}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${r}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${r} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function WB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:c}=r,h=R.convertConv2DDataFormat(l),d=R.computeConv2DInfo(a.shape,c,i,1,o,u,!1,h),p=new OB(d);return n.runWebGLProgram(p,[a,s],"float32")}var BB={kernelName:Uh,backendName:"webgl",kernelFunc:WB};function VB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:c}=r,h=R.convertConv2DDataFormat(u),d=R.computeConv2DInfo(i,s.shape,o,1,l,c,!1,h),p=new zB(d);return n.runWebGLProgram(p,[a,s],"float32")}var UB={kernelName:_s,backendName:"webgl",kernelFunc:VB};function HB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeConv3DInfo(a.shape,s.shape,i,l,o),c=new FB(u);return n.runWebGLProgram(c,[a,s],"float32")}var jB={kernelName:vu,backendName:"webgl",kernelFunc:HB};function GB(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,pad:o,filterShape:l}=r,u=R.computeConv3DInfo(a.shape,l,i,1,o),c=new PB(u);return n.runWebGLProgram(c,[a,s],"float32")}var qB={kernelName:Hh,backendName:"webgl",kernelFunc:GB};function XB(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{pad:i,strides:o,inputShape:l}=r,u=R.computeConv3DInfo(l,s.shape,o,1,i),c=new LB(u);return n.runWebGLProgram(c,[a,s],"float32")}var KB={kernelName:jh,backendName:"webgl",kernelFunc:XB},ZB=c_+`
|
|
return cos(x);
|
|
`,YB=Qe({opSnippet:ZB}),JB={kernelName:vs,backendName:"webgl",kernelFunc:YB},QB=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,eV=Qe({opSnippet:QB}),tV={kernelName:Ao,backendName:"webgl",kernelFunc:eV},nV=class{constructor(e,t,n,r,a){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[c,h]=n;this.outputShape=[u,c,h,l];let d=r==="bilinear"?1:0,[p,f]=[`${i-1}.0`,`${o-1}.0`],[m,A,g]=c>1?[`${(i-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${p} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${p}`],[y,w,b]=h>1?[`${(o-1)/(h-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
|
|
const float height_ratio = float(${m});
|
|
const float width_ratio = float(${y});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${A};
|
|
float width_scale = ${w};
|
|
|
|
float in_y = ${g};
|
|
if( in_y < 0.0 || in_y > ${p} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
float in_x = ${b};
|
|
if( in_x < 0.0 || in_x > ${f} ) {
|
|
setOutput(float(${a}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${d} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},rV=e=>{let{inputs:t,backend:n,attrs:r}=e,{image:a,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=r,c=new nV(a.shape,s.shape,o,l,u);return n.runWebGLProgram(c,[a,s,i],"float32")},aV={kernelName:go,backendName:"webgl",kernelFunc:rV},M_=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let r=e.length,a=t?"0.0":`getX(${R_(r,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${dt(r)} coords = getOutputCoords();
|
|
int end = ${F_(r,"coords")};
|
|
float val = ${a};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${F_(r,"coords")} = idx;
|
|
val += getX(${R_(r,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function R_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function F_(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function sV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length,u=R.getAxesPermutation([s],l),c=a;u!=null&&(c=Cn({inputs:{x:a},backend:n,attrs:{perm:u}}));let h=R.getInnerMostAxes(1,l)[0];if(h!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${a.shape.length-1} but got axis=${s}`);let d=c.shape[h],p=Bn({inputs:{x:c},backend:n});for(let f=0;f<=Math.ceil(Math.log2(d))-1;f++){let m=new M_(c.shape,!1,o),A=m.getCustomSetupFunc(f),g=p;p=n.runWebGLProgram(m,[p],p.dtype,A),n.disposeIntermediateTensorInfo(g)}if(i){let f=new M_(c.shape,i,o),m=p;p=n.runWebGLProgram(f,[p],p.dtype),n.disposeIntermediateTensorInfo(m)}if(u!=null){let f=R.getUndoAxesPermutation(u),m=Cn({inputs:{x:p},backend:n,attrs:{perm:f}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),m}return p}var iV={kernelName:ks,backendName:"webgl",kernelFunc:sV};function oV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,weights:s}=t,{size:i,binaryOutput:o}=r;if(a.shape.length===1){let l=n.readSync(a.dataId),u=n.readSync(s.dataId),c=Kb(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,c)}else if(a.shape.length===2){let l=n.bufferSync(a),u=n.bufferSync(s),c=OP(l,u,i,o);return n.makeTensorInfo(c.shape,s.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${a.shape.length}.`)}var lV={kernelName:Gh,backendName:"webgl",kernelFunc:oV},uV=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function cV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=new uV(f,s,i);return n.runWebGLProgram(m,[a],a.dtype)}var hV={kernelName:yo,backendName:"webgl",kernelFunc:cV},$_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=e.outChannels/e.inChannels,A="",g="";n&&(r?A=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?A=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,g="result = activation(result);");let y=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${m};
|
|
int q = d2 - d1 * ${m};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${h};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${f}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${y}
|
|
${g}
|
|
setOutput(result);
|
|
}
|
|
`}},D_=class{constructor(e,t=!1,n=null,r=!1,a=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,c=e.strideWidth,h=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,f=e.filterWidth,m=f,A="int xR; int xC; int xCOffset;";for(let b=0;b<p;b++)for(let _=0;_<f;_++)A+=`
|
|
vec4 xTexelR${b}C${_*2} = vec4(0.);
|
|
vec4 wR${b}C${_} = vec4(0.);
|
|
vec4 xR${b}C${_} = vec4(0.);`;for(let b=0;b<p;b++)for(let _=0;_<m;_++){let x=_*2;if(A+=`
|
|
xR = xRCorner + ${b*h};
|
|
xC = xCCorner + ${x*d};
|
|
`,c===1){if(x<f&&(l%2==1?A+=`
|
|
xCOffset = xC + 1;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
xTexelR${b}C${x}.zw = vec2(0.);
|
|
}
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + 1 - 2;
|
|
if(xR >= 0 && xR < ${s} && xCOffset >= 0 && xCOffset < ${i}) {
|
|
vec4 previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if(xCOffset + 1 >= ${i}) {
|
|
previous.zw = vec2(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(previous.zw, xTexelR${b}C${x}.xy);
|
|
} else {
|
|
xR${b}C${x} = vec4(0, 0, xTexelR${b}C${x}.xy);
|
|
}
|
|
`:A+=`
|
|
if(xR >= 0 && xR < ${s} && xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = xTexelR${b}C${x};
|
|
`,x+1<f)){let N=l%2==0?v.nearestLargerEven(d):d;d%2==0&&l%2==1||d%2!=0&&l%2!=1?(A+=`
|
|
xCOffset = xC + ${l%2} + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
`,d>1&&(A+=`
|
|
xCOffset -= 2;
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
`),A+=`
|
|
xR${b}C${x+1} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.xy);
|
|
`):A+=`
|
|
xCOffset = xC + ${N};
|
|
|
|
if(xR >= 0 && xR < ${s} &&
|
|
xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
|
|
xR${b}C${x+1} = xTexelR${b}C${x+2};
|
|
`}}else x<f&&(A+=`
|
|
if(xR >= 0 && xR < ${s}) {
|
|
`,l%2==1?(A+=`
|
|
xCOffset = xC + 1 - ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xC + 1, d1);
|
|
} else {
|
|
xTexelR${b}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
|
|
`,x+1<f&&(A+=`
|
|
vec4 final = vec4(0.);
|
|
xCOffset = xC + 1 + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xR${b}C${x+1} = vec4(xTexelR${b}C${x+2}.xy, final.xy);
|
|
`)):(A+=`
|
|
if(xC >= 0 && xC < ${i}) {
|
|
xTexelR${b}C${x} = getX(batch, xR, xC, d1);
|
|
} else {
|
|
xTexelR${b}C${x} = vec4(0.);
|
|
}
|
|
|
|
xCOffset = xC + ${c};
|
|
if(xCOffset >= 0 && xCOffset < ${i}) {
|
|
xTexelR${b}C${x+2} = getX(batch, xR, xCOffset, d1);
|
|
} else {
|
|
xTexelR${b}C${x+2} = vec4(0.);
|
|
}
|
|
|
|
xR${b}C${x} = vec4(
|
|
xTexelR${b}C${x}.xy, xTexelR${b}C${x+2}.xy);
|
|
`,x+1<f&&(A+=`
|
|
xR${b}C${x+1} = vec4(
|
|
xTexelR${b}C${x}.zw, xTexelR${b}C${x+2}.zw);
|
|
`)),A+="}");x<f&&(A+=`
|
|
vec4 wTexelR${b}C${x} = getW(${b}, ${x}, d1, q);
|
|
wR${b}C${x} = vec4(wTexelR${b}C${x}.xz, wTexelR${b}C${x}.xz);
|
|
`,x+1<f&&(A+=`
|
|
vec4 wTexelR${b}C${x+1} = getW(${b}, ${x+1}, d1, q);
|
|
wR${b}C${x+1} =
|
|
vec4(wTexelR${b}C${x+1}.xz, wTexelR${b}C${x+1}.xz);`))}for(let b=0;b<p;b++)for(let _=0;_<f;_++)A+=`dotProd += xR${b}C${_} * wR${b}C${_};`;let g="",y="";n&&(r?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:a?g=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,y="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),r&&this.variableNames.push("preluActivationWeights"),a&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${c});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2;
|
|
int q = 0;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
vec4 dotProd = vec4(0.);
|
|
|
|
${A}
|
|
|
|
vec4 result = dotProd;
|
|
${w}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}};function dV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=r,c=l;c==null&&(c=[1,1]),v.assert(R.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=R.computeConv2DInfo(a.shape,s.shape,i,c,o,u,!0),d;return J().getBool("WEBGL_PACK_DEPTHWISECONV")&&h.strideWidth<=2&&h.outChannels/h.inChannels==1?d=new D_(h):d=new $_(h),n.runWebGLProgram(d,[a,s],"float32")}var pV={kernelName:Is,backendName:"webgl",kernelFunc:dV},fV=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,r=e.padInfo.top,a=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${r};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${a};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},mV=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,r=e.strideHeight,a=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${r}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function AV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:c}=r,h=R.computeConv2DInfo(a.shape,c,i,o,l,u,!0),d=new fV(h);return n.runWebGLProgram(d,[a,s],"float32")}var gV={kernelName:qh,backendName:"webgl",kernelFunc:AV};function yV(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:c}=r,h=R.computeConv2DInfo(c,s.shape,i,o,l,u,!0),d=new mV(h);return n.runWebGLProgram(d,[a,s],"float32")}var xV={kernelName:Xh,backendName:"webgl",kernelFunc:yV},wV=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function bV(e){let{inputs:t,backend:n}=e,{x:r}=t,a=[...r.shape,...r.shape],s=v.sizeFromShape(r.shape),i=we({inputs:{x:r},backend:n,attrs:{shape:[s]}}),o=new wV(s),l=n.runWebGLProgram(o,[i],i.dtype),u=we({inputs:{x:l},backend:n,attrs:{shape:a}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var _V={kernelName:Kh,backendName:"webgl",kernelFunc:bV},vV=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:r,strideHeight:a,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:c,left:h}=r;this.userCode=`
|
|
const ivec2 strides = ivec2(${a}, ${s});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function kV(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s}=t,{strides:i,pad:o,dilations:l}=r,u=R.computeDilation2DInfo(a.shape,s.shape,i,o,"NHWC",l),c,h=new vV(u);c=n.runWebGLProgram(h,[a,s],"float32");let d=we({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var IV={kernelName:ku,backendName:"webgl",kernelFunc:kV},NV="return (x >= 0.0) ? x : (exp(x) - 1.0);",SV=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,TV=Qe({opSnippet:NV,packedOpSnippet:SV}),EV={kernelName:xo,backendName:"webgl",kernelFunc:TV},CV="return (b >= 1.0) ? a : a * (b + 1.0);",RV=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,FV=e=>{let{inputs:t,backend:n}=e,{dy:r,y:a}=t,s=J().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new bc(RV,r.shape,a.shape):new Bl(CV,r.shape,a.shape);return n.runWebGLProgram(s,[r,a],r.dtype)},MV={kernelName:Jh,backendName:"webgl",kernelFunc:FV},$V=`
|
|
return vec4(equal(a, b));
|
|
`,DV="return float(a == b);",OV=on({opSnippet:DV,packedOpSnippet:$V,dtype:"bool"}),zV={kernelName:bo,backendName:"webgl",kernelFunc:OV},PV=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${R.ERF_P};
|
|
float a1 = ${R.ERF_A1};
|
|
float a2 = ${R.ERF_A2};
|
|
float a3 = ${R.ERF_A3};
|
|
float a4 = ${R.ERF_A4};
|
|
float a5 = ${R.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,LV=Qe({opSnippet:PV}),WV={kernelName:wo,backendName:"webgl",kernelFunc:LV},O_="return exp(x);",z_=Qe({opSnippet:O_,packedOpSnippet:O_,cpuKernelImpl:LP}),BV={kernelName:Ss,backendName:"webgl",kernelFunc:z_};function vA(e){let{inputs:t,attrs:n,backend:r}=e,{dim:a}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=a;return a<0&&(v.assert(-(i+1)<=a,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+a+1),o.splice(l,0,1),we({inputs:{x:s},backend:r,attrs:{shape:o}})}var VV={kernelName:_o,backendName:"webgl",kernelFunc:vA},P_="return exp(x) - 1.0;",UV=Qe({opSnippet:P_,packedOpSnippet:P_,cpuKernelImpl:WP}),HV={kernelName:vo,backendName:"webgl",kernelFunc:UV},L_=class{constructor(e,t,n){this.variableNames=["real","imag"];let r=t[1];this.outputShape=t;let a=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${r}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${a};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${r});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${r}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function W_(e,t,n){let r=n.texData.get(e.dataId),a=v.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=a/s,o=we({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new L_("real",l,t),c=new L_("imag",l,t),h=[{dataId:r.complexTensorInfos.real.dataId,dtype:r.complexTensorInfos.real.dtype,shape:l},{dataId:r.complexTensorInfos.imag.dataId,dtype:r.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,h,"float32"),p=n.runWebGLProgram(c,h,"float32"),f=Ka({inputs:{real:d,imag:p},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p);let m=we({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(f),m}function jV(e){let{inputs:t,backend:n}=e,{input:r}=t;return W_(r,!1,n)}var GV={kernelName:Qh,backendName:"webgl",kernelFunc:jV},qV=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function kA(e){let{backend:t,attrs:n}=e,{shape:r,value:a}=n,{dtype:s}=n;if(s=s||v.inferDtype(a),s==="string"){let i=v.getArrayFromDType(s,v.sizeFromShape(r));return i.fill(a),t.makeTensorInfo(r,s,i)}else{let i=new qV(r,a),o=i.getCustomSetupFunc(a);return t.runWebGLProgram(i,[],s,o)}}var XV={kernelName:Iu,backendName:"webgl",kernelFunc:kA},KV=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},ZV={kernelName:ko,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,r=t,a=new KV(n.shape);return r.runWebGLProgram(a,[n],n.dtype)}},B_="return floor(x);",YV=Qe({opSnippet:B_,packedOpSnippet:B_,cpuKernelImpl:BP}),JV={kernelName:Ts,backendName:"webgl",kernelFunc:YV},QV=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,eU=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,tU=on({opSnippet:QV,packedOpSnippet:eU,dtype:"int32"}),nU={kernelName:Es,backendName:"webgl",kernelFunc:tU},rU=class{constructor(e){this.variableNames=["A"];let t=yn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${r}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},aU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=yn(),[n,r]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${r}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},iU={kernelName:fd,backendName:"webgl",kernelFunc:sU},Ul;function sU(e){let{inputs:t,backend:n,attrs:r}=e,{pixels:a}=t,{numChannels:s}=r,i=typeof HTMLVideoElement!="undefined"&&a instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&a instanceof HTMLImageElement,[l,u]=i?[a.videoWidth,a.videoHeight]:[a.width,a.height],c=[u,l],h=[u,l,s];(o||i)&&(Ul==null&&(Ul=document.createElement("canvas").getContext("2d")),Ul.canvas.width=l,Ul.canvas.height=u,Ul.drawImage(a,0,0,l,u),a=Ul.canvas);let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=nr.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),a);let p=J().getBool("WEBGL_PACK")?new aU(h):new rU(h),f=n.runWebGLProgram(p,[d],"int32");return n.disposeData(d.dataId),f}function oU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:c,dilations:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=r,m=R.convertConv2DDataFormat(c),A=R.computeConv2DInfo(a.shape,s.shape,l,h,u,d,!1,m),g,y=[];if(A.filterHeight===1&&A.filterWidth===1&&A.dilationHeight===1&&A.dilationWidth===1&&A.strideHeight===1&&A.strideWidth===1&&(A.padInfo.type==="SAME"||A.padInfo.type==="VALID"))g=E_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else if(J().getBool("WEBGL_CONV_IM2COL")&&a.shape[0]===1)g=C_({x:a,filter:s,convInfo:A,backend:n,bias:i,activation:p,preluActivationWeights:o,leakyreluAlpha:f});else{let b=i!=null,_=o!=null,x=p==="leakyrelu",N=p?Np(p,!1):null,T=new T_(A,b,N,_,x),E=[a,s];if(i&&E.push(i),o&&E.push(o),x){let M=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push(M),y.push(M)}g=n.runWebGLProgram(T,E,"float32")}let w=we({inputs:{x:g},backend:n,attrs:{shape:A.outShape}});return y.push(g),y.forEach(b=>n.disposeIntermediateTensorInfo(b)),w}var lU={kernelName:li,backendName:"webgl",kernelFunc:oU};function uU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:h,activation:d,leakyreluAlpha:p}=r,f=[],m=c;m==null&&(m=[1,1]),v.assert(R.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let A=R.computeConv2DInfo(a.shape,s.shape,l,m,u,h,!0),g=J().getBool("WEBGL_PACK_DEPTHWISECONV")&&A.strideWidth<=2&&A.outChannels/A.inChannels==1,y=d?Np(d,g):null,w=[a,s],b=i!=null,_=o!=null,x=d==="leakyrelu";if(b&&w.push(i),_&&w.push(o),x){let E=n.makeTensorInfo([],"float32",v.createScalarValue(p,"float32"));w.push(E),f.push(E)}let N;g?N=new D_(A,b,y,_,x):N=new $_(A,b,y,_,x);let T=n.runWebGLProgram(N,w,"float32");return f.forEach(E=>n.disposeIntermediateTensorInfo(E)),T}var cU={kernelName:ui,backendName:"webgl",kernelFunc:uU},hU=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let r=dt(t.length),a=dt(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${r} strides = ${r}(${this.strides});
|
|
void main() {
|
|
${a} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function dU(e){let{inputs:t,backend:n}=e,{params:r,indices:a}=t,s=a.shape,i=s[s.length-1],[o,l,u,c]=R.prepareAndValidate(r,a),h=we({inputs:{x:a},backend:n,attrs:{shape:[l,i]}}),d=we({inputs:{x:r},backend:n,attrs:{shape:[v.sizeFromShape(r.shape)/u,u]}}),p=new hU(i,c,[l,u]),f=n.runWebGLProgram(p,[d,h],d.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(f),m}var pU={kernelName:No,backendName:"webgl",kernelFunc:dU},mU=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=dt(this.rank),r=fU(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function fU(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[];for(let a=0;a<e.length;a++)a===2?r.push("int(getIndices(resRC.x, resRC.z))"):r.push(`${n[a]}`);return r.join()}function AU(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,indices:s}=t,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=v.sizeFromShape(s.shape),h=[],d=we({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),p=we({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});h.push(d),h.push(p);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([a,s])||a.dtype==="string"){let y=n.bufferSync(p),w=n.bufferSync(d),b=VP(w,y,f);return h.forEach(_=>n.disposeIntermediateTensorInfo(_)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new mU(d.shape,f),A=n.runWebGLProgram(m,[d,p],d.dtype);h.push(A);let g=we({inputs:{x:A},backend:n,attrs:{shape:u.outputShape}});return h.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}var gU={kernelName:Io,backendName:"webgl",kernelFunc:AU},yU="return float(a > b);",xU=`
|
|
return vec4(greaterThan(a, b));
|
|
`,wU=on({opSnippet:yU,packedOpSnippet:xU,cpuKernelImpl:UP,dtype:"bool"}),bU={kernelName:So,backendName:"webgl",kernelFunc:wU},_U="return float(a >= b);",vU=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,kU=on({opSnippet:_U,packedOpSnippet:vU,dtype:"bool"}),IU={kernelName:Rs,backendName:"webgl",kernelFunc:kU};function NU(e){let{inputs:t,backend:n}=e,{input:r}=t;return W_(r,!0,n)}var SU={kernelName:ed,backendName:"webgl",kernelFunc:NU},TU="return float(!isnan(x) && !isinf(x));",EU=Qe({opSnippet:TU,dtype:"bool"}),CU={kernelName:To,backendName:"webgl",kernelFunc:EU},RU="return float(isinf(x));",FU=Qe({opSnippet:RU,dtype:"bool"}),MU={kernelName:Eo,backendName:"webgl",kernelFunc:FU},$U="return float(isnan(x));",DU=Qe({opSnippet:$U,dtype:"bool"}),OU={kernelName:Co,backendName:"webgl",kernelFunc:DU},zU="return float(a < b);",PU=`
|
|
return vec4(lessThan(a, b));
|
|
`,LU=on({opSnippet:zU,packedOpSnippet:PU,cpuKernelImpl:HP,dtype:"bool"}),WU={kernelName:Ro,backendName:"webgl",kernelFunc:LU},BU="return float(a <= b);",VU=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,UU=on({opSnippet:BU,packedOpSnippet:VU,dtype:"bool"}),HU={kernelName:Fo,backendName:"webgl",kernelFunc:UU};function jU(e){let{backend:t,attrs:n}=e,{start:r,stop:a,num:s}=n,i=jP(r,a,s);return t.makeTensorInfo([i.length],"float32",i)}var GU={kernelName:nd,backendName:"webgl",kernelFunc:jU},qU=`if (x < 0.0) return NAN;
|
|
return log(x);`,XU=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,KU=Qe({opSnippet:qU,packedOpSnippet:XU,cpuKernelImpl:GP}),ZU={kernelName:$s,backendName:"webgl",kernelFunc:KU},YU="return log(1.0 + x);",JU=Qe({opSnippet:YU}),QU={kernelName:Mo,backendName:"webgl",kernelFunc:JU},eH="return float(a >= 1.0 && b >= 1.0);",tH=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,nH=on({opSnippet:eH,packedOpSnippet:tH,dtype:"bool"}),rH={kernelName:$o,backendName:"webgl",kernelFunc:nH},aH="return float(!(x >= 1.0));",sH=Qe({opSnippet:aH}),iH={kernelName:Nu,backendName:"webgl",kernelFunc:sH},oH="return float(a >= 1.0 || b >= 1.0);",lH=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,uH=on({opSnippet:oH,packedOpSnippet:lH,dtype:"bool"}),cH={kernelName:Su,backendName:"webgl",kernelFunc:uH},hH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},dH=class{constructor(e,t,n,r,a){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${r}) * sum`;a===.5?o=`inversesqrt(${l})`:a===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${a}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},pH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=r,u=J().getBool("WEBGL_PACK_NORMALIZATION")?new dH(a.shape,s,i,o,l):new hH(a.shape,s,i,o,l);return n.runWebGLProgram(u,[a],a.dtype)},fH={kernelName:Tu,backendName:"webgl",kernelFunc:pH},mH=class{constructor(e,t,n,r,a){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=r,this.beta=a,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${r}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${r})
|
|
* float(${a})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${a});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},AH=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:c}=r,h=new mH(a.shape,o,l,u,c);return n.runWebGLProgram(h,[a,s,i],a.dtype)},gH={kernelName:rd,backendName:"webgl",kernelFunc:AH};function yH(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ci(i,e.dtype,"max",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}function V_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reductionIndices:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=n.shouldExecuteOnCPU([a]),p=a;if(h){if(d){let y=n.texData.get(p.dataId).values,w=new Array(o);for(let x=0;x<w.length;x++)w[x]=a.shape[c[x]];let b=gA(y,a.shape,a.dtype,c,w);p=n.makeTensorInfo(w,a.dtype);let _=n.texData.get(p.dataId);_.values=b}else p=Sp(a,c,n);u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("max",u,o);let[f,m]=R.computeOutAndReduceShapes(p.shape,u),A=f;i&&(A=R.expandShapeToKeepDim(f,l));let g;if(d){let y=n.texData.get(p.dataId).values,w=qP(y,v.sizeFromShape(m),A,a.dtype);g=n.makeTensorInfo(A,a.dtype);let b=n.texData.get(g.dataId);b.values=w}else g=yH(p,m,A,n);return h&&n.disposeIntermediateTensorInfo(p),g}var xH={kernelName:Ds,backendName:"webgl",kernelFunc:V_},wH=s_+`
|
|
return max(a, b);
|
|
`,bH=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ip+`
|
|
return result;
|
|
`,_H=on({opSnippet:wH,packedOpSnippet:bH,cpuKernelImpl:XP}),vH={kernelName:Os,backendName:"webgl",kernelFunc:_H};function kH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t;Ml(a,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=r,u=1;v.assert(R.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let c=R.computePool2DInfo(a.shape,s,i,u,o,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return Bn({inputs:{x:a},backend:n});let h=new _c(c,"max",!1);return n.runWebGLProgram(h,[a],a.dtype)}var IH={kernelName:zs,backendName:"webgl",kernelFunc:kH};function NH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=r,c=[1,1,1],h=R.computePool3DInfo(a.shape,s,i,c,o,u,l),d=new wA(h,"max",!1);return n.runWebGLProgram(d,[a],a.dtype)}var SH={kernelName:Eu,backendName:"webgl",kernelFunc:NH},TH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,r=e.dilationHeight,a=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=a-1-e.padInfo.top,o=s-1-e.padInfo.left,l=a*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${a};
|
|
wR += ${r}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EH=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,r=e.strideWidth,a=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=o-1-e.padInfo.front,h=l-1-e.padInfo.top,d=u-1-e.padInfo.left,p=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${c}, ${h}, ${d});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${a}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${p} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function CH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:c}=r,h=[1,1,1],d=R.computePool3DInfo(i.shape,o,l,h,u,c),p=new wA(d,"max",!0),f=n.runWebGLProgram(p,[i],i.dtype),m=new EH(d),A=n.runWebGLProgram(m,[a,f],i.dtype);return n.disposeIntermediateTensorInfo(f),A}var RH={kernelName:sd,backendName:"webgl",kernelFunc:CH};function FH(e){let{inputs:t,backend:n,attrs:r}=e,{dy:a,input:s,output:i}=t,o=s;Ml([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:h}=r,d=R.computePool2DInfo(o.shape,l,u,1,c,h),p=!0,f=new _c(d,"max",p),m=n.runWebGLProgram(f,[o],o.dtype),A=new TH(d),g=n.runWebGLProgram(A,[a,m],o.dtype);return n.disposeIntermediateTensorInfo(m),g}var MH={kernelName:ad,backendName:"webgl",kernelFunc:FH};function $H(e,t,n,r){let a=new _c(n,"max",!1),s=r.runWebGLProgram(a,[e],"float32");a=new _c(n,"max",!0,!0,t);let i=r.runWebGLProgram(a,[e],"float32");return[s,i]}var DH={kernelName:id,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{filterSize:a,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;v.assert(r.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${r.shape.length}.`);let u=[1,1];v.assert(R.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let c=R.computePool2DInfo(r.shape,a,s,u,i),[h,d]=$H(r,o,c,l);return[h,d]}};function OH(e,t,n,r){let a=v.sizeFromShape(t),s=v.sizeFromShape(e.shape)/a,i=we({inputs:{x:e},attrs:{shape:[s,a]},backend:r}),o=Ci(i,"float32","mean",r),l=we({inputs:{x:o},attrs:{shape:n},backend:r});return r.disposeIntermediateTensorInfo(i),r.disposeIntermediateTensorInfo(o),l}var zH={kernelName:Ps,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:r}=e,{keepDims:a,axis:s}=t,i=n,o=r.shape.length,l=v.parseAxisParam(s,r.shape),u=l,c=R.getAxesPermutation(u,o),h=c!=null,d=i.shouldExecuteOnCPU([r]),p=[],f=r;if(h){if(d){let w=i.texData.get(f.dataId).values,b=new Array(o);for(let N=0;N<b.length;N++)b[N]=r.shape[c[N]];let _=gA(w,r.shape,r.dtype,c,b);f=i.makeTensorInfo(b,r.dtype);let x=i.texData.get(f.dataId);x.values=_}else f=Sp(r,c,i);p.push(f),u=R.getInnerMostAxes(u.length,o)}R.assertAxesAreInnerMostDims("sum",u,o);let[m,A]=R.computeOutAndReduceShapes(f.shape,u),g=m;a&&(g=R.expandShapeToKeepDim(m,l));let y=OH(f,A,g,i);for(let w of p)i.disposeIntermediateTensorInfo(w);return y}};function PH(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=v.parseAxisParam(s,a.shape),u=l,c=R.getAxesPermutation(u,o),h=a;c!=null&&(h=Cn({inputs:{x:a},backend:n,attrs:{perm:c}}),u=R.getInnerMostAxes(u.length,a.shape.length)),R.assertAxesAreInnerMostDims("min",u,o);let[d,p]=R.computeOutAndReduceShapes(h.shape,u),f=v.sizeFromShape(p),m=we({inputs:{x:h},backend:n,attrs:{shape:[-1,f]}}),A=Ci(m,m.dtype,"min",n),g;if(i){let y=R.expandShapeToKeepDim(d,l);g=we({inputs:{x:A},backend:n,attrs:{shape:y}})}else g=we({inputs:{x:A},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(A),c!=null&&n.disposeIntermediateTensorInfo(h),g}var LH={kernelName:Ls,backendName:"webgl",kernelFunc:PH},WH=s_+`
|
|
return min(a, b);
|
|
`,BH=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Ip+`
|
|
return result;
|
|
`,VH=on({opSnippet:WH,packedOpSnippet:BH,cpuKernelImpl:KP}),UH={kernelName:Ws,backendName:"webgl",kernelFunc:VH},HH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let r=e.length,a=dt(r),s=t.map(u=>u[0]).join(","),i=t.map((u,c)=>u[0]+e[c]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r),l=n==="reflect"?0:1;if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
for (int i = 0; i < ${r}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},jH=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((p,f)=>p[0]+e[f]+p[1]);let r=e.length,a=dt(r),s=t.map(p=>p[0]).join(","),i=t.map((p,f)=>p[0]+e[f]).join(","),o=xn("rc",r),l=xn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=n==="reflect"?0:1,d="";if(r===1){let p=`
|
|
${a} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${h};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${h};
|
|
}
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`}else{let p=`
|
|
${a} source = rc;
|
|
${a} lt = ${a}(lessThan(source, start));
|
|
${a} gte = ${a}(greaterThanEqual(source, end));
|
|
${a} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${h}) +
|
|
gte * ((end - 1) * 2 - source + ${h});
|
|
source -= start;
|
|
`;d=`
|
|
${a} rc = outputLoc;
|
|
${p}
|
|
result[0] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[1] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {
|
|
${p}
|
|
result[2] = getChannel(getX(${l.join()}), ${c});
|
|
${o[r-1]} += 1;
|
|
if(${u}) {
|
|
${p}
|
|
result[3] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${d}
|
|
setOutput(result);
|
|
}
|
|
`}},GH=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{paddings:a,mode:s}=n,i=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jH(r.shape,a,s):new HH(r.shape,a,s);return t.runWebGLProgram(i,[r],r.dtype)},qH={kernelName:Cu,backendName:"webgl",kernelFunc:GH},XH=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,KH=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Ip+`
|
|
return result;
|
|
`,ZH=on({opSnippet:XH,packedOpSnippet:KH}),YH={kernelName:Do,backendName:"webgl",kernelFunc:ZH},JH=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},QH=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,ej=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,U_=on({opSnippet:QH,packedOpSnippet:ej,checkOutOfBounds:!0}),tj={kernelName:Ns,backendName:"webgl",kernelFunc:U_},H_="return a - b;",j_=on({opSnippet:H_,packedOpSnippet:H_,supportsComplex:!0,cpuKernelImpl:rL}),nj={kernelName:ai,backendName:"webgl",kernelFunc:j_};function G_(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{dim:s}=r,i=v.parseAxisParam([s],a.shape),o=V_({inputs:{x:a},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=R.expandShapeToKeepDim(o.shape,i),u=we({inputs:{x:o},backend:n,attrs:{shape:l}}),c=j_({inputs:{a,b:u},backend:n}),h=z_({inputs:{x:c},backend:n}),d=xA({inputs:{x:h},backend:n,attrs:{axis:i,keepDims:!1}}),p=we({inputs:{x:d},backend:n,attrs:{shape:l}}),f=U_({inputs:{a:h,b:p},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),f}var rj={kernelName:ni,backendName:"webgl",kernelFunc:G_};function aj(e){let{inputs:t,backend:n,attrs:r}=e,{logits:a}=t,{numSamples:s,seed:i,normalized:o}=r,l=o?a:G_({inputs:{logits:a},backend:n,attrs:{dim:a.shape.length-1}}),u=l.shape[0],c=l.shape[1],h=new JH(u,c,s),d=h.getCustomSetupFunc(i),p=n.runWebGLProgram(h,[l],"int32",d);return o||n.disposeIntermediateTensorInfo(l),p}var sj={kernelName:od,backendName:"webgl",kernelFunc:aj},q_="return -x;";function ij(e){let{inputs:t,backend:n}=e,{x:r}=t;if(n.shouldExecuteOnCPU([r])){let s=n.texData.get(r.dataId),[i,o]=YP(s.values,r.shape,r.dtype);return n.makeTensorInfo(o,r.dtype,i)}let a;return J().getBool("WEBGL_PACK_UNARY_OPERATIONS")?a=new Ll(r.shape,q_):a=new Xa(r.shape,q_),n.runWebGLProgram(a,[r],r.dtype)}var oj={kernelName:Oo,backendName:"webgl",kernelFunc:ij},lj=Gr.nonMaxSuppressionV3Impl;function uj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=r,u=n.readSync(a.dataId),c=n.readSync(s.dataId),{selectedIndices:h}=lj(u,c,i,o,l);return n.makeTensorInfo([h.length],"int32",new Int32Array(h))}var cj={kernelName:Po,backendName:"webgl",kernelFunc:uj},hj=Gr.nonMaxSuppressionV4Impl;function dj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),{selectedIndices:d,validOutputs:p}=hj(c,h,i,o,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([p]))]}var pj={kernelName:Lo,backendName:"webgl",kernelFunc:dj},fj=Gr.nonMaxSuppressionV5Impl;function mj(e){R.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:r}=e,{boxes:a,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=r,c=n.readSync(a.dataId),h=n.readSync(s.dataId),d=i,p=o,f=l,m=u,{selectedIndices:A,selectedScores:g}=fj(c,h,d,p,f,m);return[n.makeTensorInfo([A.length],"int32",new Int32Array(A)),n.makeTensorInfo([g.length],"float32",new Float32Array(g))]}var Aj={kernelName:Wo,backendName:"webgl",kernelFunc:mj},gj=class{constructor(e,t,n,r){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${r}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},yj=e=>{let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=v.sizeFromShape(a.shape),u=new gj(l,s,i,o),c=we({inputs:{x:a},backend:n,attrs:{shape:[l]}}),h=n.runWebGLProgram(u,[c],a.dtype);n.disposeIntermediateTensorInfo(c);let d=[...a.shape,s],p=we({inputs:{x:h},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(h),p},xj={kernelName:Vs,backendName:"webgl",kernelFunc:yj};function Fp(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=Fp({inputs:{x:a},backend:n}),i=Rp({inputs:{input:r},backend:n}),o=Fp({inputs:{x:i},backend:n}),l=Ka({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return kA({attrs:{shape:r.shape,dtype:r.dtype,value:r.dtype==="string"?"":0},backend:n})}var wj={kernelName:al,backendName:"webgl",kernelFunc:Fp};function X_(e){let{inputs:t,backend:n}=e,{x:r}=t;if(r.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(r.dtype==="complex64"){let a=kc({inputs:{input:r},backend:n}),s=X_({inputs:{x:a},backend:n}),i=Rp({inputs:{input:r},backend:n}),o=Fp({inputs:{x:i},backend:n}),l=Ka({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return kA({attrs:{shape:r.shape,dtype:r.dtype,value:1},backend:n})}var bj={kernelName:Bo,backendName:"webgl",kernelFunc:X_};function _j(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return vA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=vA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=S_({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var vj={kernelName:Vo,backendName:"webgl",kernelFunc:_j},kj=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let r=e.length,a=dt(r),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,r);if(r===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${a} start = ${a}(${s});
|
|
${a} end = ${a}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${a} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${a} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},Ij=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let r=e.length,a=dt(r),s=t.map(f=>f[0]).join(","),i=t.map((f,m)=>f[0]+e[m]).join(","),o=xn("rc",r),l=xn("source",r),u=`${o[r-1]} < ${this.outputShape[r-1]}`,c=r===1?"source":`vec2(${l.slice(-2).join()})`,h=[`${a} rc = outputLoc;`,`${o[r-1]} += 1;
|
|
if(${u}) {
|
|
`,r===1?"":`}
|
|
rc = outputLoc;
|
|
${o[r-2]} += 1;
|
|
if(${o[r-2]} < ${this.outputShape[r-2]}) {`,r===1?"":` ${o[r-1]} += 1;
|
|
if(${u}) {`],d=r===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",p="";for(let f=0,m=r===1?2:4;f<m;f++)p+=`
|
|
${h[f]}
|
|
if (${d}) {
|
|
result[${f}] = float(value);
|
|
} else {
|
|
${a} source = rc - start;
|
|
result[${f}] = getChannel(getX(${l.join()}), ${c});
|
|
}
|
|
`;p+=r===1?"} ":"}}",this.userCode=`
|
|
const ${a} start = ${a}(${s});
|
|
const ${a} end = ${a}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${a} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${p}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},K_=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{paddings:s,constantValue:i}=r,o=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Ij(a.shape,s,i):new kj(a.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[a],a.dtype,l)},Nj={kernelName:Us,backendName:"webgl",kernelFunc:K_},Sj=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,Tj=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Ip+`
|
|
return result;
|
|
`,Ej=on({opSnippet:Sj,packedOpSnippet:Tj}),Cj={kernelName:Hs,backendName:"webgl",kernelFunc:Ej};function Rj(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,keepDims:i}=r,o=a.shape.length,l=[],u=v.parseAxisParam(s,a.shape),c=u,h=R.getAxesPermutation(c,o),d=a;h!=null&&(d=Cn({inputs:{x:a},backend:n,attrs:{perm:h}}),c=R.getInnerMostAxes(c.length,o),l.push(d)),R.assertAxesAreInnerMostDims("prod",c,o);let p;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:A,outDtype:g}=JP(d.shape,d.dtype,f,c);p=n.makeTensorInfo(A,g,m)}else{let[f,m]=R.computeOutAndReduceShapes(d.shape,c),A=v.sizeFromShape(m),g=we({inputs:{x:d},backend:n,attrs:{shape:[-1,A]}}),y=xd(a.dtype),w=Ci(g,y,"prod",n);p=we({inputs:{x:w},backend:n,attrs:{shape:f}}),l.push(g),l.push(w)}if(i){l.push(p);let f=R.expandShapeToKeepDim(p.shape,u);p=we({inputs:{x:p},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),p}var Fj={kernelName:Uo,backendName:"webgl",kernelFunc:Rj},Z_=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=QP(r,a,s,i);return t.makeTensorInfo([o.length],i,o)},Mj={kernelName:Ru,backendName:"webgl",kernelFunc:Z_},$j="return 1.0 / x;",Dj=Qe({opSnippet:$j}),Oj={kernelName:Ho,backendName:"webgl",kernelFunc:Dj},zj=Nr+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,Pj=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Lj=Qe({opSnippet:zj,packedOpSnippet:Pj}),Wj={kernelName:Gs,backendName:"webgl",kernelFunc:Lj},Bj=Nr+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,Vj=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,Uj=Qe({opSnippet:Bj,packedOpSnippet:Vj}),Hj={kernelName:Xs,backendName:"webgl",kernelFunc:Uj},jj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":h="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},Gj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h;a?h="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":h="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]},
|
|
${u[1]/c[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${h};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function qj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=J().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Gj(a.shape,l,u,s,i):new jj(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],"float32")}var Xj={kernelName:qs,backendName:"webgl",kernelFunc:qj},Kj=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${r-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${a-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function Zj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new Kj(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var Yj={kernelName:cd,backendName:"webgl",kernelFunc:Zj},Jj=class{constructor(e,t,n,r,a){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[r&&t>1?i-1:i,r&&n>1?o-1:o],c=[r&&t>1?t-1:t,r&&n>1?n-1:n],h=r?"0.5":"0.0",d;a?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/c[0]},
|
|
${u[1]/c[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${d};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${h})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function Qj(e){let{inputs:t,backend:n,attrs:r}=e,{images:a}=t,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,c=new Jj(a.shape,l,u,s,i);return n.runWebGLProgram(c,[a],a.dtype)}var eG={kernelName:Fu,backendName:"webgl",kernelFunc:Qj},tG=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,r,a]=t,[,s,i]=e,o=[n&&s>1?r-1:r,n&&i>1?a-1:a],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],c=o[1]/l[1],h=1/u,d=1/c,p=Math.ceil(h)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${c});
|
|
|
|
const float invHeightScale = float(${h});
|
|
const float invWidthScale = float(${d});
|
|
|
|
const int winHeight = int(${p});
|
|
const int winWidth = int(${f});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function nG(e){let{inputs:t,backend:n,attrs:r}=e,{images:a,dy:s}=t,{alignCorners:i}=r,o=new tG(s.shape,a.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var rG={kernelName:ud,backendName:"webgl",kernelFunc:nG},aG=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let r=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,a=e.map((i,o)=>r(o)).join(","),s=dt(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${a}));
|
|
}
|
|
`}},sG=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let r=xn("rc",n),a=`${r[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${r[n-2]} + 1 < ${this.outputShape[n-2]}`,i=dt(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${a}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(r.slice())};
|
|
if(${a}){
|
|
result.g = ${l(r.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(r.slice())};
|
|
if(${a}) {
|
|
result.a = ${c(r.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(p){return h(p)}function l(p){return p[n-1]="("+p[n-1]+" + 1)",h(p)}function u(p){return p[n-2]="("+p[n-2]+" + 1)",h(p)}function c(p){return p[n-1]="("+p[n-1]+" + 1)",p[n-2]="("+p[n-2]+" + 1)",h(p)}function h(p){let f=e.map((g,y)=>d(y,p)),m=f.join(","),A=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${A}))`}function d(p,f){return t.indexOf(p)!==-1&&e[p]!==1?`${e[p]} - ${f[p]} - 1`:`${f[p]}`}}};function iG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=a.shape.length,o=v.parseAxisParam(s,a.shape);if(i===0)return Bn({inputs:{x:a},backend:n});let l=J().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new sG(a.shape,o):new aG(a.shape,o);return n.runWebGLProgram(l,[a],a.dtype)}var oG={kernelName:Ks,backendName:"webgl",kernelFunc:iG},lG=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],r=e[2];this.outputShape=e;let a="";typeof t=="number"?a=`float outputValue = ${t.toFixed(2)};`:a=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${a}
|
|
if(coordX >= 0 && coordX < ${r} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,r){return(a,s)=>{this.paramsLoc==null&&(this.paramsLoc=a.getUniformLocationNoThrow(s,"params")),a.gl.uniform4f(this.paramsLoc,e,t,n,r)}}},uG={kernelName:sl,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:r}=e,{radians:a,fillValue:s,center:i}=t,o=n,l=new lG(r.shape,s),[u,c]=R.getImageCenter(i,r.shape[1],r.shape[2]),h=l.getCustomSetupFunc(u,c,Math.sin(a),Math.cos(a));return o.runWebGLProgram(l,[r],r.dtype,h)}},cG=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,hG=Qe({opSnippet:cG}),dG={kernelName:Zs,backendName:"webgl",kernelFunc:hG},pG="return inversesqrt(x);",fG=Qe({opSnippet:pG,cpuKernelImpl:eL}),mG={kernelName:Ys,backendName:"webgl",kernelFunc:fG},Y_=class{constructor(e,t,n,r,a,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=dt(a.length),l=dt(s.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,h="";r===1?h="i":r===2&&(h="i, coords[1]");let d=`getUpdates(${h})`,p=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${a});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${c});
|
|
flattenedIndex += index * ${p};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${d};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function AG(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a,updates:s}=t,{shape:i}=r,{sliceRank:o,numUpdates:l,sliceSize:u,strides:c,outputSize:h}=R.calculateShapes(s,a,i),d=[h/u,u];if(h===0)return n.makeTensorInfo(i,a.dtype);let p=we({inputs:{x:a},backend:n,attrs:{shape:[l,o]}}),f=we({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),A=new Y_(l,o,p.shape.length,f.shape.length,c,d),g=n.runWebGLProgram(A,[f,p,m],f.dtype),y=we({inputs:{x:g},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(m),y}var gG={kernelName:Go,backendName:"webgl",kernelFunc:AG},yG=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let r,a;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)a="resRC",r="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);r=o.join(),a=l.join()}let s=dt(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${r});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${a}));
|
|
} else {
|
|
setOutput(getB(${a}));
|
|
}
|
|
}
|
|
`}};function xG(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=new yG(r.shape.length,a.shape,a.shape.length);return n.runWebGLProgram(i,[r,a,s],cr(a.dtype,s.dtype))}var wG={kernelName:qo,backendName:"webgl",kernelFunc:xG},bG=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${R.SELU_SCALEALPHA};
|
|
float scale = ${R.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,_G=Qe({opSnippet:bG}),vG={kernelName:Xo,backendName:"webgl",kernelFunc:_G},kG="return 1.0 / (1.0 + exp(-1.0 * x));",IG=Qe({opSnippet:kG}),NG={kernelName:Qs,backendName:"webgl",kernelFunc:IG},SG=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,TG=Qe({opSnippet:SG}),EG={kernelName:Yo,backendName:"webgl",kernelFunc:TG},CG=c_+`
|
|
return sin(x);
|
|
`,RG=Qe({opSnippet:CG}),FG={kernelName:Js,backendName:"webgl",kernelFunc:RG},MG=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,$G=Qe({opSnippet:MG}),DG={kernelName:Zo,backendName:"webgl",kernelFunc:$G},OG=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,zG=Qe({opSnippet:OG}),PG={kernelName:Jo,backendName:"webgl",kernelFunc:zG},LG=e=>{let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{blockShape:s,paddings:i}=r;v.assert(a.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((g,y)=>g*y),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<a.shape.length;++g)l.push([0,0]);let u=[],c=K_({inputs:{x:a},backend:n,attrs:{paddings:l,constantValue:0}}),h=R.getReshaped(c.shape,s,o,!1),d=R.getPermuted(h.length,s.length,!1),p=R.getReshapedPermuted(c.shape,s,o,!1),f=we({inputs:{x:c},backend:n,attrs:{shape:h}}),m=Cn({inputs:{x:f},backend:n,attrs:{perm:d}}),A=we({inputs:{x:m},backend:n,attrs:{shape:p}});return u.push(c),u.push(f),u.push(m),u.forEach(g=>n.disposeIntermediateTensorInfo(g)),A},WG={kernelName:Mu,backendName:"webgl",kernelFunc:LG};function BG(e){let{inputs:t,backend:n,attrs:r}=e,{sparseIndices:a,sparseValues:s,defaultValue:i}=t,{outputShape:o}=r,{sliceRank:l,numUpdates:u,strides:c,outputSize:h}=R.calculateShapes(s,a,o),d=!1,p=new Y_(u,l,a.shape.length,s.shape.length,c,[h,1],d),f=n.runWebGLProgram(p,[s,a,i],s.dtype),m=we({inputs:{x:f},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(f),m}var VG={kernelName:hd,backendName:"webgl",kernelFunc:BG};function UG(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=r,o=v.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=a.shape.length,c=new Array(u).fill(0),h=a.shape.slice();return l.map(d=>{let p=[...h];p[o]=d;let f=vc({inputs:{x:a},backend:n,attrs:{begin:c,size:p}});return c[o]+=d,f})}var HG={kernelName:Qo,backendName:"webgl",kernelFunc:UG},jG="return sqrt(x);",GG=Qe({opSnippet:jG}),qG={kernelName:ei,backendName:"webgl",kernelFunc:GG},XG="return x * x;",KG=Qe({opSnippet:XG}),ZG={kernelName:$u,backendName:"webgl",kernelFunc:KG},J_="return (a - b) * (a - b);",YG=on({opSnippet:J_,packedOpSnippet:J_}),JG={kernelName:ri,backendName:"webgl",kernelFunc:YG};function QG({inputs:e,attrs:t,backend:n}){let{x:r}=e,a=Nr+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Xa(r.shape,a);return n.runWebGLProgram(s,[r],r.dtype)}var eq={kernelName:Da,backendName:"webgl",kernelFunc:QG},tq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let r=n.length,a=dt(n.length),s=dt(n.length),i="";if(r===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${a} begin = ${a}(${e});
|
|
${a} strides = ${a}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function nq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,{nonStrided:p,$begin:f,$strides:m,size:A,newShape:g,outShape:y}=fn.sliceInfo(a.shape,s,i,o,l,u,c,h,d),w=we({inputs:{x:a},backend:n,attrs:{shape:g}}),b;if(p){let x=vc({inputs:{x:w},backend:n,attrs:{begin:f,size:A}});b=we({inputs:{x},backend:n,attrs:{shape:y}}),n.disposeIntermediateTensorInfo(x)}else if(y.some(x=>x===0))b=n.makeTensorInfo(y,a.dtype,[]);else if(n.shouldExecuteOnCPU([w])){let x=n.texData.get(w.dataId).values,N=Ue(w.shape,w.dtype,x),T=nL(y,N,m,f);b=n.makeTensorInfo(y,w.dtype,T.values)}else{let x=new tq(f,m,y);b=n.runWebGLProgram(x,[w],w.dtype)}let _=we({inputs:{x:b},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(b),_}var rq={kernelName:el,backendName:"webgl",kernelFunc:nq},aq="return tan(x);",sq=Qe({opSnippet:aq}),iq={kernelName:tl,backendName:"webgl",kernelFunc:sq},oq=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,lq=Qe({opSnippet:oq}),uq={kernelName:si,backendName:"webgl",kernelFunc:lq},hq=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let r=dt(this.rank),a=cq(e);this.userCode=`
|
|
void main() {
|
|
${r} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function cq(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],r=[];for(let a=0;a<e.length;a++)r.push(`imod(${n[a]}, ${e[a]})`);return r.join()}function Q_(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{reps:s}=r;if(a.dtype==="string"){let o=n.readSync(a.dataId).map(c=>v.decodeString(c)),l=Ue(a.shape,a.dtype,o),u=aL(l,s);return n.makeTensorInfo(u.shape,u.dtype,u.values)}let i=new hq(a.shape,s);return n.runWebGLProgram(i,[a],a.dtype)}var dq={kernelName:$a,backendName:"webgl",kernelFunc:Q_};function pq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{k:s,sorted:i}=r,o=n.readSync(a.dataId),[l,u]=sL(o,a.shape,a.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var fq={kernelName:nl,backendName:"webgl",kernelFunc:pq},mq=class{constructor(e,t,n,r,a,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(r){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${a});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${a});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function Aq(e){let{inputs:t,backend:n,attrs:r}=e,{image:a,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=r,[c,h,d,p]=a.shape,[f,m]=u!=null?u:[h,d],A=[c,f,m,p],g=new mq(h,d,i,o,l,A);return n.runWebGLProgram(g,[a,s],"float32")}var gq={kernelName:dd,backendName:"webgl",kernelFunc:Aq};function yq(e){let{inputs:t,attrs:n,backend:r}=e,{axis:a}=n,{x:s}=t;Ml(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=r.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=iL(i,a,s.shape,s.dtype);return[r.makeTensorInfo(l,s.dtype,o),r.makeTensorInfo([u.length],"int32",u)]}var xq={kernelName:pd,backendName:"webgl",kernelFunc:yq};function wq(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a,o=i.shape.length,l=a.shape[s],u=new Array(o-1),c=0;for(let m=0;m<o;m++)m!==s&&(u[c++]=i.shape[m]);let h=[],d=new Array(o).fill(0),p=i.shape.slice();p[s]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[s]=m;let A=vc({inputs:{x:i},backend:n,attrs:{begin:d,size:p}}),g=we({inputs:{x:A},backend:n,attrs:{shape:u}});f[m]=g,h.push(A)}return h.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var bq={kernelName:rl,backendName:"webgl",kernelFunc:wq},_q=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,r=e.batchSize,a=e.inSize,s=e.numSegments,i=s*Math.ceil(a/n);this.outputShape=[r,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,h=`
|
|
sumValue += dot(values, segFilter);
|
|
`,d="";a%n>0&&(d=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return initializationValue;
|
|
}
|
|
`);let p="";a%n>0&&(p=`
|
|
if (inIdx < 0 || inIdx >= ${a}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${d}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${p}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${c===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
} else if (${c===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${h}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function vq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a,segmentIds:s}=t,{numSegments:i}=r,o=a.shape.length,l=[],u=0,c=R.getAxesPermutation([u],o),h=a;c!=null&&(h=Cn({inputs:{x:a},backend:n,attrs:{perm:c}}),l.push(h),u=R.getInnerMostAxes(1,o)[0]);let d=R.segment_util.computeOutShape(h.shape,u,i),p=v.sizeFromShape([h.shape[u]]),f=we({inputs:{x:h},backend:n,attrs:{shape:[-1,p]}});l.push(f);let m=xd(a.dtype),A=(b,_,x,N,T)=>{let E=b.shape[0],M=b.shape[1],z=R.segment_util.segOpComputeOptimalWindowSize(M,T),B={windowSize:z,inSize:M,batchSize:E,numSegments:T},V=new _q(B,_),U=n.compileAndRun(V,[b,x],N);if(l.push(U),U.shape[1]===T)return U;let H=Z_({backend:n,attrs:{start:0,stop:T,step:1,dtype:"float32"}}),X=Q_({inputs:{x:H},backend:n,attrs:{reps:[M/z]}});return l.push(H),l.push(X),A(U,_,X,N,T)},g=A(f,"unsortedSegmentSum",s,m,i),y=we({inputs:{x:g},backend:n,attrs:{shape:d}}),w=y;if(c!=null){l.push(y);let b=R.getUndoAxesPermutation(c);w=Cn({inputs:{x:w},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),w}var kq={kernelName:Du,backendName:"webgl",kernelFunc:vq},Iq=[fH,gH,nW,aW,oW,cW,dW,mW,gW,xW,vW,IW,TW,RW,PW,$W,BW,jW,UW,KW,YW,QW,rB,cB,dB,yB,wB,kB,SB,zL,RB,BB,UB,DB,qB,KB,jB,JB,tV,aV,iV,lV,hV,gV,xV,pV,_V,IV,EV,MV,zV,WV,BV,VV,HV,GV,XV,ZV,JV,nU,iU,lU,cU,pU,gU,bU,IU,OL,SU,CB,CU,MU,OU,LL,WU,HU,GU,QU,ZU,rH,iH,cH,xH,SH,IH,RH,MH,DH,vH,zH,LH,UH,qH,YH,sj,HL,oj,cj,pj,Aj,fB,xj,bj,vj,Nj,Cj,BL,Fj,Mj,mB,tj,Oj,Hj,Wj,GL,Xj,Yj,eG,rG,oG,uG,dG,mG,gG,wG,vG,NG,EG,FG,DG,lB,rj,PG,WG,VG,HG,qG,ZG,JG,eq,rq,nj,QL,iq,uq,dq,fq,gq,eW,xq,bq,kq,wj];for(let e of Iq)ci(e);var Vn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Vn||(Vn={}));var Ic;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu"})(Ic||(Ic={}));var e3;function Nq(e){e3=e.wasm.cwrap(oi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Sq(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s,bias:i,preluActivationWeights:o}=t;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:h}=r,d=n.dataIdMap.get(a.dataId).id,p=n.dataIdMap.get(s.dataId).id,f=0;if(i!=null){let T=n.dataIdMap.get(i.dataId);if(T.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${T.shape.length}.`);f=T.id}let m=o==null?0:n.dataIdMap.get(o.dataId).id,A=Ic[c];if(A==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let g=l?a.shape[2]:a.shape[1],y=u?s.shape[1]:s.shape[2],w=a.shape[0],b=n.makeOutput([w,g,y],a.dtype),_=n.dataIdMap.get(b.dataId).id,x=new Uint8Array(new Int32Array(a.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return e3(d,x,a.shape.length,p,N,s.shape.length,l,u,A,f,m,h||0,_),b}var Tq={kernelName:oi,backendName:"wasm",setupFunc:Nq,kernelFunc:Sq};function Rn(e){let t;function n(a){t=a.wasm.cwrap(e,null,["number","number"])}function r(a){let{backend:s,inputs:{x:i}}=a,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return v.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:r}}var Eq=Rn(io);function wn(e,t,n){let r;function a(i){r=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:c}=l,h=o.dataIdMap.get(u.dataId).id,d=o.dataIdMap.get(c.dataId).id,p=n!=null?n:u.dtype,f=R.assertAndGetBroadcastShape(u.shape,c.shape),m=o.makeOutput(f,p);if(v.sizeFromShape(f)===0)return m;let A=new Uint8Array(new Int32Array(u.shape).buffer),g=new Uint8Array(new Int32Array(c.shape).buffer),y=o.dataIdMap.get(m.dataId).id,w=()=>r(h,A,u.shape.length,d,g,c.shape.length,Vn[u.dtype],y);if(t&&u.dtype==="float32")return w(),m;let b=R.getBroadcastDims(u.shape,f),_=R.getBroadcastDims(c.shape,f),x=b.every((T,E)=>T===E),N=_.every((T,E)=>T===E);if(x&&N)return w(),m;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:a,kernelFunc:s}}var Cq=!0,Rq=wn(Fa,Cq),t3;function Fq(e){t3=e.wasm.cwrap(ms,null,["array","number","number","number"])}function Mq(e){let{inputs:t,backend:n}=e,r=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(r.shape)===0)return r;let a=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(a).buffer),i=n.dataIdMap.get(r.dataId).id;return t3(s,a.length,Vn[r.dtype],i),r}var $q={kernelName:ms,backendName:"wasm",setupFunc:Fq,kernelFunc:Mq};function Mp(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype),a=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(r).set(a),r}var Dq={kernelName:Fs,backendName:"wasm",kernelFunc:Mp},n3;function Oq(e){n3=e.wasm.cwrap(ii,null,["number","array","number","number","number","array","number"])}function $p(e){let{inputs:t,backend:n,attrs:r}=e,[a,s]=Pq(t.x.shape,r.perm),i=!0;for(let f=0;f<s.length;f++)s[f]!==f&&(i=!1);let o=zq(t.x.shape,r.perm),l={dataId:t.x.dataId,shape:a,dtype:t.x.dtype};if(i){let f=Mp({inputs:t,backend:n});return f.shape=o,f}let u=n.makeOutput(o,l.dtype),c=n.dataIdMap.get(l.dataId).id,h=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(s).buffer),p=new Uint8Array(new Int32Array(l.shape).buffer);return n3(c,p,l.shape.length,Vn[l.dtype],h,d,s.length),u}function zq(e,t){let n=new Array(e.length);for(let r=0;r<n.length;r++)n[r]=e[t[r]];return n}function Pq(e,t){let n=[],r=[];for(let a=0;a<e.length;++a)e[a]!==1&&n.push(e[a]),e[t[a]]!==1&&r.push(t[a]);for(let a=0;a<r.length;++a){let s=-1;for(let i=0;i<r.length;++i)r[i]>=a&&(s===-1||r[s]>r[i])&&(s=i);r[s]=a}return[n,r]}var Lq={kernelName:ii,backendName:"wasm",kernelFunc:$p,setupFunc:Oq};function Hl(e,t,n){let r=e.shape,a=e.shape.length,s=v.parseAxisParam(t,r),i=s,o=R.getAxesPermutation(i,a),l=null,u=!1;if(o!=null){let c=new Array(a);for(let d=0;d<c.length;d++)c[d]=r[o[d]];i=R.getInnerMostAxes(i.length,a),l=$p({inputs:{x:e},attrs:{perm:o},backend:n});let h=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==h&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var r3;function Wq(e){r3=e.wasm.cwrap(As,null,["number","number","number","number","number"])}function Bq(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:c,inputWasTransposed:h}=Hl(s,a,t);if(h){let g=t.dataIdMap.get(u.dataId).id;g!==i&&(l=u,o=g)}let d=l.shape.slice(0,-1),p=t.makeOutput(d,"int32"),f=t.dataIdMap.get(p.dataId).id,m=v.sizeFromShape(p.shape),A=l.shape[c[0]];return r3(o,Vn[l.dtype],m,A,f),h&&t.disposeData(u.dataId),p}var Vq={kernelName:As,backendName:"wasm",kernelFunc:Bq,setupFunc:Wq},a3;function Uq(e){a3=e.wasm.cwrap(gs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Hq(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.strideHeight,y=c.strideWidth,w=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=r.makeOutput(c.outShape,"float32"),_=r.dataIdMap.get(b.dataId).id;return a3(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,g,y,w,_),b}var jq={kernelName:gs,backendName:"wasm",setupFunc:Uq,kernelFunc:Hq};function Sr(e){let{inputs:t,attrs:n}=e,{x:r}=t,{shape:a}=n,s=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,s);return v.assert(s===v.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${r.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(r.dataId),{dataId:r.dataId,shape:i,dtype:r.dtype}}var Gq={kernelName:jo,backendName:"wasm",kernelFunc:Sr},s3;function qq(e){s3=e.wasm.cwrap(ys,null,["number","array","number","number","array","number","number","number","number"])}function Xq(e){let{inputs:t,backend:n,attrs:r}=e,{a,b:s}=t,{transposeA:i,transposeB:o}=r;if(a.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=a.shape.length,u=s.shape.length,c=i?a.shape[l-2]:a.shape[l-1],h=o?s.shape[u-1]:s.shape[u-2],d=i?a.shape[l-1]:a.shape[l-2],p=o?s.shape[u-2]:s.shape[u-1],f=a.shape.slice(0,-2),m=s.shape.slice(0,-2),A=v.sizeFromShape(f),g=v.sizeFromShape(m),y=A===g||A===1||g===1;v.assert(l>=2&&u>=2&&y,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${m}).`);let w=(A>g?a.shape.slice(0,-2):s.shape.slice(0,-2)).concat([d,p]);v.assert(c===h,()=>`Error in matMul: inner shapes (${c}) and (${h}) of Tensors with shapes ${a.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let b=i?[A,c,d]:[A,d,c],_=o?[g,p,h]:[g,h,p],x=Sr({inputs:{x:a},backend:n,attrs:{shape:b}}),N=Sr({inputs:{x:s},backend:n,attrs:{shape:_}}),T=n.dataIdMap.get(x.dataId).id,E=n.dataIdMap.get(N.dataId).id,M=i?x.shape[2]:x.shape[1],z=o?N.shape[1]:N.shape[2],B=Math.max(A,g),V=n.makeOutput([B,M,z],x.dtype),U=n.dataIdMap.get(V.dataId).id,H=new Uint8Array(new Int32Array(x.shape).buffer),X=new Uint8Array(new Int32Array(N.shape).buffer);return s3(T,H,x.shape.length,E,X,N.shape.length,i,o,U),n.disposeData(x.dataId),n.disposeData(N.dataId),V.shape=w,V}var Kq={kernelName:ys,backendName:"wasm",setupFunc:qq,kernelFunc:Xq};function Dp(e){let{inputs:{x:t},attrs:{dtype:n},backend:r}=e,a=r.makeOutput(t.shape,n),s=r.typedArrayFromHeap(t);return r.typedArrayFromHeap(a).set(s),a}var Zq={kernelName:xs,backendName:"wasm",kernelFunc:Dp},Yq=Rn(ws),i3;function Jq(e){i3=e.wasm.cwrap(Ma,null,["number","number","number","number"])}function Qq(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{clipValueMin:s,clipValueMax:i}=r,o=n.dataIdMap.get(a.dataId).id,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(l.dataId).id;return i3(o,s,i,u),l}var eX={kernelName:Ma,backendName:"wasm",setupFunc:Jq,kernelFunc:Qq};function o3(e){let{inputs:t,backend:n}=e,r=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],a=R.computeOutShape(t.map(p=>p.shape),r),s=t.filter(p=>v.sizeFromShape(p.shape)>0);if(s.length===1)return Mp({inputs:{x:s[0]},backend:n});let i=n.makeOutput(a,t[0].dtype);if(v.sizeFromShape(a)===0)return i;let o=s.map(p=>p.shape);if(R.assertParamsConsistent(o,r),s[0].dtype==="string"){let p=s.map(w=>{let b=v.sizeFromShape(w.shape.slice(r));return Sr({inputs:{x:w},backend:n,attrs:{shape:[-1,b]}})}),f=p.map(w=>({vals:n.readSync(w.dataId),shape:w.shape}));a=R.computeOutShape(p.map(w=>w.shape),1);let m=p[0].shape[0]===1,A=Gm(f,a,t[0].dtype,m),g=R.computeOutShape(s.map(w=>w.shape),r);i.shape=g;let y=n.dataIdMap.get(i.dataId);return y.stringBytes=R.fromStringArrayToUint8(A),p.forEach(w=>n.disposeData(w.dataId)),i}let l=v.sizeFromShape(s[0].shape.slice(0,r)),u=0,c=s.map(p=>{let f=v.sizeFromShape(p.shape.slice(r));return u+=f,f}),h=s.map(p=>n.typedArrayFromHeap(p)),d=n.typedArrayFromHeap(i);for(let p=0;p<l;p++){let f=p*u;for(let m=0;m<h.length;m++){let A=c[m],g=p*A,y=h[m].subarray(g,g+A);d.set(y,f),f+=A}}return i}var tX={kernelName:mo,backendName:"wasm",kernelFunc:o3},l3;function nX(e){l3=e.wasm.cwrap(bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function rX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h,dataFormat:d}=n,p=R.convertConv2DDataFormat(d),f=R.computeConv2DInfo(a.shape,s.shape,l,u,c,h,!1,p),m=f.filterHeight,A=f.filterWidth,g=f.padInfo.top,y=f.padInfo.right,w=f.padInfo.bottom,b=f.padInfo.left,_=f.dilationHeight,x=f.dilationWidth,N=f.strideHeight,T=f.strideWidth,E=f.inChannels,M=f.outChannels,z=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let B=r.makeOutput(f.outShape,"float32"),V=r.dataIdMap.get(B.dataId).id;return l3(i,a.shape[0],a.shape[1],a.shape[2],o,m,A,g,y,w,b,z,_,x,N,T,E,M,V),B}var aX={kernelName:bs,backendName:"wasm",setupFunc:nX,kernelFunc:rX},u3;function sX(e){u3=e.wasm.cwrap(_s,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function iX(e){let{backend:t,inputs:n,attrs:r}=e,{dy:a,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:c}=r,h=1,d=R.convertConv2DDataFormat(l),p=R.computeConv2DInfo(c,s.shape,i,h,o,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:A,inChannels:g,inHeight:y,inWidth:w,outChannels:b,outHeight:_,outWidth:x,strideHeight:N,strideWidth:T}=p,E=m-1-p.padInfo.top,M=A-1-p.padInfo.left,z=p.dataFormat==="channelsLast",B=v.computeStrides(p.inShape),V=v.computeStrides(a.shape),[U,H,X]=v.computeStrides(s.shape),G=B[0],ee=z?B[1]:B[2],Y=z?B[2]:1,se=z?1:B[1],ne=V[0],le=z?V[1]:V[2],Q=z?V[2]:1,pe=z?1:V[1],ue=t.makeOutput(p.inShape,"float32"),ge=t.dataIdMap.get(ue.dataId).id,me=t.dataIdMap.get(a.dataId).id,Se=t.dataIdMap.get(s.dataId).id;return u3(me,Se,f,m,A,y,w,g,_,x,b,N,T,E,M,U,H,X,G,ee,Y,se,ne,le,Q,pe,ge),ue}var oX={kernelName:_s,backendName:"wasm",setupFunc:sX,kernelFunc:iX},lX=Rn(vs),IA;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(IA||(IA={}));var c3;function uX(e){c3=e.wasm.cwrap(go,null,["number","number","number","number","array","number","number","number","number","number"])}function cX(e){let{backend:t,inputs:n,attrs:r}=e,{method:a,extrapolationValue:s,cropSize:i}=r,{image:o,boxes:l,boxInd:u}=n,c=l.shape[0],[h,d]=i,p=[c,h,d,o.shape[3]],f=t.dataIdMap.get(o.dataId),m;o.dtype!=="float32"&&(m=Dp({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let A=f.id,g=t.dataIdMap.get(l.dataId).id,y=t.dataIdMap.get(u.dataId).id,w=t.makeOutput(p,"float32"),b=t.dataIdMap.get(w.dataId).id,_=new Uint8Array(new Int32Array(o.shape).buffer);return c3(A,g,y,c,_,h,d,IA[a],s,b),m!=null&&t.disposeData(m.dataId),w}var hX={kernelName:go,backendName:"wasm",setupFunc:uX,kernelFunc:cX},h3;function dX(e){h3=e.wasm.cwrap(ks,null,["number","number","number","number","number","number"])}function pX(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{axis:s,exclusive:i,reverse:o}=r,l=a.shape.length;v.assert(a.dtype==="float32"||a.dtype==="int32",()=>`cumsum does not support ${a.dtype} tensors in the WASM backend`);let u=R.getAxesPermutation([s],l),c=a;u!==null&&(c=$p({inputs:{x:a},attrs:{perm:u},backend:n}));let h=R.getInnerMostAxes(1,l)[0];R.assertAxesAreInnerMostDims("cumsum",[h],l);let d=n.makeOutput(c.shape,c.dtype),p=c.shape[h],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;h3(f,i?1:0,o?1:0,p,m,Vn[a.dtype]);let A=d;if(u!==null){let g=R.getUndoAxesPermutation(u);A=$p({inputs:{x:d},attrs:{perm:g},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return A}var fX={kernelName:ks,backendName:"wasm",setupFunc:dX,kernelFunc:pX},d3;function mX(e){d3=e.wasm.cwrap(yo,null,["number","number","number","array","number","array","array","number","number"])}function AX(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{blockSize:s,dataFormat:i}=r;v.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=a.shape[0],l=i==="NHWC"?a.shape[1]:a.shape[2],u=i==="NHWC"?a.shape[2]:a.shape[3],c=i==="NHWC"?a.shape[3]:a.shape[1],h=l*s,d=u*s,p=c/(s*s),f=i==="NHWC"?[o,h,d,p]:[o,p,h,d],m=t.makeOutput(f,"float32"),A=t.dataIdMap.get(a.dataId).id,g=new Uint8Array(new Int32Array(v.computeStrides(a.shape)).buffer),y=new Uint8Array(new Int32Array(f).buffer),w=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),b=t.dataIdMap.get(m.dataId).id;return d3(A,s,i==="NHWC"?1:0,g,a.shape.length-1,y,w,f.length,b),m}var gX={kernelName:yo,backendName:"wasm",setupFunc:mX,kernelFunc:AX},p3;function yX(e){p3=e.wasm.cwrap(Is,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function xX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s}=t,i=r.dataIdMap.get(a.dataId).id,o=r.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:h}=n,d=u==null?[1,1]:u,p=R.computeConv2DInfo(a.shape,s.shape,l,d,c,h,!0),f=p.filterHeight,m=p.filterWidth,A=p.padInfo.top,g=p.padInfo.right,y=p.padInfo.bottom,w=p.padInfo.left,b=p.dilationHeight,_=p.dilationWidth,x=p.strideHeight,N=p.strideWidth,T=p.inChannels,E=p.outChannels,M=p.padInfo.type==="SAME"?1:0;if(p.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${p.dataFormat}'. Please use 'channelsLast'.`);let z=r.makeOutput(p.outShape,"float32"),B=r.dataIdMap.get(z.dataId).id;return p3(i,a.shape[0],a.shape[1],a.shape[2],o,f,m,A,g,y,w,M,b,_,x,N,T,E,B),z}var wX={kernelName:Is,backendName:"wasm",setupFunc:yX,kernelFunc:xX},bX=!1,_X=wn(bo,bX,"bool"),vX=Rn(Ss);function NA(e){let{inputs:t,attrs:n,backend:r}=e,{input:a}=t,{dim:s}=n,i=a.shape.length,o=a.shape.slice(),l=s;return s<0&&(v.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Sr({inputs:{x:a},backend:r,attrs:{shape:o}})}var kX={kernelName:_o,backendName:"wasm",kernelFunc:NA};function IX(e){let{attrs:{shape:t,value:n,dtype:r},backend:a}=e,s=a.makeOutput(t,r);return a.typedArrayFromHeap(s).fill(n),s}var NX={kernelName:Iu,backendName:"wasm",kernelFunc:IX},f3;function SX(e){f3=e.wasm.cwrap(ko,null,["number","number","number","number","number","number"])}function TX(e){let{inputs:t,backend:n}=e,{image:r}=t,a=n.makeOutput(r.shape,r.dtype),s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,[o,l,u,c]=r.shape;return f3(s,o,l,u,c,i),a}var EX={kernelName:ko,backendName:"wasm",kernelFunc:TX,setupFunc:SX},CX=Rn(Ts),RX=!1,FX=wn(Es,RX),m3;function MX(e){m3=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number","number"])}function $X(e){let{backend:t,inputs:n,attrs:r}=e,{varianceEpsilon:a}=r,{x:s,mean:i,variance:o,offset:l,scale:u}=n,c=t.dataIdMap.get(s.dataId).id,h=t.dataIdMap.get(i.dataId).id,d=t.dataIdMap.get(o.dataId).id,p=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(s.shape,s.dtype);if(v.sizeFromShape(s.shape)===0)return m;let A=t.dataIdMap.get(m.dataId).id;return m3(c,h,d,p,f,a,A),m}var DX={kernelName:Cs,backendName:"wasm",setupFunc:MX,kernelFunc:$X},A3;function OX(e){A3=e.wasm.cwrap(li,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function zX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedConv2D in the wasm backend.`);let g=r.dataIdMap.get(a.dataId).id,y=r.dataIdMap.get(s.dataId).id,w=m.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==w)throw new Error(`FusedConv2D bias shape (${Q.shape}) does not match the number of output channels (${w})`);b=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,B=m.dilationWidth,V=m.strideHeight,U=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return A3(g,G,ee,Y,y,_,x,b,N,T,E,M,X,z,B,V,U,H,w,A,le,f||0,ne),se}var PX={kernelName:li,backendName:"wasm",setupFunc:OX,kernelFunc:zX},g3;function LX(e){g3=e.wasm.cwrap(ui,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function WX(e){let{inputs:t,attrs:n,backend:r}=e,{x:a,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:c,dataFormat:h,dimRoundingMode:d,activation:p,leakyreluAlpha:f}=n,m=R.computeConv2DInfo(a.shape,s.shape,l,c,u,d,!0),A=Ic[p];if(A==null)throw new Error(`${p} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let g=r.dataIdMap.get(a.dataId).id,y=r.dataIdMap.get(s.dataId).id,w=m.outChannels,b=0;if(i!=null){let Q=r.dataIdMap.get(i.dataId);if(Q.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Q.shape.length}.`);if(Q.shape[0]!==w)throw new Error(`FusedDepthwiseConv2D bias shape (${Q.shape}) does not match the number of output channels (${w})`);b=Q.id}let _=m.filterHeight,x=m.filterWidth,N=m.padInfo.top,T=m.padInfo.right,E=m.padInfo.bottom,M=m.padInfo.left,z=m.dilationHeight,B=m.dilationWidth,V=m.strideHeight,U=m.strideWidth,H=m.inChannels,X=m.padInfo.type==="SAME"?1:0,G=m.batchSize,ee=m.inHeight,Y=m.inWidth;if(h!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${h}'. Please use 'NHWC'.`);let se=r.makeOutput(m.outShape,"float32"),ne=r.dataIdMap.get(se.dataId).id,le=o==null?0:r.dataIdMap.get(o.dataId).id;return g3(g,G,ee,Y,y,_,x,b,N,T,E,M,X,z,B,V,U,H,w,A,le,f||0,ne),se}var BX={kernelName:ui,backendName:"wasm",setupFunc:LX,kernelFunc:WX},y3;function VX(e){y3=e.wasm.cwrap(No,null,["number","number","number","number","number","number","array","number"])}function UX(e){let{backend:t,inputs:n}=e,{params:r,indices:a}=n,[s,i,o,l]=jf.prepareAndValidate(r,a),u=t.makeOutput(s,r.dtype);if(i===0)return u;let c=a.shape,h=c[c.length-1],d=t.dataIdMap.get(r.dataId).id,p=t.dataIdMap.get(a.dataId).id,f=new Uint8Array(new Int32Array(l).buffer),m=t.dataIdMap.get(u.dataId).id;return y3(d,Vn[r.dtype],p,i,h,o,f,m),u}var HX={kernelName:No,backendName:"wasm",setupFunc:VX,kernelFunc:UX},x3;function jX(e){x3=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function GX(e){let{backend:t,inputs:n,attrs:r}=e,{x:a,indices:s}=n,{axis:i,batchDims:o}=r,l=v.parseAxisParam(i,a.shape)[0],u=R.segment_util.collectGatherOpShapeInfo(a,s,l,o),c=Sr({inputs:{x:a},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),h=v.sizeFromShape(s.shape),d=Sr({inputs:{x:s},attrs:{shape:[u.batchSize,h/u.batchSize]},backend:t}),p=[u.batchSize,u.outerSize,h/u.batchSize,u.sliceSize],f=t.makeOutput(p,a.dtype);if(v.sizeFromShape(a.shape)===0)return f;let m=c.shape.length-1,A=t.dataIdMap.get(c.dataId).id,g=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(f.dataId).id,w=new Uint8Array(new Int32Array(v.computeStrides(c.shape)).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(p)).buffer);return x3(A,Vn[a.dtype],w,m,g,u.batchSize,b,y),t.disposeData(c.dataId),t.disposeData(d.dataId),f.shape=u.outputShape,f}var qX={kernelName:Io,backendName:"wasm",setupFunc:jX,kernelFunc:GX},XX=!1,KX=wn(So,XX,"bool"),ZX=!1,YX=wn(Rs,ZX,"bool"),w3;function JX(e){w3=e.wasm.cwrap(Ms,null,["number","number","number"])}function QX(e){let{inputs:{x:t},attrs:{alpha:n},backend:r}=e,a=r.dataIdMap.get(t.dataId).id,s=r.makeOutput(t.shape,t.dtype);if(v.sizeFromShape(t.shape)!==0){let i=r.dataIdMap.get(s.dataId).id;w3(a,n,i)}return s}var eK={kernelName:Ms,backendName:"wasm",setupFunc:JX,kernelFunc:QX},tK=!1,nK=wn(Ro,tK,"bool"),rK=!1,aK=wn(Fo,rK,"bool"),sK=Rn($s),iK=!1,oK=wn($o,iK,"bool"),b3;function lK(e){b3=e.wasm.cwrap(Ds,null,["number, number, number"])}function uK(e){let{backend:t,inputs:n,attrs:r}=e,{reductionIndices:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:c,originalAxes:h,inputWasTransposed:d}=Hl(i,a,t);if(d){let y=t.dataIdMap.get(u.dataId).id;l=u,o=y}let p=l.shape.length;R.assertAxesAreInnerMostDims("max",c,p);let[f,m]=R.computeOutAndReduceShapes(l.shape,c),A=v.sizeFromShape(m),g=t.makeOutput(f,i.dtype);if(v.sizeFromShape(l.shape)!==0){let y=t.dataIdMap.get(g.dataId).id;b3(o,A,y)}if(d&&t.disposeData(u.dataId),s){let y=R.expandShapeToKeepDim(g.shape,h);g.shape=y}return g}var cK={kernelName:Ds,backendName:"wasm",setupFunc:lK,kernelFunc:uK},hK=!1,dK=wn(Os,hK),_3;function pK(e){_3=e.wasm.cwrap(zs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function fK(e){let{inputs:t,attrs:n,backend:r}=e,a=t.x,s=r.dataIdMap.get(a.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,c=R.computePool2DInfo(a.shape,i,o,1,l,u),h=c.filterHeight,d=c.filterWidth,p=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,A=c.padInfo.left,g=c.dilationHeight,y=c.dilationWidth,w=c.strideHeight,b=c.strideWidth,_=c.inChannels,x=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let N=r.makeOutput(c.outShape,"float32"),T=r.dataIdMap.get(N.dataId).id;return _3(s,a.shape[0],a.shape[1],a.shape[2],h,d,p,f,m,A,g,y,w,b,_,x,T),N}var mK={kernelName:zs,backendName:"wasm",setupFunc:pK,kernelFunc:fK},v3;function AK(e){v3=e.wasm.cwrap(Ps,null,["number, number, number"])}function gK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Hl(i,a,t),f=h;if(p){let b=t.dataIdMap.get(c.dataId).id;b!==o&&(u=c,l=b,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=u;u.dtype!=="float32"&&(y=Dp({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(y.dataId).id);let w=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(w.dataId).id;v3(l,g,b)}if(p&&t.disposeData(c.dataId),s){let b=R.expandShapeToKeepDim(w.shape,d);w.shape=b}return u.dtype!=="float32"&&t.disposeData(y.dataId),w}var yK={kernelName:Ps,backendName:"wasm",setupFunc:AK,kernelFunc:gK},k3;function xK(e){k3=e.wasm.cwrap(Ls,null,["number, number, number"])}function wK(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Hl(i,a,t);if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w)}let f=u.shape.length;R.assertAxesAreInnerMostDims("min",h,f);let[m,A]=R.computeOutAndReduceShapes(u.shape,h),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;k3(l,g,w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var bK={kernelName:Ls,backendName:"wasm",setupFunc:xK,kernelFunc:wK},_K=!1,vK=wn(Ws,_K),kK=!0,IK=wn(Bs,kK),NK=Rn(Oo);function SA(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),r=n[0],a=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:r,selectedSize:a,pSelectedScores:s,pValidOutputs:i}}var I3;function SK(e){I3=e.wasm.cwrap(Po,"number",["number","number","number","number","number"])}function TK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i}=r,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,c=t.dataIdMap.get(l.dataId).id,h=I3(u,c,s,a,i),{pSelectedIndices:d,selectedSize:p,pSelectedScores:f,pValidOutputs:m}=SA(t,h);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([p],"int32",d)}var EK={kernelName:Po,backendName:"wasm",setupFunc:SK,kernelFunc:TK},N3;function CK(e){N3=e.wasm.cwrap(Lo,"number",["number","number","number","number","number","bool"])}function RK(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=N3(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=SA(t,d);t.wasm._free(m);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([],"int32",A);return[g,y]}var FK={kernelName:Lo,backendName:"wasm",setupFunc:CK,kernelFunc:RK},S3;function MK(e){S3=e.wasm.cwrap(Wo,"number",["number","number","number","number","number","number"])}function $K(e){let{backend:t,inputs:n,attrs:r}=e,{iouThreshold:a,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=r,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,h=t.dataIdMap.get(u.dataId).id,d=S3(c,h,s,a,i,o),{pSelectedIndices:p,selectedSize:f,pSelectedScores:m,pValidOutputs:A}=SA(t,d);t.wasm._free(A);let g=t.makeOutput([f],"int32",p),y=t.makeOutput([f],"float32",m);return[g,y]}var DK={kernelName:Wo,backendName:"wasm",setupFunc:MK,kernelFunc:$K},OK=!1,zK=wn(zo,OK,"bool"),T3;function PK(e){T3=e.wasm.cwrap(Vs,null,["number","number","number","number","number"])}function LK(e){let{inputs:t,backend:n,attrs:r}=e,{indices:a}=t,{depth:s,onValue:i,offValue:o}=r,l=n.makeOutput([...a.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,c=n.dataIdMap.get(a.dataId).id;return T3(c,s,i,o,u),l}var WK={kernelName:Vs,backendName:"wasm",setupFunc:PK,kernelFunc:LK};function BK(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(1),r}var VK={kernelName:Bo,backendName:"wasm",kernelFunc:BK};function UK(e){let{inputs:t,backend:n,attrs:r}=e,{axis:a}=r;if(t.length===1)return NA({inputs:{input:t[0]},backend:n,attrs:{dim:a}});let s=t[0].shape,i=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(s,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(i===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(c=>{let h=NA({inputs:{input:c},backend:n,attrs:{dim:a}});return o.push(h),h}),u=o3({inputs:l,backend:n,attrs:{axis:a}});return o.forEach(c=>n.disposeData(c.dataId)),u}var HK={kernelName:Vo,backendName:"wasm",kernelFunc:UK},E3;function jK(e){E3=e.wasm.cwrap(Us,null,["number","array","number","number","array","array","number","number"])}function GK(e){let{inputs:{x:t},backend:n,attrs:{paddings:r,constantValue:a}}=e,s=r.map((f,m)=>f[0]+t.shape[m]+f[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=r.map(f=>f[0]),h=r.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),p=new Uint8Array(new Int32Array(h).buffer);return E3(i,u,t.shape.length,Vn[t.dtype],d,p,a,l),o}var qK={kernelName:Us,backendName:"wasm",kernelFunc:GK,setupFunc:jK},XK=!1,KK=wn(Hs,XK),C3;function ZK(e){C3=e.wasm.cwrap(js,null,["number","number","number"])}function YK(e){let{inputs:t,backend:n}=e,{x:r,alpha:a}=t,s=n.dataIdMap.get(r.dataId).id,i=n.dataIdMap.get(a.dataId).id,o=n.makeOutput(r.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return C3(s,i,l),o}var JK={kernelName:js,backendName:"wasm",setupFunc:ZK,kernelFunc:YK},R3;function QK(e){R3=e.wasm.cwrap(Uo,null,["number","number","number","number"])}function eZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Hl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;R3(l,g,Vn[y.dtype],w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var tZ={kernelName:Uo,backendName:"wasm",setupFunc:QK,kernelFunc:eZ},nZ=e=>{let{backend:t,attrs:n}=e,{start:r,stop:a,step:s,dtype:i}=n,o=Km(r,a,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},rZ={kernelName:Ru,backendName:"wasm",kernelFunc:nZ},aZ=!0,sZ=wn(Ns,aZ),iZ=Rn(Gs),oZ=Rn(Xs),F3;function lZ(e){F3=e.wasm.cwrap(qs,null,["number","number","number","number","number","number","number","number","number","number"])}function uZ(e){let{backend:t,inputs:n,attrs:r}=e,{images:a}=n,{alignCorners:s,halfPixelCenters:i,size:o}=r,[l,u]=o,[c,h,d,p]=a.shape,f=[c,l,u,p],m=t.dataIdMap.get(a.dataId),A;m.dtype!=="float32"&&(A=Dp({backend:t,inputs:{x:a},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(A.dataId));let g=m.id,y=t.makeOutput(f,"float32");if(v.sizeFromShape(a.shape)===0)return y;let w=t.dataIdMap.get(y.dataId).id;return F3(g,c,h,d,p,l,u,s?1:0,i?1:0,w),A!=null&&t.disposeData(A.dataId),y}var cZ={kernelName:qs,backendName:"wasm",setupFunc:lZ,kernelFunc:uZ},M3;function hZ(e){M3=e.wasm.cwrap(Ks,null,["number","array","number","array","number","number"])}function dZ(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,{dims:s}=r,i=v.parseAxisParam(s,a.shape);if(a.shape.length===0)return Mp({inputs:{x:a},backend:n});let o=n.makeOutput(a.shape,a.dtype),l=n.dataIdMap.get(a.dataId).id,u=n.dataIdMap.get(o.dataId).id,c=new Uint8Array(new Int32Array(i).buffer),h=new Uint8Array(new Int32Array(a.shape).buffer);M3(l,c,i.length,h,a.shape.length,u);let d=Sr({inputs:{x:o},attrs:{shape:a.shape},backend:n});return n.disposeData(o.dataId),d}var pZ={kernelName:Ks,backendName:"wasm",kernelFunc:dZ,setupFunc:hZ},$3;function fZ(e){$3=e.wasm.cwrap(sl,null,["number","number","number","number","number","number","number","number","array","number","number"])}function mZ(e){let{inputs:t,backend:n,attrs:r}=e,{image:a}=t,{radians:s,fillValue:i,center:o}=r,l=n.makeOutput(a.shape,a.dtype),u=n.dataIdMap.get(a.dataId).id,c=n.dataIdMap.get(l.dataId).id,[h,d,p,f]=a.shape,[m,A]=R.getImageCenter(o,d,p),g=i===0,y=255,w=typeof i=="number"?[i,i,i,g?0:y]:[...i,y],b=new Uint8Array(new Int32Array(w).buffer);return $3(u,h,d,p,f,s,m,A,b,w.length,c),l}var AZ={kernelName:sl,backendName:"wasm",kernelFunc:mZ,setupFunc:fZ},gZ=Rn(Zs),yZ=Rn(Ys),D3;function xZ(e){D3=e.wasm.cwrap(Go,null,["number","number","number","number","number","number","array","number","number"])}function wZ(e){let{backend:t,inputs:n,attrs:r}=e,{indices:a,updates:s}=n,{shape:i}=r,o=t.makeOutput(i,s.dtype);if(v.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:h,outputSize:d}=Gf.calculateShapes(s,a,i),p=t.dataIdMap.get(a.dataId).id,f=t.dataIdMap.get(s.dataId).id,m=new Uint8Array(new Int32Array(h).buffer),A=t.dataIdMap.get(o.dataId).id;return D3(p,f,Vn[s.dtype],l,u,c,m,d,A),o}var bZ={kernelName:Go,backendName:"wasm",setupFunc:xZ,kernelFunc:wZ},O3;function _Z(e){O3=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function vZ(e){let{inputs:t,backend:n}=e,{condition:r,t:a,e:s}=t,i=n.dataIdMap.get(r.dataId).id,o=n.dataIdMap.get(a.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(a.shape,a.dtype),c=n.dataIdMap.get(u.dataId).id,h=r.shape.length,d=a.shape.length,p=h===0||h>1||d===1?1:v.sizeFromShape(a.shape.slice(1));return O3(i,o,l,p,c),u}var kZ={kernelName:qo,backendName:"wasm",kernelFunc:vZ,setupFunc:_Z},z3;function IZ(e){z3=e.wasm.cwrap(Qs,null,["number","number"])}function NZ(e){let{backend:t,inputs:{x:n}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(a.dataId).id;return v.sizeFromShape(a.shape)===0||z3(r,s),a}var SZ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:IZ,kernelFunc:NZ},TZ=Rn(Js);function Op(e){let{inputs:{x:t},attrs:{begin:n,size:r},backend:a}=e,[s,i]=fn.parseSliceParams(t,n,r),o=fn.isSliceContinous(t.shape,s,i),l=a.readSync(t.dataId),u=a.makeOutput(i,t.dtype),c=v.computeStrides(t.shape),h=a.dataIdMap.get(u.dataId);if(o){let f=fn.computeFlatOffset(s,c);return t.dtype==="string"?h.stringBytes=l.slice(f,f+v.sizeFromShape(i)):a.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(i))),u}if(t.dtype==="string"){let f=hp(l,s,i,t.shape,t.dtype);return h.stringBytes=f,u}let d=a.typedArrayFromHeap(u),p=t.shape.length;if(p===2)EZ(l,c[0],d,s,i);else if(p===3)CZ(l,c[0],c[1],d,s,i);else if(p===4)RZ(l,c[0],c[1],c[2],d,s,i);else{let f=hp(l,s,i,t.shape,t.dtype);d.set(f)}return u}function EZ(e,t,n,r,a){let s=0,i=r[0],o=r[1],l=i+a[0];for(let u=i;u<l;u++){let c=u*t+o;n.set(e.subarray(c,c+a[1]),s),s+=a[1]}}function CZ(e,t,n,r,a,s){let i=0,o=a[0],l=a[1],u=a[2],c=o+s[0],h=l+s[1];for(let d=o;d<c;d++)for(let p=l;p<h;p++){let f=d*t+p*n+u;r.set(e.subarray(f,f+s[2]),i),i+=s[2]}}function RZ(e,t,n,r,a,s,i){let o=0,l=s[0],u=s[1],c=s[2],h=l+i[0],d=u+i[1],p=c+i[2],f=s[3];for(let m=l;m<h;m++)for(let A=u;A<d;A++)for(let g=c;g<p;g++){let y=m*t+A*n+g*r+f;a.set(e.subarray(y,y+i[3]),o),o+=i[3]}}var FZ={kernelName:Ko,backendName:"wasm",kernelFunc:Op},P3;function MZ(e){P3=e.wasm.cwrap(ni,null,["number","number","number","number"])}function $Z(e){let{backend:t,inputs:{logits:n},attrs:{dim:r}}=e,a=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[r],l=v.sizeFromShape(n.shape)/o;return v.sizeFromShape(s.shape)===0||P3(a,i,o,l),s}var DZ={kernelName:ni,backendName:"wasm",setupFunc:MZ,kernelFunc:$Z};function OZ(e){let{inputs:t,attrs:n,backend:r}=e,{x:a}=t,{numOrSizeSplits:s,axis:i}=n,o=v.parseAxisParam(i,a.shape)[0],l=R.prepareSplitSize(a,s,o),u=new Array(a.shape.length).fill(0),c=a.shape.slice();return l.map(h=>{let d=[...c];d[o]=h;let p=Op({inputs:{x:a},attrs:{begin:u,size:d},backend:r});return u[o]+=h,p})}var zZ={kernelName:Qo,backendName:"wasm",kernelFunc:OZ},PZ=Rn(ei),LZ=Rn($u),WZ=!0,BZ=wn(ri,WZ),L3;function VZ(e){L3=e.wasm.cwrap(Da,null,["number","number","number"])}function UZ(e){let{backend:t,inputs:n,attrs:r}=e,{alpha:a}=r,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return L3(i,a,l),o}var HZ={kernelName:Da,backendName:"wasm",setupFunc:VZ,kernelFunc:UZ},W3;function jZ(e){W3=e.wasm.cwrap(el,null,["number","array","number","array","array","array","array","array","number","number"])}function GZ(e){let{backend:t,inputs:n,attrs:r}=e,{x:a}=n,{begin:s,end:i,strides:o}=r;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:h,shrinkAxisMask:d}=r,p=R.slice_util.maskToAxes(c);if(p.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(c!==0&&h!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(c!==0&&d!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let f=a.shape.length-s.length,m=R.slice_util.maskToAxes(h),A=a.shape.slice();m.forEach(M=>{s[M]=0,i[M]=1,A.splice(M,0,1)});let g=Sr({inputs:{x:a},attrs:{shape:A},backend:t}),{begin:y,end:w,strides:b}=R.slice_util.getNormalizedAxes(g.shape,p,f,s,i,o,l,u,c);s=y,i=w,o=b;let _=R.slice_util.maskToAxes(d);_.forEach(M=>{i[M]=s[M]+1,o[M]=1});let x=R.slice_util.computeOutShape(s,i,o),N=x.filter((M,z)=>_.indexOf(z)===-1);if(o.every(M=>M===1)){let M=Op({inputs:{x:g},attrs:{begin:s,size:x},backend:t});t.disposeData(g.dataId);let z=Sr({inputs:{x:M},attrs:{shape:N},backend:t});return t.disposeData(M.dataId),z}let T=t.makeOutput(N,"float32");if(!N.some(M=>M===0)){let M=t.dataIdMap.get(g.dataId).id,z=new Uint8Array(new Int32Array(v.computeStrides(g.shape)).buffer),B=new Uint8Array(new Int32Array(s).buffer),V=new Uint8Array(new Int32Array(i).buffer),U=new Uint8Array(new Int32Array(o).buffer),H=new Uint8Array(new Int32Array(N).buffer),X=new Uint8Array(new Int32Array(v.computeStrides(N)).buffer),G=t.dataIdMap.get(T.dataId).id;W3(M,z,g.shape.length,B,V,U,H,X,N.length,G)}t.disposeData(g.dataId);let E=Sr({inputs:{x:T},attrs:{shape:N},backend:t});return t.disposeData(T.dataId),E}var qZ={kernelName:el,backendName:"wasm",setupFunc:jZ,kernelFunc:GZ},XZ=!0,KZ=wn(ai,XZ),B3;function ZZ(e){B3=e.wasm.cwrap(ti,null,["number, number, number"])}function YZ(e){let{backend:t,inputs:n,attrs:r}=e,{axis:a,keepDims:s}=r,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:c,axes:h,originalAxes:d,inputWasTransposed:p}=Hl(i,a,t),f=h;if(p){let w=t.dataIdMap.get(c.dataId).id;w!==o&&(u=c,l=w,f=R.getInnerMostAxes(f.length,u.shape.length))}R.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,A]=R.computeOutAndReduceShapes(u.shape,f),g=v.sizeFromShape(A),y=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let w=t.dataIdMap.get(y.dataId).id;B3(l,g,w)}if(p&&t.disposeData(c.dataId),s){let w=R.expandShapeToKeepDim(y.shape,d);y.shape=w}return y}var JZ={kernelName:ti,backendName:"wasm",setupFunc:ZZ,kernelFunc:YZ},QZ=Rn(si),V3;function eY(e){V3=e.wasm.cwrap($a,null,["number","array","number","array","number","number"])}function tY(e){let{inputs:t,backend:n,attrs:r}=e,{x:a}=t,s=n.dataIdMap.get(a.dataId).id,{reps:i}=r,o=new Array(a.shape.length);for(let d=0;d<o.length;d++)o[d]=a.shape[d]*i[d];let l=new Uint8Array(new Int32Array(a.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),c=n.makeOutput(o,a.dtype),h=n.dataIdMap.get(c.dataId).id;return V3(s,l,a.shape.length,u,o.length,Vn[c.dtype],h),c}var nY={kernelName:$a,backendName:"wasm",setupFunc:eY,kernelFunc:tY},U3;function rY(e){U3=e.wasm.cwrap(nl,null,["number","array","number","number","number","bool","number","number"])}var aY=({inputs:e,backend:t,attrs:n})=>{let{x:r}=e,{k:a,sorted:s}=n,i=t.dataIdMap.get(r.dataId).id,o=new Uint8Array(new Int32Array(r.shape).buffer),l=r.shape.slice();l[l.length-1]=a;let u=t.makeOutput(l,r.dtype),c=t.dataIdMap.get(u.dataId).id,h=t.makeOutput(l,"int32"),d=t.dataIdMap.get(h.dataId).id;return U3(i,o,r.shape.length,Vn[r.dtype],a,s,c,d),[u,h]},sY={kernelName:nl,backendName:"wasm",setupFunc:rY,kernelFunc:aY};function iY(e){let{inputs:t,backend:n,attrs:r}=e,{value:a}=t,{axis:s}=r;s<0&&(s+=a.shape.length);let i=a.shape[s],o=a.shape.length,l=new Array(o-1),u=0;for(let p=0;p<o;p++)p!==s&&(l[u++]=a.shape[p]);let c=new Array(i),h=new Array(o).fill(0),d=a.shape.slice();d[s]=1;for(let p=0;p<c.length;p++)h[s]=p,c[p]=Op({inputs:{x:a},attrs:{begin:h,size:d},backend:n});return c.map(({dataId:p,dtype:f})=>({dataId:p,dtype:f,shape:l}))}var oY={kernelName:rl,backendName:"wasm",kernelFunc:iY};function lY(e){let{inputs:{x:t},backend:n}=e,r=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(r).fill(0),r}var uY={kernelName:al,backendName:"wasm",kernelFunc:lY},cY=[Eq,Rq,$q,Vq,jq,Kq,Zq,Yq,eX,tX,aX,oX,lX,hX,fX,gX,wX,_X,vX,kX,NX,EX,CX,FX,Tq,DX,PX,BX,HX,qX,KX,YX,Dq,eK,nK,aK,sK,oK,cK,dK,mK,yK,bK,vK,IK,NK,EK,FK,DK,zK,WK,VK,HK,qK,KK,JK,tZ,rZ,sZ,iZ,oZ,Gq,cZ,pZ,AZ,yZ,gZ,bZ,kZ,SZ,TZ,FZ,DZ,zZ,PZ,LZ,BZ,HZ,qZ,KZ,JZ,QZ,nY,sY,Lq,oY,uY];for(let e of cY)ci(e);var TA=J();TA.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));TA.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(TA.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var H3=ro(Ak()),hY='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',dY=ro(gk()),j3=class extends Au{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Mh(this,Wr())}write(e,t,n){let r={id:this.dataIdNextNumber++};return this.move(r,e,t,n,1),r}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,r,a){let s=this.dataIdNextNumber++;if(r==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:r,memoryOffset:null,refCount:a});return}let i=v.sizeFromShape(n),o=i*v.bytesPerElement(r),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:r,refCount:a}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:r,stringBytes:a}=this.dataIdMap.get(e);if(n==="string")return a;let s=this.wasm.HEAPU8.slice(t,t+v.sizeFromShape(r)*v.bytesPerElement(n));return pY(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let r;if(n==null)r=this.write(null,e,t);else{let a=this.dataIdNextNumber++;r={id:a},this.dataIdMap.set(r,{id:a,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(a,s,n)}return{dataId:r,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let r=this.wasm.HEAPU8.buffer,{memoryOffset:a}=this.dataIdMap.get(n),s=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(r,a,s);case"int32":return new Int32Array(r,a,s);case"bool":return new Uint8Array(r,a,s);default:throw new Error(`Unknown dtype ${t}`)}}};function fY(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(r=>{r.ok||t.env.a(`failed to load wasm binary file at '${e}'`),r.arrayBuffer().then(a=>{WebAssembly.instantiate(a,t).then(s=>{n(s.instance)})})}),{})}function G3(e,t,n){if(zp!=null)return zp;let r="tfjs-backend-wasm.wasm";return e&&t?r="tfjs-backend-wasm-threaded-simd.wasm":e&&(r="tfjs-backend-wasm-simd.wasm"),Nc!=null&&Nc[r]!=null?Nc[r]:n+r}async function mY(){let[e,t]=await Promise.all([J().getAsync("WASM_HAS_SIMD_SUPPORT"),J().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,r)=>{let a={};a.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=hY,c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return o.endsWith(".wasm")?G3(e,t,Sc!=null?Sc:l):l+o},EA&&(a.instantiateWasm=fY(G3(e,t,Sc!=null?Sc:"")));let s=!1;a.onAbort=()=>{s||Tc||(Tc=!0,r({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&zp==null?(a.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+H3.default.toString()],{type:"text/javascript"}),i=(0,H3.default)(a)):i=(0,dY.default)(a),i.then(o=>{s=!0,Tc=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function pY(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var AY=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],zp=null,Sc=null,Nc={},Tc=!1,EA=!1;function gY(e,t=!1){if(Jf("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");zp=e,EA=t}function yY(e,t=!1){if(Tc)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Sc=e;else{Nc=e;let n=AY.filter(r=>Nc[r]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}EA=t}var q3="3.3.0",xY=2;ml("wasm",async()=>{let{wasm:e}=await mY();return new j3(e)},xY);Z().prototype.abs=function(){return this.throwIfDisposed(),Vt(this)};Z().prototype.acos=function(){return this.throwIfDisposed(),em(this)};Z().prototype.acosh=function(){return this.throwIfDisposed(),tm(this)};Z().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};Z().prototype.all=function(e,t){return this.throwIfDisposed(),Nd(this,e,t)};Z().prototype.any=function(e,t){return this.throwIfDisposed(),qu(this,e,t)};Z().prototype.argMax=function(e){return this.throwIfDisposed(),Xu(this,e)};Z().prototype.argMin=function(e){return this.throwIfDisposed(),nm(this,e)};Z().prototype.asScalar=function(){return this.throwIfDisposed(),F(this.size===1,()=>"The array must have only 1 element."),j(this,[])};Z().prototype.asType=function(e){return this.throwIfDisposed(),xe(this,e)};Z().prototype.as1D=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.as2D=function(e,t){return this.throwIfDisposed(),j(this,[e,t])};Z().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),j(this,[e,t,n])};Z().prototype.as4D=function(e,t,n,r){return this.throwIfDisposed(),j(this,[e,t,n,r])};Z().prototype.as5D=function(e,t,n,r,a){return this.throwIfDisposed(),j(this,[e,t,n,r,a])};Z().prototype.asin=function(){return this.throwIfDisposed(),rm(this)};Z().prototype.asinh=function(){return this.throwIfDisposed(),am(this)};Z().prototype.atan=function(){return this.throwIfDisposed(),sm(this)};Z().prototype.atan2=function(e){return this.throwIfDisposed(),im(this,e)};Z().prototype.atanh=function(){return this.throwIfDisposed(),om(this)};Z().prototype.avgPool=function(e,t,n,r){return this.throwIfDisposed(),Zu(this,e,t,n,r)};Z().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),Yu(this,e,t)};Z().prototype.batchNorm=function(e,t,n,r,a){return this.throwIfDisposed(),Ai(this,e,t,n,r,a)};Z().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ju(this,e)};Z().prototype.cast=function(e){return this.throwIfDisposed(),xe(this,e)};Z().prototype.ceil=function(){return this.throwIfDisposed(),hm(this)};Z().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Sn(this,e,t)};Z().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof qe&&(e=[e]),ot([this,...e],t)};Z().prototype.conv1d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Td(this,e,t,n,r,a,s)};Z().prototype.conv2dTranspose=function(e,t,n,r,a){return this.throwIfDisposed(),Ed(this,e,t,n,r,a)};Z().prototype.conv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),ca(this,e,t,n,r,a,s)};Z().prototype.cos=function(){return this.throwIfDisposed(),Qu(this)};Z().prototype.cosh=function(){return this.throwIfDisposed(),Cd(this)};Z().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Rd(this,e,t,n)};Z().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),fm(this,e,t)};Z().prototype.depthwiseConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),xl(this,e,t,n,r,a,s)};Z().prototype.dilation2d=function(e,t,n,r,a){return this.throwIfDisposed(),mm(this,e,t,n,r,a)};Z().prototype.divNoNan=function(e){return this.throwIfDisposed(),Am(this,e)};Z().prototype.div=function(e){return this.throwIfDisposed(),_e(this,e)};Z().prototype.dot=function(e){return this.throwIfDisposed(),Ix(this,e)};Z().prototype.elu=function(){return this.throwIfDisposed(),wl(this)};Z().prototype.equal=function(e){return this.throwIfDisposed(),Va(this,e)};Z().prototype.erf=function(){return this.throwIfDisposed(),gm(this)};Z().prototype.exp=function(){return this.throwIfDisposed(),Qn(this)};Z().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};Z().prototype.expm1=function(){return this.throwIfDisposed(),ym(this)};Z().prototype.fft=function(){return this.throwIfDisposed(),uc(this)};Z().prototype.flatten=function(){return this.throwIfDisposed(),j(this,[this.size])};Z().prototype.floor=function(){return this.throwIfDisposed(),bl(this)};Z().prototype.floorDiv=function(e){return this.throwIfDisposed(),Id(this,e)};Z().prototype.gather=function(e,t){return this.throwIfDisposed(),gi(this,e,t)};Z().prototype.greaterEqual=function(e){return this.throwIfDisposed(),Ha(this,e)};Z().prototype.greater=function(e){return this.throwIfDisposed(),hr(this,e)};Z().prototype.ifft=function(){return this.throwIfDisposed(),Nl(this)};Z().prototype.irfft=function(){return this.throwIfDisposed(),Xd(this)};Z().prototype.isFinite=function(){return this.throwIfDisposed(),Nx(this)};Z().prototype.isInf=function(){return this.throwIfDisposed(),Sx(this)};Z().prototype.isNaN=function(){return this.throwIfDisposed(),Tx(this)};Z().prototype.leakyRelu=function(e){return this.throwIfDisposed(),tc(this,e)};Z().prototype.lessEqual=function(e){return this.throwIfDisposed(),yi(this,e)};Z().prototype.less=function(e){return this.throwIfDisposed(),Md(this,e)};Z().prototype.localResponseNormalization=function(e,t,n,r){return this.throwIfDisposed(),wm(this,e,t,n,r)};Z().prototype.logSigmoid=function(){return this.throwIfDisposed(),Rx(this)};Z().prototype.logSoftmax=function(e){return this.throwIfDisposed(),Od(this,e)};Z().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),vm(this,e,t)};Z().prototype.log=function(){return this.throwIfDisposed(),zn(this)};Z().prototype.log1p=function(){return this.throwIfDisposed(),$d(this)};Z().prototype.logicalAnd=function(e){return this.throwIfDisposed(),dr(this,e)};Z().prototype.logicalNot=function(){return this.throwIfDisposed(),nc(this)};Z().prototype.logicalOr=function(e){return this.throwIfDisposed(),zd(this,e)};Z().prototype.logicalXor=function(e){return this.throwIfDisposed(),Dx(this,e)};Z().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),Ye(this,e,t,n)};Z().prototype.maxPool=function(e,t,n,r){return this.throwIfDisposed(),rc(this,e,t,n,r)};Z().prototype.max=function(e,t){return this.throwIfDisposed(),er(this,e,t)};Z().prototype.maximum=function(e){return this.throwIfDisposed(),Ur(this,e)};Z().prototype.mean=function(e,t){return this.throwIfDisposed(),Tt(this,e,t)};Z().prototype.min=function(e,t){return this.throwIfDisposed(),vl(this,e,t)};Z().prototype.minimum=function(e){return this.throwIfDisposed(),kl(this,e)};Z().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Im(this,e,t)};Z().prototype.mod=function(e){return this.throwIfDisposed(),Nm(this,e)};Z().prototype.mul=function(e){return this.throwIfDisposed(),O(this,e)};Z().prototype.neg=function(){return this.throwIfDisposed(),St(this)};Z().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Jd(this,e,t,n)};Z().prototype.notEqual=function(e){return this.throwIfDisposed(),wi(this,e)};Z().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),dl(this,e,t,n)};Z().prototype.onesLike=function(){return this.throwIfDisposed(),Pn(this)};Z().prototype.pad=function(e,t){return this.throwIfDisposed(),ha(this,e,t)};Z().prototype.pool=function(e,t,n,r,a){return this.throwIfDisposed(),Px(this,e,t,n,r,a)};Z().prototype.pow=function(e){return this.throwIfDisposed(),da(this,e)};Z().prototype.prelu=function(e){return this.throwIfDisposed(),sc(this,e)};Z().prototype.prod=function(e,t){return this.throwIfDisposed(),Ld(this,e,t)};Z().prototype.reciprocal=function(){return this.throwIfDisposed(),Em(this)};Z().prototype.relu=function(){return this.throwIfDisposed(),jr(this)};Z().prototype.relu6=function(){return this.throwIfDisposed(),Bd(this)};Z().prototype.reshapeAs=function(e){return this.throwIfDisposed(),j(this,e.shape)};Z().prototype.reshape=function(e){return this.throwIfDisposed(),j(this,e)};Z().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),nw(this,e,t,n)};Z().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),rw(this,e,t,n)};Z().prototype.reverse=function(e){return this.throwIfDisposed(),Ln(this,e)};Z().prototype.rfft=function(){return this.throwIfDisposed(),cc(this)};Z().prototype.round=function(){return this.throwIfDisposed(),Cm(this)};Z().prototype.rsqrt=function(){return this.throwIfDisposed(),Vd(this)};Z().prototype.selu=function(){return this.throwIfDisposed(),Ud(this)};Z().prototype.separableConv2d=function(e,t,n,r,a,s){return this.throwIfDisposed(),Rm(this,e,t,n,r,a,s)};Z().prototype.sigmoid=function(){return this.throwIfDisposed(),On(this)};Z().prototype.sign=function(){return this.throwIfDisposed(),Fm(this)};Z().prototype.sin=function(){return this.throwIfDisposed(),Hd(this)};Z().prototype.sinh=function(){return this.throwIfDisposed(),jd(this)};Z().prototype.slice=function(e,t){return this.throwIfDisposed(),$e(this,e,t)};Z().prototype.softmax=function(e){return this.throwIfDisposed(),lc(this,e)};Z().prototype.softplus=function(){return this.throwIfDisposed(),_l(this)};Z().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),ac(this,e,t)};Z().prototype.split=function(e,t){return this.throwIfDisposed(),Ht(this,e,t)};Z().prototype.sqrt=function(){return this.throwIfDisposed(),an(this)};Z().prototype.square=function(){return this.throwIfDisposed(),ht(this)};Z().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Kd(this,e)};Z().prototype.squeeze=function(e){return this.throwIfDisposed(),ja(this,e)};Z().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof qe?[this,e]:[this,...e];return An(n,t)};Z().prototype.step=function(e){return this.throwIfDisposed(),Sl(this,e)};Z().prototype.stridedSlice=function(e,t,n,r,a,s,i,o){return this.throwIfDisposed(),$m(this,e,t,n,r,a,s,i,o)};Z().prototype.sub=function(e){return this.throwIfDisposed(),be(this,e)};Z().prototype.sum=function(e,t){return this.throwIfDisposed(),Fe(this,e,t)};Z().prototype.tan=function(){return this.throwIfDisposed(),Dm(this)};Z().prototype.tanh=function(){return this.throwIfDisposed(),gl(this)};Z().prototype.tile=function(e){return this.throwIfDisposed(),Ua(this,e)};Z().prototype.toBool=function(){return this.throwIfDisposed(),xe(this,"bool")};Z().prototype.toFloat=function(){return this.throwIfDisposed(),xe(this,"float32")};Z().prototype.toInt=function(){return this.throwIfDisposed(),xe(this,"int32")};Z().prototype.topk=function(e,t){return this.throwIfDisposed(),Om(this,e,t)};Z().prototype.transpose=function(e){return this.throwIfDisposed(),it(this,e)};Z().prototype.unique=function(e){return this.throwIfDisposed(),Yd(this,e)};Z().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),zm(this,e,t)};Z().prototype.unstack=function(e){return this.throwIfDisposed(),pr(this,e)};Z().prototype.where=function(e,t){return this.throwIfDisposed(),Tn(e,this,t)};Z().prototype.zerosLike=function(){return this.throwIfDisposed(),Xe(this)};var X3={kernelName:io,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,Sl(xe(n,"float32"),-1))}}},wY={kernelName:oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=ht(xe(n,"float32")),a=an(be(Ne(1),r));return St(_e(e,a))}}}},bY={kernelName:lo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=an(be(ht(xe(n,"float32")),1));return _e(e,r)}}}},_Y={kernelName:Fa,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Ut(n.shape,a);return i.length>0&&(s=Fe(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Ut(r.shape,a);return i.length>0&&(s=Fe(s,i)),j(s,r.shape)}}}},vY={kernelName:ms,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((r,a)=>{n[a]=()=>e.clone()}),n}},kY={kernelName:As,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},IY={kernelName:xu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Xe(n)}}},NY={kernelName:uo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,an(be(Ne(1),ht(xe(n,"float32")))))}}},SY={kernelName:co,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=an(ie(Ne(1),ht(xe(n,"float32"))));return _e(e,r)}}}},TY={kernelName:fo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=ie(ht(n),ht(r)),i=O(e,_e(r,s)),o=Ut(n.shape,a);return o.length>0&&(i=Fe(i,o)),j(i,n.shape)},b:()=>{let s=ie(ht(n),ht(r)),i=St(O(e,_e(n,s))),o=Ut(r.shape,a);return o.length>0&&(i=Fe(i,o)),j(i,r.shape)}}}},EY={kernelName:ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ie(ht(xe(n,"float32")),1))}}},CY={kernelName:po,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,be(Ne(1),ht(xe(n,"float32"))))}}};function RY(e,t,n,r,a,s){let i=C(e,"dy","avgPool3dGrad"),o=C(t,"input","avgPool3dGrad"),l=i,u=o,c=!1;o.rank===4&&(c=!0,l=j(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),F(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),F(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&F(Kt(a),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${a}.`);let h={dy:l,input:u},d={filterSize:n,strides:r,pad:a,dimRoundingMode:s},p=$.runKernel(Wh,h,d);return c?j(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var FY=D({avgPool3dGrad_:RY}),MY={kernelName:wu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>FY(e,r,a,s,i,o)}}};function $Y(e,t,n,r,a){let s=C(e,"dy","avgPoolGrad"),i=C(t,"input","avgPoolGrad");F(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=j(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=j(s,[1,s.shape[0],s.shape[1],s.shape[2]])),F(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),F(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let c={dy:l,input:o},h={filterSize:n,strides:r,pad:a},d=$.runKernel(Lh,c,h);return u?j(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var DY=D({avgPoolGrad_:$Y}),OY={kernelName:gs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{filterSize:a,strides:s,pad:i}=n;return{x:()=>DY(e,r,a,s,i)}}},zY={kernelName:ys,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[r,a]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>Ye(e,a,!1,!0),b:()=>Ye(r,e,!0,!1)}:!s&&i?{a:()=>Ye(e,a,!1,!1),b:()=>Ye(e,r,!0,!1)}:s&&!i?{a:()=>Ye(a,e,!1,!0),b:()=>Ye(r,e,!1,!1)}:{a:()=>Ye(a,e,!0,!0),b:()=>Ye(e,r,!0,!0)}}},PY={kernelName:bu,gradFunc:(e,t,n)=>{let{blockShape:r,crops:a}=n;return{x:()=>ac(e,r,a)}}},LY={kernelName:x5,gradFunc:(e,t,n)=>{let r=n,a=r.inputShape,s=r.shape,i=Array.from(s);for(let l=a.length-1;l>=0;l--)if(a[l]===s[l])i[l]=1;else if(a[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Fe(e,o,!0)}}},WY={kernelName:xs,gradFunc:e=>({x:()=>e.clone()})},BY={kernelName:ws,gradFunc:e=>({x:()=>Xe(e)})},VY={kernelName:Ma,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{clipValueMin:a,clipValueMax:s}=n;return{x:()=>Tn(dr(Ha(r,a),yi(r,s)),e,Xe(e))}}},UY={kernelName:_u,inputsToSave:["x"],gradFunc:X3.gradFunc},HY={kernelName:mo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let r=t.map(o=>o.shape),{axis:a}=n,s=ur(a,t[0].shape)[0],i=r.map(o=>o[s]);return Ht(e,i,s).map(o=>()=>o)}},jY={kernelName:bs,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return F(Ba(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>dm(r.shape,e,a,i,o,l),filter:()=>Bm(r,e,a.shape,i,o,l)}}},GY={kernelName:_s,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>ca(e,a,s,i,o,1,l),filter:()=>Bm(e,r,a.shape,s,i,o,l)}}};function qY(e,t,n,r,a){let s=e;e.rank===4&&(s=j(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=j(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),F(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),F(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),F(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),F(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),F(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:r,pad:a,filterShape:n};return $.runKernel(Hh,o,l)}var XY=D({conv3DBackpropFilter_:qY}),KY={kernelName:vu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s}=n;F(Ba(r),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${r}'`);let[i,o]=t;return{x:()=>vx(i.shape,e,o,a,s),filter:()=>XY(i,e,o.shape,a,s)}}},ZY={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(St(Hd(xe(n,"float32"))),e)}}},YY={kernelName:Ao,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(jd(xe(n,"float32")),e)}}},JY={kernelName:ks,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a,exclusive:s,reverse:i}=n;return{x:()=>{let o=$x([a],r.rank),l=Rd(e,a,s,!i);return o!=null&&(l=it(l,o)),l}}}},QY={kernelName:Is,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:r,strides:a,pad:s,dimRoundingMode:i}=n,o=r==null?[1,1]:r;F(Ba(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return F(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),F(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),F(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),F(Br(a,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${a} and dilations '${o}'.`),i!=null&&F(Kt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Kx(l.shape,e,u,a,s,r,i),filter:()=>Xx(l,e,u.shape,a,s,r,i)}}},eJ={kernelName:ku,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[r,a]=t,s={x:r,filter:a,dy:e},i={x:r,filter:a,dy:e};return{x:()=>$.runKernel(Zh,s,n),filter:()=>$.runKernel(Yh,i,n)}}},tJ={kernelName:xo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,r={dy:e,y:n};return{x:()=>$.runKernel(Jh,r)}}},nJ={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=O(Qn(St(ht(n))),2/Math.sqrt(Math.PI));return{x:()=>O(e,r)}}},rJ={kernelName:Ss,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,n)}}},aJ={kernelName:_o,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>j(e,n.shape)}}},sJ={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,Qn(n))}}},iJ={kernelName:Ts,gradFunc:e=>({x:()=>Xe(e)})},oJ={kernelName:Es,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=_e(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?j(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);i.length>0&&(s=j(Fe(s,i),r.shape));let o=ht(r);return St(_e(s,xe(o,"float32")))}}}},lJ={kernelName:Cs,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:r}=n,[a,s,i,o]=t,l=o==null?Ne(1):o,u=Ut(s.shape,a.shape),c=[];if(s.rank===1){for(let m=0;m<a.shape.length-1;++m)c.push(a.shape[m]);c.push(1)}let h=be(a,s),d=O(e,l),p=Vd(ie(i,Ne(r))),f=O(O(O(p,p),p),Ne(-.5));return{x:()=>s.rank===1?j(O(O(e,Ua(j(p,[1,1,1,s.shape[0]]),c)),l),a.shape):j(O(O(e,p),l),a.shape),mean:()=>{let m=O(O(p,Ne(-1)),d);return s.rank===1&&(m=Fe(m,u)),j(m,s.shape)},variance:()=>{let m=O(O(f,h),d);return s.rank===1&&(m=Fe(m,u)),j(m,s.shape)},scale:()=>{let m=O(h,p),A=O(e,m);return s.rank===1&&(A=Fe(A,u)),j(A,s.shape)},offset:()=>{let m=e;return s.rank===1&&(m=Fe(m,u)),j(m,s.shape)}}}},uJ={kernelName:Io,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[r,a]=t,{axis:s}=n,i=ur(s,r.shape)[0];return{x:()=>{let o=r.shape,l=a.size,u=o.slice(0,i),c=u.length,h=o.slice(s,o.length).slice(1),d=h.length,p=K3(0,c),f=K3(c+1,c+1+d),m=Z3([u,[l],h]),A=j(e,m),g=j(a,[l]),y=Z3([[c],p,f]),w=it(A,y),b=zm(w,g,r.shape[i]),_=_m(y);return b=it(b,_),b},indices:()=>a}}};function K3(e,t){let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Z3(e){let t=[];for(let n=0;n<e.length;++n)for(let r=0;r<e[n].length;++r)t.push(e[n][r]);return t}var cJ={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>Xe(n),b:()=>Xe(r)}}},hJ={kernelName:Fs,gradFunc:e=>({x:()=>xe(e,"float32")})},dJ={kernelName:To,gradFunc:e=>({x:()=>Xe(e)})},pJ={kernelName:Eo,gradFunc:e=>({x:()=>Xe(e)})},fJ={kernelName:Co,gradFunc:e=>({x:()=>Xe(e)})},mJ={kernelName:Ms,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{alpha:a}=n,s=hr(r,0);return{x:()=>Tn(s,e,O(e,a))}}},AJ={kernelName:Mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ie(n,1))}}},gJ={kernelName:$s,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,xe(n,"float32"))}}},yJ={kernelName:w5,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n;return{logits:()=>{let s=!0,i=Qn(r);return be(e,O(Fe(e,a,s),i))}}}};function xJ(e,t,n,r=5,a=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:r,bias:a,alpha:s,beta:i};return $.runKernel(rd,o,l)}var wJ=D({localResponseNormalizationBackprop_:xJ}),bJ={kernelName:Tu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>wJ(r,a,e,s,i,o,l)}}};function Y3(e,t,n,r){return t.rank<n.rank&&(t=j(t,xi(t.shape,r))),e.rank<n.rank&&(e=j(e,xi(e.shape,r))),{x:()=>O(e,xe(Va(n,t),e.dtype))}}var J3={kernelName:Ds,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{reductionIndices:a}=r,s=t[0],i=t[1],o=ur(a,s.shape),l=Y3(e,i,s,o);return{x:()=>l.x()}}},_J={kernelName:Os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>O(e,xe(Ha(n,r),"float32")),b:()=>O(e,xe(Md(n,r),"float32"))}}};function vJ(e,t,n,r,a,s,i){let o=C(e,"dy","maxPool3dGrad"),l=C(t,"input","maxPool3dGrad"),u=C(n,"output","maxPool3dGrad"),c=o,h=l,d=u,p=!1;l.rank===4&&(p=!0,c=j(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),h=j(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=j(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),F(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),F(h.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${h.rank}.`),F(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),i!=null&&F(Kt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let f={dy:c,input:h,output:d},m={filterSize:r,strides:a,pad:s,dimRoundingMode:i},A=$.runKernel(sd,f,m);return p?j(A,[A.shape[1],A.shape[2],A.shape[3],A.shape[4]]):A}var kJ=D({maxPool3dGrad_:vJ}),IJ={kernelName:Eu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>kJ(e,r,a,s,i,o,l)}}};function NJ(e,t,n,r,a,s,i){let o=C(e,"dy","maxPoolGrad"),l=C(t,"input","maxPoolGrad"),u=C(n,"output","maxPoolGrad");F(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),F(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),F(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&F(Kt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let c={dy:o,input:l,output:u},h={filterSize:r,strides:a,pad:s,dimRoundingMode:i};return $.runKernel(ad,c,h)}var SJ=D({maxPoolGrad_:NJ}),TJ={kernelName:zs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r,a]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>SJ(e,r,a,s,i,o)}}},EJ={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{axis:a}=n,s=ur(a,r.shape),i=Mx(r.shape,s)[1],o=Wt(i);return{x:()=>{let l=r.shape.slice();s.forEach(c=>{l[c]=1});let u=j(e,l);return _e(O(u,Hr(r.shape,"float32")),o)}}}},CJ={kernelName:Ls,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let r=n,{axis:a}=r,[s,i]=t,o=ur(a,s.shape),l=Y3(e,i,s,o);return{x:()=>l.x()}}},RJ={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t;return{a:()=>O(e,xe(yi(n,r),"float32")),b:()=>O(e,xe(hr(n,r),"float32"))}}},FJ={kernelName:Cu,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>$e(e,s,r.shape)}}},MJ={kernelName:Do,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=Ut(n.shape,a);return s.length>0?j(Fe(e,s),n.shape):e},b:()=>{let s=O(e,St(bl(_e(n,r)))),i=Ut(r.shape,a);return i.length>0?j(Fe(s,i),r.shape):s}}}},$J={kernelName:Bs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=O(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?j(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);return i.length>0?j(Fe(s,i),r.shape):s}}}},DJ={kernelName:Oo,gradFunc:e=>({x:()=>St(e)})},OJ={kernelName:Vs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Ot(n.shape,"float32")}}},zJ={kernelName:Bo,gradFunc:e=>({x:()=>Xe(e)})},PJ={kernelName:Vo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:r}=n;return pr(e,r).map(a=>()=>a)}},Q3={kernelName:Us,inputsToSave:["x"],gradFunc:(e,t,n)=>{let r=t[0],{paddings:a}=n,s=a.map(i=>i[0]);return{x:()=>$e(e,s,r.shape)}}},LJ={kernelName:Hs,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,r,a]=t,s=n,i=r,o=xt(s.shape,i.shape);return{a:()=>{let l=xe(i,"float32"),u=O(e,O(l,da(s,be(l,Ne(1))))),c=Ut(s.shape,o);return c.length>0&&(u=Fe(u,c)),j(u,s.shape)},b:()=>{let l=hr(s,0),u=Tn(l,zn(s),Xe(s)),c=O(e,O(a,u)),h=Ut(i.shape,o);return h.length>0&&(c=Fe(c,h)),j(c,i.shape)}}}},WJ={kernelName:js,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,r]=t,a=hr(n,0);return{x:()=>Tn(a,e,O(e,r)),alpha:()=>{let s=Tn(a,Xe(e),O(e,n)),i=Ut(r.shape,e.shape);return i.length>0&&(s=Fe(s,i)),j(s,r.shape)}}}},BJ={kernelName:Ns,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=_e(e,xe(r,"float32")),i=Ut(n.shape,a);return i.length>0?j(Fe(s,i),n.shape):s},b:()=>{let s=O(e,xe(n,"float32")),i=Ut(r.shape,a);i.length>0&&(s=j(Fe(s,i),r.shape));let o=ht(r);return St(_e(s,xe(o,"float32")))}}}},VJ={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,St(ht(n)))}}},UJ={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,r=O(yi(n,6),Sl(n));return{x:()=>O(e,xe(r,"float32"))}}},HJ={kernelName:Gs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,xe(Sl(n),"float32"))}}},jJ={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>j(e,n.shape)}}},GJ={kernelName:qs,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(cd,a,n)}}},qJ={kernelName:Fu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[r]=t,a={dy:e,images:r};return{images:()=>$.runKernel(ud,a,n)}}},XJ={kernelName:Ks,gradFunc:(e,t,n)=>{let{dims:r}=n,a=ur(r,e.shape);return{x:()=>Ln(e,a)}}},KJ={kernelName:Zs,gradFunc:e=>({x:()=>Xe(e)})},ZJ={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(_e(e,O(da(n,1.5),2)))}}},YJ={kernelName:qo,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>xe(Xe(n),"float32"),t:()=>O(e,xe(n,e.dtype)),e:()=>O(e,xe(nc(n),e.dtype))}}},JJ={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let r=hr(n,Ne(0)),a=Ne(iw),s=Ne(ow),i=O(e,s),o=O(O(e,a),Qn(xe(n,"float32")));return Tn(r,i,o)}}}},QJ={kernelName:Qs,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,O(n,be(Ne(1),n)))}}},eQ={kernelName:Yo,gradFunc:e=>({x:()=>Xe(e)})},tQ={kernelName:Js,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(Qu(xe(n,"float32")),e)}}},nQ={kernelName:Zo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(Cd(xe(n,"float32")),e)}}},rQ={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{begin:a,size:s}=n,i=r.shape,[o,l]=sx(r,a,s),u=[];for(let c=0;c<e.rank;c++)u.push([o[c],i[c]-o[c]-l[c]]);return{x:()=>ha(e,u)}}},aQ={kernelName:ni,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[r]=t,{dim:a}=n,s=!0,i=O(e,r);return{logits:()=>be(i,O(Fe(i,[a],s),r))}}},sQ={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,On(n))}}},e7={kernelName:Mu,gradFunc:(e,t,n)=>{let{blockShape:r,paddings:a}=n;return{x:()=>Yu(e,r,a)}}},t7={kernelName:Qo,gradFunc:(e,t,n)=>{let{axis:r}=n;return{x:()=>ot(e,r)}}},iQ={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,O(an(xe(n,"float32")),2))}}},oQ={kernelName:$u,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(e,O(xe(n,"float32"),2))}}},lQ={kernelName:ri,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=Ne(2);return{a:()=>O(e,O(a,be(n,r))),b:()=>O(e,O(a,be(r,n)))}}},uQ={kernelName:Da,gradFunc:e=>({x:()=>Xe(e)})},cQ={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,r]=t,a=xt(n.shape,r.shape);return{a:()=>{let s=e,i=Ut(n.shape,a);return i.length>0&&(s=Fe(s,i)),j(s,n.shape)},b:()=>{let s=e,i=Ut(r.shape,a);return i.length>0&&(s=Fe(s,i)),j(St(s),r.shape)}}}},hQ={kernelName:ti,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,a=r.shape.slice(),{axis:s}=n;ur(s,r.shape).forEach(l=>{a[l]=1});let i=j(e,a),o=O(i,Hr(r.shape,"float32"));return{x:()=>o}}},dQ={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>_e(e,ht(Qu(n)))}}},pQ={kernelName:si,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>O(be(Ne(1),ht(n)),e)}}},fQ={kernelName:$a,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[r]=t,{reps:a}=n;return{x:()=>{let s=Xe(r);if(r.rank===1)for(let i=0;i<a[0];++i)s=ie(s,$e(e,[i*r.shape[0]],[r.shape[0]]));else if(r.rank===2)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)s=ie(s,$e(e,[i*r.shape[0],o*r.shape[1]],[r.shape[0],r.shape[1]]));else if(r.rank===3)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)s=ie(s,$e(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2]],[r.shape[0],r.shape[1],r.shape[2]]));else if(r.rank===4)for(let i=0;i<a[0];++i)for(let o=0;o<a[1];++o)for(let l=0;l<a[2];++l)for(let u=0;u<a[3];++u)s=ie(s,$e(e,[i*r.shape[0],o*r.shape[1],l*r.shape[2],u*r.shape[3]],[r.shape[0],r.shape[1],r.shape[2],r.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${r.rank} tensors yet.`);return s}}}},mQ={kernelName:ii,gradFunc:(e,t,n)=>{let r=n,{perm:a}=r,s=_m(a);return{x:()=>it(e,s)}}},AQ={kernelName:rl,gradFunc:(e,t,n)=>{let r=n,{axis:a}=r;return{value:()=>An(e,a)}}},yQ={kernelName:Du,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>gQ(e,n)}}};function gQ(e,t){let n=Ur(t,Xe(t)),r=gi(e,n),a=Ha(t,Ne(0,"int32")),s=r.rank-a.rank;for(let o=0;o<s;++o)a=mn(a,o+1);a=dr(a,Hr(r.shape,"bool"));let i=Xe(r);return Tn(a,r,i)}var xQ={kernelName:al,gradFunc:e=>({x:()=>Xe(e)})},wQ=[X3,wY,bY,_Y,vY,kY,IY,NY,SY,TY,EY,CY,MY,OY,zY,PY,LY,WY,BY,VY,UY,HY,GY,jY,KY,ZY,YY,JY,QY,eJ,BJ,tJ,nJ,rJ,aJ,sJ,oJ,iJ,lJ,uJ,cJ,hJ,dJ,pJ,fJ,mJ,AJ,gJ,yJ,bJ,J3,J3,_J,IJ,TJ,EJ,CJ,RJ,FJ,MJ,$J,DJ,OJ,zJ,PJ,Q3,Q3,LJ,WJ,VJ,UJ,HJ,jJ,GJ,qJ,XJ,KJ,ZJ,YJ,JJ,QJ,eQ,tQ,nQ,rQ,aQ,sQ,e7,e7,t7,t7,iQ,lQ,oQ,uQ,cQ,hQ,dQ,pQ,fQ,mQ,AQ,yQ,xQ];for(let e of wQ)b5(e);var n7={};We(n7,{maxNorm:()=>bQ,minMaxNorm:()=>kQ,nonNeg:()=>vQ,unitNorm:()=>_Q});var CA;function jt(){return CA==null&&(CA=dx().epsilon()),CA}function Tr(){return"channelsLast"}var Aa=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Aa.prototype)}},Er=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Er.prototype)}},W=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,W.prototype)}},Pe=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Pe.prototype)}},r7=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,r7.prototype)}};function Ri(e,t){if(Array.isArray(e)){let n=[];for(let r=0;r<t;r++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Kr(e,t){if(!e)throw new r7(t)}function a7(e,t){let n=0;for(let r of e)r===t&&n++;return n}function Fn(e){return e.length===1?e[0]:e}function At(e){return Array.isArray(e)?e:[e]}function ga(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Fi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var mr={};function RA(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function FA(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>FA(t));else{let t=Object.keys(e);for(let n of t){let r=e[n];r!=null&&typeof r=="object"&&(!Array.isArray(r)&&r.type==="ndarray"&&typeof r.value=="number"?e[n]=r.value:FA(r))}}}function Ec(e,t={},n={},r="object",a=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in mr)i=mr[s];else if(i=t[s],i==null)throw new W(`Unknown ${r}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new W(`${r}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in mr?[o,l]=mr.className:i in t&&([o,l]=t[i]),o==null)throw new W(`Unknown ${r}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${r} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${r} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let p of Object.keys(mr))u[p]=mr[p];for(let p of Object.keys(n))u[p]=n[p];let c=s.config;c.customObjects=u;let h=Object.assign({},mr);for(let p of Object.keys(n))mr[p]=n[p];FA(s.config);let d=l(o,s.config,n,a);return mr=Object.assign({},h),d}else{let u=Object.assign({},mr);for(let h of Object.keys(n))mr[h]=n[h];let c=new o(s.config);return mr=Object.assign({},u),c}}}function IQ(e,t){return e<t?-1:e>t?1:0}function Pp(e,t){return-1*IQ(e,t)}function Za(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function NQ(e){if(e==null)throw new W(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function Mi(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new W(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function MA(e,t,n=0,r=Infinity){return Kr(n>=0),Kr(r>=n),Array.isArray(e)&&e.length>=n&&e.length<=r&&e.every(a=>typeof a===t)}function Jt(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,r)=>Jt(n,`element ${r+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${s7(e)}.`)}function s7(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>s7(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function SQ(e,t){let n=v.now(),r;return(...a)=>{let s=v.now();return s-n<t||(n=s,r=e(...a)),r}}function i7(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function $A(e,t){return L(()=>an(Fe(O(e,e),t,!0)))}var Cc=class extends ae.Serializable{getConfig(){return{}}},DA=class extends Cc{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=$A(e,this.axis),n=Sn(t,0,this.maxValue);return O(e,_e(n,ie(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};DA.className="MaxNorm";ae.registerClass(DA);var OA=class extends Cc{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>_e(e,ie(jt(),$A(e,this.axis))))}getConfig(){return{axis:this.axis}}};OA.className="UnitNorm";ae.registerClass(OA);var zA=class extends Cc{apply(e){return jr(e)}};zA.className="NonNeg";ae.registerClass(zA);var PA=class extends Cc{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return L(()=>{let t=$A(e,this.axis),n=ie(O(this.rate,Sn(t,this.minValue,this.maxValue)),O(1-this.rate,t));return O(e,_e(n,ie(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};PA.className="MinMaxNorm";ae.registerClass(PA);var o7={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Gt(e){return RA(e)}function l7(e,t={}){return Ec(e,ae.SerializationMap.getMap().classNameMap,t,"constraint")}function qt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in o7?o7[e]:e,config:{}};return l7(t)}else return e instanceof Cc?e:l7(e)}function bQ(e){return new DA(e)}function _Q(e){return new OA(e)}function vQ(){return new zA}function kQ(e){return new PA(e)}var u7={};We(u7,{constant:()=>CQ,glorotNormal:()=>zQ,glorotUniform:()=>OQ,heNormal:()=>PQ,heUniform:()=>LQ,identity:()=>$Q,leCunNormal:()=>WQ,leCunUniform:()=>BQ,ones:()=>EQ,orthogonal:()=>VQ,randomNormal:()=>FQ,randomUniform:()=>RQ,truncatedNormal:()=>MQ,varianceScaling:()=>DQ,zeros:()=>TQ});var UQ=["channelsFirst","channelsLast"],HQ=["nearest","bilinear"],jQ=["valid","same","causal"],GQ=["max","avg"],qQ=["sum","mul","concat","ave"],jl=new Map;function Mt(e){Mi(UQ,"DataFormat",e)}function XQ(e){Mi(HQ,"InterpolationFormat",e)}function rr(e){Mi(jQ,"PaddingMode",e)}function c7(e){Mi(GQ,"PoolMode",e)}var Rc=[],h7="/";function $i(e,t){Rc.push(e);try{let n=t();return Rc.pop(),n}catch(n){throw Rc.pop(),n}}function KQ(){return Rc.length===0?"":Rc.join(h7)+h7}function p7(e){if(!d7(e))throw new Error("Not a valid tensor name: '"+e+"'");return KQ()+e}function f7(e){if(!d7(e))throw new Error("Not a valid tensor name: '"+e+"'");jl.has(e)||jl.set(e,0);let t=jl.get(e);if(jl.set(e,jl.get(e)+1),t>0){let n=`${e}_${t}`;return jl.set(n,1),n}else return e}var ZQ=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function d7(e){return!!e.match(ZQ)}function YQ(e){return e===parseInt(e.toString(),10)}function Ya(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let r=1;for(let a=t;a<n;++a)r*=e[a];return r}function m7(e){return e=Array.isArray(e)?new Float32Array(e):e,hn(e)}function Gl(e){return vl(m7(e)).dataSync()[0]}function Ja(e){return er(m7(e)).dataSync()[0]}function Cr(e,t){if(t<e)throw new W(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let r=e;r<t;++r)n.push(r);return n}function Fc(e,t){return e.asType(t)}function Mc(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function JQ(e,t){return L(()=>{if(e.shape.length!==2)throw new W(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Mc(e,1);return LA(n,[1,t,1])})}function QQ(e){let t=[Ya(e.shape)];return e.reshape(t)}function eee(e){if(e.rank<=1)throw new W(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Ya(e.shape,1)];return e.reshape(t)}function Di(e,t,n){return L(()=>{switch(e.rank){case 1:return Gd(e,t,n);case 2:return Mm(e,[t,0],[n,e.shape[1]]);case 3:return qd(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return oc(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return $e(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return $e(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new W(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function WA(e,t,n){return L(()=>{switch(e.rank){case 1:return Gd(e,t,n);case 2:return Mm(e,[0,t],[e.shape[0],n]);case 3:return qd(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return oc(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Lp(e,t,n,r){return L(()=>{switch(e.rank){case 1:return Gd(e,t,n);case 2:switch(r){case 1:return Di(e,t,n);case 2:return WA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 3:switch(r){case 1:return Di(e,t,n);case 2:return qd(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return WA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}case 4:switch(r){case 1:return Di(e,t,n);case 2:return oc(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return oc(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return WA(e,t,n);default:throw new W(`The axis is not within the rank of the tensor ${r}`)}default:throw new W(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function BA(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),ot(e,t)}function A7(e,t){switch(e.rank){case 1:return wx([e,t]);case 2:return yl([e,t],0);case 3:return bx([e,t],0);case 4:return _x([e,t],0);default:throw new W(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function LA(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new W(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ua(e,t)}function Wp(e,t=0,n=1,r,a){return Lx(e,t,n,r,a)}function Zr(e,t,n,r){if(e.rank<2||t.rank<2)throw new Pe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let a=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(a!==s)throw new Pe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let a=!1,s=!1;return Ga.matMul({a:e,b:t,transposeA:a,transposeB:s,bias:r?VA(e.rank,r,Tr()):null,activation:n})}else{let a=e.shape.slice(),s=a.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=t.transpose(c).reshape([l,-1]);let h=[...a,...u],d=!1,p=!1;return Ga.matMul({a:e,b:t,transposeA:d,transposeB:p,bias:r?VA(e.rank,r,Tr()):null,activation:n}).reshape(h)}}function g7(e,t,n){return L(()=>(Array.isArray(t)?t=hn(t,"int32"):t=t.toInt(),gi(e,t,n)))}function $c(e){return O(e,e)}function VA(e,t,n){let r=t.shape;if(t.rank!==1&&t.rank!==e)throw new W(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1,1]):t.reshape([1,r[3],r[0],r[1],r[2]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===4){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1,1]):t.reshape([1,r[2],r[0],r[1]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,1,r[0]]):t.reshape([1].concat(r))}else if(e===3){if(n==="channelsFirst")return r.length===1?t.reshape([1,r[0],1]):t.reshape([1,r[1],r[0]]);if(n==="channelsLast")return r.length===1?t.reshape([1,1,r[0]]):t.reshape([1].concat(r))}else if(e<3)return t;throw new W(`Unsupported input rank by biasAdd: ${t.rank}`)}function Yr(e,t,n){return L(()=>(n==null&&(n=Tr()),Mt(n),e.add(VA(e.rank,t,n))))}function tee(e,t=1){if(t!==1)throw new Pe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return wl(e)}function nee(e){return L(()=>_e(e,Vt(e).add(1)))}function y7(e,t,n,r){return L(()=>Gx(e,t,n,r))}function ree(e){return L(()=>{let t=ie(.5,O(.2,e));return Sn(t,0,1)})}function Dc(e,t,n=!1){return n?e():t()}var aee=["fanIn","fanOut","fanAvg"],see=["normal","uniform","truncatedNormal"];function iee(e){Mi(aee,"FanMode",e)}function oee(e){Mi(see,"Distribution",e)}var Ar=class extends ae.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},UA=class extends Ar{apply(e,t){return Ot(e,t)}};UA.className="Zeros";ae.registerClass(UA);var Bp=class extends Ar{apply(e,t){return Hr(e,t)}};Bp.className="Ones";ae.registerClass(Bp);var HA=class extends Ar{constructor(e){super();if(typeof e!="object")throw new W(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new W(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return L(()=>O(Ne(this.value),Hr(e,t)))}getConfig(){return{value:this.value}}};HA.className="Constant";ae.registerClass(HA);var jA=class extends Ar{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return Il(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};jA.className="RandomUniform";ae.registerClass(jA);var GA=class extends Ar{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`randomNormal does not support dType ${t}.`);return Wp(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};GA.className="RandomNormal";ae.registerClass(GA);var qA=class extends Ar{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`truncatedNormal does not support dType ${t}.`);return Zd(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};qA.className="TruncatedNormal";ae.registerClass(qA);var XA=class extends Ar{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return L(()=>{if(e.length!==2||e[0]!==e[1])throw new W("Identity matrix initializer can only be used for 2D square matrices.");return O(this.gain,xm(e[0]))})}getConfig(){return{gain:this.gain}}};XA.className="Identity";ae.registerClass(XA);function lee(e,t="channelsLast"){let n,r;if(Mt(t),e.length===2)n=e[0],r=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let a=Ya(e,2);n=e[1]*a,r=e[0]*a}else if(t==="channelsLast"){let a=Ya(e,0,e.length-2);n=e[e.length-2]*a,r=e[e.length-1]*a}}else{let a=Ya(e);n=Math.sqrt(a),r=Math.sqrt(a)}return[n,r]}var Mn=class extends Ar{constructor(e){super();if(e.scale<0)throw new W(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,iee(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,oee(this.distribution),this.seed=e.seed}apply(e,t){let n=lee(e),r=n[0],a=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,r):this.mode==="fanOut"?s/=Math.max(1,a):s/=Math.max(1,(r+a)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Pe(`${this.getClassName()} does not support dType ${t}.`);return Zd(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return Il(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Mn.className="VarianceScaling";ae.registerClass(Mn);var Vp=class extends Mn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};Vp.className="GlorotUniform";ae.registerClass(Vp);var Up=class extends Mn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};Up.className="GlorotNormal";ae.registerClass(Up);var Hp=class extends Mn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};Hp.className="HeNormal";ae.registerClass(Hp);var jp=class extends Mn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};jp.className="HeUniform";ae.registerClass(jp);var Gp=class extends Mn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};Gp.className="LeCunNormal";ae.registerClass(Gp);var qp=class extends Mn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Mn.className}};qp.className="LeCunNormal";ae.registerClass(qp);var KA=class extends Ar{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Pe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return L(()=>{if(e.length<2)throw new Pe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,r=Wp(n,0,1,"float32"),a=sw.gramSchmidt(r);return e[0]>e[1]&&(a=a.transpose()),O(this.gain,a)})}getConfig(){return{gain:this.gain,seed:this.seed}}};KA.className="Orthogonal";ae.registerClass(KA);var x7={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function w7(e,t={}){return Ec(e,ae.SerializationMap.getMap().classNameMap,t,"initializer")}function Et(e){return RA(e)}function bt(e){if(typeof e=="string"){let t=e in x7?x7[e]:e;if(t==="GlorotNormal")return new Up;if(t==="GlorotUniform")return new Vp;if(t==="HeNormal")return new Hp;if(t==="HeUniform")return new jp;if(t==="LeCunNormal")return new Gp;if(t==="LeCunUniform")return new qp;{let n={};return n.className=t,n.config={},w7(n)}}else return e instanceof Ar?e:w7(e)}function TQ(){return new UA}function EQ(){return new Bp}function CQ(e){return new HA(e)}function RQ(e){return new jA(e)}function FQ(e){return new GA(e)}function MQ(e){return new qA(e)}function $Q(e){return new XA(e)}function DQ(e){return new Mn(e)}function OQ(e){return new Vp(e)}function zQ(e){return new Up(e)}function PQ(e){return new Hp(e)}function LQ(e){return new jp(e)}function WQ(e){return new Gp(e)}function BQ(e){return new qp(e)}function VQ(e){return new KA(e)}var b7={};We(b7,{Layer:()=>Je,RNN:()=>Jr,RNNCell:()=>Oc,activation:()=>kee,add:()=>Mee,alphaDropout:()=>Ate,average:()=>$ee,averagePooling1d:()=>ZA,averagePooling2d:()=>YA,averagePooling3d:()=>JA,avgPool1d:()=>Uee,avgPool2d:()=>jee,avgPool3d:()=>qee,avgPooling1d:()=>Hee,avgPooling2d:()=>Gee,avgPooling3d:()=>Xee,batchNormalization:()=>Wee,bidirectional:()=>lte,concatenate:()=>Dee,conv1d:()=>Aee,conv2d:()=>gee,conv2dTranspose:()=>yee,conv3d:()=>xee,convLstm2d:()=>ate,convLstm2dCell:()=>ste,cropping2D:()=>bee,dense:()=>Iee,depthwiseConv2d:()=>vee,dot:()=>Lee,dropout:()=>Nee,elu:()=>cee,embedding:()=>Fee,flatten:()=>Tee,gaussianDropout:()=>mte,gaussianNoise:()=>fte,globalAveragePooling1d:()=>Kee,globalAveragePooling2d:()=>Zee,globalMaxPool1d:()=>cte,globalMaxPool2d:()=>hte,globalMaxPooling1d:()=>v7,globalMaxPooling2d:()=>k7,gru:()=>Jee,gruCell:()=>Qee,input:()=>_7,inputLayer:()=>uee,layerNormalization:()=>Bee,leakyReLU:()=>dee,lstm:()=>ete,lstmCell:()=>tte,masking:()=>gte,maxPool1d:()=>dte,maxPool2d:()=>pte,maxPooling1d:()=>I7,maxPooling2d:()=>N7,maxPooling3d:()=>Yee,maximum:()=>Oee,minimum:()=>zee,multiply:()=>Pee,permute:()=>Ree,prelu:()=>pee,reLU:()=>hee,repeatVector:()=>Eee,reshape:()=>Cee,rnn:()=>ite,separableConv2d:()=>wee,simpleRNN:()=>nte,simpleRNNCell:()=>rte,softmax:()=>fee,spatialDropout1d:()=>See,stackedRNNCells:()=>ote,thresholdedReLU:()=>mee,timeDistributed:()=>ute,upSampling2d:()=>_ee,zeroPadding2d:()=>Vee});var yte=0;function S7(){return yte++}var Xp={};function Kp(e=""){return e in Xp||(Xp[e]=0),Xp[e]+=1,e+Xp[e].toString()}function QA(e){return Array.isArray(e)&&Array.isArray(e[0])}function Zp(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Be(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new W(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function pt(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new W(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function Yp(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((r,a)=>r*a);return t}var T7="Variable",E7=class{constructor(e,t="float32",n=T7,r=!0,a=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=S7(),n=n==null?T7:n,this.originalName=p7(n),this.name=f7(this.originalName),this.trainable_=r,this.constraint=a,this.val=Bx(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),xte(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function xte(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function eg(e){return e.map(t=>t.read())}function tg(e){e.forEach(t=>{t[0].write(t[1])})}var Qt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Rr=class{constructor(e,t,n,r,a,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=r,this.callArgs=a,this.outputTensorIndex=i,this.id=S7(),s!=null&&(this.originalName=p7(s),this.name=f7(this.originalName)),this.rank=t.length}},wte=0,Jp=class{constructor(e,t){this.callArgs=t,this.id=wte++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},bte=0,Je=class extends ae.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=bte++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ga(n)+"_"+Kp(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let a=null;e.batchSize!=null&&(a=e.batchSize),n=[a].concat(e.inputShape)}this.batchInputShape=n;let r=e.dtype;r==null&&(r=e.inputDType),r==null&&(r="float32"),this.dtype=r}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Er(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new W(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return Fn(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return Fn(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} is not connected, no input to return.`);return Fn(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new Aa(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new Aa(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return Fn(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=At(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=At(this.inputSpec);if(e.length!==t.length)throw new W(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let r=e[n],a=t[n];if(a==null)continue;let s=r.rank;if(a.ndim!=null&&s!==a.ndim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${a.ndim}, found ndim=${s}`);if(a.maxNDim!=null&&s>a.maxNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${a.maxNDim}, found ndim=${s}`);if(a.minNDim!=null&&s<a.minNDim)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${a.minNDim}, found ndim=${s}.`);if(a.dtype!=null&&r.dtype!==a.dtype)throw new W(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${a.dtype}, found dtype=${r.dtype}.`);if(a.axes){let i=r.shape;for(let o in a.axes){let l=Number(o),u=a.axes[o],c=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(a.shape!=null)for(let i=0;i<a.shape.length;++i){let o=a.shape[i],l=r.shape[i];if(o!=null&&l!=null&&o!==l)throw new W(`Input ${n} is incompatible with layer ${this.name}: expected shape=${a.shape}, found shape=${r.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=At(e),r=!0;for(let s of n)if(!(s instanceof Rr)){r=!1;break}let a=!0;for(let s of n)if(s instanceof Rr){a=!1;break}if(r===a)throw new W("Arguments to apply() must be all SymbolicTensors or all Tensors");return $i(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of At(e))s.push(i.shape);this.build(Fn(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&a&&(this._refCount=1)}if(this.assertInputCompatibility(e),a){let s=this.call(e,t),i=At(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=Fn(o),this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=_te(e),i=this.computeOutputShape(s),o,l=vte(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,c)=>new Rr(l,u,this,At(e),t,this.name,c)):o=new Rr(l,i,this,At(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new Pe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,r)=>{n!=null&&e[r]!=null&&e[r]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new Aa(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new Aa(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Er(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return Yp(this.weights)}build(e){this.built=!0}getWeights(e=!1){return eg(e?this.trainableWeights:this.weights)}setWeights(e){L(()=>{let t=this.weights;if(t.length!==e.length)throw new W(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],r=eg(t);for(let a=0;a<r.length;++a){let s=r[a],i=t[a],o=e[a];if(!v.arraysEqual(s.shape,o.shape))throw new W(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}tg(n)})}addWeight(e,t,n,r,a,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new W(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(r=bt("zeros"));let o=r.apply(t,n),l=new E7(o,n,e,s,i);return o.dispose(),a!=null&&this.addLoss(()=>a.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=At(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,r,a,s,i=null){let o=At(e);t=At(t),n=At(n),r=At(r),a=Zp(a),s=Zp(s);let l=[],u=[],c=[];for(let h of o)l.push(h.sourceLayer),u.push(h.nodeIndex),c.push(h.tensorIndex);new Jp({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:r,inputShapes:a,outputShapes:s},i);for(let h=0;h<t.length;h++)t[h].sourceLayer=this,t[h].nodeIndex=this.inboundNodes.length-1,t[h].tensorIndex=h}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function _te(e){e=At(e);let t=[];for(let n of e)t.push(n.shape);return Fn(t)}function vte(e){return"float32"}function C7(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let r=t.inboundNodes[n];if(r.inboundLayers.length===0)return r.inputTensors;{let a=[];for(let s=0;s<r.inboundLayers.length;s++){let i=r.inputTensors[s],o=r.inboundLayers[s],l=r.nodeIndices[s],u=C7(i,o,l);for(let c of u)a.indexOf(c)===-1&&a.push(c)}return a}}}var ql=class extends Je{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:Kp("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new W("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new W("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new W("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let r=new Rr(this.dtype,this.batchInputShape,this,[],{},this.name);r.nodeIndex=0,r.tensorIndex=0,new Jp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[r],outputTensors:[r],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new W(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ql.className="InputLayer";ae.registerClass(ql);function R7(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new W("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new ql({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function Qa(e){if(e==null)return;let t=[],n=[],r=[];for(let a in e){let s=e[a];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(a),r.push(i)}}if(t.length>0){let a=await Promise.all(t);for(let s=0;s<a.length;++s)e[n[s]]=a[s][0];Re(r)}}function F7(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var M7;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(M7||(M7={}));var kte=125,Xl=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},$7=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Ite=class extends Xl{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let r in t){let a=t[r];if(typeof a=="number")this.totals.hasOwnProperty(r)||(this.totals[r]=0),this.totals[r]=this.totals[r]+a*n;else{let s;r in this.totals?s=this.totals[r]:this.totals[r]=0;let i=L(()=>ie(this.totals[r],O(a,n)));this.totals[r]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:L(()=>{let r=O(_e(1,this.seen),this.totals[n]);t[n]=r,this.totals[n].dispose(),Zt(t[n])}))}},D7=class extends Xl{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let a in this.history){let s=this.history[a];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(a),n.push(i)}}let r=await Promise.all(e);for(let a=0;a<r.length;++a)this.history[t[a]][n[a]].dispose(),this.history[t[a]][n[a]]=r[a][0]}},O7=class extends Xl{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=kte),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=SQ(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let r=[];this.yield!=null&&(await Qa(n),r.push(this.yield(e,t,n))),r.push(up()),await Promise.all(r)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await Qa(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await Qa(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(up()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await Qa(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await Qa(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(up()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await Qa(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await Qa(e),await this.trainEnd(e))}};function z7(e,t){return e==null&&(e={}),e instanceof Xl?[e]:Array.isArray(e)&&e[0]instanceof Xl?e:At(e).map(n=>new O7(n,t))}var gr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),gr.checkForDuplicate(t),gr.constructors[e]==null&&(gr.constructors[e]=[]),gr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in gr.constructors)gr.constructors[+t].forEach(n=>{if(n===e)throw new W("Duplicate callback constructor.")})}static clear(){gr.constructors={}}static createCallbacks(e){let t=[];for(let n in gr.constructors){let r=+n;e>=r&&t.push(...gr.constructors[r])}return t.map(n=>new n)}};gr.constructors={};function P7(e,t,n,r,a,s,i,o,l){let u=new D7,c=[new Ite,...gr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let h=new $7(c);return h.setParams({epochs:n,initialEpoch:r,samples:a,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:h,history:u}}function Fr(e,t={},n=!1){return Ec(e,ae.SerializationMap.getMap().classNameMap,t,"layer",n)}function Qp(e,t){return L(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Fe($c(e),t,!0),r=ec(n.shape,jt()),a=an(Ur(n,r));return _e(e,a)})}function Oi(e,t){return L(()=>Tt($c(be(t,e)),-1))}function e0(e,t){return L(()=>Tt(Vt(be(t,e)),-1))}function Kl(e,t){return L(()=>{let n=be(e,t),r=Sn(Vt(e),jt(),Number.MAX_VALUE),a=Vt(_e(n,r));return O(100,Tt(a,-1))})}function Nte(e,t){return L(()=>{let n=Sn(t,jt(),Number.MAX_VALUE),r=zn(ie(1,n)),a=Sn(e,jt(),Number.MAX_VALUE),s=zn(ie(1,a));return Tt($c(be(r,s)),-1)})}function Ste(e,t){return L(()=>{let n=Ur(0,be(1,O(e,t)));return Tt($c(n),-1)})}function Tte(e,t){return L(()=>{let n=Ur(0,be(1,O(e,t)));return Tt(n,-1)})}function Ete(e,t){return L(()=>{let n=Fe(O(e,t),-1),r=er(O(be(1,e),t),-1);return Ur(0,ie(1,be(r,n)))})}function Cte(e,t){return L(()=>{let n=Math.log(2),r=be(t,e),a=be(ie(r,_l(O(-2,r))),n);return Tt(a,-1)})}function zc(e,t,n=!1){return L(()=>{if(n)t=lc(t);else{let r=Fe(t,t.shape.length-1,!0);t=_e(t,r)}return t=Sn(t,jt(),1-jt()),St(Fe(O(e.toFloat(),zn(t)),t.shape.length-1))})}function t0(e,t,n=!1){return L(()=>{let r=bl(QQ(e)).toInt();t=Sn(t,jt(),1-jt());let a=t.shape,s=dl(r,a[a.length-1]).reshape(a);return zc(s,t,n)})}function Rte(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new W(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return L(()=>{let n=t.relu(),r=t.abs().neg();return n.sub(t.mul(e)).add(r.exp().log1p())})}function n0(e,t){return L(()=>{let n;return n=Sn(t,jt(),1-jt()),n=zn(_e(n,be(1,n))),Tt(Rte(e,n),-1)})}function Fte(e,t){return L(()=>{let n=Sn(e,jt(),1),r=Sn(t,jt(),1);return Fe(O(e,zn(_e(n,r))),-1)})}function Mte(e,t){return L(()=>{let n=zn(ie(jt(),t));return Tt(be(t,O(e,n)),-1)})}function ng(e,t){return L(()=>{let n=Qp(e,-1),r=Qp(t,-1),a=O(n,r);return St(Fe(a,-1))})}var r0={meanSquaredError:Oi,meanAbsoluteError:e0,meanAbsolutePercentageError:Kl,meanSquaredLogarithmicError:Nte,squaredHinge:Ste,hinge:Tte,categoricalHinge:Ete,logcosh:Cte,categoricalCrossentropy:zc,sparseCategoricalCrossentropy:t0,binaryCrossentropy:n0,kullbackLeiblerDivergence:Fte,poisson:Mte,cosineProximity:ng};function rg(e){if(typeof e=="string"){if(e in r0)return r0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new W(t)}else return e}function ag(e,t){return L(()=>{let n=O(.5,Pn(t)),r=Fc(hr(t,n),e.dtype);return Tt(Va(e,r),-1)})}function sg(e,t){return L(()=>Fc(Va(Xu(e,-1),Xu(t,-1)),"float32"))}function L7(e,t){return L(()=>dr(e.equal(1),t.equal(1)).sum().cast("float32"))}function $te(e,t){return L(()=>dr(e.equal(1),t.equal(0)).sum().cast("float32"))}function Dte(e,t){return L(()=>dr(e.equal(0),t.equal(1)).sum().cast("float32"))}function W7(e,t){return L(()=>{let n=L7(e,t),r=Dte(e,t),a=n.add(r);return Tn(hr(a,0),n.div(a),0).cast("float32")})}function Ote(e,t){return L(()=>{let n=L7(e,t),r=$te(e,t),a=n.add(r);return Tn(hr(a,0),n.div(a),0).cast("float32")})}function B7(e,t){return n0(e,t)}function V7(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Va(e,t).asType("float32")}var zte=Oi,Pte=Oi,Lte=e0,Wte=e0,Bte=Kl,Vte=Kl,ig=zc,Ute=ng,U7=t0,a0={binaryAccuracy:ag,categoricalAccuracy:sg,precision:W7,categoricalCrossentropy:ig,sparseCategoricalCrossentropy:U7,mse:zte,MSE:Pte,mae:Lte,MAE:Wte,mape:Bte,MAPE:Vte,cosine:Ute};function Hte(e){if(typeof e=="string"&&e in a0)return a0[e];if(typeof e!="string"&&e!=null)return e;throw new W(`Unknown metric ${e}`)}function s0(e){if(Kr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(r0))if(r0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(a0))if(a0[n]===e){t=n;break}return t!==void 0?t:e.name}}function jte(e){let t={Adagrad:()=>_i.adagrad(.01),Adadelta:()=>_i.adadelta(1,.95,jt()),Adam:()=>_i.adam(.001,.9,.999,jt()),Adamax:()=>_i.adamax(.002,.9,.999,jt(),0),RMSProp:()=>_i.rmsprop(.001,.9,0,jt()),SGD:()=>_i.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new W(`Unknown Optimizer ${e}`)}var H7=1*1024*1024;function j7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!og(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let r=JSON.stringify(e);r.length>H7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${r.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${H7}.`)}}function og(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!og(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!og(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function Zte(e,t,n,r=console.log){let a=qte(e),s=["Layer (type)","Output shape","Param #"];a?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let i;if(!a){s.push("Receives inputs"),i=[];for(let c in e.nodesByDepth)i.push(...e.nodesByDepth[c])}r("_".repeat(t)),i0(s,n,r),r("=".repeat(t));let o=e.layers;for(let c=0;c<o.length;++c)a?Xte(o[c],n,r):Kte(o[c],n,i,r),r((c===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=Gte(e),u=Yp(e.nonTrainableWeights);r(`Total params: ${l+u}`),r(`Trainable params: ${l}`),r(`Non-trainable params: ${u}`),r("_".repeat(t))}function Gte(e){let t;return e.collectedTrainableWeights!=null?t=Yp(e.collectedTrainableWeights):t=Yp(e.trainableWeights),t}function qte(e){let t=!0,n=[],r=[];for(let a in e.nodesByDepth)n.push(e.nodesByDepth[a]);for(let a of n){if(a.length>1||a.length===1&&a[0].inboundLayers.length>1){t=!1;break}r.push(...a)}if(t)for(let a of e.layers){let s=!1;for(let i of a.inboundNodes)if(r.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function i0(e,t,n=console.log){let r="";for(let a=0;a<e.length;++a)a>0&&(r=r.slice(0,r.length-1)+" "),r+=e[a],r=r.slice(0,t[a]),r+=" ".repeat(t[a]-r.length);n(r)}function Xte(e,t,n){let r;try{r=JSON.stringify(e.outputShape)}catch(o){r="multiple"}let a=e.name,s=e.getClassName(),i=[`${a} (${s})`,r,e.countParams().toString()];i0(i,t,n)}function Kte(e,t,n,r){let a;try{a=JSON.stringify(e.outputShape)}catch(c){a="multiple"}let s=[];for(let c of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(c)===-1))for(let h=0;h<c.inboundLayers.length;++h){let d=c.inboundLayers[h].name,p=c.nodeIndices[h],f=c.tensorIndices[h];s.push(`${d}[${p}][${f}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,a,e.countParams().toString(),l];i0(u,t,r);for(let c=1;c<s.length;++c)i0(["","","",s[c]],t,r)}function G7(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Pc(e,t){if(e===null)return null;if(typeof e=="string")return Fi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];G7(t,a,s)?n.push(s):n.push(Pc(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r];if(r==="name"&&typeof a=="string")n[r]=a;else{let s=Fi(r);n[s]=Pc(a,s)}}return n}}function lg(e,t){if(e==null)return null;if(typeof e=="string")return ga(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],r=e.length;for(let a=0;a<r;++a){let s=e[a];G7(t,a,s)?n.push(s):n.push(lg(s,t))}return n}else{let n={};for(let r of Object.keys(e)){let a=e[r],s=ga(r);(r==="name"||r==="className")&&typeof a=="string"?n[s]=a:n[s]=lg(a,r)}return n}}var ug="3.3.0";function Yte(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return xe(t,e.dtype)}catch(n){throw new W(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var zi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof zi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=Yte(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new W(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Rr){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Rr){if(this.id2Value[e.id]==null)throw new W(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new W(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&Re(this.id2Mask)}},cg={},q7={};function Lc(e,t,n,r){let a=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(f=>f.name),l=[],u=t.names();for(let f of o)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);r!=null&&(r.maxNumTensors=-Infinity,r.minNumTensors=Infinity);let c=o.join(",")+"|"+t.names().join(","),h,d;if(cg[c]==null){let f=Jte(i,t);h=f.sorted,d=f.recipientCounts,cg[c]=h,q7[c]=d}h=cg[c],d={},a||Object.assign(d,q7[c]);let p=new zi(t);for(let f=0;f<h.length;++f){if(r!=null){let E=kd().numTensors;E>r.maxNumTensors&&(r.maxNumTensors=E),E<r.minNumTensors&&(r.minNumTensors=E)}let m=h[f],A=m.sourceLayer;if(A instanceof ql)continue;let g=[],y=[],w=[],b=!1;for(let E of m.inputs){let M=p.getValue(E),z=p.getMask(E);g.push(M),y.push(z),z!=null&&(b=!0),a||(d[E.name]--,d[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!M.isDisposed&&E.sourceLayer.stateful!==!0&&w.push(M))}b&&(n=n||{},n.mask=y[0]);let _=At(A.apply(g,n)),x=null;A.supportsMasking&&(x=A.computeMask(g,y));let N=Qte(m),T=Array.isArray(N)?N:[N];for(let E=0;E<T.length;++E){p.hasKey(T[E])||p.add(T[E],_[E],Array.isArray(x)?x[0]:x);let M=o.indexOf(T[E].name);M!==-1&&(l[M]=_[E])}a||Re(w)}return p.disposeMasks(),s?l:l[0]}function Jte(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],r={};if(e.length===1){let a=X7(e[0],t);n=a.sorted,r=a.recipientMap}else{let a=new Set;for(let s of e){let{sorted:i,recipientMap:o}=X7(s,t);for(let l of i)a.has(l.name)||(n.push(l),a.add(l.name));for(let l in o)r[l]==null&&(r[l]=new Set),o[l].forEach(u=>r[l].add(u))}}return{sorted:n,recipientCounts:ene(r)}}function ene(e){let t={};for(let n in e)t[n]=e[n].size;return t}function X7(e,t){let n=new Set,r=[],a={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),r.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)a[u.name]==null&&(a[u.name]=new Set),a[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:r,recipientMap:a}}function Qte(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let r=0;r<e.sourceLayer.inboundNodes.length;++r)for(let a of e.sourceLayer.inboundNodes[r].outputTensors)if(a.id===e.id){n=r;break}t=e.sourceLayer.getOutputAt(n)}return t}var Qr=class extends Je{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let g=this.getClassName().toLowerCase();this.name=Kp(g)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Za(this.inputs).length!==this.inputs.length)throw new W(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(g=>g.name)}`);Za(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(g=>g.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let g of this.outputs){let y=g.sourceLayer,w=g.nodeIndex,b=g.tensorIndex;this.outputLayers.push(y),this.outputLayersNodeIndices.push(w),this.outputLayersTensorIndices.push(b)}for(let g of this.inputs){let y=g.sourceLayer,w=g.nodeIndex,b=g.tensorIndex;Kr(w===0,"input layer has >1 nodes"),Kr(b===0,"input layer has >1 tensors"),this.inputLayers.push(y),this.inputLayersNodeIndices.push(w),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let g=0;g<this.inputLayers.length;g++){let y=this.inputLayers[g];if(!(y instanceof ql))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${g} (0-based) originates from layer type ${y.getClassName()}.`);this.inputNames.push(y.name),this.feedInputShapes.push(y.batchInputShape),this.feedInputNames.push(y.name)}for(let g of this.outputLayers)this.outputNames.push(g.name);this.internalInputShapes=this.inputs.map(g=>g.shape),this.internalOutputShapes=this.outputs.map(g=>g.shape);let t={},n={},r={},a={},s={},i=[],o=(g,y,w,b,_,x)=>{(b==null||_==null||x==null)&&(b=g.sourceLayer,_=g.nodeIndex,x=g.tensorIndex);let N=b.inboundNodes[_];if(w.indexOf(N)!==-1)throw new Er(`The tensor ${g.name} at layer "${b.name}" is part of a cycle.`);if(y.indexOf(N)!==-1)return;this.containerNodes.add(Qr.nodeKey(b,_)),b.id in s||(s[b.id]=Object.keys(s).length),w.indexOf(N)===-1&&w.push(N);let T=N.inboundLayers.length;for(let E=0;E<T;E++){let M=N.inputTensors[E],z=N.inboundLayers[E],B=N.nodeIndices[E],V=N.tensorIndices[E];o(M,y,w,z,B,V)}for(y.push(N);w.indexOf(N)>=0;)w.splice(w.indexOf(N),1);i.push(N)},l=[],u=[];for(let g of this.outputs)o(g,l,u);let c=i.slice().reverse();for(let g of c){n[g.id]=g,g.id in t||(t[g.id]=0);let y=t[g.id],w=r[g.outboundLayer.id]==null?0:r[g.outboundLayer.id];y=Math.max(y,w),r[g.outboundLayer.id]=y,a[g.outboundLayer.id]=g.outboundLayer,t[g.id]=y;for(let b=0;b<g.inboundLayers.length;b++){let _=g.inboundLayers[b],x=g.nodeIndices[b],N=_.inboundNodes[x],T=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(y+1,T),n[N.id]=N}}let h={};for(let g in t){let y=t[g];y in h||(h[y]=[]),h[y].push(n[g])}let d={};for(let g in r){let y=r[g];y in d||(d[y]=[]),d[y].push(a[g])}let p=Object.keys(d).map(g=>parseInt(g,10)).sort(Pp);this.layers=[];for(let g of p){let y=d[g];y.sort((w,b)=>{let _=s[w.id],x=s[b.id];return _<x?-1:_>x?1:0});for(let w of y)w instanceof Qr&&this.internalContainerRefs.push(w),this.layers.push(w)}this.layersByDepth=d,p=Object.keys(h).map(g=>parseInt(g,10)).sort(Pp);let f=this.inputs.slice(),m=[];for(let g of p)for(let y of h[g]){let w=y.outboundLayer;if(w!=null){for(let b of y.inputTensors)if(f.indexOf(b)===-1)throw new Er(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${w.name}". The following previous layers were accessed without issue: ${m}`);for(let b of y.outputTensors)f.push(b);m.push(w.name)}}this.nodesByDepth=h;let A=this.layers.map(g=>g.name);for(let g of A){let y=A.filter(w=>w===g).length;if(y!==1)throw new Er(`The name "${g}" is used ${y} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(A))}this.outboundNodes=[],this.inboundNodes=[],new Jp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(g=>null),outputMasks:this.outputs.map(g=>null),inputShapes:this.inputs.map(g=>g.shape),outputShapes:this.outputs.map(g=>g.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new W("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},r=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new W(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,r++}let a=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)a.push([n[i],e[s]]);else if(t)throw new W(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new W(`${s.length} of ${r} weights are not set: ${s}`)}tg(a)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${ug}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=lg(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return L(()=>{e=At(e);let n=new zi;for(let r=0;r<this.inputs.length;++r)n.add(this.inputs[r],e[r]);return Lc(this.outputs,n,t)})}computeMask(e,t){return L(()=>{e=At(e);let n;return t==null?n=Ri(null,e.length):n=At(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Zp(e);if(t.length!==this.inputLayers.length)throw new W(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let r=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Pp);if(r.length>1)for(let i of r){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],A=l.nodeIndices[f],g=l.tensorIndices[f],y=`${m.name}_${A}_${g}`,w=n[y];c.push(w)}let h=u.computeOutputShape(Fn(c)),d=Zp(h),p=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${p}_${f}`;n[m]=d[f]}}}let a=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],c=`${o.name}_${l}_${u}`;s.push(c)}for(let i=0;i<s.length;i++){let o=s[i];Kr(o in n),a.push(n[o])}return Fn(a)}runInternalGraph(e,t){t==null&&(t=Ri(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],c=t[o];n[l.id]=[u,c]}let r=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Pp);for(let o of r){let l=this.nodesByDepth[o];for(let u of l){let c=u.outboundLayer,h=u.inputTensors,d=u.outputTensors,p=new Array;for(let f of h)f.id in n&&p.push(n[f.id]);if(p.length===h.length){let f={},m,A,g,y;if(u.callArgs!=null&&(f=u.callArgs),p.length===1){let[w,b]=p[0];f.mask==null&&(f.mask=b),g=At(c.call(w,f)),y=At(c.computeMask(w,b)),m=[w],A=[b]}else m=p.map(w=>w[0]),A=p.map(w=>w[1]),f.mask==null&&(f.mask=A),g=At(c.call(m,f)),y=At(c.computeMask(m,A));if(c.activityRegularizer)throw new Pe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let w=0;w<d.length;++w){let b=d[w],_=g[w],x=y[w];n[b.id]=[_,x]}}}}let a=[],s=[],i=[];for(let o of this.outputs){Kr(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),a.push(l),s.push(u)}return[a,s,i]}buildNodeConversionMap(e){let t={},n;for(let r of this.layers){n=r instanceof Qr?1:0;for(let a=0;a<r.inboundNodes.length;a++){let s=Qr.nodeKey(r,a);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new W(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new W("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new W(`No such layer: ${e}`)}calculateLosses(){return L(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let r=Qr.nodeKey(t,n);this.containerNodes.has(r)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let c=0;c<s.inboundNodes.length;c++){let h=s.inboundNodes[c],d=Qr.nodeKey(s,c),p={};if(this.containerNodes.has(d)){if(h.callArgs)try{JSON.stringify(h.callArgs),p=h.callArgs}catch(f){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${h.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),p={}}if(h.inboundLayers.length>0){let f=[];for(let m=0;m<h.inboundLayers.length;m++){let A=h.inboundLayers[m],g=h.nodeIndices[m],y=h.tensorIndices[m],w=Qr.nodeKey(A,g),b=t[w];b==null&&(b=0),f.push([A.name,b,y,p])}l.push(f)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let r=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=Qr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[s];r.push([i.name,u,c])}e.inputLayers=r;let a=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=Qr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[s];a.push([i.name,u,c])}return e.outputLayers=a,e}static fromConfig(e,t,n={},r=!1){let a={},s={};function i(m,A){m.name in s?s[m.name].push(A):s[m.name]=[A]}function o(m,A){let g=[],y;for(let w of A){let b=w[0],_=w[1],x=w[2];if(y=w[3]==null?{}:w[3],!(b in a)){i(m,A);return}let N=a[b];if(N.inboundNodes.length<=_){i(m,A);return}let T=N.inboundNodes[_];g.push(T.outputTensors[x])}g.length>0&&m.apply(Fn(g),y)}function l(m){let A=m.name,g=Fr(m,t.customObjects!=null?t.customObjects:{});g.setFastWeightInitDuringBuild(r),a[A]=g,m.inboundNodes.forEach(y=>{if(!(y instanceof Array))throw new W(`Corrupted configuration, expected array for nodeData: ${y}`);i(g,y)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!NQ(s);)for(let m of c){let A=a[m.name];if(A.name in s){let g=s[A.name];delete s[A.name];for(let y of g)o(A,y)}}let h=[],d=[],p=t.inputLayers;for(let m of p){let A=m[0],g=m[1],y=m[2];Kr(A in a);let w=a[A].inboundNodes[g].outputTensors;h.push(w[y])}let f=t.outputLayers;for(let m of f){let A=m[0],g=m[1],y=m[2];Kr(A in a);let w=a[A].inboundNodes[g].outputTensors;d.push(w[y])}return new e({inputs:h,outputs:d,name:u})}get stateful(){if(this._stateful)throw new W("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){L(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function tne(e,t,n){let r=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>null);if(r===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==r)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${r} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let a=[];return t.forEach(s=>{s in e?a.push(e[s]):a.push(null)}),a}else throw new Error(`The model has multiple (${r}) outputs, so ${n} must be either an array with ${r} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function K7(e,t){return tne(e,t,"classWeight")}async function Z7(e,t,n,r){if(t!=null||r!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let a=L(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await a.data());Re(a);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),hn(i,"float32")}else return null}function nne(e,t){return O(e,t)}var rne=32;function J7(e,t){let n,r,a=t;n=a.xs,r=a.ys,v.assert(n!=null&&r!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=Y7("input",e.inputNames,n),i=Y7("output",e.outputNames,r),o=s[0].shape[0];v.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)v.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)v.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function Y7(e,t,n){if(n instanceof qe)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let r=[];for(let a of t){if(n[a]==null)throw new W(`The feature data generated by the dataset lacks the required ${e} key '${a}'.`);r.push(n[a])}return r}}function ane(e){if(e.length===3)throw new Pe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function ine(e,t,n){let r=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!r||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let a=n.validationData!=null,s,i;if(a)if(Q7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let A=ane(n.validationData);s=A.xs,i=A.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;a?u=l.slice().concat(l.map(A=>"val_"+A)):u=l.slice();let c=z7(n.callbacks,n.yieldEvery),h=n.verbose==null?1:n.verbose,{callbackList:d,history:p}=P7(c,h,n.epochs,null,null,sne(t,n),null,a,u);d.setModel(e),e.history=p,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let A={};await d.onEpochBegin(f);let g=0,y=0;for(r||(m=await t.iterator());r?g<n.batchesPerEpoch:!0;){let w=await m.next();if(r&&w.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${g} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(w.value!=null){let{xs:b,ys:_}=J7(e,w.value),x={};x.batch=y,x.size=b[0].shape[0],await d.onBatchBegin(y,x);let N=[];if(n.classWeight!=null){let M=K7(n.classWeight,e.outputNames);for(let z=0;z<M.length;++z)N.push(await Z7(_[z],null,M[z]))}let T=b.concat(_).concat(N),E=o(T);Re(T);for(let M=0;M<l.length;++M){let z=l[M],B=E[M];x[z]=B,Zt(B)}await d.onBatchEnd(y,x),F7(x),y++,g++}if(r?g>=n.batchesPerEpoch:w.done){if(a){let b;Q7(n.validationData)?b=At(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=At(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?rne:n.validationBatchSize,verbose:0}));for(let _=0;_<e.metricsNames.length;++_)A[`val_${e.metricsNames[_]}`]=b[_]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,A),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function sne(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function Q7(e){return typeof e.iterator=="function"}function one(e){return typeof e.next=="function"}async function lne(e,t,n){n=n||{};let r=n.batches!=null,a=e.testFunction,s=[];if(n.verbose>0)throw new Pe("Verbose mode is not implemented yet.");v.assert(!r||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=one(t)?t:await t.iterator(),o=0,l=0;for(;r?l<n.batches:!0;){let u=await i.next();if(s=L(()=>{if(u.value){let{xs:c,ys:h}=J7(e,u.value),d=c.concat(h),p=L(()=>a(d));if(Re(d),l===0)for(let m=0;m<p.length;++m)s.push(Ne(0));let f=d[0].shape[0];for(let m=0;m<p.length;++m){let A=p[m],g=s[m];s[m]=L(()=>ie(s[m],O(f,A))),l>0&&Re(g)}Re(p),o+=f,++l}return s}),u.done){r&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let c=s[u];s[u]=_e(s[u],o),Re(c)}return Fn(s)}function hg(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Wc(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(r=>Di(r,t,n-t)):Di(e,t,n-t)}function dg(e,t){return L(()=>e==null?null:Array.isArray(e)?e.map(n=>dg(n,t)):g7(e,t.dtype==="int32"?t:t.toInt()))}function pg(e,t){let n=[],r=0,a=null;for(;r<e;)a=r+t,a>=e&&(a=e),n.push([r,a]),r=a;return n}async function une(e,t,n,r,a,s,i,o,l,u,c,h,d,p,f){a==null&&(a=32),s==null&&(s=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,p==null))throw new W("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let A=e.checkNumSamples(n,a,p,"steps_per_epoch"),g;A!=null&&(g=Cr(0,A)),i==null&&(i=1);let{callbackList:y,history:w}=P7(o,i,s,d,A,p,a,m,h);y.setModel(e),e.history=w,await y.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<s;++b){await y.onEpochBegin(b);let _={};if(p!=null)throw new Pe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Pe("batch shuffling is not implemneted yet");c&&v.shuffle(g);let x=hn(g),N=pg(A,a);for(let T=0;T<N.length;++T){let E={};if(await y.onBatchBegin(T,E),L(()=>{let M=N[T][0],z=N[T][1],B=Di(x,M,z-M);E.batch=T,E.size=z-M;let V=dg(n,B),U=t(V);for(let H=0;H<r.length;++H){let X=r[H],G=U[H];E[X]=G,Zt(G)}if(T===N.length-1&&m){let H=e.testLoop(l,u,a);for(let X=0;X<r.length;++X){let G=r[X],ee=H[X];Zt(ee),_["val_"+G]=ee}}}),await y.onBatchEnd(T,E),F7(E),e.stopTraining_)break}x.dispose()}if(await y.onEpochEnd(b,_),e.stopTraining_)break}return await y.onTrainEnd(),await e.history.syncData(),e.history}async function cne(e,t,n,r={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let a,s,i,o,l,u,c;try{let h=r.batchSize==null?32:r.batchSize;hg(h);let d=!1,p=await e.standardizeUserData(t,n,r.sampleWeight,r.classWeight,d,h);a=p[0],s=p[1],c=p[2];let f=!1,m;if(r.validationData!=null&&r.validationData.length>0){if(f=!0,r.validationData.length===2)i=r.validationData[0],o=r.validationData[1];else throw r.validationData.length===3?new Pe("validationData including sample weights is not supported yet."):new W(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${r.validationData} is invalid.`);let x=!0,N=await e.standardizeUserData(i,o,null,null,x,h);l=N[0],u=N[1],m=l.concat(u)}else if(r.validationSplit!=null&&r.validationSplit>0&&r.validationSplit<1){f=!0;let x=Math.floor(a[0].shape[0]*(1-r.validationSplit)),N=a[0].shape[0];l=Wc(a,x,N),a=Wc(a,0,x),u=Wc(s,x,N),s=Wc(s,0,x),m=l.concat(u)}else r.validationSteps!=null&&(f=!0);let A=a.concat(s).concat(c);e.checkTrainableWeightsConsistency();let g=e.makeTrainFunction(),y=e.getDedupedMetricsNames(),w,b;f?(e.makeTestFunction(),w=e.testFunction,b=y.slice().concat(y.map(x=>"val_"+x))):(w=null,m=[],b=y.slice());let _=z7(r.callbacks,r.yieldEvery);return await une(e,g,A,y,h,r.epochs,r.verbose,_,w,m,r.shuffle,b,r.initialEpoch,null,null)}finally{e.isTraining=!1,Pi(a,t),Pi(s,n),Pi(l,i),Pi(u,o),c!=null&&Re(c)}}function ev(e){let t=[];e instanceof qe&&(e=[e]);for(let n=0;n<e.length;++n){let r=e[n];if(r.rank===1)t.push(Mc(r,1));else{if(r.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(r)}}return t}function Pi(e,t){if(e==null)return;let n=[];if(t instanceof qe)n.push(t.id);else if(Array.isArray(t))t.forEach(a=>n.push(a.id));else if(t!=null)for(let a in t){let s=t[a];n.push(s.id)}let r=[];if(e instanceof qe)n.indexOf(e.id)===-1&&r.push(e);else if(Array.isArray(e))e.forEach(a=>{n.indexOf(a.id)===-1&&r.push(a)});else if(e!=null)for(let a in e){let s=e[a];n.indexOf(s.id)===-1&&r.push(s)}r.forEach(a=>{a.isDisposed||a.dispose()})}function hne(e){return e instanceof qe}function fg(e){return Array.isArray(e)}function tv(e){return!hne(e)&&!fg(e)}function nv(e,t,n,r=!0,a=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(fg(e)&&e.length>0)i=!0;else if(tv(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new W(`Error when checking model ${a} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(tv(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new W(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(fg(e)){if(e=e,e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new W(`The model ${a} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=ev(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c>=0&&u!==c)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function dne(e,t,n){let r=Za(e.map(s=>s.shape[0]));r.sort();let a=Za(t.map(s=>s.shape[0]));if(a.sort(),r.length>1)throw new W(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(a.length>1)throw new W(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(r.length>0&&a.length>0&&!v.arraysEqual(r,a))throw new W(`Input Tensors should have the same number of samples as target Tensors. Found ${r[0]} input sample(s) and ${a[0]} target sample(s).`)}function pne(e,t,n){let r=[Oi,n0,zc];for(let a=0;a<e.length;++a){let s=e[a],i=t[a],o=n[a];if(i!=null){if(i===zc&&s.shape[s.shape.length-1]===1)throw new W(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(r.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let c=0;c<l.length;++c){let h=l[c],d=u[c];if(d!=null&&h!==d)throw new W(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function rv(e,t,n,r=!0,a=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new W(`Error when checking model ${a}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new W(`The model expects ${t.length} ${a} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new W(`Error when checking ${a}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!r)continue;let u=o.shape[l],c=n[i][l];if(c!=null&&c!==u)throw new W(`Error when checking ${a}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function fne(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(r=>n);{let r=[];for(let a of t){let s=n.hasOwnProperty(a)?n[a]:[];Array.isArray(s)||(s=[s]),r.push(s)}return r}}var mne="layers-model",ya=class extends Qr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new W("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");Zte(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=jte(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof fa))throw new W("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new W(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(rg(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new W(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>rg(s))}else{let s=rg(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],$i("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let r=fne(e.metrics,this.outputNames),a=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};$i("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=r[s];(o=>{let l="",u,c,h;for(let d of o){if(typeof d=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(d)!==-1){let f=this.internalOutputShapes[s];f[f.length-1]===1||this.lossFunctions[s]===n0?["accuracy","acc"].indexOf(d)!==-1?c=ag:["crossentropy","ce"].indexOf(d)!==-1&&(c=B7):this.lossFunctions[s]===t0?["accuracy","acc"].indexOf(d)!==-1?c=V7:["crossentropy","ce"].indexOf(d)!==-1&&(c=U7):["accuracy","acc"].indexOf(d)!==-1?c=sg:["crossentropy","ce"].indexOf(d)!==-1&&(c=ig);let m;["accuracy","acc"].indexOf(d)!==-1?m="acc":["crossentropy","ce"].indexOf(d)!==-1&&(m="ce"),h=c,u=l+m}else h=Hte(d),u=l+s0(d);let p;$i(u,()=>{p=h}),a(s,u,p)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let r=n.batchSize==null?32:n.batchSize;hg(r);let a=!0,s=this.standardizeUserDataXY(e,t,a,r);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,r,n.verbose,n.steps);return Fn(l)}finally{Pi(s[0],e),Pi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),lne(this,e,t)}checkNumSamples(e,t,n,r="steps"){let a;if(n!=null){if(a=null,t!=null)throw new W(`If ${r} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?a=e[0].shape[0]:a=e.shape[0];else throw new W(`Either the input data should have a defined shape, or ${r} shoud be specified.`);return a}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new W("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),r=n?t:[t],a=this.retrieveSymbolicTensors(r),s=new zi;if(e instanceof qe&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new W(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new W(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Lc(a,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Ri(null,e.length),n=e.length;for(let r of this.layers){let a=Array.isArray(r.output)?r.output:[r.output],s=a.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=a[o],n--),n===0)break}if(n===0)break}if(n>0){let r=[];throw t.forEach((a,s)=>{a==null&&r.push(e[s])}),new W(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(r)}`)}return t}predictLoop(e,t=32,n=!1){return L(()=>{let r=this.checkNumSamples(e);if(n)throw new Pe("Verbose predictLoop() is not implemented yet.");let a=pg(r,t),s=this.outputs.map(i=>[]);for(let i=0;i<a.length;++i)L(()=>{let o=a[i][0],l=a[i][1],u=Wc(e,o,l),c=[];if(Array.isArray(u))for(let d=0;d<u.length;++d)c.push({key:this.inputs[d],value:u[d]});else c.push({key:this.inputs[0],value:u});let h=new zi(c);return Lc(this.outputs,h)}).forEach((o,l)=>s[l].push(o));return Fn(s.map(i=>ot(i,0)))})}predict(e,t={}){let n=ev(e);rv(n,this.inputNames,this.feedInputShapes,!1);try{let r=t.batchSize==null?32:t.batchSize;return hg(r),this.predictLoop(n,r)}finally{Pi(n,e)}}predictOnBatch(e){rv(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,r){if(this.optimizer_==null)throw new Er("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let a=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===t0?a.push(i.slice(0,i.length-1).concat([1])):a.push(i)}if(e=nv(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=nv(t,this.feedOutputNames,a,!1,"target"),dne(e,t,null),pne(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&r!=null&&r>0&&e[0].shape[0]%r!=0)throw new W(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${r}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,r,a=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,a,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(r!=null){let u=K7(r,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await Z7(o[c],null,u[c]))}return[i,o,l]}testLoop(e,t,n,r=0,a){return L(()=>{let s=this.checkNumSamples(t,n,a,"steps"),i=[];if(r>0)throw new Pe("Verbose mode is not implemented yet.");if(a!=null)throw new Pe("steps mode in testLoop() is not implemented yet");{let o=pg(s,n),l=hn(Cr(0,s));for(let u=0;u<o.length;++u){let c=o[u][0],h=o[u][1],d=Di(l,c,h-c),p=dg(t,d),f=e(p);if(u===0)for(let m=0;m<f.length;++m)i.push(Ne(0));for(let m=0;m<f.length;++m){let A=f[m];i[m]=ie(i[m],O(h-c,A))}}for(let u=0;u<i.length;++u)i[u]=_e(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let r=e[n],a=r;a7(e,r)>1&&(a+=`_${a7(e.slice(0,n),r)}`),t.push(a)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let p=0;p<this.inputs.length;++p)u.push({key:this.inputs[p],value:n[p]});let c=new zi(u),h=Lc(this.outputs,c,{training:!0}),d;for(let p=0;p<this.lossFunctions.length;++p){let f=this.lossFunctions[p](r[p],h[p]);a[p]!=null&&(f=nne(f,a[p]));let m=Tt(f);t.push(m),p===0?d=f:d=ie(d,f)}for(let p=0;p<this.metricsTensors.length;++p){let f;if(this.outputs.length>1&&p<this.outputs.length)f=t[p];else{let m=this.metricsTensors[p][0],A=this.metricsTensors[p][1];f=Tt(m(r[A],h[A]))}Zt(f),s.push(f)}return d=Tt(d),this.calculateLosses().forEach(p=>{d=ie(d,p)}),d},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>L(()=>{let t=[],n,r=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:r[l]});let i=new zi(s),o=Lc(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Tt(u(a[l],o[l]));l===0?n=c:n=ie(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],h=Tt(u(a[c],o[c]));t.push(h)}return t})}async fit(e,t,n={}){return cne(this,e,t,n)}async fitDataset(e,t){return ine(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),r=n[0],a=n[1],s=this.makeTrainFunction()(r.concat(a)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return Re(s),Fn(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,r=n?this.trainableWeights:this.weights,a=this.getWeights(n);for(let s=0;s<r.length;++s)n&&!r[s].trainable||t.push({name:r[s].originalName,tensor:a[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=kd().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-kd().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ga(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ga(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let r of t)if(typeof n[r]=="string")e[r]=ga(n[r]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ga(s0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ga(s0(e)));{let e={};for(let t in this.metrics)e[t]=ga(s0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Pc(e.optimizer_config),n=Fr(t),r;if(typeof e.loss=="string")r=Fi(e.loss);else if(Array.isArray(e.loss))r=e.loss.map(s=>Fi(s));else if(e.loss!=null){r={};for(let s in e.loss)r[s]=Fi(e.loss[s])}let a;if(Array.isArray(e.metrics))a=e.metrics.map(s=>Fi(s));else if(e.metrics!=null){a={};for(let s in e.metrics)a[s]=Fi(e.metrics[s])}this.compile({loss:r,metrics:a,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=Nn.getSaveHandlers(e);if(i.length===0)throw new W(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new W(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new W("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await Nn.encodeWeights(this.getNamedWeights(t)),r=!1,a=null,s={modelTopology:this.toJSON(a,r),format:mne,generatedBy:`TensorFlow.js tfjs-layers v${ug}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await Nn.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=Nn.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;j7(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){j7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};ya.className="Model";ae.registerClass(ya);var av=class extends ya{};av.className="Functional";ae.registerClass(av);async function Ane(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let r=Pc(n),a=Fr(r,t);if(e.weightsManifest!=null){let s=await Nn.loadWeights(e.weightsManifest,e.pathPrefix,a.weights.map(o=>o.originalName)),i={};for(let o of a.weights)i[o.originalName]=s[o.originalName];a.loadWeights(i),Re(s)}return a}async function yne(e,t){if(t==null&&(t={}),typeof e=="string"){let n=Nn.getLoadHandlers(e,t);if(n.length===0)n.push(Nn.browserHTTPRequest(e,t));else if(n.length>1)throw new W(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return gne(e,void 0,t)}async function gne(e,t,n){if(n==null&&(n={}),e.load==null)throw new W("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let r=await e.load(),a=r.modelTopology;a.model_config!=null&&(a=a.model_config);let s=n.strict==null?!0:n.strict,i=r.weightData!=null&&r.weightSpecs!=null&&s,o=Fr(Pc(a),t,i),l=r.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),r.userDefinedMetadata!=null&&o.setUserDefinedMetadata(r.userDefinedMetadata),r.weightData!=null){if(r.weightSpecs==null)throw new W("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=xne(r.weightData,r.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&c.length>0&&await o.optimizer.setWeights(c),Re(u),Re(c.map(h=>h.tensor))}return o}function xne(e,t){let n=Nn.decodeWeights(e,t),r={},a=[];return t.forEach(s=>{s.group==="optimizer"?a.push({name:s.name,tensor:n[s.name]}):r[s.name]=n[s.name]}),{modelWeights:r,optimizerWeights:a}}var Zl=class extends ya{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:Kp("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new W(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof Zl||e instanceof ya,n;if(t){if(n=e,n.outputs.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new W("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new W("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let r=R7({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(r)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new W(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new W("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=C7(this.outputs[0])}this.inboundNodes=[],new Jp({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Ri(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(r=>r.shape),outputShapes:this.outputs[0].shape})}else{let r=e.apply(this.outputs[0]);if(Array.isArray(r))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[r],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(pt(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new ya({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Er("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},r=!1){let a,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new W("Legacy serialization format not supported yet.");a=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),a=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof Zl))throw new Pe(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of a){let l=Fr(o,void 0,r);r&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new W("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new W("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};Zl.className="Sequential";ae.registerClass(Zl);function wne(e){return new ya(e)}function bne(e){return new Zl(e)}function _ne(e,t){return t==null&&(t={}),yne(e,t)}function _7(e){return R7(e)}function vne(e,t){gr.registerCallbackConstructor(e,t)}var Un=class extends ae.Serializable{getConfig(){return{}}},sv=class extends Un{apply(e,t=1){return tee(e,t)}};sv.className="elu";ae.registerClass(sv);var iv=class extends Un{apply(e){return Ud(e)}};iv.className="selu";ae.registerClass(iv);var ov=class extends Un{apply(e){return jr(e)}};ov.className="relu";ae.registerClass(ov);var lv=class extends Un{apply(e){return L(()=>kl(6,jr(e)))}};lv.className="relu6";ae.registerClass(lv);var uv=class extends Un{apply(e){return e}};uv.className="linear";ae.registerClass(uv);var cv=class extends Un{apply(e){return On(e)}};cv.className="sigmoid";ae.registerClass(cv);var hv=class extends Un{apply(e){return ree(e)}};hv.className="hardSigmoid";ae.registerClass(hv);var dv=class extends Un{apply(e){return _l(e)}};dv.className="softplus";ae.registerClass(dv);var pv=class extends Un{apply(e){return nee(e)}};pv.className="softsign";ae.registerClass(pv);var fv=class extends Un{apply(e){return gl(e)}};fv.className="tanh";ae.registerClass(fv);var mg=class extends Un{apply(e,t=-1){return lc(e,t)}};mg.className="softmax";ae.registerClass(mg);var mv=class extends Un{apply(e,t=-1){return Od(e,t)}};mv.className="logSoftmax";ae.registerClass(mv);var Av=class extends Un{apply(e,t=1){return L(()=>On(e.mul(t)).mul(e))}};Av.className="swish";ae.registerClass(Av);function es(e){return e.getClassName()}function Ag(e,t={}){return Ec(e,ae.SerializationMap.getMap().classNameMap,t,"activation")}function ts(e){if(e==null){let t={};return t.className="linear",t.config={},Ag(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Ag(t)}else return e instanceof Un?e:Ag(e)}function gg(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var gv=class extends ae.Serializable{},Bc=class extends gv{constructor(e){super();gg(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return L(()=>{let t=Ot([1]);return this.hasL1&&(t=ie(t,Fe(O(this.l1,Vt(e))))),this.hasL2&&(t=ie(t,Fe(O(this.l2,$c(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Bc.className="L1L2";ae.registerClass(Bc);function kne(e){return gg(e),new Bc({l1:e!=null?e.l1:null,l2:0})}function Ine(e){return gg(e),new Bc({l2:e!=null?e.l2:null,l1:0})}var yv={l1l2:"L1L2"};function ft(e){return RA(e)}function xv(e,t={}){return Ec(e,ae.SerializationMap.getMap().classNameMap,t,"regularizer")}function _t(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in yv?yv[e]:e,config:{}};return xv(t)}else return e instanceof gv?e:xv(e)}var yg=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Be(e);let n=jr(e);return this.maxValue!=null&&(n=Sn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};yg.className="ReLU";ae.registerClass(yg);var xg=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return tc(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};xg.className="LeakyReLU";ae.registerClass(xg);var wg=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=_t(e.alphaRegularizer),this.alphaConstraint=qt(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new W(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=pt(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let r of this.sharedAxes)t[r-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let r=1;r<e.length;++r)n[r]=e[r];this.inputSpec=[new Qt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Be(e),sc(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Et(this.alphaInitializer),alphaRegularizer:ft(this.alphaRegularizer),alphaConstraint:Gt(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};wg.className="PReLU";ae.registerClass(wg);var bg=class extends Je{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Pe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Be(e);return wl(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};bg.className="ELU";ae.registerClass(bg);var _g=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Be(e);return n.mul(Fc(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};_g.className="ThresholdedReLU";ae.registerClass(_g);var vg=class extends Je{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new mg().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Be(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};vg.className="Softmax";ae.registerClass(vg);function Yl(e,t,n){if(typeof e=="number")return Ri(e,t);if(e.length!==t)throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let r=0;r<t;++r){let a=e[r];if(!YQ(a))throw new W(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${a}`)}return e}function Mr(e,t,n,r,a=1){if(e==null)return e;let s=t+(t-1)*(a-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+r-1)/r)}function o0(e,t,n,r){if(e==null)return null;if(r==="valid")e=e*t+Ja([n-t,0]);else if(r==="same")e=e*t;else throw new W(`Unsupport padding mode: ${r}.`);return e}function kg(e,t){return L(()=>(Mt(t),t==="channelsFirst"?it(e,[0,2,3,1]):e))}function wv(e,t){return L(()=>(Mt(t),t==="channelsFirst"?it(e,[0,2,3,4,1]):e))}function Nne(e,t,n,r=1,a="valid",s,i=1){return L(()=>{if(s==null&&(s=Tr()),Mt(s),e.shape.length!==3)throw new W(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new W(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new W(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=it(e,[0,2,1])),a==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Td(e,t,r,a==="same"?"same":"valid","NWC",i);return n!=null&&(o=Yr(o,n)),o})}function bv(e,t,n,r=[1,1],a="valid",s,i,o=null){return L(()=>{if(s==null&&(s=Tr()),Mt(s),e.rank!==3&&e.rank!==4)throw new W(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new W(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=kg(e,s);if(a==="causal")throw new Pe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Ga.conv2d({x:l,filter:t,strides:r,pad:a==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=it(l,[0,3,1,2])),l})}function Sne(e,t,n,r=[1,1,1],a="valid",s,i){return L(()=>{if(s==null&&(s=Tr()),Mt(s),e.rank!==4&&e.rank!==5)throw new W(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new W(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=wv(e,s);if(a==="causal")throw new Pe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=pm(o,t,r,a==="same"?"same":"valid","NDHWC",i),n!=null&&(o=Yr(o,n)),s==="channelsFirst"&&(o=it(o,[0,4,1,2,3])),o})}var Ig=class extends Je{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Ig.verifyArgs(t),this.rank=e,Jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Pe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=Yl(t.kernelSize,e,"kernelSize"),this.strides=Yl(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,rr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Mt(this.dataFormat),this.activation=ts(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=qt(t.biasConstraint),this.biasRegularizer=_t(t.biasRegularizer),this.activityRegularizer=_t(t.activityRegularizer),this.dilationRate=Yl(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new W(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new W(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new W(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Kr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,3))throw new W(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:es(this.activation),useBias:this.useBias,biasInitializer:Et(this.biasInitializer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),biasConstraint:Gt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Vc=class extends Ig{constructor(e,t){super(e,t);this.kernel=null,Vc.verifyArgs(t),this.filters=t.filters,Jt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=qt(t.kernelConstraint),this.kernelRegularizer=_t(t.kernelRegularizer)}build(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],r=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",r,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return L(()=>{e=Be(e);let n,r=this.bias==null?null:this.bias.read(),a=i7(this.activation.getClassName());if(a!=null&&this.rank===2)n=bv(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate,a);else{if(this.rank===1)n=Nne(e,this.kernel.read(),r,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=bv(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Sne(e,this.kernel.read(),r,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Pe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=pt(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let a=0;a<n.length;++a){let s=Mr(n[a],this.kernelSize[a],this.padding,this.strides[a],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[a]);t.push(s)}let r=[e[0]];return this.dataFormat==="channelsLast"?(r=r.concat(t),r.push(this.filters)):(r.push(this.filters),r=r.concat(t)),r}getConfig(){let e={filters:this.filters,kernelInitializer:Et(this.kernelInitializer),kernelRegularizer:ft(this.kernelRegularizer),kernelConstraint:Gt(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new W(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Uc=class extends Vc{constructor(e){super(2,e);Uc.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,2))throw new W(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Uc.className="Conv2D";ae.registerClass(Uc);var l0=class extends Vc{constructor(e){super(3,e);l0.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new W(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};l0.className="Conv3D";ae.registerClass(l0);var Ng=class extends Uc{constructor(e){super(e);if(this.inputSpec=[new Qt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new W(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=pt(e),e.length!==4)throw new W("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new W("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],r=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",r,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new Qt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{let n=Be(e);if(n.shape.length!==4)throw new W(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let r=n.shape,a=r[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=r[s],l=r[i],u=this.kernelSize[0],c=this.kernelSize[1],h=this.strides[0],d=this.strides[1],p=o0(o,h,u,this.padding),f=o0(l,d,c,this.padding),m=[a,p,f,this.filters];this.dataFormat!=="channelsLast"&&(n=it(n,[0,2,3,1]));let A=Ed(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(A=it(A,[0,3,1,2])),this.bias!=null&&(A=Yr(A,this.bias.read(),this.dataFormat)),this.activation!=null&&(A=this.activation.apply(A)),A})}computeOutputShape(e){e=pt(e);let t=e.slice(),n,r,a;this.dataFormat==="channelsFirst"?(n=1,r=2,a=3):(n=3,r=1,a=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[r]=o0(t[r],o,s,this.padding),t[a]=o0(t[a],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Ng.className="Conv2DTranspose";ae.registerClass(Ng);var _v=class extends Vc{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new W("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new W("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new W(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=_t(t.depthwiseRegularizer),this.depthwiseConstraint=qt(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=_t(t.pointwiseRegularizer),this.pointwiseConstraint=qt(t.pointwiseConstraint)}build(e){if(e=pt(e),e.length<this.rank+2)throw new W(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],r=this.kernelSize.concat([n,this.depthMultiplier]),a=[];for(let i=0;i<this.rank;++i)a.push(1);a.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",r,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",a,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new Qt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return L(()=>{e=Be(e);let n;if(this.rank===1)throw new Pe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=it(e,[0,2,3,1])),n=Rm(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Yr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=it(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.pointwiseInitializer=Et(this.pointwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.pointwiseRegularizer=ft(this.pointwiseRegularizer),e.depthwiseConstraint=Gt(this.depthwiseConstraint),e.pointwiseConstraint=Gt(this.pointwiseConstraint),e}};_v.className="SeparableConv";var Sg=class extends _v{constructor(e){super(2,e)}};Sg.className="SeparableConv2D";ae.registerClass(Sg);var u0=class extends Vc{constructor(e){super(1,e);u0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!MA(e.kernelSize,"number",1,1))throw new W(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};u0.className="Conv1D";ae.registerClass(u0);var Tg=class extends Je{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return L(()=>{if(e=Be(e),this.dataFormat==="channelsLast"){let n=Lp(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Lp(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Lp(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Lp(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Tg.className="Cropping2D";ae.registerClass(Tg);var Eg=class extends Je{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,XQ(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return L(()=>{let n=Be(e),r=n.shape;if(this.dataFormat==="channelsFirst"){n=it(n,[0,2,3,1]);let a=this.size[0]*r[2],s=this.size[1]*r[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s]);return it(i,[0,3,1,2])}else{let a=this.size[0]*r[1],s=this.size[1]*r[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([a,s]):n.resizeBilinear([a,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};Eg.className="UpSampling2D";ae.registerClass(Eg);function Tne(e,t,n=[1,1],r="valid",a,s){return L(()=>{a==null&&(a=Tr()),Mt(a);let i=kg(e,a);if(e.rank!==4)throw new W(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new W(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=xl(i,t,n,r==="same"?"same":"valid","NHWC",s),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}var Cg=class extends Ig{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=qt(e.depthwiseConstraint),this.depthwiseRegularizer=_t(e.depthwiseRegularizer)}build(e){if(e=pt(e),e.length<4)throw new W(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new W(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],r=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",r,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{e=Be(e);let n=Tne(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Yr(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,a=Mr(t,this.kernelSize[0],this.padding,this.strides[0]),s=Mr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],r,a,s]:[e[0],a,s,r]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Et(this.depthwiseInitializer),e.depthwiseRegularizer=ft(this.depthwiseRegularizer),e.depthwiseConstraint=Gt(this.depthwiseRegularizer),e}};Cg.className="DepthwiseConv2D";ae.registerClass(Cg);function vv(e,t,n,r){if(Array.isArray(e)){if(t!=null||n!=null)throw new W("When inputs is an array, neither initialState or constants should be provided");r!=null&&(n=e.slice(e.length-r,e.length),e=e.slice(0,e.length-r)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function a(s){return s==null||Array.isArray(s)?s:[s]}return t=a(t),n=a(n),{inputs:e,initialState:t,constants:n}}function kv(e,t,n,r=!1,a,s,i=!1,o=!1){return L(()=>{let l=t.shape.length;if(l<3)throw new W(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Cr(2,l));if(t=it(t,u),s!=null)throw new Pe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),a!=null&&(a=a.asType("bool").asType("float32"),a.rank===l-1&&(a=mn(a,-1)),a=it(a,u)),r&&(t=Ln(t,0),a!=null&&(a=Ln(a,0)));let c=[],h,d=n,p=t.shape[0],f=pr(t),m;a!=null&&(m=pr(a));for(let g=0;g<p;++g){let y=f[g],w=L(()=>e(y,d));if(a==null)h=w[0],d=w[1];else{let b=L(()=>{let _=m[g],x=Pn(_).sub(_),N=w[0].mul(_).add(d[0].mul(x)),T=d.map((E,M)=>w[1][M].mul(_).add(E.mul(x)));return{output:N,newStates:T}});h=b.output,d=b.newStates}o&&c.push(h)}let A;return o&&(A=An(c,1)),[h,A,d]})}var Jr=class extends Je{constructor(e){super(e);let t;if(e.cell==null)throw new W("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new c0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new W("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new Qt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Cr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){QA(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],r;if(this.returnSequences?r=[e[0],e[1],n]:r=[e[0],n],this.returnState){let a=[];for(let s of t)a.push([e[0],s]);return[r].concat(a)}else return r}computeMask(e,t){return L(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let r=this.states.map(a=>null);return[n].concat(r)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new Pe("Constants support is not implemented in RNN yet.");QA(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,r=e.slice(2);this.inputSpec[0]=new Qt({shape:[n,null,...r]});let a=[e[0]].concat(e.slice(2));if(t!=null)throw new Pe("Constants support is not implemented in RNN yet.");this.cell.build(a);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new W(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new Qt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ot([n,r])):this.states_=[Ot([n,this.cell.stateSize])];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(r=>Ot([n,r])):this.states_[0]=Ot([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let r=0;r<this.states_.length;++r){let a=e[r],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[r]:this.cell.stateSize,i=[n,s];if(!v.arraysEqual(a.shape,i))throw new W(`State ${r} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${a.shape}`);this.states_[r]=a}}this.states_=this.states_.map(r=>Zt(r.clone()))})}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=vv(e,n,r,this.numConstants);e=a.inputs,n=a.initialState,r=a.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new Qt({shape:o.shape}));i=i.concat(this.stateSpec)}if(r!=null&&(t.constants=r,s=s.concat(r),this.numConstants=r.length),s[0]instanceof Rr){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let c=super.apply(o,t);return this.inputSpec=u,c}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;e=Be(e),a==null&&(this.stateful?a=this.states_:a=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(a.length!==s)throw new W(`RNN Layer has ${s} state(s) but was passed ${a.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:r},o=kv((d,p)=>{let f=this.cell.call([d].concat(p),i);return[f[0],f.slice(1)]},e,a,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],c=o[2];this.stateful&&this.resetStates(c,r);let h=this.returnSequences?u:l;return this.returnState?[h].concat(c):h})}getInitialState(e){return L(()=>{let t=Ot(e.shape);return t=Fe(t,[1,2]),t=Mc(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?LA(t,[1,n]):t):this.cell.stateSize>1?[LA(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===Jr.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let r=t.cell,a=Fr(r,n);return new e(Object.assign(t,{cell:a}))}};Jr.className="RNN";ae.registerClass(Jr);var Oc=class extends Je{},h0=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=ts(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let r=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ns({ones:()=>Pn(e),rate:this.dropout,training:r})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ns({ones:()=>Pn(n),rate:this.recurrentDropout,training:r}));let a,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?a=Zr(O(e,s),this.kernel.read()):a=Zr(e,this.kernel.read()),this.bias!=null&&(a=Yr(a,this.bias.read())),i!=null&&(n=O(n,i));let o=ie(a,Zr(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),recurrentConstraint:Gt(this.recurrentConstraint),biasConstraint:Gt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};h0.className="SimpleRNNCell";ae.registerClass(h0);var Rg=class extends Jr{constructor(e){e.cell=new h0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return new e(t)}};Rg.className="SimpleRNN";ae.registerClass(Rg);var d0=class extends Oc{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new W("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Jt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=pt(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return L(()=>{if(e=e,e.length!==2)throw new W(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,r=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ns({ones:()=>Pn(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ns({ones:()=>Pn(r),rate:this.recurrentDropout,training:n,count:3}));let a=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=O(e,a[0]));let u=Zr(e,this.kernel.read());this.useBias&&(u=Yr(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(r=O(r,s[0]));let c=this.recurrentKernel.read(),[h,d]=Ht(c,[2*this.units,this.units],c.rank-1),p=Zr(r,h),[f,m,A]=Ht(u,3,u.rank-1),[g,y]=Ht(p,2,p.rank-1);i=this.recurrentActivation.apply(ie(f,g)),o=this.recurrentActivation.apply(ie(m,y));let w=Zr(O(o,r),d);l=this.activation.apply(ie(A,w));let b=ie(O(i,r),O(ie(1,St(i)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),recurrentActivation:es(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),recurrentConstraint:Gt(this.recurrentConstraint),biasConstraint:Gt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};d0.className="GRUCell";ae.registerClass(d0);var Fg=class extends Jr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new d0(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Fg.className="GRU";ae.registerClass(Fg);var Hc=class extends Oc{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=ts(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ts(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=_t(e.kernelRegularizer),this.recurrentRegularizer=_t(e.recurrentRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.kernelConstraint=qt(e.kernelConstraint),this.recurrentConstraint=qt(e.recurrentConstraint),this.biasConstraint=qt(e.biasConstraint),this.dropout=Gl([1,Ja([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=Gl([1,Ja([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=pt(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let r;if(this.useBias){if(this.unitForgetBias){let a=this.biasInitializer,s=this.units;r=new(t=class extends Ar{apply(i,o){let l=a.apply([s]),u=new Bp().apply([s]),c=a.apply([s*2]);return A7(A7(l,u),c)}},t.className="CustomInit",t)}else r=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,r,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new W(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let r=e[1],a=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ns({ones:()=>Pn(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ns({ones:()=>Pn(r),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,c;0<this.dropout&&this.dropout<1&&(e=O(e,s[0]));let h=Zr(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(r=O(r,i[0])),h=ie(h,Zr(r,this.recurrentKernel.read())),this.useBias&&(h=Yr(h,this.bias.read()));let[d,p,f,m]=Ht(h,4,h.rank-1);o=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(p),u=ie(O(l,a),O(o,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let A=O(c,this.activation.apply(u));return[A,A,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:es(this.activation),recurrentActivation:es(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),recurrentInitializer:Et(this.recurrentInitializer),biasInitializer:Et(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:ft(this.kernelRegularizer),recurrentRegularizer:ft(this.recurrentRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),recurrentConstraint:Gt(this.recurrentConstraint),biasConstraint:Gt(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Hc.className="LSTMCell";ae.registerClass(Hc);var Mg=class extends Jr{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Hc(e),super(e)}call(e,t){return L(()=>{this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};Mg.className="LSTM";ae.registerClass(Mg);var c0=class extends Oc{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return L(()=>{e=e;let n=e.slice(1),r=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?r.push(n.splice(0,i.stateSize.length)):r.push(n.splice(0,1));r.reverse();let a=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=r[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),a.push(s.slice(1))}n=[];for(let i of a.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){QA(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,r)=>{$i(`RNNCell_${r}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let r=[];for(let a of t.cells)r.push(Fr(a,n));return new e({cells:r})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return eg(e)}setWeights(e){let t=[];for(let n of this.cells){let r=n.weights.length,a=e.splice(r);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],a[s]])}tg(t)}};c0.className="StackedRNNCells";ae.registerClass(c0);function ns(e){let{ones:t,rate:n,training:r=!1,count:a=1}=e,s=()=>y7(t(),n),i=()=>Dc(s,t,r);return!a||a<=1?Zt(i().clone()):Array(a).fill(void 0).map(i).map(o=>Zt(o.clone()))}var Ene=function(e,t){var n={};for(var r in e)Object.prototype.hasOwnProperty.call(e,r)&&t.indexOf(r)<0&&(n[r]=e[r]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var a=0,r=Object.getOwnPropertySymbols(e);a<r.length;a++)t.indexOf(r[a])<0&&Object.prototype.propertyIsEnumerable.call(e,r[a])&&(n[r[a]]=e[r[a]]);return n},Iv=class extends Jr{constructor(e){if(e.unroll)throw new Pe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Pe("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new Qt({ndim:5})]}call(e,t){return L(()=>{if(this.cell.dropoutMask!=null&&(Re(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(Re(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new W("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,r=t==null?null:t.training,a=t==null?null:t.initialState;return super.call(e,{mask:n,training:r,initialState:a})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return L(()=>{let{stateSize:t}=this.cell,n=e.shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)],s=Ot(a);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){L(()=>{if(!this.stateful)throw new Aa("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,r=this.computeSingleOutputShape(n),a=[r[0],...r.slice(2)];if(n[0]==null)throw new W("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_=[Ot(a)];else if(e==null)Re(this.states_),this.keptStates!=null&&(Re(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Ot(a)):this.states_[0]=Ot(a);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new W(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):Re(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=a;if(!v.arraysEqual(i.shape,o))throw new W(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Zt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:r,padding:a,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],c=Mr(l,r[0],a,s[0],i[0]),h=Mr(u,r[1],a,s[1],i[1]);return[...e.slice(0,2),...o?[n,c,h]:[c,h,n]]}};Iv.className="ConvRNN2D";var p0=class extends Hc{constructor(e){let{filters:t,kernelSize:n,strides:r,padding:a,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Jt(this.filters,"filters"),this.kernelSize=Yl(n,2,"kernelSize"),this.kernelSize.forEach(o=>Jt(o,"kernelSize")),this.strides=Yl(r||1,2,"strides"),this.strides.forEach(o=>Jt(o,"strides")),this.padding=a||"valid",rr(this.padding),this.dataFormat=s||"channelsLast",Mt(this.dataFormat),this.dilationRate=Yl(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Jt(o,"dilationRate"))}build(e){var t;e=pt(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new W(`The channel dimension of the input should be defined. Found ${e[n]}`);let r=e[n],a=4,s=this.kernelSize.concat([r,this.filters*a]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*a]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends Ar{apply(c,h){let d=l.apply([u]),p=Hr([u]),f=l.apply([u*2]);return BA([d,p,f])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*a],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return L(()=>{if(e.length!==3)throw new W(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,r=e[0],a=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=ns({ones:()=>Pn(r),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(Y,se,ne)=>!se||!se[ne]?Y:O(se[ne],Y),u=l(r,o,0),c=l(r,o,1),h=l(r,o,2),d=l(r,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=ns({ones:()=>Pn(a),rate:this.recurrentDropout,training:n,count:i}));let p=this.recurrentDropoutMask,f=l(a,p,0),m=l(a,p,1),A=l(a,p,2),g=l(a,p,3),y=3,[w,b,_,x]=Ht(this.kernel.read(),i,y),[N,T,E,M]=this.useBias?Ht(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,w,N,this.padding),c=this.inputConv(c,b,T,this.padding),h=this.inputConv(h,_,E,this.padding),d=this.inputConv(d,x,M,this.padding);let[z,B,V,U]=Ht(this.recurrentKernel.read(),i,y);f=this.recurrentConv(f,z),m=this.recurrentConv(m,B),A=this.recurrentConv(A,V),g=this.recurrentConv(g,U);let H=this.recurrentActivation.apply(ie(u,f)),X=this.recurrentActivation.apply(ie(c,m)),G=ie(O(X,s),O(H,this.activation.apply(ie(h,A)))),ee=O(this.recurrentActivation.apply(ie(d,g)),this.activation.apply(G));return[ee,ee,G]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Ene(e,["units"]),r={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,r)}inputConv(e,t,n,r){let a=ca(e,t,this.strides,r||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Yr(a,n,this.dataFormat):a}recurrentConv(e,t){return ca(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};p0.className="ConvLSTM2DCell";ae.registerClass(p0);var $g=class extends Iv{constructor(e){let t=new p0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};$g.className="ConvLSTM2D";ae.registerClass($g);var f0=class extends Je{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let r=0;r<this.noiseShape.length;++r)n.push(this.noiseShape[r]==null?t[r]:this.noiseShape[r]);return n}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);if(0<this.rate&&this.rate<1){let r=t.training==null?!1:t.training,a=this.getNoiseShape(n);return Dc(()=>y7(n,this.rate,a,this.seed),()=>n,r)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};f0.className="Dropout";ae.registerClass(f0);var Dg=class extends f0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Dg.className="SpatialDropout1D";ae.registerClass(Dg);var Og=class extends Je{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Jt(this.units,"units"),this.activation=ts(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=qt(e.kernelConstraint),this.biasConstraint=qt(e.biasConstraint),this.kernelRegularizer=_t(e.kernelRegularizer),this.biasRegularizer=_t(e.biasRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=pt(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=pt(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e),r=i7(this.activation.getClassName()),a;return r!=null?a=Zr(n,this.kernel.read(),r,this.bias?this.bias.read():null):(a=Zr(n,this.kernel.read()),this.bias!=null&&(a=Yr(a,this.bias.read())),this.activation!=null&&(a=this.activation.apply(a))),a})}getConfig(){let e={units:this.units,activation:es(this.activation),useBias:this.useBias,kernelInitializer:Et(this.kernelInitializer),biasInitializer:Et(this.biasInitializer),kernelRegularizer:ft(this.kernelRegularizer),biasRegularizer:ft(this.biasRegularizer),activityRegularizer:ft(this.activityRegularizer),kernelConstraint:Gt(this.kernelConstraint),biasConstraint:Gt(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Og.className="Dense";ae.registerClass(Og);var zg=class extends Je{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=pt(e);for(let t of e.slice(1))if(t==null)throw new W(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Ya(e,1)]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let r=[0];for(let a=2;a<n.rank;++a)r.push(a);r.push(1),n=n.transpose(r)}return eee(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};zg.className="Flatten";ae.registerClass(zg);var Pg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.activation=ts(e.activation)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.activation.apply(n)})}getConfig(){let e={activation:es(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Pg.className="Activation";ae.registerClass(Pg);var Lg=class extends Je{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return L(()=>(e=Be(e),JQ(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};Lg.className="RepeatVector";ae.registerClass(Lg);var Wg=class extends Je{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",r=t.slice(),a=1,s=null;for(let o=0;o<r.length;++o){let l=r[o];if(this.isUnknown(l))if(s===null)s=o;else throw new W("Can only specifiy one unknown dimension.");else a*=l}let i=Ya(e);if(s!==null){if(a===0||i%a!=0)throw new W(n);r[s]=i/a}else if(i!==a)throw new W(n);return r}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e),r=n.shape,a=r.slice(0,1).concat(this.fixUnknownDimension(r.slice(1),this.targetShape));return n.reshape(a)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};Wg.className="Reshape";ae.registerClass(Wg);var Bg=class extends Je{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Cr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new Qt({ndim:this.dims.length+1})]}computeOutputShape(e){e=pt(e);let t=e.slice();return this.dims.forEach((n,r)=>{t[r+1]=e[n]}),t}call(e,t){return it(Be(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};Bg.className="Permute";ae.registerClass(Bg);var Vg=class extends Je{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Be(e),r=-1;return qu(wi(n,this.maskValue),r)}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e),r=-1,a=!0,s=qu(wi(n,this.maskValue),r,a);return n.mul(s.asType(n.dtype))})}};Vg.className="Masking";ae.registerClass(Vg);var Ug=class extends Je{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(At(e.inputLength))}this.inputDim=e.inputDim,Jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Jt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=_t(e.embeddingsRegularizer),this.activityRegularizer=_t(e.activityRegularizer),this.embeddingsConstraint=qt(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return L(()=>this.maskZero?(e=Be(e),wi(e,Xe(e))):null)}computeOutputShape(e){if(e=pt(e),this.inputLength==null)return[...e,this.outputDim];let t=At(this.inputLength);if(t.length!==e.length-1)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let r=0;r<t.length;++r){let a=t[r],s=e[r+1];if(a!=null&&s!=null&&a!==s)throw new W(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);a==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return n.dtype!=="int32"&&(n=Fc(n,"int32")),g7(this.embeddings.read(),n.as1D()).reshape(pt(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Et(this.embeddingsInitializer),embeddingsRegularizer:ft(this.embeddingsRegularizer),activityRegularizer:ft(this.activityRegularizer),embeddingsConstraint:Gt(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};Ug.className="Embedding";ae.registerClass(Ug);var Li=class extends Je{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new Pe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let r=0;r<t.length;++r){let a=e[e.length-t.length+r],s=t[r];if(a==null||s==null||a<0||s<0)n.push(null);else if(a===1)n.push(s);else if(s===1)n.push(a);else{if(a!==s)throw new W("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(a)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[pt(e)]),e=e,e.length<2)throw new W(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let a of e)a!=null&&a[0]!==null&&t.push(a[0]);if(t=Za(t),t.length>1)throw new W(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let a=1;a<e.length;++a){let s=e[a]==null?null:e[a].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let r=e.map(a=>a.length);e.indexOf(null)===-1&&Za(r).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return L(()=>{if(e=e,this.reshapeRequired){let n=[],r=e.map(a=>a.rank);if(r.indexOf(null)===-1){let a=Ja(r);for(let s of e){let i=s.rank;for(let o=0;o<a-i;++o)s=Mc(s,1);n.push(s)}return this.mergeFunction(n)}else{let a=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,c=u[0],h=u.slice(1).concat([c]),d=o.reshape([c].concat(Ya(u.slice(1))));d=it(d,[1,0]),d=d.reshape(h),n.push(d),a=!0}else if(l>1){let u=Cr(1,l).concat([0]);n.push(it(o,u)),a=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(a){if(i==null){let o=s.shape,l=o.length,u=o[l-1],c=[u].concat(o.slice(0,o.length-1));s=it(s.reshape([-1,u]),[1,0]).reshape(c)}else if(i>1){let o=[i-1].concat(Cr(0,i-1));s=it(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);t=this.computeElementwiseOpOutputShape(t,a)}let n=[];for(let r of e)r!=null&&r[0]!==null&&n.push(r[0]);return n=Za(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return L(()=>{if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an Array");if(!Array.isArray(e))throw new W("`inputs` should be an Array");if(t.length!==e.length)throw new W(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(r=>r==null))return null;t=t.map(r=>r==null?r:mn(r,0));let n=t[0];for(let r=1;r<t.length-1;++r)n=dr(n,t[r]);return n})}},Hg=class extends Li{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};Hg.className="Add";ae.registerClass(Hg);var jg=class extends Li{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=O(t,e[n]);return t})}};jg.className="Multiply";ae.registerClass(jg);var Gg=class extends Li{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return O(1/e.length,t)})}};Gg.className="Average";ae.registerClass(Gg);var qg=class extends Li{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Ur(t,e[n]);return t})}};qg.className="Maximum";ae.registerClass(qg);var Xg=class extends Li{constructor(e){super(e)}mergeFunction(e){return L(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=kl(t,e[n]);return t})}};Xg.className="Minimum";ae.registerClass(Xg);var Kg=class extends Li{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new W("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let r of e)if(r!=null){t=!1;break}if(t)return;let n=[];for(let r=0;r<e.length;++r){let a=e[r].slice();a.splice(this.axis,1);let s=!1;for(let i of n)if(v.arraysEqual(i,a)){s=!0;break}s||n.push(a)}if(n.length>1)throw new W("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return L(()=>BA(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new W("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),r=this.axis<0?n.length+this.axis:this.axis;for(let a of t.slice(1)){if(n[r]==null||a[r]==null){n[r]=null;break}n[r]+=a[r]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new W("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new W("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new W(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return L(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let r=[];for(let s=0;s<e.length;++s)t[s]==null?r.push(Pn(e[s]).asType("bool")):t[s].rank<e[s].rank?r.push(mn(t[s],-1)):r.push(t[s]);let a=ot(r,this.axis);return Nd(a,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Kg.className="Concatenate";ae.registerClass(Kg);function jc(e,t){for(;e<0;)e+=t;return e}function Cne(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Pe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Pe("batchDot is not implemented for complex64-type Tensors yet.");let r=e.shape.length,a=t.shape.length;n==null&&(n=[r-1,a-2]);let s=n;return L(()=>{let i;if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;r>a?l=r+a-3:l=r-1;let u=[];for(let c=l;c<l+i;++c)u.push(c);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var Zg=class extends Li{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);if(t[r[0]]!==n[r[1]])throw new W(`Dimension incompatibility: ${t[r[0]]} !== ${n[r[1]]}`)}mergeFunction(e){if(e.length!==2)throw new W(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],r;return Array.isArray(this.axes)?r=this.axes.map((a,s)=>jc(a,e[s].shape.length)):r=[jc(this.axes,t.shape.length),jc(this.axes,n.shape.length)],this.normalize&&(t=Qp(t,r[0]),n=Qp(n,r[1])),Cne(t,n,r)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[jc(this.axes,e.length),jc(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Pe("Dot layer does not support tensors of 4D or higher rank yet.");let r=this.interpretAxes(t,n);t.splice(r[0],1),n.splice(r[1],1),n.splice(0,1);let a=t.concat(n);return a.length===1&&a.push(1),a}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};Zg.className="Dot";ae.registerClass(Zg);var Yg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return Dc(()=>Wp(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};Yg.className="GaussianNoise";ae.registerClass(Yg);var Jg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{this.invokeCallHook(e,t);let n=Be(e);return this.rate>0&&this.rate<1?Dc(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return n.mul(Wp(n.shape,1,r))},()=>n,t.training||!1):n})}};Jg.className="GaussianDropout";ae.registerClass(Jg);var Qg=class extends Je{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Be(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return L(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Dc(()=>{let r=Be(e),a=1.6732632423543772,s=1.0507009873554805,i=-a*s,o=Ha(Il(n),this.rate);o=Fc(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return r.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>Be(e),t.training||!1)}return e})}};Qg.className="AlphaDropout";ae.registerClass(Qg);function Gc(e,t,n,r,a,s=.001){let i;if(e.rank===2)i=Ax(e,t,n,r,a,s);else if(e.rank===3)i=gx(e,t,n,r,a,s);else if(e.rank===4)i=yx(e,t,n,r,a,s);else throw new Pe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Rne(e,t,n,r,a=.001){return L(()=>{let s=Pd(e,r),i=s.mean,o=s.variance;return[Gc(e,i,o,n,t,a),i,o]})}function Fne(e,t,n,r,a=.001){return L(()=>{let s=Pd(e,r),i=s.mean,o=s.variance,l=[];for(let p of Cr(0,e.rank))r.indexOf(p)!==-1?l.push(1):l.push(e.shape[p]);let u=i.reshape(l),c=o.reshape(l),h=t==null?null:t.reshape(l),d=n==null?null:n.reshape(l);return[Gc(e,u,c,d,h,a),i,o]})}function Mne(e,t,n,r,a=.001){return v.arraysEqual(r.slice().sort(),Cr(0,e.rank-1))?Rne(e,t,n,r,a):Fne(e,t,n,r,a)}var ey=class extends Je{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=qt(e.betaConstraint),this.gammaConstraint=qt(e.gammaConstraint),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer)}build(e){e=pt(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new W(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new Qt({ndim:e.length,axes:{[t]:n}})];let r=[n];this.scale&&(this.gamma=this.addWeight("gamma",r,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",r,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",r,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",r,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return L(()=>{let n=t.training==null?!1:t.training,r=Be(e),a=r.shape,s=a.length,i=Cr(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Ri(1,s);l[o]=a[o];let u=i.slice();u.sort();let c=!v.arraysEqual(u,Cr(0,s).slice(0,s-1)),h=()=>{if(c){let A=this.movingMean.read().reshape(l),g=this.movingVariance.read().reshape(l),y=this.center?this.beta.read().reshape(l):null,w=this.scale?this.gamma.read().reshape(l):null;return Gc(r,A,g,y,w,this.epsilon)}else return Gc(r,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return h();let[d,p,f]=Mne(r,this.gamma.read(),this.beta.read(),i,this.epsilon),m=(A,g,y)=>{L(()=>{let w=1-y,b=A.read(),_=b.sub(g).mul(w);A.write(b.sub(_))})};return(()=>{m(this.movingMean,p,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),movingMeanInitializer:Et(this.movingMeanInitializer),movingVarianceInitializer:Et(this.movingVarianceInitializer),betaRegularizer:ft(this.betaRegularizer),gammaRegularizer:ft(this.gammaRegularizer),betaConstraint:Gt(this.betaConstraint),gammaConstraint:Gt(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};ey.className="BatchNormalization";ae.registerClass(ey);var ty=class extends Je{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=_t(e.betaRegularizer),this.gammaRegularizer=_t(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=pt(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let a=0;a<this.axis.length;++a)this.axis[a]<0&&(this.axis[a]+=t);for(let a of this.axis)if(a<0||a>=t)throw new Error(`Invalid axis: ${a}`);if(this.axis.length!==Za(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(a=>e[a]),r=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,r):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,r):this.beta=null,this.built=!0}call(e,t){let n=Be(e),r=n.shape,a=r.length;return L(()=>{let s=!0,{mean:i,variance:o}=Pd(n,this.axis,s),l=Ri(1,a);for(let f of this.axis)l[f]=r[f];let u=f=>f!=null&&f.shape.length!==a&&this.axis!==[a-1]?f.reshape(l):f,c=u(this.gamma.read()),h=u(this.beta.read()),d=[],p=[];for(let f=0;f<a;++f)this.axis.indexOf(f)!==-1?(d.push(r[f]),p.push(1)):(d.push(1),p.push(r[f]));return i=i.tile(d),o=o.tile(d),c=c.tile(p),h=h.tile(p),Gc(n,i,o,h,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Et(this.betaInitializer),gammaInitializer:Et(this.gammaInitializer),betaRegularizer:ft(this.betaRegularizer),gammaRegularizer:ft(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};ty.className="LayerNormalization";ae.registerClass(ty);function $ne(e,t,n){return L(()=>{if(e.rank!==4)throw new W(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new W("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Tr()),n!=="channelsLast"&&n!=="channelsFirst")throw new W(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let r;return n==="channelsFirst"?r=[[0,0],[0,0],t[0],t[1]]:r=[[0,0],t[0],t[1],[0,0]],ha(e,r)})}var ny=class extends Je{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Tr():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new W(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new W(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new W(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=pt(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return L(()=>$ne(Be(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};ny.className="ZeroPadding2D";ae.registerClass(ny);function m0(e,t,n,r,a,s){return L(()=>{Mt(a),c7(s),rr(r),n==null&&(n=[1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=kg(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=rc(e,t,n,o):i=Zu(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,3,1,2])),i})}function Nv(e,t,n,r,a,s){return L(()=>{Mt(a),c7(s),rr(r),n==null&&(n=[1,1,1]),r==null&&(r="valid"),a==null&&(a=Tr()),s==null&&(s="max"),e=wv(e,a);let i,o=r==="same"?"same":"valid";return s==="max"?i=km(e,t,n,o):i=cm(e,t,n,o),a==="channelsFirst"&&(i=it(i,[0,4,1,2,3])),i})}var Sv=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new W(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new W(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,rr(this.padding),this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){e=pt(e);let t=Mr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return L(()=>{this.invokeCallHook(e,t),e=Mc(Be(e),2);let n=this.poolingFunction(Be(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return ja(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},ry=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),m0(e,t,n,r,a,"max")}};ry.className="MaxPooling1D";ae.registerClass(ry);var ay=class extends Sv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),m0(e,t,n,r,a,"avg")}};ay.className="AveragePooling1D";ae.registerClass(ay);var Tv=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new W(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),rr(this.padding),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},sy=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),m0(e,t,n,r,a,"max")}};sy.className="MaxPooling2D";ae.registerClass(sy);var iy=class extends Tv{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),m0(e,t,n,r,a,"avg")}};iy.className="AveragePooling2D";ae.registerClass(iy);var Ev=class extends Je{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new W(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),rr(this.padding),this.inputSpec=[new Qt({ndim:5})]}computeOutputShape(e){e=pt(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],r=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=Mr(t,this.poolSize[0],this.padding,this.strides[0]),n=Mr(n,this.poolSize[1],this.padding,this.strides[1]),r=Mr(r,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,r]:[e[0],t,n,r,e[4]]}call(e,t){return L(()=>(this.invokeCallHook(e,t),this.poolingFunction(Be(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},oy=class extends Ev{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),Nv(e,t,n,r,a,"max")}};oy.className="MaxPooling3D";ae.registerClass(oy);var ly=class extends Ev{constructor(e){super(e)}poolingFunction(e,t,n,r,a){return Mt(a),rr(r),Nv(e,t,n,r,a,"avg")}};ly.className="AveragePooling3D";ae.registerClass(ly);var Cv=class extends Je{constructor(e){super(e);this.inputSpec=[new Qt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Pe}},uy=class extends Cv{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=Be(e);return Tt(n,1)})}};uy.className="GlobalAveragePooling1D";ae.registerClass(uy);var cy=class extends Cv{constructor(e){super(e||{})}call(e,t){return L(()=>{let n=Be(e);return er(n,1)})}};cy.className="GlobalMaxPooling1D";ae.registerClass(cy);var Rv=class extends Je{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Mt(this.dataFormat),this.inputSpec=[new Qt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Pe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},hy=class extends Rv{call(e,t){return L(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?Tt(n,[1,2]):Tt(n,[2,3])})}};hy.className="GlobalAveragePooling2D";ae.registerClass(hy);var dy=class extends Rv{call(e,t){return L(()=>{let n=Be(e);return this.dataFormat==="channelsLast"?er(n,[1,2]):er(n,[2,3])})}};dy.className="GlobalMaxPooling2D";ae.registerClass(dy);var Fv=class extends Je{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let r=t.layer,a=Fr(r,n);delete t.layer;let s={layer:a};return Object.assign(s,t),new e(s)}},py=class extends Fv{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=pt(e),e.length<3)throw new W(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=pt(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),r=e[1];return[n[0],r].concat(n.slice(1))}call(e,t){return L(()=>(e=Be(e),kv((n,r)=>[Be(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};py.className="TimeDistributed";ae.registerClass(py);function Dne(e){Mi(qQ,"BidirectionalMergeMode",e)}var One="concat",fy=class extends Fv{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Fr(n),t.goBackwards=t.goBackwards!==!0;let r={};if(r.className=e.layer.getClassName(),r.config=t,this.backwardLayer=Fr(r),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?One:e.mergeMode,Dne(this.mergeMode),e.weights)throw new Pe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,r,a;return this.returnState&&(a=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,r=[n]):this.mergeMode==null?r=[n,n.slice()]:r=[n],this.returnState?this.mergeMode==null?r.concat(a).concat(a.slice()):[n].concat(a).concat(a.slice()):Fn(r)}apply(e,t){let n=t==null?null:t.initialState,r=t==null?null:t.constants;t==null&&(t={});let a=vv(e,n,r,this.numConstants);if(e=a.inputs,n=a.initialState,r=a.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&r==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new W("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(c=>new Qt({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(r!=null)throw new Pe("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Rr;for(let l of s)if(l instanceof Rr!==o)throw new W("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),c=this.inputSpec;this.inputSpec=u;let h=super.apply(l,t);return this.inputSpec=c,h}else return super.apply(e,t)}call(e,t){return L(()=>{let n=t.initialState,r,a;if(n==null)r=this.forwardLayer.call(e,t),a=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);r=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),a=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(r)&&(s=r.slice(1).concat(a.slice(1))),r=r[0],a=a[0]),this.returnSequences&&(a=Ln(a,1));let i;return this.mergeMode==="concat"?i=BA([r,a]):this.mergeMode==="sum"?i=ie(r,a):this.mergeMode==="ave"?i=O(.5,ie(r,a)):this.mergeMode==="mul"?i=O(r,a):this.mergeMode==null&&(i=[r,a]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){$i(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),$i(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Fr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Pe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let r=t;return r.layer=n,new e(r)}};fy.className="Bidirectional";ae.registerClass(fy);function uee(e){return new ql(e)}function cee(e){return new bg(e)}function hee(e){return new yg(e)}function dee(e){return new xg(e)}function pee(e){return new wg(e)}function fee(e){return new vg(e)}function mee(e){return new _g(e)}function Aee(e){return new u0(e)}function gee(e){return new Uc(e)}function yee(e){return new Ng(e)}function xee(e){return new l0(e)}function wee(e){return new Sg(e)}function bee(e){return new Tg(e)}function _ee(e){return new Eg(e)}function vee(e){return new Cg(e)}function kee(e){return new Pg(e)}function Iee(e){return new Og(e)}function Nee(e){return new f0(e)}function See(e){return new Dg(e)}function Tee(e){return new zg(e)}function Eee(e){return new Lg(e)}function Cee(e){return new Wg(e)}function Ree(e){return new Bg(e)}function Fee(e){return new Ug(e)}function Mee(e){return new Hg(e)}function $ee(e){return new Gg(e)}function Dee(e){return new Kg(e)}function Oee(e){return new qg(e)}function zee(e){return new Xg(e)}function Pee(e){return new jg(e)}function Lee(e){return new Zg(e)}function Wee(e){return new ey(e)}function Bee(e){return new ty(e)}function Vee(e){return new ny(e)}function ZA(e){return new ay(e)}function Uee(e){return ZA(e)}function Hee(e){return ZA(e)}function YA(e){return new iy(e)}function jee(e){return YA(e)}function Gee(e){return YA(e)}function JA(e){return new ly(e)}function qee(e){return JA(e)}function Xee(e){return JA(e)}function Kee(e){return new uy(e)}function Zee(e){return new hy(e)}function v7(e){return new cy(e)}function k7(e){return new dy(e)}function I7(e){return new ry(e)}function N7(e){return new sy(e)}function Yee(e){return new oy(e)}function Jee(e){return new Fg(e)}function Qee(e){return new d0(e)}function ete(e){return new Mg(e)}function tte(e){return new Hc(e)}function nte(e){return new Rg(e)}function rte(e){return new h0(e)}function ate(e){return new $g(e)}function ste(e){return new p0(e)}function ite(e){return new Jr(e)}function ote(e){return new c0(e)}function lte(e){return new fy(e)}function ute(e){return new py(e)}var cte=v7,hte=k7,dte=I7,pte=N7;function fte(e){return new Yg(e)}function mte(e){return new Jg(e)}function Ate(e){return new Qg(e)}function gte(e){return new Vg(e)}var Mv={};We(Mv,{MAPE:()=>qne,MSE:()=>Zne,binaryAccuracy:()=>zne,binaryCrossentropy:()=>Pne,categoricalAccuracy:()=>Wne,categoricalCrossentropy:()=>Bne,cosineProximity:()=>Hne,mape:()=>Xne,meanAbsoluteError:()=>jne,meanAbsolutePercentageError:()=>Gne,meanSquaredError:()=>Kne,mse:()=>Yne,precision:()=>Vne,recall:()=>Une,sparseCategoricalAccuracy:()=>Lne});function zne(e,t){return ag(e,t)}function Pne(e,t){return B7(e,t)}function Lne(e,t){return V7(e,t)}function Wne(e,t){return sg(e,t)}function Bne(e,t){return ig(e,t)}function Vne(e,t){return W7(e,t)}function Une(e,t){return Ote(e,t)}function Hne(e,t){return ng(e,t)}function jne(e,t){return e0(e,t)}function Gne(e,t){return Kl(e,t)}function qne(e,t){return Kl(e,t)}function Xne(e,t){return Kl(e,t)}function Kne(e,t){return Oi(e,t)}function Zne(e,t){return Oi(e,t)}function Yne(e,t){return Oi(e,t)}var $v={};We($v,{modelFromJSON:()=>Ane});var Dv={};We(Dv,{l1:()=>Qne,l1l2:()=>Jne,l2:()=>ere});function Jne(e){return new Bc(e)}function Qne(e){return kne(e)}function ere(e){return Ine(e)}var Ov=class extends Xl{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof ya))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function A0(e,t){return e<t}function zv(e,t){return e>t}var Pv=class extends Ov{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new Pe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=A0:this.mode==="max"?this.monitorFunc=zv:this.monitor.indexOf("acc")!==-1?this.monitorFunc=zv:this.monitorFunc=A0,this.monitorFunc===A0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===A0?Infinity:-Infinity}async onEpochEnd(e,t){await Qa(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function tre(e){return new Pv(e)}var nre={earlyStopping:tre},$r;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})($r||($r={}));var Lv;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(Lv||(Lv={}));var my={};function rre(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};my[e]=n}function Wv(e){return my[e]}function are(e){delete my[e]}function k(e,t,n,r,a){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return $n(t.inputNames[s.inputIndexStart],n,r,a);if(s.type==="tensors")return t.inputNames.slice(o,l).map(h=>$n(h,n,r,a));let u=$n(t.inputNames.slice(o)[0],n,r,a),c=u.dataSync();return s.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let i=t.attrParams[e];return i&&i.value}function $n(e,t,n,r){let[a,s]=Hn(e);if(r!=null){let o=r.getHashTableHandleByName(a);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[g0(a,o)]);return i!==void 0?t[g0(a,i)][s]:void 0}function sre(e,t,n){return t[g0(e,n.currentContextId)]}function xa(e,t){let[n,r]=Hn(e);return[g0(n,t&&t.currentContextId),r]}function g0(e,t){return t?`${e}-${t}`:e}function Hn(e){let t=e.split(":");return t.length===1?[e,0]:[t[0],Number(t[t.length-1])]}function y0(e,t,n){let r=k("pad",e,t,n);if(r==="explicit"){r=k("explicitPaddings",e,t,n);let a=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)a[s][0]=r[s*2],a[s][1]=r[s*2+1];return a}return r}function wa(e){return e.kept?e:Lr(e)}var Bv={};We(Bv,{json:()=>ire});var ire=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Vv={};We(Vv,{json:()=>ore});var ore=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Uv={};We(Uv,{json:()=>lre});var lre=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],Hv={};We(Hv,{json:()=>ure});var ure=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],jv={};We(jv,{json:()=>cre});var cre=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Gv={};We(Gv,{json:()=>hre});var hre=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],qv={};We(qv,{json:()=>dre});var dre=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],Xv={};We(Xv,{json:()=>pre});var pre=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Kv={};We(Kv,{json:()=>fre});var fre=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],Zv={};We(Zv,{json:()=>mre});var mre=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],Yv={};We(Yv,{json:()=>Are});var Are=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Jv={};We(Jv,{json:()=>gre});var gre=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Qv={};We(Qv,{json:()=>yre});var yre=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],e6={};We(e6,{json:()=>xre});var xre=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],t6={};We(t6,{json:()=>wre});var wre=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],n6={};We(n6,{json:()=>bre});var bre=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],r6={};We(r6,{json:()=>_re});var _re=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],s6=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[Bv,Vv,Uv,Hv,jv,Gv,qv,Yv,Zv,Xv,Jv,Qv,e6,t6,n6,r6,Kv],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,r)=>(n[r.tfOpName]=r,n),{})}transformGraph(e,t={}){let n=e.node,r=[],a=[],s=[],i=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?r.push(f[m.name]):m.op==="Const"?a.push(f[m.name]):(m.input==null||m.input.length===0)&&s.push(f[m.name]),f),{}),o=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let h=Object.keys(i);h.forEach(f=>{let m=i[f];m.inputNames.forEach(A=>{let[g]=xa(A);m.inputs.push(i[g]),i[g].children.push(m)})}),Object.keys(c).length===0?h.forEach(f=>{let m=i[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=xa(f),A=i[m];A!=null&&(A.signatureKey=c[f],l.push(A))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=xa(f),A=i[m];A&&(A.signatureKey=u[f],o.push(A))}):o=r;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let p={nodes:i,inputs:o,outputs:l,weights:a,placeholders:r,signature:t,functions:d};return s.length>0&&(p.initNodes=s),p}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=Wv(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(r=>r.startsWith("^")?r.substr(1):r),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((r,a)=>(r[a.name]={type:a.type,inputIndexStart:a.start,inputIndexEnd:a.end},r),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((r,a)=>{let s=a.type,i;switch(a.type){case"string":i=Ay(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ay(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"string[]":i=ky(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=ky(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number":i=yy(e.attr,a.tfName,a.defaultValue||0),i===void 0&&!!a.tfDeprecatedName&&(i=yy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"number[]":i=vy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=vy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool":i=gy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=gy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"bool[]":i=Ny(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Ny(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape":i=_y(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=_y(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"shape[]":i=Iy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=Iy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype":i=wy(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=wy(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"dtype[]":i=by(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=by(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"func":i=a6(e.attr,a.tfName,a.defaultValue),i===void 0&&!!a.tfDeprecatedName&&(i=a6(e.attr,a.tfDeprecatedName,a.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${a.type} for op: ${e.op}`)}return r[a.name]={value:i,type:s},r},{})),n}mapFunction(e){let t=e.nodeDef,n=[],r=[],a={};t!=null&&(a=t.reduce((u,c)=>(u[c.name]=this.mapNode(c),c.op==="Const"&&r.push(u[c.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[c]=xa(u.name),h={name:c,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:xy(u.type),type:"dtype"}},children:[]};h.signatureKey=u.name,s.push(h),a[c]=h}),Object.keys(a).forEach(u=>{let c=a[u];c.inputNames.forEach(h=>{let[d]=xa(h);c.inputs.push(a[d]),a[d].children.push(c)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[c,h]=xa(o[u.name]),d=a[c];d!=null&&(d.defaultOutput=h,i.push(d))});let l=this.mapArgsToSignature(e);return{nodes:a,inputs:s,outputs:i,weights:r,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function vre(e){let t=J().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function i6(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):vre(e);return t?n:n.toLowerCase()}function Ay(e,t,n,r=!1){let a=e[t];return a!=null?i6(a.s,r):n}function gy(e,t,n){let r=e[t];return r?r.b:n}function yy(e,t,n){let r=e[t]||{},a=r.i!=null?r.i:r.f!=null?r.f:n;return typeof a=="number"?a:parseInt(a,10)}function xy(e){switch(typeof e=="string"&&(e=$r[e]),e){case $r.DT_FLOAT:return"float32";case $r.DT_INT32:case $r.DT_INT64:case $r.DT_INT8:case $r.DT_UINT8:return"int32";case $r.DT_BOOL:return"bool";case $r.DT_DOUBLE:return"float32";case $r.DT_STRING:return"string";default:return null}}function a6(e,t,n){let r=e[t];return r&&r.func?r.func.name:n}function wy(e,t,n){let r=e[t];return r&&r.type?xy(r.type):n}function by(e,t,n){let r=e[t];return r&&r.list&&r.list.type?r.list.type.map(a=>xy(a)):n}function o6(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function _y(e,t,n){let r=e[t];return r&&r.shape?o6(r.shape):n}function vy(e,t,n){let r=e[t];return r?((r.list.f&&r.list.f.length?r.list.f:r.list.i)||[]).map(a=>typeof a=="number"?a:parseInt(a,10)):n}function ky(e,t,n,r=!1){let a=e[t];return a&&a.list&&a.list.s?a.list.s.map(s=>i6(s,r)):n}function Iy(e,t,n){let r=e[t];return r&&r.list&&r.list.shape?r.list.shape.map(a=>o6(a)):n}function Ny(e,t,n){let r=e[t];return r&&r.list&&r.list.b?r.list.b:n}var kre=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(r=>this.getInput(r)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((r,a)=>(r[a]=this.getAttr(a),r),{}))}getInput(e){return $n(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return $n(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return yy(this.node.rawAttrs,e,t);if(n.s!=null)return Ay(this.node.rawAttrs,e,t);if(n.b!=null)return gy(this.node.rawAttrs,e,t);if(n.shape!=null)return _y(this.node.rawAttrs,e,t);if(n.type!=null)return wy(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return vy(this.node.rawAttrs,e,t);if(n.list.s!=null)return ky(this.node.rawAttrs,e,t);if(n.list.shape!=null)return Iy(this.node.rawAttrs,e,t);if(n.list.b!=null)return Ny(this.node.rawAttrs,e,t);if(n.list.type!=null)return by(this.node.rawAttrs,e,t)}return t}},Ire=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(k("a",e,t,n),k("b",e,t,n))];case"AddN":return[Wa(k("tensors",e,t,n))];case"FloorMod":case"Mod":return[Nm(k("a",e,t,n),k("b",e,t,n))];case"Mul":return[O(k("a",e,t,n),k("b",e,t,n))];case"RealDiv":case"Div":return[_e(k("a",e,t,n),k("b",e,t,n))];case"DivNoNan":return[Am(k("a",e,t,n),k("b",e,t,n))];case"FloorDiv":return[Id(k("a",e,t,n),k("b",e,t,n))];case"Sub":return[be(k("a",e,t,n),k("b",e,t,n))];case"Minimum":return[kl(k("a",e,t,n),k("b",e,t,n))];case"Maximum":return[Ur(k("a",e,t,n),k("b",e,t,n))];case"Pow":return[da(k("a",e,t,n),k("b",e,t,n))];case"SquaredDifference":return[Kd(k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Nre=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Vt(k("x",e,t,n))];case"Acos":return[em(k("x",e,t,n))];case"Acosh":return[tm(k("x",e,t,n))];case"Asin":return[rm(k("x",e,t,n))];case"Asinh":return[am(k("x",e,t,n))];case"Atan":return[sm(k("x",e,t,n))];case"Atan2":return[im(k("x",e,t,n),k("y",e,t,n))];case"Atanh":return[om(k("x",e,t,n))];case"Ceil":return[hm(k("x",e,t,n))];case"Complex":return[Oa(k("real",e,t,n),k("imag",e,t,n))];case"Cos":return[Qu(k("x",e,t,n))];case"Cosh":return[Cd(k("x",e,t,n))];case"Elu":return[wl(k("x",e,t,n))];case"Erf":return[gm(k("x",e,t,n))];case"Exp":return[Qn(k("x",e,t,n))];case"Expm1":return[ym(k("x",e,t,n))];case"Floor":return[bl(k("x",e,t,n))];case"Log":return[zn(k("x",e,t,n))];case"Log1p":return[$d(k("x",e,t,n))];case"Imag":return[Fd(k("x",e,t,n))];case"Neg":return[St(k("x",e,t,n))];case"Reciprocal":return[Em(k("x",e,t,n))];case"Real":return[ic(k("x",e,t,n))];case"Relu":return[jr(k("x",e,t,n))];case"Round":return[Cm(k("x",e,t,n))];case"Selu":return[Ud(k("x",e,t,n))];case"Sigmoid":return[On(k("x",e,t,n))];case"Sin":return[Hd(k("x",e,t,n))];case"Sign":return[Fm(k("x",e,t,n))];case"Sinh":return[jd(k("x",e,t,n))];case"Softplus":return[_l(k("x",e,t,n))];case"Sqrt":return[an(k("x",e,t,n))];case"Square":return[ht(k("x",e,t,n))];case"Tanh":return[gl(k("x",e,t,n))];case"Tan":return[Dm(k("x",e,t,n))];case"ClipByValue":return[Sn(k("x",e,t,n),k("clipValueMin",e,t,n),k("clipValueMax",e,t,n))];case"Relu6":return[Bd(k("x",e,t,n))];case"Rsqrt":return[Vd($n(e.inputNames[0],t,n))];case"Prod":return[Ld(k("x",e,t,n),k("axes",e,t,n))];case"LeakyRelu":return[tc(k("x",e,t,n),k("alpha",e,t,n))];case"Prelu":return[sc(k("x",e,t,n),k("alpha",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function yr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let r=0;r<e.length;r++){let a=e[r],s=t[r];v.assert(a<0||s<0||a===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function l6(e){return!(typeof e=="number"||e.some(t=>t<0))}function qc(e,t,n){let r=Sy(e,n),a=!l6(r);if(a&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${r}`);if(a&&t.forEach(s=>{r=Sy(s.shape,r)}),!l6(r))throw new Error(`Non-fully-defined elementShape: ${r}`);return r}function Sy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let r=0;r<e.length;++r){let a=e[r],s=t[r];if(a>=0&&s>=0&&a!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[r]=a>=0?a:s}return n}var Sre=class{constructor(e,t,n,r,a,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=r,this.identicalElementShapes=a,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=Ne(0),Zt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),yr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Zt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,r)=>this.write(n,t[r]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let r=0;r<this.size();r++)e.push(r)}if(e.length===0)return Ir([],[0].concat(this.elementShape));let n=this.readMany(e);return yr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),An(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return Ir([],[0].concat(this.elementShape));let t=[];for(let r=0;r<this.size();r++)t.push(r);let n=this.readMany(t);return yr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),ot(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,pr(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,r=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let a=n===0?0:t.size/n,s=[];L(()=>{t=j(t,[1,n,a]);for(let o=0;o<e.length;++o){let l=o===0?0:r[o-1],u=[0,l,0],c=[1,e[o],a];s[o]=j($e(t,u,c),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},Xc=class{constructor(e,t,n,r=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(a=>{if(n!==a.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${a.dtype}`);yr(t,a.shape,"TensorList shape mismatch: "),Zt(a)}),this.idTensor=Ne(0),this.maxNumElements=r,Zt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new Xc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);yr(e,this.elementShape,"TensorList shape mismatch: ");let r=qc(this.elementShape,this.tensors,e);return L(()=>{let a=this.tensors.map(s=>j(s,r));return An(a,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=qc(this.elementShape,this.tensors,e),r=this.tensors.pop();return yr(r.shape,e,"TensorList shape mismatch: "),j(r,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(yr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Zt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);yr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let r=qc(this.elementShape,this.tensors,t);return j(this.tensors[e],r)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);yr(this.elementShape,t.shape,"TensorList shape mismatch: "),Zt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);yr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let r=qc(this.elementShape,this.tensors,n);return e.length===0?Ir([],[0].concat(r)):L(()=>{let a=e.map(s=>j(this.tensors[s],r));return An(a,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);yr(this.elementShape,t,"TensorList shape mismatch: ");let n=qc(this.elementShape,this.tensors,t);return this.size()===0?Ir([],[0].concat(n)):L(()=>{let r=this.tensors.map(a=>j(a,n));return ot(r,0)})}};function Tre(e,t,n){let r=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let a=e.shape.slice(1);yr(a,t,"TensorList shape mismatch: ");let s=pr(e);return new Xc(s,t,r)}function Ere(e,t,n){return new Xc([],e,t,n)}function Cre(e,t,n,r){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let a=Math.max(...t);if(r!=null&&r!==-1&&a>=r)throw new Error(`Max index must be < array size (${a} vs. ${r})`);let s=new Xc([],n,e.dtype,r),i=pr(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function Rre(e,t,n){let r=0,a=t.map(c=>(r+=c,r));if(r!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${r}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=Sy(s,n),o=r===0?0:e.size/r,l=L(()=>{let c=[];e=j(e,[1,r,o]);for(let h=0;h<t.length;++h){let d=h===0?0:a[h-1],p=[0,d,0],f=[1,t[h],o];c[h]=j($e(e,p,f),i)}return e.dispose(),c}),u=new Xc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var Fre=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let r=k("thenBranch",e,t,n),a=k("elseBranch",e,t,n),s=k("cond",e,t,n),i=k("args",e,t,n);return(await s.data())[0]?n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let r=k("body",e,t,n),a=k("cond",e,t,n),s=k("args",e,t,n),i=await n.functionMap[a].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(c=>c.id),l=await i[0].data();i.forEach(c=>{!c.kept&&o.indexOf(c.id)===-1&&c.dispose()});let u=s;for(;l[0];){let c=u;u=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let h=u.map(p=>p.id);c.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()});let d=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(p=>{!p.kept&&o.indexOf(p.id)===-1&&h.indexOf(p.id)===-1&&p.dispose()})}return u}case"LoopCond":{let r=k("pred",e,t,n);return[wa(r)]}case"Switch":{let r=k("pred",e,t,n),a=k("data",e,t,n);return a.kept||(a=wa(a)),(await r.data())[0]?[void 0,a]:[a,void 0]}case"Merge":{let r=e.inputNames.find(a=>$n(a,t,n)!==void 0);if(r){let a=$n(r,t,n);return[wa(a)]}return}case"Enter":{let r=k("frameName",e,t,n),a=k("tensor",e,t,n);return n.enterFrame(r),[wa(a)]}case"Exit":{let r=k("tensor",e,t,n);return n.exitFrame(),[wa(r)]}case"NextIteration":{let r=k("tensor",e,t,n);return n.nextIteration(),[wa(r)]}case"TensorArrayV3":{let r=k("size",e,t,n),a=k("dtype",e,t,n),s=k("elementShape",e,t,n),i=k("dynamicSize",e,t,n),o=k("clearAfterRead",e,t,n),l=k("identicalElementShapes",e,t,n),u=k("name",e,t,n),c=new Sre(u,a,r,s,l,i,o);return n.addTensorArray(c),[c.idTensor,Ne(1)]}case"TensorArrayWriteV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.write(a,s),[i.idTensor]}case"TensorArrayReadV3":{let r=k("tensorArrayId",e,t,n),a=k("index",e,t,n);return[n.getTensorArray(r.id).read(a)]}case"TensorArrayGatherV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("dtype",e,t,n);return[n.getTensorArray(r.id).gather(a,s)]}case"TensorArrayScatterV3":{let r=k("tensorArrayId",e,t,n),a=k("indices",e,t,n),s=k("tensor",e,t,n),i=n.getTensorArray(r.id);return i.scatter(a,s),[i.idTensor]}case"TensorArrayConcatV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id),s=k("dtype",e,t,n);return[a.concat(s)]}case"TensorArraySplitV3":{let r=k("tensorArrayId",e,t,n),a=k("tensor",e,t,n),s=k("lengths",e,t,n),i=n.getTensorArray(r.id);return i.split(s,a),[i.idTensor]}case"TensorArraySizeV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return[Ne(a.size(),"int32")]}case"TensorArrayCloseV3":{let r=k("tensorArrayId",e,t,n),a=n.getTensorArray(r.id);return a.clearAndClose(),[a.idTensor]}case"TensorListSetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("tensor",e,t,n),i=n.getTensorList(r.id);return i.setItem(a,s),[i.idTensor]}case"TensorListGetItem":{let r=k("tensorListId",e,t,n),a=k("index",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).getItem(a,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let r=k("indices",e,t,n),a=k("tensor",e,t,n),s=k("elementShape",e,t,n),i=k("numElements",e,t,n),o=Cre(a,r,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let r=k("elementShape",e,t,n),a=k("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=k(s,e,t,n),o=Ere(r,a,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let r=k("tensorListId",e,t,n),a=k("indices",e,t,n),s=k("elementShape",e,t,n),i=k("elementDType",e,t,n);return[n.getTensorList(r.id).gather(a,i,s)]}case"TensorListStack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=k("numElements",e,t,n);return[n.getTensorList(r.id).stack(a,s,i)]}case"TensorListFromTensor":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n),i=Tre(r,a,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let r=k("tensorListId",e,t,n),a=n.getTensorList(r.id),s=k("dtype",e,t,n),i=k("elementShape",e,t,n);return[a.concat(s,i)]}case"TensorListPushBack":{let r=k("tensorListId",e,t,n),a=k("tensor",e,t,n),s=n.getTensorList(r.id);return s.pushBack(a),[s.idTensor]}case"TensorListPopBack":{let r=k("tensorListId",e,t,n),a=k("elementShape",e,t,n),s=k("elementDType",e,t,n);return[n.getTensorList(r.id).popBack(a,s)]}case"TensorListSplit":{let r=k("tensor",e,t,n),a=k("elementShape",e,t,n),s=k("lengths",e,t,n),i=Rre(r,s,a);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function u6(e,t,n){let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=r==="fusedbatchnorm",l=k("numArgs",e,t,n);if(s){if(i&&l!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(o)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported.");let u=k("strides",e,t,n),c=y0(e,t,n),h=k("dataFormat",e,t,n).toUpperCase(),d=k("dilations",e,t,n),[p,f]=k("args",e,t,n),m=k("leakyreluAlpha",e,t,n);return{stride:u,pad:c,dataFormat:h,dilations:d,biasArg:p,preluArg:f,activationFunc:a,leakyreluAlpha:m}}var Mre=(e,t,n)=>{switch(e.op){case"Conv1D":{let r=k("stride",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilation",e,t,n);return[Td(k("x",e,t,n),k("filter",e,t,n),r,a,s,i)]}case"Conv2D":{let r=k("strides",e,t,n),a=y0(e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[ca(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=u6(e,t,n);return[Ga.conv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:c}=u6(e,t,n);return[Ga.depthwiseConv2d({x:k("x",e,t,n),filter:k("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:c})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=k("outputShape",e,t,n),a=k("strides",e,t,n),s=y0(e,t,n);return[Ed(k("x",e,t,n),k("filter",e,t,n),r,[a[1],a[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=k("strides",e,t,n),a=y0(e,t,n),s=k("dilations",e,t,n),i=k("dataFormat",e,t,n).toUpperCase();return[xl(k("input",e,t,n),k("filter",e,t,n),[r[1],r[2]],a,i,[s[1],s[2]])]}case"Conv3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dataFormat",e,t,n).toUpperCase(),i=k("dilations",e,t,n);return[pm(k("x",e,t,n),k("filter",e,t,n),[r[1],r[2],r[3]],a,s,[i[1],i[2],i[3]])]}case"AvgPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[Zu(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[rc(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n),i=k("includeBatchInIndex",e,t,n),{result:o,indexes:l}=Ox(k("x",e,t,n),[s[1],s[2]],[r[1],r[2]],a,i);return[o,l]}case"AvgPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[cm(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("kernelSize",e,t,n);return[km(k("x",e,t,n),[s[1],s[2],s[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=k("strides",e,t,n),a=k("pad",e,t,n),s=k("dilations",e,t,n),i=r[1],o=r[2],l=s[1],u=s[2];return[mm(k("x",e,t,n),k("filter",e,t,n),[i,o],a,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},$re=(e,t,n)=>{switch(e.op){case"Fill":{let r=k("shape",e,t,n),a=k("dtype",e,t,n),s=k("value",e,t,n);return[ec(r,s,a)]}case"LinSpace":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("num",e,t,n);return[Ex(r,a,s)]}case"Multinomial":{let r=k("logits",e,t,n),a=k("numSamples",e,t,n),s=k("seed",e,t,n);return[zx(r,a,s)]}case"OneHot":{let r=k("indices",e,t,n),a=k("depth",e,t,n),s=k("onValue",e,t,n),i=k("offValue",e,t,n);return[dl(r,a,s,i)]}case"Ones":return[Hr(k("shape",e,t,n),k("dtype",e,t,n))];case"OnesLike":return[Pn(k("x",e,t,n))];case"RandomUniform":return[Il(k("shape",e,t,n),k("minval",e,t,n),k("maxval",e,t,n),k("dtype",e,t,n))];case"Range":{let r=k("start",e,t,n),a=k("stop",e,t,n),s=k("step",e,t,n);return[Wd(r,a,s,k("dtype",e,t,n))]}case"TruncatedNormal":{let r=k("shape",e,t,n),a=k("mean",e,t,n),s=k("stdDev",e,t,n),i=k("seed",e,t,n);return[Zd(r,a,s,k("dtype",e,t,n),i)]}case"Zeros":return[Ot(k("shape",e,t,n),k("dtype",e,t,n))];case"ZerosLike":return[Xe(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ty(e,t,n){let r=k("boxes",e,t,n),a=k("scores",e,t,n),s=k("maxOutputSize",e,t,n),i=k("iouThreshold",e,t,n),o=k("scoreThreshold",e,t,n),l=k("softNmsSigma",e,t,n);return{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var Dre=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=Ty(e,t,n),u=await Ke.nonMaxSuppressionWithScoreAsync(r,a,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ty(e,t,n),l=k("padToMaxOutputSize",e,t,n),u=await Ke.nonMaxSuppressionPaddedAsync(r,a,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:r,scores:a,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=Ty(e,t,n);return[await Ke.nonMaxSuppressionAsync(r,a,s,i,o)]}case"Where":{let r=xe(k("condition",e,t,n),"bool"),a=[await Pm(r)];return r.dispose(),a}case"ListDiff":return Wx(k("x",e,t,n),k("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ore=(e,t,n)=>{switch(e.op){case"TopKV2":{let r=k("x",e,t,n),a=k("k",e,t,n),s=k("sorted",e,t,n),i=Om(r,a,s);return[i.values,i.indices]}case"Unique":{let r=k("x",e,t,n),a=Yd(r);return[a.values,a.indices]}case"UniqueV2":{let r=k("x",e,t,n),a=k("axis",e,t,n),s=Yd(r,a);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},zre=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=k("default",e,t,n);return[$n(e.name,t,n)||r];case"Placeholder":return[$n(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=k("x",e,t,n);return[wa(u)]}case"IdentityN":return k("x",e,t,n).map(u=>wa(u));case"Snapshot":let a=k("x",e,t,n);return[wa(a)];case"Shape":return[hn(k("x",e,t,n).shape,"int32")];case"ShapeN":return k("x",e,t,n).map(u=>hn(u.shape));case"Size":return[Ne(k("x",e,t,n).size,"int32")];case"Rank":return[Ne(k("x",e,t,n).rank,"int32")];case"NoOp":return[Ne(1)];case"Print":let s=k("x",e,t,n),i=k("data",e,t,n),o=k("message",e,t,n),l=k("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Pre=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ne(0),this.tensorMap=new Map,Zt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ne(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(r=>r.dispose()),this.tensorMap.clear(),L(()=>{let r=pr(t),a=n.length,s=r.length;v.assert(a===s,()=>`The number of elements doesn't match, keys has ${a} elements, the values has ${s} elements.`);for(let i=0;i<a;i++){let o=n[i],l=r[i];Zt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return L(()=>{let r=[];for(let a=0;a<n.length;a++){let s=n[a],i=this.findWithDefault(s,t);r.push(i)}return An(r)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},Lre=async(e,t,n,r)=>{switch(e.op){case"HashTable":case"HashTableV2":{let a=k("keyDType",e,t,n),s=k("valueDType",e,t,n),i=new Pre(a,s);return r.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("values",e,t,n);return[await r.getHashTableById(a.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let a=k("tableHandle",e,t,n,r),s=k("keys",e,t,n),i=k("defaultValue",e,t,n);return[await r.getHashTableById(a.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let a=k("tableHandle",e,t,n,r);return[r.getHashTableById(a.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Wre=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeBilinear(r,[a[0],a[1]],s,i)]}case"ResizeNearestNeighbor":{let r=k("images",e,t,n),a=k("size",e,t,n),s=k("alignCorners",e,t,n),i=k("halfPixelCenters",e,t,n);return[Ke.resizeNearestNeighbor(r,[a[0],a[1]],s,i)]}case"CropAndResize":{let r=k("image",e,t,n),a=k("boxes",e,t,n),s=k("boxInd",e,t,n),i=k("cropSize",e,t,n),o=k("method",e,t,n),l=k("extrapolationValue",e,t,n);return[Ke.cropAndResize(r,a,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Bre=(e,t,n)=>{switch(e.op){case"Equal":return[Va(k("a",e,t,n),k("b",e,t,n))];case"NotEqual":return[wi(k("a",e,t,n),k("b",e,t,n))];case"Greater":return[hr(k("a",e,t,n),k("b",e,t,n))];case"GreaterEqual":return[Ha(k("a",e,t,n),k("b",e,t,n))];case"Less":return[Md(k("a",e,t,n),k("b",e,t,n))];case"LessEqual":return[yi(k("a",e,t,n),k("b",e,t,n))];case"LogicalAnd":return[dr(k("a",e,t,n),k("b",e,t,n))];case"LogicalNot":return[nc(k("a",e,t,n))];case"LogicalOr":return[zd(k("a",e,t,n),k("b",e,t,n))];case"Select":case"SelectV2":return[Tn(k("condition",e,t,n),k("a",e,t,n),k("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Vre=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[Ye(k("a",e,t,n),k("b",e,t,n),k("transposeA",e,t,n),k("transposeB",e,t,n))];case"Transpose":return[it(k("x",e,t,n),k("perm",e,t,n))];case"_FusedMatMul":let[r,a]=k("fusedOps",e,t,n),s=r==="biasadd",i=a==="prelu",o=k("numArgs",e,t,n),l=k("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,c]=k("args",e,t,n);return[Ga.matMul({a:k("a",e,t,n),b:k("b",e,t,n),transposeA:k("transposeA",e,t,n),transposeB:k("transposeB",e,t,n),bias:u,activation:a,preluActivationWeights:c,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ure=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ai(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ai(k("x",e,t,n),k("mean",e,t,n),k("variance",e,t,n),k("offset",e,t,n),k("scale",e,t,n),k("epsilon",e,t,n))];case"LRN":return[wm(k("x",e,t,n),k("radius",e,t,n),k("bias",e,t,n),k("alpha",e,t,n),k("beta",e,t,n))];case"Softmax":return[lc(k("x",e,t,n))];case"LogSoftmax":return[Od(k("x",e,t,n))];case"SparseToDense":return[Lm(k("sparseIndices",e,t,n),k("outputShape",e,t,n),k("sparseValues",e,t,n),k("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Hre=(e,t,n)=>{switch(e.op){case"Max":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[er(k("x",e,t,n),i,o)]}case"Mean":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Tt(k("x",e,t,n),i,o)]}case"Min":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[vl(k("x",e,t,n),i,o)]}case"Sum":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Fe(k("x",e,t,n),i,o)]}case"All":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Nd(k("x",e,t,n),i,o)]}case"Any":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[qu(k("x",e,t,n),i,o)]}case"ArgMax":{let i=k("axis",e,t,n);return[Xu(k("x",e,t,n),i)]}case"ArgMin":{let i=k("axis",e,t,n);return[nm(k("x",e,t,n),i)]}case"Prod":{let i=k("axis",e,t,n),o=k("keepDims",e,t,n);return[Ld(k("x",e,t,n),i,o)]}case"Cumsum":{let i=k("axis",e,t,n),o=k("exclusive",e,t,n),l=k("reverse",e,t,n);return[Rd(k("x",e,t,n),i,o,l)]}case"Bincount":let r=k("x",e,t,n),a=k("weights",e,t,n),s=k("size",e,t,n);return[xx(r,a,s)];case"DenseBincount":{let i=k("x",e,t,n),o=k("weights",e,t,n),l=k("size",e,t,n),u=k("binaryOutput",e,t,n);return[kx(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},jre=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=k("n",e,t,n),a=k("axis",e,t,n),s=k("tensors",e,t,n);return s=s.slice(0,r),[ot(s,a)]}case"Gather":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[gi(r,xe(a,"int32"),0)]}case"GatherV2":{let r=k("axis",e,t,n),a=k("batchDims",e,t,n),s=k("x",e,t,n),i=k("indices",e,t,n);return[gi(s,xe(i,"int32"),r,a)]}case"Reverse":{let r=k("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let s=k("x",e,t,n);return[Ln(s,a)]}case"ReverseV2":{let r=k("axis",e,t,n),a=k("x",e,t,n);return[Ln(a,r)]}case"Slice":{let r=k("begin",e,t,n),a=k("size",e,t,n);return[$e(k("x",e,t,n),r,a)]}case"StridedSlice":{let r=k("begin",e,t,n),a=k("end",e,t,n),s=k("strides",e,t,n),i=k("beginMask",e,t,n),o=k("endMask",e,t,n),l=k("ellipsisMask",e,t,n),u=k("newAxisMask",e,t,n),c=k("shrinkAxisMask",e,t,n),h=k("x",e,t,n);return[$m(h,r,a,s,i,o,l,u,c)]}case"Pack":return L(()=>{let r=k("axis",e,t,n),a=k("tensors",e,t,n),s=a[0].shape,i=ja(a[0]).shape,o=a.map(l=>{let u=v.arraysEqual(l.shape,s);if(!u&&!v.arraysEqual(ja(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:j(l,s)});return[An(o,r)]});case"Unpack":{let r=k("axis",e,t,n),a=k("tensor",e,t,n);return pr(a,r)}case"Tile":{let r=k("reps",e,t,n);return[Ua(k("x",e,t,n),r)]}case"Split":case"SplitV":{let r=k("axis",e,t,n),a=k("numOrSizeSplits",e,t,n),s=k("x",e,t,n);return Ht(s,a,r)}case"ScatterNd":{let r=k("indices",e,t,n),a=k("values",e,t,n),s=k("shape",e,t,n);return[Hx(r,a,s)]}case"GatherNd":{let r=k("x",e,t,n),a=k("indices",e,t,n);return[jx(r,a)]}case"SparseToDense":{let r=k("sparseIndices",e,t,n),a=k("outputShape",e,t,n),s=k("sparseValues",e,t,n),i=k("defaultValue",e,t,n);return[Lm(r,s,a,s.dtype===i.dtype?i:xe(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},Gre=(e,t,n)=>{switch(e.op){case"FFT":return[uc(k("x",e,t,n))];case"IFFT":return[Nl(k("x",e,t,n))];case"RFFT":return[cc(k("x",e,t,n))];case"IRFFT":return[Xd(k("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},qre=(e,t,n)=>{switch(e.op){case"Cast":return[xe(k("x",e,t,n),k("dtype",e,t,n))];case"ExpandDims":{let r=k("axis",e,t,n);return[mn(k("x",e,t,n),r)]}case"Squeeze":{let r=k("axis",e,t,n);return[ja(k("x",e,t,n),r)]}case"Reshape":return[j(k("x",e,t,n),k("shape",e,t,n))];case"MirrorPad":return[Im(k("x",e,t,n),k("padding",e,t,n),k("mode",e,t,n))];case"PadV2":case"Pad":return[ha(k("x",e,t,n),k("padding",e,t,n),k("constantValue",e,t,n))];case"SpaceToBatchND":{let r=k("blockShape",e,t,n),a=k("paddings",e,t,n);return[ac(k("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=k("blockShape",e,t,n),a=k("crops",e,t,n);return[Yu(k("x",e,t,n),r,a)]}case"DepthToSpace":{let r=k("blockSize",e,t,n),a=k("dataFormat",e,t,n).toUpperCase();return[fm(k("x",e,t,n),r,a)]}case"BroadcastTo":return[Ju(k("x",e,t,n),k("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function c6(e,t,n,r){let a=((s,i,o)=>{switch(s.category){case"arithmetic":return L(()=>Ire(s,i,o));case"basic_math":return L(()=>Nre(s,i,o));case"control":return Fre(s,i,o);case"convolution":return L(()=>Mre(s,i,o));case"creation":return L(()=>$re(s,i,o));case"dynamic":return Dre(s,i,o);case"evaluation":return L(()=>Ore(s,i,o));case"image":return L(()=>Wre(s,i,o));case"graph":return L(()=>zre(s,i,o));case"logical":return L(()=>Bre(s,i,o));case"matrices":return L(()=>Vre(s,i,o));case"normalization":return L(()=>Ure(s,i,o));case"reduction":return L(()=>Hre(s,i,o));case"slice_join":return L(()=>jre(s,i,o));case"spectral":return L(()=>Gre(s,i,o));case"transformation":return L(()=>qre(s,i,o));case"hash_table":return Lre(s,i,o,r);case"custom":let l=Wv(s.op);if(l&&l.customExecutor)return l.customExecutor(new kre(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(s=>[].concat(s)):[].concat(a)}var h6=class{constructor(e={},t={},n={},r={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=r,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function p6(e,t,n,r){let a=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(d=>Hn(d)[0]),c=[];r!=null&&(c=r.map(d=>Hn(d.name)[0]));let h=[...t];for(;h.length>0;){let d=h.pop();if((d6(d)||Xre(d)||Kre(d))&&i==null&&(i=d,o=i.children.map(p=>p.name).filter(p=>a.has(p))),a.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){s.push(d.name);continue}d.inputs.forEach(p=>{l.has(p.name)||(l.add(p.name),h.push(p))})}}return{inputs:e,outputs:t,usedNodes:a,missingInputs:s,dynamicNode:i,syncInputs:o}}function Zre(e,t,n){let{usedNodes:r,inputs:a}=n,s=[],i=Object.keys(a).map(c=>Hn(c)[0]).map(c=>e.nodes[c]),o=e.initNodes;i.forEach(c=>{r.has(c.name)&&s.push(c)}),e.weights.forEach(c=>{r.has(c.name)&&s.push(c)}),o!=null&&o.forEach(c=>{r.has(c.name)&&s.push(c)});let l=new Set,u=[];for(;s.length>0;){let c=s.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(h=>{!l.has(h.name)&&r.has(h.name)&&h.inputs.every(d=>l.has(d.name))&&s.push(h)})}return u}var Yre=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Jre=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Qre=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function d6(e){return Yre.indexOf(e.op)>=0}function Xre(e){return Jre.indexOf(e.op)>=0}function Kre(e){return Qre.indexOf(e.op)>=0}var Ey=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new Ey(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(r=>r.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(a=>a.name).sort(),r=t.map(a=>a.name).sort();return n.join(this.SEPERATOR)+"--"+r.join(this.SEPERATOR)}compile(e,t){let n=p6(e,t,this.weightMap,this._initNodes),{missingInputs:r,dynamicNode:a,syncInputs:s}=n;if(a!=null)throw new Error(`This execution contains the node '${a.name}', which has the dynamic op '${a.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(r.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${r}]`)}return Zre(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let r=n.map(c=>this.graph.nodes[Hn(c)[0]]),a=t.map(c=>Hn(c)[0]),s=a.map(c=>this.graph.nodes[c]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(r,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return L(()=>{let c=new h6(this.weightMap,l,u,this.functionExecutorMap),h=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,A]=Hn(f),g=[];g[A]=e[f],h[m]=g});let d=this.getFrozenTensorIds(h),p={};for(let f=0;f<o.length;f++){let m=o[f];if(!h[m.name]){let A=c6(m,h,c,this._resourceManager);if(v.isPromise(A))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);h[m.name]=A,this.checkTensorForDisposal(m.name,m,h,c,d,a,p)}}return this.parent==null&&c.dispose(d),t.map(f=>$n(f,h,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(r=>r.id)));return new Set(t)}checkTensorForDisposal(e,t,n,r,a,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=sre(o.name,n,r);l!=null&&l.forEach(u=>{if(u&&!a.has(u.id)){let c=i[u.id];c===1?(u.dispose(),delete i[u.id]):c!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,r={},a={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new h6(this.weightMap,r,a,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(h=>$n(h,i,s)),l=o.map(h=>h.id),u=Object.keys(e).map(h=>e[h].id),c=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(h=>{i[h].forEach(d=>{d&&!d.isDisposed&&!c.has(d.id)&&d.dispose()})}),this.parent==null&&s.dispose(c),o}async executeFunctionAsync(e,t,n){let r=e.reduce((a,s,i)=>(a[this.inputs[i].name]=s,a),{});return this._executeAsync(r,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,r){let a=Object.keys(e),s=a.map(y=>this.graph.nodes[Hn(y)[0]]),i=n.map(y=>Hn(y)[0]),o=i.map(y=>this.graph.nodes[y]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:h}=p6(e,o,this.weightMap,this._initNodes),d=[...s,...this.graph.weights,...this._initNodes||[]].map(y=>({node:y,contexts:t.currentContext})),p=Object.assign({},this.weightMap);Object.keys(e).forEach(y=>{let[w,b]=Hn(y),_=[];_[b]=e[y],p[w]=_});let f={},m=this.getFrozenTensorIds(p),A={};for(;d.length>0;){let y=this.processStack(s,d,t,p,A,m,i,f,l);await Promise.all(y)}c==null&&!r&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let g=o.filter(y=>!d6(y)&&!$n(y.name,p,t)).map(y=>y.name);if(g.length>0){let y="";throw c!=null&&(y=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${h}]`),new Error(`Cannot compute the outputs [${g}] from the provided inputs [${a}]. Consider providing the following inputs: [${u}]. ${y}`)}return p}processStack(e,t,n,r,a,s,i,o,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let h="";if(c.node.op==="Enter"&&k("isConstant",c.node,r,n)&&([h]=xa(c.node.name,n)),r[c.node.name]==null){let d=c6(c.node,r,n,this._resourceManager);h||([h]=xa(c.node.name,n));let p=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(r[h]=f,n.currentContext=p,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l),f))):(r[h]=d,this.checkTensorForDisposal(h,c.node,r,n,s,i,o),this.processChildNodes(c.node,t,n,r,a,l))}else this.processChildNodes(c.node,t,n,r,a,l)}return u}processChildNodes(e,t,n,r,a,s){e.children.forEach(i=>{let[o]=xa(i.name,n);a[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!$n(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!$n(l,r,n))&&(a[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[r]=Hn(t),a=this.graph.nodes[r];if(a.attrParams.shape&&a.attrParams.shape.value){let s=a.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);v.assert(i,()=>`The shape of dict['${a.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}a.attrParams.dtype&&a.attrParams.dtype.value&&v.assert(n.dtype===a.attrParams.dtype.value,()=>`The dtype of dict['${a.name}'] provided in model.execute(dict) must be ${a.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let r=this._signature.inputs[n];t[r.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[r]=Hn(n);return this.graph.nodes[r]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Hn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},eae=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},tae="?tfjs-format=file",nae="model.json",f6=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new eae}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=Nn.browserHTTPRequest(e,this.loadOptions);else{let t=Nn.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(Nn.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let r=Nn.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new Ey(s6.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(r),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let a=s6.Instance.transformGraph(e.modelInitializer);this.initializer=new Ey(a),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=Nn.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof qe)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,r)=>(t[n]=e[r],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Ft(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${nae}${tae}`);let n=new f6(e,t);return await n.load(),n}var rae="3.3.0",m6={};We(m6,{CSVDataset:()=>g6,Dataset:()=>Jl,FileDataSource:()=>y6,TextLineDataset:()=>A6,URLDataSource:()=>x6,array:()=>aae,csv:()=>iae,func:()=>oae,generator:()=>lae,microphone:()=>cae,version_data:()=>hae,webcam:()=>uae,zip:()=>sae});var dae=ro(s5()),pae=ro(s5());function fae(e,t){return x0(e,t)}function x0(e,t,n=new Map,r=new Set){if(e==null)return null;if(r.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(a.recurse)if(Ql(e)){let s=Array.isArray(e)?[]:{};r.add(e);for(let i in e){let o=e[i],l=x0(o,t,n,r);s[i]=l}return r.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,a.value),a.value}function mae(e,t=b6){return w6(e,t)}function w6(e,t,n=new Set){let r=e[0];if(n.has(r))throw new Error("Circular references are not supported.");let a=t(e);if(a.recurse&&a.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(a.recurse)if(Ql(r)){let s=Array.isArray(r)?[]:{};n.add(r);for(let i in r){let o=e.map(u=>u[i]),l=w6(o,t,n);s[i]=l}return n.delete(r),s}else throw new Error(`Can't recurse into non-iterable type: ${r}`);else return a.value}function b6(e){return e===null?null:Ql(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function _6(e,t){let n=new Map;x0(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let s=await a;n.set(r,s)}}return x0(e,t,n)}function Ql(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof qe))}function gae(e){return e==null||Aae(e)||Array.isArray(e)||typeof e=="object"&&e instanceof qe||v.isTypedArray(e)}function Aae(e){return e===null||typeof e!="object"&&typeof e!="function"}function xae(e){return fae(e,yae)}function yae(e){return e instanceof qe?{value:e.clone(),recurse:!1}:Ql(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var v6=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Cy=class extends v6{constructor(){super(Cy.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let r=0;r<n;r++)t[r]=this.get(this.wrap(this.begin+r));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Cy.INITIAL_CAPACITY=32;function k6(e){return new wae(e)}function Ry(e){return new bae(e)}function _ae(e,t){return new I6(e,t)}function kae(e,t=rs.FAIL){return new vae(e,t)}var en=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Rae(this,e)}filter(e){return new Eae(this,e)}map(e){return new Cae(this,e)}mapAsync(e){return new N6(this,e)}serialMapAsync(e){return new N6(this,e).serial()}flatmap(e){return new Fae(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Tae(this,e,t)}columnMajorBatch(e,t=!0,n=b6){return this.rowMajorBatch(e,t).map(r=>mae(r,n))}concatenate(e,t){return new I6(k6([this,e]),t)}take(e){return e<0||e==null?this:new Sae(this,e)}skip(e){return e<0||e==null?this:new Nae(this,e)}prefetch(e){return new S6(this,e)}shuffle(e,t){return new Mae(this,e,t)}serial(){return new Iae(this)}},wae=class extends en{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:xae(e),done:!1}}},bae=class extends en{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Iae=class extends en{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Nae=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;Re(e.value)}return this.upstream.next()}},Sae=class extends en{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Tae=class extends en{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Eae=class extends en{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;Re(e.value)}}},Cae=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Rae=class extends en{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},N6=class extends en{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=vr.getTensorsInContainer(e.value),n=await this.transform(e.value),r=vr.getTensorsInContainer(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return{value:n,done:!1}}},Fy=class extends en{constructor(){super();this.outputQueue=new Cy,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},Fae=class extends Fy{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=vr.getTensorsInContainer(e.value),n=this.transform(e.value),r=vr.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let a of t)vr.isTensorInList(a,r)||a.dispose();return!0}},I6=class extends en{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},rs;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(rs||(rs={}));var vae=class extends en{constructor(e,t=rs.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function r(s){return s instanceof en?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let a=await _6(this.iterators,r);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case rs.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case rs.SHORTEST:return{value:null,done:!0};case rs.LONGEST:default:}return this.count++,{value:a,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},S6=class extends en{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new v6(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},Mae=class extends S6{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=pae.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},Jl=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let r;return this.size===Infinity||this.size==null?r=this.size:t?r=Math.ceil(this.size/e):r=Math.floor(this.size/e),jn(async()=>(await n.iterator()).columnMajorBatch(e,t,$ae),r)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,jn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,jn(async()=>(await t.iterator()).filter(r=>L(()=>e(r))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return jn(async()=>(await t.iterator()).map(n=>L(()=>e(n))),this.size)}mapAsync(e){let t=this;return jn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return jn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,jn(async()=>{let r=Ry(async()=>({value:await t.iterator(),done:!1}));return _ae(r.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,jn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let r=this,a=dae.alea(t||v.now().toString());return jn(async()=>{let s=a.int32();return n&&(s+=a.int32()),(await r.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,jn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};Jl.MAX_BUFFER_SIZE=1e4;function jn(e,t=null){return new class extends Jl{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function aae(e){return jn(async()=>k6(e),e.length)}function sae(e){if(!Ql(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return jn(async()=>{let n=await _6(e,r=>{if(r instanceof Jl)return{value:r.iterator(),recurse:!1};if(Ql(r))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return kae(n,rs.SHORTEST)},t)}function $ae(e){if(e===null)return null;let t=e[0];return gae(t)?{value:Dae(e),recurse:!1}:{value:null,recurse:!0}}function Dae(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof qe?An(e):Ir(e)}var A6=class extends Jl{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},w0='"',Kc=Symbol("out"),T6=Symbol("field"),b0=Symbol("quote"),My=Symbol("quoteafterquote"),E6=Symbol("quoteinquote"),g6=class extends Jl{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new A6(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((r,a)=>(r[a]=r[a]+1||1,r),{}),n=Object.keys(t).filter(r=>t[r]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let r of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(r)===-1)throw new Error('The key "'+r+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},r={};for(let a=0;a<this.fullColumnNames.length;a++){let s=this.fullColumnNames[a],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[a],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?r[s]=l:n[s]=l}}return Object.keys(r).length===0?n:{xs:n,ys:r}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],r=0,a=e.length,s=Kc;for(let i=0;i<a;i++)switch(s){case Kc:switch(e.charAt(i)){case w0:r=i+1,s=b0;break;case this.delimiter:if(r=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=Kc;break;default:s=T6,r=i;break}break;case T6:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i)),s=Kc,r=i+1;break;default:}break;case b0:switch(e.charAt(i)){case w0:s=My;break;default:}break;case My:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(r,i-1)),s=Kc,r=i+1;break;case w0:s=b0;break;default:s=E6;break}break;case E6:switch(e.charAt(i)){case w0:s=b0;break;default:}break;default:}if(s===My?n.push(e.substring(r,a-1)):n.push(e.substring(r)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},C6=class extends en{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(J().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new C6(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let r=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(r,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let r=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(r,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(r=>{let a=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&r({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(a),r({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((r,a)=>n.set(r,a*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),Ir(n,t)}},R6=class extends en{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=hn([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,r=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,a=(1-n)/2,s=(1-r)/2,i=a+n,o=r+s;this.cropBox=En([s,a,o,i],[1,4])}else this.cropBox=En([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(J().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new R6(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=pl.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return L(()=>{let t=mn(xe(e,"float32"),0),n;n=Ke.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let r=n.shape;return j(n,r.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},F6=class{},M6=class extends en{split(e){return new Oae(this,e)}},Oae=class extends M6{constructor(e,t){super();this.upstream=e,this.impl=new zae(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},zae=class extends Fy{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},Lae=class extends en{decodeUTF8(){return new Pae(this)}},Pae=class extends M6{constructor(e){super();this.upstream=e,this.impl=new Wae(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},Wae=class extends Fy{constructor(e){super();if(this.upstream=e,J().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=Ik();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return J().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},$6=class extends Lae{constructor(e,t={}){super();this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(J().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let r=new FileReader;r.onload=s=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},r.onabort=s=>t(new Error("Aborted")),r.onerror=s=>t(new Error(s.type));let a=this.file.slice(this.offset,n);r.readAsArrayBuffer(a)}this.offset=n}),done:!1}}};async function Vae(e,t={}){let n,r;typeof e=="string"?n=e:(n=e.url,r=Bae(e));let a=await v.fetch(n,r);if(a.ok){let s=new Uint8Array(await a.arrayBuffer());return new $6(s,t)}else throw new Error(a.statusText)}var Bae=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function D6(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var y6=class extends F6{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(D6(this.input)&&J().get("IS_NODE")){let e=require("fs");this.input=e.readFileSync(this.input.substr(7))}return new $6(this.input,this.options)}},x6=class extends F6{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return D6(this.url)?new y6(this.url,this.fileOptions).iterator():Vae(this.url,this.fileOptions)}};function iae(e,t={}){return new g6(new x6(e),t)}function oae(e){let t=Ry(e);return jn(async()=>t)}function lae(e){return jn(async()=>{let t=await e();return Ry(()=>t.next())})}async function uae(e,t){return R6.create(e,t)}async function cae(e){return C6.create(e)}var hae="3.3.0",Uae={tfjs:Nk,"tfjs-core":Sk,"tfjs-data":Tk,"tfjs-layers":Ek,"tfjs-converter":Ck,"tfjs-backend-cpu":Dw,"tfjs-backend-webgl":r_,"tfjs-backend-wasm":q3};var Gn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function O6(){if(!Qf(Gn.name)){Me("backend registration:",Gn.name);try{Gn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Gn.width,Gn.height):document.createElement("canvas")}catch(e){Me("error: cannot create canvas:",e);return}try{Gn.gl=Gn.canvas.getContext("webgl2",Gn.webGLattr)}catch(e){Me("error: cannot get WebGL2 context:",e);return}try{xp(2,Gn.gl)}catch(e){Me("error: cannot set WebGL2 context:",e);return}try{let e=new vp(Gn.gl);ml(Gn.name,()=>new Wl(e),Gn.priority)}catch(e){Me("error: cannot register WebGL backend:",e);return}try{ol("webgl").forEach(t=>{let n={...t,backendName:Gn.name};ci(n)})}catch(e){Me("error: cannot update WebGL backend registration:",e);return}try{_r.set("WEBGL_VERSION",2)}catch(e){Me("error: cannot set WebGL backend flags:",e);return}Me("backend registered:",Gn.name)}}var z6=6;function Hae(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let r=0;r<t.strides.length;r++){let a=t.strides[r],s=Math.floor((e+a-1)/a),i=Math.floor((e+a-1)/a),o=t.anchors[r];for(let l=0;l<s;l++){let u=a*(l+.5);for(let c=0;c<i;c++){let h=a*(c+.5);for(let d=0;d<o;d++)n.push([h,u])}}}return n}var jae=e=>({startEndTensor:e,startPoint:$e(e,[0,0],[-1,2]),endPoint:$e(e,[0,2],[-1,2])});function Gae(e,t,n){let r=$e(e,[0,1],[-1,2]),a=ie(r,t),s=$e(e,[0,3],[-1,2]),i=_e(s,n),o=_e(a,n),l=_e(i,2),u=be(o,l),c=ie(o,l),h=O(u,n),d=O(c,n);return yl([h,d],1)}var P6=class{constructor(t,n){this.model=t,this.anchorsData=Hae(t.inputs[0].shape[1]),this.anchors=En(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,r,a]=L(()=>{let d=t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(.5),p=this.model.predict(d),f;if(Array.isArray(p)){let y=p.sort((x,N)=>x.size-N.size),w=ot([y[0],y[2]],2),b=ot([y[1],y[3]],2);f=ot([b,w],1).squeeze(0)}else f=p.squeeze();let m=Gae(f,this.anchors,[this.inputSize,this.inputSize]),A=$e(f,[0,0],[-1,1]),g=On(A).squeeze();return[f,m,g]}),s=await Ke.nonMaxSuppressionAsync(r,a,this.config.face.detector.maxFaces,this.config.face.detector.iouThreshold,this.config.face.detector.scoreThreshold),i=s.arraySync();s.dispose();let l=i.map(h=>$e(r,[h,0],[1,-1])).map(h=>{let d=h.arraySync();return h.dispose(),d}),u=a.dataSync(),c=[];for(let h=0;h<l.length;h++){let d=i[h],p=u[d];if(p>this.config.face.detector.minConfidence){let f=jae(l[h]),m=this.anchorsData[d],A=L(()=>$e(n,[d,z6-1],[1,-1]).squeeze().reshape([z6,-1]));c.push({box:f,landmarks:A,anchor:m,confidence:p})}}return n.dispose(),r.dispose(),a.dispose(),{boxes:c,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function L6(e){let t=await Ft(e.face.detector.modelPath,{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new P6(t,e);return e.debug&&Me(`load model: ${e.face.detector.modelPath.match(/\/(.*)\./)[1]}`),n}function W6(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:r}}function Zc(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function eu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function tu(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function _0(e,t=1.5){let n=eu(e),r=Zc(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function v0(e){let t=eu(e),n=Zc(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}var k0=[[1,0,0],[0,1,0],[0,0,1]];function qae(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function $y(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return qae(n)}function B6(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function as(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function Xae(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function V6(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(as(e[a],Xae(t,s)))}return n}function I0(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=B6(t[0],t[1]),i=V6(s,a),o=B6(-t[0],-t[1]);return V6(i,o)}function U6(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-as(t[0],n),-as(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function H6(e,t){return[as(e,t[0]),as(e,t[1])]}var ea={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},Dy=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],Oy=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Wi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Kae=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Zae=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Yae=[33,133,362,263,1,78,308],Mhe=Kae.map(e=>Oy[e]),$he=Zae.map(e=>Oy[e]),Dhe=Yae.map(e=>Oy[e]);var zy=ea.leftEyeLower0,Py=ea.rightEyeLower0,nu={leftBounds:[zy[0],zy[zy.length-1]],rightBounds:[Py[0],Py[Py.length-1]]},N0={count:468,mouth:13,symmetryLine:[13,ea.midwayBetweenEyes[0]]},j6={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},ru={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function S0(e,t,n,r){for(let a=0;a<Dy.length;a++){let{key:s,indices:i}=Dy[a],o=ea[`${n}${s}`];if(!r||r.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var Ly=class{constructor(t,n,r){var a,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=r,this.boxSize=((a=t==null?void 0:t.model)==null?void 0:a.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(r==null?void 0:r.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,r,a){let s=Zc({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(h=>[s[0]/this.meshSize*(h[0]-this.meshSize/2),s[1]/this.meshSize*(h[1]-this.meshSize/2),h[2]]),o=r!==0?I0(r,[0,0]):k0,l=r!==0?i.map(h=>[...H6(h,o),h[2]]):i,u=r!==0?U6(a):k0,c=[...eu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(h=>[h[0]+as(c,u[0]),h[1]+as(c,u[1]),h[2]])}getLeftToRightEyeDepthDifference(t){let n=t[nu.leftBounds[0]][2],r=t[nu.rightBounds[0]][2];return n-r}getEyeBox(t,n,r,a,s=!1){let i=v0(_0(this.calculateLandmarksBoundingBox([t[r],t[a]]),this.irisEnlarge)),o=Zc(i),l=Ke.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&_r.flags.IS_BROWSER&&(l=Ke.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,r,a=!1){let s=[];for(let i=0;i<ru.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(a?1-o/this.irisSize:o/this.irisSize)*r[0]+n.startPoint[0],l/this.irisSize*r[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(ru.index)}}getAdjustedIrisCoords(t,n,r){let a=t[ea[`${r}EyeUpper0`][ru.upperCenter]][2],s=t[ea[`${r}EyeLower0`][ru.lowerCenter]][2],i=(a+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=a:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let r=!1,a;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.videoOptimized)&&(a=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.boxes&&(!n.face.mesh.enabled||a.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxFaces)){this.storedBoxes=[],this.detectedFaces=0;for(let i of a.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks,confidence:i.confidence});this.storedBoxes.length>0&&(r=!0)}if(n.face.detector.skipInitial&&this.detectedFaces===0&&(this.skipped=0),r){if(!a||!a.boxes||a.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=W6({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},a.scaleFactor),l=_0(o),u=v0(l),c=this.storedBoxes[i].landmarks.arraySync(),h=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:h,landmarks:c}}}a&&a.boxes&&a.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=L(()=>this.storedBoxes.map((i,o)=>{let l=i.confidence,u,c=0,h;if(n.face.detector.rotation&&n.face.mesh.enabled&&_r.flags.IS_BROWSER){let[_,x]=i.landmarks.length>=N0.count?N0.symmetryLine:j6.symmetryLine;c=$y(i.landmarks[_],i.landmarks[x]);let N=eu({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ke.rotateWithOffset(t,c,0,T);h=I0(-c,N),n.face.mesh.enabled?u=tu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshSize,this.meshSize]).div(255):u=tu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.boxSize,this.boxSize]).div(255)}else{h=k0;let _=t.clone();n.face.mesh.enabled?u=tu({startPoint:i.startPoint,endPoint:i.endPoint},_,[this.meshSize,this.meshSize]).div(255):u=tu({startPoint:i.startPoint,endPoint:i.endPoint},_,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{coords:null,box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:u};let[,d,p]=this.meshDetector.predict(u),f=d.dataSync()[0];if(f<n.face.detector.minConfidence)return null;let A=j(p,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:_,boxSize:x,crop:N}=this.getEyeBox(A,u,nu.leftBounds[0],nu.leftBounds[1],!0),{box:T,boxSize:E,crop:M}=this.getEyeBox(A,u,nu.rightBounds[0],nu.rightBounds[1]),B=this.irisModel.predict(ot([N,M])).dataSync(),V=B.slice(0,ru.numCoordinates*3),{rawCoords:U,iris:H}=this.getEyeCoords(V,_,x,!0),X=B.slice(ru.numCoordinates*3),{rawCoords:G,iris:ee}=this.getEyeCoords(X,T,E),Y=this.getLeftToRightEyeDepthDifference(A);Math.abs(Y)<30?(S0(A,U,"left",null),S0(A,G,"right",null)):Y<1?S0(A,U,"left",["EyeUpper0","EyeLower0"]):S0(A,G,"right",["EyeUpper0","EyeLower0"]);let se=this.getAdjustedIrisCoords(A,H,"left"),ne=this.getAdjustedIrisCoords(A,ee,"right");A=A.concat(se).concat(ne)}let g=this.transformRawCoords(A,i,c,h);i=_0(this.calculateLandmarksBoundingBox(g),1.5);let y=En(g);if(n.face.detector.rotation&&n.face.mesh.enabled&&n.face.detector.return&&_r.flags.IS_BROWSER){let[_,x]=i.landmarks.length>=N0.count?N0.symmetryLine:j6.symmetryLine;c=$y(i.landmarks[_],i.landmarks[x]);let N=eu({startPoint:i.startPoint,endPoint:i.endPoint}),T=[N[0]/t.shape[2],N[1]/t.shape[1]],E=Ke.rotateWithOffset(t,c,0,T);h=I0(-c,N),u=tu({startPoint:i.startPoint,endPoint:i.endPoint},E,[this.meshSize,this.meshSize]).div(255)}let w={coords:y,box:i,faceConfidence:f,boxConfidence:l,image:u,rawCoords:A},b=v0(i);return this.storedBoxes[o]={...b,landmarks:g,confidence:i.confidence,faceConfidence:f},w}));return s=s.filter(i=>i!==null),n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.faceConfidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s,landmarks:t}}};var W2=Ch(q6());var Vy={};or(Vy,{load:()=>Uy,predict:()=>Hy});var By={};function xr(e,t){if(!t||!t.kernels)return;let n=5,r=t.kernels.filter(o=>o.kernelTimeMs>0).reduce((o,l)=>o+=l.kernelTimeMs,0),a=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.kernelTimeMs>0).sort((o,l)=>l.kernelTimeMs-o.kernelTimeMs),s=t.kernels.map((o,l)=>(o.id=l,o)).filter(o=>o.totalBytesSnapshot>0).sort((o,l)=>l.totalBytesSnapshot-o.totalBytesSnapshot);a.length>n&&(a.length=n),s.length>n&&(s.length=n);let i={newBytes:t.newBytes,newTensors:t.newTensors,peakBytes:t.peakBytes,numKernelOps:t.kernels.length,timeKernelOps:r,slowestKernelOps:a,largestKernelOps:s};By[e]=i,Me("Human profiler",e,i)}var ss,T0={age:0},E0=Number.MAX_SAFE_INTEGER;async function Uy(e){return ss||(ss=await Ft(e.face.age.modelPath),e.debug&&Me(`load model: ${e.face.age.modelPath.match(/\/(.*)\./)[1]}`)),ss}async function Hy(e,t){return ss?E0<t.face.age.skipFrames&&t.videoOptimized&&T0.age&&T0.age>0?(E0++,T0):(t.videoOptimized?E0=0:E0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[ss.inputs[0].shape[2],ss.inputs[0].shape[1]],!1),a=O(r,[255]);Re(r);let s,i={age:0};if(!t.profile)t.face.age.enabled&&(s=await ss.predict(a));else{let o=t.face.age.enabled?await Jn(()=>ss.predict(a)):{};s=o.result.clone(),o.result.dispose(),xr("age",o)}if(a.dispose(),s){let o=s.dataSync();i.age=Math.trunc(10*o[0])/10}s.dispose(),T0=i,n(i)})):null}var jy={};or(jy,{load:()=>Ky,predict:()=>Zy});var ba,Gy={gender:""},C0=Number.MAX_SAFE_INTEGER,qy=!1,Xy=[.2989,.587,.114];async function Ky(e){return ba||(ba=await Ft(e.face.gender.modelPath),qy=ba.inputs[0].shape[3]===1,e.debug&&Me(`load model: ${e.face.gender.modelPath.match(/\/(.*)\./)[1]}`)),ba}async function Zy(e,t){return ba?C0<t.face.gender.skipFrames&&t.videoOptimized&&Gy.gender!==""?(C0++,Gy):(t.videoOptimized?C0=0:C0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[ba.inputs[0].shape[2],ba.inputs[0].shape[1]],!1),a;qy?a=L(()=>{let[o,l,u]=Ht(r,3,3),c=O(o,Xy[0]),h=O(l,Xy[1]),d=O(u,Xy[2]);return Wa([c,h,d]).sub(.5).mul(2)}):a=O(r,[255]),Re(r);let s,i={gender:"",confidence:0};if(!t.profile)t.face.gender.enabled&&(s=await ba.predict(a));else{let o=t.face.gender.enabled?await Jn(()=>ba.predict(a)):{};s=o.result.clone(),o.result.dispose(),xr("gender",o)}if(a.dispose(),s){let o=s.dataSync();if(qy)(o[0]>t.face.gender.minConfidence||o[1]>t.face.gender.minConfidence)&&(i.gender=o[0]>o[1]?"female":"male",i.confidence=o[0]>o[1]?Math.trunc(100*o[0])/100:Math.trunc(100*o[1])/100);else{let l=Math.trunc(200*Math.abs(o[0]-.5))/100;l>t.face.gender.minConfidence&&(i.gender=o[0]<=.5?"female":"male",i.confidence=Math.min(.99,l))}}s.dispose(),Gy=i,n(i)})):null}var Yy={};or(Yy,{load:()=>e2,predict:()=>t2});var Qae=["angry","disgust","fear","happy","sad","surprise","neutral"],is,Jy=[],R0=Number.MAX_SAFE_INTEGER,Qy=[.2989,.587,.114];async function e2(e){return is||(is=await Ft(e.face.emotion.modelPath),e.debug&&Me(`load model: ${e.face.emotion.modelPath.match(/\/(.*)\./)[1]}`)),is}async function t2(e,t){return is?R0<t.face.emotion.skipFrames&&t.videoOptimized&&Jy.length>0?(R0++,Jy):(t.videoOptimized?R0=0:R0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=Ke.resizeBilinear(e,[is.inputs[0].shape[2],is.inputs[0].shape[1]],!1),[a,s,i]=Ht(r,3,3);r.dispose();let o=O(a,Qy[0]),l=O(s,Qy[1]),u=O(i,Qy[2]);a.dispose(),s.dispose(),i.dispose();let c=Wa([o,l,u]);o.dispose(),l.dispose(),u.dispose();let h=L(()=>c.sub(.5).mul(2));c.dispose();let d=[];if(t.face.emotion.enabled){let p;if(t.profile){let f=await Jn(()=>is.predict(h));p=f.result.dataSync(),f.result.dispose(),xr("emotion",f)}else{let f=await is.predict(h);p=f.dataSync(),Re(f)}for(let f=0;f<p.length;f++)p[f]>t.face.emotion.minConfidence&&d.push({score:Math.min(.99,Math.trunc(100*p[f])/100),emotion:Qae[f]});d.sort((f,m)=>m.score-f.score)}h.dispose(),Jy=d,n(d)})):null}var ta;async function n2(e){return ta||(ta=await Ft(e.face.embedding.modelPath),e.debug&&Me(`load model: ${e.face.embedding.modelPath.match(/\/(.*)\./)[1]}`)),ta}function r2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let r=e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(Math.trunc(1e3*(1-r))/1e3,0)}function X6(e,t,n=0){let r={simmilarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return r;for(let a of t)if(a.embedding&&a.name){let s=r2(e,a.embedding);s>n&&s>r.simmilarity&&(r={...a,simmilarity:s})}return r}function a2(e){return L(()=>{let n=[[.05,.15,.85,.85]],r=e.image||e.tensor;if(!(r instanceof qe))return null;let a=r.shape.length===3?Ke.cropAndResize(mn(r,0),n,[0],[ta.inputs[0].shape[2],ta.inputs[0].shape[1]]):Ke.cropAndResize(r,n,[0],[ta.inputs[0].shape[2],ta.inputs[0].shape[1]]),s=[.2989,.587,.114],[i,o,l]=Ht(a,3,3),u=O(i,s[0]),c=O(o,s[1]),h=O(l,s[2]),d=Wa([u,c,h]),p=An([d,d,d],3).squeeze(4),f=p.sub(p.min());return f.div(f.max())})}async function s2(e,t){return ta?new Promise(async n=>{let r=[];if(t.face.embedding.enabled){let a=a2(e);if(!t.profile)r=L(()=>[...ta.predict(a).reshape([128,2]).logSumExp(1).dataSync()]);else{let s=await Jn(()=>ta.predict({img_inputs:a}));r=[...s.result.dataSync()],s.result.dispose(),xr("emotion",s)}Re(a)}n(r)}):[]}var g2={};or(g2,{PoseNet:()=>y2,load:()=>x2});function ese(e){let[t,n,r,a]=e;return{offsets:t,heatmap:n,displacementFwd:r,displacementBwd:a}}var i2=class{constructor(t){this.model=t}predict(t){return L(()=>{let r=t.toFloat().div(127.5).sub(1).expandDims(0),s=this.model.predict(r).map(o=>o.squeeze([0])),i=ese(s);return{heatmapScores:i.heatmap.sigmoid(),offsets:i.offsets,displacementFwd:i.displacementFwd,displacementBwd:i.displacementBwd}})}dispose(){this.model.dispose()}};function o2(e){return Math.floor(e/2)}var l2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(o2(t),t);)this.exchange(t,o2(t)),t=o2(t)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let r=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=r}};function tse(e,t,n,r,a,s){let[i,o]=s.shape,l=!0,u=Math.max(n-a,0),c=Math.min(n+a+1,i);for(let h=u;h<c;++h){let d=Math.max(r-a,0),p=Math.min(r+a+1,o);for(let f=d;f<p;++f)if(s.get(h,f,e)>t){l=!1;break}if(!l)break}return l}function K6(e,t,n){let[r,a,s]=n.shape,i=new l2(r*a*s,({score:o})=>o);for(let o=0;o<r;++o)for(let l=0;l<a;++l)for(let u=0;u<s;++u){let c=n.get(o,l,u);c<e||tse(u,c,o,l,t,n)&&i.enqueue({score:c,part:{heatmapY:o,heatmapX:l,id:u}})}return i}var _a=Ch(F0());var Z6=Ch(F0());function h2(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+Z6.NUM_KEYPOINTS)}}function M0(e,t,n){let{heatmapY:r,heatmapX:a,id:s}=e,{y:i,x:o}=h2(r,a,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function d2(e,t,n){return e<t?t:e>n?n:e}function Y6(e,t,n,r){let a=n-e,s=r-t;return a*a+s*s}function p2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var $0=Ch(F0());function J6(e,t){let n=t.shape[0],r=new Float32Array(n);for(let a=0;a<n;a++){let s=t.get(a,0),i=t.get(a,1);r[a]=e.get(s,i,a)}return r}function lse(e,t,n,r){return{y:r.get(e,t,n),x:r.get(e,t,n+$0.NUM_KEYPOINTS)}}function use(e,t){let n=[];for(let r=0;r<$0.NUM_KEYPOINTS;r++){let a=e.get(r,0).valueOf(),s=e.get(r,1).valueOf(),{x:i,y:o}=lse(a,s,r,t);n.push(o),n.push(i)}return En(n,[$0.NUM_KEYPOINTS,2])}function Q6(e,t,n){return L(()=>e.toTensor().mul(Ne(t,"int32")).toFloat().add(use(e,n)))}function cse(e,t){return L(()=>{let n=e.div(Ne(t,"int32"));return e.sub(n.mul(Ne(t,"int32")))})}function e4(e){let[t,n,r]=e.shape;return L(()=>{let s=e.reshape([t*n,r]).argMax(0),i=s.div(Ne(n,"int32")).expandDims(1),o=cse(s,n).expandDims(1);return ot([i,o],1)})}var t4=_a.poseChain.map(([e,t])=>[_a.partIds[e],_a.partIds[t]]),f2=t4.map(([,e])=>e),n4=t4.map(([e])=>e),hse=16;function dse(e,t,n){let r=n.shape[2]/2;return{y:n.get(t.y,t.x,e),x:n.get(t.y,t.x,r+e)}}function m2(e,t,n,r){return{y:d2(Math.round(e.y/t),0,n-1),x:d2(Math.round(e.x/t),0,r-1)}}function r4(e,t,n,r,a,s,i,o=2){let[l,u]=r.shape,c=m2(t.position,s,l,u),h=dse(e,c,i),p=p2(t.position,h);for(let A=0;A<o;A++){let g=m2(p,s,l,u),y=h2(g.y,g.x,n,a);p=p2({x:g.x*s,y:g.y*s},{x:y.x,y:y.y})}let f=m2(p,s,l,u),m=r.get(f.y,f.x,n);return{position:p,part:_a.partNames[n],score:m}}function a4(e,t,n,r,a,s){let i=t.shape[2],o=f2.length,l=new Array(i),{part:u,score:c}=e,h=M0(u,r,n);l[u.id]={score:c,part:_a.partNames[u.id],position:h};for(let d=o-1;d>=0;--d){let p=f2[d],f=n4[d];l[p]&&!l[f]&&(l[f]=r4(d,l[p],f,t,n,r,s))}for(let d=0;d<o;++d){let p=n4[d],f=f2[d];l[p]&&!l[f]&&(l[f]=r4(d,l[p],f,t,n,r,a))}return l}async function s4(e,t,n){let r=0,a=e4(e),s=await Promise.all([e.buffer(),t.buffer(),a.buffer()]),i=s[0],o=s[1],l=s[2],u=Q6(l,hse,o),c=await u.buffer(),d=Array.from(J6(i,l)).map((f,m)=>(r+=f,{position:{y:c.get(m,0),x:c.get(m,1)},part:_a.partNames[m],score:f})),p=d.filter(f=>f.score>n);return a.dispose(),u.dispose(),{keypoints:p,score:r/d.length}}var pse=1,i4=16;function o4(e,t,{x:n,y:r},a){return e.some(({keypoints:s})=>{let i=s[a].position;return Y6(r,n,i.y,i.x)<=t})}function fse(e,t,n){return n.reduce((a,{position:s,score:i},o)=>(o4(e,t,s,o)||(a+=i),a),0)/n.length}function l4(e,t,n,r,a,s,i){let o=[],l=K6(i,pse,e),u=a^2;for(;o.length<s&&!l.empty();){let c=l.dequeue(),h=M0(c.part,i4,t);if(o4(o,u,h,c.part.id))continue;let d=a4(c,e,t,i4,n,r),p=fse(o,u,d);p>i&&o.push({keypoints:d,score:p})}return o}async function u4(e){return Promise.all(e.map(t=>t.buffer()))}function mse(e,t,n){return{score:e.score,keypoints:e.keypoints.map(({score:r,part:a,position:s})=>({score:r,part:a,position:{x:Math.trunc(s.x*n),y:Math.trunc(s.y*t)}}))}}function c4(e,[t,n]){let r=e.squeeze(0),a=r.resizeBilinear([t,n]);return r.dispose(),a}function A2(e,[t,n],[r,a]){return e.map(i=>mse(i,t/r,n/a))}async function Ase(e,t,n,r){return new Promise(async a=>{let s=await u4([t.heatmapScores,t.offsets,t.displacementFwd,t.displacementBwd]),i=s[0],o=s[1],l=s[2],u=s[3],c=await l4(i,o,l,u,n.body.nmsRadius,n.body.maxDetections,n.body.scoreThreshold),h=A2(c,[e.shape[1],e.shape[2]],[r,r]);a(h)})}async function gse(e,t,n,r){return new Promise(async a=>{let s=await s4(t.heatmapScores,t.offsets,n.body.scoreThreshold),i=A2([s],[e.shape[1],e.shape[2]],[r,r]);a(i)})}var y2=class{constructor(t){this.baseModel=t,this.inputSize=t.model.inputs[0].shape[1],this.inputSize<128&&(this.inputSize=257)}async estimatePoses(t,n){let r=c4(t,[this.inputSize,this.inputSize]),a=this.baseModel.predict(r,n),s=n.body.maxDetections<2?await gse(t,a,n,this.inputSize):await Ase(t,a,n,this.inputSize);return a.heatmapScores.dispose(),a.offsets.dispose(),a.displacementFwd.dispose(),a.displacementBwd.dispose(),r.dispose(),s}dispose(){this.baseModel.dispose()}};async function x2(e){let t=await Ft(e.body.modelPath),n=new i2(t);return e.debug&&Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`),new y2(n)}var k2={};or(k2,{HandPose:()=>N2,load:()=>S2});function D0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function Yc(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function h4(e,t,n){let r=t.shape[1],a=t.shape[2],s=[[e.startPoint[1]/r,e.startPoint[0]/a,e.endPoint[1]/r,e.endPoint[0]/a]];return Ke.cropAndResize(t,s,[0],n)}function d4(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],r=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],a=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:r,palmLandmarks:a,confidence:e.confidence}}function O0(e,t=1.5){let n=Yc(e),r=D0(e),a=[t*r[0]/2,t*r[1]/2],s=[n[0]-a[0],n[1]-a[1]],i=[n[0]+a[0],n[1]+a[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function z0(e){let t=Yc(e),n=D0(e),a=Math.max(...n)/2,s=[t[0]-a,t[1]-a],i=[t[0]+a,t[1]+a];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var w2=class{constructor(t,n,r){this.model=t,this.anchors=r.map(a=>[a.x_center,a.y_center]),this.anchorsTensor=En(this.anchors),this.inputSize=n,this.inputSizeTensor=hn([n,n]),this.doubleInputSizeTensor=hn([n*2,n*2])}normalizeBoxes(t){return L(()=>{let n=$e(t,[0,0],[-1,2]),r=$e(t,[0,2],[-1,2]),a=ie(_e(n,this.inputSizeTensor),this.anchorsTensor),s=_e(r,this.doubleInputSizeTensor),i=O(be(a,s),this.inputSizeTensor),o=O(ie(a,s),this.inputSizeTensor);return yl([i,o],1)})}normalizeLandmarks(t,n){return L(()=>{let r=ie(_e(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return O(r,this.inputSizeTensor)})}async getBoxes(t,n){let r=this.model.predict(t),a=r.squeeze();r.dispose();let s=L(()=>On($e(a,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=$e(a,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await Ke.nonMaxSuppressionAsync(l,i,n.hand.maxHands,n.hand.iouThreshold,n.hand.scoreThreshold),c=u.arraySync();s.dispose(),u.dispose();let h=[];for(let d of c)if(i[d]>=n.hand.minConfidence){let p=$e(l,[d,0],[1,-1]),f=$e(a,[d,5],[1,14]),m=L(()=>this.normalizeLandmarks(f,d).reshape([-1,2]));f.dispose(),h.push({box:p,palmLandmarks:m,confidence:i[d]})}return a.dispose(),l.dispose(),h}async estimateHandBounds(t,n){let r=t.shape[1],a=t.shape[2],s=L(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),c=u.slice(0,2),h=u.slice(2,4),d=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(d4({startPoint:c,endPoint:h,palmLandmarks:d,confidence:l.confidence},[a/this.inputSize,r/this.inputSize]))}return o}};function yse(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function p4(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return yse(n)}var f4=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function os(e,t){let n=0;for(let r=0;r<e.length;r++)n+=e[r]*t[r];return n}function xse(e,t){let n=[];for(let r=0;r<e.length;r++)n.push(e[r][t]);return n}function m4(e,t){let n=[],r=e.length;for(let a=0;a<r;a++){n.push([]);for(let s=0;s<r;s++)n[a].push(os(e[a],xse(t,s)))}return n}function b2(e,t){let n=Math.cos(e),r=Math.sin(e),a=[[n,-r,0],[r,n,0],[0,0,1]],s=f4(t[0],t[1]),i=m4(s,a),o=f4(-t[0],-t[1]);return m4(i,o)}function A4(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],r=[-os(t[0],n),-os(t[1],n)];return[t[0].concat(r[0]),t[1].concat(r[1]),[0,0,1]]}function _2(e,t){return[os(e,t[0]),os(e,t[1])]}var wse=5,g4=1.65,y4=[0,5,9,13,17,1,2],bse=0,_se=2,v2=class{constructor(t,n,r){this.handDetector=t,this.landmarkDetector=n,this.inputSize=r,this.storedBoxes=[],this.skipped=0,this.detectedHands=0}getBoxForPalmLandmarks(t,n){let r=t.map(s=>_2([...s,1],n)),a=this.calculateLandmarksBoundingBox(r);return O0(z0(a),wse)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),r=O0(z0(n),g4);r.palmLandmarks=[];for(let a=0;a<y4.length;a++)r.palmLandmarks.push(t[y4[a]].slice(0,2));return r}transformRawCoords(t,n,r,a){let s=D0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(p=>[i[0]*(p[0]-this.inputSize/2),i[1]*(p[1]-this.inputSize/2),i[2]*p[2]]),l=b2(r,[0,0]),u=o.map(p=>[..._2(p,l),p[2]]),c=A4(a),h=[...Yc(n),1],d=[os(h,c[0]),os(h,c[1])];return u.map(p=>[p[0]+d[0],p[1]+d[1],p[2]])}async estimateHands(t,n){let r=!1,a;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.videoOptimized)&&(a=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.videoOptimized&&this.skipped++,a&&a.length>0&&(a.length!==this.detectedHands&&this.detectedHands!==n.hand.maxHands||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...a],this.storedBoxes.length>0&&(r=!0));let s=[];n.hand.skipInitial&&this.detectedHands===0&&(this.skipped=0);for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?p4(o.palmLandmarks[bse],o.palmLandmarks[_se]):0,u=Yc(o),c=[u[0]/t.shape[2],u[1]/t.shape[1]],h=n.hand.rotation?Ke.rotateWithOffset(t,l,0,c):t.clone(),d=b2(-l,u),p=r?this.getBoxForPalmLandmarks(o.palmLandmarks,d):o,f=h4(p,h,[this.inputSize,this.inputSize]),m=f.div(255);f.dispose(),h.dispose();let[A,g]=await this.landmarkDetector.predict(m);m.dispose();let y=A.dataSync()[0];if(A.dispose(),y>=n.hand.minConfidence){let w=j(g,[-1,3]),b=w.arraySync();g.dispose(),w.dispose();let _=this.transformRawCoords(b,p,l,d),x=this.getBoxForHandLandmarks(_);this.storedBoxes[i]=x;let N={landmarks:_,confidence:y,box:{topLeft:x.startPoint,bottomRight:x.endPoint}};s.push(N)}else this.storedBoxes[i]=null;g.dispose()}else{let l=O0(z0(o),g4),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),r=t.map(i=>i[1]),a=[Math.min(...n),Math.min(...r)],s=[Math.max(...n),Math.max(...r)];return{startPoint:a,endPoint:s}}};var x4=[{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.046875,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.078125,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.109375,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.140625,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.171875,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.203125,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.234375,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.265625,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.296875,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.328125,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.359375,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.390625,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.421875,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.453125,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.484375,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.515625,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.546875,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.578125,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.609375,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.640625,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.671875,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.703125,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.734375,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.765625,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.796875,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.828125,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.859375,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.890625,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.921875,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.953125,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.984375,y_center:.015625},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.046875,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.078125,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.109375,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.140625,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.171875,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.203125,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.234375,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.265625,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.296875,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.328125,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.359375,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.390625,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.421875,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.453125,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.484375,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.515625,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.546875,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.578125,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.609375,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.640625,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.671875,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.703125,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.734375,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.765625,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.796875,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.828125,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.859375,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.890625,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.921875,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.953125,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.984375,y_center:.046875},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.046875,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.078125,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.109375,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.140625,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.171875,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.203125,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.234375,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.265625,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.296875,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.328125,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.359375,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.390625,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.421875,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.453125,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.484375,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.515625,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.546875,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.578125,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.609375,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.640625,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.671875,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.703125,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.734375,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.765625,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.796875,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.828125,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.859375,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.890625,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.921875,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.953125,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.984375,y_center:.078125},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.046875,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.078125,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.109375,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.140625,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.171875,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.203125,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.234375,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.265625,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.296875,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.328125,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.359375,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.390625,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.421875,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.453125,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.484375,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.515625,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.546875,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.578125,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.609375,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.640625,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.671875,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.703125,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.734375,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.765625,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.796875,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.828125,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.859375,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.890625,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.921875,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.953125,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.984375,y_center:.109375},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.046875,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.078125,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.109375,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.140625,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.171875,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.203125,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.234375,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.265625,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.296875,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.328125,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.359375,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.390625,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.421875,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.453125,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.484375,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.515625,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.546875,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.578125,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.609375,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.640625,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.671875,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.703125,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.734375,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.765625,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.796875,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.828125,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.859375,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.890625,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.921875,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.953125,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.984375,y_center:.140625},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.046875,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.078125,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.109375,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.140625,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.171875,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.203125,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.234375,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.265625,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.296875,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.328125,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.359375,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.390625,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.421875,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.453125,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.484375,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.515625,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.546875,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.578125,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.609375,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.640625,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.671875,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.703125,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.734375,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.765625,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.796875,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.828125,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.859375,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.890625,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.921875,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.953125,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.984375,y_center:.171875},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.046875,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.078125,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.109375,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.140625,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.171875,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.203125,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.234375,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.265625,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.296875,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.328125,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.359375,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.390625,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.421875,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.453125,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.484375,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.515625,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.546875,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.578125,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.609375,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.640625,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.671875,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.703125,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.734375,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.765625,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.796875,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.828125,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.859375,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.890625,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.921875,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.953125,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.984375,y_center:.203125},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.046875,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.078125,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.109375,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.140625,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.171875,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.203125,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.234375,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.265625,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.296875,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.328125,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.359375,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.390625,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.421875,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.453125,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.484375,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.515625,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.546875,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.578125,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.609375,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.640625,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.671875,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.703125,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.734375,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.765625,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.796875,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.828125,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.859375,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.890625,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.921875,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.953125,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.984375,y_center:.234375},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.046875,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.078125,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.109375,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.140625,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.171875,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.203125,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.234375,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.265625,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.296875,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.328125,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.359375,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.390625,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.421875,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.453125,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.484375,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.515625,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.546875,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.578125,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.609375,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.640625,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.671875,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.703125,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.734375,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.765625,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.796875,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.828125,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.859375,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.890625,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.921875,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.953125,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.984375,y_center:.265625},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.046875,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.078125,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.109375,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.140625,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.171875,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.203125,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.234375,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.265625,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.296875,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.328125,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.359375,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.390625,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.421875,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.453125,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.484375,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.515625,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.546875,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.578125,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.609375,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.640625,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.671875,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.703125,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.734375,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.765625,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.796875,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.828125,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.859375,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.890625,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.921875,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.953125,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.984375,y_center:.296875},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.046875,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.078125,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.109375,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.140625,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.171875,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.203125,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.234375,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.265625,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.296875,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.328125,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.359375,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.390625,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.421875,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.453125,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.484375,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.515625,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.546875,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.578125,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.609375,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.640625,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.671875,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.703125,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.734375,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.765625,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.796875,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.828125,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.859375,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.890625,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.921875,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.953125,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.984375,y_center:.328125},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.046875,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.078125,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.109375,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.140625,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.171875,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.203125,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.234375,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.265625,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.296875,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.328125,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.359375,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.390625,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.421875,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.453125,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.484375,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.515625,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.546875,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.578125,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.609375,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.640625,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.671875,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.703125,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.734375,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.765625,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.796875,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.828125,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.859375,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.890625,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.921875,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.953125,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.984375,y_center:.359375},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.046875,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.078125,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.109375,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.140625,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.171875,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.203125,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.234375,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.265625,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.296875,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.328125,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.359375,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.390625,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.421875,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.453125,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.484375,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.515625,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.546875,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.578125,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.609375,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.640625,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.671875,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.703125,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.734375,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.765625,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.796875,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.828125,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.859375,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.890625,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.921875,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.953125,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.984375,y_center:.390625},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.046875,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.078125,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.109375,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.140625,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.171875,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.203125,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.234375,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.265625,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.296875,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.328125,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.359375,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.390625,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.421875,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.453125,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.484375,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.515625,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.546875,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.578125,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.609375,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.640625,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.671875,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.703125,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.734375,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.765625,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.796875,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.828125,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.859375,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.890625,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.921875,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.953125,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.984375,y_center:.421875},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.046875,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.078125,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.109375,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.140625,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.171875,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.203125,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.234375,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.265625,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.296875,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.328125,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.359375,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.390625,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.421875,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.453125,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.484375,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.515625,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.546875,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.578125,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.609375,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.640625,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.671875,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.703125,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.734375,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.765625,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.796875,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.828125,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.859375,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.890625,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.921875,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.953125,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.984375,y_center:.453125},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.046875,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.078125,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.109375,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.140625,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.171875,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.203125,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.234375,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.265625,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.296875,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.328125,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.359375,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.390625,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.421875,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.453125,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.484375,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.515625,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.546875,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.578125,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.609375,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.640625,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.671875,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.703125,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.734375,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.765625,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.796875,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.828125,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.859375,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.890625,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.921875,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.953125,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.984375,y_center:.484375},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.046875,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.078125,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.109375,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.140625,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.171875,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.203125,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.234375,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.265625,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.296875,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.328125,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.359375,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.390625,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.421875,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.453125,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.484375,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.515625,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.546875,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.578125,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.609375,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.640625,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.671875,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.703125,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.734375,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.765625,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.796875,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.828125,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.859375,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.890625,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.921875,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.953125,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.984375,y_center:.515625},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.046875,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.078125,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.109375,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.140625,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.171875,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.203125,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.234375,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.265625,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.296875,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.328125,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.359375,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.390625,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.421875,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.453125,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.484375,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.515625,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.546875,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.578125,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.609375,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.640625,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.671875,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.703125,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.734375,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.765625,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.796875,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.828125,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.859375,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.890625,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.921875,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.953125,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.984375,y_center:.546875},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.046875,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.078125,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.109375,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.140625,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.171875,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.203125,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.234375,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.265625,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.296875,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.328125,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.359375,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.390625,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.421875,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.453125,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.484375,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.515625,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.546875,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.578125,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.609375,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.640625,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.671875,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.703125,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.734375,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.765625,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.796875,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.828125,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.859375,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.890625,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.921875,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.953125,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.984375,y_center:.578125},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.046875,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.078125,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.109375,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.140625,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.171875,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.203125,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.234375,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.265625,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.296875,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.328125,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.359375,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.390625,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.421875,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.453125,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.484375,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.515625,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.546875,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.578125,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.609375,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.640625,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.671875,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.703125,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.734375,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.765625,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.796875,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.828125,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.859375,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.890625,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.921875,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.953125,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.984375,y_center:.609375},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.046875,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.078125,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.109375,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.140625,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.171875,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.203125,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.234375,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.265625,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.296875,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.328125,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.359375,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.390625,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.421875,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.453125,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.484375,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.515625,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.546875,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.578125,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.609375,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.640625,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.671875,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.703125,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.734375,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.765625,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.796875,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.828125,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.859375,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.890625,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.921875,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.953125,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.984375,y_center:.640625},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.046875,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.078125,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.109375,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.140625,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.171875,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.203125,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.234375,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.265625,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.296875,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.328125,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.359375,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.390625,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.421875,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.453125,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.484375,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.515625,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.546875,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.578125,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.609375,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.640625,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.671875,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.703125,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.734375,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.765625,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.796875,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.828125,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.859375,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.890625,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.921875,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.953125,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.984375,y_center:.671875},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.046875,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.078125,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.109375,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.140625,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.171875,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.203125,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.234375,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.265625,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.296875,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.328125,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.359375,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.390625,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.421875,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.453125,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.484375,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.515625,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.546875,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.578125,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.609375,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.640625,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.671875,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.703125,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.734375,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.765625,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.796875,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.828125,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.859375,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.890625,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.921875,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.953125,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.984375,y_center:.703125},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.046875,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.078125,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.109375,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.140625,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.171875,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.203125,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.234375,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.265625,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.296875,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.328125,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.359375,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.390625,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.421875,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.453125,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.484375,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.515625,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.546875,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.578125,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.609375,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.640625,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.671875,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.703125,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.734375,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.765625,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.796875,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.828125,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.859375,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.890625,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.921875,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.953125,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.984375,y_center:.734375},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.046875,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.078125,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.109375,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.140625,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.171875,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.203125,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.234375,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.265625,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.296875,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.328125,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.359375,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.390625,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.421875,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.453125,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.484375,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.515625,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.546875,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.578125,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.609375,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.640625,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.671875,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.703125,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.734375,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.765625,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.796875,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.828125,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.859375,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.890625,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.921875,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.953125,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.984375,y_center:.765625},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.046875,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.078125,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.109375,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.140625,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.171875,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.203125,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.234375,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.265625,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.296875,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.328125,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.359375,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.390625,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.421875,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.453125,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.484375,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.515625,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.546875,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.578125,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.609375,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.640625,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.671875,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.703125,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.734375,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.765625,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.796875,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.828125,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.859375,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.890625,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.921875,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.953125,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.984375,y_center:.796875},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.046875,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.078125,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.109375,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.140625,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.171875,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.203125,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.234375,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.265625,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.296875,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.328125,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.359375,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.390625,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.421875,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.453125,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.484375,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.515625,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.546875,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.578125,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.609375,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.640625,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.671875,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.703125,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.734375,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.765625,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.796875,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.828125,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.859375,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.890625,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.921875,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.953125,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.984375,y_center:.828125},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.046875,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.078125,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.109375,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.140625,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.171875,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.203125,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.234375,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.265625,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.296875,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.328125,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.359375,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.390625,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.421875,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.453125,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.484375,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.515625,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.546875,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.578125,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.609375,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.640625,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.671875,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.703125,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.734375,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.765625,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.796875,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.828125,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.859375,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.890625,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.921875,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.953125,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.984375,y_center:.859375},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.046875,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.078125,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.109375,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.140625,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.171875,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.203125,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.234375,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.265625,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.296875,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.328125,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.359375,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.390625,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.421875,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.453125,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.484375,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.515625,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.546875,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.578125,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.609375,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.640625,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.671875,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.703125,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.734375,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.765625,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.796875,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.828125,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.859375,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.890625,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.921875,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.953125,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.984375,y_center:.890625},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.046875,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.078125,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.109375,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.140625,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.171875,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.203125,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.234375,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.265625,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.296875,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.328125,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.359375,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.390625,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.421875,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.453125,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.484375,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.515625,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.546875,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.578125,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.609375,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.640625,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.671875,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.703125,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.734375,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.765625,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.796875,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.828125,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.859375,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.890625,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.921875,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.953125,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.984375,y_center:.921875},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.046875,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.078125,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.109375,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.140625,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.171875,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.203125,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.234375,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.265625,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.296875,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.328125,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.359375,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.390625,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.421875,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.453125,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.484375,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.515625,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.546875,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.578125,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.609375,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.640625,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.671875,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.703125,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.734375,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.765625,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.796875,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.828125,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.859375,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.890625,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.921875,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.953125,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.984375,y_center:.953125},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.015625,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.046875,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.078125,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.109375,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.140625,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.171875,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.203125,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.234375,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.265625,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.296875,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.328125,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.359375,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.390625,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.421875,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.453125,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.484375,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.515625,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.546875,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.578125,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.609375,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.640625,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.671875,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.703125,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.734375,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.765625,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.796875,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.828125,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.859375,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.890625,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.921875,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.953125,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.984375,y_center:.984375},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.09375,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.15625,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.21875,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.28125,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.34375,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.40625,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.46875,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.53125,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.59375,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.65625,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.71875,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.78125,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.84375,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.90625,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.96875,y_center:.03125},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.09375,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.15625,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.21875,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.28125,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.34375,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.40625,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.46875,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.53125,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.59375,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.65625,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.71875,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.78125,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.84375,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.90625,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.96875,y_center:.09375},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.09375,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.15625,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.21875,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.28125,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.34375,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.40625,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.46875,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.53125,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.59375,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.65625,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.71875,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.78125,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.84375,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.90625,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.96875,y_center:.15625},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.09375,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.15625,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.21875,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.28125,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.34375,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.40625,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.46875,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.53125,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.59375,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.65625,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.71875,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.78125,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.84375,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.90625,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.96875,y_center:.21875},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.09375,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.15625,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.21875,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.28125,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.34375,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.40625,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.46875,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.53125,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.59375,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.65625,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.71875,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.78125,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.84375,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.90625,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.96875,y_center:.28125},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.09375,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.15625,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.21875,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.28125,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.34375,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.40625,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.46875,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.53125,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.59375,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.65625,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.71875,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.78125,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.84375,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.90625,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.96875,y_center:.34375},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.09375,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.15625,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.21875,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.28125,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.34375,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.40625,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.46875,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.53125,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.59375,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.65625,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.71875,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.78125,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.84375,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.90625,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.96875,y_center:.40625},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.09375,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.15625,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.21875,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.28125,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.34375,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.40625,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.46875,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.53125,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.59375,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.65625,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.71875,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.78125,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.84375,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.90625,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.96875,y_center:.46875},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.09375,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.15625,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.21875,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.28125,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.34375,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.40625,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.46875,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.53125,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.59375,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.65625,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.71875,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.78125,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.84375,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.90625,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.96875,y_center:.53125},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.09375,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.15625,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.21875,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.28125,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.34375,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.40625,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.46875,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.53125,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.59375,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.65625,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.71875,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.78125,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.84375,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.90625,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.96875,y_center:.59375},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.09375,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.15625,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.21875,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.28125,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.34375,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.40625,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.46875,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.53125,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.59375,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.65625,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.71875,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.78125,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.84375,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.90625,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.96875,y_center:.65625},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.09375,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.15625,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.21875,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.28125,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.34375,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.40625,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.46875,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.53125,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.59375,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.65625,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.71875,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.78125,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.84375,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.90625,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.96875,y_center:.71875},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.09375,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.15625,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.21875,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.28125,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.34375,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.40625,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.46875,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.53125,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.59375,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.65625,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.71875,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.78125,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.84375,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.90625,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.96875,y_center:.78125},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.09375,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.15625,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.21875,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.28125,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.34375,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.40625,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.46875,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.53125,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.59375,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.65625,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.71875,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.78125,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.84375,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.90625,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.96875,y_center:.84375},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.09375,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.15625,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.21875,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.28125,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.34375,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.40625,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.46875,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.53125,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.59375,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.65625,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.71875,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.78125,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.84375,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.90625,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.96875,y_center:.90625},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.03125,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.09375,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.15625,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.21875,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.28125,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.34375,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.40625,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.46875,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.53125,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.59375,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.65625,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.71875,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.78125,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.84375,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.90625,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.96875,y_center:.96875},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.1875,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.3125,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.4375,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.5625,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.6875,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.8125,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.9375,y_center:.0625},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.1875,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.3125,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.4375,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.5625,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.6875,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.8125,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.9375,y_center:.1875},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.1875,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.3125,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.4375,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.5625,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.6875,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.8125,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.9375,y_center:.3125},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.1875,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.3125,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.4375,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.5625,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.6875,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.8125,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.9375,y_center:.4375},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.1875,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.3125,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.4375,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.5625,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.6875,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.8125,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.9375,y_center:.5625},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.1875,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.3125,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.4375,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.5625,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.6875,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.8125,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.9375,y_center:.6875},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.1875,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.3125,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.4375,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.5625,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.6875,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.8125,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.9375,y_center:.8125},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.0625,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.1875,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.3125,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.4375,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.5625,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.6875,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.8125,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375},{w:1,h:1,x_center:.9375,y_center:.9375}];var I2={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},N2=class{constructor(t){this.handPipeline=t}static getAnnotations(){return I2}async estimateHands(t,n){let r=await this.handPipeline.estimateHands(t,n);if(!r)return[];let a=[];for(let s of r){let i={};if(s.landmarks)for(let u of Object.keys(I2))i[u]=I2[u].map(c=>s.landmarks[c]);let o=s.box?[Math.max(0,s.box.topLeft[0]),Math.max(0,s.box.topLeft[1]),Math.min(t.shape[2],s.box.bottomRight[0])-Math.max(0,s.box.topLeft[0]),Math.min(t.shape[1],s.box.bottomRight[1])-Math.max(0,s.box.topLeft[1])]:[],l=[s.box.topLeft[0]/t.shape[2],s.box.topLeft[1]/t.shape[1],(s.box.bottomRight[0]-s.box.topLeft[0])/t.shape[2],(s.box.bottomRight[1]-s.box.topLeft[1])/t.shape[1]];a.push({confidence:s.confidence,box:o,boxRaw:l,landmarks:s.landmarks,annotations:i})}return a}};async function S2(e){let[t,n]=await Promise.all([e.hand.enabled?Ft(e.hand.detector.modelPath,{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?Ft(e.hand.skeleton.modelPath,{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),r=new w2(t,t==null?void 0:t.inputs[0].shape[2],x4),a=new v2(r,n,n==null?void 0:n.inputs[0].shape[2]),s=new N2(a);return e.hand.enabled&&e.debug&&Me(`load model: ${e.hand.detector.modelPath.match(/\/(.*)\./)[1]}`),e.hand.landmarks&&e.debug&&Me(`load model: ${e.hand.skeleton.modelPath.match(/\/(.*)\./)[1]}`),s}var T2={};or(T2,{load:()=>E2,predict:()=>C2});var w4=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],b4=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var wr;async function E2(e){return wr||(wr=await Ft(e.body.modelPath),wr.width=parseInt(wr.signature.inputs["input_1:0"].tensorShape.dim[2].size),wr.height=parseInt(wr.signature.inputs["input_1:0"].tensorShape.dim[1].size),e.debug&&Me(`load model: ${e.body.modelPath.match(/\/(.*)\./)[1]}`)),wr}async function C2(e,t){if(!wr||!t.body.enabled)return null;let n={width:e.shape[2],height:e.shape[1]},r=Ke.resizeBilinear(e,[wr.width,wr.height],!1),a=_e(r,[255]);r.dispose();let s;if(t.profile){let u=await Jn(()=>wr.predict(a));s=u.result.find(c=>c.size===195||c.size===155).dataSync(),u.result.forEach(c=>c.dispose()),xr("blazepose",u)}else{let u=await wr.predict(a);s=u.find(c=>c.size===195||c.size===155).dataSync(),u.forEach(c=>c.dispose())}a.dispose();let i=[],o=s.length===195?w4:b4,l=5;for(let u=0;u<s.length/l;u++)i.push({id:u,part:o[u],position:{x:Math.trunc(n.width*s[l*u+0]/255),y:Math.trunc(n.height*s[l*u+1]/255),z:Math.trunc(s[l*u+2])+0},score:(100-Math.trunc(100/(1+Math.exp(s[l*u+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(s[l*u+4]))))/100});return[{keypoints:i}]}var R2={};or(R2,{load:()=>M2,predict:()=>$2});var Dr,F2=[],P0=Number.MAX_SAFE_INTEGER,L0=2.5,vse=["person","bicycle","car","motorcycle","airplane","bus","train","vehicle","boat","traffic light","fire hydrant","stop sign","parking meter","bench","animal","animal","animal","animal","animal","animal","animal","bear","animal","animal","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite","baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife","spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza","pastry","cake","chair","couch","potted plant","bed","dining table","toilet","tv","laptop","mouse","remote","keyboard","cell phone","microwave","oven","toaster","sink","refrigerator","book","clock","vase","scissors","teddy bear","hair drier","toothbrush"];async function M2(e){return Dr||(Dr=await Ft(e.object.modelPath),Dr.inputSize=parseInt(Object.values(Dr.modelSignature.inputs)[0].tensorShape.dim[2].size),e.debug&&Me(`load model: ${e.object.modelPath.match(/\/(.*)\./)[1]}`)),Dr}async function kse(e,t,n,r){let a=[];for(let u of[1,2,4])L(()=>{var g,y;let c=u*13,h=(g=e.find(w=>w.shape[1]===c**2&&w.shape[2]===80))==null?void 0:g.squeeze(),d=(y=e.find(w=>w.shape[1]===c**2&&w.shape[2]===32))==null?void 0:y.squeeze(),p=h.argMax(1).dataSync(),f=h.max(1).dataSync(),A=d.reshape([-1,4,8]).argMax(2).arraySync();for(let w=0;w<h.shape[0];w++)if(p[w]!==0&&f[w]>r.object.minConfidence){let b=(.5+Math.trunc(w%c))/c,_=(.5+Math.trunc(w/c))/c,x=A[w].map(M=>M*(c/u/t)),N=[b-L0/u*x[0],_-L0/u*x[1],b+L0/u*x[2],_+L0/u*x[3]];N=N.map(M=>Math.max(0,Math.min(M,1)));let T=[Math.max(0,N[0]*n[0]),Math.max(0,N[1]*n[1]),Math.min(1,N[2]*n[0]-N[0]*n[0]),Math.min(1,N[3]*n[1]-N[1]*n[1])],E={score:f[w],strideSize:u,class:p[w]+1,label:vse[p[w]],center:[Math.trunc(n[0]*b),Math.trunc(n[1]*_)],centerRaw:[b,_],box:T.map(M=>Math.trunc(M)),boxRaw:N};a.push(E)}});e.forEach(u=>Re(u));let s=a.map(u=>u.boxRaw),i=a.map(u=>u.score),o=await Ke.nonMaxSuppressionAsync(s,i,r.object.maxResults,r.object.iouThreshold,r.object.minConfidence),l=o.dataSync();return Re(o),a=a.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),a}async function $2(e,t){return Dr?P0<t.object.skipFrames&&t.videoOptimized&&F2.length>0?(P0++,F2):(t.videoOptimized?P0=0:P0=Number.MAX_SAFE_INTEGER,new Promise(async n=>{let r=[e.shape[2],e.shape[1]],a=Ke.resizeBilinear(e,[Dr.inputSize,Dr.inputSize],!1),s=a.div(255);a.dispose();let i=s.transpose([0,3,1,2]);s.dispose();let o;if(!t.profile)t.object.enabled&&(o=await Dr.predict(i));else{let u=t.object.enabled?await Jn(()=>Dr.predict(i)):{};o=u.result.clone(),u.result.dispose(),xr("object",u)}i.dispose();let l=await kse(o,Dr.inputSize,r,t);F2=l,n(l)})):null}var _4=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=e[n].keypoints.find(l=>l.part==="leftWrist"),a=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&r&&a&&r.position.y<s.position.y&&a.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&r&&r.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&a&&a.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},v4=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let r=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(r)<10?t.push({face:n,gesture:"facing camera"}):t.push({face:n,gesture:`facing ${r<0?"right":"left"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},k4=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let r=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],a=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(r*a),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o);Math.abs(s-l)/Math.max(s,l)<.25&&t.push({iris:n,gesture:"looking at camera"})}return t},I4=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let r=[];for(let[a,s]of Object.entries(e[n].annotations))a!=="palmBase"&&r.push({name:a.toLowerCase(),position:s[0]});if(r&&r.length>0){let a=r.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=r.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${a.name} forward ${s.name} up`})}}return t};function Ise(e,t,n){let r=function(o,l,u){let c=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(c,(h,d)=>(u[d]=0,h))},a=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=a(t,e.VERTEX_SHADER),i=a(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),r(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);r(t,"uniform",this.uniform),r(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function N4(e){e||(e={});let t=0,n=null,r=!1,a=-1,s=[null,null],i=[],o=-1,l=-1,u=null,c=null,h={},d=e.canvas||document.createElement("canvas"),p={},f={INTERMEDIATE:1},m=d.getContext("webgl");if(!m)throw new Error("Filter: getContext() failed");this.addFilter=function(_){let x=Array.prototype.slice.call(arguments,1),N=h[_];i.push({func:N,args:x})},this.reset=function(){i=[]};let A=function(_,x){if(!(_===o&&x===l)){if(d.width=_,o=_,d.height=x,l=x,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=m.createBuffer(),m.bindBuffer(m.ARRAY_BUFFER,u),m.bufferData(m.ARRAY_BUFFER,N,m.STATIC_DRAW),m.pixelStorei(m.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}m.viewport(0,0,o,l),s=[null,null]}},g=function(_,x){let N=m.createFramebuffer();m.bindFramebuffer(m.FRAMEBUFFER,N);let T=m.createRenderbuffer();m.bindRenderbuffer(m.RENDERBUFFER,T);let E=m.createTexture();return m.bindTexture(m.TEXTURE_2D,E),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,_,x,0,m.RGBA,m.UNSIGNED_BYTE,null),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.LINEAR),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.framebufferTexture2D(m.FRAMEBUFFER,m.COLOR_ATTACHMENT0,m.TEXTURE_2D,E,0),m.bindTexture(m.TEXTURE_2D,null),m.bindFramebuffer(m.FRAMEBUFFER,null),{fbo:N,texture:E}},y=function(_){return s[_]=s[_]||g(o,l),s[_]},w=function(_=null){var E,M;let x=null,N=null,T=!1;t===0?x=n:x=(E=y(a))==null?void 0:E.texture,t++,r&&!(_&f.INTERMEDIATE)?(N=null,T=t%2==0):(a=(a+1)%2,N=(M=y(a))==null?void 0:M.fbo),m.bindTexture(m.TEXTURE_2D,x),m.bindFramebuffer(m.FRAMEBUFFER,N),m.uniform1f(c.uniform.flipY,T?-1:1),m.drawArrays(m.TRIANGLES,0,6)};this.apply=function(_){if(A(_.width,_.height),t=0,n||(n=m.createTexture()),m.bindTexture(m.TEXTURE_2D,n),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_S,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_WRAP_T,m.CLAMP_TO_EDGE),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MIN_FILTER,m.NEAREST),m.texParameteri(m.TEXTURE_2D,m.TEXTURE_MAG_FILTER,m.NEAREST),m.texImage2D(m.TEXTURE_2D,0,m.RGBA,m.RGBA,m.UNSIGNED_BYTE,_),i.length===0)return w(),d;for(let x=0;x<i.length;x++){r=x===i.length-1;let N=i[x];N.func.apply(this,N.args||[])}return d};let b=function(_){if(p[_])return c=p[_],m.useProgram(c.id),c;let x={};x.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),x.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),c=new Ise(m,x.VERTEX_IDENTITY,_);let N=Float32Array.BYTES_PER_ELEMENT,T=4*N;return m.enableVertexAttribArray(c.attribute.pos),m.vertexAttribPointer(c.attribute.pos,2,m.FLOAT,!1,T,0*N),m.enableVertexAttribArray(c.attribute.uv),m.vertexAttribPointer(c.attribute.uv,2,m.FLOAT,!1,T,2*N),p[_]=c,c};h.colorMatrix=function(_){let x=new Float32Array(_);x[4]/=255,x[9]/=255,x[14]/=255,x[19]/=255;let N=x[18]===1&&x[3]===0&&x[8]===0&&x[13]===0&&x[15]===0&&x[16]===0&&x[17]===0&&x[19]===0?h.colorMatrix.SHADER.WITHOUT_ALPHA:h.colorMatrix.SHADER.WITH_ALPHA,T=b(N);m.uniform1fv(T.uniform.m,x),w()},h.colorMatrix.SHADER={},h.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),h.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),h.brightness=function(_){let x=(_||0)+1;h.colorMatrix([x,0,0,0,0,0,x,0,0,0,0,0,x,0,0,0,0,0,1,0])},h.saturation=function(_){let x=(_||0)*2/3+1,N=(x-1)*-.5;h.colorMatrix([x,N,N,0,0,N,x,N,0,0,N,N,x,0,0,0,0,0,1,0])},h.desaturate=function(){h.saturation(-1)},h.contrast=function(_){let x=(_||0)+1,N=-128*(x-1);h.colorMatrix([x,0,0,0,N,0,x,0,0,N,0,0,x,0,N,0,0,0,1,0])},h.negative=function(){h.contrast(-2)},h.hue=function(_){_=(_||0)/180*Math.PI;let x=Math.cos(_),N=Math.sin(_),T=.213,E=.715,M=.072;h.colorMatrix([T+x*(1-T)+N*-T,E+x*-E+N*-E,M+x*-M+N*(1-M),0,0,T+x*-T+N*.143,E+x*(1-E)+N*.14,M+x*-M+N*-.283,0,0,T+x*-T+N*-(1-T),E+x*-E+N*E,M+x*(1-M)+N*M,0,0,0,0,0,1,0])},h.desaturateLuminance=function(){h.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},h.sepia=function(){h.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},h.brownie=function(){h.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},h.vintagePinhole=function(){h.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},h.kodachrome=function(){h.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},h.technicolor=function(){h.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},h.polaroid=function(){h.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},h.shiftToBGR=function(){h.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},h.convolution=function(_){let x=new Float32Array(_),N=1/o,T=1/l,E=b(h.convolution.SHADER);m.uniform1fv(E.uniform.m,x),m.uniform2f(E.uniform.px,N,T),w()},h.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),h.detectEdges=function(){h.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},h.sobelX=function(){h.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},h.sobelY=function(){h.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},h.sharpen=function(_){let x=_||1;h.convolution.call(this,[0,-1*x,0,-1*x,1+4*x,-1*x,0,-1*x,0])},h.emboss=function(_){let x=_||1;h.convolution.call(this,[-2*x,-1*x,0,-1*x,1,1*x,0,1*x,2*x])},h.blur=function(_){let x=_/7/o,N=_/7/l,T=b(h.blur.SHADER);m.uniform2f(T.uniform.px,0,N),w(f.INTERMEDIATE),m.uniform2f(T.uniform.px,x,0),w()},h.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),h.pixelate=function(_){let x=_/o,N=_/l,T=b(h.pixelate.SHADER);m.uniform2f(T.uniform.size,x,N),w()},h.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var W0=2048,$t=null,ln=null,Pt=null;function D2(e,t){let n;if(e instanceof qe)n=Lr(e);else{let a=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0,i=a,o=s;if(i>W0&&(i=W0,o=i*s/a),o>W0&&(o=W0,i=o*a/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=a*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/a)),!i||!o)return Me("Human: invalid input",e),{tensor:null,canvas:null};(!$t||$t.width!==i||$t.height!==o)&&($t=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),$t.width!==i&&($t.width=i),$t.height!==o&&($t.height=o));let l=$t.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):l.drawImage(e,0,0,a,s,0,0,$t.width,$t.height),t.filter.enabled){if((!Pt||!ln||$t.width!==ln.width||$t.height!==ln.height)&&(ln=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas($t.width,$t.height):document.createElement("canvas"),ln.width!==$t.width&&(ln.width=$t.width),ln.height!==$t.height&&(ln.height=$t.height),Pt=_r.flags.IS_BROWSER?new N4({canvas:ln}):null),!Pt)return{tensor:null,canvas:$t};Pt.reset(),Pt.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&Pt.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&Pt.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&Pt.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&Pt.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&Pt.addFilter("hue",t.filter.hue),t.filter.negative&&Pt.addFilter("negative"),t.filter.sepia&&Pt.addFilter("sepia"),t.filter.vintage&&Pt.addFilter("brownie"),t.filter.sepia&&Pt.addFilter("sepia"),t.filter.kodachrome&&Pt.addFilter("kodachrome"),t.filter.technicolor&&Pt.addFilter("technicolor"),t.filter.polaroid&&Pt.addFilter("polaroid"),t.filter.pixelate!==0&&Pt.addFilter("pixelate",t.filter.pixelate),Pt.apply($t)}else ln=$t,Pt&&(Pt=null);let u;if(ln.data){let h=[ln.height,ln.width,3];u=_d(ln.data,h,"int32")}else if(t.backend==="webgl"||ln instanceof ImageData)u=pl.fromPixels(ln);else{let h=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");h.width=i,h.height=o;let d=h.getContext("2d");d==null||d.drawImage(ln,0,0);let p=d==null?void 0:d.getImageData(0,0,i,o);u=pl.fromPixels(p)}let c=u.toFloat();n=c.expandDims(0),u.dispose(),c.dispose()}let r=t.filter.return?ln:null;return{tensor:n,canvas:r}}var O2={};or(O2,{all:()=>Sse,body:()=>E4,canvas:()=>Nse,drawOptions:()=>oe,face:()=>T4,gesture:()=>S4,hand:()=>C4,object:()=>R4});var gt={backend:"webgl",wasmPath:"../assets/",debug:!0,async:!0,profile:!1,deallocate:!1,scoped:!1,videoOptimized:!0,warmup:"face",filter:{enabled:!0,width:0,height:0,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"../models/blazeface-back.json",rotation:!1,maxFaces:10,skipFrames:21,skipInitial:!1,minConfidence:.2,iouThreshold:.1,scoreThreshold:.2,return:!1},mesh:{enabled:!0,modelPath:"../models/facemesh.json"},iris:{enabled:!0,modelPath:"../models/iris.json"},age:{enabled:!0,modelPath:"../models/age.json",skipFrames:31},gender:{enabled:!0,minConfidence:.1,modelPath:"../models/gender.json",skipFrames:32},emotion:{enabled:!0,minConfidence:.1,skipFrames:33,modelPath:"../models/emotion.json"},embedding:{enabled:!1,modelPath:"../models/mobileface.json"}},body:{enabled:!0,modelPath:"../models/posenet.json",maxDetections:10,scoreThreshold:.3,nmsRadius:20},hand:{enabled:!0,rotation:!1,skipFrames:12,skipInitial:!1,minConfidence:.1,iouThreshold:.1,scoreThreshold:.5,maxHands:1,landmarks:!0,detector:{modelPath:"../models/handdetect.json"},skeleton:{modelPath:"../models/handskeleton.json"}},object:{enabled:!1,modelPath:"../models/nanodet.json",minConfidence:.15,iouThreshold:.25,maxResults:10,skipFrames:13}};var oe={color:"rgba(173, 216, 230, 0.3)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 16px "Segoe UI"',lineHeight:20,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!1,useRawBoxes:!1};function B0(e,t,n,r=null){e.fillStyle=oe.useDepth&&r?`rgba(${127.5+2*(r||0)}, ${127.5-2*(r||0)}, 255, 0.3)`:oe.color,e.beginPath(),e.arc(t,n,oe.pointSize,0,2*Math.PI),e.fill()}function au(e,t,n,r,a){if(e.beginPath(),oe.useCurves){let s=(t+t+r)/2,i=(n+n+a)/2;e.ellipse(s,i,r/2,a/2,0,0,2*Math.PI)}else e.lineWidth=oe.lineWidth,e.moveTo(t+oe.roundRect,n),e.lineTo(t+r-oe.roundRect,n),e.quadraticCurveTo(t+r,n,t+r,n+oe.roundRect),e.lineTo(t+r,n+a-oe.roundRect),e.quadraticCurveTo(t+r,n+a,t+r-oe.roundRect,n+a),e.lineTo(t+oe.roundRect,n+a),e.quadraticCurveTo(t,n+a,t,n+a-oe.roundRect),e.lineTo(t,n+oe.roundRect),e.quadraticCurveTo(t,n,t+oe.roundRect,n),e.closePath();e.stroke()}function z2(e,t=[]){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let n of t)e.strokeStyle=oe.useDepth&&n[2]?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.3)`:oe.color,e.fillStyle=oe.useDepth&&n[2]?`rgba(${127.5+2*n[2]}, ${127.5-2*n[2]}, 255, 0.3)`:oe.color,e.lineTo(n[0],parseInt(n[1]));e.stroke(),oe.fillPolygons&&(e.closePath(),e.fill())}}function V0(e,t=[]){if(!(t===void 0||t.length===0)){if(!oe.useCurves||t.length<=2){z2(e,t);return}e.moveTo(t[0][0],t[0][1]);for(let n=0;n<t.length-2;n++){let r=(t[n][0]+t[n+1][0])/2,a=(t[n][1]+t[n+1][1])/2;e.quadraticCurveTo(t[n][0],t[n][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),oe.fillPolygons&&(e.closePath(),e.fill())}}async function S4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!n)return;n.font=oe.font,n.fillStyle=oe.color;let r=1;for(let a=0;a<t.length;a++){let s=[],i=[];if([s,i]=Object.entries(t[a]),i.length>1&&i[1].length>0){let o=s[1]>0?`#${s[1]}`:"",l=`${s[0]} ${o}: ${i[1]}`;oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(l,8,2+r*oe.lineHeight)),n.fillStyle=oe.labelColor,n.fillText(l,6,0+r*oe.lineHeight),r+=1}}}async function T4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n)for(let r of t){n.font=oe.font,n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.drawBoxes&&(oe.useRawBoxes?au(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):au(n,r.box[0],r.box[1],r.box[2],r.box[3]));let a=[];if(a.push(`face confidence: ${Math.trunc(100*r.confidence)}%`),r.genderConfidence&&a.push(`${r.gender||""} ${Math.trunc(100*r.genderConfidence)}% confident`),r.age&&a.push(`age: ${r.age||""}`),r.iris&&a.push(`iris distance: ${r.iris}`),r.emotion&&r.emotion.length>0){let s=r.emotion.map(i=>`${Math.trunc(100*i.score)}% ${i.emotion}`);a.push(s.join(" "))}r.angle&&r.angle.roll&&a.push(`roll: ${Math.trunc(100*r.angle.roll)/100} yaw:${Math.trunc(100*r.angle.yaw)/100} pitch:${Math.trunc(100*r.angle.pitch)/100}`),a.length===0&&a.push("face"),n.fillStyle=oe.color;for(let s=a.length-1;s>=0;s--){let i=Math.max(r.box[0],0),o=s*oe.lineHeight+r.box[1];oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(a[s],i+5,o+16)),n.fillStyle=oe.labelColor,n.fillText(a[s],i+4,o+15)}if(n.lineWidth=1,r.mesh&&r.mesh.length>0){if(oe.drawPoints)for(let s of r.mesh)B0(n,s[0],s[1],s[2]);if(oe.drawPolygons){n.lineWidth=1;for(let s=0;s<Wi.length/3;s++){let i=[Wi[s*3+0],Wi[s*3+1],Wi[s*3+2]].map(o=>r.mesh[o]);z2(n,i)}if(r.annotations&&r.annotations.leftEyeIris){n.strokeStyle=oe.useDepth?"rgba(255, 200, 255, 0.3)":oe.color,n.beginPath();let s=Math.abs(r.annotations.leftEyeIris[3][0]-r.annotations.leftEyeIris[1][0])/2,i=Math.abs(r.annotations.leftEyeIris[4][1]-r.annotations.leftEyeIris[2][1])/2;n.ellipse(r.annotations.leftEyeIris[0][0],r.annotations.leftEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),oe.fillPolygons&&(n.fillStyle=oe.useDepth?"rgba(255, 255, 200, 0.3)":oe.color,n.fill())}if(r.annotations&&r.annotations.rightEyeIris){n.strokeStyle=oe.useDepth?"rgba(255, 200, 255, 0.3)":oe.color,n.beginPath();let s=Math.abs(r.annotations.rightEyeIris[3][0]-r.annotations.rightEyeIris[1][0])/2,i=Math.abs(r.annotations.rightEyeIris[4][1]-r.annotations.rightEyeIris[2][1])/2;n.ellipse(r.annotations.rightEyeIris[0][0],r.annotations.rightEyeIris[0][1],s,i,0,0,2*Math.PI),n.stroke(),oe.fillPolygons&&(n.fillStyle=oe.useDepth?"rgba(255, 255, 200, 0.3)":oe.color,n.fill())}}}}}var ls=[];async function E4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round";for(let r=0;r<t.length;r++){if(!ls[r]&&oe.bufferedOutput&&(ls[r]={...t[r]}),n.strokeStyle=oe.color,n.lineWidth=oe.lineWidth,oe.drawPoints)for(let a=0;a<t[r].keypoints.length;a++)n.fillStyle=oe.useDepth&&t[r].keypoints[a].position.z?`rgba(${127.5+2*t[r].keypoints[a].position.z}, ${127.5-2*t[r].keypoints[a].position.z}, 255, 0.5)`:oe.color,oe.bufferedOutput?(ls[r].keypoints[a][0]=(ls[r].keypoints[a][0]+t[r].keypoints[a].position.x)/2,ls[r].keypoints[a][1]=(ls[r].keypoints[a][1]+t[r].keypoints[a].position.y)/2,B0(n,ls[r].keypoints[a][0],ls[r].keypoints[a][1])):B0(n,t[r].keypoints[a].position.x,t[r].keypoints[a].position.y);if(oe.drawLabels){n.font=oe.font;for(let a of t[r].keypoints)n.fillStyle=oe.useDepth&&a.position.z?`rgba(${127.5+2*a.position.z}, ${127.5-2*a.position.z}, 255, 0.5)`:oe.color,n.fillText(`${a.part}`,a.position.x+4,a.position.y+4)}if(oe.drawPolygons){let a,s=[];s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),s.length===5&&z2(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftKnee"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftAnkle"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftHeel"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftFoot"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),V0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightHip"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightKnee"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightAnkle"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightHeel"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightFoot"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),V0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="leftShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftElbow"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftWrist"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="leftPalm"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),V0(n,s),s.length=0,a=t[r].keypoints.find(i=>i.part==="rightShoulder"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightElbow"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightWrist"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),a=t[r].keypoints.find(i=>i.part==="rightPalm"),a&&a.score>gt.body.scoreThreshold&&s.push([a.position.x,a.position.y]),V0(n,s)}}}}async function C4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=oe.font;for(let r of t){if(oe.drawBoxes&&(n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.useRawBoxes?au(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):au(n,r.box[0],r.box[1],r.box[2],r.box[3]),oe.drawLabels&&(oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText("hand",r.box[0]+3,1+r.box[1]+oe.lineHeight,r.box[2])),n.fillStyle=oe.labelColor,n.fillText("hand",r.box[0]+2,0+r.box[1]+oe.lineHeight,r.box[2])),n.stroke()),oe.drawPoints&&r.landmarks&&r.landmarks.length>0)for(let a of r.landmarks)n.fillStyle=oe.useDepth?`rgba(${127.5+2*a[2]}, ${127.5-2*a[2]}, 255, 0.5)`:oe.color,B0(n,a[0],a[1]);if(oe.drawPolygons){let a=s=>{if(!!s)for(let i=0;i<s.length;i++)n.lineWidth=oe.lineWidth,n.beginPath(),n.strokeStyle=oe.useDepth?`rgba(${127.5+2*s[i][2]}, ${127.5-2*s[i][2]}, 255, 0.5)`:oe.color,n.moveTo(s[i>0?i-1:0][0],s[i>0?i-1:0][1]),n.lineTo(s[i][0],s[i][1]),n.stroke()};a(r.annotations.indexFinger),a(r.annotations.middleFinger),a(r.annotations.ringFinger),a(r.annotations.pinky),a(r.annotations.thumb)}}}}async function R4(e,t){if(!t||!e||!(e instanceof HTMLCanvasElement))return;let n=e.getContext("2d");if(!!n){n.lineJoin="round",n.font=oe.font;for(let r of t)if(oe.drawBoxes){if(n.strokeStyle=oe.color,n.fillStyle=oe.color,oe.useRawBoxes?au(n,e.width*r.boxRaw[0],e.height*r.boxRaw[1],e.width*r.boxRaw[2],e.height*r.boxRaw[3]):au(n,r.box[0],r.box[1],r.box[2],r.box[3]),oe.drawLabels){let a=`${Math.round(100*r.score)}% ${r.label}`;oe.shadowColor&&oe.shadowColor!==""&&(n.fillStyle=oe.shadowColor,n.fillText(a,r.box[0]+3,1+r.box[1]+oe.lineHeight,r.box[2])),n.fillStyle=oe.labelColor,n.fillText(a,r.box[0]+2,0+r.box[1]+oe.lineHeight,r.box[2])}n.stroke()}}}async function Nse(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Sse(e,t){!t||!e||e instanceof HTMLCanvasElement&&(T4(e,t.face),E4(e,t.body),C4(e,t.hand),S4(e,t.gesture),R4(e,t.object))}var U0=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,H0=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var P2={};or(P2,{author:()=>L4,browser:()=>z4,bugs:()=>W4,default:()=>Tse,description:()=>M4,devDependencies:()=>q4,engines:()=>U4,homepage:()=>B4,keywords:()=>G4,license:()=>V4,main:()=>D4,module:()=>O4,name:()=>F4,repository:()=>H4,scripts:()=>j4,sideEffects:()=>$4,types:()=>P4,version:()=>L2});var F4="@vladmandic/human",L2="1.1.9",M4="Human: AI-powered 3D Face Detection, Face Embedding & Recognition, Body Pose Tracking, Hand & Finger Tracking, Iris Analysis, Age & Gender & Emotion Prediction & Gesture Recognition",$4=!1,D4="dist/human.node.js",O4="dist/human.esm.js",z4="dist/human.esm.js",P4="types/human.d.ts",L4="Vladimir Mandic <mandic00@live.com>",W4={url:"https://github.com/vladmandic/human/issues"},B4="https://vladmandic.github.io/human/demo/index.html",V4="MIT",U4={node:">=12.0.0"},H4={type:"git",url:"git+https://github.com/vladmandic/human.git"},j4={start:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught --no-deprecation demo/node.js",dev:"node --trace-warnings --unhandled-rejections=strict --trace-uncaught server/serve.js",build:"rimraf dist/* types/* typedoc/* && node --trace-warnings --unhandled-rejections=strict --trace-uncaught server/build.js",lint:"eslint src server demo",test:"npm run lint && npm run start"},G4=["tensorflowjs","face-detection","face-geometry","face-embedding","face-recognition","body-tracking","hand-tracking","iris-tracking","age-estimation","emotion-detection","gender-prediction","gesture-recognition","blazeface","blazepose","nanodet"],q4={"@microsoft/api-extractor":"^7.13.2","@tensorflow/tfjs":"^3.3.0","@tensorflow/tfjs-backend-cpu":"^3.3.0","@tensorflow/tfjs-backend-wasm":"^3.3.0","@tensorflow/tfjs-backend-webgl":"^3.3.0","@tensorflow/tfjs-converter":"^3.3.0","@tensorflow/tfjs-core":"^3.3.0","@tensorflow/tfjs-data":"^3.3.0","@tensorflow/tfjs-layers":"^3.3.0","@tensorflow/tfjs-node":"^3.3.0","@tensorflow/tfjs-node-gpu":"^3.3.0","@types/node":"^14.14.35","@typescript-eslint/eslint-plugin":"^4.18.0","@typescript-eslint/parser":"^4.18.0","@vladmandic/pilogger":"^0.2.14",chokidar:"^3.5.1",dayjs:"^1.10.4",esbuild:"^0.9.3",eslint:"^7.22.0","eslint-config-airbnb-base":"^14.2.1","eslint-plugin-import":"^2.22.1","eslint-plugin-json":"^2.1.2","eslint-plugin-node":"^11.1.0","eslint-plugin-promise":"^4.3.1",rimraf:"^3.0.2",seedrandom:"^3.0.5","simple-git":"^2.37.0",tslib:"^2.1.0",typedoc:"^0.20.32",typescript:"^4.2.3"},Tse={name:F4,version:L2,description:M4,sideEffects:$4,main:D4,module:O4,browser:z4,types:P4,author:L4,bugs:W4,homepage:B4,license:V4,engines:U4,repository:H4,scripts:j4,keywords:G4,devDependencies:q4};var ut=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Jc(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,r)=>(Object.keys(r||{}).forEach(a=>{let s=n[a],i=r[a];Array.isArray(s)&&Array.isArray(i)?n[a]=s.concat(...i):t(s)&&t(i)?n[a]=Jc(s,i):n[a]=i}),n),{})}var j0,je,su,Qc,eh,Vi,Dt,G0,th,q0,nh,X0,K0,Z0,B2=class{constructor(t={}){j0.set(this,void 0);je.set(this,void 0);su.set(this,void 0);Qc.set(this,void 0);eh.set(this,void 0);Vi.set(this,void 0);Dt.set(this,(...t)=>{if(!ye(this,Qc))return;let n=this.tf.engine().state.numTensors,r=ye(this,su);oa(this,su,n);let a=n-r;a!==0&&Me(...t,a)});G0.set(this,t=>{if(!ye(this,eh))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof qe))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});th.set(this,async(t=!1)=>{if(this.config.backend&&this.config.backend!==""&&t||this.tf.getBackend()!==this.config.backend){let n=ut();if(this.state="backend",this.config.backend&&this.config.backend!==""){if(this.config.debug&&Me("setting backend:",this.config.backend),this.config.backend==="wasm"){this.config.debug&&Me("wasm path:",this.config.wasmPath),this.tf.setWasmPaths(this.config.wasmPath);let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),a=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&Me(`wasm execution: ${r?"SIMD":"no SIMD"} ${a?"multithreaded":"singlethreaded"}`),r||Me("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&O6();try{await this.tf.setBackend(this.config.backend)}catch(r){Me("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"){this.config.deallocate&&(Me("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",this.config.deallocate),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",this.config.deallocate?0:-1));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&Me(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),ye(this,je).backend=Math.trunc(ut()-n)}});q0.set(this,t=>{if(!t||t.length<300)return{roll:null,yaw:null,pitch:null};let n=(s,i,o,l)=>Math.atan2(l-i,o-s),r=s=>Math.abs(s*180/Math.PI%360);return{roll:n(t[33][0],t[33][1],t[263][0],t[263][1]),yaw:n(t[33][0],t[33][2],t[263][0],t[263][2]),pitch:n(t[10][1],t[10][2],t[152][1],t[152][2])}});nh.set(this,async t=>{var u,c,h,d,p,f,m;let n,r,a,s,i,o=[];this.state="run:face",n=ut();let l=await((u=this.models.face)==null?void 0:u.estimateFaces(t,this.config));if(ye(this,je).face=Math.trunc(ut()-n),!l)return[];for(let A of l){if(ye(this,Dt).call(this,"Get Face"),!A.image||A.image.isDisposedInternal){Me("Face object is disposed:",A.image);continue}let g=ye(this,q0).call(this,A.mesh);ye(this,Dt).call(this,"Start Age:"),this.config.async?r=this.config.face.age.enabled?Hy(A.image,this.config):{}:(this.state="run:age",n=ut(),r=this.config.face.age.enabled?await Hy(A.image,this.config):{},ye(this,je).age=Math.trunc(ut()-n)),ye(this,Dt).call(this,"Start Gender:"),this.config.async?a=this.config.face.gender.enabled?Zy(A.image,this.config):{}:(this.state="run:gender",n=ut(),a=this.config.face.gender.enabled?await Zy(A.image,this.config):{},ye(this,je).gender=Math.trunc(ut()-n)),ye(this,Dt).call(this,"Start Emotion:"),this.config.async?s=this.config.face.emotion.enabled?t2(A.image,this.config):{}:(this.state="run:emotion",n=ut(),s=this.config.face.emotion.enabled?await t2(A.image,this.config):{},ye(this,je).emotion=Math.trunc(ut()-n)),ye(this,Dt).call(this,"End Emotion:"),ye(this,Dt).call(this,"Start Embedding:"),this.config.async?i=this.config.face.embedding.enabled?s2(A,this.config):[]:(this.state="run:embedding",n=ut(),i=this.config.face.embedding.enabled?await s2(A,this.config):[],ye(this,je).embedding=Math.trunc(ut()-n)),ye(this,Dt).call(this,"End Emotion:"),this.config.async&&([r,a,s,i]=await Promise.all([r,a,s,i])),ye(this,Dt).call(this,"Finish Face:"),!this.config.face.iris.enabled&&((c=A==null?void 0:A.annotations)==null?void 0:c.leftEyeIris)&&((h=A==null?void 0:A.annotations)==null?void 0:h.rightEyeIris)&&(delete A.annotations.leftEyeIris,delete A.annotations.rightEyeIris);let y=((d=A.annotations)==null?void 0:d.leftEyeIris)&&((p=A.annotations)==null?void 0:p.rightEyeIris)?11.7*Math.max(Math.abs(A.annotations.leftEyeIris[3][0]-A.annotations.leftEyeIris[1][0]),Math.abs(A.annotations.rightEyeIris[4][1]-A.annotations.rightEyeIris[2][1])):0;o.push({...A,age:r.age,gender:a.gender,genderConfidence:a.confidence,emotion:s,embedding:i,iris:y!==0?Math.trunc(y)/100:0,angle:g,tensor:this.config.face.detector.return?(f=A.image)==null?void 0:f.squeeze():null}),(m=A.image)==null||m.dispose(),ye(this,Dt).call(this,"End Face")}return ye(this,Dt).call(this,"End FaceMesh:"),this.config.async&&(ye(this,je).face&&delete ye(this,je).face,ye(this,je).age&&delete ye(this,je).age,ye(this,je).gender&&delete ye(this,je).gender,ye(this,je).emotion&&delete ye(this,je).emotion),o});X0.set(this,async()=>{let t=(a,s="application/octet-stream")=>fetch(`data:${s};base64,${a}`).then(i=>i.blob()),n,r;switch(this.config.warmup){case"face":n=await t(U0);break;case"full":n=await t(H0);break;default:n=null}if(n){let a=await createImageBitmap(n);r=await this.detect(a,this.config),a.close()}return r});K0.set(this,async()=>new Promise(t=>{let n,r=0;switch(this.config.warmup){case"face":r=256,n="data:image/jpeg;base64,"+U0;break;case"full":case"body":r=1200,n="data:image/jpeg;base64,"+H0;break;default:n=null}let a=new Image;a.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(r,r):document.createElement("canvas");s.width=a.naturalWidth,s.height=a.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(a,0,0);let o=await this.detect(s,this.config);t(o)},n?a.src=n:t(null)}));Z0.set(this,async()=>{let t=i=>Buffer.from(i,"base64"),n=this.config.warmup==="face"?t(U0):t(H0),r=(void 0).decodeJpeg(n),a=r.expandDims(0);this.tf.dispose(r);let s=await this.detect(a,this.config);return this.tf.dispose(a),s});this.tf=Rh,this.draw=O2,oa(this,j0,P2),this.version=L2,this.config=Jc(gt,t),this.state="idle",oa(this,su,0),oa(this,Qc,!1),oa(this,eh,!1),oa(this,Vi,!0),oa(this,je,{}),this.models={face:null,posenet:null,blazepose:null,handpose:null,iris:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null},this.image=n=>D2(n,this.config),this.classes={facemesh:W2,age:Vy,gender:jy,emotion:Yy,body:this.config.body.modelPath.includes("posenet")?g2:T2,hand:k2,nanodet:R2},this.sysinfo=n5()}profileData(){return this.config.profile?By:{}}simmilarity(t,n){return this.config.face.embedding.enabled?r2(t,n):0}enhance(t){return a2(t)}match(t,n,r=0){return X6(t,n,r)}async load(t={}){this.state="load";let n=ut();t&&(this.config=Jc(this.config,t)),ye(this,Vi)&&(this.config.debug&&Me(`version: ${this.version}`),this.config.debug&&Me(`tfjs version: ${this.tf.version_core}`),this.config.debug&&Me("platform:",this.sysinfo.platform),this.config.debug&&Me("agent:",this.sysinfo.agent),await ye(this,th).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&Me("configuration:",this.config),this.config.debug&&Me("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.age,this.models.gender,this.models.emotion,this.models.embedding,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.nanodet]=await Promise.all([this.models.face||(this.config.face.enabled?W2.load(this.config):null),this.models.age||(this.config.face.enabled&&this.config.face.age.enabled?Uy(this.config):null),this.models.gender||(this.config.face.enabled&&this.config.face.gender.enabled?Ky(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?e2(this.config):null),this.models.embedding||(this.config.face.enabled&&this.config.face.embedding.enabled?n2(this.config):null),this.models.handpose||(this.config.hand.enabled?S2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?x2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?E2(this.config):null),this.models.nanodet||(this.config.object.enabled?M2(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await W2.load(this.config)),this.config.face.enabled&&this.config.face.age.enabled&&!this.models.age&&(this.models.age=await Uy(this.config)),this.config.face.enabled&&this.config.face.gender.enabled&&!this.models.gender&&(this.models.gender=await Ky(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await e2(this.config)),this.config.face.enabled&&this.config.face.embedding.enabled&&!this.models.embedding&&(this.models.embedding=await n2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await S2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await x2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await E2(this.config)),this.config.object.enabled&&!this.models.nanodet&&(this.models.nanodet=await M2(this.config))),ye(this,Vi)&&(this.config.debug&&Me("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),oa(this,Vi,!1));let r=Math.trunc(ut()-n);r>(ye(this,je).load||0)&&(ye(this,je).load=r)}async detect(t,n={}){return new Promise(async r=>{var f,m,A,g;this.state="config";let a;this.config=Jc(this.config,n),this.state="check";let s=ye(this,G0).call(this,t);s&&(Me(s,t),r({error:s}));let i=ut();await ye(this,th).call(this),await this.load(),this.config.scoped&&this.tf.engine().startScope(),ye(this,Dt).call(this,"Start Scope:"),a=ut();let o=D2(t,this.config);if(!o||!o.tensor){Me("could not convert input to tensor"),r({error:"could not convert input to tensor"});return}ye(this,je).image=Math.trunc(ut()-a),ye(this,Dt).call(this,"Get Image:");let l,u,c,h;this.config.async?(c=this.config.face.enabled?ye(this,nh).call(this,o.tensor):[],ye(this,je).face&&delete ye(this,je).face):(this.state="run:face",a=ut(),c=this.config.face.enabled?await ye(this,nh).call(this,o.tensor):[],ye(this,je).face=Math.trunc(ut()-a)),ye(this,Dt).call(this,"Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?(f=this.models.posenet)==null?void 0:f.estimatePoses(o.tensor,this.config):[]:l=this.config.body.enabled?C2(o.tensor,this.config):[],ye(this,je).body&&delete ye(this,je).body):(this.state="run:body",a=ut(),this.config.body.modelPath.includes("posenet")?l=this.config.body.enabled?await((m=this.models.posenet)==null?void 0:m.estimatePoses(o.tensor,this.config)):[]:l=this.config.body.enabled?await C2(o.tensor,this.config):[],ye(this,je).body=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Body:"),ye(this,Dt).call(this,"Start Hand:"),this.config.async?(u=this.config.hand.enabled?(A=this.models.handpose)==null?void 0:A.estimateHands(o.tensor,this.config):[],ye(this,je).hand&&delete ye(this,je).hand):(this.state="run:hand",a=ut(),u=this.config.hand.enabled?await((g=this.models.handpose)==null?void 0:g.estimateHands(o.tensor,this.config)):[],ye(this,je).hand=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Hand:"),ye(this,Dt).call(this,"Start Object:"),this.config.async?(h=this.config.object.enabled?$2(o.tensor,this.config):[],ye(this,je).object&&delete ye(this,je).object):(this.state="run:object",a=ut(),h=this.config.object.enabled?await $2(o.tensor,this.config):[],ye(this,je).object=Math.trunc(ut()-a)),ye(this,Dt).call(this,"End Object:"),this.config.async&&([c,l,u,h]=await Promise.all([c,l,u,h])),o.tensor.dispose(),this.config.scoped&&this.tf.engine().endScope(),ye(this,Dt).call(this,"End Scope:");let d=[];this.config.gesture.enabled&&(a=ut(),d=[...v4(c),..._4(l),...I4(u),...k4(c)],this.config.async?ye(this,je).gesture&&delete ye(this,je).gesture:ye(this,je).gesture=Math.trunc(ut()-a)),ye(this,je).total=Math.trunc(ut()-i),this.state="idle";let p={face:c,body:l,hand:u,gesture:d,object:h,performance:ye(this,je),canvas:o.canvas};r(p)})}async warmup(t={}){let n=ut();t&&(this.config=Jc(this.config,t));let r=this.config.videoOptimized;this.config.videoOptimized=!1;let a;typeof createImageBitmap=="function"?a=await ye(this,X0).call(this):typeof Image!="undefined"?a=await ye(this,K0).call(this):a=await ye(this,Z0).call(this),this.config.videoOptimized=r;let s=ut();return this.config.debug&&Me("Warmup",this.config.warmup,Math.round(s-n),"ms",a),a}};j0=new WeakMap,je=new WeakMap,su=new WeakMap,Qc=new WeakMap,eh=new WeakMap,Vi=new WeakMap,Dt=new WeakMap,G0=new WeakMap,th=new WeakMap,q0=new WeakMap,nh=new WeakMap,X0=new WeakMap,K0=new WeakMap,Z0=new WeakMap;var rh=0,X4=!1,vt={background:"darkslategray",hover:"lightgray",itemBackground:"black",itemColor:"white",buttonBackground:"lightblue",buttonHover:"lightgreen",checkboxOn:"lightgreen",checkboxOff:"lightcoral",rangeBackground:"lightblue",rangeLabel:"white",chartColor:"lightblue"};function Ese(){if(X4)return;let e=`
|
|
:root { --rounded: 0.1rem; }
|
|
.menu { position: absolute; top: 0rem; right: 0; width: max-content; padding: 0 0.2rem 0 0.2rem; line-height: 1.8rem; z-index: 10;
|
|
box-shadow: 0 0 8px dimgrey; background: ${vt.background}; border-radius: var(--rounded); border-color: black; border-style: solid; border-width: thin; }
|
|
|
|
.menu:hover { box-shadow: 0 0 8px ${vt.hover}; }
|
|
.menu-container { display: block; max-height: 100vh; }
|
|
.menu-container-fadeout { max-height: 0; overflow: hidden; transition: max-height, 0.5s ease; }
|
|
.menu-container-fadein { max-height: 100vh; overflow: hidden; transition: max-height, 0.5s ease; }
|
|
.menu-item { display: flex; white-space: nowrap; padding: 0.2rem; cursor: default; width: 100%; }
|
|
.menu-title { cursor: pointer; }
|
|
.menu-hr { margin: 0.2rem; border: 1px solid rgba(0, 0, 0, 0.5) }
|
|
.menu-label { padding: 0; font-weight: 800; }
|
|
|
|
.menu-list { margin-right: 0.8rem; }
|
|
select:focus { outline: none; }
|
|
.menu-list-item { background: ${vt.itemBackground}; color: ${vt.itemColor}; border: none; padding: 0.2rem; font-family: inherit;
|
|
font-variant: inherit; border-radius: var(--rounded); font-weight: 800; }
|
|
|
|
.menu-chart-title { padding: 0; font-size: 0.8rem; font-weight: 800; align-items: center}
|
|
.menu-chart-canvas { background: transparent; margin: 0.2rem 0 0.2rem 0.6rem; }
|
|
|
|
.menu-button { border: 0; background: ${vt.buttonBackground}; width: -webkit-fill-available; padding: 8px; margin: 8px; cursor: pointer; box-shadow: 4px 4px 4px 0 dimgrey;
|
|
border-radius: var(--rounded); justify-content: center; font-family: inherit; font-variant: inherit; font-size: 1rem; font-weight: 800; }
|
|
.menu-button:hover { background: ${vt.buttonHover}; box-shadow: 4px 4px 4px 0 black; }
|
|
.menu-button:focus { outline: none; }
|
|
|
|
.menu-checkbox { width: 2.8rem; height: 1rem; background: ${vt.itemBackground}; margin: 0.5rem 0.5rem 0 0; position: relative; border-radius: var(--rounded); }
|
|
.menu-checkbox:after { content: 'OFF'; color: ${vt.checkboxOff}; position: absolute; right: 0.2rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
|
|
.menu-checkbox:before { content: 'ON'; color: ${vt.checkboxOn}; position: absolute; left: 0.3rem; top: -0.4rem; font-weight: 800; font-size: 0.5rem; }
|
|
.menu-checkbox-label { width: 1.3rem; height: 0.8rem; cursor: pointer; position: absolute; top: 0.1rem; left: 0.1rem; z-index: 1; background: ${vt.checkboxOff};
|
|
border-radius: var(--rounded); transition: left 0.6s ease; }
|
|
|
|
input[type=checkbox] { visibility: hidden; }
|
|
input[type=checkbox]:checked + label { left: 1.4rem; background: ${vt.checkboxOn}; }
|
|
|
|
.menu-range { margin: 0.2rem 0.5rem 0 0; width: 3.5rem; background: transparent; color: ${vt.rangeBackground}; }
|
|
.menu-range:before { color: ${vt.rangeLabel}; margin: 0 0.4rem 0 0; font-weight: 800; font-size: 0.6rem; position: relative; top: 0.3rem; content: attr(value); }
|
|
|
|
input[type=range] { -webkit-appearance: none; }
|
|
input[type=range]::-webkit-slider-runnable-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; }
|
|
input[type=range]::-moz-range-track { width: 100%; height: 1rem; cursor: pointer; background: ${vt.itemBackground}; border-radius: var(--rounded); border: 1px; }
|
|
input[type=range]::-webkit-slider-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
|
|
input[type=range]::-moz-range-thumb { border: 1px solid #000000; margin-top: 0.05rem; height: 0.9rem; width: 1rem; border-radius: var(--rounded); background: ${vt.rangeBackground}; cursor: pointer; -webkit-appearance: none; }
|
|
|
|
.svg-background { fill:darkslategrey; cursor:pointer; opacity: 0.6; }
|
|
.svg-foreground { fill:white; cursor:pointer; opacity: 0.8; }
|
|
`,t=document.createElement("style");t.innerHTML=e,document.getElementsByTagName("head")[0].appendChild(t),X4=!0}var K4=class{constructor(t,n,r,a){a&&(vt={...vt,...a}),Ese(),this.createMenu(t,n,r),this.id=0,this.instance=rh,rh++,this._maxFPS=0,this.hidden=0}createMenu(t,n="",r={top:null,left:null,bottom:null,right:null}){this.menu=document.createElement("div"),this.menu.id=`menu-${rh}`,this.menu.className="menu",r&&(r.top&&(this.menu.style.top=r.top),r.bottom&&(this.menu.style.bottom=r.bottom),r.left&&(this.menu.style.left=r.left),r.right&&(this.menu.style.right=r.right)),this.container=document.createElement("div"),this.container.id=`menu-container-${rh}`,this.container.className="menu-container menu-container-fadein";let a=document.createElement("div");a.className="menu-title",a.id=`menu-title-${rh}`;let s=`<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" style="width: 2rem; height: 2rem; vertical-align: top;">
|
|
<path d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h352a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48zm-51.37 182.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-background"/>
|
|
<path d="M348.63 214.31L232.06 348.16a10.38 10.38 0 0 1-16.12 0L99.37 214.31C92.17 206 97.28 192 107.43 192h233.14c10.15 0 15.26 14 8.06 22.31z" class="svg-foreground"/>
|
|
</svg>`;n&&(a.innerHTML=`${n}${s}`),this.menu.appendChild(a),a.addEventListener("click",()=>{this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.menu.style.borderStyle=this.container.classList.contains("menu-container-fadeout")?"none":"solid"}),this.menu.appendChild(this.container),typeof t=="object"?t.appendChild(this.menu):document.getElementById(t).appendChild(this.menu)}get newID(){return this.id++,`menu-${this.instance}-${this.id}`}get ID(){return`menu-${this.instance}-${this.id}`}get width(){return this.menu.offsetWidth}get height(){return this.menu.offsetHeight}hide(){this.container.classList.contains("menu-container-fadein")&&(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"))}visible(){return this.container.classList.contains("menu-container-fadein")}toggle(t){if(this.container.classList.toggle("menu-container-fadeout"),this.container.classList.toggle("menu-container-fadein"),this.container.classList.contains("menu-container-fadein")&&t){let n=t.x||(t.touches&&t.touches[0]?t.touches[0].pageX:null);n&&(this.menu.style.left=`${n-this.menu.offsetWidth/2}px`),this.menu.offsetLeft<0&&(this.menu.style.left=0),this.menu.offsetLeft+this.menu.offsetWidth>window.innerWidth&&(this.menu.style.left=null,this.menu.style.right=0),this.menu.style.borderStyle="solid"}else this.menu.style.borderStyle="none"}addTitle(t){let n=document.createElement("div");return n.className="menu-title",n.id=this.newID,n.innerHTML=t,this.menu.appendChild(n),n.addEventListener("click",()=>{this.hidden=!this.hidden;let r=document.getElementsByClassName("menu");for(let a of r)a.style.display=this.hidden?"none":"block"}),n}addLabel(t){let n=document.createElement("div");return n.className="menu-item menu-label",n.id=this.newID,n.innerHTML=t,this.container.appendChild(n),n}addBool(t,n,r,a){let s=document.createElement("div");return s.className="menu-item",s.innerHTML=`<div class="menu-checkbox"><input class="menu-checkbox" type="checkbox" id="${this.newID}" ${n[r]?"checked":""}/><label class="menu-checkbox-label" for="${this.ID}"></label></div>${t}`,this.container.appendChild(s),s.addEventListener("change",i=>{n[r]=i.target.checked,a&&a(i.target.checked)}),s}async addList(t,n,r,a){let s=document.createElement("div");s.className="menu-item";let i="";for(let o of n)i+=`<option value="${o}" ${o===r?"selected":""}>${o}</option>`;return s.innerHTML=`<div class="menu-list"><select name="${this.ID}" class="menu-list-item">${i}</select><label for="${this.ID}"></label></div>${t}`,s.style.fontFamily=document.body.style.fontFamily,s.style.fontSize=document.body.style.fontSize,s.style.fontVariant=document.body.style.fontVariant,this.container.appendChild(s),s.addEventListener("change",o=>{a&&a(n[o.target.selectedIndex])}),s}addRange(t,n,r,a,s,i,o){let l=document.createElement("div");return l.className="menu-item",l.innerHTML=`<input class="menu-range" type="range" id="${this.newID}" min="${a}" max="${s}" step="${i}" value="${n[r]}">${t}`,this.container.appendChild(l),l.addEventListener("change",u=>{n[r]=parseInt(u.target.value)===parseFloat(u.target.value)?parseInt(u.target.value):parseFloat(u.target.value),u.target.setAttribute("value",u.target.value),o&&o(u.target.value)}),l.input=l.children[0],l}addHTML(t){let n=document.createElement("div");return n.className="menu-item",n.id=this.newID,t&&(n.innerHTML=t),this.container.appendChild(n),n}addButton(t,n,r){let a=document.createElement("button");return a.className="menu-item menu-button",a.style.fontFamily=document.body.style.fontFamily,a.style.fontSize=document.body.style.fontSize,a.style.fontVariant=document.body.style.fontVariant,a.type="button",a.id=this.newID,a.innerText=t,this.container.appendChild(a),a.addEventListener("click",()=>{a.innerText===t?a.innerText=n:a.innerText=t,r&&r(a.innerText!==t)}),a}addValue(t,n,r=""){let a=document.createElement("div");return a.className="menu-item",a.id=`menu-val-${t}`,a.innerText=`${t}: ${n}${r}`,this.container.appendChild(a),a}updateValue(t,n,r=""){let a=document.getElementById(`menu-val-${t}`);a?a.innerText=`${t}: ${n}${r}`:this.addValue(t,n)}addChart(t,n,r=150,a=40,s){s&&(vt.chartColor=s);let i=document.createElement("div");return i.className="menu-item menu-chart-title",i.id=this.newID,i.innerHTML=`<font color=${vt.chartColor}>${t}</font><canvas id="menu-canvas-${n}" class="menu-chart-canvas" width="${r}px" height="${a}px"></canvas>`,this.container.appendChild(i),i}async updateChart(t,n){if(!n||n.length===0)return;let r=document.getElementById(`menu-canvas-${t}`);if(!r)return;let a=r.getContext("2d");a.fillStyle=vt.background,a.fillRect(0,0,r.width,r.height);let s=r.width/n.length,i=1+Math.max(...n),o=r.height/i;for(let l=0;l<n.length;l++){let u=a.createLinearGradient(0,(i-n[l])*o,0,0);u.addColorStop(.1,vt.chartColor),u.addColorStop(.4,vt.background),a.fillStyle=u,a.fillRect(l*s,0,s-4,r.height),a.fillStyle=vt.background,a.font=`${s/1.5}px "Segoe UI"`,a.fillText(Math.round(n[l]),l*s+1,r.height-1,s-1)}}},ah=K4;var Cse=`
|
|
#gl-bench { position: absolute; right: 1rem; bottom: 1rem; z-index:1000; -webkit-user-select: none; -moz-user-select: none; user-select: none; }
|
|
#gl-bench div { position: relative; display: block; margin: 4px; padding: 0 2px 0 2px; background: darkslategray; border-radius: 0.1rem; cursor: pointer; opacity: 0.9; }
|
|
#gl-bench svg { height: 60px; margin: 0 0px 0px 4px; }
|
|
#gl-bench text { font-size: 16px; font-family: 'Lato', 'Segoe UI'; dominant-baseline: middle; text-anchor: middle; }
|
|
#gl-bench .gl-mem { font-size: 12px; fill: white; }
|
|
#gl-bench .gl-fps { font-size: 13px; fill: white; }
|
|
#gl-bench line { stroke-width: 5; stroke: white; stroke-linecap: round; }
|
|
#gl-bench polyline { fill: none; stroke: white; stroke-linecap: round; stroke-linejoin: round; stroke-width: 3.5; }
|
|
#gl-bench rect { fill: black; }
|
|
#gl-bench .opacity { stroke: black; }
|
|
`,Rse=`
|
|
<div class="gl-box">
|
|
<svg viewBox="0 0 60 60">
|
|
<text x="27" y="56" class="gl-fps">00 FPS</text>
|
|
<text x="30" y="8" class="gl-mem"></text>
|
|
<rect x="0" y="14" rx="4" ry="4" width="60" height="32"></rect>
|
|
<polyline class="gl-chart"></polyline>
|
|
</svg>
|
|
<svg viewBox="0 0 14 60" class="gl-cpu-svg">
|
|
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
|
|
<line x1="7" y1="38" x2="7" y2="11" class="gl-cpu" stroke-dasharray="0 27"/>
|
|
<path d="M5.35 43c-.464 0-.812.377-.812.812v1.16c-.783.1972-1.421.812-1.595 1.624h-1.16c-.435 0-.812.348-.812.812s.348.812.812.812h1.102v1.653H1.812c-.464 0-.812.377-.812.812 0 .464.377.812.812.812h1.131c.1943.783.812 1.392 1.595 1.595v1.131c0 .464.377.812.812.812.464 0 .812-.377.812-.812V53.15h1.653v1.073c0 .464.377.812.812.812.464 0 .812-.377.812-.812v-1.131c.783-.1943 1.392-.812 1.595-1.595h1.131c.464 0 .812-.377.812-.812 0-.464-.377-.812-.812-.812h-1.073V48.22h1.102c.435 0 .812-.348.812-.812s-.348-.812-.812-.812h-1.16c-.1885-.783-.812-1.421-1.595-1.624v-1.131c0-.464-.377-.812-.812-.812-.464 0-.812.377-.812.812v1.073H6.162v-1.073c0-.464-.377-.812-.812-.812zm.58 3.48h2.088c.754 0 1.363.609 1.363 1.363v2.088c0 .754-.609 1.363-1.363 1.363H5.93c-.754 0-1.363-.609-1.363-1.363v-2.088c0-.754.609-1.363 1.363-1.363z" style="fill: grey"></path>
|
|
</svg>
|
|
<svg viewBox="0 0 14 60" class="gl-gpu-svg">
|
|
<line x1="7" y1="38" x2="7" y2="11" class="opacity"/>
|
|
<line x1="7" y1="38" x2="7" y2="11" class="gl-gpu" stroke-dasharray="0 27"/>
|
|
<path d="M1.94775 43.3772a.736.736 0 10-.00416 1.472c.58535.00231.56465.1288.6348.3197.07015.18975.04933.43585.04933.43585l-.00653.05405v8.671a.736.736 0 101.472 0v-1.4145c.253.09522.52785.1495.81765.1495h5.267c1.2535 0 2.254-.9752 2.254-2.185v-3.105c0-1.2075-1.00625-2.185-2.254-2.185h-5.267c-.28865 0-.5635.05405-.8165.1495.01806-.16445.04209-.598-.1357-1.0787-.22425-.6072-.9499-1.2765-2.0125-1.2765zm2.9095 3.6455c.42435 0 .7659.36225.7659.8119v2.9785c0 .44965-.34155.8119-.7659.8119s-.7659-.36225-.7659-.8119v-2.9785c0-.44965.34155-.8119.7659-.8119zm4.117 0a2.3 2.3 0 012.3 2.3 2.3 2.3 0 01-2.3 2.3 2.3 2.3 0 01-2.3-2.3 2.3 2.3 0 012.3-2.3z" style="fill: grey"></path>
|
|
</svg>
|
|
</div>
|
|
`,Z4=class{constructor(t,n={}){this.css=Cse,this.svg=Rse,this.paramLogger=()=>{},this.chartLogger=()=>{},this.chartLen=20,this.chartHz=20,this.names=[],this.cpuAccums=[],this.gpuAccums=[],this.activeAccums=[],this.chart=new Array(this.chartLen),this.now=()=>performance&&performance.now?performance.now():Date.now(),this.updateUI=()=>{[].forEach.call(this.nodes["gl-gpu-svg"],o=>o.style.display=this.trackGPU?"inline":"none")},Object.assign(this,n),this.detected=0,this.finished=[],this.isFramebuffer=0,this.frameId=0;let r,a=0,s,i=o=>{++a<20?r=requestAnimationFrame(i):(this.detected=Math.ceil(1e3*a/(o-s)/70),cancelAnimationFrame(r)),s||(s=o)};if(requestAnimationFrame(i),t){let o=async(c,h)=>Promise.resolve(setTimeout(()=>{t.getError();let d=this.now()-c;h.forEach((p,f)=>{p&&(this.gpuAccums[f]+=d)})},0)),l=(c,h,d)=>{let p=h.now();c.apply(d,arguments),h.trackGPU&&h.finished.push(o(p,h.activeAccums.slice(0)))},u="drawElements";t[u]?t[u]=l(t[u],this,t):console.log("bench: cannot attach to webgl function")}if(!this.withoutUI){this.dom||(this.dom=document.body);let o=document.createElement("div");o.id="gl-bench",this.dom.appendChild(o),this.dom.insertAdjacentHTML("afterbegin",'<style id="gl-bench-style">'+this.css+"</style>"),this.dom=o,this.dom.addEventListener("click",()=>{this.trackGPU=!this.trackGPU,this.updateUI()}),this.paramLogger=((l,u,c)=>{let h=["gl-cpu","gl-gpu","gl-mem","gl-fps","gl-gpu-svg","gl-chart"],d={...h};return h.forEach(p=>d[p]=u.getElementsByClassName(p)),this.nodes=d,(p,f,m,A,g,y,w)=>{d["gl-cpu"][p].style.strokeDasharray=(f*.27).toFixed(0)+" 100",d["gl-gpu"][p].style.strokeDasharray=(m*.27).toFixed(0)+" 100",d["gl-mem"][p].innerHTML=c[p]?c[p]:A?"mem: "+A.toFixed(0)+"mb":"",d["gl-fps"][p].innerHTML="FPS: "+g.toFixed(1),l(c[p],f,m,A,g,y,w)}})(this.paramLogger,this.dom,this.names),this.chartLogger=((l,u)=>{let c={"gl-chart":u.getElementsByClassName("gl-chart")};return(h,d,p)=>{let f="",m=d.length;for(let A=0;A<m;A++){let g=(p+A+1)%m;d[g]!==void 0&&(f=f+" "+(60*A/(m-1)).toFixed(1)+","+(45-d[g]*.5/this.detected).toFixed(1))}c["gl-chart"][h].setAttribute("points",f),l(this.names[h],d,p)}})(this.chartLogger,this.dom)}}addUI(t){this.names.indexOf(t)===-1&&(this.names.push(t),this.dom&&(this.dom.insertAdjacentHTML("beforeend",this.svg),this.updateUI()),this.cpuAccums.push(0),this.gpuAccums.push(0),this.activeAccums.push(!1))}nextFrame(t){this.frameId++;let n=t||this.now();if(this.frameId<=1)this.paramFrame=this.frameId,this.paramTime=n;else{let r=n-this.paramTime;if(r>=1e3){let a=this.frameId-this.paramFrame,s=a/r*1e3;for(let i=0;i<this.names.length;i++){let o=this.cpuAccums[i]/r*100,l=this.gpuAccums[i]/r*100,u=performance&&performance.memory?performance.memory.usedJSHeapSize/(1<<20):0;this.paramLogger(i,o,l,u,s,r,a),this.cpuAccums[i]=0,Promise.all(this.finished).then(()=>{this.gpuAccums[i]=0,this.finished=[]})}this.paramFrame=this.frameId,this.paramTime=n}}if(!this.detected||!this.chartFrame)this.chartFrame=this.frameId,this.chartTime=n,this.circularId=0;else{let r=n-this.chartTime,a=this.chartHz*r/1e3;for(;--a>0&&this.detected;){let i=(this.frameId-this.chartFrame)/r*1e3;this.chart[this.circularId%this.chartLen]=i;for(let o=0;o<this.names.length;o++)this.chartLogger(o,this.chart,this.circularId);this.circularId++,this.chartFrame=this.frameId,this.chartTime=n}}}begin(t){this.updateAccums(t)}end(t){this.updateAccums(t)}updateAccums(t){let n=this.names.indexOf(t);n===-1&&(n=this.names.length,this.addUI(t));let r=this.now(),a=r-this.t0;for(let s=0;s<n+1;s++)this.activeAccums[s]&&(this.cpuAccums[s]+=a);this.activeAccums[n]=!this.activeAccums[n],this.t0=r}},Y4=Z4;var us={backend:"webgl"},te=new B2(us),he={baseBackground:"rgba(50, 50, 50, 1)",crop:!0,columns:2,facing:!0,useWorker:!1,worker:"worker.js",samples:["../assets/sample6.jpg","../assets/sample1.jpg","../assets/sample4.jpg","../assets/sample5.jpg","../assets/sample3.jpg","../assets/sample2.jpg"],compare:"../assets/sample-me.jpg",console:!0,maxFPSframes:10,modelsPreload:!0,busy:!1,menuWidth:0,menuHeight:0,camera:{},detectFPS:[],drawFPS:[],buffered:!1,drawWarmup:!1,drawThread:null,detectThread:null,framesDraw:0,framesDetect:0,bench:!0,lastFrame:0},Ae={},Y0,Ui,J0={};function Fse(...e){if(!Array.isArray(e))return e;let t="";for(let n of e)typeof n=="object"?t+=JSON.stringify(n).replace(/{|}|"|\[|\]/g,"").replace(/,/g,", "):t+=n;return t}function qn(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;he.console&&console.log(n,...e)}function ar(e){let t=document.getElementById("status");t&&(t.innerText=e)}var Hi;async function Mse(e){var n,r,a,s,i;if(document.getElementById("compare-container").style.display=te.config.face.embedding.enabled?"block":"none",!te.config.face.embedding.enabled||!(((n=e==null?void 0:e.face)==null?void 0:n.length)>0)||((a=(r=e==null?void 0:e.face[0])==null?void 0:r.embedding)==null?void 0:a.length)>=64)return;if(!Hi)if(Hi=e,e.face[0].tensor){let o=te.enhance(e.face[0]);if(o){let l=document.getElementById("orig"),u=o.squeeze();te.tf.browser.toPixels(u,l),o.dispose(),u.dispose()}}else document.getElementById("compare-canvas").getContext("2d").drawImage(Hi.canvas,0,0,200,200);let t=te.simmilarity((s=Hi==null?void 0:Hi.face[0])==null?void 0:s.embedding,(i=e==null?void 0:e.face[0])==null?void 0:i.embedding);document.getElementById("simmilarity").innerText=`simmilarity: ${Math.trunc(1e3*t)/10}%`}var J4=performance.now();async function Q0(e){let t=J0,n=document.getElementById("canvas");if(he.drawFPS.push(1e3/(performance.now()-J4)),he.drawFPS.length>he.maxFPSframes&&he.drawFPS.shift(),J4=performance.now(),await Ae.process.updateChart("FPS",he.detectFPS),he.buffered||!t.canvas){let h=await te.image(e);t.canvas=h.canvas,te.tf.dispose(h.tensor)}let r=n.getContext("2d");r.fillStyle=he.baseBackground,r.fillRect(0,0,n.width,n.height),t.canvas?(t.canvas.width!==n.width&&(n.width=t.canvas.width),t.canvas.height!==n.height&&(n.height=t.canvas.height),r.drawImage(t.canvas,0,0,t.canvas.width,t.canvas.height,0,0,t.canvas.width,t.canvas.height)):r.drawImage(e,0,0,e.width,e.height,0,0,n.width,n.height),te.draw.face(n,t.face),te.draw.body(n,t.body),te.draw.hand(n,t.hand),te.draw.object(n,t.object),te.draw.gesture(n,t.gesture),await Mse(t);let a=te.tf.engine(),s=a.backendInstance?`gpu: ${(a.backendInstance.numBytesInGPU?a.backendInstance.numBytesInGPU:0).toLocaleString()} bytes`:"",i=`system: ${a.state.numBytes.toLocaleString()} bytes ${s} | tensors: ${a.state.numTensors.toLocaleString()}`,o=t.canvas?`processing: ${t.canvas.width} x ${t.canvas.height}`:"",l=Math.trunc(10*he.detectFPS.reduce((h,d)=>h+d,0)/he.detectFPS.length)/10,u=Math.trunc(10*he.drawFPS.reduce((h,d)=>h+d,0)/he.drawFPS.length)/10,c=he.detectFPS.length>5&&l<5?'<font color="lightcoral">warning: your performance is low: try switching to higher performance backend, lowering resolution or disabling some models</font>':"";document.getElementById("log").innerHTML=`
|
|
video: ${he.camera.name} | facing: ${he.camera.facing} | screen: ${window.innerWidth} x ${window.innerHeight} camera: ${he.camera.width} x ${he.camera.height} ${o}<br>
|
|
backend: ${te.tf.getBackend()} | ${i}<br>
|
|
performance: ${Fse(t.performance)}ms FPS process:${l} refresh:${u}<br>
|
|
${c}<br>
|
|
`,he.framesDraw++,he.lastFrame=performance.now(),he.buffered?he.drawThread=requestAnimationFrame(()=>Q0(e,n)):!he.buffered&&he.drawThread&&(qn("stopping buffered refresh"),cancelAnimationFrame(he.drawThread),he.drawThread=null)}async function e1(){var u;if(he.busy)return null;he.busy=!0;let e=document.getElementById("video"),t=document.getElementById("canvas"),n=document.getElementById("log"),r=e.srcObject?e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused:!1,a="";if(ar("setting up camera"),!navigator.mediaDevices)return a="camera access not supported",n.innerText+=`
|
|
${a}`,qn(a),ar(a),he.busy=!1,a;let s,i={audio:!1,video:{facingMode:he.facing?"user":"environment",resizeMode:he.crop?"crop-and-scale":"none"}};window.innerWidth>window.innerHeight?i.video.width={ideal:window.innerWidth}:i.video.height={ideal:window.innerHeight-document.getElementById("menubar").offsetHeight};try{s=await navigator.mediaDevices.getUserMedia(i)}catch(c){return c.name==="PermissionDeniedError"||c.name==="NotAllowedError"?a="camera permission denied":c.name==="SourceUnavailableError"?a="camera not available":a=`camera error: ${c.message||c}`,n.innerText+=`
|
|
${a}`,ar(a),qn("camera error:",c),he.busy=!1,a}if(s)e.srcObject=s;else return he.busy=!1,"camera stream empty";let o=s.getVideoTracks()[0],l=o.getSettings();return he.camera={name:(u=o.label)==null?void 0:u.toLowerCase(),width:l.width,height:l.height,facing:l.facingMode==="user"?"front":"back"},new Promise(c=>{e.onloadeddata=async()=>{e.width=e.videoWidth,e.height=e.videoHeight,t.width=e.width,t.height=e.height,t.style.width=t.width>t.height?"100vw":"",t.style.height=t.width>t.height?"":"100vh",he.menuWidth.input.setAttribute("value",e.width),he.menuHeight.input.setAttribute("value",e.height),r&&e.play(),r&&!he.detectThread&&sh(e,t),he.busy=!1,ar(""),c()}})}function Q4(){if(!Ui){let e=null;Ui=new Y4(e,{trackGPU:!1,chartHz:20,chartLen:20}),Ui.begin()}}function $se(e,t,n,r){Y0||(qn("creating worker thread"),Y0=new Worker(he.worker,{type:"module"}),Y0.addEventListener("message",a=>{a.data.result.performance&&a.data.result.performance.total&&he.detectFPS.push(1e3/a.data.result.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Ui||Q4(),Ui.nextFrame(r)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),J0=a.data.result,he.framesDetect++,he.drawThread||Q0(e),he.detectThread=requestAnimationFrame(s=>sh(e,n,s))})),Y0.postMessage({image:t.data.buffer,width:n.width,height:n.height,userConfig:us},[t.data.buffer])}function sh(e,t,n){var a;if(!(e.srcObject&&e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState>2&&!e.paused)&&e.srcObject){he.drawThread&&cancelAnimationFrame(he.drawThread),he.detectThread&&cancelAnimationFrame(he.detectThread),he.drawThread=null,he.detectThread=null,e.paused?qn("camera paused"):e.srcObject.getVideoTracks()[0].readyState==="live"&&e.readyState<=2?setTimeout(()=>sh(e,t),500):qn(`camera not ready: track state: ${(a=e.srcObject)==null?void 0:a.getVideoTracks()[0].readyState} stream state: ${e.readyState}`),clearTimeout(he.drawThread),he.drawThread=null,qn("frame statistics: process:",he.framesDetect,"refresh:",he.framesDraw),qn("memory",te.tf.engine().memory());return}if(ar(""),he.useWorker){let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t.width,t.height):document.createElement("canvas");s.width=t.width,s.height=t.height;let i=s.getContext("2d");i.drawImage(e,0,0,e.width,e.height,0,0,t.width,t.height);let o=i.getImageData(0,0,t.width,t.height);$se(e,o,t,us,n)}else te.detect(e,us).then(s=>{s.performance&&s.performance.total&&he.detectFPS.push(1e3/s.performance.total),he.detectFPS.length>he.maxFPSframes&&he.detectFPS.shift(),he.bench&&(Ui||Q4(),Ui.nextFrame(n)),document.getElementById("gl-bench")&&(document.getElementById("gl-bench").style.display=he.bench?"block":"none"),s.error?(qn(s.error),document.getElementById("log").innerText+=`
|
|
Human error: ${s.error}`):(J0=s,he.drawThread||Q0(e),he.framesDetect++,he.detectThread=requestAnimationFrame(i=>sh(e,t,i)))})}async function Dse(e){return new Promise(t=>{let n=new Image;n.onload=async()=>{qn("Processing image:",encodeURI(n.src));let r=document.getElementById("canvas");n.width=n.naturalWidth,n.height=n.naturalHeight,r.width=te.config.filter.width&&te.config.filter.width>0?te.config.filter.width:n.naturalWidth,r.height=te.config.filter.height&&te.config.filter.height>0?te.config.filter.height:n.naturalHeight;let a=await te.detect(n,us);J0=a,await Q0(n);let s=document.createElement("canvas");s.className="thumbnail",s.width=window.innerWidth/(he.columns+.1),s.height=s.width*r.height/r.width,a.face&&a.face.length>0?s.title=a.face.map((o,l)=>`#${l} face: ${Math.trunc(100*o.faceConfidence)}% box: ${Math.trunc(100*o.boxConfidence)}% age: ${Math.trunc(o.age)} gender: ${Math.trunc(100*o.genderConfidence)}% ${o.gender}`).join(" | "):s.title="no face detected",s.getContext("2d").drawImage(r,0,0,r.width,r.height,0,0,s.width,s.height),document.getElementById("samples-container").appendChild(s),n.src="",t(!0)},n.src=e})}async function e8(){document.getElementById("samples-container").style.display="none",document.getElementById("canvas").style.display="block";let e=document.getElementById("video"),t=document.getElementById("canvas");if(e.srcObject!==null&&!e.paused)document.getElementById("play").style.display="block",document.getElementById("btnStart").className="button button-start",document.getElementById("btnStart").innerHTML="start<br>video",ar("paused"),e.pause();else{let n=await e1();if(n)ar(n);else{document.getElementById("play").style.display="none";for(let r of Object.values(Ae))r.hide();ar(""),document.getElementById("btnStart").className="button button-stop",document.getElementById("btnStart").innerHTML="pause<br>video",await e.play(),he.detectThread||sh(e,t)}}}async function Ose(){us.videoOptimized=!1,document.getElementById("play").style.display="none",document.getElementById("canvas").style.display="none",document.getElementById("samples-container").style.display="block",qn("Running detection of sample images"),ar("processing images"),document.getElementById("samples-container").innerHTML="";for(let e of Object.values(Ae))e.hide();for(let e of he.samples)await Dse(e);ar("")}function zse(){let e=[];window.innerWidth>800?e=[`${document.getElementById("btnDisplay").offsetLeft-50}px`,`${document.getElementById("btnImage").offsetLeft-50}px`,`${document.getElementById("btnProcess").offsetLeft-50}px`,`${document.getElementById("btnModel").offsetLeft-50}px`]:e=["0rem","11rem","21.1rem","33rem"],Ae.display=new ah(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[0]}),Ae.display.addBool("perf monitor",he,"bench",t=>he.bench=t),Ae.display.addBool("buffered output",he,"buffered",t=>he.buffered=t),Ae.display.addBool("crop & scale",he,"crop",t=>{he.crop=t,e1()}),Ae.display.addBool("camera facing",he,"facing",t=>{he.facing=t,e1()}),Ae.display.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.display.addBool("use 3D depth",te.draw.drawOptions,"useDepth"),Ae.display.addBool("draw with curves",te.draw.drawOptions,"useCurves"),Ae.display.addBool("print labels",te.draw.drawOptions,"drawLabels"),Ae.display.addBool("draw points",te.draw.drawOptions,"drawPoints"),Ae.display.addBool("draw boxes",te.draw.drawOptions,"drawBoxes"),Ae.display.addBool("draw polygons",te.draw.drawOptions,"drawPolygons"),Ae.display.addBool("fill polygons",te.draw.drawOptions,"fillPolygons"),Ae.image=new ah(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[1]}),Ae.image.addBool("enabled",te.config.filter,"enabled",t=>te.config.filter.enabled=t),he.menuWidth=Ae.image.addRange("image width",te.config.filter,"width",0,3840,10,t=>te.config.filter.width=parseInt(t)),he.menuHeight=Ae.image.addRange("image height",te.config.filter,"height",0,2160,10,t=>te.config.filter.height=parseInt(t)),Ae.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.image.addRange("brightness",te.config.filter,"brightness",-1,1,.05,t=>te.config.filter.brightness=parseFloat(t)),Ae.image.addRange("contrast",te.config.filter,"contrast",-1,1,.05,t=>te.config.filter.contrast=parseFloat(t)),Ae.image.addRange("sharpness",te.config.filter,"sharpness",0,1,.05,t=>te.config.filter.sharpness=parseFloat(t)),Ae.image.addRange("blur",te.config.filter,"blur",0,20,1,t=>te.config.filter.blur=parseInt(t)),Ae.image.addRange("saturation",te.config.filter,"saturation",-1,1,.05,t=>te.config.filter.saturation=parseFloat(t)),Ae.image.addRange("hue",te.config.filter,"hue",0,360,5,t=>te.config.filter.hue=parseInt(t)),Ae.image.addRange("pixelate",te.config.filter,"pixelate",0,32,1,t=>te.config.filter.pixelate=parseInt(t)),Ae.image.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.image.addBool("negative",te.config.filter,"negative",t=>te.config.filter.negative=t),Ae.image.addBool("sepia",te.config.filter,"sepia",t=>te.config.filter.sepia=t),Ae.image.addBool("vintage",te.config.filter,"vintage",t=>te.config.filter.vintage=t),Ae.image.addBool("kodachrome",te.config.filter,"kodachrome",t=>te.config.filter.kodachrome=t),Ae.image.addBool("technicolor",te.config.filter,"technicolor",t=>te.config.filter.technicolor=t),Ae.image.addBool("polaroid",te.config.filter,"polaroid",t=>te.config.filter.polaroid=t),Ae.process=new ah(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[2]}),Ae.process.addList("backend",["cpu","webgl","wasm","humangl"],te.config.backend,t=>te.config.backend=t),Ae.process.addBool("async operations",te.config,"async",t=>te.config.async=t),Ae.process.addBool("use web worker",he,"useWorker"),Ae.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.process.addLabel("model parameters"),Ae.process.addRange("max objects",te.config.face.detector,"maxFaces",1,50,1,t=>{te.config.face.detector.maxFaces=parseInt(t),te.config.body.maxDetections=parseInt(t),te.config.hand.maxHands=parseInt(t)}),Ae.process.addRange("skip frames",te.config.face.detector,"skipFrames",0,50,1,t=>{te.config.face.detector.skipFrames=parseInt(t),te.config.face.emotion.skipFrames=parseInt(t),te.config.face.age.skipFrames=parseInt(t),te.config.hand.skipFrames=parseInt(t)}),Ae.process.addRange("min confidence",te.config.face.detector,"minConfidence",0,1,.05,t=>{te.config.face.detector.minConfidence=parseFloat(t),te.config.face.gender.minConfidence=parseFloat(t),te.config.face.emotion.minConfidence=parseFloat(t),te.config.hand.minConfidence=parseFloat(t)}),Ae.process.addRange("score threshold",te.config.face.detector,"scoreThreshold",.1,1,.05,t=>{te.config.face.detector.scoreThreshold=parseFloat(t),te.config.hand.scoreThreshold=parseFloat(t),te.config.body.scoreThreshold=parseFloat(t)}),Ae.process.addRange("overlap",te.config.face.detector,"iouThreshold",.1,1,.05,t=>{te.config.face.detector.iouThreshold=parseFloat(t),te.config.hand.iouThreshold=parseFloat(t)}),Ae.process.addBool("detection rotation",te.config.face.detector,"rotation",t=>{te.config.face.detector.rotation=t,te.config.hand.rotation=t}),Ae.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.process.addButton("process sample images","process images",()=>Ose()),Ae.process.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.process.addChart("FPS","FPS"),Ae.models=new ah(document.body,"",{top:`${document.getElementById("menubar").offsetHeight}px`,left:e[3]}),Ae.models.addBool("face detect",te.config.face,"enabled",t=>te.config.face.enabled=t),Ae.models.addBool("face mesh",te.config.face.mesh,"enabled",t=>te.config.face.mesh.enabled=t),Ae.models.addBool("face iris",te.config.face.iris,"enabled",t=>te.config.face.iris.enabled=t),Ae.models.addBool("face age",te.config.face.age,"enabled",t=>te.config.face.age.enabled=t),Ae.models.addBool("face gender",te.config.face.gender,"enabled",t=>te.config.face.gender.enabled=t),Ae.models.addBool("face emotion",te.config.face.emotion,"enabled",t=>te.config.face.emotion.enabled=t),Ae.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.models.addBool("body pose",te.config.body,"enabled",t=>te.config.body.enabled=t),Ae.models.addBool("hand pose",te.config.hand,"enabled",t=>te.config.hand.enabled=t),Ae.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.models.addBool("gestures",te.config.gesture,"enabled",t=>te.config.gesture.enabled=t),Ae.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.models.addBool("object detection",te.config.object,"enabled",t=>te.config.object.enabled=t),Ae.models.addHTML('<hr style="border-style: inset; border-color: dimgray">'),Ae.models.addBool("face compare",te.config.face.embedding,"enabled",t=>{te.config.face.embedding.enabled=t,Hi=null}),document.getElementById("btnDisplay").addEventListener("click",t=>Ae.display.toggle(t)),document.getElementById("btnImage").addEventListener("click",t=>Ae.image.toggle(t)),document.getElementById("btnProcess").addEventListener("click",t=>Ae.process.toggle(t)),document.getElementById("btnModel").addEventListener("click",t=>Ae.models.toggle(t)),document.getElementById("btnStart").addEventListener("click",()=>e8()),document.getElementById("play").addEventListener("click",()=>e8())}async function Pse(e){let t=document.getElementById("canvas");t.width=e.canvas.width,t.height=e.canvas.height,t.getContext("2d").drawImage(e.canvas,0,0,e.canvas.width,e.canvas.height,0,0,t.width,t.height),await te.draw.all(t,e)}async function Lse(){if(qn("Demo starting ..."),zse(),document.getElementById("log").innerText=`Human: version ${te.version}`,he.modelsPreload&&!he.useWorker){ar("loading"),await te.load(us);let e=Object.keys(te.models).filter(t=>te.models[t]);qn("Demo loaded models:",e)}if(!he.useWorker){ar("initializing");let e=await te.warmup(us);e&&e.canvas&&he.drawWarmup&&await Pse(e)}ar("human: ready"),document.getElementById("loader").style.display="none",document.getElementById("play").style.display="block",qn("Demo ready...")}window.onload=Lse;window.onresize=e1;
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|
|
//# sourceMappingURL=demo-browser-index.js.map
|