human/dist/human.js

7832 lines
1.6 MiB

/*
Human
homepage: <https://github.com/vladmandic/human>
author: <https://github.com/vladmandic>'
*/
"use strict";var Human=(()=>{var Xf=Object.defineProperty;var A_=Object.getOwnPropertyDescriptor;var x_=Object.getOwnPropertyNames;var b_=Object.prototype.hasOwnProperty;var v_=(e,t,n)=>t in e?Xf(e,t,{enumerable:!0,configurable:!0,writable:!0,value:n}):e[t]=n;var ma=(e,t)=>{for(var n in t)Xf(e,n,{get:t[n],enumerable:!0})},w_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of x_(t))!b_.call(e,r)&&r!==n&&Xf(e,r,{get:()=>t[r],enumerable:!(s=A_(t,r))||s.enumerable});return e};var k_=e=>w_(Xf({},"__esModule",{value:!0}),e);var he=(e,t,n)=>(v_(e,typeof t!="symbol"?t+"":t,n),n),Sv=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var Xr=(e,t,n)=>(Sv(e,t,"read from private field"),n?n.call(e):t.get(e)),Hu=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},np=(e,t,n,s)=>(Sv(e,t,"write to private field"),s?s.call(e,n):t.set(e,n),n);var Lbe={};ma(Lbe,{Human:()=>nv,default:()=>nv,defaults:()=>Ga,draw:()=>K4,env:()=>fe,match:()=>tv,models:()=>$d});function ne(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}function Iv(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`modelpath error: expecting json file: ${r}`);return r}var le=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function p3(e,t,n="config",s=[]){for(let r of Object.keys(t))if(typeof t[r]=="object")p3(e[r],t[r],r,s);else{let a=e&&typeof e[r]!="undefined";a||s.push({reason:"unknown property",where:`${n}.${r} = ${t[r]}`});let o=e&&typeof e[r]==typeof t[r];a&&!o&&s.push({reason:"property type mismatch",where:`${n}.${r} = ${t[r]}`,expected:typeof e[r]})}return t.debug&&n==="config"&&s.length>0&&ne("invalid configuration",s),s}function Xt(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,s)=>(Object.keys(s||{}).forEach(r=>{let a=n[r],o=s[r];Array.isArray(a)&&Array.isArray(o)?n[r]=a.concat(...o):t(a)&&t(o)?n[r]=Xt(a,o):n[r]=o}),n),{})}var Ga={backend:"",modelBasePath:"",cacheModels:!0,validateModels:!0,wasmPath:"",wasmPlatformFetch:!1,debug:!1,async:!0,warmup:"full",cacheSensitivity:.7,skipAllowed:!1,deallocate:!1,flags:{},softwareKernels:!1,filter:{enabled:!0,equalization:!1,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:1,skipFrames:99,skipTime:2500,minConfidence:.2,iouThreshold:.1,mask:!1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json",keepInvalid:!1},attention:{enabled:!1,modelPath:"facemesh-attention.json"},iris:{enabled:!0,modelPath:"iris.json"},emotion:{enabled:!0,minConfidence:.1,skipFrames:99,skipTime:1500,modelPath:"emotion.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:99,skipTime:3e3,minConfidence:.1},antispoof:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"antispoof.json"},liveness:{enabled:!1,skipFrames:99,skipTime:4e3,modelPath:"liveness.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:-1,minConfidence:.3,skipFrames:1,skipTime:200},hand:{enabled:!0,rotation:!0,skipFrames:99,skipTime:1e3,minConfidence:.5,iouThreshold:.2,maxDetected:-1,landmarks:!0,detector:{modelPath:"handtrack.json"},skeleton:{modelPath:"handlandmark-full.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:99,skipTime:2e3},segmentation:{enabled:!1,modelPath:"selfie.json",blur:8}};var Je={};ma(Je,{Abs:()=>ml,Acos:()=>Sc,Acosh:()=>Ic,AdadeltaOptimizer:()=>r2,AdagradOptimizer:()=>a2,AdamOptimizer:()=>o2,AdamaxOptimizer:()=>i2,Add:()=>Na,AddN:()=>mo,All:()=>Cc,Any:()=>Tc,ArgMax:()=>go,ArgMin:()=>Nc,Asin:()=>Ec,Asinh:()=>Rc,Atan:()=>_c,Atan2:()=>gl,Atanh:()=>Dc,AvgPool:()=>yo,AvgPool3D:()=>Gp,AvgPool3DGrad:()=>n0,AvgPoolGrad:()=>t0,BackendWasm:()=>uT,BatchMatMul:()=>Ao,BatchToSpaceND:()=>yl,Bincount:()=>s0,BroadcastArgs:()=>r0,BroadcastTo:()=>N6,Callback:()=>V8,CallbackList:()=>jk,Cast:()=>xo,Ceil:()=>bo,ClipByValue:()=>Ea,Complex:()=>Hp,ComplexAbs:()=>jp,Concat:()=>Al,Conv2D:()=>vo,Conv2DBackpropFilter:()=>a0,Conv2DBackpropInput:()=>wo,Conv3D:()=>qp,Conv3DBackpropFilterV2:()=>o0,Conv3DBackpropInputV2:()=>i0,Cos:()=>ko,Cosh:()=>So,CropAndResize:()=>bl,Cumprod:()=>xl,Cumsum:()=>Io,CustomCallback:()=>Xk,DataStorage:()=>Up,DenseBincount:()=>l0,DepthToSpace:()=>vl,DepthwiseConv2dNative:()=>Co,DepthwiseConv2dNativeBackpropFilter:()=>u0,DepthwiseConv2dNativeBackpropInput:()=>c0,Diag:()=>d0,Dilation2D:()=>Xp,Dilation2DBackpropFilter:()=>Sm,Dilation2DBackpropInput:()=>km,ENV:()=>My,EarlyStopping:()=>U8,Einsum:()=>Kp,Elu:()=>No,EluGrad:()=>p0,Environment:()=>C6,Equal:()=>wl,Erf:()=>$c,Exp:()=>Eo,ExpandDims:()=>kl,Expm1:()=>Sl,FFT:()=>h0,Fill:()=>Pc,FlipLeftRight:()=>Il,Floor:()=>Ro,FloorDiv:()=>_o,FromPixels:()=>Sp,FusedBatchNorm:()=>Do,FusedConv2D:()=>no,FusedDepthwiseConv2D:()=>so,GPGPUContext:()=>rc,GatherNd:()=>Tl,GatherV2:()=>Cl,GraphModel:()=>Wh,Greater:()=>Nl,GreaterEqual:()=>$o,History:()=>qk,IFFT:()=>f0,Identity:()=>Po,Imag:()=>Zp,InputSpec:()=>an,IsFinite:()=>Fc,IsInf:()=>Oc,IsNan:()=>El,KernelBackend:()=>wc,LRN:()=>Yp,LRNGrad:()=>g0,LayerVariable:()=>Lk,LayersModel:()=>va,LeakyRelu:()=>Fo,Less:()=>Rl,LessEqual:()=>_l,LinSpace:()=>m0,Log:()=>Oo,Log1p:()=>Mc,LogSoftmax:()=>R6,LogicalAnd:()=>Dl,LogicalNot:()=>$l,LogicalOr:()=>zc,LogicalXor:()=>E6,LowerBound:()=>fD,MathBackendWebGL:()=>md,Max:()=>Mo,MaxPool:()=>Lo,MaxPool3D:()=>Jp,MaxPool3DGrad:()=>A0,MaxPoolGrad:()=>y0,MaxPoolWithArgmax:()=>x0,Maximum:()=>zo,Mean:()=>Bo,Min:()=>Wo,Minimum:()=>Vo,MirrorPad:()=>Uo,Mod:()=>Lc,MomentumOptimizer:()=>l2,Multinomial:()=>b0,Multiply:()=>Go,Neg:()=>Pl,NonMaxSuppressionV3:()=>Ol,NonMaxSuppressionV4:()=>Bc,NonMaxSuppressionV5:()=>Ml,NotEqual:()=>Fl,OP_SCOPE_SUFFIX:()=>Wy,OneHot:()=>Ll,OnesLike:()=>zl,Optimizer:()=>Da,OptimizerConstructors:()=>Ha,Pack:()=>Bl,PadV2:()=>Ho,Pool:()=>mD,Pow:()=>jo,Prelu:()=>qo,Prod:()=>Xo,RMSPropOptimizer:()=>u2,RNN:()=>la,RaggedTensorToTensor:()=>v0,Range:()=>Wc,Rank:()=>_3,Real:()=>Qp,RealDiv:()=>To,Reciprocal:()=>Wl,Reduction:()=>ss,Relu:()=>Ko,Relu6:()=>Jo,Reshape:()=>Vl,ResizeBilinear:()=>Yo,ResizeBilinearGrad:()=>k0,ResizeNearestNeighbor:()=>Zo,ResizeNearestNeighborGrad:()=>w0,Reverse:()=>Ul,RotateWithOffset:()=>su,Round:()=>Gl,Rsqrt:()=>Qo,SGDOptimizer:()=>Eh,ScatterNd:()=>Hl,SearchSorted:()=>S0,Select:()=>jl,Selu:()=>Vc,Sequential:()=>mc,Sigmoid:()=>ti,Sign:()=>Uc,Sin:()=>ei,Sinh:()=>Xl,Slice:()=>ql,Softmax:()=>ri,Softplus:()=>Gc,SpaceToBatchND:()=>Kl,SparseFillEmptyRows:()=>eh,SparseReshape:()=>Hc,SparseSegmentMean:()=>th,SparseSegmentSum:()=>nh,SparseToDense:()=>sh,SplitV:()=>Zl,Sqrt:()=>ni,Square:()=>jc,SquaredDifference:()=>ai,Step:()=>li,StridedSlice:()=>Yl,StringNGrams:()=>qc,StringSplit:()=>rh,StringToHashBucketFast:()=>ah,Sub:()=>oi,Sum:()=>si,SymbolicTensor:()=>Fr,Tan:()=>Jl,Tanh:()=>ii,Tensor:()=>st,TensorBuffer:()=>gn,Tile:()=>Ra,TopK:()=>Ql,Transform:()=>eu,Transpose:()=>ea,Unique:()=>I0,Unpack:()=>tu,UnsortedSegmentSum:()=>oh,UpperBound:()=>gD,Variable:()=>Tp,WebGPUBackend:()=>L2,ZerosLike:()=>nu,_FusedMatMul:()=>to,abs:()=>rn,acos:()=>aA,acosh:()=>oA,add:()=>ce,addN:()=>T0,all:()=>N0,any:()=>Rp,argMax:()=>$s,argMin:()=>iA,asin:()=>lA,asinh:()=>uA,atan:()=>cA,atan2:()=>dA,atanh:()=>pA,avgPool:()=>gh,avgPool3d:()=>fA,backend:()=>Ls,backend_util:()=>T,basicLSTMCell:()=>vw,batchNorm:()=>Kc,batchNorm2d:()=>mA,batchNorm3d:()=>gA,batchNorm4d:()=>yA,batchToSpaceND:()=>yh,bincount:()=>AA,booleanMaskAsync:()=>sk,broadcastArgs:()=>ww,broadcastTo:()=>Ji,broadcast_util:()=>au,browser:()=>nr,buffer:()=>We,callbacks:()=>Tj,cast:()=>ye,ceil:()=>xA,clipByValue:()=>As,clone:()=>Vn,complex:()=>ka,concat:()=>It,concat1d:()=>bA,concat2d:()=>ou,concat3d:()=>vA,concat4d:()=>wA,constraints:()=>Vk,conv1d:()=>E0,conv2d:()=>Sa,conv2dTranspose:()=>R0,conv3d:()=>SA,conv3dTranspose:()=>IA,copyRegisteredKernels:()=>bD,cos:()=>Ah,cosh:()=>_0,cosineWindow:()=>Q0,cumprod:()=>_p,cumsum:()=>D0,customGrad:()=>ra,data:()=>hS,denseBincount:()=>Sw,deprecationWarn:()=>Ky,depthToSpace:()=>CA,depthwiseConv2d:()=>Zc,deregisterOp:()=>Rj,device_util:()=>ch,diag:()=>Iw,dilation2d:()=>TA,disableDeprecationWarnings:()=>q$,dispose:()=>ee,disposeVariables:()=>X$,div:()=>me,divNoNan:()=>NA,dot:()=>EA,dropout:()=>t5,einsum:()=>Cw,elu:()=>Yc,enableDebugMode:()=>j$,enableProdMode:()=>Xy,enclosingPowerOfTwo:()=>n5,engine:()=>Yt,env:()=>H,equal:()=>Ps,erf:()=>RA,euclideanNorm:()=>$A,exp:()=>Fs,expandDims:()=>Bt,expm1:()=>PA,eye:()=>$0,fft:()=>Th,fill:()=>Qc,findBackend:()=>Zy,findBackendFactory:()=>J$,floor:()=>ed,floorDiv:()=>Xc,forceHalfFloat:()=>N9,fused:()=>pc,gather:()=>td,gatherND:()=>ik,gather_util:()=>Jy,getBackend:()=>cn,getGradient:()=>E3,getKernel:()=>Im,getKernelsForBackend:()=>na,getThreadsCount:()=>i0e,gpgpu_util:()=>o9,grad:()=>vO,grads:()=>wO,greater:()=>vs,greaterEqual:()=>di,ifft:()=>dc,imag:()=>fh,image:()=>Ie,inTopKAsync:()=>lk,initializers:()=>Uk,input:()=>l8,io:()=>_s,irfft:()=>K0,isFinite:()=>FA,isInf:()=>OA,isNaN:()=>MA,keep:()=>Sn,kernel_impls:()=>yr,layers:()=>Gk,leakyRelu:()=>xh,less:()=>P0,lessEqual:()=>pi,linalg:()=>a5,linspace:()=>_w,loadGraphModel:()=>Fx,loadGraphModelSync:()=>$q,loadLayersModel:()=>MG,localResponseNormalization:()=>zA,log:()=>Os,log1p:()=>bh,logSigmoid:()=>LA,logSoftmax:()=>O0,logSumExp:()=>M0,logicalAnd:()=>mr,logicalNot:()=>vh,logicalOr:()=>z0,logicalXor:()=>BA,losses:()=>bk,lowerBound:()=>$w,matMul:()=>et,math:()=>ew,max:()=>yn,maxPool:()=>wh,maxPool3d:()=>WA,maxPoolWithArgmax:()=>Pw,maximum:()=>ia,mean:()=>Wt,memory:()=>Nm,meshgrid:()=>Fw,metrics:()=>L8,min:()=>Ia,minimum:()=>nd,mirrorPad:()=>VA,mod:()=>lu,model:()=>FG,models:()=>B8,moments:()=>kh,movingAverage:()=>rk,mul:()=>z,multiRNNCell:()=>Ow,multinomial:()=>Mw,neg:()=>$t,nextFrame:()=>o5,norm:()=>Jc,notEqual:()=>il,oneHot:()=>lc,ones:()=>Ds,onesLike:()=>Ms,op:()=>W,outerProduct:()=>zw,pad:()=>sr,pad1d:()=>Lw,pad2d:()=>Bw,pad3d:()=>Ww,pad4d:()=>Vw,pool:()=>UA,pow:()=>Ca,prelu:()=>Ih,print:()=>Hy,prod:()=>GA,profile:()=>K$,raggedTensorToTensor:()=>Uw,rand:()=>Gw,randomGamma:()=>Hw,randomNormal:()=>B0,randomStandardNormal:()=>jw,randomUniform:()=>sd,range:()=>cc,ready:()=>hh,real:()=>uc,reciprocal:()=>qA,registerBackend:()=>ru,registerCallbackConstructor:()=>zG,registerGradient:()=>_6,registerKernel:()=>tr,registerOp:()=>Ej,regularizers:()=>W8,relu:()=>Vr,relu6:()=>W0,removeBackend:()=>Y$,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>qw,reverse2d:()=>Xw,reverse3d:()=>Kw,reverse4d:()=>Zw,rfft:()=>Nh,round:()=>V0,rsqrt:()=>U0,scalar:()=>Ce,scatterND:()=>ak,scatter_util:()=>Qy,searchSorted:()=>L0,selu:()=>G0,separableConv2d:()=>H0,sequential:()=>OG,serialization:()=>pe,setBackend:()=>ph,setPlatform:()=>Q$,setThreadsCount:()=>o0e,setWasmPath:()=>a0e,setWasmPaths:()=>z2,setWebGLContext:()=>_2,setdiff1dAsync:()=>Yw,sigmoid:()=>$n,sign:()=>XA,signal:()=>xk,sin:()=>j0,sinh:()=>q0,slice:()=>ze,slice1d:()=>Ch,slice2d:()=>X0,slice3d:()=>hi,slice4d:()=>ao,slice_util:()=>Gt,softmax:()=>uu,softplus:()=>iu,spaceToBatchND:()=>Sh,sparse:()=>vk,sparseToDense:()=>ok,spectral:()=>Ak,split:()=>Jt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>Z0,squeeze:()=>rt,stack:()=>ln,step:()=>cu,stridedSlice:()=>KA,string:()=>wk,sub:()=>ge,sum:()=>ke,sumOutType:()=>uh,tan:()=>ZA,tanh:()=>al,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Yy,tensor4d:()=>Jw,tensor5d:()=>Qw,tensor6d:()=>ek,tensor_util:()=>Or,test_util:()=>mw,tidy:()=>Y,tile:()=>Ks,time:()=>Z$,topk:()=>YA,train:()=>Vi,transpose:()=>tt,truncatedNormal:()=>Y0,unique:()=>JA,unregisterGradient:()=>xD,unregisterKernel:()=>AD,unsortedSegmentSum:()=>J0,unstack:()=>On,upcastType:()=>Un,upperBound:()=>tk,util:()=>v,valueAndGrad:()=>kO,valueAndGrads:()=>SO,variable:()=>QA,variableGrads:()=>Dw,version:()=>Yh,version_converter:()=>Fq,version_core:()=>rA,version_layers:()=>N5,version_wasm:()=>l0e,version_webgl:()=>ese,webgl:()=>tse,webgl_util:()=>RI,webgpu_util:()=>pT,where:()=>Gn,whereAsync:()=>e5,zeros:()=>Vt,zerosLike:()=>lt});var S_=Object.create,Dy=Object.defineProperty,I_=Object.getOwnPropertyDescriptor,f6=Object.getOwnPropertyNames,C_=Object.getPrototypeOf,T_=Object.prototype.hasOwnProperty,un=(e,t)=>function(){return t||(0,e[f6(e)[0]])((t={exports:{}}).exports,t),t.exports},He=(e,t)=>{for(var n in t)Dy(e,n,{get:t[n],enumerable:!0})},N_=(e,t,n,s)=>{if(t&&typeof t=="object"||typeof t=="function")for(let r of f6(t))!T_.call(e,r)&&r!==n&&Dy(e,r,{get:()=>t[r],enumerable:!(s=I_(t,r))||s.enumerable});return e},ho=(e,t,n)=>(n=e!=null?S_(C_(e)):{},N_(t||!e||!e.__esModule?Dy(n,"default",{value:e,enumerable:!0}):n,e)),E_=un({"node_modules/.pnpm/long@4.0.0/node_modules/long/src/long.js"(e,t){t.exports=s;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(P){}function s(P,S,M){this.low=P|0,this.high=S|0,this.unsigned=!!M}s.prototype.__isLong__,Object.defineProperty(s.prototype,"__isLong__",{value:!0});function r(P){return(P&&P.__isLong__)===!0}s.isLong=r;var a={},o={};function i(P,S){var M,L,U;return S?(P>>>=0,(U=0<=P&&P<256)&&(L=o[P],L)?L:(M=u(P,(P|0)<0?-1:0,!0),U&&(o[P]=M),M)):(P|=0,(U=-128<=P&&P<128)&&(L=a[P],L)?L:(M=u(P,P<0?-1:0,!1),U&&(a[P]=M),M))}s.fromInt=i;function l(P,S){if(isNaN(P))return S?b:A;if(S){if(P<0)return b;if(P>=g)return _}else{if(P<=-y)return $;if(P+1>=y)return E}return P<0?l(-P,S).neg():u(P%m|0,P/m|0,S)}s.fromNumber=l;function u(P,S,M){return new s(P,S,M)}s.fromBits=u;var c=Math.pow;function p(P,S,M){if(P.length===0)throw Error("empty string");if(P==="NaN"||P==="Infinity"||P==="+Infinity"||P==="-Infinity")return A;if(typeof S=="number"?(M=S,S=!1):S=!!S,M=M||10,M<2||36<M)throw RangeError("radix");var L;if((L=P.indexOf("-"))>0)throw Error("interior hyphen");if(L===0)return p(P.substring(1),S,M).neg();for(var U=l(c(M,8)),K=A,q=0;q<P.length;q+=8){var Z=Math.min(8,P.length-q),J=parseInt(P.substring(q,q+Z),M);if(Z<8){var Q=l(c(M,Z));K=K.mul(Q).add(l(J))}else K=K.mul(U),K=K.add(l(J))}return K.unsigned=S,K}s.fromString=p;function d(P,S){return typeof P=="number"?l(P,S):typeof P=="string"?p(P,S):u(P.low,P.high,typeof S=="boolean"?S:P.unsigned)}s.fromValue=d;var h=1<<16,f=1<<24,m=h*h,g=m*m,y=g/2,x=i(f),A=i(0);s.ZERO=A;var b=i(0,!0);s.UZERO=b;var w=i(1);s.ONE=w;var k=i(1,!0);s.UONE=k;var C=i(-1);s.NEG_ONE=C;var E=u(-1,2147483647,!1);s.MAX_VALUE=E;var _=u(-1,-1,!0);s.MAX_UNSIGNED_VALUE=_;var $=u(0,-2147483648,!1);s.MIN_VALUE=$;var R=s.prototype;R.toInt=function(){return this.unsigned?this.low>>>0:this.low},R.toNumber=function(){return this.unsigned?(this.high>>>0)*m+(this.low>>>0):this.high*m+(this.low>>>0)},R.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq($)){var M=l(S),L=this.div(M),U=L.mul(M).sub(this);return L.toString(S)+U.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var K=l(c(S,6),this.unsigned),q=this,Z="";;){var J=q.div(K),Q=q.sub(J.mul(K)).toInt()>>>0,ie=Q.toString(S);if(q=J,q.isZero())return ie+Z;for(;ie.length<6;)ie="0"+ie;Z=""+ie+Z}},R.getHighBits=function(){return this.high},R.getHighBitsUnsigned=function(){return this.high>>>0},R.getLowBits=function(){return this.low},R.getLowBitsUnsigned=function(){return this.low>>>0},R.getNumBitsAbs=function(){if(this.isNegative())return this.eq($)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,M=31;M>0&&(S&1<<M)==0;M--);return this.high!=0?M+33:M+1},R.isZero=function(){return this.high===0&&this.low===0},R.eqz=R.isZero,R.isNegative=function(){return!this.unsigned&&this.high<0},R.isPositive=function(){return this.unsigned||this.high>=0},R.isOdd=function(){return(this.low&1)===1},R.isEven=function(){return(this.low&1)===0},R.equals=function(S){return r(S)||(S=d(S)),this.unsigned!==S.unsigned&&this.high>>>31===1&&S.high>>>31===1?!1:this.high===S.high&&this.low===S.low},R.eq=R.equals,R.notEquals=function(S){return!this.eq(S)},R.neq=R.notEquals,R.ne=R.notEquals,R.lessThan=function(S){return this.comp(S)<0},R.lt=R.lessThan,R.lessThanOrEqual=function(S){return this.comp(S)<=0},R.lte=R.lessThanOrEqual,R.le=R.lessThanOrEqual,R.greaterThan=function(S){return this.comp(S)>0},R.gt=R.greaterThan,R.greaterThanOrEqual=function(S){return this.comp(S)>=0},R.gte=R.greaterThanOrEqual,R.ge=R.greaterThanOrEqual,R.compare=function(S){if(r(S)||(S=d(S)),this.eq(S))return 0;var M=this.isNegative(),L=S.isNegative();return M&&!L?-1:!M&&L?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},R.comp=R.compare,R.negate=function(){return!this.unsigned&&this.eq($)?$:this.not().add(w)},R.neg=R.negate,R.add=function(S){r(S)||(S=d(S));var M=this.high>>>16,L=this.high&65535,U=this.low>>>16,K=this.low&65535,q=S.high>>>16,Z=S.high&65535,J=S.low>>>16,Q=S.low&65535,ie=0,re=0,de=0,ue=0;return ue+=K+Q,de+=ue>>>16,ue&=65535,de+=U+J,re+=de>>>16,de&=65535,re+=L+Z,ie+=re>>>16,re&=65535,ie+=M+q,ie&=65535,u(de<<16|ue,ie<<16|re,this.unsigned)},R.subtract=function(S){return r(S)||(S=d(S)),this.add(S.neg())},R.sub=R.subtract,R.multiply=function(S){if(this.isZero())return A;if(r(S)||(S=d(S)),n){var M=n.mul(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(S.isZero())return A;if(this.eq($))return S.isOdd()?$:A;if(S.eq($))return this.isOdd()?$:A;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(x)&&S.lt(x))return l(this.toNumber()*S.toNumber(),this.unsigned);var L=this.high>>>16,U=this.high&65535,K=this.low>>>16,q=this.low&65535,Z=S.high>>>16,J=S.high&65535,Q=S.low>>>16,ie=S.low&65535,re=0,de=0,ue=0,Ae=0;return Ae+=q*ie,ue+=Ae>>>16,Ae&=65535,ue+=K*ie,de+=ue>>>16,ue&=65535,ue+=q*Q,de+=ue>>>16,ue&=65535,de+=U*ie,re+=de>>>16,de&=65535,de+=K*Q,re+=de>>>16,de&=65535,de+=q*J,re+=de>>>16,de&=65535,re+=L*ie+U*Q+K*J+q*Z,re&=65535,u(ue<<16|Ae,re<<16|de,this.unsigned)},R.mul=R.multiply,R.divide=function(S){if(r(S)||(S=d(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var M=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?b:A;var L,U,K;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return b;if(S.gt(this.shru(1)))return k;K=b}else{if(this.eq($)){if(S.eq(w)||S.eq(C))return $;if(S.eq($))return w;var q=this.shr(1);return L=q.div(S).shl(1),L.eq(A)?S.isNegative()?w:C:(U=this.sub(S.mul(L)),K=L.add(U.div(S)),K)}else if(S.eq($))return this.unsigned?b:A;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();K=A}for(U=this;U.gte(S);){L=Math.max(1,Math.floor(U.toNumber()/S.toNumber()));for(var Z=Math.ceil(Math.log(L)/Math.LN2),J=Z<=48?1:c(2,Z-48),Q=l(L),ie=Q.mul(S);ie.isNegative()||ie.gt(U);)L-=J,Q=l(L,this.unsigned),ie=Q.mul(S);Q.isZero()&&(Q=w),K=K.add(Q),U=U.sub(ie)}return K},R.div=R.divide,R.modulo=function(S){if(r(S)||(S=d(S)),n){var M=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(M,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},R.mod=R.modulo,R.rem=R.modulo,R.not=function(){return u(~this.low,~this.high,this.unsigned)},R.and=function(S){return r(S)||(S=d(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},R.or=function(S){return r(S)||(S=d(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},R.xor=function(S){return r(S)||(S=d(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},R.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},R.shl=R.shiftLeft,R.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},R.shr=R.shiftRight,R.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var M=this.high;if(S<32){var L=this.low;return u(L>>>S|M<<32-S,M>>>S,this.unsigned)}else return S===32?u(M,0,this.unsigned):u(M>>>S-32,0,this.unsigned)},R.shru=R.shiftRightUnsigned,R.shr_u=R.shiftRightUnsigned,R.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},R.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},R.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},R.toBytesLE=function(){var S=this.high,M=this.low;return[M&255,M>>>8&255,M>>>16&255,M>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},R.toBytesBE=function(){var S=this.high,M=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,M>>>24,M>>>16&255,M>>>8&255,M&255]},s.fromBytes=function(S,M,L){return L?s.fromBytesLE(S,M):s.fromBytesBE(S,M)},s.fromBytesLE=function(S,M){return new s(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,M)},s.fromBytesBE=function(S,M){return new s(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],M)}}}),R_=un({"(disabled):node_modules/.pnpm/node-fetch@2.6.7/node_modules/node-fetch/browser.js"(){}}),__=un({"(disabled):util"(){}}),D_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/alea.js"(e,t){(function(n,s,r){function a(u){var c=this,p=l();c.next=function(){var d=2091639*c.s0+c.c*23283064365386963e-26;return c.s0=c.s1,c.s1=c.s2,c.s2=d-(c.c=d|0)},c.c=1,c.s0=p(" "),c.s1=p(" "),c.s2=p(" "),c.s0-=p(u),c.s0<0&&(c.s0+=1),c.s1-=p(u),c.s1<0&&(c.s1+=1),c.s2-=p(u),c.s2<0&&(c.s2+=1),p=null}function o(u,c){return c.c=u.c,c.s0=u.s0,c.s1=u.s1,c.s2=u.s2,c}function i(u,c){var p=new a(u),d=c&&c.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,d&&(typeof d=="object"&&o(d,p),h.state=function(){return o(p,{})}),h}function l(){var u=4022871197,c=function(p){p=String(p);for(var d=0;d<p.length;d++){u+=p.charCodeAt(d);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return c}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.alea=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),$_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor128.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var d=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^d^d>>>8},l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor128=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),P_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorwow.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(d^d<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:c+=l;for(var p=0;p<c.length+64;p++)u.x^=c.charCodeAt(p)|0,p==c.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function o(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorwow=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),F_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xorshift7.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.x,d=u.i,h,f,m;return h=p[d],h^=h>>>7,f=h^h<<24,h=p[d+1&7],f^=h^h>>>10,h=p[d+3&7],f^=h^h>>>3,h=p[d+4&7],f^=h^h<<7,h=p[d+7&7],h=h^h<<13,f^=h^h<<9,p[d]=f,u.i=d+1&7,f};function c(p,d){var h,f,m=[];if(d===(d|0))f=m[0]=d;else for(d=""+d,h=0;h<d.length;++h)m[h&7]=m[h&7]<<15^d.charCodeAt(h)+m[h+1&7]<<13;for(;m.length<8;)m.push(0);for(h=0;h<8&&m[h]===0;++h);for(h==8?f=m[7]=-1:f=m[h],p.x=m,p.i=0,h=256;h>0;--h)p.next()}c(u,l)}function o(l,u){return u.x=l.x.slice(),u.i=l.i,u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.x&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xorshift7=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),O_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/xor4096.js"(e,t){(function(n,s,r){function a(l){var u=this;u.next=function(){var p=u.w,d=u.X,h=u.i,f,m;return u.w=p=p+1640531527|0,m=d[h+34&127],f=d[h=h+1&127],m^=m<<13,f^=f<<17,m^=m>>>15,f^=f>>>12,m=d[h]=m^f,u.i=h,m+(p^p>>>16)|0};function c(p,d){var h,f,m,g,y,x=[],A=128;for(d===(d|0)?(f=d,d=null):(d=d+"\0",f=0,A=Math.max(A,d.length)),m=0,g=-32;g<A;++g)d&&(f^=d.charCodeAt((g+32)%d.length)),g===0&&(y=f),f^=f<<10,f^=f>>>15,f^=f<<4,f^=f>>>13,g>=0&&(y=y+1640531527|0,h=x[g&127]^=f+y,m=h==0?m+1:0);for(m>=128&&(x[(d&&d.length||0)&127]=-1),m=127,g=4*128;g>0;--g)f=x[m+34&127],h=x[m=m+1&127],f^=f<<13,h^=h<<17,f^=f>>>15,h^=h>>>12,x[m]=f^h;p.w=y,p.X=x,p.i=m}c(u,l)}function o(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function i(l,u){l==null&&(l=+new Date);var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(p.X&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.xor4096=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),M_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/lib/tychei.js"(e,t){(function(n,s,r){function a(l){var u=this,c="";u.next=function(){var d=u.b,h=u.c,f=u.d,m=u.a;return d=d<<25^d>>>7^h,h=h-f|0,f=f<<24^f>>>8^m,m=m-d|0,u.b=d=d<<20^d>>>12^h,u.c=h=h-f|0,u.d=f<<16^h>>>16^m,u.a=m-d|0},u.a=0,u.b=0,u.c=-1640531527,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):c+=l;for(var p=0;p<c.length+20;p++)u.b^=c.charCodeAt(p)|0,u.next()}function o(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function i(l,u){var c=new a(l),p=u&&u.state,d=function(){return(c.next()>>>0)/4294967296};return d.double=function(){do var h=c.next()>>>11,f=(c.next()>>>0)/4294967296,m=(h+f)/(1<<21);while(m===0);return m},d.int32=c.next,d.quick=d,p&&(typeof p=="object"&&o(p,c),d.state=function(){return o(c,{})}),d}s&&s.exports?s.exports=i:r&&r.amd?r(function(){return i}):this.tychei=i})(e,typeof t=="object"&&t,typeof define=="function"&&define)}}),z_=un({"(disabled):crypto"(){}}),L_=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/seedrandom.js"(e,t){(function(n,s,r){var a=256,o=6,i=52,l="random",u=r.pow(a,o),c=r.pow(2,i),p=c*2,d=a-1,h;function f(w,k,C){var E=[];k=k==!0?{entropy:!0}:k||{};var _=x(y(k.entropy?[w,b(s)]:w==null?A():w,3),E),$=new m(E),R=function(){for(var P=$.g(o),S=u,M=0;P<c;)P=(P+M)*a,S*=a,M=$.g(1);for(;P>=p;)P/=2,S/=2,M>>>=1;return(P+M)/S};return R.int32=function(){return $.g(4)|0},R.quick=function(){return $.g(4)/4294967296},R.double=R,x(b($.S),s),(k.pass||C||function(P,S,M,L){return L&&(L.S&&g(L,$),P.state=function(){return g($,{})}),M?(r[l]=P,S):P})(R,_,"global"in k?k.global:this==r,k.state)}function m(w){var k,C=w.length,E=this,_=0,$=E.i=E.j=0,R=E.S=[];for(C||(w=[C++]);_<a;)R[_]=_++;for(_=0;_<a;_++)R[_]=R[$=d&$+w[_%C]+(k=R[_])],R[$]=k;(E.g=function(P){for(var S,M=0,L=E.i,U=E.j,K=E.S;P--;)S=K[L=d&L+1],M=M*a+K[d&(K[L]=K[U=d&U+S])+(K[U]=S)];return E.i=L,E.j=U,M})(a)}function g(w,k){return k.i=w.i,k.j=w.j,k.S=w.S.slice(),k}function y(w,k){var C=[],E=typeof w,_;if(k&&E=="object")for(_ in w)try{C.push(y(w[_],k-1))}catch($){}return C.length?C:E=="string"?w:w+"\0"}function x(w,k){for(var C=w+"",E,_=0;_<C.length;)k[d&_]=d&(E^=k[d&_]*19)+C.charCodeAt(_++);return b(k)}function A(){try{var w;return h&&(w=h.randomBytes)?w=w(a):(w=new Uint8Array(a),(n.crypto||n.msCrypto).getRandomValues(w)),b(w)}catch(E){var k=n.navigator,C=k&&k.plugins;return[+new Date,n,C,n.screen,b(s)]}}function b(w){return String.fromCharCode.apply(0,w)}if(x(r.random(),s),typeof t=="object"&&t.exports){t.exports=f;try{h=z_()}catch(w){}}else typeof define=="function"&&define.amd?define(function(){return f}):r["seed"+l]=f})(typeof self!="undefined"?self:e,[],Math)}}),Jm=un({"node_modules/.pnpm/seedrandom@3.0.5/node_modules/seedrandom/index.js"(e,t){var n=D_(),s=$_(),r=P_(),a=F_(),o=O_(),i=M_(),l=L_();l.alea=n,l.xor128=s,l.xorwow=r,l.xorshift7=a,l.xor4096=o,l.tychei=i,t.exports=l}}),m6=un({"(disabled):node_modules/.pnpm/string_decoder@1.3.0/node_modules/string_decoder/lib/string_decoder.js"(){}}),$y=un({"(disabled):fs"(){}}),bm=un({"(disabled):path"(){}}),B_=un({"(disabled):worker_threads"(){}}),W_=un({"(disabled):perf_hooks"(){}}),V_=un({"(disabled):os"(){}}),U_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};function a(){return Oe.buffer!=Jn&&Ir(Oe.buffer),ff}function o(){return Oe.buffer!=Jn&&Ir(Oe.buffer),mf}function i(){return Oe.buffer!=Jn&&Ir(Oe.buffer),Gd}function l(){return Oe.buffer!=Jn&&Ir(Oe.buffer),gf}function u(){return Oe.buffer!=Jn&&Ir(Oe.buffer),yf}function c(){return Oe.buffer!=Jn&&Ir(Oe.buffer),Af}function p(){return Oe.buffer!=Jn&&Ir(Oe.buffer),xf}var d=typeof r!="undefined"?r:{},h,f;d.ready=new Promise(function(N,F){h=N,f=F});var m;typeof process!="undefined"&&process.listeners&&(m={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var g=Object.assign({},d),y=[],x="./this.program",A=(N,F)=>{throw F},b=typeof window=="object",w=typeof importScripts=="function",k=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",C=d.ENVIRONMENT_IS_PTHREAD||!1,E="";function _(N){return d.locateFile?d.locateFile(N,E):E+N}var $,R,P,S;function M(N){if(N instanceof ep)return;Q("exiting due to exception: "+N)}var L,U,K;if(k){w?E=bm().dirname(E)+"/":E=__dirname+"/",K=()=>{U||(L=$y(),U=bm())},$=function(G,te){return K(),G=U.normalize(G),L.readFileSync(G,te?void 0:"utf8")},P=F=>{var G=$(F,!0);return G.buffer||(G=new Uint8Array(G)),G},R=(F,G,te)=>{K(),F=U.normalize(F),L.readFile(F,function(xe,we){xe?te(xe):G(we.buffer)})},process.argv.length>1&&(x=process.argv[1].replace(/\\/g,"/")),y=process.argv.slice(2),process.on("uncaughtException",function(F){if(!(F instanceof ep))throw F}),process.on("unhandledRejection",function(F){throw F}),A=(F,G)=>{if(Pi())throw process.exitCode=F,G;M(G),process.exit(F)},d.inspect=function(){return"[Emscripten Module object]"};let N;try{N=B_()}catch(F){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),F}global.Worker=N.Worker}else(b||w)&&(w?E=self.location.href:typeof document!="undefined"&&document.currentScript&&(E=document.currentScript.src),typeof s!="undefined"&&s&&(E=s),E.indexOf("blob:")!==0?E=E.substr(0,E.replace(/[?#].*/,"").lastIndexOf("/")+1):E="",k||($=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.send(null),F.responseText},w&&(P=N=>{var F=new XMLHttpRequest;return F.open("GET",N,!1),F.responseType="arraybuffer",F.send(null),new Uint8Array(F.response)}),R=(N,F,G)=>{var te=new XMLHttpRequest;te.open("GET",N,!0),te.responseType="arraybuffer",te.onload=()=>{if(te.status==200||te.status==0&&te.response){F(te.response);return}G()},te.onerror=G,te.send(null)}),S=N=>document.title=N);k&&typeof performance=="undefined"&&(global.performance=W_().performance);var q=console.log.bind(console),Z=console.warn.bind(console);k&&(K(),q=N=>L.writeSync(1,N+`
`),Z=N=>L.writeSync(2,N+`
`));var J=d.print||q,Q=d.printErr||Z;Object.assign(d,g),g=null,d.arguments&&(y=d.arguments),d.thisProgram&&(x=d.thisProgram),d.quit&&(A=d.quit);var ie=4;function re(N){re.shown||(re.shown={}),re.shown[N]||(re.shown[N]=1,Q(N))}function de(N,F){if(typeof WebAssembly.Function=="function"){for(var G={i:"i32",j:"i64",f:"f32",d:"f64"},te={parameters:[],results:F[0]=="v"?[]:[G[F[0]]]},xe=1;xe<F.length;++xe)te.parameters.push(G[F[xe]]);return new WebAssembly.Function(te,N)}var we=[1,0,1,96],Ne=F.slice(0,1),Le=F.slice(1),Lt={i:127,j:126,f:125,d:124};we.push(Le.length);for(var xe=0;xe<Le.length;++xe)we.push(Lt[Le[xe]]);Ne=="v"?we.push(0):we=we.concat([1,Lt[Ne]]),we[1]=we.length-2;var Er=new Uint8Array([0,97,115,109,1,0,0,0].concat(we,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Rr=new WebAssembly.Module(Er),qf=new WebAssembly.Instance(Rr,{e:{f:N}}),tp=qf.exports.f;return tp}var ue=[],Ae;function oe(){if(ue.length)return ue.pop();try{qs.grow(1)}catch(N){throw N instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":N}return qs.length-1}function Re(N,F){for(var G=N;G<N+F;G++){var te=Mu(G);te&&Ae.set(te,G)}}var _e=0,Ve=N=>{_e=N},Me=Atomics.load,it=Atomics.store,gt=Atomics.compareExchange,pt;d.wasmBinary&&(pt=d.wasmBinary);var yt=d.noExitRuntime||!0;typeof WebAssembly!="object"&&Pu("no native wasm support detected");var Oe,Ct,kt=!1,Kn;function nn(N,F){N||Pu(F)}function Ss(N){var F=d["_"+N];return F}function fn(N,F,G,te,xe){var we={string:function(Ts){var Gu=0;if(Ts!=null&&Ts!==0){var kv=(Ts.length<<2)+1;Gu=Uu(kv),ha(Ts,Gu,kv)}return Gu},array:function(Ts){var Gu=Uu(Ts.length);return fa(Ts,Gu),Gu}};function Ne(Ts){return F==="string"?Yn(Ts):F==="boolean"?Boolean(Ts):Ts}var Le=Ss(N),Lt=[],Er=0;if(te)for(var Rr=0;Rr<te.length;Rr++){var qf=we[G[Rr]];qf?(Er===0&&(Er=c3()),Lt[Rr]=qf(te[Rr])):Lt[Rr]=te[Rr]}var tp=Le.apply(null,Lt);function y_(Ts){return Er!==0&&Uf(Er),Ne(Ts)}return tp=y_(tp),tp}function Zn(N,F,G,te){G=G||[];var xe=G.every(function(Ne){return Ne==="number"}),we=F!=="string";return we&&xe&&!te?Ss(N):function(){return fn(N,F,G,arguments,te)}}var Is=1;function Cs(N){var F=new TextDecoder(N);this.decode=G=>(G.buffer instanceof SharedArrayBuffer&&(G=new Uint8Array(G)),F.decode.call(F,G))}var Bn=typeof TextDecoder!="undefined"?new Cs("utf8"):void 0;function js(N,F,G){for(var te=F+G,xe=F;N[xe]&&!(xe>=te);)++xe;if(xe-F>16&&N.subarray&&Bn)return Bn.decode(N.subarray(F,xe));for(var we="";F<xe;){var Ne=N[F++];if(!(Ne&128)){we+=String.fromCharCode(Ne);continue}var Le=N[F++]&63;if((Ne&224)==192){we+=String.fromCharCode((Ne&31)<<6|Le);continue}var Lt=N[F++]&63;if((Ne&240)==224?Ne=(Ne&15)<<12|Le<<6|Lt:Ne=(Ne&7)<<18|Le<<12|Lt<<6|N[F++]&63,Ne<65536)we+=String.fromCharCode(Ne);else{var Er=Ne-65536;we+=String.fromCharCode(55296|Er>>10,56320|Er&1023)}}return we}function Yn(N,F){return N?js(o(),N,F):""}function pa(N,F,G,te){if(!(te>0))return 0;for(var xe=G,we=G+te-1,Ne=0;Ne<N.length;++Ne){var Le=N.charCodeAt(Ne);if(Le>=55296&&Le<=57343){var Lt=N.charCodeAt(++Ne);Le=65536+((Le&1023)<<10)|Lt&1023}if(Le<=127){if(G>=we)break;F[G++]=Le}else if(Le<=2047){if(G+1>=we)break;F[G++]=192|Le>>6,F[G++]=128|Le&63}else if(Le<=65535){if(G+2>=we)break;F[G++]=224|Le>>12,F[G++]=128|Le>>6&63,F[G++]=128|Le&63}else{if(G+3>=we)break;F[G++]=240|Le>>18,F[G++]=128|Le>>12&63,F[G++]=128|Le>>6&63,F[G++]=128|Le&63}}return F[G]=0,G-xe}function ha(N,F,G){return pa(N,o(),F,G)}function _u(N){for(var F=0,G=0;G<N.length;++G){var te=N.charCodeAt(G);te>=55296&&te<=57343&&(te=65536+((te&1023)<<10)|N.charCodeAt(++G)&1023),te<=127?++F:te<=2047?F+=2:te<=65535?F+=3:F+=4}return F}var Ba=typeof TextDecoder!="undefined"?new Cs("utf-16le"):void 0;function fa(N,F){a().set(N,F)}function Ud(N,F,G){for(var te=0;te<N.length;++te)a()[F++>>0]=N.charCodeAt(te);G||(a()[F>>0]=0)}function Du(N,F){return N%F>0&&(N+=F-N%F),N}var Jn,ff,mf,Gd,gf,yf,sv,Af,xf;C&&(Jn=d.buffer);function Ir(N){Jn=N,d.HEAP8=ff=new Int8Array(N),d.HEAP16=Gd=new Int16Array(N),d.HEAP32=yf=new Int32Array(N),d.HEAPU8=mf=new Uint8Array(N),d.HEAPU16=gf=new Uint16Array(N),d.HEAPU32=sv=new Uint32Array(N),d.HEAPF32=Af=new Float32Array(N),d.HEAPF64=xf=new Float64Array(N)}var bf=d.INITIAL_MEMORY||16777216;if(C)Oe=d.wasmMemory,Jn=d.buffer;else if(d.wasmMemory)Oe=d.wasmMemory;else if(Oe=new WebAssembly.Memory({initial:bf/65536,maximum:32768,shared:!0}),!(Oe.buffer instanceof SharedArrayBuffer))throw Q("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),k&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Oe&&(Jn=Oe.buffer),bf=Jn.byteLength,Ir(Jn);var qs,$u=[],Wa=[],_1=[],vf=[],$i=!1,D1=!1,wf=0;function Pi(){return yt||wf>0}function Qn(){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)rv(d.preRun.shift());Cf($u)}function Hd(){$i=!0,!C&&Cf(Wa)}function $1(){C||(Be.terminateAllThreads(),D1=!0)}function P1(){if(!C){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)jd(d.postRun.shift());Cf(vf)}}function rv(N){$u.unshift(N)}function av(N){Wa.unshift(N)}function jd(N){vf.unshift(N)}var Va=0,kf=null,Cr=null;function qd(N){Va++,d.monitorRunDependencies&&d.monitorRunDependencies(Va)}function ov(N){if(Va--,d.monitorRunDependencies&&d.monitorRunDependencies(Va),Va==0&&(kf!==null&&(clearInterval(kf),kf=null),Cr)){var F=Cr;Cr=null,F()}}d.preloadedImages={},d.preloadedAudios={};function Pu(N){C?postMessage({cmd:"onAbort",arg:N}):d.onAbort&&d.onAbort(N),N="Aborted("+N+")",Q(N),kt=!0,Kn=1,N+=". Build with -s ASSERTIONS=1 for more info.";var F=new WebAssembly.RuntimeError(N);throw f(F),F}var F1="data:application/octet-stream;base64,";function Xd(N){return N.startsWith(F1)}function Sf(N){return N.startsWith("file://")}var es;es="tfjs-backend-wasm-threaded-simd.wasm",Xd(es)||(es=_(es));function If(N){try{if(N==es&&pt)return new Uint8Array(pt);if(P)return P(N);throw"both async and sync fetching of the wasm failed"}catch(F){Pu(F)}}function Fu(){if(!pt&&(b||w)){if(typeof fetch=="function"&&!Sf(es))return fetch(es,{credentials:"same-origin"}).then(function(N){if(!N.ok)throw"failed to load wasm binary file at '"+es+"'";return N.arrayBuffer()}).catch(function(){return If(es)});if(R)return new Promise(function(N,F){R(es,function(G){N(new Uint8Array(G))},F)})}return Promise.resolve().then(function(){return If(es)})}function O1(){var N={env:zf,wasi_snapshot_preview1:zf};function F(Ne,Le){var Lt=Ne.exports;if(d.asm=Lt,U1(d.asm.emscripten_tls_init),qs=d.asm.__indirect_function_table,av(d.asm.__wasm_call_ctors),Ct=Le,!C){var Er=Be.unusedWorkers.length;Be.unusedWorkers.forEach(function(Rr){Be.loadWasmModuleToWorker(Rr,function(){--Er||ov("wasm-instantiate")})})}}C||qd("wasm-instantiate");function G(Ne){F(Ne.instance,Ne.module)}function te(Ne){return Fu().then(function(Le){return WebAssembly.instantiate(Le,N)}).then(function(Le){return Le}).then(Ne,function(Le){Q("failed to asynchronously prepare wasm: "+Le),Pu(Le)})}function xe(){return!pt&&typeof WebAssembly.instantiateStreaming=="function"&&!Xd(es)&&!Sf(es)&&typeof fetch=="function"?fetch(es,{credentials:"same-origin"}).then(function(Ne){var Le=WebAssembly.instantiateStreaming(Ne,N);return Le.then(G,function(Lt){return Q("wasm streaming compile failed: "+Lt),Q("falling back to ArrayBuffer instantiation"),te(G)})}):te(G)}if(d.instantiateWasm)try{var we=d.instantiateWasm(N,F);return we}catch(Ne){return Q("Module.instantiateWasm callback failed with error: "+Ne),!1}return xe().catch(f),{}}var iv,lv,M1={};function Cf(N){for(;N.length>0;){var F=N.shift();if(typeof F=="function"){F(d);continue}var G=F.func;typeof G=="number"?F.arg===void 0?Mu(G)():Mu(G)(F.arg):G(F.arg===void 0?null:F.arg)}}function Ou(N){var F=c3(),G=N();return Uf(F),G}function IR(N){return N}function uv(N){var F=/\b_Z[\w\d_]+/g;return N.replace(F,function(G){var te=G;return G===te?G:te+" ["+G+"]"})}function z1(N){u()[N>>2]=0;var F=Be.pthreads[N];delete Be.pthreads[N],F.worker.terminate(),u3(N),Be.runningWorkers.splice(Be.runningWorkers.indexOf(F.worker),1),F.worker.pthread=void 0}function L1(N){var F=Be.pthreads[N];F.worker.postMessage({cmd:"cancel"})}function Tf(N){var F=Be.pthreads[N];if(F){u()[N>>2]=0;var G=F.worker;Be.returnWorkerToPool(G)}}function Nf(N){f_(N)}function B1(N){if(N instanceof ep||N=="unwind")return Kn;A(1,N)}var Be={unusedWorkers:[],runningWorkers:[],tlsInitFunctions:[],init:function(){C?Be.initWorker():Be.initMainThread()},initMainThread:function(){for(var N=8,F=0;F<N;++F)Be.allocateUnusedWorker()},initWorker:function(){yt=!1},pthreads:{},setExitStatus:function(N){Kn=N},terminateAllThreads:function(){for(var N in Be.pthreads){var F=Be.pthreads[N];F&&F.worker&&Be.returnWorkerToPool(F.worker)}for(var G=0;G<Be.unusedWorkers.length;++G){var te=Be.unusedWorkers[G];te.terminate()}Be.unusedWorkers=[]},returnWorkerToPool:function(N){Be.runWithoutMainThreadQueuedCalls(function(){delete Be.pthreads[N.pthread.threadInfoStruct],Be.unusedWorkers.push(N),Be.runningWorkers.splice(Be.runningWorkers.indexOf(N),1),u3(N.pthread.threadInfoStruct),N.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(N){u()[wv>>2]=0;try{N()}finally{u()[wv>>2]=1}},receiveObjectTransfer:function(N){},threadInit:function(){for(var N in Be.tlsInitFunctions)Be.tlsInitFunctions[N]()},loadWasmModuleToWorker:function(N,F){N.onmessage=G=>{var te=G.data,xe=te.cmd;if(N.pthread&&(Be.currentProxiedOperationCallerThread=N.pthread.threadInfoStruct),te.targetThread&&te.targetThread!=Vf()){var we=Be.pthreads[te.targetThread];we?we.worker.postMessage(te,te.transferList):Q('Internal error! Worker sent a message "'+xe+'" to target pthread '+te.targetThread+", but that thread no longer exists!"),Be.currentProxiedOperationCallerThread=void 0;return}xe==="processQueuedMainThreadWork"?yv():xe==="spawnThread"?Rf(te):xe==="cleanupThread"?Tf(te.thread):xe==="killThread"?z1(te.thread):xe==="cancelThread"?L1(te.thread):xe==="loaded"?(N.loaded=!0,F&&F(N),N.runPthread&&(N.runPthread(),delete N.runPthread)):xe==="print"?J("Thread "+te.threadId+": "+te.text):xe==="printErr"?Q("Thread "+te.threadId+": "+te.text):xe==="alert"?alert("Thread "+te.threadId+": "+te.text):te.target==="setimmediate"?N.postMessage(te):xe==="onAbort"?d.onAbort&&d.onAbort(te.arg):Q("worker sent an unknown command "+xe),Be.currentProxiedOperationCallerThread=void 0},N.onerror=G=>{var te="worker sent an error!";throw Q(te+" "+G.filename+":"+G.lineno+": "+G.message),G},k&&(N.on("message",function(G){N.onmessage({data:G})}),N.on("error",function(G){N.onerror(G)}),N.on("detachedExit",function(){})),N.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||s,wasmMemory:Oe,wasmModule:Ct})},allocateUnusedWorker:function(){var N=_("tfjs-backend-wasm-threaded-simd.worker.js");Be.unusedWorkers.push(new Worker(N))},getNewWorker:function(){return Be.unusedWorkers.length==0&&(Be.allocateUnusedWorker(),Be.loadWasmModuleToWorker(Be.unusedWorkers[0])),Be.unusedWorkers.pop()}};function W1(){var N=Vf(),F=u()[N+44>>2],G=u()[N+48>>2],te=F-G;vv(F,te),Uf(F)}d.establishStackSpace=W1;function Ef(N){if(C)return Mi(1,0,N);try{Nf(N)}catch(F){B1(F)}}var Fi=[];function Mu(N){var F=Fi[N];return F||(N>=Fi.length&&(Fi.length=N+1),Fi[N]=F=qs.get(N)),F}function V1(N,F){return Mu(N)(F)}d.invokeEntryPoint=V1;function cv(){var N=new Error;if(!N.stack){try{throw new Error}catch(F){N=F}if(!N.stack)return"(no stack trace available)"}return N.stack.toString()}function U1(N,F,G){Be.tlsInitFunctions.push(N)}function dv(N,F){qs.set(N,F),Fi[N]=F}var Oi;k?Oi=()=>{var N=process.hrtime();return N[0]*1e3+N[1]/1e6}:C?Oi=()=>performance.now()-d.__performance_now_clock_drift:Oi=()=>performance.now();var G1=!0;function H1(N){return u()[gv()>>2]=N,N}function j1(N,F){var G;if(N===0)G=Date.now();else if((N===1||N===4)&&G1)G=Oi();else return H1(28),-1;return u()[F>>2]=G/1e3|0,u()[F+4>>2]=G%1e3*1e3*1e3|0,0}function q1(N,F){return j1(N,F)}function X1(N){Av(N,!w,1,!b),Be.threadInit()}function K1(N){C?postMessage({cmd:"cleanupThread",thread:N}):Tf(N)}function Rf(N){var F=Be.getNewWorker();if(!F)return 6;Be.runningWorkers.push(F);var G=Be.pthreads[N.pthread_ptr]={worker:F,threadInfoStruct:N.pthread_ptr};F.pthread=G;var te={cmd:"run",start_routine:N.startRoutine,arg:N.arg,threadInfoStruct:N.pthread_ptr};return F.runPthread=()=>{te.time=performance.now(),F.postMessage(te,N.transferList)},F.loaded&&(F.runPthread(),delete F.runPthread),0}function Z1(N,F,G,te){if(typeof SharedArrayBuffer=="undefined")return Q("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;var xe=[],we=0;if(C&&(xe.length===0||we))return xv(687865856,N,F,G,te);if(we)return we;var Ne={startRoutine:G,pthread_ptr:N,arg:te,transferList:xe};return C?(Ne.cmd="spawnThread",postMessage(Ne,xe),0):Rf(Ne)}function Y1(){return 2097152}function J1(N,F){if(N==F)postMessage({cmd:"processQueuedMainThreadWork"});else if(C)postMessage({targetThread:N,cmd:"processThreadQueue"});else{var G=Be.pthreads[N],te=G&&G.worker;if(!te)return;te.postMessage({cmd:"processThreadQueue"})}return 1}function Q1(){Pu("")}function eg(){k||w||re("Blocking on the main thread is very dangerous, see https://emscripten.org/docs/porting/pthreads.html#blocking-on-the-main-browser-thread")}function _f(){return 2147483648}function tg(N,F,G){o().copyWithin(N,F,F+G)}function ng(){return k?V_().cpus().length:navigator.hardwareConcurrency}function Mi(N,F){var G=arguments.length-2,te=arguments;return Ou(function(){for(var xe=G,we=Uu(xe*8),Ne=we>>3,Le=0;Le<G;Le++){var Lt=te[2+Le];p()[Ne+Le]=Lt}return bv(N,xe,we,F)})}var Kd=[];function sg(N,F,G){Kd.length=F;for(var te=G>>3,xe=0;xe<F;xe++)Kd[xe]=p()[te+xe];var we=N<0,Ne=we?M1[-N-1]:wg[N];return Ne.apply(null,Kd)}function rg(N){try{return Oe.grow(N-Jn.byteLength+65535>>>16),Ir(Oe.buffer),1}catch(F){}}function ag(N){var F=o().length;if(N=N>>>0,N<=F)return!1;var G=_f();if(N>G)return!1;for(var te=1;te<=4;te*=2){var xe=F*(1+.2/te);xe=Math.min(xe,N+100663296);var we=Math.min(G,Du(Math.max(N,xe),65536)),Ne=rg(we);if(Ne)return!0}return!1}var Qe={inEventHandler:0,removeAllEventListeners:function(){for(var N=Qe.eventHandlers.length-1;N>=0;--N)Qe._removeHandler(N);Qe.eventHandlers=[],Qe.deferredCalls=[]},registerRemoveEventListeners:function(){Qe.removeEventListenersRegistered||(_1.push(Qe.removeAllEventListeners),Qe.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(N,F,G){function te(Ne,Le){if(Ne.length!=Le.length)return!1;for(var Lt in Ne)if(Ne[Lt]!=Le[Lt])return!1;return!0}for(var xe in Qe.deferredCalls){var we=Qe.deferredCalls[xe];if(we.targetFunction==N&&te(we.argsList,G))return}Qe.deferredCalls.push({targetFunction:N,precedence:F,argsList:G}),Qe.deferredCalls.sort(function(Ne,Le){return Ne.precedence<Le.precedence})},removeDeferredCalls:function(N){for(var F=0;F<Qe.deferredCalls.length;++F)Qe.deferredCalls[F].targetFunction==N&&(Qe.deferredCalls.splice(F,1),--F)},canPerformEventHandlerRequests:function(){return Qe.inEventHandler&&Qe.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(!!Qe.canPerformEventHandlerRequests())for(var N=0;N<Qe.deferredCalls.length;++N){var F=Qe.deferredCalls[N];Qe.deferredCalls.splice(N,1),--N,F.targetFunction.apply(null,F.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(N,F){for(var G=0;G<Qe.eventHandlers.length;++G)Qe.eventHandlers[G].target==N&&(!F||F==Qe.eventHandlers[G].eventTypeString)&&Qe._removeHandler(G--)},_removeHandler:function(N){var F=Qe.eventHandlers[N];F.target.removeEventListener(F.eventTypeString,F.eventListenerFunc,F.useCapture),Qe.eventHandlers.splice(N,1)},registerOrRemoveHandler:function(N){var F=function(xe){++Qe.inEventHandler,Qe.currentEventHandler=N,Qe.runDeferredCalls(),N.handlerFunc(xe),Qe.runDeferredCalls(),--Qe.inEventHandler};if(N.callbackfunc)N.eventListenerFunc=F,N.target.addEventListener(N.eventTypeString,F,N.useCapture),Qe.eventHandlers.push(N),Qe.registerRemoveEventListeners();else for(var G=0;G<Qe.eventHandlers.length;++G)Qe.eventHandlers[G].target==N.target&&Qe.eventHandlers[G].eventTypeString==N.eventTypeString&&Qe._removeHandler(G--)},queueEventHandlerOnThread_iiii:function(N,F,G,te,xe){Ou(function(){var we=Uu(12);u()[we>>2]=G,u()[we+4>>2]=te,u()[we+8>>2]=xe,l3(N,637534208,F,te,we)})},getTargetThreadForEventCallback:function(N){switch(N){case 1:return 0;case 2:return Be.currentProxiedOperationCallerThread;default:return N}},getNodeNameForTarget:function(N){return N?N==window?"#window":N==screen?"#screen":N&&N.nodeName?N.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function og(N){var F=_u(N)+1,G=i3(F);return ha(N,G,F),G}function ig(N,F,G,te){Ou(function(){var xe=Uu(12),we=0;F&&(we=og(F)),u()[xe>>2]=we,u()[xe+4>>2]=G,u()[xe+8>>2]=te,l3(N,657457152,0,we,xe)})}function lg(N,F,G,te){F=F?Yn(F):"",ig(N,F,G,te)}function ug(N){return N>2?Yn(N):N}var cg=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function dg(N){N=ug(N);var F=cg[N]||(typeof document!="undefined"?document.querySelector(N):void 0);return F}function Zd(N){return dg(N)}function Df(N,F,G){var te=Zd(N);if(!te)return-4;if(te.canvasSharedPtr&&(u()[te.canvasSharedPtr>>2]=F,u()[te.canvasSharedPtr+4>>2]=G),te.offscreenCanvas||!te.controlTransferredOffscreen){te.offscreenCanvas&&(te=te.offscreenCanvas);var xe=!1;if(te.GLctxObject&&te.GLctxObject.GLctx){var we=te.GLctxObject.GLctx.getParameter(2978);xe=we[0]===0&&we[1]===0&&we[2]===te.width&&we[3]===te.height}te.width=F,te.height=G,xe&&te.GLctxObject.GLctx.viewport(0,0,F,G)}else if(te.canvasSharedPtr){var Ne=u()[te.canvasSharedPtr+8>>2];return lg(Ne,N,F,G),1}else return-4;return 0}function $f(N,F,G){return C?Mi(2,1,N,F,G):Df(N,F,G)}function pg(N,F,G){var te=Zd(N);return te?Df(N,F,G):$f(N,F,G)}function hg(){throw"unwind"}function fg(N){var F=N.getExtension("ANGLE_instanced_arrays");if(F)return N.vertexAttribDivisor=function(G,te){F.vertexAttribDivisorANGLE(G,te)},N.drawArraysInstanced=function(G,te,xe,we){F.drawArraysInstancedANGLE(G,te,xe,we)},N.drawElementsInstanced=function(G,te,xe,we,Ne){F.drawElementsInstancedANGLE(G,te,xe,we,Ne)},1}function mg(N){var F=N.getExtension("OES_vertex_array_object");if(F)return N.createVertexArray=function(){return F.createVertexArrayOES()},N.deleteVertexArray=function(G){F.deleteVertexArrayOES(G)},N.bindVertexArray=function(G){F.bindVertexArrayOES(G)},N.isVertexArray=function(G){return F.isVertexArrayOES(G)},1}function gg(N){var F=N.getExtension("WEBGL_draw_buffers");if(F)return N.drawBuffers=function(G,te){F.drawBuffersWEBGL(G,te)},1}function yg(N){return!!(N.multiDrawWebgl=N.getExtension("WEBGL_multi_draw"))}var zt={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},queries:[],stringCache:{},unpackAlignment:4,recordError:function(F){zt.lastError||(zt.lastError=F)},getNewId:function(N){for(var F=zt.counter++,G=N.length;G<F;G++)N[G]=null;return F},getSource:function(N,F,G,te){for(var xe="",we=0;we<F;++we){var Ne=te?u()[te+we*4>>2]:-1;xe+=Yn(u()[G+we*4>>2],Ne<0?void 0:Ne)}return xe},createContext:function(N,F){N.getContextSafariWebGL2Fixed||(N.getContextSafariWebGL2Fixed=N.getContext,N.getContext=function(xe,we){var Ne=N.getContextSafariWebGL2Fixed(xe,we);return xe=="webgl"==Ne instanceof WebGLRenderingContext?Ne:null});var G=N.getContext("webgl",F);if(!G)return 0;var te=zt.registerContext(G,F);return te},registerContext:function(N,F){var G=i3(8);u()[G+4>>2]=Vf();var te={handle:G,attributes:F,version:F.majorVersion,GLctx:N};return N.canvas&&(N.canvas.GLctxObject=te),zt.contexts[G]=te,(typeof F.enableExtensionsByDefault=="undefined"||F.enableExtensionsByDefault)&&zt.initExtensions(te),G},makeContextCurrent:function(N){return zt.currentContext=zt.contexts[N],d.ctx=Mf=zt.currentContext&&zt.currentContext.GLctx,!(N&&!Mf)},getContext:function(N){return zt.contexts[N]},deleteContext:function(N){zt.currentContext===zt.contexts[N]&&(zt.currentContext=null),typeof Qe=="object"&&Qe.removeAllHandlersOnTarget(zt.contexts[N].GLctx.canvas),zt.contexts[N]&&zt.contexts[N].GLctx.canvas&&(zt.contexts[N].GLctx.canvas.GLctxObject=void 0),mv(zt.contexts[N].handle),zt.contexts[N]=null},initExtensions:function(N){if(N||(N=zt.currentContext),!N.initExtensionsDone){N.initExtensionsDone=!0;var F=N.GLctx;fg(F),mg(F),gg(F),F.disjointTimerQueryExt=F.getExtension("EXT_disjoint_timer_query"),yg(F);var G=F.getSupportedExtensions()||[];G.forEach(function(te){!te.includes("lose_context")&&!te.includes("debug")&&F.getExtension(te)})}}},Ag=["default","low-power","high-performance"];function xg(N,F){var G=F>>2,te=u()[G+6],xe={alpha:!!u()[G+0],depth:!!u()[G+1],stencil:!!u()[G+2],antialias:!!u()[G+3],premultipliedAlpha:!!u()[G+4],preserveDrawingBuffer:!!u()[G+5],powerPreference:Ag[te],failIfMajorPerformanceCaveat:!!u()[G+7],majorVersion:u()[G+8],minorVersion:u()[G+9],enableExtensionsByDefault:u()[G+10],explicitSwapControl:u()[G+11],proxyContextToMainThread:u()[G+12],renderViaOffscreenBackBuffer:u()[G+13]},we=Zd(N);if(!we||xe.explicitSwapControl)return 0;var Ne=zt.createContext(we,xe);return Ne}function bg(N,F){return xg(N,F)}var zu={mappings:{},buffers:[null,[],[]],printChar:function(N,F){var G=zu.buffers[N];F===0||F===10?((N===1?J:Q)(js(G,0)),G.length=0):G.push(F)},varargs:void 0,get:function(){zu.varargs+=4;var N=u()[zu.varargs-4>>2];return N},getStr:function(N){var F=Yn(N);return F},get64:function(N,F){return N}};function Pf(N){return C?Mi(3,1,N):0}function Ff(N,F,G,te,xe){if(C)return Mi(4,1,N,F,G,te,xe)}function Of(N,F,G,te){if(C)return Mi(5,1,N,F,G,te);for(var xe=0,we=0;we<G;we++){var Ne=u()[F>>2],Le=u()[F+4>>2];F+=8;for(var Lt=0;Lt<Le;Lt++)zu.printChar(N,o()[Ne+Lt]);xe+=Le}return u()[te>>2]=xe,0}function vg(N){Ve(N)}Be.init();var Mf,wg=[null,Ef,$f,Pf,Ff,Of],pv=!1,zf={__clock_gettime:q1,__emscripten_init_main_thread_js:X1,__emscripten_thread_cleanup:K1,__pthread_create_js:Z1,_emscripten_default_pthread_stack_size:Y1,_emscripten_notify_thread_queue:J1,abort:Q1,emscripten_check_blocking_allowed:eg,emscripten_get_heap_max:_f,emscripten_get_now:Oi,emscripten_memcpy_big:tg,emscripten_num_logical_cores:ng,emscripten_receive_on_main_thread_js:sg,emscripten_resize_heap:ag,emscripten_set_canvas_element_size:pg,emscripten_unwind_to_js_event_loop:hg,emscripten_webgl_create_context:bg,exit:Nf,fd_close:Pf,fd_seek:Ff,fd_write:Of,memory:Oe||d.wasmMemory,setTempRet0:vg},hv=O1(),kg=d.___wasm_call_ctors=function(){return(kg=d.___wasm_call_ctors=d.asm.__wasm_call_ctors).apply(null,arguments)},Sg=d._init=function(){return(Sg=d._init=d.asm.init).apply(null,arguments)},Ig=d._init_with_threads_count=function(){return(Ig=d._init_with_threads_count=d.asm.init_with_threads_count).apply(null,arguments)},Cg=d._get_threads_count=function(){return(Cg=d._get_threads_count=d.asm.get_threads_count).apply(null,arguments)},Tg=d._register_tensor=function(){return(Tg=d._register_tensor=d.asm.register_tensor).apply(null,arguments)},Ng=d._dispose_data=function(){return(Ng=d._dispose_data=d.asm.dispose_data).apply(null,arguments)},Eg=d._dispose=function(){return(Eg=d._dispose=d.asm.dispose).apply(null,arguments)},Rg=d._Abs=function(){return(Rg=d._Abs=d.asm.Abs).apply(null,arguments)},_g=d._Add=function(){return(_g=d._Add=d.asm.Add).apply(null,arguments)},Dg=d._AddN=function(){return(Dg=d._AddN=d.asm.AddN).apply(null,arguments)},$g=d._All=function(){return($g=d._All=d.asm.All).apply(null,arguments)},Pg=d._Any=function(){return(Pg=d._Any=d.asm.Any).apply(null,arguments)},Fg=d._ArgMax=function(){return(Fg=d._ArgMax=d.asm.ArgMax).apply(null,arguments)},Og=d._AvgPool=function(){return(Og=d._AvgPool=d.asm.AvgPool).apply(null,arguments)},Mg=d._BatchMatMul=function(){return(Mg=d._BatchMatMul=d.asm.BatchMatMul).apply(null,arguments)},zg=d._Ceil=function(){return(zg=d._Ceil=d.asm.Ceil).apply(null,arguments)},Lg=d._ClipByValue=function(){return(Lg=d._ClipByValue=d.asm.ClipByValue).apply(null,arguments)},Bg=d._Conv2D=function(){return(Bg=d._Conv2D=d.asm.Conv2D).apply(null,arguments)},Wg=d._Conv2DBackpropInput=function(){return(Wg=d._Conv2DBackpropInput=d.asm.Conv2DBackpropInput).apply(null,arguments)},Vg=d._Cos=function(){return(Vg=d._Cos=d.asm.Cos).apply(null,arguments)},Ug=d._Cosh=function(){return(Ug=d._Cosh=d.asm.Cosh).apply(null,arguments)},Gg=d._CropAndResize=function(){return(Gg=d._CropAndResize=d.asm.CropAndResize).apply(null,arguments)},Hg=d._Cumprod=function(){return(Hg=d._Cumprod=d.asm.Cumprod).apply(null,arguments)},jg=d._Cumsum=function(){return(jg=d._Cumsum=d.asm.Cumsum).apply(null,arguments)},qg=d._DepthToSpace=function(){return(qg=d._DepthToSpace=d.asm.DepthToSpace).apply(null,arguments)},Xg=d._DepthwiseConv2dNative=function(){return(Xg=d._DepthwiseConv2dNative=d.asm.DepthwiseConv2dNative).apply(null,arguments)},Kg=d._Elu=function(){return(Kg=d._Elu=d.asm.Elu).apply(null,arguments)},Zg=d._Equal=function(){return(Zg=d._Equal=d.asm.Equal).apply(null,arguments)},Yg=d._Exp=function(){return(Yg=d._Exp=d.asm.Exp).apply(null,arguments)},Jg=d._FlipLeftRight=function(){return(Jg=d._FlipLeftRight=d.asm.FlipLeftRight).apply(null,arguments)},Qg=d._Floor=function(){return(Qg=d._Floor=d.asm.Floor).apply(null,arguments)},e3=d._FloorDiv=function(){return(e3=d._FloorDiv=d.asm.FloorDiv).apply(null,arguments)},t3=d._FusedBatchNorm=function(){return(t3=d._FusedBatchNorm=d.asm.FusedBatchNorm).apply(null,arguments)},n3=d._FusedConv2D=function(){return(n3=d._FusedConv2D=d.asm.FusedConv2D).apply(null,arguments)},Lf=d._FusedDepthwiseConv2D=function(){return(Lf=d._FusedDepthwiseConv2D=d.asm.FusedDepthwiseConv2D).apply(null,arguments)},Bf=d._Gather=function(){return(Bf=d._Gather=d.asm.Gather).apply(null,arguments)},Yd=d._GatherNd=function(){return(Yd=d._GatherNd=d.asm.GatherNd).apply(null,arguments)},s3=d._Greater=function(){return(s3=d._Greater=d.asm.Greater).apply(null,arguments)},r3=d._GreaterEqual=function(){return(r3=d._GreaterEqual=d.asm.GreaterEqual).apply(null,arguments)},Lu=d._LeakyRelu=function(){return(Lu=d._LeakyRelu=d.asm.LeakyRelu).apply(null,arguments)},Jd=d._Less=function(){return(Jd=d._Less=d.asm.Less).apply(null,arguments)},Qd=d._LessEqual=function(){return(Qd=d._LessEqual=d.asm.LessEqual).apply(null,arguments)},fv=d._Log=function(){return(fv=d._Log=d.asm.Log).apply(null,arguments)},Bu=d._LogicalAnd=function(){return(Bu=d._LogicalAnd=d.asm.LogicalAnd).apply(null,arguments)},Wu=d._LogicalNot=function(){return(Wu=d._LogicalNot=d.asm.LogicalNot).apply(null,arguments)},a3=d._LogicalOr=function(){return(a3=d._LogicalOr=d.asm.LogicalOr).apply(null,arguments)},X=d._LogicalXor=function(){return(X=d._LogicalXor=d.asm.LogicalXor).apply(null,arguments)},se=d._Max=function(){return(se=d._Max=d.asm.Max).apply(null,arguments)},be=d._MaxPool=function(){return(be=d._MaxPool=d.asm.MaxPool).apply(null,arguments)},De=d._Maximum=function(){return(De=d._Maximum=d.asm.Maximum).apply(null,arguments)},ht=d._Mean=function(){return(ht=d._Mean=d.asm.Mean).apply(null,arguments)},mt=d._Min=function(){return(mt=d._Min=d.asm.Min).apply(null,arguments)},nt=d._Minimum=function(){return(nt=d._Minimum=d.asm.Minimum).apply(null,arguments)},Ze=d._MirrorPad=function(){return(Ze=d._MirrorPad=d.asm.MirrorPad).apply(null,arguments)},sn=d._Multiply=function(){return(sn=d._Multiply=d.asm.Multiply).apply(null,arguments)},Tr=d._Neg=function(){return(Tr=d._Neg=d.asm.Neg).apply(null,arguments)},Nr=d._NonMaxSuppressionV3=function(){return(Nr=d._NonMaxSuppressionV3=d.asm.NonMaxSuppressionV3).apply(null,arguments)},Vu=d._NonMaxSuppressionV4=function(){return(Vu=d._NonMaxSuppressionV4=d.asm.NonMaxSuppressionV4).apply(null,arguments)},zi=d._NonMaxSuppressionV5=function(){return(zi=d._NonMaxSuppressionV5=d.asm.NonMaxSuppressionV5).apply(null,arguments)},o3=d._NotEqual=function(){return(o3=d._NotEqual=d.asm.NotEqual).apply(null,arguments)},ts=d._OneHot=function(){return(ts=d._OneHot=d.asm.OneHot).apply(null,arguments)},Ua=d._PadV2=function(){return(Ua=d._PadV2=d.asm.PadV2).apply(null,arguments)},Wf=d._Pow=function(){return(Wf=d._Pow=d.asm.Pow).apply(null,arguments)},CR=d._Prelu=function(){return(CR=d._Prelu=d.asm.Prelu).apply(null,arguments)},TR=d._Prod=function(){return(TR=d._Prod=d.asm.Prod).apply(null,arguments)},NR=d._RealDiv=function(){return(NR=d._RealDiv=d.asm.RealDiv).apply(null,arguments)},ER=d._Relu=function(){return(ER=d._Relu=d.asm.Relu).apply(null,arguments)},RR=d._Relu6=function(){return(RR=d._Relu6=d.asm.Relu6).apply(null,arguments)},_R=d._ResizeBilinear=function(){return(_R=d._ResizeBilinear=d.asm.ResizeBilinear).apply(null,arguments)},DR=d._ResizeNearestNeighbor=function(){return(DR=d._ResizeNearestNeighbor=d.asm.ResizeNearestNeighbor).apply(null,arguments)},$R=d._Reverse=function(){return($R=d._Reverse=d.asm.Reverse).apply(null,arguments)},PR=d._RotateWithOffset=function(){return(PR=d._RotateWithOffset=d.asm.RotateWithOffset).apply(null,arguments)},FR=d._Round=function(){return(FR=d._Round=d.asm.Round).apply(null,arguments)},OR=d._Rsqrt=function(){return(OR=d._Rsqrt=d.asm.Rsqrt).apply(null,arguments)},MR=d._ScatterNd=function(){return(MR=d._ScatterNd=d.asm.ScatterNd).apply(null,arguments)},zR=d._SelectV2=function(){return(zR=d._SelectV2=d.asm.SelectV2).apply(null,arguments)},LR=d._Sigmoid=function(){return(LR=d._Sigmoid=d.asm.Sigmoid).apply(null,arguments)},BR=d._Sin=function(){return(BR=d._Sin=d.asm.Sin).apply(null,arguments)},WR=d._Softmax=function(){return(WR=d._Softmax=d.asm.Softmax).apply(null,arguments)},VR=d._SparseFillEmptyRows=function(){return(VR=d._SparseFillEmptyRows=d.asm.SparseFillEmptyRows).apply(null,arguments)},UR=d._SparseReshape=function(){return(UR=d._SparseReshape=d.asm.SparseReshape).apply(null,arguments)},GR=d._SparseSegmentReduction=function(){return(GR=d._SparseSegmentReduction=d.asm.SparseSegmentReduction).apply(null,arguments)},HR=d._Sqrt=function(){return(HR=d._Sqrt=d.asm.Sqrt).apply(null,arguments)},jR=d._Square=function(){return(jR=d._Square=d.asm.Square).apply(null,arguments)},qR=d._SquaredDifference=function(){return(qR=d._SquaredDifference=d.asm.SquaredDifference).apply(null,arguments)},XR=d._Step=function(){return(XR=d._Step=d.asm.Step).apply(null,arguments)},KR=d._StridedSlice=function(){return(KR=d._StridedSlice=d.asm.StridedSlice).apply(null,arguments)},ZR=d._Sub=function(){return(ZR=d._Sub=d.asm.Sub).apply(null,arguments)},YR=d._Sum=function(){return(YR=d._Sum=d.asm.Sum).apply(null,arguments)},JR=d._Tan=function(){return(JR=d._Tan=d.asm.Tan).apply(null,arguments)},QR=d._Tanh=function(){return(QR=d._Tanh=d.asm.Tanh).apply(null,arguments)},e_=d._Tile=function(){return(e_=d._Tile=d.asm.Tile).apply(null,arguments)},t_=d._TopK=function(){return(t_=d._TopK=d.asm.TopK).apply(null,arguments)},n_=d._Transform=function(){return(n_=d._Transform=d.asm.Transform).apply(null,arguments)},s_=d._Transpose=function(){return(s_=d._Transpose=d.asm.Transpose).apply(null,arguments)},r_=d.__FusedMatMul=function(){return(r_=d.__FusedMatMul=d.asm._FusedMatMul).apply(null,arguments)},i3=d._malloc=function(){return(i3=d._malloc=d.asm.malloc).apply(null,arguments)},mv=d._free=function(){return(mv=d._free=d.asm.free).apply(null,arguments)},a_=d._emscripten_tls_init=function(){return(a_=d._emscripten_tls_init=d.asm.emscripten_tls_init).apply(null,arguments)},gv=d.___errno_location=function(){return(gv=d.___errno_location=d.asm.__errno_location).apply(null,arguments)},Vf=d._pthread_self=function(){return(Vf=d._pthread_self=d.asm.pthread_self).apply(null,arguments)},yv=d._emscripten_main_thread_process_queued_calls=function(){return(yv=d._emscripten_main_thread_process_queued_calls=d.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},o_=d.__emscripten_thread_crashed=function(){return(o_=d.__emscripten_thread_crashed=d.asm._emscripten_thread_crashed).apply(null,arguments)},Av=d.__emscripten_thread_init=function(){return(Av=d.__emscripten_thread_init=d.asm._emscripten_thread_init).apply(null,arguments)},i_=d._emscripten_current_thread_process_queued_calls=function(){return(i_=d._emscripten_current_thread_process_queued_calls=d.asm.emscripten_current_thread_process_queued_calls).apply(null,arguments)},l_=d._emscripten_main_browser_thread_id=function(){return(l_=d._emscripten_main_browser_thread_id=d.asm.emscripten_main_browser_thread_id).apply(null,arguments)},u_=d._emscripten_sync_run_in_main_thread_2=function(){return(u_=d._emscripten_sync_run_in_main_thread_2=d.asm.emscripten_sync_run_in_main_thread_2).apply(null,arguments)},xv=d._emscripten_sync_run_in_main_thread_4=function(){return(xv=d._emscripten_sync_run_in_main_thread_4=d.asm.emscripten_sync_run_in_main_thread_4).apply(null,arguments)},bv=d._emscripten_run_in_main_runtime_thread_js=function(){return(bv=d._emscripten_run_in_main_runtime_thread_js=d.asm.emscripten_run_in_main_runtime_thread_js).apply(null,arguments)},l3=d._emscripten_dispatch_to_thread_=function(){return(l3=d._emscripten_dispatch_to_thread_=d.asm.emscripten_dispatch_to_thread_).apply(null,arguments)},u3=d.__emscripten_thread_free_data=function(){return(u3=d.__emscripten_thread_free_data=d.asm._emscripten_thread_free_data).apply(null,arguments)},c_=d.__emscripten_thread_exit=function(){return(c_=d.__emscripten_thread_exit=d.asm._emscripten_thread_exit).apply(null,arguments)},d_=d._memalign=function(){return(d_=d._memalign=d.asm.memalign).apply(null,arguments)},vv=d._emscripten_stack_set_limits=function(){return(vv=d._emscripten_stack_set_limits=d.asm.emscripten_stack_set_limits).apply(null,arguments)},c3=d.stackSave=function(){return(c3=d.stackSave=d.asm.stackSave).apply(null,arguments)},Uf=d.stackRestore=function(){return(Uf=d.stackRestore=d.asm.stackRestore).apply(null,arguments)},Uu=d.stackAlloc=function(){return(Uu=d.stackAlloc=d.asm.stackAlloc).apply(null,arguments)},p_=d.dynCall_iijjiiii=function(){return(p_=d.dynCall_iijjiiii=d.asm.dynCall_iijjiiii).apply(null,arguments)},h_=d.dynCall_jiji=function(){return(h_=d.dynCall_jiji=d.asm.dynCall_jiji).apply(null,arguments)},wv=d.__emscripten_allow_main_runtime_queued_calls=21672;d.cwrap=Zn,d.keepRuntimeAlive=Pi,d.PThread=Be,d.PThread=Be,d.wasmMemory=Oe,d.ExitStatus=ep;var Gf;function ep(N){this.name="ExitStatus",this.message="Program terminated with exit("+N+")",this.status=N}Cr=function N(){Gf||d3(),Gf||(Cr=N)};function d3(N){if(N=N||y,Va>0)return;if(C){h(d),Hd(),postMessage({cmd:"loaded"});return}if(Qn(),Va>0)return;function F(){Gf||(Gf=!0,d.calledRun=!0,!kt&&(Hd(),h(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),P1()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),F()},1)):F()}d.run=d3;function f_(N,F){if(Kn=N,!F&&C)throw Ef(N),"unwind";Pi()||$1(),m_(N)}function m_(N){Kn=N,Pi()||(Be.terminateAllThreads(),d.onExit&&d.onExit(N),kt=!0),A(N,new ep(N))}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();d3();var Hf;m&&(Hf={uncaughtException:process.listeners("uncaughtException").filter(function(N){return!m.uncaughtException.indexOf(N)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(N){return!m.unhandledRejection.indexOf(N)>-1})});var jf;if(typeof WasmBackendModule!="undefined")jf=WasmBackendModule;else if(typeof r!="undefined")jf=r;else throw new Error("Could not find wasm module in post.js");if(Hf){var g_=jf._dispose;jf._dispose=function(){g_(),Hf.uncaughtException.forEach(function(N){process.removeListener("uncaughtException",N)}),Hf.unhandledRejection.forEach(function(N){process.removeListener("unhandledRejection",N)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}}),G_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm-threaded-simd.worker.js"(e,t){t.exports.wasmWorkerContents=`"use strict";var Module={};var ENVIRONMENT_IS_NODE=typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string";if(ENVIRONMENT_IS_NODE){var nodeWorkerThreads=require("worker_threads");var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var fs=require("fs");Object.assign(global,{self:global,require:require,Module:Module,location:{href:__filename},Worker:nodeWorkerThreads.Worker,importScripts:function(f){(0,eval)(fs.readFileSync(f,"utf8"))},postMessage:function(msg){parentPort.postMessage(msg)},performance:global.performance||{now:function(){return Date.now()}}})}function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");if(ENVIRONMENT_IS_NODE){fs.writeSync(2,text+"
");return}console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;self.alert=threadAlert;Module["instantiateWasm"]=((info,receiveInstance)=>{var instance=new WebAssembly.Instance(Module["wasmModule"],info);receiveInstance(instance);Module["wasmModule"]=null;return instance.exports});self.onmessage=(e=>{try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance})}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0,1);Module["establishStackSpace"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].threadInit();try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(Module["keepRuntimeAlive"]()){Module["PThread"].setExitStatus(result)}else{Module["__emscripten_thread_exit"](result)}}catch(ex){if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["keepRuntimeAlive"]()){}else{Module["__emscripten_thread_exit"](ex.status)}}else{throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["__emscripten_thread_exit"](-1)}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else if(e.data.cmd==="processProxyingQueue"){if(Module["_pthread_self"]()){Module["_emscripten_proxy_execute_queue"](e.data.queue)}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);if(Module["__emscripten_thread_crashed"]){Module["__emscripten_thread_crashed"]()}throw ex}});`}}),H_=un({"node_modules/.pnpm/@tensorflow+tfjs-backend-wasm@3.20.0_au2niqrxqvhsnv4oetlud656gy/node_modules/@tensorflow/tfjs-backend-wasm/wasm-out/tfjs-backend-wasm.js"(e,t){var n=(()=>{var s=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(s=s||__filename),function(r){r=r||{};var a=typeof r!="undefined"?r:{},o,i;a.ready=new Promise(function(X,se){o=X,i=se});var l;typeof process!="undefined"&&process.listeners&&(l={uncaughtException:process.listeners("uncaughtException"),unhandledRejection:process.listeners("unhandledRejection")});var u=Object.assign({},a),c=[],p="./this.program",d=(X,se)=>{throw se},h=typeof window=="object",f=typeof importScripts=="function",m=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g="";function y(X){return a.locateFile?a.locateFile(X,g):g+X}var x,A,b,w;function k(X){if(X instanceof Jd)return;R("exiting due to exception: "+X)}var C,E,_;m?(f?g=bm().dirname(g)+"/":g=__dirname+"/",_=()=>{E||(C=$y(),E=bm())},x=function(se,be){return _(),se=E.normalize(se),C.readFileSync(se,be?void 0:"utf8")},b=X=>{var se=x(X,!0);return se.buffer||(se=new Uint8Array(se)),se},A=(X,se,be)=>{_(),X=E.normalize(X),C.readFile(X,function(De,ht){De?be(De):se(ht.buffer)})},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),c=process.argv.slice(2),process.on("uncaughtException",function(X){if(!(X instanceof Jd))throw X}),process.on("unhandledRejection",function(X){throw X}),d=(X,se)=>{if(Gd())throw process.exitCode=X,se;k(se),process.exit(X)},a.inspect=function(){return"[Emscripten Module object]"}):(h||f)&&(f?g=self.location.href:typeof document!="undefined"&&document.currentScript&&(g=document.currentScript.src),s&&(g=s),g.indexOf("blob:")!==0?g=g.substr(0,g.replace(/[?#].*/,"").lastIndexOf("/")+1):g="",x=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.send(null),se.responseText},f&&(b=X=>{var se=new XMLHttpRequest;return se.open("GET",X,!1),se.responseType="arraybuffer",se.send(null),new Uint8Array(se.response)}),A=(X,se,be)=>{var De=new XMLHttpRequest;De.open("GET",X,!0),De.responseType="arraybuffer",De.onload=()=>{if(De.status==200||De.status==0&&De.response){se(De.response);return}be()},De.onerror=be,De.send(null)},w=X=>document.title=X);var $=a.print||console.log.bind(console),R=a.printErr||console.warn.bind(console);Object.assign(a,u),u=null,a.arguments&&(c=a.arguments),a.thisProgram&&(p=a.thisProgram),a.quit&&(d=a.quit);var P=4;function S(X){S.shown||(S.shown={}),S.shown[X]||(S.shown[X]=1,R(X))}function M(X,se){if(typeof WebAssembly.Function=="function"){for(var be={i:"i32",j:"i64",f:"f32",d:"f64"},De={parameters:[],results:se[0]=="v"?[]:[be[se[0]]]},ht=1;ht<se.length;++ht)De.parameters.push(be[se[ht]]);return new WebAssembly.Function(De,X)}var mt=[1,0,1,96],nt=se.slice(0,1),Ze=se.slice(1),sn={i:127,j:126,f:125,d:124};mt.push(Ze.length);for(var ht=0;ht<Ze.length;++ht)mt.push(sn[Ze[ht]]);nt=="v"?mt.push(0):mt=mt.concat([1,sn[nt]]),mt[1]=mt.length-2;var Tr=new Uint8Array([0,97,115,109,1,0,0,0].concat(mt,[2,7,1,1,101,1,102,0,0,7,5,1,1,102,0,0])),Nr=new WebAssembly.Module(Tr),Vu=new WebAssembly.Instance(Nr,{e:{f:X}}),zi=Vu.exports.f;return zi}var L=[],U;function K(){if(L.length)return L.pop();try{Ba.grow(1)}catch(X){throw X instanceof RangeError?"Unable to grow wasm table. Set ALLOW_TABLE_GROWTH.":X}return Ba.length-1}function q(X,se){for(var be=X;be<X+se;be++){var De=qd(be);De&&U.set(De,be)}}var Z=0,J=X=>{Z=X},Q;a.wasmBinary&&(Q=a.wasmBinary);var ie=a.noExitRuntime||!0;typeof WebAssembly!="object"&&$i("no native wasm support detected");var re,de=!1,ue;function Ae(X,se){X||$i(se)}function oe(X){var se=a["_"+X];return se}function Re(X,se,be,De,ht){var mt={string:function(ts){var Ua=0;if(ts!=null&&ts!==0){var Wf=(ts.length<<2)+1;Ua=Yd(Wf),yt(ts,Ua,Wf)}return Ua},array:function(ts){var Ua=Yd(ts.length);return kt(ts,Ua),Ua}};function nt(ts){return se==="string"?gt(ts):se==="boolean"?Boolean(ts):ts}var Ze=oe(X),sn=[],Tr=0;if(De)for(var Nr=0;Nr<De.length;Nr++){var Vu=mt[be[Nr]];Vu?(Tr===0&&(Tr=Lf()),sn[Nr]=Vu(De[Nr])):sn[Nr]=De[Nr]}var zi=Ze.apply(null,sn);function o3(ts){return Tr!==0&&Bf(Tr),nt(ts)}return zi=o3(zi),zi}function _e(X,se,be,De){be=be||[];var ht=be.every(function(nt){return nt==="number"}),mt=se!=="string";return mt&&ht&&!De?oe(X):function(){return Re(X,se,be,arguments,De)}}var Ve=1,Me=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function it(X,se,be){for(var De=se+be,ht=se;X[ht]&&!(ht>=De);)++ht;if(ht-se>16&&X.subarray&&Me)return Me.decode(X.subarray(se,ht));for(var mt="";se<ht;){var nt=X[se++];if(!(nt&128)){mt+=String.fromCharCode(nt);continue}var Ze=X[se++]&63;if((nt&224)==192){mt+=String.fromCharCode((nt&31)<<6|Ze);continue}var sn=X[se++]&63;if((nt&240)==224?nt=(nt&15)<<12|Ze<<6|sn:nt=(nt&7)<<18|Ze<<12|sn<<6|X[se++]&63,nt<65536)mt+=String.fromCharCode(nt);else{var Tr=nt-65536;mt+=String.fromCharCode(55296|Tr>>10,56320|Tr&1023)}}return mt}function gt(X,se){return X?it(Zn,X,se):""}function pt(X,se,be,De){if(!(De>0))return 0;for(var ht=be,mt=be+De-1,nt=0;nt<X.length;++nt){var Ze=X.charCodeAt(nt);if(Ze>=55296&&Ze<=57343){var sn=X.charCodeAt(++nt);Ze=65536+((Ze&1023)<<10)|sn&1023}if(Ze<=127){if(be>=mt)break;se[be++]=Ze}else if(Ze<=2047){if(be+1>=mt)break;se[be++]=192|Ze>>6,se[be++]=128|Ze&63}else if(Ze<=65535){if(be+2>=mt)break;se[be++]=224|Ze>>12,se[be++]=128|Ze>>6&63,se[be++]=128|Ze&63}else{if(be+3>=mt)break;se[be++]=240|Ze>>18,se[be++]=128|Ze>>12&63,se[be++]=128|Ze>>6&63,se[be++]=128|Ze&63}}return se[be]=0,be-ht}function yt(X,se,be){return pt(X,Zn,se,be)}function Oe(X){for(var se=0,be=0;be<X.length;++be){var De=X.charCodeAt(be);De>=55296&&De<=57343&&(De=65536+((De&1023)<<10)|X.charCodeAt(++be)&1023),De<=127?++se:De<=2047?se+=2:De<=65535?se+=3:se+=4}return se}var Ct=typeof TextDecoder!="undefined"?new TextDecoder("utf-16le"):void 0;function kt(X,se){fn.set(X,se)}function Kn(X,se,be){for(var De=0;De<X.length;++De)fn[se++>>0]=X.charCodeAt(De);be||(fn[se>>0]=0)}function nn(X,se){return X%se>0&&(X+=se-X%se),X}var Ss,fn,Zn,Is,Cs,Bn,js,Yn,pa;function ha(X){Ss=X,a.HEAP8=fn=new Int8Array(X),a.HEAP16=Is=new Int16Array(X),a.HEAP32=Bn=new Int32Array(X),a.HEAPU8=Zn=new Uint8Array(X),a.HEAPU16=Cs=new Uint16Array(X),a.HEAPU32=js=new Uint32Array(X),a.HEAPF32=Yn=new Float32Array(X),a.HEAPF64=pa=new Float64Array(X)}var _u=a.INITIAL_MEMORY||16777216,Ba,fa=[],Ud=[],Du=[],Jn=!1,ff=!1,mf=0;function Gd(){return ie||mf>0}function gf(){if(a.preRun)for(typeof a.preRun=="function"&&(a.preRun=[a.preRun]);a.preRun.length;)xf(a.preRun.shift());jd(fa)}function yf(){Jn=!0,jd(Ud)}function sv(){ff=!0}function Af(){if(a.postRun)for(typeof a.postRun=="function"&&(a.postRun=[a.postRun]);a.postRun.length;)bf(a.postRun.shift());jd(Du)}function xf(X){fa.unshift(X)}function Ir(X){Ud.unshift(X)}function bf(X){Du.unshift(X)}var qs=0,$u=null,Wa=null;function _1(X){qs++,a.monitorRunDependencies&&a.monitorRunDependencies(qs)}function vf(X){if(qs--,a.monitorRunDependencies&&a.monitorRunDependencies(qs),qs==0&&($u!==null&&(clearInterval($u),$u=null),Wa)){var se=Wa;Wa=null,se()}}a.preloadedImages={},a.preloadedAudios={};function $i(X){a.onAbort&&a.onAbort(X),X="Aborted("+X+")",R(X),de=!0,ue=1,X+=". Build with -s ASSERTIONS=1 for more info.";var se=new WebAssembly.RuntimeError(X);throw i(se),se}var D1="data:application/octet-stream;base64,";function wf(X){return X.startsWith(D1)}function Pi(X){return X.startsWith("file://")}var Qn;Qn="tfjs-backend-wasm.wasm",wf(Qn)||(Qn=y(Qn));function Hd(X){try{if(X==Qn&&Q)return new Uint8Array(Q);if(b)return b(X);throw"both async and sync fetching of the wasm failed"}catch(se){$i(se)}}function $1(){if(!Q&&(h||f)){if(typeof fetch=="function"&&!Pi(Qn))return fetch(Qn,{credentials:"same-origin"}).then(function(X){if(!X.ok)throw"failed to load wasm binary file at '"+Qn+"'";return X.arrayBuffer()}).catch(function(){return Hd(Qn)});if(A)return new Promise(function(X,se){A(Qn,function(be){X(new Uint8Array(be))},se)})}return Promise.resolve().then(function(){return Hd(Qn)})}function P1(){var X={env:Ou,wasi_snapshot_preview1:Ou};function se(nt,Ze){var sn=nt.exports;a.asm=sn,re=a.asm.memory,ha(re.buffer),Ba=a.asm.__indirect_function_table,Ir(a.asm.__wasm_call_ctors),vf("wasm-instantiate")}_1("wasm-instantiate");function be(nt){se(nt.instance)}function De(nt){return $1().then(function(Ze){return WebAssembly.instantiate(Ze,X)}).then(function(Ze){return Ze}).then(nt,function(Ze){R("failed to asynchronously prepare wasm: "+Ze),$i(Ze)})}function ht(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!wf(Qn)&&!Pi(Qn)&&typeof fetch=="function"?fetch(Qn,{credentials:"same-origin"}).then(function(nt){var Ze=WebAssembly.instantiateStreaming(nt,X);return Ze.then(be,function(sn){return R("wasm streaming compile failed: "+sn),R("falling back to ArrayBuffer instantiation"),De(be)})}):De(be)}if(a.instantiateWasm)try{var mt=a.instantiateWasm(X,se);return mt}catch(nt){return R("Module.instantiateWasm callback failed with error: "+nt),!1}return ht().catch(i),{}}var rv,av;function jd(X){for(;X.length>0;){var se=X.shift();if(typeof se=="function"){se(a);continue}var be=se.func;typeof be=="number"?se.arg===void 0?qd(be)():qd(be)(se.arg):be(se.arg===void 0?null:se.arg)}}function Va(X){return X}function kf(X){var se=/\b_Z[\w\d_]+/g;return X.replace(se,function(be){var De=be;return be===De?be:De+" ["+be+"]"})}var Cr=[];function qd(X){var se=Cr[X];return se||(X>=Cr.length&&(Cr.length=X+1),Cr[X]=se=Ba.get(X)),se}function ov(){var X=new Error;if(!X.stack){try{throw new Error}catch(se){X=se}if(!X.stack)return"(no stack trace available)"}return X.stack.toString()}function Pu(X,se){Ba.set(X,se),Cr[X]=se}function F1(){$i("")}function Xd(){return 2147483648}function Sf(X,se,be){Zn.copyWithin(X,se,se+be)}function es(X){try{return re.grow(X-Ss.byteLength+65535>>>16),ha(re.buffer),1}catch(se){}}function If(X){var se=Zn.length;X=X>>>0;var be=Xd();if(X>be)return!1;for(var De=1;De<=4;De*=2){var ht=se*(1+.2/De);ht=Math.min(ht,X+100663296);var mt=Math.min(be,nn(Math.max(X,ht),65536)),nt=es(mt);if(nt)return!0}return!1}var Fu={mappings:{},buffers:[null,[],[]],printChar:function(X,se){var be=Fu.buffers[X];se===0||se===10?((X===1?$:R)(it(be,0)),be.length=0):be.push(se)},varargs:void 0,get:function(){Fu.varargs+=4;var X=Bn[Fu.varargs-4>>2];return X},getStr:function(X){var se=gt(X);return se},get64:function(X,se){return X}};function O1(X){return 0}function iv(X,se,be,De,ht){}function lv(X,se,be,De){for(var ht=0,mt=0;mt<be;mt++){var nt=Bn[se>>2],Ze=Bn[se+4>>2];se+=8;for(var sn=0;sn<Ze;sn++)Fu.printChar(X,Zn[nt+sn]);ht+=Ze}return Bn[De>>2]=ht,0}function M1(X){J(X)}var Cf=!1,Ou={abort:F1,emscripten_get_heap_max:Xd,emscripten_memcpy_big:Sf,emscripten_resize_heap:If,fd_close:O1,fd_seek:iv,fd_write:lv,setTempRet0:M1},IR=P1(),uv=a.___wasm_call_ctors=function(){return(uv=a.___wasm_call_ctors=a.asm.__wasm_call_ctors).apply(null,arguments)},z1=a._init=function(){return(z1=a._init=a.asm.init).apply(null,arguments)},L1=a._init_with_threads_count=function(){return(L1=a._init_with_threads_count=a.asm.init_with_threads_count).apply(null,arguments)},Tf=a._get_threads_count=function(){return(Tf=a._get_threads_count=a.asm.get_threads_count).apply(null,arguments)},Nf=a._register_tensor=function(){return(Nf=a._register_tensor=a.asm.register_tensor).apply(null,arguments)},B1=a._dispose_data=function(){return(B1=a._dispose_data=a.asm.dispose_data).apply(null,arguments)},Be=a._dispose=function(){return(Be=a._dispose=a.asm.dispose).apply(null,arguments)},W1=a._Abs=function(){return(W1=a._Abs=a.asm.Abs).apply(null,arguments)},Ef=a._Add=function(){return(Ef=a._Add=a.asm.Add).apply(null,arguments)},Fi=a._AddN=function(){return(Fi=a._AddN=a.asm.AddN).apply(null,arguments)},Mu=a._All=function(){return(Mu=a._All=a.asm.All).apply(null,arguments)},V1=a._Any=function(){return(V1=a._Any=a.asm.Any).apply(null,arguments)},cv=a._ArgMax=function(){return(cv=a._ArgMax=a.asm.ArgMax).apply(null,arguments)},U1=a._AvgPool=function(){return(U1=a._AvgPool=a.asm.AvgPool).apply(null,arguments)},dv=a._BatchMatMul=function(){return(dv=a._BatchMatMul=a.asm.BatchMatMul).apply(null,arguments)},Oi=a._Ceil=function(){return(Oi=a._Ceil=a.asm.Ceil).apply(null,arguments)},G1=a._ClipByValue=function(){return(G1=a._ClipByValue=a.asm.ClipByValue).apply(null,arguments)},H1=a._Conv2D=function(){return(H1=a._Conv2D=a.asm.Conv2D).apply(null,arguments)},j1=a._Conv2DBackpropInput=function(){return(j1=a._Conv2DBackpropInput=a.asm.Conv2DBackpropInput).apply(null,arguments)},q1=a._Cos=function(){return(q1=a._Cos=a.asm.Cos).apply(null,arguments)},X1=a._Cosh=function(){return(X1=a._Cosh=a.asm.Cosh).apply(null,arguments)},K1=a._CropAndResize=function(){return(K1=a._CropAndResize=a.asm.CropAndResize).apply(null,arguments)},Rf=a._Cumprod=function(){return(Rf=a._Cumprod=a.asm.Cumprod).apply(null,arguments)},Z1=a._Cumsum=function(){return(Z1=a._Cumsum=a.asm.Cumsum).apply(null,arguments)},Y1=a._DepthToSpace=function(){return(Y1=a._DepthToSpace=a.asm.DepthToSpace).apply(null,arguments)},J1=a._DepthwiseConv2dNative=function(){return(J1=a._DepthwiseConv2dNative=a.asm.DepthwiseConv2dNative).apply(null,arguments)},Q1=a._Elu=function(){return(Q1=a._Elu=a.asm.Elu).apply(null,arguments)},eg=a._Equal=function(){return(eg=a._Equal=a.asm.Equal).apply(null,arguments)},_f=a._Exp=function(){return(_f=a._Exp=a.asm.Exp).apply(null,arguments)},tg=a._FlipLeftRight=function(){return(tg=a._FlipLeftRight=a.asm.FlipLeftRight).apply(null,arguments)},ng=a._Floor=function(){return(ng=a._Floor=a.asm.Floor).apply(null,arguments)},Mi=a._FloorDiv=function(){return(Mi=a._FloorDiv=a.asm.FloorDiv).apply(null,arguments)},Kd=a._FusedBatchNorm=function(){return(Kd=a._FusedBatchNorm=a.asm.FusedBatchNorm).apply(null,arguments)},sg=a._FusedConv2D=function(){return(sg=a._FusedConv2D=a.asm.FusedConv2D).apply(null,arguments)},rg=a._FusedDepthwiseConv2D=function(){return(rg=a._FusedDepthwiseConv2D=a.asm.FusedDepthwiseConv2D).apply(null,arguments)},ag=a._Gather=function(){return(ag=a._Gather=a.asm.Gather).apply(null,arguments)},Qe=a._GatherNd=function(){return(Qe=a._GatherNd=a.asm.GatherNd).apply(null,arguments)},og=a._Greater=function(){return(og=a._Greater=a.asm.Greater).apply(null,arguments)},ig=a._GreaterEqual=function(){return(ig=a._GreaterEqual=a.asm.GreaterEqual).apply(null,arguments)},lg=a._LeakyRelu=function(){return(lg=a._LeakyRelu=a.asm.LeakyRelu).apply(null,arguments)},ug=a._Less=function(){return(ug=a._Less=a.asm.Less).apply(null,arguments)},cg=a._LessEqual=function(){return(cg=a._LessEqual=a.asm.LessEqual).apply(null,arguments)},dg=a._Log=function(){return(dg=a._Log=a.asm.Log).apply(null,arguments)},Zd=a._LogicalAnd=function(){return(Zd=a._LogicalAnd=a.asm.LogicalAnd).apply(null,arguments)},Df=a._LogicalNot=function(){return(Df=a._LogicalNot=a.asm.LogicalNot).apply(null,arguments)},$f=a._LogicalOr=function(){return($f=a._LogicalOr=a.asm.LogicalOr).apply(null,arguments)},pg=a._LogicalXor=function(){return(pg=a._LogicalXor=a.asm.LogicalXor).apply(null,arguments)},hg=a._Max=function(){return(hg=a._Max=a.asm.Max).apply(null,arguments)},fg=a._MaxPool=function(){return(fg=a._MaxPool=a.asm.MaxPool).apply(null,arguments)},mg=a._Maximum=function(){return(mg=a._Maximum=a.asm.Maximum).apply(null,arguments)},gg=a._Mean=function(){return(gg=a._Mean=a.asm.Mean).apply(null,arguments)},yg=a._Min=function(){return(yg=a._Min=a.asm.Min).apply(null,arguments)},zt=a._Minimum=function(){return(zt=a._Minimum=a.asm.Minimum).apply(null,arguments)},Ag=a._MirrorPad=function(){return(Ag=a._MirrorPad=a.asm.MirrorPad).apply(null,arguments)},xg=a._Multiply=function(){return(xg=a._Multiply=a.asm.Multiply).apply(null,arguments)},bg=a._Neg=function(){return(bg=a._Neg=a.asm.Neg).apply(null,arguments)},zu=a._NonMaxSuppressionV3=function(){return(zu=a._NonMaxSuppressionV3=a.asm.NonMaxSuppressionV3).apply(null,arguments)},Pf=a._NonMaxSuppressionV4=function(){return(Pf=a._NonMaxSuppressionV4=a.asm.NonMaxSuppressionV4).apply(null,arguments)},Ff=a._NonMaxSuppressionV5=function(){return(Ff=a._NonMaxSuppressionV5=a.asm.NonMaxSuppressionV5).apply(null,arguments)},Of=a._NotEqual=function(){return(Of=a._NotEqual=a.asm.NotEqual).apply(null,arguments)},vg=a._OneHot=function(){return(vg=a._OneHot=a.asm.OneHot).apply(null,arguments)},Mf=a._PadV2=function(){return(Mf=a._PadV2=a.asm.PadV2).apply(null,arguments)},wg=a._Pow=function(){return(wg=a._Pow=a.asm.Pow).apply(null,arguments)},pv=a._Prelu=function(){return(pv=a._Prelu=a.asm.Prelu).apply(null,arguments)},zf=a._Prod=function(){return(zf=a._Prod=a.asm.Prod).apply(null,arguments)},hv=a._RealDiv=function(){return(hv=a._RealDiv=a.asm.RealDiv).apply(null,arguments)},kg=a._Relu=function(){return(kg=a._Relu=a.asm.Relu).apply(null,arguments)},Sg=a._Relu6=function(){return(Sg=a._Relu6=a.asm.Relu6).apply(null,arguments)},Ig=a._ResizeBilinear=function(){return(Ig=a._ResizeBilinear=a.asm.ResizeBilinear).apply(null,arguments)},Cg=a._ResizeNearestNeighbor=function(){return(Cg=a._ResizeNearestNeighbor=a.asm.ResizeNearestNeighbor).apply(null,arguments)},Tg=a._Reverse=function(){return(Tg=a._Reverse=a.asm.Reverse).apply(null,arguments)},Ng=a._RotateWithOffset=function(){return(Ng=a._RotateWithOffset=a.asm.RotateWithOffset).apply(null,arguments)},Eg=a._Round=function(){return(Eg=a._Round=a.asm.Round).apply(null,arguments)},Rg=a._Rsqrt=function(){return(Rg=a._Rsqrt=a.asm.Rsqrt).apply(null,arguments)},_g=a._ScatterNd=function(){return(_g=a._ScatterNd=a.asm.ScatterNd).apply(null,arguments)},Dg=a._SelectV2=function(){return(Dg=a._SelectV2=a.asm.SelectV2).apply(null,arguments)},$g=a._Sigmoid=function(){return($g=a._Sigmoid=a.asm.Sigmoid).apply(null,arguments)},Pg=a._Sin=function(){return(Pg=a._Sin=a.asm.Sin).apply(null,arguments)},Fg=a._Softmax=function(){return(Fg=a._Softmax=a.asm.Softmax).apply(null,arguments)},Og=a._SparseFillEmptyRows=function(){return(Og=a._SparseFillEmptyRows=a.asm.SparseFillEmptyRows).apply(null,arguments)},Mg=a._SparseReshape=function(){return(Mg=a._SparseReshape=a.asm.SparseReshape).apply(null,arguments)},zg=a._SparseSegmentReduction=function(){return(zg=a._SparseSegmentReduction=a.asm.SparseSegmentReduction).apply(null,arguments)},Lg=a._Sqrt=function(){return(Lg=a._Sqrt=a.asm.Sqrt).apply(null,arguments)},Bg=a._Square=function(){return(Bg=a._Square=a.asm.Square).apply(null,arguments)},Wg=a._SquaredDifference=function(){return(Wg=a._SquaredDifference=a.asm.SquaredDifference).apply(null,arguments)},Vg=a._Step=function(){return(Vg=a._Step=a.asm.Step).apply(null,arguments)},Ug=a._StridedSlice=function(){return(Ug=a._StridedSlice=a.asm.StridedSlice).apply(null,arguments)},Gg=a._Sub=function(){return(Gg=a._Sub=a.asm.Sub).apply(null,arguments)},Hg=a._Sum=function(){return(Hg=a._Sum=a.asm.Sum).apply(null,arguments)},jg=a._Tan=function(){return(jg=a._Tan=a.asm.Tan).apply(null,arguments)},qg=a._Tanh=function(){return(qg=a._Tanh=a.asm.Tanh).apply(null,arguments)},Xg=a._Tile=function(){return(Xg=a._Tile=a.asm.Tile).apply(null,arguments)},Kg=a._TopK=function(){return(Kg=a._TopK=a.asm.TopK).apply(null,arguments)},Zg=a._Transform=function(){return(Zg=a._Transform=a.asm.Transform).apply(null,arguments)},Yg=a._Transpose=function(){return(Yg=a._Transpose=a.asm.Transpose).apply(null,arguments)},Jg=a.__FusedMatMul=function(){return(Jg=a.__FusedMatMul=a.asm._FusedMatMul).apply(null,arguments)},Qg=a._malloc=function(){return(Qg=a._malloc=a.asm.malloc).apply(null,arguments)},e3=a._free=function(){return(e3=a._free=a.asm.free).apply(null,arguments)},t3=a.___errno_location=function(){return(t3=a.___errno_location=a.asm.__errno_location).apply(null,arguments)},n3=a._emscripten_main_thread_process_queued_calls=function(){return(n3=a._emscripten_main_thread_process_queued_calls=a.asm.emscripten_main_thread_process_queued_calls).apply(null,arguments)},Lf=a.stackSave=function(){return(Lf=a.stackSave=a.asm.stackSave).apply(null,arguments)},Bf=a.stackRestore=function(){return(Bf=a.stackRestore=a.asm.stackRestore).apply(null,arguments)},Yd=a.stackAlloc=function(){return(Yd=a.stackAlloc=a.asm.stackAlloc).apply(null,arguments)},s3=a.dynCall_iijjiiii=function(){return(s3=a.dynCall_iijjiiii=a.asm.dynCall_iijjiiii).apply(null,arguments)},r3=a.dynCall_jiji=function(){return(r3=a.dynCall_jiji=a.asm.dynCall_jiji).apply(null,arguments)};a.cwrap=_e;var Lu;function Jd(X){this.name="ExitStatus",this.message="Program terminated with exit("+X+")",this.status=X}Wa=function X(){Lu||Qd(),Lu||(Wa=X)};function Qd(X){if(X=X||c,qs>0||(gf(),qs>0))return;function se(){Lu||(Lu=!0,a.calledRun=!0,!de&&(yf(),o(a),a.onRuntimeInitialized&&a.onRuntimeInitialized(),Af()))}a.setStatus?(a.setStatus("Running..."),setTimeout(function(){setTimeout(function(){a.setStatus("")},1),se()},1)):se()}a.run=Qd;function fv(X){ue=X,Gd()||(a.onExit&&a.onExit(X),de=!0),d(X,new Jd(X))}if(a.preInit)for(typeof a.preInit=="function"&&(a.preInit=[a.preInit]);a.preInit.length>0;)a.preInit.pop()();Qd();var Bu;l&&(Bu={uncaughtException:process.listeners("uncaughtException").filter(function(X){return!l.uncaughtException.indexOf(X)>-1}),unhandledRejection:process.listeners("unhandledRejection").filter(function(X){return!l.unhandledRejection.indexOf(X)>-1})});var Wu;if(typeof r!="undefined")Wu=r;else if(typeof WasmBackendModuleThreadedSimd!="undefined")Wu=WasmBackendModuleThreadedSimd;else throw new Error("Could not find wasm module in post.js");if(Bu){var a3=Wu._dispose;Wu._dispose=function(){a3(),Bu.uncaughtException.forEach(function(X){process.removeListener("uncaughtException",X)}),Bu.unhandledRejection.forEach(function(X){process.removeListener("unhandledRejection",X)})}}return r.ready}})();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}}),j_=1e-7,q_=1e-4,Up=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},wc=class{refCount(e){return Xs("refCount")}incRef(e){return Xs("incRef")}timerAvailable(){return!0}time(e){return Xs("time")}read(e){return Xs("read")}readSync(e){return Xs("readSync")}readToGPU(e,t){return Xs("readToGPU")}numDataIds(){return Xs("numDataIds")}disposeData(e,t){return Xs("disposeData")}write(e,t,n){return Xs("write")}move(e,t,n,s,r){return Xs("move")}memory(){return Xs("memory")}floatPrecision(){return Xs("floatPrecision")}epsilon(){return this.floatPrecision()===32?j_:q_}dispose(){return Xs("dispose")}};function Xs(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function g6(e){let t=e.length,n=0;for(;t>0;)n=Math.random()*t|0,t--,vm(e,t,n)}function X_(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,s=0;for(;n>0;)s=Math.random()*n|0,n--,vm(e,n,s),vm(t,n,s)}function kp(e,t,n){return Math.max(e,Math.min(t,n))}function K_(e){return e%2===0?e:e+1}function vm(e,t,n){let s=e[t];e[t]=e[n],e[n]=s}function Z_(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function Y_(e,t){let n=Math.random();return t*n+(1-n)*e}function J_(e,t){let n=0;for(let s=0;s<e.length;s++){let r=Number(e[s])-Number(t[s]);n+=r*r}return n}function O(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function is(e,t,n=""){O(fo(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function fl(e){O(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function nl(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||Wn(e)&&!n)for(let s=0;s<e.length;++s)nl(e[s],t,n);else t.push(e);return t}function Nt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function Q_(e){return e.length===0}function fo(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function ac(e){return e%1===0}function eD(e){if(Math.tanh!=null)return Math.tanh(e);if(e===1/0)return 1;if(e===-1/0)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function tD(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function nD(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return g6(t),t}function Ap(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function sD(e,t=s=>0,n){return new Promise((s,r)=>{let a=0,o=()=>{if(e()){s();return}a++;let i=t(a);if(n!=null&&a>=n){r();return}setTimeout(o,i)};o()})}function rD(e,t){let n=1,s=-1;for(let a=0;a<e.length;++a)if(e[a]>=0)n*=e[a];else if(e[a]===-1){if(s!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${s} and dim ${a}`);s=a}else if(e[a]<0)throw Error(`Shapes can not be < 0. Found ${e[a]} at dim ${a}`);if(s===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!==0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[s]=t/n,r}function gr(e,t){let n=t.length;return e=e==null?t.map((s,r)=>r):[].concat(e),O(e.every(s=>s>=-n&&s<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),O(e.every(s=>ac(s)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(s=>s<0?n+s:s)}function y6(e,t){let n=[],s=[],r=t!=null&&Array.isArray(t)&&t.length===0,a=t==null||r?null:gr(t,e).sort(),o=0;for(let i=0;i<e.length;++i){if(a!=null){if(a[o]===i&&e[i]!==1)throw new Error(`Can't squeeze axis ${i} since its dim '${e[i]}' is not 1`);(a[o]==null||a[o]>i)&&e[i]===1&&(n.push(e[i]),s.push(i)),a[o]<=i&&o++}e[i]!==1&&(n.push(e[i]),s.push(i))}return{newShape:n,keptDims:s}}function A6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function x6(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function b6(e,t){for(let n=0;n<e.length;n++){let s=e[n];if(isNaN(s)||!isFinite(s))throw Error(`A tensor of type ${t} being uploaded contains ${s}.`)}}function v6(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function aD(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function Wn(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray}function N3(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function w6(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function Xa(e){return typeof e=="string"||e instanceof String}function k6(e){return typeof e=="boolean"}function S6(e){return typeof e=="number"}function Qm(e){return Array.isArray(e)?Qm(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array||e instanceof Uint8ClampedArray?"int32":S6(e)?"float32":Xa(e)?"string":k6(e)?"bool":"float32"}function eo(e){return!!(e&&e.constructor&&e.call&&e.apply)}function wm(e,t){for(let n=t;n<e;++n)if(e%n===0)return n;return e}function kc(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let s=t-3;s>=0;--s)n[s]=n[s+1]*e[s+1];return n}function I6(e,t,n,s=!1){let r=new Array;if(t.length===1){let a=t[0]*(s?2:1);for(let o=0;o<a;o++)r[o]=n[e+o]}else{let a=t[0],o=t.slice(1),i=o.reduce((l,u)=>l*u)*(s?2:1);for(let l=0;l<a;l++)r[l]=I6(e+l*i,o,n,s)}return r}function ec(e,t,n=!1){if(e.length===0)return t[0];let s=e.reduce((r,a)=>r*a)*(n?2:1);if(s===0)return[];if(s!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return I6(0,e,t,n)}function Py(e,t){let n=e0(e,t);for(let s=0;s<n.length;s++)n[s]=1;return n}function e0(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function oD(e,t){let n=e.reduce((s,r)=>s*r,1);if(t==null||t==="float32")return ec(e,new Float32Array(n));if(t==="int32")return ec(e,new Int32Array(n));if(t==="bool")return ec(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Fy(e){e.forEach(t=>{O(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function iD(e,t,n){if(t===0)return 0;if(t===1)return e[0];let s=e[e.length-1];for(let r=0;r<e.length-1;++r)s+=n[r]*e[r];return s}function lD(e,t,n){if(t===0)return[];if(t===1)return[e];let s=new Array(t);for(let r=0;r<s.length-1;++r)s[r]=Math.floor(e/n[r]),e-=s[r]*n[r];return s[s.length-1]=e,s}function Oy(e){return e&&e.then&&typeof e.then=="function"}var Cv="tfjsflags",C6=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=uD,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&(H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${e}.`)),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let s=this.urlFlags[e];H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(`Setting feature override from URL ${e}: ${s}.`),this.set(e,s)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Oy(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);Cv in e&&e[Cv].split(",").forEach(n=>{let[s,r]=n.split(":");this.urlFlags[s]=dD(s,r)})}};function uD(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...s)=>(cD(t,s[0],s[1]),s.join("="))),t}function cD(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function dD(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function H(){return My}var My=null;function pD(e){My=e}var h3;function T6(){if(h3==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");h3=e}return h3}function hD(){let e=T6();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function zy(e,t){let n=hD();if(n.has(e))return n.get(e);{let s=t();return n.set(e,s),n.get(e)}}var ml="Abs",Sc="Acos",Ic="Acosh",Na="Add",mo="AddN",Cc="All",Tc="Any",go="ArgMax",Nc="ArgMin",Ec="Asin",Rc="Asinh",_c="Atan",Dc="Atanh",gl="Atan2",yo="AvgPool",t0="AvgPoolGrad",Gp="AvgPool3D",n0="AvgPool3DGrad",Ao="BatchMatMul",yl="BatchToSpaceND",s0="Bincount",N6="BroadcastTo",r0="BroadcastArgs",xo="Cast",bo="Ceil",Ea="ClipByValue",Hp="Complex",jp="ComplexAbs",Al="Concat",vo="Conv2D",a0="Conv2DBackpropFilter",wo="Conv2DBackpropInput",qp="Conv3D",o0="Conv3DBackpropFilterV2",i0="Conv3DBackpropInputV2",ko="Cos",So="Cosh",xl="Cumprod",Io="Cumsum",bl="CropAndResize",l0="DenseBincount",vl="DepthToSpace",Co="DepthwiseConv2dNative",u0="DepthwiseConv2dNativeBackpropFilter",c0="DepthwiseConv2dNativeBackpropInput",d0="Diag",Xp="Dilation2D",km="Dilation2DBackpropInput",Sm="Dilation2DBackpropFilter",To="RealDiv",Kp="Einsum",No="Elu",p0="EluGrad",$c="Erf",wl="Equal",Eo="Exp",kl="ExpandDims",Sl="Expm1",h0="FFT",Pc="Fill",Il="FlipLeftRight",Ro="Floor",_o="FloorDiv",Do="FusedBatchNorm",Cl="GatherV2",Tl="GatherNd",Nl="Greater",$o="GreaterEqual",Po="Identity",f0="IFFT",Zp="Imag",Fc="IsFinite",Oc="IsInf",El="IsNan",Fo="LeakyRelu",Rl="Less",_l="LessEqual",m0="LinSpace",Oo="Log",Mc="Log1p",Dl="LogicalAnd",$l="LogicalNot",zc="LogicalOr",E6="LogicalXor",R6="LogSoftmax",fD="LowerBound",Yp="LRN",g0="LRNGrad",Mo="Max",zo="Maximum",Lo="MaxPool",y0="MaxPoolGrad",Jp="MaxPool3D",A0="MaxPool3DGrad",x0="MaxPoolWithArgmax",Bo="Mean",Wo="Min",Vo="Minimum",Uo="MirrorPad",Lc="Mod",b0="Multinomial",Go="Multiply",Pl="Neg",Fl="NotEqual",Ol="NonMaxSuppressionV3",Bc="NonMaxSuppressionV4",Ml="NonMaxSuppressionV5",zl="OnesLike",Ll="OneHot",Bl="Pack",Ho="PadV2",mD="Pool",jo="Pow",qo="Prelu",Xo="Prod",v0="RaggedTensorToTensor",Wc="Range",Qp="Real",Wl="Reciprocal",Ko="Relu",Vl="Reshape",Zo="ResizeNearestNeighbor",w0="ResizeNearestNeighborGrad",Yo="ResizeBilinear",k0="ResizeBilinearGrad",Jo="Relu6",Ul="Reverse",Gl="Round",Qo="Rsqrt",Hl="ScatterNd",S0="SearchSorted",jl="Select",Vc="Selu",ql="Slice",ei="Sin",Xl="Sinh",Uc="Sign",ti="Sigmoid",Gc="Softplus",ni="Sqrt",si="Sum",Kl="SpaceToBatchND",Zl="SplitV",ri="Softmax",eh="SparseFillEmptyRows",Hc="SparseReshape",th="SparseSegmentMean",nh="SparseSegmentSum",sh="SparseToDense",ai="SquaredDifference",jc="Square",Yl="StridedSlice",qc="StringNGrams",rh="StringSplit",ah="StringToHashBucketFast",oi="Sub",Jl="Tan",ii="Tanh",Ra="Tile",Ql="TopK",eu="Transform",ea="Transpose",I0="Unique",tu="Unpack",oh="UnsortedSegmentSum",gD="UpperBound",nu="ZerosLike",li="Step",Sp="FromPixels",su="RotateWithOffset",to="_FusedMatMul",no="FusedConv2D",so="FusedDepthwiseConv2D";function qa(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.warn(...e)}function yD(...e){H().getBool("IS_TEST")||H().getBool("PROD")||console.log(...e)}var oc=zy("kernelRegistry",()=>new Map),Ip=zy("gradRegistry",()=>new Map);function Im(e,t){let n=Ly(e,t);return oc.get(n)}function E3(e){return Ip.get(e)}function na(e){let t=oc.entries(),n=[];for(;;){let{done:s,value:r}=t.next();if(s)break;let[a,o]=r,[i]=a.split("_");i===e&&n.push(o)}return n}function tr(e){let{kernelName:t,backendName:n}=e,s=Ly(t,n);oc.has(s)&&qa(`The kernel '${t}' for backend '${n}' is already registered`),oc.set(s,e)}function _6(e){let{kernelName:t}=e;Ip.has(t)&&H().getBool("DEBUG")&&qa(`Overriding the gradient for '${t}'`),Ip.set(t,e)}function AD(e,t){let n=Ly(e,t);if(!oc.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);oc.delete(n)}function xD(e){if(!Ip.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Ip.delete(e)}function bD(e,t){na(e).forEach(s=>{let r=Object.assign({},s,{backendName:t});tr(r)})}function Ly(e,t){return`${t}_${e}`}var v={};He(v,{arraysEqual:()=>fo,assert:()=>O,assertNonNegativeIntegerDimensions:()=>Fy,assertNonNull:()=>fl,assertShapesMatch:()=>is,bytesFromStringArray:()=>w6,bytesPerElement:()=>N3,checkConversionForErrors:()=>b6,clamp:()=>kp,computeStrides:()=>kc,createScalarValue:()=>CD,createShuffledIndices:()=>nD,decodeString:()=>Cm,distSquared:()=>J_,encodeString:()=>lh,fetch:()=>ND,fingerPrint64:()=>ID,flatten:()=>nl,getArrayFromDType:()=>x6,getTypedArrayFromDType:()=>A6,hasEncodingLoss:()=>aD,hexToLong:()=>ih,indexToLoc:()=>lD,inferDtype:()=>Qm,inferFromImplicitShape:()=>rD,isBoolean:()=>k6,isFunction:()=>eo,isInt:()=>ac,isNumber:()=>S6,isPromise:()=>Oy,isScalarShape:()=>Q_,isString:()=>Xa,isTypedArray:()=>Wn,isValidDtype:()=>v6,locToIndex:()=>iD,makeOnesTypedArray:()=>Py,makeZerosNestedTypedArray:()=>oD,makeZerosTypedArray:()=>e0,nearestDivisor:()=>wm,nearestLargerEven:()=>K_,now:()=>Cp,parseAxisParam:()=>gr,randUniform:()=>Y_,repeatedTry:()=>sD,rightPad:()=>Ap,shuffle:()=>g6,shuffleCombo:()=>X_,sizeFromShape:()=>Nt,sizeToSquarishShape:()=>tD,squeezeShape:()=>y6,sum:()=>Z_,swap:()=>vm,tanh:()=>eD,toNestedArray:()=>ec,toTypedArray:()=>C0});var Tv=ho(E_()),Gi=Tv.default||Tv;function ih(e){return Gi.fromString(e,!0,16)}var D6=ih("c3a5c85c97cb3127"),Wi=ih("b492b66fbe98f273"),ns=ih("9ae16a3b2f90404f");function R3(e){return e.xor(e.shru(47))}function $6(e,t,n){let s=e.slice(t,t+n);return Gi.fromBytes(Array.from(s),!0,!0)}function Tt(e,t){return $6(e,t,8)}function Nv(e,t){return $6(e,t,4)}function kn(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Ya(e,t,n=ih("9ddfea08eb382d69")){let s=e.xor(t).mul(n);s=s.xor(s.shru(47));let r=t.xor(s).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function vD(e,t,n,s,r,a){r=r.add(e),a=kn(a.add(r).add(s),21);let o=r;return r=r.add(t),r=r.add(n),a=a.add(kn(r,44)),[r.add(s),a.add(o)]}function Kf(e,t,n,s){return vD(Tt(e,t),Tt(e,t+8),Tt(e,t+16),Tt(e,t+24),n,s)}function wD(e,t=e.length){if(t>=8){let n=ns.add(t*2),s=Tt(e,0).add(ns),r=Tt(e,t-8),a=kn(r,37).mul(n).add(s),o=kn(s,25).add(r).mul(n);return Ya(a,o,n)}if(t>=4){let n=ns.add(t*2),s=Nv(e,0);return Ya(s.shl(3).add(t),Nv(e,t-4),n)}if(t>0){let n=e[0],s=e[t>>1],r=e[t-1],a=n+(s<<8),o=t+(r<<2);return R3(ns.mul(a).xor(D6.mul(o))).mul(ns)}return ns}function kD(e,t=e.length){let n=ns.add(t*2),s=Tt(e,0).mul(Wi),r=Tt(e,8),a=Tt(e,t-8).mul(n),o=Tt(e,t-16).mul(ns);return Ya(kn(s.add(r),43).add(kn(a,30)).add(o),s.add(kn(r.add(ns),18)).add(a),n)}function SD(e,t=e.length){let n=ns.add(t*2),s=Tt(e,0).mul(ns),r=Tt(e,8),a=Tt(e,t-8).mul(n),o=Tt(e,t-16).mul(ns),i=kn(s.add(r),43).add(kn(a,30)).add(o),l=Ya(i,s.add(kn(r.add(ns),18)).add(a),n),u=Tt(e,16).mul(n),c=Tt(e,24),p=i.add(Tt(e,t-32)).mul(n),d=l.add(Tt(e,t-24)).mul(n);return Ya(kn(u.add(c),43).add(kn(p,30)).add(d),u.add(kn(c.add(s),18)).add(p),n)}function ID(e,t=e.length){let n=Gi.fromNumber(81,!0);if(t<=32)return t<=16?wD(e,t):kD(e,t);if(t<=64)return SD(e,t);let s=n,r=n.mul(Wi).add(113),a=R3(r.mul(ns).add(113)).mul(ns),o=[Gi.UZERO,Gi.UZERO],i=[Gi.UZERO,Gi.UZERO];s=s.mul(ns).add(Tt(e,0));let l=0,u=(t-1>>6)*64,c=u+(t-1&63)-63;do s=kn(s.add(r).add(o[0]).add(Tt(e,l+8)),37).mul(Wi),r=kn(r.add(o[1]).add(Tt(e,l+48)),42).mul(Wi),s=s.xor(i[1]),r=r.add(o[0]).add(Tt(e,l+40)),a=kn(a.add(i[0]),33).mul(Wi),o=Kf(e,l,o[1].mul(Wi),s.add(i[0])),i=Kf(e,l+32,a.add(i[1]),r.add(Tt(e,l+16))),[a,s]=[s,a],l+=64;while(l!==u);let p=Wi.add(a.and(255).shl(1));return l=c,i[0]=i[0].add(t-1&63),o[0]=o[0].add(i[0]),i[0]=i[0].add(o[0]),s=kn(s.add(r).add(o[0]).add(Tt(e,l+8)),37).mul(p),r=kn(r.add(o[1]).add(Tt(e,l+48)),42).mul(p),s=s.xor(i[1].mul(9)),r=r.add(o[0].mul(9).add(Tt(e,l+40))),a=kn(a.add(i[0]),33).mul(p),o=Kf(e,l,o[1].mul(p),s.add(i[0])),i=Kf(e,l+32,a.add(i[1]),r.add(Tt(e,l+16))),[a,s]=[s,a],Ya(Ya(o[0],i[0],p).add(R3(r).mul(D6)).add(a),Ya(o[1],i[1],p).add(s),p)}function CD(e,t){return t==="string"?lh(e):C0([e],t)}function TD(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function C0(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=nl(e)),H().getBool("DEBUG")&&b6(e,t),TD(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let s=0;s<n.length;++s)Math.round(e[s])!==0&&(n[s]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Cp(){return H().platform.now()}function ND(e,t){return H().platform.fetch(e,t)}function lh(e,t="utf-8"){return t=t||"utf-8",H().platform.encode(e,t)}function Cm(e,t="utf-8"){return t=t||"utf-8",H().platform.decode(e,t)}var ED=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new _D)}profileKernel(e,t,n){let s,r=()=>{s=n()},a,o=Cp();if(this.backendTimer.timerAvailable())a=this.backendTimer.time(r);else{r();for(let l of s)l.dataSync();a=Promise.resolve({kernelMs:Cp()-o})}if(H().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let l=0;l<s.length;l++){let u=s[l];u.data().then(c=>{RD(c,u.dtype,e)})}return{kernelName:e,outputs:s,inputs:t,timeMs:a.then(l=>l.kernelMs),extraInfo:a.then(l=>l.getExtraProfileInfo!=null?l.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:s,inputs:r,extraInfo:a}=e;n.forEach(o=>{Promise.all([o.data(),s,a]).then(i=>{this.logger.logKernelProfile(t,o,i[0],i[1],r,i[2])})})}};function RD(e,t,n){if(t!=="float32")return!1;for(let s=0;s<e.length;s++){let r=e[s];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var _D=class{logKernelProfile(e,t,n,s,r,a){let o=typeof s=="number"?Ap(`${s}ms`,9):s.error,i=Ap(e,25),l=t.rank,u=t.size,c=Ap(t.shape.toString(),14),p="";for(let d in r){let h=r[d];if(h!=null){let f=h.shape||t.shape,m=f.length;p+=`${d}: ${m}D ${m>0?f:""} `}}console.log(`%c${i} %c${o} %c${l}D ${c} %c${u} %c${p} %c${a}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function DD(e,t,n){let s={},r={};for(let l=0;l<t.length;l++)s[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],c=u.inputs;for(let p in c){let d=c[p],h=!1;for(let f=0;f<t.length;f++)if(s[d.id]){u.outputs.forEach(m=>s[m.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let a={};a[n.id]=!0;let o={};for(let l=e.length-1;l>=0;l--){let u=e[l],c=u.inputs;for(let p=0;p<u.outputs.length;p++)if(a[u.outputs[p].id]){for(let d in c)a[c[d].id]=!0,o[u.id]=!0;break}}let i=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&o[u.id]){let c={};for(let d in u.inputs){let h=u.inputs[d];s[h.id]&&(c[d]=h)}let p=Object.assign({},u);p.inputs=c,p.outputs=u.outputs,i.push(p)}}return i}function $D(e,t,n,s){for(let r=t.length-1;r>=0;r--){let a=t[r],o=[];if(a.outputs.forEach(l=>{let u=e[l.id];u!=null?o.push(u):o.push(null)}),a.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${a.kernelName}.`);let i=a.gradient(o);for(let l in a.inputs){if(!(l in i))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(i)}.`);let u=n(()=>i[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let c=a.inputs[l];if(!fo(u.shape,c.shape))throw new Error(`Error in gradient for op ${a.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${c.shape}'`);if(e[c.id]==null)e[c.id]=u;else{let p=e[c.id];e[c.id]=s(p,u),p.dispose()}}}}var Ev=20,sp=3,f3=7;function PD(e,t,n,s){let r=kc(t),a=FD(e,t,n,r),o=t.length,i=cm(e,t,n,r,a),l=["Tensor"];return s&&(l.push(` dtype: ${n}`),l.push(` rank: ${o}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(i.map(u=>" "+u).join(`
`)),l.join(`
`)}function FD(e,t,n,s){let r=Nt(t),a=s[s.length-1],o=new Array(a).fill(0),i=t.length,l=n==="complex64"?lp(e):e;if(i>1)for(let u=0;u<r/a;u++){let c=u*a;for(let p=0;p<a;p++)o[p]=Math.max(o[p],ip(l[c+p],0,n).length)}return o}function ip(e,t,n){let s;return Array.isArray(e)?s=`${parseFloat(e[0].toFixed(f3))} + ${parseFloat(e[1].toFixed(f3))}j`:Xa(e)?s=`'${e}'`:n==="bool"?s=P6(e):s=parseFloat(e.toFixed(f3)).toString(),Ap(s,t)}function P6(e){return e===0?"false":"true"}function cm(e,t,n,s,r,a=!0){let o=n==="complex64"?2:1,i=t[0],l=t.length;if(l===0){if(n==="complex64"){let m=lp(e);return[ip(m[0],0,n)]}return n==="bool"?[P6(e[0])]:[e[0].toString()]}if(l===1){if(i>Ev){let g=sp*o,y=Array.from(e.slice(0,g)),x=Array.from(e.slice((i-sp)*o,i*o));return n==="complex64"&&(y=lp(y),x=lp(x)),["["+y.map((A,b)=>ip(A,r[b],n)).join(", ")+", ..., "+x.map((A,b)=>ip(A,r[i-sp+b],n)).join(", ")+"]"]}let m=n==="complex64"?lp(e):Array.from(e);return["["+m.map((g,y)=>ip(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),c=s.slice(1),p=s[0]*o,d=[];if(i>Ev){for(let m=0;m<sp;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,!1))}d.push("...");for(let m=i-sp;m<i;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,m===i-1))}}else for(let m=0;m<i;m++){let g=m*p,y=g+p;d.push(...cm(e.slice(g,y),u,n,c,r,m===i-1))}let h=l===2?",":"";d[0]="["+d[0]+h;for(let m=1;m<d.length-1;m++)d[m]=" "+d[m]+h;let f=`,
`;for(let m=2;m<l;m++)f+=`
`;return d[d.length-1]=" "+d[d.length-1]+"]"+(a?"":f),d}function lp(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var gn=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Nt(e),n!=null){let s=n.length;O(s===this.size,()=>`Length of values '${s}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||x6(t,this.size),this.strides=kc(e)}set(e,...t){t.length===0&&(t=[0]),O(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let s of e){if(s<0||s>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let s=0;s<e.length-1;++s)n+=this.strides[s]*e[s];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return Dr().makeTensor(this.values,this.shape,this.dtype)}},Dr=null,Yu=null,OD=null;function MD(e){Dr=e}function zD(e){Yu=e}function LD(e){OD=e}var st=class{constructor(e,t,n,s){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Nt(e),this.strides=kc(e),this.dataId=n,this.id=s,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Yu.buffer(this.shape,this.dtype,e)}bufferSync(){return Yu.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return ec(this.shape,e,this.dtype==="complex64")}arraySync(){return ec(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=Dr().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Cm(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataToGPU(e){return this.throwIfDisposed(),Dr().readToGPU(this.dataId,e)}dataSync(){this.throwIfDisposed();let e=Dr().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Cm(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await Dr().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(Dr().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Yu.print(this,e)}clone(){return this.throwIfDisposed(),Yu.clone(this)}toString(e=!1){let t=this.dataSync();return PD(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Yu.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),Dr().makeVariable(this,e,t,n)}};Object.defineProperty(st,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ae(){return zy("Tensor",()=>st)}ae();var Tp=class extends st{constructor(e,t,n,s){super(e.shape,e.dtype,e.dataId,s),this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!fo(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);Dr().disposeTensor(this),this.dataId=e.dataId,Dr().incRef(this,null)}dispose(){Dr().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(Tp,Symbol.hasInstance,{value:e=>e instanceof st&&e.assign!=null&&e.assign instanceof Function});var Or={};He(Or,{assertTypesMatch:()=>F6,getTensorsInContainer:()=>By,isTensorInList:()=>WD,makeTypesMatch:()=>Ht});var _3;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(_3||(_3={}));var D3;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(D3||(D3={}));var $3;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})($3||($3={}));var P3;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(P3||(P3={}));var F3;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(F3||(F3={}));var BD={float32:P3,int32:D3,bool:$3,complex64:F3};function Un(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return BD[e][t]}function uh(e){return Un(e,"int32")}function Ht(e,t){if(e.dtype===t.dtype)return[e,t];let n=Un(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function F6(e,t){O(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function WD(e,t){return t.some(n=>n.id===e.id)}function By(e){let t=[];return O6(e,t,new Set),t}function O6(e,t,n){if(e==null)return;if(e instanceof st){t.push(e);return}if(!VD(e))return;let s=e;for(let r in s){let a=s[r];n.has(a)||(n.add(a),O6(a,t,n))}}function VD(e){return Array.isArray(e)||typeof e=="object"}function m3(e){return e.kernelName!=null}var Rv=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},Np=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Rv}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(qa(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new ED(this.backendInstance),!0}setupRegisteredKernels(){na(this.backendName).forEach(t=>{t.setupFunc!=null&&t.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){na(e).forEach(n=>{n.disposeFunc!=null&&n.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof wc)&&typeof n.then=="function"){let s=++this.pendingBackendInitId,r=n.then(a=>s<this.pendingBackendInitId?!1:(this.registry[e]=a,this.pendingBackendInit=null,!0)).catch(a=>(s<this.pendingBackendInitId||(this.pendingBackendInit=null,qa(`Initialization of backend ${e} failed`),qa(a.stack||a.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return qa(`Initialization of backend ${e} failed`),qa(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:s,asyncInit:r}=this.initializeBackend(n);if(r||s)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),s=n.backend,r=this.readSync(t),a=s.refCount(t);s.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,a),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let s;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(s),()=>(s=t(),s instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),s))}scopedRun(e,t,n){e();try{let s=n();return t(),s}catch(s){throw t(),s}}nextTensorId(){return Np.nextTensorId++}nextVariableId(){return Np.nextVariableId++}clone(e){let t=B.runKernel(Po,{x:e}),n={x:e},s=a=>({x:()=>{let o="float32",i={x:a},l={dtype:o};return B.runKernel(xo,i,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],s,r,{}),t}runKernel(e,t,n){if(this.backendName==null&&this.backend,!(Im(e,this.backendName)!=null))throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let s=this.backend.numDataIds(),r=0;n.forEach(i=>{r+=i.dtype==="complex64"?3:1});let a=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],o=s-t-r-a;if(o>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${o} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],s=this.isTapeOn(),r=this.state.numBytes,a=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let o;this.backendName==null&&this.backend;let i,l=m3(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(m3(e)){let{kernelName:h,inputs:f,attrs:m}=e;this.backendName==null&&this.backend;let g=Im(h,this.backendName);O(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),o=()=>{let y=this.backend.numDataIds();i=g.kernelFunc({inputs:f,attrs:m,backend:this.backend});let x=Array.isArray(i)?i:[i];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,x);let A=x.map(b=>b.rank!=null?b:this.makeTensorFromTensorInfo(b));if(s){let b=this.getTensorsForGradient(h,f,A);n=this.saveTensorsForBackwardMode(b)}return A}}else{let{forwardFunc:h}=e,f=m=>{!s||(n=m.map(g=>this.keep(this.clone(g))))};o=()=>{let m=this.backend.numDataIds();i=this.tidy(()=>h(this.backend,f));let g=Array.isArray(i)?i:[i];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,m,g),g}}let{inputs:u,attrs:c}=e,p=m3(e)?null:e.backwardsFunc,d;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=o():(d=this.profiler.profileKernel(l,u,()=>o()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(d),t=d.outputs)}),s&&this.addTapeNode(l,u,t,p,n,c),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-a,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:d.timeMs,extraInfo:d.extraInfo}),Array.isArray(i)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(n=>this.keep(this.clone(n)))}getTensorsForGradient(e,t,n){let s=E3(e);if(s!=null){let r=s.inputsToSave||[],a=s.outputsToSave||[],o;s.saveAllInputs?(O(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),o=Object.keys(t).map(l=>t[l])):o=r.map(l=>t[l]);let i=n.filter((l,u)=>a[u]);return o.concat(i)}return[]}makeTensor(e,t,n,s){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",s=s||this.backend;let r=e;n==="string"&&Xa(e[0])&&(r=e.map(i=>lh(i)));let a=s.write(r,t,n),o=new st(t,n,a,this.nextTensorId());if(this.trackTensor(o,s),n==="string"){let i=this.state.tensorInfo.get(a),l=w6(r);this.state.numBytes+=l-i.bytes,i.bytes=l}return o}makeTensorFromDataId(e,t,n,s){n=n||"float32";let r={dataId:e,shape:t,dtype:n};return this.makeTensorFromTensorInfo(r,s)}makeTensorFromTensorInfo(e,t){let{dataId:n,shape:s,dtype:r}=e,a=new st(s,r,n,this.nextTensorId());return this.trackTensor(a,t),a}makeVariable(e,t=!0,n,s){n=n||this.nextVariableId().toString(),s!=null&&s!==e.dtype&&(e=e.cast(s));let r=new Tp(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*N3(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof Tp||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*N3(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(s=>s.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let s of this.state.activeProfile.kernels)s.kernelTimeMs=await s.kernelTimeMs,s.extraInfo=await s.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,s,r,a){let o={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},i=E3(e);i!=null&&(s=i.gradFunc),s!=null&&(o.gradient=l=>(l=l.map((u,c)=>{if(u==null){let p=n[c],d=e0(p.size,p.dtype);return this.makeTensor(d,p.shape,p.dtype)}return u}),s(l.length>1?l:l[0],r,a))),this.state.activeTape.push(o)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=By(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let a=this.state.activeScope.track[r];!a.kept&&!n.has(a.id)&&a.dispose()}let s=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===s.id&&this.track(r)})}gradients(e,t,n,s=!1){if(O(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));O(r instanceof st,()=>"The result y returned by f() must be a tensor.");let a=DD(this.state.activeTape,t,r);if(!s&&a.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let o={};o[r.id]=n==null?UD(r.shape):n,$D(o,a,l=>this.tidy(l),GD);let i=t.map(l=>o[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:i}})}customGrad(e){return O(eo(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{O(t.every(o=>o instanceof st),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,s={};t.forEach((o,i)=>{s[i]=o});let r=(o,i)=>(n=e(...t,i),O(n.value instanceof st,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),O(eo(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),a=(o,i)=>{let l=n.gradFunc(o,i),u=Array.isArray(l)?l:[l];O(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),O(u.every(p=>p instanceof st),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let c={};return u.forEach((p,d)=>{c[d]=()=>p}),c};return this.runKernelFunc({forwardFunc:r,backwardsFunc:a,inputs:s})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}readToGPU(e,t){return this.state.tensorInfo.get(e).backend.readToGPU(e,t)}async time(e){let t=Cp(),n=await this.backend.time(e);return n.wallMs=Cp()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Rv;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};Np.nextTensorId=0;Np.nextVariableId=0;function UD(e){let t=Py(Nt(e),"float32");return B.makeTensor(t,e,"float32")}function M6(){let e=T6();if(e._tfengine==null){let t=new C6(e);e._tfengine=new Np(t)}return pD(e._tfengine.ENV),MD(()=>e._tfengine),e._tfengine}var B=M6();function GD(e,t){let n={a:e,b:t};return B.runKernel(Na,n)}var ch={};He(ch,{isBrowser:()=>z6,isMobile:()=>qD,mockIsMobile:()=>jD});function HD(){return typeof navigator!="undefined"&&navigator!=null}var O3;function jD(e){O3=e}function qD(e){if(O3!==void 0)return O3;if(e||HD()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||(typeof window!="undefined"?window.opera:"");if(!t){let n=e;return n.userAgentData&&n.userAgentData.mobile}return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function z6(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Js=H();Js.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Js.registerFlag("IS_BROWSER",()=>z6());Js.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Js.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Js.registerFlag("PROD",()=>!1);Js.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Js.getBool("DEBUG"));Js.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Js.registerFlag("IS_TEST",()=>!1);Js.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Js.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);Js.registerFlag("ENGINE_COMPILE_ONLY",()=>!1);Js.registerFlag("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU",()=>!1);function sa(e,t){let n=e;if(Wn(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let s=[];for(;Array.isArray(n)||Wn(n)&&t!=="string";)s.push(n.length),n=n[0];return Array.isArray(e)&&H().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&L6(e,s,[]),s}function L6(e,t,n){if(n=n||[],!Array.isArray(e)&&!Wn(e)){O(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}O(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),O(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let s=t.slice(1);for(let r=0;r<e.length;++r)L6(e[r],s,n.concat(r))}function _v(e,t,n,s){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${s}' must be ${e} tensor, but got ${t} tensor`)}}function D(e,t,n,s="numeric"){if(e instanceof st)return _v(s,e.dtype,t,n),e;let r=Qm(e);if(r!=="string"&&["bool","int32","float32"].indexOf(s)>=0&&(r=s),_v(s,r,t,n),e==null||!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let l=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${l}'`)}let a=sa(e,r);!Wn(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?C0(e,r):nl(e,[],!0);return B.makeTensor(i,a,r)}function Ep(e,t,n,s="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((a,o)=>D(a,`${t}[${o}]`,n,s))}var Wy="__op";function W(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],s=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Wy;let r=(...a)=>{B.startScope(n);try{let o=s(...a);return Oy(o)&&console.error("Cannot return a Promise inside of tidy."),B.endScope(o),o}catch(o){throw B.endScope(null),o}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function XD(e,t){let n=D(e,"real","complex"),s=D(t,"imag","complex");is(n.shape,s.shape,`real and imag shapes, ${n.shape} and ${s.shape}, must match in call to tf.complex().`);let r={real:n,imag:s};return B.runKernel(Hp,r)}var ka=W({complex_:XD});function ui(e,t,n,s){if(s==null&&(s=Qm(e)),s==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!Wn(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Fy(t);let r=Nt(t),a=Nt(n);O(r===a,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${a}`);for(let o=0;o<n.length;++o){let i=n[o],l=o===n.length-1?i!==Nt(t.slice(o)):!0;O(n[o]===t[o]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!Wn(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=s!=="string"?C0(e,s):nl(e,[],!0),B.makeTensor(e,t,s)}function ct(e,t,n){let s=sa(e,n);return ui(e,t,s,n)}var M3={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},Tm=4;async function KD(e,t){let n=[],s=[],r=Array.isArray(e)?e.map(o=>o.name):Object.keys(e);for(let o=0;o<r.length;++o){let i=r[o],l=Array.isArray(e)?e[o].tensor:e[i];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${i}': ${l.dtype}`);let u={name:i,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let c=new Promise(async p=>{let d=await l.bytes(),h=d.reduce((g,y)=>g+y.length,0)+Tm*d.length,f=new Uint8Array(h),m=0;for(let g=0;g<d.length;g++){let y=d[g],x=new Uint8Array(new Uint32Array([y.length]).buffer);f.set(x,m),m+=Tm,f.set(y,m),m+=y.length}p(f)});s.push(c)}else s.push(l.data());t!=null&&(u.group=t),n.push(u)}let a=await Promise.all(s);return{data:ZD(a),specs:n}}function B6(e,t){let n={},s,r=0;for(let a of t){let o=a.name,i=a.dtype,l=a.shape,u=Nt(l),c;if("quantization"in a){let p=a.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${a.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(i!=="float32")throw new Error(`Weight ${a.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${i}.`)}else throw new Error(`Weight ${a.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let d=M3[p.dtype],h=e.slice(r,r+u*d),f=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(i==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){c=new Float32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=g*p.scale+p.min}}else if(p.dtype==="float16")s===void 0&&(s=n$()),c=s(f);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(i==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);c=new Int32Array(f.length);for(let m=0;m<f.length;m++){let g=f[m];c[m]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*d}else if(i==="string"){let p=Nt(a.shape);c=[];for(let d=0;d<p;d++){let h=new Uint32Array(e.slice(r,r+Tm))[0];r+=Tm;let f=new Uint8Array(e.slice(r,r+h));c.push(f),r+=h}}else{let p=M3[i],d=e.slice(r,r+u*p);if(i==="float32")c=new Float32Array(d);else if(i==="int32")c=new Int32Array(d);else if(i==="bool")c=new Uint8Array(d);else if(i==="complex64"){c=new Float32Array(d);let h=new Float32Array(c.length/2),f=new Float32Array(c.length/2);for(let y=0;y<h.length;y++)h[y]=c[y*2],f[y]=c[y*2+1];let m=ct(h,l,"float32"),g=ct(f,l,"float32");n[o]=ka(m,g),m.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${o}': ${i}`);r+=u*p}i!=="complex64"&&(n[o]=ct(c,l,i))}return n}function ZD(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(a=>{if(t+=a.byteLength,n.push(a.byteLength===a.buffer.byteLength?a:new a.constructor(a)),!(a instanceof Float32Array||a instanceof Int32Array||a instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${a.constructor.name}`)});let s=new Uint8Array(t),r=0;return n.forEach(a=>{s.set(new Uint8Array(a.buffer),r),r+=a.byteLength}),s.buffer}var Vy=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Dv(e){return Vy?Buffer.byteLength(e):new Blob([e]).size}function YD(e){if(Vy)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let s=0,r=t.length;s<r;s++)n+=String.fromCharCode(t[s]);return btoa(n)}function JD(e){if(Vy){let s=Buffer.from(e,"base64");return s.buffer.slice(s.byteOffset,s.byteOffset+s.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let s=0;s<t.length;++s)n.set([t.charCodeAt(s)],s);return n.buffer}function Uy(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),s=0;return e.forEach(r=>{n.set(new Uint8Array(r),s),s+=r.byteLength}),n.buffer}function $v(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function W6(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:t};return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),n}async function Gy(e,t){let n={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};if(e.trainingConfig!=null&&(n.trainingConfig=e.trainingConfig),e.weightsManifest!=null){let[s,r]=await t(e.weightsManifest);n.weightSpecs=s,n.weightData=r}return e.signature!=null&&(n.signature=e.signature),e.userDefinedMetadata!=null&&(n.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(n.modelInitializer=e.modelInitializer),n}function dh(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Dv(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Dv(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function QD(){let e=n=>{let s=n<<13,r=0;for(;(s&8388608)===0;)r-=8388608,s<<=1;return s&=-8388609,r+=947912704,s|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function e$(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function t$(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function n$(){let e=QD(),t=e$(),n=t$();return s=>{let r=new ArrayBuffer(4*s.length),a=new Uint32Array(r);for(let o=0;o<s.length;o++){let i=s[o],l=e[n[i>>10]+(i&1023)]+t[i>>10];a[o]=l}return new Float32Array(r)}}var Kt=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Kt.instance==null&&(Kt.instance=new Kt),Kt.instance}static registerSaveRouter(e){Kt.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Kt.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Kt.getHandlers(e,"save")}static getLoadHandlers(e,t){return Kt.getHandlers(e,"load",t)}static getHandlers(e,t,n){let s=[];return(t==="load"?Kt.getInstance().loadRouters:Kt.getInstance().saveRouters).forEach(a=>{let o=a(e,n);o!==null&&s.push(o)}),s}},s$=e=>Kt.registerSaveRouter(e),r$=e=>Kt.registerLoadRouter(e),a$=e=>Kt.getSaveHandlers(e),o$=(e,t)=>Kt.getLoadHandlers(e,t),z3="tensorflowjs",L3=1,Xi="models_store",Ka="model_info_store";function V6(){if(!H().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function B3(e){let t=e.result;t.createObjectStore(Xi,{keyPath:"modelPath"}),t.createObjectStore(Ka,{keyPath:"modelPath"})}var sl=class{constructor(e){if(this.indexedDB=V6(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,s)=>{let r=this.indexedDB.open(z3,L3);r.onupgradeneeded=()=>B3(r),r.onsuccess=()=>{let a=r.result;if(t==null){let o=a.transaction(Xi,"readonly"),l=o.objectStore(Xi).get(this.modelPath);l.onsuccess=()=>{if(l.result==null)return a.close(),s(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(l.result.modelArtifacts)},l.onerror=u=>(a.close(),s(l.error)),o.oncomplete=()=>a.close()}else{let o=dh(t),i=a.transaction(Ka,"readwrite"),l=i.objectStore(Ka),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:o}),c;u.onsuccess=()=>{c=a.transaction(Xi,"readwrite");let d=c.objectStore(Xi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:o});d.onsuccess=()=>n({modelArtifactsInfo:o}),d.onerror=h=>{l=i.objectStore(Ka);let f=l.delete(this.modelPath);f.onsuccess=()=>(a.close(),s(d.error)),f.onerror=m=>(a.close(),s(d.error))}},u.onerror=p=>(a.close(),s(u.error)),i.oncomplete=()=>{c==null?a.close():c.oncomplete=()=>a.close()}}},r.onerror=a=>s(r.error)})}};sl.URL_SCHEME="indexeddb://";var U6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(sl.URL_SCHEME)?i$(e.slice(sl.URL_SCHEME.length)):null;Kt.registerSaveRouter(U6);Kt.registerLoadRouter(U6);function i$(e){return new sl(e)}function l$(e){return e.startsWith(sl.URL_SCHEME)?e.slice(sl.URL_SCHEME.length):e}var u$=class{constructor(){this.indexedDB=V6()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(z3,L3);n.onupgradeneeded=()=>B3(n),n.onsuccess=()=>{let s=n.result,r=s.transaction(Ka,"readonly"),o=r.objectStore(Ka).getAll();o.onsuccess=()=>{let i={};for(let l of o.result)i[l.modelPath]=l.modelArtifactsInfo;e(i)},o.onerror=i=>(s.close(),t(o.error)),r.oncomplete=()=>s.close()},n.onerror=s=>t(n.error)})}async removeModel(e){return e=l$(e),new Promise((t,n)=>{let s=this.indexedDB.open(z3,L3);s.onupgradeneeded=()=>B3(s),s.onsuccess=()=>{let r=s.result,a=r.transaction(Ka,"readwrite"),o=a.objectStore(Ka),i=o.get(e),l;i.onsuccess=()=>{if(i.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=o.delete(e),c=()=>{l=r.transaction(Xi,"readwrite");let d=l.objectStore(Xi).delete(e);d.onsuccess=()=>t(i.result.modelArtifactsInfo),d.onerror=h=>n(i.error)};u.onsuccess=c,u.onerror=p=>(c(),r.close(),n(i.error))}},i.onerror=u=>(r.close(),n(i.error)),a.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},s.onerror=r=>n(s.error)})}},xa="/",Ju="tensorflowjs_models",G6="info",c$="model_topology",d$="weight_specs",p$="weight_data",h$="model_metadata";function H6(e){return{info:[Ju,e,G6].join(xa),topology:[Ju,e,c$].join(xa),weightSpecs:[Ju,e,d$].join(xa),weightData:[Ju,e,p$].join(xa),modelMetadata:[Ju,e,h$].join(xa)}}function j6(e){for(let t of Object.values(e))window.localStorage.removeItem(t)}function f$(e){let t=e.split(xa);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(xa)}function m$(e){return e.startsWith(rl.URL_SCHEME)?e.slice(rl.URL_SCHEME.length):e}var rl=class{constructor(e){if(!H().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=H6(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),s=dh(e);try{this.LS.setItem(this.keys.info,JSON.stringify(s)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,YD(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,signature:e.signature!=null?e.signature:void 0,userDefinedMetadata:e.userDefinedMetadata!=null?e.userDefinedMetadata:void 0,modelInitializer:e.modelInitializer!=null?e.modelInitializer:void 0,trainingConfig:e.trainingConfig!=null?e.trainingConfig:void 0};return this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:s}}catch(r){throw j6(this.keys),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${s.modelTopologyBytes}, weightSpecsBytes=${s.weightSpecsBytes}, weightDataBytes=${s.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let s=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(s==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=s;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let o=JSON.parse(r);t.format=o.format,t.generatedBy=o.generatedBy,t.convertedBy=o.convertedBy,o.signature!=null&&(t.signature=o.signature),o.userDefinedMetadata!=null&&(t.userDefinedMetadata=o.userDefinedMetadata),o.modelInitializer!=null&&(t.modelInitializer=o.modelInitializer),o.trainingConfig!=null&&(t.trainingConfig=o.trainingConfig)}let a=this.LS.getItem(this.keys.weightData);if(a==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=JD(a),t}};rl.URL_SCHEME="localstorage://";var q6=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(rl.URL_SCHEME)?g$(e.slice(rl.URL_SCHEME.length)):null;Kt.registerSaveRouter(q6);Kt.registerLoadRouter(q6);function g$(e){return new rl(e)}var y$=class{constructor(){O(H().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),O(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=Ju+xa,n=xa+G6;for(let s=0;s<this.LS.length;++s){let r=this.LS.key(s);if(r.startsWith(t)&&r.endsWith(n)){let a=f$(r);e[a]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=m$(e);let t=H6(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return j6(t),n}},tc="://",ms=class{constructor(){this.managers={}}static getInstance(){return ms.instance==null&&(ms.instance=new ms),ms.instance}static registerManager(e,t){O(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(tc)&&(e=e.slice(0,e.indexOf(tc))),O(e.length>0,()=>"scheme must not be an empty string.");let n=ms.getInstance();O(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=ms.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(ms.getInstance().managers)}};function dm(e){if(e.indexOf(tc)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ms.getSchemes().join(",")}`);return{scheme:e.split(tc)[0],path:e.split(tc)[1]}}async function X6(e,t,n=!1){O(e!==t,()=>`Old path and new path are the same: '${e}'`);let s=Kt.getLoadHandlers(e);O(s.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),O(s.length<2,()=>`Copying failed because more than one (${s.length}) load handlers for source URL ${e}.`);let r=s[0],a=Kt.getSaveHandlers(t);O(a.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),O(a.length<2,()=>`Copying failed because more than one (${s.length}) save handlers for destination URL ${t}.`);let o=a[0],i=dm(e).scheme,l=dm(e).path,u=i===dm(e).scheme,c=await r.load();n&&u&&await ms.getManager(i).removeModel(l);let p=await o.save(c);return n&&!u&&await ms.getManager(i).removeModel(l),p.modelArtifactsInfo}async function A$(){let e=ms.getSchemes(),t={};for(let n of e){let s=await ms.getManager(n).listModels();for(let r in s){let a=n+tc+r;t[a]=s[r]}}return t}async function x$(e){let t=dm(e);return ms.getManager(t.scheme).removeModel(t.path)}async function b$(e,t){return X6(e,t,!1)}async function v$(e,t){return X6(e,t,!0)}var w$=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(H().get("IS_BROWSER")){H().setPlatform("browser",new w$);try{ms.registerManager(rl.URL_SCHEME,new y$)}catch(e){}try{ms.registerManager(sl.URL_SCHEME,new u$)}catch(e){}}var k$={importFetch:()=>R_()},g3,S$=class{constructor(){this.util=__(),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return H().global.fetch!=null?H().global.fetch(e,t):(g3==null&&(g3=k$.importFetch()),g3(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};H().get("IS_NODE")&&!H().get("IS_BROWSER")&&H().setPlatform("node",new S$);function We(e,t="float32",n){return t=t||"float32",Fy(e),new gn(e,t,n)}function I$(e,t){let n=D(e,"x","cast");if(!v6(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let s={x:n},r={dtype:t};return B.runKernel(xo,s,r)}var ye=W({cast_:I$});function C$(e){let n={x:D(e,"x","clone","string_or_numeric")};return B.runKernel(Po,n)}var Vn=W({clone_:C$});function Hy(e,t=!1){console.log(e.toString(t))}M6();var T$={buffer:We,cast:ye,clone:Vn,print:Hy};zD(T$);var _s={};He(_s,{browserFiles:()=>P$,browserHTTPRequest:()=>L$,concatenateArrayBuffers:()=>Uy,copyModel:()=>b$,decodeWeights:()=>B6,encodeWeights:()=>KD,fromMemory:()=>W$,fromMemorySync:()=>Q6,getLoadHandlers:()=>o$,getModelArtifactsForJSON:()=>Gy,getModelArtifactsInfoForJSON:()=>dh,getSaveHandlers:()=>a$,http:()=>qy,isHTTPScheme:()=>W3,listModels:()=>A$,loadWeights:()=>F$,moveModel:()=>v$,registerLoadRouter:()=>r$,registerSaveRouter:()=>s$,removeModel:()=>x$,weightsLoaderFactory:()=>Z6,withSaveHandler:()=>V$,withSaveHandlerSync:()=>U$});var N$="model",E$=".json",R$=".weights.bin";function Pv(e){return new Promise(t=>setTimeout(t)).then(e)}var ic=class{constructor(e){if(!H().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(ic.URL_SCHEME)&&(e=e.slice(ic.URL_SCHEME.length)),(e==null||e.length===0)&&(e=N$),this.modelJsonFileName=e+E$,this.weightDataFileName=e+R$}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],s=W6(e,n),r=window.URL.createObjectURL(new Blob([JSON.stringify(s)],{type:"application/json"})),a=this.modelJsonAnchor==null?document.createElement("a"):this.modelJsonAnchor;if(a.download=this.modelJsonFileName,a.href=r,await Pv(()=>a.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let o=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;o.download=this.weightDataFileName,o.href=t,await Pv(()=>o.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:dh(e)}}}};ic.URL_SCHEME="downloads://";var _$=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.jsonFile=e[0],this.weightsFiles=e.slice(1)}async load(){return new Promise((e,t)=>{let n=new FileReader;n.onload=s=>{let r=JSON.parse(s.target.result),a=r.modelTopology;if(a==null){t(new Error(`modelTopology field is missing from file ${this.jsonFile.name}`));return}if(r.weightsManifest==null){t(new Error(`weightManifest field is missing from file ${this.jsonFile.name}`));return}if(this.weightsFiles.length===0){e({modelTopology:a});return}let i=Gy(r,l=>this.loadWeights(l));e(i)},n.onerror=s=>t(`Failed to read model topology and weights manifest JSON from file '${this.jsonFile.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),n.readAsText(this.jsonFile)})}loadWeights(e){let t=[],n=[];for(let a of e)t.push(...a.weights),n.push(...a.paths);let s=this.checkManifestAndWeightFiles(e),r=n.map(a=>this.loadWeightsFile(a,s[a]));return Promise.all(r).then(a=>[t,Uy(a)])}loadWeightsFile(e,t){return new Promise((n,s)=>{let r=new FileReader;r.onload=a=>{let o=a.target.result;n(o)},r.onerror=a=>s(`Failed to weights data from file of path '${e}'.`),r.readAsArrayBuffer(t)})}checkManifestAndWeightFiles(e){let t=[],n=this.weightsFiles.map(r=>$v(r.name)),s={};for(let r of e)r.paths.forEach(a=>{let o=$v(a);if(t.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(t.push(o),n.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);s[a]=this.weightsFiles[n.indexOf(o)]});if(t.length!==this.weightsFiles.length)throw new Error(`Mismatch in the number of files in weights manifest (${t.length}) and the number of weight files provided (${this.weightsFiles.length}).`);return s}},D$=e=>H().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(ic.URL_SCHEME)?$$(e.slice(ic.URL_SCHEME.length)):null;Kt.registerSaveRouter(D$);function $$(e="model"){return new ic(e)}function P$(e){return new _$(e)}function Fv(e,t,n,s){o(e),n=n==null?0:n,s=s==null?1:s,i(n,s);let r=0,a=l=>(l.then(u=>{let c=n+ ++r/e.length*(s-n);return t(c),u}),l);function o(l){O(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function i(l,u){O(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),O(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),O(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(a))}async function K6(e,t){t==null&&(t={});let n=t.fetchFunc==null?H().platform.fetch:t.fetchFunc,s=e.map(p=>n(p,t.requestInit,{isBinary:!0})),r=0,a=.5,i=(t.onProgress==null?await Promise.all(s):await Fv(s,t.onProgress,r,a)).map(p=>p.arrayBuffer()),l=.5,u=1;return t.onProgress==null?await Promise.all(i):await Fv(i,t.onProgress,l,u)}async function F$(e,t="",n,s){return Z6(o=>K6(o,{requestInit:s}))(e,t,n)}function Z6(e){return async(t,n="",s)=>{let r=t.map(()=>!1),a={},o=s!=null?s.map(()=>!1):[],i=[];if(t.forEach((h,f)=>{let m=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,x=M3[y]*Nt(g.shape),A=()=>{r[f]=!0,a[f]==null&&(a[f]=[]),a[f].push({manifestEntry:g,groupOffset:m,sizeBytes:x})};s!=null?s.forEach((b,w)=>{b===g.name&&(A(),o[w]=!0)}):A(),i.push(g.name),m+=x})}),!o.every(h=>h)){let h=s.filter((f,m)=>!o[m]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
Manifest JSON has weights with names: ${i.join(", ")}.`)}let l=r.reduce((h,f,m)=>(f&&h.push(m),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(f=>{let m=n+(n.endsWith("/")?"":"/")+f;u.push(m)})});let c=await e(u),p={},d=0;return l.forEach(h=>{let f=t[h].paths.length,m=0;for(let b=0;b<f;b++)m+=c[d+b].byteLength;let g=new ArrayBuffer(m),y=new Uint8Array(g),x=0;for(let b=0;b<f;b++){let w=new Uint8Array(c[d+b]);y.set(w,x),x+=w.byteLength}a[h].forEach(b=>{let w=g.slice(b.groupOffset,b.groupOffset+b.sizeBytes),k=B6(w,[b.manifestEntry]);for(let C in k)p[C]=k[C]}),d+=f}),p}}var O$="application/octet-stream",M$="application/json",jy=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(O(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=H().platform.fetch,O(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&O(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],s=W6(e,n);t.body.append("model.json",new Blob([JSON.stringify(s)],{type:M$}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:O$}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:dh(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(r){let a=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?a+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":a+=" Please make sure the server is serving valid JSON for this request.",new Error(a)}let n=t.modelTopology,s=t.weightsManifest;if(n==null&&s==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);return Gy(t,r=>this.loadWeights(r))}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,s]=z$(t),r=this.weightPathPrefix||n,a=[];for(let u of e)a.push(...u.weights);let o=[],i=[];for(let u of e)for(let c of u.paths)this.weightUrlConverter!=null?i.push(this.weightUrlConverter(c)):o.push(r+c+s);this.weightUrlConverter&&o.push(...await Promise.all(i));let l=await K6(o,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[a,Uy(l)]}};jy.URL_SCHEME_REGEX=/^https?:\/\//;function z$(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),s=e.substring(0,t),r=n>t?e.substring(n):"";return[s+"/",r]}function W3(e){return e.match(jy.URL_SCHEME_REGEX)!=null}var Y6=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(s=>W3(s)):n=W3(e),n)return qy(e,t)}return null};Kt.registerSaveRouter(Y6);Kt.registerLoadRouter(Y6);function qy(e,t){return new jy(e,t)}function L$(e,t){return qy(e,t)}var y3=class{constructor(e){this.modelArtifacts=e}load(){return this.modelArtifacts}},J6=class{constructor(e){this.saveHandler=e}save(e){return this.saveHandler(e)}},B$=class{constructor(e){e.load&&(this.load=()=>Promise.resolve(e.load())),e.save&&(this.save=t=>Promise.resolve(e.save(t)))}};function W$(e,t,n,s){let r=arguments;return new B$(Q6(...r))}function Q6(e,t,n,s){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new y3(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new y3({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new y3({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:s}))}function V$(e){return new J6(e)}function U$(e){return new J6(e)}var ew={};He(ew,{confusionMatrix:()=>aP});function G$(e,t,n=!1,s=!1){let r=D(e,"a","matMul"),a=D(t,"b","matMul");[r,a]=Ht(r,a);let o={a:r,b:a},i={transposeA:n,transposeB:s};return B.runKernel(Ao,o,i)}var et=W({matMul_:G$});function H$(e,t,n=1,s=0,r="int32"){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let o={indices:D(e,"indices","oneHot","int32")},i={dtype:r,depth:t,onValue:n,offValue:s};return B.runKernel(Ll,o,i)}var lc=W({oneHot_:H$});function Xy(){H().set("PROD",!0)}function j$(){H().set("DEBUG",!0)}function q$(){H().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function Ky(e){H().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}LD(Ky);function X$(){B.disposeVariables()}function Yt(){return B}function Nm(){return B.memory()}function K$(e){return B.profile(e)}function Y(e,t){return B.tidy(e,t)}function ee(e){By(e).forEach(n=>n.dispose())}function Sn(e){return B.keep(e)}function Z$(e){return B.time(e)}function ph(e){return B.setBackend(e)}function hh(){return B.ready()}function cn(){return B.backendName}function Y$(e){B.removeBackend(e)}function Zy(e){return B.findBackend(e)}function J$(e){return B.findBackendFactory(e)}function ru(e,t,n=1){return B.registerBackend(e,t,n)}function Ls(){return B.backend}function Q$(e,t){H().setPlatform(e,t)}function eP(e){let n={input:D(e,"input","imag")};return B.runKernel(Zp,n)}var fh=W({imag_:eP});function tP(e){let n={x:D(e,"x","neg")};return B.runKernel(Pl,n)}var $t=W({neg_:tP});function nP(e){let n={input:D(e,"input","real")};return B.runKernel(Qp,n)}var uc=W({real_:nP});function sP(e,t,n){let s=D(e,"x","transpose");if(t==null&&(t=s.shape.map((o,i)=>i).reverse()),O(s.rank===t.length,()=>`Error in transpose: rank of input ${s.rank} must match length of perm ${t}.`),t.forEach(o=>{O(o>=0&&o<s.rank,()=>`All entries in 'perm' must be between 0 and ${s.rank-1} but got ${t}`)}),s.rank<=1)return s.clone();let r={x:s},a={perm:t};return s.dtype==="complex64"?Y(()=>{let o=uc(s),i=fh(s);return o=B.runKernel(ea,{x:o},a),i=B.runKernel(ea,{x:i},a),n&&(i=$t(i)),ka(o,i)}):B.runKernel(ea,r,a)}var tt=W({transpose_:sP});function rP(e,t,n){let s=D(e,"labels","confusionMatrix"),r=D(t,"predictions","confusionMatrix");O(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),O(s.rank===1,()=>`Expected the rank of labels to be 1, but got ${s.rank}`),O(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),O(s.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${s.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),O(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let a=lc(ye(s,"int32"),n),o=lc(ye(r,"int32"),n),i=tt(a),l=et(i,o);return ye(l,"int32")}var aP=W({confusionMatrix_:rP}),au={};He(au,{assertAndGetBroadcastShape:()=>wt,getBroadcastDims:()=>tw,getReductionAxes:()=>on});function tw(e,t){let n=e.length,s=[];for(let r=0;r<n;r++){let a=n-1-r,o=e[a]||1;(t[t.length-1-r]||1)>1&&o===1&&s.unshift(a)}return s}function on(e,t){let n=[];for(let s=0;s<t.length;s++){let r=e[e.length-s-1],a=t.length-s-1,o=t[a];(r==null||r===1&&o>1)&&n.unshift(a)}return n}function wt(e,t){let n=[],s=Math.max(e.length,t.length);for(let r=0;r<s;r++){let a=e[e.length-r-1];a==null&&(a=1);let o=t[t.length-r-1];if(o==null&&(o=1),a===1)n.unshift(o);else if(o===1)n.unshift(a);else if(a!==o){let i=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(i)}else n.unshift(a)}return n}var nr={};He(nr,{fromPixels:()=>pP,fromPixelsAsync:()=>cP,toPixels:()=>dP});function Yy(e,t,n){if(fl(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let s=sa(e,n);if(s.length!==3&&s.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return ui(e,t,s,n)}var Li;function nw(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,s=!1,r=!1,a=!1,o=!1,i=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)s=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)a=!0;else if(e.getContext!=null)o=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)i=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(Im(Sp,B.backendName)!=null){let f={pixels:e},m={numChannels:t};return B.runKernel(Sp,f,m)}let[u,c]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],p;if(o)p=e.getContext("2d").getImageData(0,0,u,c).data;else if(s||n)p=e.data;else if(a||r||i){if(Li==null)if(typeof document=="undefined")if(typeof OffscreenCanvas!="undefined"&&typeof OffscreenCanvasRenderingContext2D!="undefined")Li=new OffscreenCanvas(1,1).getContext("2d");else throw new Error("Cannot parse input in current context. Reason: OffscreenCanvas Context2D rendering is not supported.");else Li=document.createElement("canvas").getContext("2d",{willReadFrequently:!0});Li.canvas.width=u,Li.canvas.height=c,Li.drawImage(e,0,0,u,c),p=Li.getImageData(0,0,u,c).data}let d;if(t===4)d=new Int32Array(p);else{let f=u*c;d=new Int32Array(f*t);for(let m=0;m<f;m++)for(let g=0;g<t;++g)d[m*t+g]=p[m*4+g]}return Yy(d,[c,u,t],"int32")}function oP(e){return e!=null&&e.data instanceof Uint8Array}function iP(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function lP(e){return e!=null&&e.width!==0&&e.height!==0}function uP(e){return iP()&&!(e instanceof ImageBitmap)&&lP(e)&&!oP(e)}async function cP(e,t=3){let n=null;if(H().getBool("WRAP_TO_IMAGEBITMAP")&&uP(e)){let s;try{s=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){s=null}s!=null&&s.width===e.width&&s.height===e.height?n=s:n=e}else n=e;return nw(n,t)}async function dP(e,t){let n=D(e,"img","toPixels");if(!(e instanceof st)){let u=n;n=ye(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[s,r]=n.shape.slice(0,2),a=n.rank===2?1:n.shape[2];if(a>4||a===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${a}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let o=await n.data(),i=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*s*4);for(let u=0;u<s*r;++u){let c=[0,0,0,255];for(let d=0;d<a;d++){let h=o[u*a+d];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);a===1?(c[0]=h*i,c[1]=h*i,c[2]=h*i):c[d]=h*i}let p=u*4;l[p+0]=Math.round(c[0]),l[p+1]=Math.round(c[1]),l[p+2]=Math.round(c[2]),l[p+3]=Math.round(c[3])}if(t!=null){t.width=r,t.height=s;let u=t.getContext("2d"),c=new ImageData(l,r,s);u.putImageData(c,0,0)}return n!==e&&n.dispose(),l}var pP=W({fromPixels_:nw}),Jy={};He(Jy,{prepareAndValidate:()=>sw});function sw(e,t){let n=e.shape.length,s=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(s<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${s}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[s-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[s-1]} vs. ${n}`);if(Nt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,a=r[r.length-1],o=1;for(let p=0;p<r.length-1;++p)o*=r[p];let i=e.shape,l=r.slice();l.pop();let u=1;for(let p=a;p<n;++p)u*=i[p],l.push(i[p]);let c=[...kc(e.shape).map(p=>p/u),1].slice(0,a);return[l,o,u,c]}var Qy={};He(Qy,{calculateShapes:()=>rw,validateInput:()=>tA,validateUpdateShape:()=>eA});function eA(e,t,n){let s=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,a=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${s}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(a+` update.rank < ${r}. `);if(e.length<s+(n.rank-r))throw new Error(a+` Output shape length < ${s+(n.rank-r)}`);if(n.rank!==r+e.length-s)throw new Error(a+` update.rank != ${r+e.length-s}`);for(let o=0;o<r;++o)if(n.shape[o]!==t.shape[o])throw new Error(a+` updates.shape[${o}] (${n.shape[o]}) != indices.shape[${o}] (${t.shape[o]}).`);for(let o=0;o<n.rank-r;++o)if(n.shape[o+r]!==e[o+s])throw new Error(a+` updates.shape[${o+r}] (${n.shape[o+r]}) != shape[${o+r}] (${e[o+r]})`)}function tA(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}eA(n,t,e)}function rw(e,t,n){let s=t.shape.length,r=s>1?t.shape[s-1]:1,a=n.length,o=1;for(let p=r;p<a;++p)o*=n[p];let i=r<1?1:r,l=Nt(t.shape)/i,u=[...kc(n.slice(0,r)),1],c=Nt(n);return{sliceRank:r,numUpdates:l,sliceSize:o,strides:u,outputSize:c}}var Gt={};He(Gt,{assertParamsValid:()=>fP,computeFlatOffset:()=>xP,computeOutShape:()=>gP,getNormalizedAxes:()=>yP,isSliceContinous:()=>AP,maskToAxes:()=>mP,parseSliceParams:()=>hw,sliceInfo:()=>bP,startForAxis:()=>dw,startIndicesWithElidedDims:()=>lw,stopForAxis:()=>pw,stopIndicesWithElidedDims:()=>uw,stridesForAxis:()=>cw,stridesWithElidedDims:()=>aw});var V3=-2,hP=-1;function fP(e,t,n){let s=e.shape.length;O(s===t.length,()=>`Error in slice${s}D: Length of begin ${t} must match the rank of the array (${s}).`),O(s===n.length,()=>`Error in slice${s}D: Length of size ${n} must match the rank of the array (${s}).`);for(let r=0;r<s;++r)O(t[r]+n[r]<=e.shape[r],()=>`Error in slice${s}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function mP(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function gP(e,t,n){let s=[];for(let r=0;r<e.length;r++)s[r]=Math.ceil((t[r]-e[r])/n[r]);return s}function aw(e,t,n,s){let r=[...e];for(let a=r.length;a<s.length;a++)r.push(1);for(let a=0;a<n;a++)a===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function ow(e,t,n){return n<=e?n:n-(t-1)}function iw(e,t){let n=[];for(let s=0;s<e;s++)n.push(t+s);return n}function yP(e,t,n,s,r,a,o,i,l){let u=e.length,c=new Array(u),p=new Array(u),d=new Array(u);if(t.length&&n>0){let h=t[0],f=n+1;c=lw(o,h,f,s,e),p=uw(i,h,f,r,e),d=aw(a,h,f,e)}else for(let h=0;h<u;h++)c[h]=dw(o,s,a,e,h,l),p[h]=pw(i,r,a,e,h,l),d[h]=cw(a,h,l);return{begin:c,end:p,strides:d}}function lw(e,t,n,s,r){let a=[...r],o=iw(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=0;else{let l=ow(t,n,i),u=s[l];e&1<<l&&(u=0),a[i]=u}return a}function uw(e,t,n,s,r){let a=[...r],o=iw(n,t);for(let i=0;i<a.length;i++)if(o.indexOf(i)>-1)a[i]=Number.MAX_SAFE_INTEGER;else{let l=ow(t,n,i),u=s[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),a[i]=u}for(let i=0;i<a.length;i++){let l=r[i];a[i]<0&&(a[i]+=l),a[i]=kp(0,a[i],r[i])}return a}function cw(e,t,n){let s=e[t];return(n&1<<t||s==null)&&(s=1),s}function dw(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MIN_SAFE_INTEGER:o=Number.MAX_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),o=kp(0,o,l-1),o}function pw(e,t,n,s,r,a){let o=t[r],i=n[r]||1;(e&1<<r||a&1<<r||o==null)&&(i>0?o=Number.MAX_SAFE_INTEGER:o=Number.MIN_SAFE_INTEGER);let l=s[r];return o<0&&(o+=l),i>0?o=kp(0,o,l):o=kp(-1,o,l-1),o}function AP(e,t,n){let s=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){s=r;break}for(let r=s+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function xP(e,t){let n=e.length>0?e[e.length-1]:1;for(let s=0;s<e.length-1;s++)n+=e[s]*t[s];return n}function hw(e,t,n){let s,r=e.shape.length;typeof t=="number"?s=[t,...new Array(r-1).fill(0)]:t.length<r?s=t.concat(new Array(r-t.length).fill(0)):s=t.slice(),s.forEach(o=>{O(o!==-1,()=>"slice() does not support negative begin indexing.")});let a;return n==null?a=new Array(r).fill(-1):typeof n=="number"?a=[n,...new Array(r-1).fill(-1)]:n.length<r?a=n.concat(new Array(r-n.length).fill(-1)):a=n,a=a.map((o,i)=>o>=0?o:(O(o===-1,()=>`Negative size values should be exactly -1 but got ${o} for the slice() size at index ${i}.`),e.shape[i]-s[i])),[s,a]}function bP(e,t,n,s,r,a,o,i,l){let u;if(s==null?(u=new Array(t.length),u.fill(1)):u=s,o!=null&&(o&o-1)!==0)throw new Error("Multiple ellipses in slice is not allowed.");let c=!1,p={dims:u.length,numAddAxisAfterEllipsis:0,begin:t.slice(),end:n.slice(),strides:u.slice(),beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};for(let A=0;A<p.dims;A++)c&&(1<<A&i)!==0&&p.numAddAxisAfterEllipsis++,1<<A&o&&(c=!0);c||(p.ellipsisMask|=1<<p.dims,p.dims++);let d={dims:e.length,beginMask:0,endMask:0,beginValid:!1,endValid:!1};vP(p,d);let h=!0,f=!0,m=!0,g=[],y=[];for(let A=0;A<e.length;++A){if(d.strides[A]===0)throw Error(`strides[${A}] must be non-zero`);let b=!!(d.shrinkAxisMask&1<<A),w=e[A];if(w===-1){g.push(b?1:-1);continue}let k=[d.beginMask&1<<A,d.endMask&1<<A],C=[d.strides[A]>0?0:-1,d.strides[A]>0?w:w-1];if(b&&d.strides[A]<=0)throw Error("only stride 1 allowed on non-range indexing.");m=m&&d.strides[A]===1;let E=!!(d.beginMask&1<<A&&d.endMask&1<<A);if(d.beginValid&&d.endValid){if(b){let P=d.begin[A]<0?w+d.begin[A]:d.begin[A];if(d.begin[A]=P,d.end[A]=d.begin[A]+1,P<0||P>=w)throw Error(`slice index ${d.begin[A]} of dimension ${A} out of bounds.`)}else d.begin[A]=Ov(d.begin[A],0,d.strides[A],w,k,C),d.end[A]=Ov(d.end[A],1,d.strides[A],w,k,C);let R=d.strides[A]===1&&d.begin[A]===0&&d.end[A]===w;h=h&&R,f=f&&(A===0&&d.strides[A]===1||R)}else h=h&&d.strides[A]===1&&E,f=f&&(A===0&&d.strides[A]===1||E);let _,$=!1;if(d.beginValid&&d.endValid?(_=d.end[A]-d.begin[A],$=!0):b?(_=1,$=!0):E&&w>=0&&(d.strides[A]<0?_=-w:_=w,$=!0),$){let R;_===0||_<0!=d.strides[A]<0?R=0:R=Math.trunc(_/d.strides[A])+(_%d.strides[A]!==0?1:0),g.push(R)}else g.push(-1)}for(let A=0;A<d.finalShapeGatherIndices.length;++A){let b=d.finalShapeGatherIndices[A];b>=0?y.push(g[b]):b===V3&&y.push(1)}return{finalShapeSparse:y.filter((A,b)=>d.finalShapeGatherIndices[b]!==V3),finalShape:y,isIdentity:h,sliceDim0:f,isSimpleSlice:m,begin:d.begin,end:d.end,strides:d.strides}}function vP(e,t){t.beginMask=0,t.endMask=0,t.shrinkAxisMask=0;let n=0;t.beginValid=e.begin!=null,t.endValid=e.end!=null,t.begin=new Array(t.dims),t.end=new Array(t.dims),t.strides=new Array(t.dims),t.finalShapeGatherIndices=[],t.finalShapeGatherIndicesSparse=[],t.inputShapeGatherIndicesSparse=new Array(t.dims);for(let s=0;s<e.dims;s++)if(1<<s&e.ellipsisMask){let r=Math.min(t.dims-(e.dims-s)+1+e.numAddAxisAfterEllipsis,t.dims);for(;n<r;n++)t.begin[n]=0,t.end[n]=0,t.strides[n]=1,t.beginMask|=1<<n,t.endMask|=1<<n,t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(-1),t.inputShapeGatherIndicesSparse[n]=s}else if(1<<s&e.newAxisMask)t.finalShapeGatherIndices.push(V3),t.finalShapeGatherIndicesSparse.push(-1);else{if(n===t.begin.length)throw Error(`Index out of range using input dim ${n}; input has only ${t.dims} dims, ${t.begin.length}.`);e.begin!=null&&(t.begin[n]=e.begin[s]),e.end!=null&&(t.end[n]=e.end[s]),t.strides[n]=e.strides[s],e.beginMask&1<<s&&(t.beginMask|=1<<n),e.endMask&1<<s&&(t.endMask|=1<<n),e.shrinkAxisMask&1<<s?(t.finalShapeGatherIndices.push(hP),t.finalShapeGatherIndicesSparse.push(-1),t.shrinkAxisMask|=1<<n):(t.finalShapeGatherIndices.push(n),t.finalShapeGatherIndicesSparse.push(s)),t.inputShapeGatherIndicesSparse[n]=s,n++}}function Ov(e,t,n,s,r,a){if(r[t])return n>0?a[t]:a[t+1&1];{let o=e<0?s+e:e;return o<a[0]?a[0]:o>a[1]?a[1]:o}}var pe={};He(pe,{Serializable:()=>fw,SerializationMap:()=>Hi,registerClass:()=>ci});var fw=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},Hi=class{constructor(){this.classNameMap={}}static getMap(){return Hi.instance==null&&(Hi.instance=new Hi),Hi.instance}static register(e){Hi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function ci(e){O(e.className!=null,()=>"Class being registered does not have the static className property defined."),O(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),O(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),Hi.register(e)}var mw={};He(mw,{TEST_EPSILON_FLOAT16:()=>gw,createVideoElement:()=>EP,encodeStrings:()=>yw,expectArrayBuffersEqual:()=>NP,expectArraysClose:()=>kP,expectArraysEqual:()=>IP,expectNumbersClose:()=>CP,expectPromiseToFail:()=>SP,expectValuesInRange:()=>TP,play:()=>RP,testEpsilon:()=>nA});var wP=.001,gw=.1;function kP(e,t,n){return n==null&&(n=nA()),U3(e,t,(s,r)=>sA(s,r,n))}function nA(){return B.backend.floatPrecision()===32?wP:gw}function U3(e,t,n){let s=!0;if((Wn(e)||Wn(t))&&(s=!1),Wn(e)&&Wn(t)&&(s=!0),s){let o=e.constructor.name,i=t.constructor.name;if(o!==i)throw new Error(`Arrays are of different type. Actual: ${o}. Expected: ${i}`)}if(Array.isArray(e)&&Array.isArray(t)){let o=sa(e),i=sa(t);if(!fo(o,i))throw new Error(`Arrays have different shapes. Actual: [${o}]. Expected: [${i}]`)}let r=Wn(e)?e:nl(e),a=Wn(t)?t:nl(t);if(r.length!==a.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${a.length}.
Actual: ${r}.
Expected: ${a}.`);for(let o=0;o<a.length;++o){let i=r[o],l=a[o];if(!n(i,l))throw new Error(`Arrays differ: actual[${o}] = ${i}, expected[${o}] = ${l}.
Actual: ${r}.
Expected: ${a}.`)}typeof expect!="undefined"&&expect().nothing()}function SP(e,t){e().then(()=>t.fail(),()=>t()),typeof expect!="undefined"&&expect().nothing()}function IP(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return Xa(e)||Xa(e[0])||Xa(t)||Xa(t[0])?U3(e,n,(s,r)=>s==r):U3(e,t,(s,r)=>sA(s,r,0))}function CP(e,t,n){if(n==null&&(n=nA()),!sA(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`);typeof expect!="undefined"&&expect().nothing()}function sA(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function TP(e,t,n){for(let s=0;s<e.length;s++)if(e[s]<t||e[s]>n)throw new Error(`Value out of range:${e[s]} low: ${t}, high: ${n}`)}function NP(e,t){let n=new Float32Array(e),s=new Float32Array(t);if(n.length!==s.length)throw new Error(`Expected ArrayBuffer to be of length ${s.length}, but it was ${n.length}`);for(let r=0;r<s.length;r++)if(n[r]!==s[r])throw new Error(`Expected ArrayBuffer value at ${r} to be ${s[r]} but got ${n[r]} instead`)}function yw(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?yw(n):e[t]=lh(n)}return e}function EP(e){let t=document.createElement("video");return"playsInline"in t&&(t.playsInline=!0),t.muted=!0,t.loop=!0,t.style.position="fixed",t.style.left="0px",t.style.top="0px",t.preload="auto",t.appendChild(e),new Promise(n=>{t.addEventListener("loadeddata",s=>n(t)),t.load()})}async function RP(e){await e.play(),"requestVideoFrameCallback"in e&&await new Promise(t=>{e.requestVideoFrameCallback(t)})}var rA="3.20.0";function _P(e,t){let n=D(e,"a","add"),s=D(t,"b","add");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Na,r)}var ce=W({add_:_P});function DP(e,t){let n=D(e,"a","floorDiv"),s=D(t,"b","floorDiv");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(_o,r)}var Xc=W({floorDiv_:DP});function $P(e,t){let n=D(e,"a","div"),s=D(t,"b","div");if([n,s]=Ht(n,s),n.dtype==="int32"&&s.dtype==="int32")return Xc(n,s);let r={a:n,b:s},a={};return B.runKernel(To,r,a)}var me=W({div_:$P});function PP(e,t){let n=D(e,"a","mul"),s=D(t,"b","mul");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Go,r)}var z=W({mul_:PP});function FP(e){let t=D(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return B.runKernel(jp,n)}else{let n={x:t};return B.runKernel(ml,n)}}var rn=W({abs_:FP});function OP(e){let n={x:D(e,"x","acos")};return B.runKernel(Sc,n)}var aA=W({acos_:OP});function MP(e){let n={x:D(e,"x","acosh")};return B.runKernel(Ic,n)}var oA=W({acosh_:MP});function zP(e){O(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),O(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,a)=>D(r,`tensors${a}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!fo(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let s=t;return B.runKernel(mo,s)}var T0=W({addN_:zP});function LP(e,t=null,n=!1){let r={x:D(e,"x","all","bool")},a={axis:t,keepDims:n};return B.runKernel(Cc,r,a)}var N0=W({all_:LP});function BP(e,t=null,n=!1){let r={x:D(e,"x","any","bool")},a={axis:t,keepDims:n};return B.runKernel(Tc,r,a)}var Rp=W({any_:BP});function WP(e,t=0){let s={x:D(e,"x","argMax")},r={axis:t};return B.runKernel(go,s,r)}var $s=W({argMax_:WP});function VP(e,t=0){let s={x:D(e,"x","argMin")},r={axis:t};return B.runKernel(Nc,s,r)}var iA=W({argMin_:VP});function UP(e){let n={x:D(e,"x","asin")};return B.runKernel(Ec,n)}var lA=W({asin_:UP});function GP(e){let n={x:D(e,"x","asinh")};return B.runKernel(Rc,n)}var uA=W({asinh_:GP});function HP(e){let n={x:D(e,"x","atan")};return B.runKernel(_c,n)}var cA=W({atan_:HP});function jP(e,t){let n=D(e,"a","atan2"),s=D(t,"b","atan2");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(gl,r)}var dA=W({atan2_:jP});function qP(e){let n={x:D(e,"x","atanh")};return B.runKernel(Dc,n)}var pA=W({atanh_:qP});function XP(e,t,n,s,r="NHWC",a){let o=e[3],i=[...t,o],l=bw(r);return mh(e,i,n,a,s,null,null,l)}function Aw(e,t,n,s,r,a,o="channelsLast"){let[i,l]=Em(t),u;if(o==="channelsLast")u=[i,l,e[3],e[3]];else if(o==="channelsFirst")u=[i,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return mh(e,u,n,s,r,a,!1,o)}function KP(e,t,n,s,r,a,o="NDHWC"){let[i,l,u]=G3(t),c,p;if(o==="NDHWC")p="channelsLast",c=[i,l,u,e[4],e[4]];else if(o==="NCDHW")p="channelsFirst",c=[i,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${o}`);return xw(e,c,n,s,r,!1,p,a)}function mh(e,t,n,s,r,a,o=!1,i="channelsLast"){let[l,u,c,p]=[-1,-1,-1,-1];if(i==="channelsLast")[l,u,c,p]=e;else if(i==="channelsFirst")[l,p,u,c]=e;else throw new Error(`Unknown dataFormat ${i}`);let[d,h,,f]=t,[m,g]=Em(n),[y,x]=Em(s),A=nc(d,y),b=nc(h,x),{padInfo:w,outHeight:k,outWidth:C}=JP(r,u,c,m,g,A,b,a,i),E=o?f*p:f,_;return i==="channelsFirst"?_=[l,E,k,C]:i==="channelsLast"&&(_=[l,k,C,E]),{batchSize:l,dataFormat:i,inHeight:u,inWidth:c,inChannels:p,outHeight:k,outWidth:C,outChannels:E,padInfo:w,strideHeight:m,strideWidth:g,filterHeight:d,filterWidth:h,effectiveFilterHeight:A,effectiveFilterWidth:b,dilationHeight:y,dilationWidth:x,inShape:e,outShape:_,filterShape:t}}function xw(e,t,n,s,r,a=!1,o="channelsLast",i){let[l,u,c,p,d]=[-1,-1,-1,-1,-1];if(o==="channelsLast")[l,u,c,p,d]=e;else if(o==="channelsFirst")[l,d,u,c,p]=e;else throw new Error(`Unknown dataFormat ${o}`);let[h,f,m,,g]=t,[y,x,A]=G3(n),[b,w,k]=G3(s),C=nc(h,b),E=nc(f,w),_=nc(m,k),{padInfo:$,outDepth:R,outHeight:P,outWidth:S}=QP(r,u,c,p,y,x,A,C,E,_,i),M=a?g*d:g,L;return o==="channelsFirst"?L=[l,M,R,P,S]:o==="channelsLast"&&(L=[l,R,P,S,M]),{batchSize:l,dataFormat:o,inDepth:u,inHeight:c,inWidth:p,inChannels:d,outDepth:R,outHeight:P,outWidth:S,outChannels:M,padInfo:$,strideDepth:y,strideHeight:x,strideWidth:A,filterDepth:h,filterHeight:f,filterWidth:m,effectiveFilterDepth:C,effectiveFilterHeight:E,effectiveFilterWidth:_,dilationDepth:b,dilationHeight:w,dilationWidth:k,inShape:e,outShape:L,filterShape:t}}function ZP(e,t,n,s,r){s==null&&(s=hA(e,t,n));let a=e[0],o=e[1],i=Yi((a-t+2*s)/n+1,r),l=Yi((o-t+2*s)/n+1,r);return[i,l]}function YP(e,t,n,s,r,a){r==null&&(r=hA(e,t,s));let o=e[0],i=e[1],l=e[2],u=Yi((o-t+2*r)/s+1,a),c=Yi((i-t+2*r)/s+1,a),p=Yi((l-t+2*r)/s+1,a);return[u,c,p,n]}function hA(e,t,n,s=1){let r=nc(t,s);return Math.floor((e[0]*(n-1)-n+r)/2)}function Em(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function G3(e){return typeof e=="number"?[e,e,e]:e}function nc(e,t){return t<=1?e:e+(e-1)*(t-1)}function JP(e,t,n,s,r,a,o,i,l){let u,c,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let h=ZP([t,n],a,s,e,i);c=h[0],p=h[1]}else if(e==="same"){c=Math.ceil(t/s),p=Math.ceil(n/r);let d=Math.max(0,(c-1)*s+a-t),h=Math.max(0,(p-1)*r+o-n),f=Math.floor(d/2),m=d-f,g=Math.floor(h/2),y=h-g;u={top:f,bottom:m,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},c=Math.ceil((t-a+1)/s),p=Math.ceil((n-o+1)/r);else if(typeof e=="object"){let d=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],f=l==="channelsLast"?e[2][0]:e[3][0],m=l==="channelsLast"?e[2][1]:e[3][1];u={top:d,bottom:h,left:f,right:m,type:d===0&&h===0&&f===0&&m===0?"VALID":"EXPLICIT"},c=Yi((t-a+d+h)/s+1,i),p=Yi((n-o+f+m)/r+1,i)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:c,outWidth:p}}function QP(e,t,n,s,r,a,o,i,l,u,c){let p,d,h,f;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let g=YP([t,n,s,1],i,1,r,e,c);d=g[0],h=g[1],f=g[2]}else if(e==="same"){d=Math.ceil(t/r),h=Math.ceil(n/a),f=Math.ceil(s/o);let m=(d-1)*r+i-t,g=(h-1)*a+l-n,y=(f-1)*o+u-s,x=Math.floor(m/2),A=m-x,b=Math.floor(g/2),w=g-b,k=Math.floor(y/2),C=y-k;p={top:b,bottom:w,left:k,right:C,front:x,back:A,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},d=Math.ceil((t-i+1)/r),h=Math.ceil((n-l+1)/a),f=Math.ceil((s-u+1)/o);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:d,outHeight:h,outWidth:f}}function Yi(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function ro(e){let[t,n,s]=Em(e);return t===1&&n===1&&s===1}function oa(e,t){return ro(e)||ro(t)}function bw(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function ls(e,t,n){if(n!=null){if(typeof t=="string")throw Error(`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);if(typeof t=="number")O(ac(t),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${t}.`);else if(typeof t=="object")t.forEach(s=>{s.forEach(r=>{O(ac(r),()=>`Error in ${e}: pad must be an integer when using dimRoundingMode ${n} but got pad ${r}.`)})});else throw Error(`Error in ${e}: Unknown padding parameter: ${t}`)}}function eF(e,t){let s={x:D(e,"x","reshape","string_or_numeric")},r={shape:t};return B.runKernel(Vl,s,r)}var V=W({reshape_:eF});function tF(e,t,n,s,r){let a=D(e,"x","avgPool","float32"),o=1;O(oa(n,o),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`);let i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${i.rank}.`),ls("avgPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(yo,u,c);return p=ye(p,a.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var gh=W({avgPool_:tF});function nF(e,t,n,s,r,a="NDHWC"){let o=D(e,"x","avgPool3d","float32"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("avgPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Gp,u,c);return p=ye(p,i.dtype),l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var fA=W({avgPool3d_:nF});function sF(e,t=0){O(e.length>=1,()=>"Pass at least one tensor to concat");let n=Ep(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(a=>{if(a.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
with dtype ${a.dtype}. `)}),n.length===1)return Vn(n[0]);let s=n,r={axis:t};return B.runKernel(Al,s,r)}var It=W({concat_:sF});function rF(e){let n={x:D(e,"x","sigmoid","float32")};return B.runKernel(ti,n)}var $n=W({sigmoid_:rF});function aF(e,t,n){let s=D(e,"x","slice","string_or_numeric");if(s.rank===0)throw new Error("Slicing scalar is not possible");let r={x:s},a={begin:t,size:n};return B.runKernel(ql,r,a)}var ze=W({slice_:aF});function oF(e){let n={x:D(e,"x","tanh","float32")};return B.runKernel(ii,n)}var al=W({tanh_:oF});function iF(e,t,n,s,r,a){let o=D(e,"forgetBias","basicLSTMCell"),i=D(t,"lstmKernel","basicLSTMCell"),l=D(n,"lstmBias","basicLSTMCell"),u=D(s,"data","basicLSTMCell"),c=D(r,"c","basicLSTMCell"),p=D(a,"h","basicLSTMCell"),d=It([u,p],1),h=et(d,i),f=ce(h,l),m=f.shape[0],g=f.shape[1]/4,y=[m,g],x=ze(f,[0,0],y),A=ze(f,[0,g],y),b=ze(f,[0,g*2],y),w=ze(f,[0,g*3],y),k=ce(z($n(x),al(A)),z(c,$n(ce(o,b)))),C=z(al(k),$n(w));return[k,C]}var vw=W({basicLSTMCell_:iF});function lF(e,t,n){let s=D(e,"x","batchToSpaceND"),r=t.reduce((i,l)=>i*l);O(s.rank>=1+t.length,()=>`input rank is ${s.rank} but should be > than blockShape.length ${t.length}`),O(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),O(s.shape[0]%r===0,()=>`input tensor batch is ${s.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let a={x:s},o={blockShape:t,crops:n};return B.runKernel(yl,a,o)}var yh=W({batchToSpaceND_:lF});function uF(e){let t;return e.rank===0||e.rank===1?t=V(e,[1,1,1,e.size]):e.rank===2?t=V(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function cF(e,t,n,s,r,a){a==null&&(a=.001);let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;s!=null&&(c=D(s,"offset","batchNorm")),O(i.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),O(c==null||i.rank===c.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),O(u==null||i.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let d={x:uF(o),scale:u,offset:c,mean:i,variance:l},h={varianceEpsilon:a},f=B.runKernel(Do,d,h);return V(f,o.shape)}var Kc=W({batchNorm_:cF});function dF(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),O(o.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${o.rank}.`),O(i.rank===2||i.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${i.rank}.`),O(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===2||c.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var mA=W({batchNorm2d_:dF});function pF(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),O(o.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${o.rank}.`),O(i.rank===3||i.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${i.rank}.`),O(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===3||c.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var gA=W({batchNorm3d_:pF});function hF(e,t,n,s,r,a){let o=D(e,"x","batchNorm"),i=D(t,"mean","batchNorm"),l=D(n,"variance","batchNorm"),u;r!=null&&(u=D(r,"scale","batchNorm"));let c;return s!=null&&(c=D(s,"offset","batchNorm")),O(o.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${o.rank}.`),O(i.rank===4||i.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${i.rank}.`),O(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&O(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),c!=null&&O(c.rank===4||c.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${c.rank}.`),Kc(o,i,l,c,u,a)}var yA=W({batchNorm4d_:hF});function fF(e,t,n){let s=D(e,"x","bincount"),r=D(t,"weights","bincount");O(s.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${s.dtype}`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(r.size===s.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${s.shape}, weights shape: ${r.shape}.`);let a={x:s,weights:r},o={size:n};return B.runKernel(s0,a,o)}var AA=W({bincount_:fF});function mF(e,t){let n=D(e,"s0","broadcastArgs","int32"),s=D(t,"s1","broadcastArgs","int32");if(n.rank!==1)throw new Error(`broadcastArgs(): first input must be a vector (rank=1). Has rank ${n.rank}`);if(s.rank!==1)throw new Error(`broadcastArgs(): second input must be a vector (rank=1). Has rank ${s.rank}`);let r={s0:n,s1:s};return B.runKernel(r0,r)}var ww=W({broadcastArgs_:mF});function gF(e,t){let n=D(e,"broadcastTo","x"),s=n.shape;if(t.some(u=>!(u>0)||u%1!==0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let u=n.shape.slice();for(;u.length<t.length;)u.unshift(1);n=V(n,u)}let r=n.shape,a=Array.from(t);for(let u=t.length-1;u>=0;u--)if(r[u]===t[u])a[u]=1;else if(n.shape[u]!==1)throw new Error(`broadcastTo(): [${s}] cannot be broadcast to [${t}].`);if(a.map((u,c)=>u>1?c:-1).filter(u=>u>=0).length===0)return Vn(n);let i={x:n},l={reps:a};return B.runKernel(Ra,i,l)}var Ji=W({broadcastTo_:gF});function yF(e){let n={x:D(e,"x","ceil","float32")};return B.runKernel(bo,n)}var xA=W({ceil_:yF});function AF(e,t,n){let s=D(e,"x","clipByValue");O(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:s},a={clipValueMin:t,clipValueMax:n};return B.runKernel(Ea,r,a)}var As=W({clipByValue_:AF});function xF(e){return It(e,0)}var bA=W({concat1d_:xF});function bF(e,t){return It(e,t)}var ou=W({concat2d_:bF});function vF(e,t){return It(e,t)}var vA=W({concat3d_:vF});function wF(e,t){return It(e,t)}var wA=W({concat4d_:wF});function kF(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","conv2d","float32"),l=D(t,"filter","conv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),ls("conv2d",s,o);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),O(oa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(vo,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Sa=W({conv2d_:kF});function SF(e,t,n,s,r="NWC",a=1,o){let i=D(e,"x","conv1d"),l=D(t,"filter","conv1d"),u=i,c=!1;i.rank===2&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1]])),O(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),O(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),ls("conv1d",s,o),O(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),O(oa(n,a),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${a}'`),O(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=V(l,[1,l.shape[0],l.shape[1],l.shape[2]]),d=V(u,[u.shape[0],1,u.shape[1],u.shape[2]]),g=Sa(d,p,[1,n],s,"NHWC",[1,a],o);return c?V(g,[g.shape[2],g.shape[3]]):V(g,[g.shape[0],g.shape[2],g.shape[3]])}var E0=W({conv1d_:SF});function IF(e,t,n,s,r,a="NHWC",o){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let i=e,l=t,u=!1;t.rank===3&&(u=!0,l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]),i=[1,e[0],e[1],e[2]]),O(i.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${i.length}.`),O(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),O(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let c=a==="NHWC"?i[3]:i[1],p=a==="NHWC"?l.shape[3]:l.shape[1];O(c===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${c}) must match input depth for filter ${n.shape[2]}.`),O(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),ls("conv2dDerInput",r,o);let d={dy:l,filter:n},h={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,inputShape:i},f=B.runKernel(wo,d,h);return u?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var kA=W({conv2DBackpropInput_:IF});function CF(e,t,n,s,r,a){let o=D(e,"x","conv2dTranspose"),i=D(t,"filter","conv2dTranspose");return kA(n,o,i,s,r,"NHWC",a)}var R0=W({conv2dTranspose_:CF});function TF(e,t,n,s,r="NDHWC",a=[1,1,1]){let o=D(e,"x","conv3d"),i=D(t,"filter","conv3d"),l=o,u=!1;o.rank===4&&(u=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),O(i.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${i.rank}.`),O(l.shape[4]===i.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${i.shape[3]}.`),O(oa(n,a),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),O(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let c={x:l,filter:i},p={strides:n,pad:s,dataFormat:r,dilations:a},d=B.runKernel(qp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var SA=W({conv3d_:TF});function NF(e,t,n,s,r){O(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let a=e,o=t,i=!1;t.rank===4&&(i=!0,o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),a=[1,e[0],e[1],e[2],e[3]]);let l=a[4],u=o.shape[4];O(a.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${a.length}.`),O(o.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${o.rank}`),O(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),O(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),O(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let c={dy:o,filter:n},p={pad:r,strides:s,inputShape:a},d=B.runKernel(i0,c,p);return i?V(d,[d.shape[1],d.shape[2],d.shape[3],d.shape[4]]):d}var kw=W({conv3DBackpropInput_:NF});function EF(e,t,n,s,r){let a=D(e,"x","conv3dTranspose"),o=D(t,"filter","conv3dTranspose");return kw(n,a,o,s,r)}var IA=W({conv3dTranspose_:EF});function RF(e){let n={x:D(e,"x","cos","float32")};return B.runKernel(ko,n)}var Ah=W({cos_:RF});function _F(e){let n={x:D(e,"x","cosh","float32")};return B.runKernel(So,n)}var _0=W({cosh_:_F});function DF(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumprod")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(xl,a,o)}var _p=W({cumprod_:DF});function $F(e,t=0,n=!1,s=!1){let a={x:D(e,"x","cumsum")},o={axis:t,exclusive:n,reverse:s};return B.runKernel(Io,a,o)}var D0=W({cumsum_:$F});function PF(e,t,n,s=!1){let r=D(e,"x","denseBincount"),a=D(t,"weights","denseBincount");O(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),O(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),O(n>=0,()=>`size must be non-negative, but got ${n}.`),O(a.size===r.size||a.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${a.shape}.`);let o={x:r,weights:a},i={size:n,binaryOutput:s};return B.runKernel(l0,o,i)}var Sw=W({denseBincount_:PF});function FF(e,t,n="NHWC"){let s=D(e,"x","depthToSpace","float32"),r=n==="NHWC"?s.shape[1]:s.shape[2],a=n==="NHWC"?s.shape[2]:s.shape[3],o=n==="NHWC"?s.shape[3]:s.shape[1];O(t>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${t}`),O(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${r} and ${t} for depthToSpace with input shape
${s.shape}`),O(a*t>=0,()=>`Negative dimension size caused by overflow when multiplying
${a} and ${t} for depthToSpace with input shape
${s.shape}`),O(o%(t*t)===0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${o} for depthToSpace with input shape ${s.shape}`);let i={x:s},l={blockSize:t,dataFormat:n};return B.runKernel(vl,i,l)}var CA=W({depthToSpace_:FF});function OF(e,t,n,s,r="NHWC",a=[1,1],o){let i=D(e,"x","depthwiseConv2d","float32"),l=D(t,"filter","depthwiseConv2d","float32"),u=i,c=!1;i.rank===3&&(c=!0,u=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),O(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];O(p===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${p}) must match the inChannels dimension in filter ${l.shape[2]}.`),ls("depthwiseConv2d",s,o);let d={x:u,filter:l},h={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o},f=B.runKernel(Co,d,h);return c?V(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var Zc=W({depthwiseConv2d_:OF});function MF(e){let n={x:D(e,"x","diag")};return B.runKernel(d0,n)}var Iw=W({diag_:MF});function zF(e,t,n,s,r=[1,1],a="NHWC"){let o=D(e,"x","dilation2d"),i=D(t,"filter","dilation2d");O(o.rank===3||o.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${o.rank}.`),O(i.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${i.rank}.`),O(a==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${a}`);let l=o,u=!1;o.rank===3&&(l=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),u=!0);let c={x:l,filter:i},p={strides:n,pad:s,dilations:r},d=B.runKernel(Xp,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var TA=W({dilation2d_:zF});function LF(e,t){let n=D(e,"a","equal","string_or_numeric"),s=D(t,"b","equal","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(wl,r)}var Ps=W({equal_:LF});function BF(e,t,n){let s=D(t,"a","where"),r=D(n,"b","where"),a=D(e,"condition","where","bool"),o=wt(wt(a.shape,s.shape),r.shape),i=Ji(a,o),l=Ji(s,o),u=Ji(r,o),c={condition:i,t:l,e:u};return B.runKernel(jl,c)}var Gn=W({where_:BF});function WF(e){let n={x:D(e,"x","zerosLike")};return B.runKernel(nu,n)}var lt=W({zerosLike_:WF});function VF(e,t){let n=D(e,"a","div"),s=D(t,"b","div");[n,s]=Ht(n,s);let r=me(n,s),a=lt(r),o=Ps(s,a);return Gn(o,a,r)}var NA=W({divNoNan_:VF});function UF(e,t){let n=D(e,"t1","dot"),s=D(t,"t2","dot");O((n.rank===1||n.rank===2)&&(s.rank===1||s.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${s.rank}.`);let r=n.rank===1?n.size:n.shape[1],a=s.rank===1?s.size:s.shape[0];if(O(r===a,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${a}.`),n.rank===1&&s.rank===1){let o=V(n,[1,-1]),i=V(s,[-1,1]),l=et(o,i);return V(l,[])}else if(n.rank===1&&s.rank===2){let o=V(n,[1,-1]),i=V(s,[s.shape[0],s.shape[1]]),l=et(o,i);return V(l,[l.size])}else if(n.rank===2&&s.rank===1){let o=V(s,[-1,1]),i=et(n,o);return V(i,[i.size])}else{let o=V(s,[s.shape[0],s.shape[1]]);return et(n,o)}}var EA=W({dot_:UF});function GF(e,...t){let n=t.map((r,a)=>D(r,`tensors${a}`,"einsum")),s={equation:e};return B.runKernel(Kp,n,s)}var Cw=W({einsum_:GF});function HF(e){let n={x:D(e,"x","elu","float32")};return B.runKernel(No,n)}var Yc=W({elu_:HF});function jF(e){let t=D(e,"x","erf");O(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ye(t,"float32"));let n={x:t};return B.runKernel($c,n)}var RA=W({erf_:jF});function _A(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function Tw(e,t,n){let s=e.length+t.length,r=[],a=0,o=0;for(let i=0;i<s;i++)n.indexOf(i)===-1?r.push(e[a++]):r.push(t[o++]);return r}function Nw(e,t){let n=[],s=e.length;for(let a=0;a<s;a++)t.indexOf(a)===-1&&n.push(e[a]);let r=t.map(a=>e[a]);return[n,r]}function ol(e,t){let n=t.map(s=>1);return Tw(e,n,t)}function qF(e,t,n){O(_A(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function Ew(e,t){if(_A(e,t))return null;let n=[];for(let s=0;s<t;++s)e.indexOf(s)===-1&&n.push(s);return e.forEach(s=>n.push(s)),n}function DA(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function XF(e,t){let n=[];for(let s=t-e;s<t;++s)n.push(s);return n}function KF(e,t=null,n=!1){let r={x:D(e,"x","max")},a={reductionIndices:t,keepDims:n};return B.runKernel(Mo,r,a)}var yn=W({max_:KF});function ZF(e,t=null,n=!1){let r={x:D(e,"x","min")},a={axis:t,keepDims:n};return B.runKernel(Wo,r,a)}var Ia=W({min_:ZF});function YF(e,t){let n=D(e,"base","pow"),s=D(t,"exp","pow");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(jo,r)}var Ca=W({pow_:YF});function Ce(e,t){if((Wn(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&Wn(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return ui(e,[],[],t)}function JF(e){let n={x:D(e,"x","sqrt","float32")};return B.runKernel(ni,n)}var Fn=W({sqrt_:JF});function QF(e){let t=D(e,"x","square"),n={};return B.runKernel("Square",{x:t},n)}var bt=W({square_:QF});function eO(e,t=null,n=!1){let s=D(e,"x","sum");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(si,r,a)}var ke=W({sum_:eO});function tO(e,t="euclidean",n=null,s=!1){e=D(e,"x","norm");let r=Rw(e,t,n),a=r.shape;if(s){let o=gr(n,e.shape);a=ol(r.shape,o)}return V(r,a)}function Rw(e,t,n=null){if(e.rank===0)return rn(e);if(e.rank!==1&&n===null)return Rw(V(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return ke(rn(e),n);if(t===1/0)return yn(rn(e),n);if(t===-1/0)return Ia(rn(e),n);if(t==="euclidean"||t===2)return Fn(ke(Ca(rn(e),Ce(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return yn(ke(rn(e),n[0]),n[1]-1);if(t===1/0)return yn(ke(rn(e),n[1]),n[0]);if(t===-1/0)return Ia(ke(rn(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return Fn(ke(bt(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var Jc=W({norm_:tO});function nO(e,t=null,n=!1){return Jc(e,"euclidean",t,n)}var $A=W({euclideanNorm_:nO});function sO(e){let n={x:D(e,"x","exp")};return B.runKernel(Eo,n)}var Fs=W({exp_:sO});function rO(e,t=0){let n=D(e,"x","expandDims","string_or_numeric");O(t<=n.rank,()=>"Axis must be <= rank of the tensor");let s={input:n},r={dim:t};return B.runKernel(kl,s,r)}var Bt=W({expandDims_:rO});function aO(e){let n={x:D(e,"x","expm1")};return B.runKernel(Sl,n)}var PA=W({expm1_:aO});function oO(e,t){let n=D(e,"x","tile","string_or_numeric");O(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let s={x:n},r={reps:t};return B.runKernel(Ra,s,r)}var Ks=W({tile_:oO});function iO(e,t,n,s="float32"){t==null&&(t=e);let r=We([e,t],s),a=e<=t?e:t;for(let i=0;i<a;++i)r.set(1,i,i);let o=V(r.toTensor(),[e,t]);if(n==null)return o;if(n.length===1)return Ks(Bt(o,0),[n[0],1,1]);if(n.length===2)return Ks(Bt(Bt(o,0),0),[n[0],n[1],1,1]);if(n.length===3)return Ks(Bt(Bt(Bt(o,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var $0=W({eye_:iO});function Qc(e,t,n){let s={shape:e,value:t,dtype:n};return B.runKernel(Pc,{},s)}function lO(e){let n={x:D(e,"x","floor","float32")};return B.runKernel(Ro,n)}var ed=W({floor_:lO});function uO(e,t,n=0,s=0){let r=D(e,"x","gather"),a=D(t,"indices","gather","int32"),o={x:r,indices:a},i={axis:n,batchDims:s};return B.runKernel(Cl,o,i)}var td=W({gather_:uO});function cO(e,t){let n=D(e,"a","greater","string_or_numeric"),s=D(t,"b","greater","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Nl,r)}var vs=W({greater_:cO});function dO(e,t){let n=D(e,"a","greaterEqual","string_or_numeric"),s=D(t,"b","greaterEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel($o,r)}var di=W({greaterEqual_:dO});function pO(e){let n={x:D(e,"x","isFinite")};return B.runKernel(Fc,n)}var FA=W({isFinite_:pO});function hO(e){let n={x:D(e,"x","isInf")};return B.runKernel(Oc,n)}var OA=W({isInf_:hO});function fO(e){let n={x:D(e,"x","isNaN")};return B.runKernel(El,n)}var MA=W({isNaN_:fO});function mO(e,t=.2){let s={x:D(e,"x","leakyRelu")},r={alpha:t};return B.runKernel(Fo,s,r)}var xh=W({leakyRelu_:mO});function gO(e,t){let n=D(e,"a","less","string_or_numeric"),s=D(t,"b","less","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Rl,r)}var P0=W({less_:gO});function yO(e,t){let n=D(e,"a","lessEqual","string_or_numeric"),s=D(t,"b","lessEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(_l,r)}var pi=W({lessEqual_:yO});function _w(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let s={start:e,stop:t,num:n};return B.runKernel(m0,{},s)}function AO(e,t=5,n=1,s=1,r=.5){let a=D(e,"x","localResponseNormalization");O(a.rank===4||a.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
rank ${a.rank}.`),O(ac(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let o=a,i=!1;a.rank===3&&(i=!0,o=V(a,[1,a.shape[0],a.shape[1],a.shape[2]]));let l={x:o},u={depthRadius:t,bias:n,alpha:s,beta:r},c=B.runKernel(Yp,l,u);return i?V(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var zA=W({localResponseNormalization_:AO});function xO(e){let n={x:D(e,"x","log","float32")};return B.runKernel(Oo,n)}var Os=W({log_:xO});function bO(e){let n={x:D(e,"x","log1p")};return B.runKernel(Mc,n)}var bh=W({log1p_:bO});function vO(e){return O(eo(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let s=D(t,"x","tf.grad","string_or_numeric"),r=n!=null?D(n,"dy","tf.grad"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(s),[s],r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),F0(o),o[0]})}}function wO(e){return O(eo(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{O(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let s=Ep(t,"args","tf.grads","string_or_numeric"),r=n!=null?D(n,"dy","tf.grads"):null;return B.tidy(()=>{let{value:a,grads:o}=B.gradients(()=>e(...s),s,r);return r!=null&&is(a.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),F0(o),o})}}function kO(e){return O(eo(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{O(t instanceof st,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:s,value:r}=B.gradients(()=>e(t),[t],n);return F0(s),{grad:s[0],value:r}}}function SO(e){return O(eo(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{O(Array.isArray(t)&&t.every(r=>r instanceof st),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),O(n==null||n instanceof st,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let s=B.gradients(()=>e(...t),t,n);return n!=null&&is(s.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),F0(s.grads),s}}function Dw(e,t){O(eo(e),()=>"The f passed in variableGrads(f) must be a function"),O(t==null||Array.isArray(t)&&t.every(u=>u instanceof Tp),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in B.registeredVariables)t.push(B.registeredVariables[u])}let s=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),O(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let a=!0,{value:o,grads:i}=B.gradients(e,t,null,a);O(i.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),O(o.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${o.rank} tensor`);let l={};return t.forEach((u,c)=>{i[c]!=null&&(l[u.name]=i[c])}),s!=null&&s.forEach(u=>l[u.name]=null),{value:o,grads:l}}function ra(e){return B.customGrad(e)}function F0(e){if(e.filter(n=>n==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
the f you passed encloses all operations that lead from x to y.`)}function IO(e){let n={x:D(e,"x","softplus")};return B.runKernel(Gc,n)}var iu=W({softplus_:IO});function CO(e){let t=D(e,"x","logSigmoid");return ra(s=>({value:$t(iu($t(s))),gradFunc:o=>z(o,$n($t(s)))}))(t)}var LA=W({logSigmoid_:CO});function TO(e,t){let n=D(e,"a","sub"),s=D(t,"b","sub");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(oi,r)}var ge=W({sub_:TO});function NO(e,t=-1){let n=D(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return ra((r,a)=>{let i=yn(r,t,!0),l=ge(r,i),u=ge(ye(l,"float32"),Os(ke(Fs(l),t,!0)));return a([u]),{value:u,gradFunc:(p,d)=>{let[h]=d,f=!0,m=Fs(h);return ge(p,z(ke(p,t,f),m))}}})(n)}var O0=W({logSoftmax_:NO});function EO(e,t=null,n=!1){let s=D(e,"x","logSumExp"),r=gr(t,s.shape),a=yn(s,r,!0),o=ge(s,a),i=Fs(o),l=ke(i,r),u=Os(l),c=ce(V(a,u.shape),u);if(n){let p=ol(c.shape,r);return V(c,p)}return c}var M0=W({logSumExp_:EO});function RO(e,t){let n=D(e,"a","logicalAnd","bool"),s=D(t,"b","logicalAnd","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Dl,r)}var mr=W({logicalAnd_:RO});function _O(e){let n={x:D(e,"x","logicalNot","bool")};return B.runKernel($l,n)}var vh=W({logicalNot_:_O});function DO(e,t){let n=D(e,"a","logicalOr","bool"),s=D(t,"b","logicalOr","bool");wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(zc,r)}var z0=W({logicalOr_:DO});function $O(e,t){let n=D(e,"a","logicalXor","bool"),s=D(t,"b","logicalXor","bool");return wt(n.shape,s.shape),mr(z0(e,t),vh(mr(e,t)))}var BA=W({logicalXor_:$O}),Zf=2147483648;function PO(e,t,n="left"){let s=D(e,"sortedSequence","searchSorted"),r=D(t,"values","searchSorted"),a=s.shape[s.shape.length-1],o=r.shape[r.shape.length-1],i=V(s,[-1,a]),l=V(r,[-1,o]);if(i.rank<2)throw new Error("Sorted input argument must be at least 2-dimensional");if(i.shape[0]!==l.shape[0])throw new Error("Leading dimension of 'sortedSequence' and 'values' must match.");if(Nt(l.shape)>=Zf)throw new Error(`values tensor size must less than ${Zf}`);if(i.shape[1]>=Zf)throw new Error(`trailing dim_size must less than ${Zf} for int32 output type, was ${i.shape[1]}`);let u={sortedSequence:i,values:l},c={side:n};return B.runKernel(S0,u,c)}var L0=W({searchSorted_:PO});function $w(e,t){return L0(e,t,"left")}function FO(e,t,n,s,r){let a=D(e,"x","maxPool"),o=1,i=a,l=!1;a.rank===3&&(l=!0,i=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(i.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${i.rank}.`),O(oa(n,o),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${o}'`),ls("maxPool",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r},p=B.runKernel(Lo,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var wh=W({maxPool_:FO});function OO(e,t=[1,1,1],n,s,r,a="NDHWC"){let o=D(e,"x","maxPool3d"),i=o,l=!1;o.rank===4&&(l=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),O(i.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${i.rank}.`),O(a==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${a}`),ls("maxPool3d",s,r);let u={x:i},c={filterSize:t,strides:n,pad:s,dimRoundingMode:r,dataFormat:a},p=B.runKernel(Jp,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var WA=W({maxPool3d_:OO});function MO(e,t,n,s,r=!1){let o={x:D(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:s,includeBatchInIndex:r},l=B.runKernel(x0,o,i);return{result:l[0],indexes:l[1]}}var Pw=W({maxPoolWithArgmax_:MO});function zO(e,t){let n=D(e,"a","maximum"),s=D(t,"b","maximum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(zo,r)}var ia=W({maximum_:zO});function LO(e,t=null,n=!1){let r={x:D(e,"x","mean")},a={axis:t,keepDims:n};return B.runKernel(Bo,r,a)}var Wt=W({mean_:LO});function Vt(e,t="float32"){if(t==="complex64"){let s=Vt(e,"float32"),r=Vt(e,"float32");return ka(s,r)}let n=e0(Nt(e),t);return B.makeTensor(n,e,t)}function Ds(e,t="float32"){if(t==="complex64"){let s=Ds(e,"float32"),r=Vt(e,"float32");return ka(s,r)}let n=Py(Nt(e),t);return B.makeTensor(n,e,t)}function Fw(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let s=D(e,"x","meshgrid",e instanceof st?e.dtype:"float32");if(t===void 0)return[s];let r=D(t,"y","meshgrid",t instanceof st?t.dtype:"float32"),a=Nt(s.shape),o=Nt(r.shape);return n==="xy"?(s=V(s,[1,-1]),r=V(r,[-1,1]),[et(Ds([o,1],s.dtype),s),et(r,Ds([1,a],r.dtype))]):(s=V(s,[-1,1]),r=V(r,[1,-1]),[et(s,Ds([1,o],s.dtype)),et(Ds([a,1],r.dtype),r)])}function BO(e,t){let n=D(e,"a","minimum"),s=D(t,"b","minimum");[n,s]=Ht(n,s),n.dtype==="bool"&&(n=ye(n,"int32"),s=ye(s,"int32")),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Vo,r)}var nd=W({minimum_:BO});function WO(e,t,n){O(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let s=D(e,"x","mirrorPad");if(s.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");O(t.length===s.rank,()=>`Padding doesn't match input. Must be ${s.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let i=0;i<s.rank;i++)O(t[i].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),O(t[i][0]>=0&&t[i][0]<=s.shape[i]-r&&t[i][1]>=0&&t[i][1]<=s.shape[i]-r,()=>`Padding in dimension ${i} cannot be greater than or equal to ${s.shape[i]-r} or less than 0 for input of shape ${s.shape}`);let a={paddings:t,mode:n},o={x:s};return B.runKernel(Uo,o,a)}var VA=W({mirrorPad_:WO});function VO(e,t){let n=D(e,"a","mod"),s=D(t,"b","mod");[n,s]=Ht(n,s);let r={a:n,b:s};return B.runKernel(Lc,r)}var lu=W({mod_:VO});function UO(e,t=null,n=!1){e=D(e,"x","moments");let s=gr(t,e.shape),r=Wt(e,s,n),a=r.shape;n||(a=ol(r.shape,s));let o=bt(ge(ye(e,"float32"),V(r,a))),i=Wt(o,s,n);return{mean:r,variance:i}}var kh=W({moments_:UO});function GO(e,t,n,s){let r=D(t,"data","multiRNNCell"),a=Ep(n,"c","multiRNNCell"),o=Ep(s,"h","multiRNNCell"),i=r,l=[];for(let p=0;p<e.length;p++){let d=e[p](i,a[p],o[p]);l.push(d[0]),l.push(d[1]),i=d[1]}let u=[],c=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),c.push(l[p+1]);return[u,c]}var Ow=W({multiRNNCell_:GO});function HO(e,t,n,s=!1){let r=D(e,"logits","multinomial"),a=r.size,o=r.rank;if(a<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${a}.`);if(o>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${o}`);n=n||Math.random();let l={logits:o===1?V(r,[1,-1]):r},u={numSamples:t,seed:n,normalized:s},c=B.runKernel(b0,l,u);return o===1?V(c,[c.size]):c}var Mw=W({multinomial_:HO});function jO(e,t){let n=D(e,"a","notEqual","string_or_numeric"),s=D(t,"b","notEqual","string_or_numeric");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s};return B.runKernel(Fl,r)}var il=W({notEqual_:jO});function qO(e){let n={x:D(e,"x","onesLike")};return B.runKernel(zl,n)}var Ms=W({onesLike_:qO});function XO(e,t){let n=D(e,"v1","outerProduct"),s=D(t,"v2","outerProduct");O(n.rank===1&&s.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${s.rank}.`);let r=V(n,[-1,1]),a=V(s,[1,-1]);return et(r,a)}var zw=W({outerProduct_:XO});function KO(e,t,n=0){let s=D(e,"x","pad");if(s.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},a={x:s};return B.runKernel(Ho,a,r)}var sr=W({pad_:KO});function ZO(e,t,n=0){return O(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),sr(e,[t],n)}var Lw=W({pad1d_:ZO});function YO(e,t,n=0){return O(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Bw=W({pad2d_:YO});function JO(e,t,n=0){return O(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Ww=W({pad3d_:JO});function QO(e,t,n=0){return O(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),sr(e,t,n)}var Vw=W({pad4d_:QO});function eM(e,t,n){let s=D(e,"x","spaceToBatchND");O(s.rank>=1+t.length,()=>`input rank ${s.rank} should be > than [blockShape] ${t.length}`),O(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),O(s.shape.reduce((o,i,l)=>l>0&&l<=t.length?o&&(i+n[l-1][0]+n[l-1][1])%t[l-1]===0:o,!0),()=>`input spatial dimensions ${s.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:s},a={blockShape:t,paddings:n};return B.runKernel(Kl,r,a)}var Sh=W({spaceToBatchND_:eM});function tM(e,t,n,s,r,a,o){r==null&&(r=[1,1]),a==null&&(a=1),s===0&&(s="valid");let i=D(e,"x","maxPool"),l=i,u=!1;i.rank===3&&(u=!0,l=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),O(oa(a,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${a} and dilations '${r}'`);let c=Aw(l.shape,t,a,r,s),p=[c.dilationHeight,c.dilationWidth],d;s==="same"?d=sM([c.filterHeight,c.filterWidth],p):d=[[0,0],[0,0]];let h=p[0]===1&&p[1]===1,[f,m]=nM([c.inHeight,c.inWidth],p,d),g=h?s:"valid",y=h?l:Sh(l,p,f),A=(n==="avg"?()=>gh(y,t,a,g,o):()=>wh(y,t,a,g,o))(),b=h?A:yh(A,p,m);return u?V(b,[b.shape[1],b.shape[2],b.shape[3]]):b}function nM(e,t,n){let s=n.map(c=>c[0]),r=n.map(c=>c[1]),a=e.concat(s,r),o=t.map((c,p)=>(c-a[p]%c)%c),i=r.map((c,p)=>c+o[p]),l=t.map((c,p)=>[s[p],i[p]]),u=t.map((c,p)=>[0,o[p]]);return[l,u]}function sM(e,t){let s=e.map((o,i)=>o+(o-1)*(t[i]-1)).map(o=>o-1),r=s.map(o=>Math.floor(o/2)),a=s.map((o,i)=>o-r[i]);return s.map((o,i)=>[r[i],a[i]])}var UA=W({pool_:tM});function rM(e,t){let n=D(e,"x","prelu"),s=D(t,"alpha","prelu"),r={x:n,alpha:s};return B.runKernel(qo,r)}var Ih=W({prelu_:rM});function aM(e,t=null,n=!1){let s=D(e,"x","prod");s.dtype==="bool"&&(s=ye(s,"int32"));let r={x:s},a={axis:t,keepDims:n};return B.runKernel(Xo,r,a)}var GA=W({prod_:aM});function oM(e,t,n,s,r){let a=D(e,"shape","raggedTensorToTensor","int32"),o=D(t,"values","raggedTensorToTensor"),i=D(n,"defaultValue","raggedTensorToTensor",o.dtype),l=s.map((p,d)=>D(p,`tensors${d}`,"raggedTensorToTensor","int32")),u={shape:a,values:o,defaultValue:i,rowPartitionTensors:l},c={rowPartitionTypes:r};return B.runKernel(v0,u,c)}var Uw=W({raggedTensorToTensor_:oM});function iM(e,t,n){let s=Nt(e),r=null;if(n==null||n==="float32")r=new Float32Array(s);else if(n==="int32")r=new Int32Array(s);else if(n==="bool")r=new Uint8Array(s);else throw new Error(`Unknown data type ${n}`);for(let a=0;a<s;a++)r[a]=t();return B.makeTensor(r,e,n)}var Gw=W({rand_:iM}),HA=ho(Jm()),jA=class{constructor(e,t,n,s,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=s,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let a=r||Math.random();this.random=HA.alea(a.toString())}nextValue(){if(!isNaN(this.nextVal)){let s=this.nextVal;return this.nextVal=NaN,s}let e,t,n=!1;for(;!n;){let s,r,a;do s=2*this.random()-1,r=2*this.random()-1,a=s*s+r*r;while(a>=1||a===0);let o=Math.sqrt(-2*Math.log(a)/a);e=this.mean+this.stdDev*s*o,t=this.mean+this.stdDev*r*o,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},lM=class{constructor(e,t,n,s){this.alpha=e,this.beta=1/t,this.dtype=n;let r=s||Math.random();this.randu=HA.alea(r.toString()),this.randn=new jA(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,s,r,a;for(;;){do s=this.randn.nextValue(),a=1+this.c*s;while(a<=0);if(a*=a*a,e=s*s,t=1-.331*e*e,n=.5*e+this.d*(1-a+Math.log(a)),r=this.randu(),r<t||Math.log(r)<n)break}return a=1/this.beta*this.d*a,this.alpha<1&&(a*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(a)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},uM=class{constructor(e=0,t=1,n,s){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,s==null&&(s=Math.random()),typeof s=="number"&&(s=s.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=HA.alea(s)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function cM(e,t,n=1,s="float32",r){if(n==null&&(n=1),s==null&&(s="float32"),s!=="float32"&&s!=="int32")throw new Error(`Unsupported data type ${s}`);let a=new lM(t,n,s,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Hw=W({randomGamma_:cM});function dM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error(`Unsupported data type ${s}`);let a=new jA(t,n,s,!1,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var B0=W({randomNormal_:dM});function pM(e,t,n){if(t!=null&&t==="bool")throw new Error(`Unsupported data type ${t}`);return B0(e,0,1,t,n)}var jw=W({randomStandardNormal_:pM});function hM(e,t=0,n=1,s="float32",r){let a=We(e,s),o=new uM(t,n,null,r);for(let i=0;i<a.values.length;i++)a.values[i]=o.nextValue();return a.toTensor()}var sd=W({randomUniform_:hM});function cc(e,t,n=1,s="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:s};return B.runKernel(Wc,{},r)}function fM(e){let n={x:D(e,"x","reciprocal")};return B.runKernel(Wl,n)}var qA=W({reciprocal_:fM});function mM(e){let n={x:D(e,"x","relu")};return B.runKernel(Ko,n)}var Vr=W({relu_:mM});function gM(e){let n={x:D(e,"x","relu6")};return B.runKernel(Jo,n)}var W0=W({relu6_:gM});function yM(e,t){let s={x:D(e,"x","reverse")},r={dims:t};return B.runKernel(Ul,s,r)}var Qs=W({reverse_:yM});function AM(e){let t=D(e,"x","reverse");return O(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Qs(t,0)}var qw=W({reverse1d_:AM});function xM(e,t){let n=D(e,"x","reverse");return O(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Qs(n,t)}var Xw=W({reverse2d_:xM});function bM(e,t){let n=D(e,"x","reverse");return O(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Qs(n,t)}var Kw=W({reverse3d_:bM});function vM(e,t){let n=D(e,"x","reverse");return O(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Qs(n,t)}var Zw=W({reverse4d_:vM});function wM(e){let n={x:D(e,"x","round")};return B.runKernel(Gl,n)}var V0=W({round_:wM});function kM(e){let n={x:D(e,"x","rsqrt","float32")};return B.runKernel(Qo,n)}var U0=W({rsqrt_:kM});function SM(e){let n={x:D(e,"x","selu")};return B.runKernel(Vc,n)}var G0=W({selu_:SM});function IM(e,t,n,s,r,a=[1,1],o="NHWC"){let i=D(e,"x","separableConv2d"),l=D(t,"depthwiseFilter","separableConv2d"),u=D(n,"pointwiseFilter","separableConv2d"),c=i,p=!1;if(i.rank===3&&(p=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2]])),o==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");O(c.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${c.rank}.`),O(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),O(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),O(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let d=l.shape[2],h=l.shape[3];O(u.shape[2]===d*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${d*h}, but got ${u.shape[2]}.`);let f=Zc(c,l,s,r,o,a),g=Sa(f,u,1,"valid",o);return p?V(g,[g.shape[1],g.shape[2],g.shape[3]]):g}var H0=W({separableConv2d_:IM});async function CM(e,t){let n=D(e,"x","setdiff1d"),s=D(t,"y","setdiff1d");O(n.dtype===s.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${s.dtype}).`),O(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),O(s.rank===1,()=>`y should be 1D tensor, but got y (${s.shape}).`);let r=await n.data(),a=await s.data(),o=new Set(a),i=0;for(let c=0;c<r.length;c++)o.has(r[c])||i++;let l=new gn([i],n.dtype),u=new gn([i],"int32");for(let c=0,p=0;c<r.length;c++)o.has(r[c])||(l.values[p]=r[c],u.values[p]=c,p++);return[l.toTensor(),u.toTensor()]}var Yw=CM;function TM(e){let n={x:D(e,"x","sign")};return B.runKernel(Uc,n)}var XA=W({sign_:TM});function NM(e){let n={x:D(e,"x","sin","float32")};return B.runKernel(ei,n)}var j0=W({sin_:NM});function EM(e){let n={x:D(e,"x","sinh")};return B.runKernel(Xl,n)}var q0=W({sinh_:EM});function RM(e,t,n){let s=D(e,"x","slice1d");return O(s.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${s.rank} tensor`),ze(s,[t],[n])}var Ch=W({slice1d_:RM});function _M(e,t,n){let s=D(e,"x","slice2d");return O(s.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var X0=W({slice2d_:_M});function DM(e,t,n){let s=D(e,"x","slice3d");return O(s.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var hi=W({slice3d_:DM});function $M(e,t,n){let s=D(e,"x","slice4d");return O(s.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${s.rank} tensor`),ze(s,t,n)}var ao=W({slice4d_:$M});function PM(e,t=-1){let n=D(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let s={logits:n},r={dim:t};return B.runKernel(ri,s,r)}var uu=W({softmax_:PM});function FM(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(h0,t)}var Th=W({fft_:FM});function OM(e){O(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return B.runKernel(f0,t)}var dc=W({ifft_:OM});function MM(e){let t=e.shape[e.shape.length-1],n=e.size/t,s;if(t<=2){let r=V(e,[n,t]);s=dc(r)}else{let r=[n,2*(t-1)],a=V(uc(e),[n,t]),o=V(fh(e),[n,t]),i=Qs(ze(a,[0,1],[n,t-2]),1),l=z(Qs(ze(o,[0,1],[n,t-2]),1),Ce(-1)),u=It([a,i],1),c=It([o,l],1),p=V(ka(u,c),[r[0],r[1]]);s=dc(p)}if(s=uc(s),e.rank===3&&e.shape[0]!==0){let r=s,a=e.shape[0];s=V(s,[a,s.shape[0]/a,s.shape[1]]),r.dispose()}return s}var K0=W({irfft_:MM});function zM(e,t,n=0){let r={x:D(e,"x","split")},a={numOrSizeSplits:t,axis:n};return B.runKernel(Zl,r,a)}var Jt=W({split_:zM});function LM(e,t){O(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],s=e.size/n,r;if(t!=null&&t<n){let f=e.shape.map(g=>0),m=e.shape.map(g=>g);m[e.shape.length-1]=t,r=ze(e,f,m),n=t}else if(t!=null&&t>n){let f=e.shape.map(m=>m);f[e.shape.length-1]=t-n,r=It([e,Vt(f)],e.shape.length-1),n=t}else r=e;let a=lt(r),o=V(ka(r,a),[s,n]),i=Th(o),l=Math.floor(n/2)+1,u=uc(i),c=fh(i),p=Jt(u,[l,n-l],u.shape.length-1),d=Jt(c,[l,n-l],c.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,V(ka(p[0],d[0]),h)}var Nh=W({rfft_:LM});function BM(e,t){let n=D(e,"a","squaredDifference"),s=D(t,"b","squaredDifference");[n,s]=Ht(n,s),wt(n.shape,s.shape);let r={a:n,b:s},a={};return B.runKernel(ai,r,a)}var Z0=W({squaredDifference_:BM});function WM(e,t){let n=D(e,"x","squeeze","string_or_numeric");return V(n,y6(n.shape,t).newShape)}var rt=W({squeeze_:WM});function VM(e,t=0){let n=Ep(e,"tensors","stack","string_or_numeric");O(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&O(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let s=n,r={axis:t};return B.runKernel(Bl,s,r)}var ln=W({stack_:VM});function UM(e,t=0){let s={x:D(e,"x","step")},r={alpha:t};return B.runKernel(li,s,r)}var cu=W({step_:UM});function GM(e,t,n,s,r=0,a=0,o=0,i=0,l=0){let c={x:D(e,"x","stridedSlice","string_or_numeric")},p={begin:t,end:n,strides:s,beginMask:r,endMask:a,ellipsisMask:o,newAxisMask:i,shrinkAxisMask:l};return B.runKernel(Yl,c,p)}var KA=W({stridedSlice_:GM});function HM(e){let n={x:D(e,"x","tan","float32")};return B.runKernel(Jl,n)}var ZA=W({tan_:HM});function Pt(e,t){fl(e);let n=sa(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return ui(e,null,n,t)}function fr(e,t,n){if(fl(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let s=sa(e,n);if(s.length!==2&&s.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return ui(e,t,s,n)}function Jw(e,t,n){if(fl(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let s=sa(e,n);if(s.length!==4&&s.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return ui(e,t,s,n)}function Qw(e,t,n){if(fl(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let s=sa(e,n);if(s.length!==5&&s.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return ui(e,t,s,n)}function ek(e,t,n){if(fl(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let s=sa(e,n);if(s.length!==6&&s.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(s.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||s,ui(e,t,s,n)}function jM(e,t=1,n=!0){let s=D(e,"x","topk");if(s.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=s.shape[s.shape.length-1];if(t<0)throw new Error(`'k' passed to topk() must be >= 0 but got ${t}`);if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let a={x:s},o={k:t,sorted:n},[i,l]=B.runKernel(Ql,a,o);return{values:i,indices:l}}var YA=W({topk_:jM});function qM(e,t=0,n=1,s,r){if(s!=null&&s==="bool")throw new Error("Unsupported data type $ { dtype }");let a=new jA(t,n,s,!0,r),o=We(e,s);for(let i=0;i<o.values.length;i++)o.values[i]=a.nextValue();return o.toTensor()}var Y0=W({truncatedNormal_:qM});function XM(e,t=0){let n=D(e,"x","unique","string_or_numeric");O(n.rank>0,()=>"The input tensor must be at least 1D");let s={x:n},r={axis:t},[a,o]=B.runKernel(I0,s,r);return{values:a,indices:o}}var JA=W({unique_:XM});function KM(e,t,n){let s=D(e,"x","unsortedSegmentSum"),r=D(t,"segmentIds","unsortedSegmentSum","int32");O(ac(n),()=>"numSegments must be of dtype int");let a={x:s,segmentIds:r},o={numSegments:n};return B.runKernel(oh,a,o)}var J0=W({unsortedSegmentSum_:KM});function ZM(e,t=0){let n=D(e,"x","unstack","string_or_numeric");O(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let s={value:n},r={axis:t};return B.runKernel(tu,s,r)}var On=W({unstack_:ZM});function tk(e,t){return L0(e,t,"right")}function QA(e,t=!0,n,s){return B.makeVariable(e,t,n,s)}function nk(e,t){let n=[];for(let a=0;a<t.length;a++)t[a]&&n.push(a);let s=We(e,"int32"),r=We([n.length,e.length],"int32");for(let a=0;a<n.length;a++){let o=s.indexToLoc(n[a]),i=a*e.length;r.values.set(o,i)}return r.toTensor()}async function YM(e){let t=D(e,"condition","whereAsync","bool"),n=await t.data(),s=nk(t.shape,n);return e!==t&&t.dispose(),s}var e5=YM;async function JM(e,t,n){let s=D(e,"tensor","boolMask"),r=D(t,"mask","boolMask","bool"),a=n==null?0:n,o=r.rank,i=s.shape;O(o>0,()=>"mask cannot be scalar"),is(i.slice(a,a+o),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let m=a;m<a+o;m++)l*=i[m];let u=i.slice(0,a).concat([l],i.slice(a+o)),c=V(s,u),p=V(r,[-1]),d=await e5(p),h=rt(d,[1]),f=td(c,h,a);return e!==s&&s.dispose(),t!==r&&r.dispose(),h.dispose(),c.dispose(),p.dispose(),d.dispose(),f}var sk=JM;function QM(e,t,n,s,r=!0){let a=D(e,"v","movingAverage"),o=D(t,"x","movingAverage"),i=D(n,"decay","movingAverage");F6(a,o),O(fo(a.shape,o.shape),()=>"Shape mismatch in v and x");let l=Ce(1),u=ge(l,i),c=z(ge(o,a),u);if(r){O(s!=null,()=>"When using zeroDebias: true, step is required.");let p=D(s,"step","movingAverage");c=me(c,ge(l,Ca(i,p)))}return ce(a,c)}var rk=W({movingAverage_:QM});function ez(e,t,n){let s=D(e,"indices","scatterND","int32"),r=D(t,"updates","scatterND");tA(r,s,n);let a={indices:s,updates:r},o={shape:n};return B.runKernel(Hl,a,o)}var ak=W({scatterND_:ez});function tz(e,t,n,s){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,a=e.rank>1?e.shape[1]:1;if(n.length!==a)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${a}.`);let o=t.size;if(!(t.rank===0||t.rank===1&&o===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==s.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function nz(e,t,n,s=0){let r=D(e,"sparseIndices","sparseToDense","int32"),a=D(t,"sparseValues","sparseToDense","string_or_numeric"),o=D(s,"defaultValue","sparseToDense",a.dtype);tz(r,a,n,o);let i={sparseIndices:r,sparseValues:a,defaultValue:o},l={outputShape:n};return B.runKernel(sh,i,l)}var ok=W({sparseToDense_:nz});function sz(e,t){let n=D(t,"indices","gatherND","int32"),r={params:D(e,"x","gatherND","string_or_numeric"),indices:n};return B.runKernel(Tl,r)}var ik=W({gatherND_:sz});function rz(e,t){if(t==null)return e.shape.slice();if(fo(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let s=0;s<e.shape.length;s++)t[s]==null&&e.shape[s]!=null?n.push(e.shape[s]):n.push(t[s]);return n}return t}function az(e,t,n,s){let r=D(e,"x","dropout");if(O(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),O(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof st?r.clone():r;let a=rz(r,n),o=1-t,i=me(ed(ce(sd(a,0,1,"float32",s),o)),o);return z(r,i)}var t5=W({dropout_:az});function n5(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function Q0(e,t,n){let s=1-e%2,r=new Float32Array(e);for(let a=0;a<e;++a){let o=2*Math.PI*a/(e+s-1);r[a]=t-n*Math.cos(o)}return Pt(r,"float32")}async function oz(e,t,n=1){let s=D(e,"predictions","inTopK"),r=D(t,"targets","inTopK");O(s.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${s.rank}`),O(s.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${s.rank} and targets rank ${r.rank}`),is(s.shape.slice(0,s.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let a=s.shape[s.shape.length-1];O(n>0&&n<=a,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${a}), but got ${n}`);let o=await s.data(),i=await r.data(),[l,u]=[o.length/a,a],c=A6("bool",l);for(let p=0;p<l;p++){let d=p*u,h=o.subarray(d,d+u),f=[];for(let m=0;m<h.length;m++)f.push({value:h[m],index:m});f.sort((m,g)=>g.value-m.value),c[p]=0;for(let m=0;m<n;m++)if(f[m].index===i[p]){c[p]=1;break}}return e!==s&&s.dispose(),t!==r&&r.dispose(),ct(c,r.shape,"bool")}var lk=oz,pc={};He(pc,{conv2d:()=>uz,depthwiseConv2d:()=>hz,matMul:()=>mz});function iz(e,t,n,s,r,a="NHWC",o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]])),O(i.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${i.shape}.`),O(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),O(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=a==="NHWC"?i.shape[3]:i.shape[1],c=a==="NHWC"?l.shape[3]:l.shape[1];O(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),O(c===n[3],()=>`Error in conv2dDerFilter: depth of dy (${c}) must match output depth for filter (${n[3]}).`),ls("conv2dDerFilter",r,o);let p={x:i,dy:l},d={strides:s,pad:r,dataFormat:a,dimRoundingMode:o,filterShape:n};return B.runKernel(a0,p,d)}var s5=W({conv2DBackpropFilter_:iz});function e2(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return z(e,cu(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function t2(e,t){let n=t,s=on(e.shape,t.shape);return s.length>0&&(n=ke(n,s)),V(n,e.shape)}function n2(e,t,n,s){if(t==="linear")return e;if(t==="relu")return Vr(e);if(t==="elu")return Yc(e);if(t==="relu6")return W0(e);if(t==="prelu")return Ih(e,n);if(t==="leakyrelu")return xh(e,s);if(t==="sigmoid")return $n(e);throw new Error(`Unknown fused activation ${t}.`)}var s2=(e,t)=>!(e>0)||t==="linear";function lz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(l=l||"linear",s2(B.state.gradientDepth,l)===!1){O(r==="NHWC",()=>`Error in fused conv2d: got dataFormat of ${r} but only NHWC is currently supported for the case of gradient depth is 0 and the activation is not linear.`);let k=Sa(e,t,n,s,r,a,o);return i!=null&&(k=ce(k,i)),n2(k,l,u,c)}let p=D(e,"x","conv2d","float32"),d=D(t,"filter","conv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${d.rank}.`),ls("fused conv2d",s,o);let m=r==="NHWC"?h.shape[3]:h.shape[1];O(d.shape[2]===m,()=>`Error in conv2d: depth of input (${m}) must match input depth for filter ${d.shape[2]}.`),O(oa(n,a),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`);let g=mh(h.shape,d.shape,n,a,s,o),y;i!=null&&(y=D(i,"bias","fused conv2d"),[y]=Ht(y,p),r==="NHWC"?wt(g.outShape,y.shape):(O(y.shape.length<=1,()=>`Error in fused conv2d: only supports scalar or 1-D Tensor bias for NCHW format but got the bias of rank-${y.shape.length}.`),O(y.shape.length===0||y.shape[0]===g.outChannels||y.shape[0]===1,()=>`Error in fused conv2d: bias shape (${y.shape}) is not compatible with the number of output channels (${g.outChannels})`)));let x;if(u!=null){let k=u.shape;if(O(k.length<=1||k.length===3,()=>`Error in fused conv2d: only supports scalar, 1-D Tensor or 3-D Tensor PReLU activation weights but got a tensor of rank-${k.length}.`),k.length===1)O(k[0]===1||k[0]===g.outChannels,()=>`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the number of output channels (${g.outChannels}).`);else if(k.length===3)try{wt(k,g.outShape)}catch(C){let E=`Error in fused conv2d: PReLU activation weights (${k}) is not compatible with the output shape of the conv2d (${g.outShape}).`;throw Error(E)}x=D(u,"prelu weights","fused conv2d")}let A=(k,C)=>{O(r==="NHWC",()=>`Error in gradient of fused conv2D: got dataFormat of ${r} but only NHWC is currently supported.`);let[E,_,$,R]=C,P=e2(k,$,l);O(ro(a),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let S=kA(_.shape,P,E,n,s),M=s5(_,P,E.shape,n,s),L=[S,M];if(R!=null){let U=t2(R,P);L.push(U)}return L},b={x:h,filter:d,bias:y,preluActivationWeights:x},w={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ra((C,E,_)=>{let $=B.runKernel(no,b,w);return _([E,C,$]),f&&($=V($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:A}})(h,d):ra((C,E,_,$)=>{let R=B.runKernel(no,b,w);return $([E,C,R,_]),f&&(R=V(R,[R.shape[1],R.shape[2],R.shape[3]])),{value:R,gradFunc:A}})(h,d,y)}var uz=W({fusedConv2d_:lz});function cz(e,t,n,s,r,a=[1,1],o){let i=e;e.rank===3&&(i=V(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:i,dy:l},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,filterShape:n};return B.runKernel(u0,u,c)}var uk=W({depthwiseConv2dNativeBackpropFilter_:cz});function dz(e,t,n,s,r,a=[1,1],o){let i=t,l=!1;t.rank===3&&(l=!0,i=V(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:i,filter:n},c={strides:s,pad:r,dimRoundingMode:o,dilations:a,inputShape:e},p=B.runKernel(c0,u,c);return l?V(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ck=W({depthwiseConv2dNativeBackpropInput_:dz});function pz({x:e,filter:t,strides:n,pad:s,dataFormat:r="NHWC",dilations:a=[1,1],dimRoundingMode:o,bias:i,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:c}){if(s2(B.state.gradientDepth,l)===!1){let w=Zc(e,t,n,s,r,a,o);return i!=null&&(w=ce(w,i)),n2(w,l,u,c)}let p=D(e,"x","depthwiseConv2d","float32"),d=D(t,"filter","depthwiseConv2d","float32"),h=p,f=!1;p.rank===3&&(f=!0,h=V(p,[1,p.shape[0],p.shape[1],p.shape[2]])),O(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),O(d.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${d.rank}.`),O(h.shape[3]===d.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${d.shape[2]}.`),a==null&&(a=[1,1]),O(oa(n,a),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${a}'`),ls("fused depthwiseConv2d",s,o);let m=mh(h.shape,d.shape,n,a,s,o,!0),g;i!=null&&(g=D(i,"bias","fused conv2d"),[g]=Ht(g,p),wt(m.outShape,g.shape));let y;u!=null&&(y=D(u,"prelu weights","fused depthwiseConv2d"));let x=(w,k)=>{O(ro(a),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${a}'`);let[C,E,_,$]=k,R=e2(w,_,l),P=ck(E.shape,R,C,n,s,a,o),S=uk(E,R,C.shape,n,s,a,o);if($!=null){let M=t2(g,R);return[P,S,M]}return[P,S]},A={x:h,filter:d,bias:g,preluActivationWeights:y},b={strides:n,pad:s,dataFormat:r,dilations:a,dimRoundingMode:o,activation:l,leakyreluAlpha:c};return i==null?ra((k,C,E)=>{let _=B.runKernel(so,A,b);return E([C,k,_]),f&&(_=V(_,[_.shape[1],_.shape[2],_.shape[3]])),{value:_,gradFunc:x}})(h,d):ra((k,C,E,_)=>{let $=B.runKernel(so,A,b);return _([C,k,$,E]),f&&($=V($,[$.shape[1],$.shape[2],$.shape[3]])),{value:$,gradFunc:x}})(h,d,g)}var hz=W({fusedDepthwiseConv2d_:pz});function fz({a:e,b:t,transposeA:n=!1,transposeB:s=!1,bias:r,activation:a="linear",preluActivationWeights:o,leakyreluAlpha:i=.2}){if(s2(B.state.gradientDepth,a)===!1){let R=et(e,t,n,s);return r!=null&&(R=ce(R,r)),n2(R,a,o,i)}let l=D(e,"a","fused matMul"),u=D(t,"b","fused matMul");[l,u]=Ht(l,u);let c=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=s?u.shape[u.rank-1]:u.shape[u.rank-2],d=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=s?u.shape[u.rank-2]:u.shape[u.rank-1],f=l.shape.slice(0,-2),m=u.shape.slice(0,-2),g=Nt(f),y=Nt(m);O(c===p,()=>`Error in fused matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${s} must match.`);let A=wt(l.shape.slice(0,-2),u.shape.slice(0,-2)).concat([d,h]),b=n?V(l,[g,c,d]):V(l,[g,d,c]),w=s?V(u,[y,h,p]):V(u,[y,p,h]),k;r!=null&&(k=D(r,"bias","fused matMul"),[k]=Ht(k,l),wt(A,k.shape));let C;o!=null&&(C=D(o,"prelu weights","fused matMul"));let E=(R,P)=>{let[S,M,L,U]=P,K=e2(V(R,L.shape),L,a),q,Z;if(!n&&!s?(q=et(K,M,!1,!0),Z=et(S,K,!0,!1)):!n&&s?(q=et(K,M,!1,!1),Z=et(K,S,!0,!1)):n&&!s?(q=et(M,K,!1,!0),Z=et(S,K,!1,!1)):(q=et(M,K,!0,!0),Z=et(K,S,!0,!0)),r!=null){let J=t2(U,K);return[q,Z,J]}else return[q,Z]},_={a:b,b:w,bias:k,preluActivationWeights:C},$={transposeA:n,transposeB:s,activation:a,leakyreluAlpha:i};return r==null?ra((P,S,M)=>{let L=B.runKernel(to,_,$);return M([P,S,L]),{value:V(L,A),gradFunc:E}})(b,w):ra((P,S,M,L)=>{let U=B.runKernel(to,_,$);return L([P,S,U,M]),{value:V(U,A),gradFunc:E}})(b,w,k)}var mz=W({fusedMatMul_:fz});function gz(e){return Q0(e,.54,.46)}var yz=W({hammingWindow_:gz});function Az(e){return Q0(e,.5,.5)}var dk=W({hannWindow_:Az});function xz(e,t,n,s=!1,r=0){let a=0,o=[];for(;a+t<=e.size;)o.push(ze(e,a,t)),a+=n;if(s)for(;a<e.size;){let i=a+t-e.size,l=It([ze(e,a,t-i),Qc([i],r)]);o.push(l),a+=n}return o.length===0?fr([],[0,t]):V(It(o),[o.length,t])}var pk=W({frame_:xz});function bz(e,t,n,s,r=dk){s==null&&(s=n5(t));let a=pk(e,t,n),o=z(a,r(t));return Nh(o,s)}var vz=W({stft_:bz});function wz(e,t,n,s,r="bilinear",a=0){let o=D(e,"image","cropAndResize"),i=D(t,"boxes","cropAndResize","float32"),l=D(n,"boxInd","cropAndResize","int32"),u=i.shape[0];O(o.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&i.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${i.shape}.`),O(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${i.shape}.`),O(s.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${s.length}.`),O(s[0]>=1&&s[1]>=1,()=>`cropSize must be atleast [1,1], but was ${s}`),O(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let c={image:o,boxes:i,boxInd:l},p={method:r,extrapolationValue:a,cropSize:s};return B.runKernel(bl,c,p)}var kz=W({cropAndResize_:wz});function Sz(e){let t=D(e,"image","flipLeftRight","float32");O(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return B.runKernel(Il,n,{})}var Iz=W({flipLeftRight_:Sz});function Cz(e){let t=D(e,"image","grayscaleToRGB"),n=t.rank-1,s=t.shape[n];O(t.rank>=2,()=>`Error in grayscaleToRGB: images must be at least rank 2, but got rank ${t.rank}.`),O(s===1,()=>`Error in grayscaleToRGB: last dimension of a grayscale image should be size 1, but got size ${s}.`);let r=new Array(t.rank);return r.fill(1,0,n),r[n]=3,Ks(t,r)}var Tz=W({grayscaleToRGB_:Cz});function Nz(e,t,n=0,s=.5){let r=D(e,"image","rotateWithOffset","float32");O(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let a={image:r},o={radians:t,fillValue:n,center:s};return B.runKernel(su,a,o)}var Ez=W({rotateWithOffset_:Nz});function rd(e,t,n,s,r,a){s==null&&(s=.5),r==null&&(r=Number.NEGATIVE_INFINITY),a==null&&(a=0);let o=e.shape[0];return n=Math.min(n,o),O(0<=s&&s<=1,()=>`iouThreshold must be in [0, 1], but was '${s}'`),O(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),O(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),O(t.rank===1,()=>"scores must be a 1D tensor"),O(t.shape[0]===o,()=>`scores has incompatible shape with boxes. Expected ${o}, but was ${t.shape[0]}`),O(0<=a&&a<=1,()=>`softNmsSigma must be in [0, 1], but was '${a}'`),{maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a}}function Rz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppression","float32"),o=D(t,"scores","nonMaxSuppression","float32"),i=rd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l={maxOutputSize:n,iouThreshold:s,scoreThreshold:r};return B.runKernel(Ol,{boxes:a,scores:o},l)}var _z=W({nonMaxSuppression_:Rz});function Dz(e,t,n){let s=$z(e,t,n),r=s<0?-(s+1):s;e.splice(r,0,t)}function $z(e,t,n){return Fz(e,t,n||Pz)}function Pz(e,t){return e>t?1:e<t?-1:0}function Fz(e,t,n){let s=0,r=e.length,a=0,o=!1;for(;s<r;){a=s+(r-s>>>1);let i=n(t,e[a]);i>0?s=a+1:(r=a,o=!i)}return o?s:-s-1}function hk(e,t,n,s,r){return r5(e,t,n,s,r,0)}function fk(e,t,n,s,r,a){return r5(e,t,n,s,r,0,!1,a,!0)}function mk(e,t,n,s,r,a){return r5(e,t,n,s,r,a,!0)}function r5(e,t,n,s,r,a,o=!1,i=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(Mv);let c=a>0?-.5/a:0,p=[],d=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:x,suppressBeginIndex:A}=g;if(y<r)break;let b=!1;for(let w=p.length-1;w>=A;--w){let k=Oz(e,x,p[w]);if(k>=s){b=!0;break}if(g.score=g.score*Mz(s,c,k),g.score<=r)break}g.suppressBeginIndex=p.length,b||(g.score===y?(p.push(x),d.push(g.score)):g.score>r&&Dz(u,g,Mv))}let h=p.length,f=n-h;i&&f>0&&(p.push(...new Array(f).fill(0)),d.push(...new Array(f).fill(0)));let m={selectedIndices:p};return o&&(m.selectedScores=d),l&&(m.validOutputs=h),m}function Oz(e,t,n){let s=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),a=Math.min(s[0],s[2]),o=Math.min(s[1],s[3]),i=Math.max(s[0],s[2]),l=Math.max(s[1],s[3]),u=Math.min(r[0],r[2]),c=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),d=Math.max(r[1],r[3]),h=(i-a)*(l-o),f=(p-u)*(d-c);if(h<=0||f<=0)return 0;let m=Math.max(a,u),g=Math.max(o,c),y=Math.min(i,p),x=Math.min(l,d),A=Math.max(y-m,0)*Math.max(x-g,0);return A/(h+f-A)}function Mz(e,t,n){let s=Math.exp(t*n*n);return n<=e?s:0}function Mv(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function zz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY){let a=D(e,"boxes","nonMaxSuppressionAsync"),o=D(t,"scores","nonMaxSuppressionAsync"),i=rd(a,o,n,s,r);n=i.maxOutputSize,s=i.iouThreshold,r=i.scoreThreshold;let l=await Promise.all([a.data(),o.data()]),u=l[0],c=l[1],{selectedIndices:p}=hk(u,c,n,s,r);return a!==e&&a.dispose(),o!==t&&o.dispose(),Pt(p,"int32")}var Lz=zz;function Bz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=rd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u={boxes:o,scores:i},c={maxOutputSize:n,iouThreshold:s,scoreThreshold:r,softNmsSigma:a},p=B.runKernel(Ml,u,c);return{selectedIndices:p[0],selectedScores:p[1]}}var Wz=W({nonMaxSuppressionWithScore_:Bz});async function Vz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=0){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=rd(o,i,n,s,r,a);n=l.maxOutputSize,s=l.iouThreshold,r=l.scoreThreshold,a=l.softNmsSigma;let u=await Promise.all([o.data(),i.data()]),c=u[0],p=u[1],{selectedIndices:d,selectedScores:h}=mk(c,p,n,s,r,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(d,"int32"),selectedScores:Pt(h)}}var Uz=Vz;function Gz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppression"),i=D(t,"scores","nonMaxSuppression"),l=rd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,d={boxes:o,scores:i},h={maxOutputSize:u,iouThreshold:c,scoreThreshold:p,padToMaxOutputSize:a},f=B.runKernel(Bc,d,h);return{selectedIndices:f[0],validOutputs:f[1]}}var Hz=W({nonMaxSuppressionPadded_:Gz});async function jz(e,t,n,s=.5,r=Number.NEGATIVE_INFINITY,a=!1){let o=D(e,"boxes","nonMaxSuppressionAsync"),i=D(t,"scores","nonMaxSuppressionAsync"),l=rd(o,i,n,s,r,null),u=l.maxOutputSize,c=l.iouThreshold,p=l.scoreThreshold,[d,h]=await Promise.all([o.data(),i.data()]),{selectedIndices:f,validOutputs:m}=fk(d,h,u,c,p,a);return o!==e&&o.dispose(),i!==t&&i.dispose(),{selectedIndices:Pt(f,"int32"),validOutputs:Ce(m,"int32")}}var qz=jz;function Xz(e,t,n=!1,s=!1){let r=D(e,"images","resizeBilinear");O(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),O(s===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Yo,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var gk=W({resizeBilinear_:Xz});function Kz(e,t,n=!1,s=!1){let r=D(e,"images","resizeNearestNeighbor");O(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),O(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),O(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),O(s===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let a=r,o=!1;r.rank===3&&(o=!0,a=V(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,i={images:a},l={alignCorners:n,halfPixelCenters:s,size:t},u=B.runKernel(Zo,i,l);return o?V(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var yk=W({resizeNearestNeighbor_:Kz});function Zz(e,t="binary",n=!1,s=.5){let r=D(e,"image","threshold"),a=.2989,o=.587,i=.114,l=r.shape[0]*r.shape[1],u=z(Pt([s]),255),c,p,d,h;if(O(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),O(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),O(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),O(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[c,p,d]=Jt(r,[1,1,1],-1);let g=z(c,a),y=z(p,o),x=z(d,i);h=ce(ce(g,y),x)}else h=e;if(t==="otsu"){let g=AA(ye(V0(h),"int32"),ct([]),256);u=Yz(g,l)}let f=n?pi(h,u):vs(h,u);return ye(z(f,255),"int32")}function Yz(e,t){let n=Pt([-1]),s=Pt([0]),r=Pt([0]),a,o,i,l,u,c;for(let p=0;p<e.size-1;p++){a=ze(e,0,p+1),o=ze(e,p+1),u=me(ke(a),t),c=me(ke(o),t);let d=ke(z(a,cc(0,a.size)));i=me(d,ke(a));let h=Qc(o.shape,a.size),f=ce(cc(0,o.size),h),m=z(o,f);l=me(ke(m),ke(o));let g=ge(i,l),y=ge(i,l),x=z(u,c);r=z(z(x,g),y);let A=vs(r,s);s=Gn(A,r,s),n=Gn(A,Pt([p]),n)}return n}var Jz=W({threshold_:Zz});function Qz(e,t,n="nearest",s="constant",r=0,a){let o=D(e,"image","transform","float32"),i=D(t,"transforms","transform","float32");O(o.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${o.rank}.`),O(i.rank===2&&(i.shape[0]===o.shape[0]||i.shape[0]===1)&&i.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),O(a==null||a.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${a}.`);let l={image:o,transforms:i},u={interpolation:n,fillMode:s,fillValue:r,outputShape:a};return B.runKernel(eu,l,u)}var eL=W({transform_:Qz});function tL(e,t,n){O(t%1===0,()=>`bandPart(): numLower must be an integer, got ${t}.`),O(n%1===0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let s=D(e,"a","bandPart");O(s.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${s.rank}.`);let r=s.shape,[a,o]=s.shape.slice(-2);if(!(t<=a))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${a}).`);if(!(n<=o))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${o}).`);t<0&&(t=a),n<0&&(n=o);let i=V(cc(0,a,1,"int32"),[-1,1]),l=cc(0,o,1,"int32"),u=ge(i,l),c=mr(pi(u,Ce(+t,"int32")),di(u,Ce(-n,"int32"))),p=Vt([a,o],s.dtype);return V(ln(On(V(s,[-1,a,o])).map(d=>Gn(c,d,p))),r)}var nL=W({bandPart_:tL});function sL(e){let t;if(Array.isArray(e)){t=!1,O(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let a=1;a<e.length;++a)O(e[a].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[a].shape[0]} vs. ${r})`)}else t=!0,e=Jt(e,e.shape[0],0).map(r=>rt(r,[0]));O(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],s=e;for(let r=0;r<e.length;++r)n.push(B.tidy(()=>{let a=s[r];if(r>0)for(let o=0;o<r;++o){let i=z(ke(z(n[o],a)),n[o]);a=ge(a,i)}return me(a,Jc(a,"euclidean"))}));return t?ln(n,0):n}var rL=W({gramSchmidt_:sL});function aL(e,t=!1){if(O(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return zv(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),s=On(V(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],a=[];s.forEach(l=>{let[u,c]=zv(l,t);r.push(u),a.push(c)});let o=V(ln(r,0),e.shape),i=V(ln(a,0),e.shape);return[o,i]}}function zv(e,t=!1){return B.tidy(()=>{O(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],s=e.shape[1],r=$0(n),a=Vn(e),o=fr([[1]],[1,1]),i=Vn(o),l=n>=s?s:n;for(let u=0;u<l;++u){let c=a,p=i,d=r;[i,a,r]=B.tidy(()=>{let h=ze(a,[u,u],[n-u,1]),f=Jc(h),m=ze(a,[u,u],[1,1]),g=Gn(vs(m,0),fr([[-1]]),fr([[1]])),y=ge(m,z(g,f)),x=me(h,y);x.shape[0]===1?i=Vn(o):i=It([o,ze(x,[1,0],[x.shape[0]-1,x.shape[1]])],0);let A=$t(me(et(g,y),f)),b=ze(a,[u,0],[n-u,s]),w=z(A,i),k=tt(i);if(u===0)a=ge(b,et(w,et(k,b)));else{let _=ge(b,et(w,et(k,b)));a=It([ze(a,[0,0],[u,s]),_],0)}let C=tt(w),E=ze(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ge(E,et(et(E,i),C));else{let _=ge(E,et(et(E,i),C));r=It([ze(r,[0,0],[n,u]),_],1)}return[i,a,r]}),ee([c,p,d])}return!t&&n>s&&(r=ze(r,[0,0],[n,s]),a=ze(a,[0,0],[s,s])),[r,a]})}var oL=W({qr_:aL}),ss;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(ss||(ss={}));function iL(e,t,n=ss.SUM_BY_NONZERO_WEIGHTS){let s=D(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=D(t,"weights","computeWeightedLoss"));let a=r==null?s:z(s,r);if(n===ss.NONE)return a;if(n===ss.SUM)return ke(a);if(n===ss.MEAN){if(r==null)return Wt(a);{let o=s.size/r.size,i=me(ke(a),ke(r));return o>1?me(i,Ce(o)):i}}if(n===ss.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(ke(a),Ce(s.size));{let o=z(r,Ds(s.shape)),i=ye(ke(il(o,Ce(0))),"float32");return me(ke(a),i)}}throw Error(`Unknown reduction: ${n}`)}var _a=W({computeWeightedLoss_:iL});function lL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","absoluteDifference"),a=D(t,"predictions","absoluteDifference"),o=null;n!=null&&(o=D(n,"weights","absoluteDifference")),is(r.shape,a.shape,"Error in absoluteDifference: ");let i=rn(ge(r,a));return _a(i,o,s)}var uL=W({absoluteDifference_:lL});function cL(e,t,n,s,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","cosineDistance"),o=D(t,"predictions","cosineDistance"),i=null;s!=null&&(i=D(s,"weights","cosineDistance")),is(a.shape,o.shape,"Error in cosineDistance: ");let l=Ce(1),u=ge(l,ke(z(a,o),n,!0));return _a(u,i,r)}var dL=W({cosineDistance_:cL});function pL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","hingeLoss"),a=D(t,"predictions","hingeLoss"),o=null;n!=null&&(o=D(n,"weights","hingeLoss")),is(r.shape,a.shape,"Error in hingeLoss: ");let i=Ce(1);r=ge(z(Ce(2),r),i);let l=Vr(ge(i,z(r,a)));return _a(l,o,s)}var hL=W({hingeLoss_:pL});function fL(e,t,n,s=1,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","huberLoss"),o=D(t,"predictions","huberLoss"),i=null;n!=null&&(i=D(n,"weights","huberLoss")),is(a.shape,o.shape,"Error in huberLoss: ");let l=Ce(s),u=rn(ge(o,a)),c=nd(u,l),p=ge(u,c),d=ce(z(Ce(.5),bt(c)),z(l,p));return _a(d,i,r)}var mL=W({huberLoss_:fL});function gL(e,t,n,s=1e-7,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"labels","logLoss"),o=D(t,"predictions","logLoss"),i=null;n!=null&&(i=D(n,"weights","logLoss")),is(a.shape,o.shape,"Error in logLoss: ");let l=Ce(1),u=Ce(s),c=$t(z(a,Os(ce(o,u)))),p=z(ge(l,a),Os(ce(ge(l,o),u))),d=ge(c,p);return _a(d,i,r)}var yL=W({logLoss_:gL});function AL(e,t,n,s=ss.SUM_BY_NONZERO_WEIGHTS){let r=D(e,"labels","meanSquaredError"),a=D(t,"predictions","meanSquaredError"),o=null;n!=null&&(o=D(n,"weights","meanSquaredError")),is(r.shape,a.shape,"Error in meanSquaredError: ");let i=Z0(r,a);return _a(i,o,s)}var xL=W({meanSquaredError_:AL});function bL(e,t){let n=D(e,"labels","sigmoidCrossEntropyWithLogits"),s=D(t,"logits","sigmoidCrossEntropyWithLogits");is(n.shape,s.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Vr(s),a=z(s,n),o=bh(Fs($t(rn(s))));return ce(ge(r,a),o)}function vL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"multiClassLabels","sigmoidCrossEntropy"),o=D(t,"logits","sigmoidCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","sigmoidCrossEntropy")),is(a.shape,o.shape,"Error in sigmoidCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(.5);a=ce(z(a,ge(c,u)),z(p,u))}let l=bL(a,o);return _a(l,i,r)}var wL=W({sigmoidCrossEntropy_:vL});function kL(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return ra((r,a,o)=>{let l=M0(a,[n],!0),u=ge(ye(a,"float32"),l);o([r,u]);let c=$t(z(u,r));return{value:ke(c,[n]),gradFunc:(h,f)=>{let[m,g]=f,y=ol(h.shape,[n]);return[z(V(h,y),ge(ye(m,"float32"),Fs(g))),z(V(h,y),ge(Fs(g),ye(m,"float32")))]}}})(e,t)}function SL(e,t,n,s=0,r=ss.SUM_BY_NONZERO_WEIGHTS){let a=D(e,"onehotLabels","softmaxCrossEntropy"),o=D(t,"logits","softmaxCrossEntropy"),i=null;if(n!=null&&(i=D(n,"weights","softmaxCrossEntropy")),is(a.shape,o.shape,"Error in softmaxCrossEntropy: "),s>0){let u=Ce(s),c=Ce(1),p=Ce(a.shape[1]);a=ce(z(a,ge(c,u)),me(u,p))}let l=kL(a,o);return _a(l,i,r)}var IL=W({softmaxCrossEntropy_:SL});function CL(e,t,n,s){let r=D(e,"indices","sparseFillEmptyRows","int32"),a=D(t,"values","sparseFillEmptyRows"),o=D(n,"denseShape","sparseFillEmptyRows","int32"),i=D(s,"defaultValue","sparseFillEmptyRows",a.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${a.shape}`);if(o.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${o.shape}`);if(i.rank!==0)throw new Error(`Default value should be a scalar but received shape ${i.shape}`);let l={indices:r,values:a,denseShape:o,defaultValue:i},u=B.runKernel(eh,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var TL=W({sparseFillEmptyRows_:CL});function NL(e,t,n){let s=D(e,"inputIndices","sparseReshape","int32"),r=D(t,"inputShape","sparseReshape","int32"),a=D(n,"newShape","sparseReshape","int32");if(s.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
${s.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(a.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${a.shape}`);let o={inputIndices:s,inputShape:r,newShape:a},i=B.runKernel(Hc,o);return{outputIndices:i[0],outputShape:i[1]}}var EL=W({sparseReshape_:NL});function RL(e,t,n){let s=D(e,"data","sparseSegmentMean"),r=D(t,"indices","sparseSegmentMean","int32"),a=D(n,"segmentIds","sparseSegmentMean","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(th,o)}var _L=W({sparseSegmentMean_:RL});function DL(e,t,n){let s=D(e,"data","sparseSegmentSum"),r=D(t,"indices","sparseSegmentSum","int32"),a=D(n,"segmentIds","sparseSegmentSum","int32");if(s.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
${r.shape}`);if(a.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
${a.shape}`);let o={data:s,indices:r,segmentIds:a};return B.runKernel(nh,o)}var $L=W({sparseSegmentSum_:DL});function PL(e,t,n,s,r,a,o,i){let l=D(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=D(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let c={separator:n,nGramWidths:s,leftPad:r,rightPad:a,padWidth:o,preserveShortSequences:i},p={data:l,dataSplits:u},d=B.runKernel(qc,p,c);return{nGrams:d[0],nGramsSplits:d[1]}}var FL=W({stringNGrams_:PL});function OL(e,t,n=!0){let s=D(e,"input","stringSplit","string"),r=D(t,"delimiter","stringSplit","string");if(s.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${s.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let a={skipEmpty:n},o={input:s,delimiter:r},i=B.runKernel(rh,o,a);return{indices:i[0],values:i[1],shape:i[2]}}var ML=W({stringSplit_:OL});function zL(e,t){let n=D(e,"input","stringToHashBucketFast","string"),s={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return B.runKernel(ah,r,s)}var LL=W({stringToHashBucketFast_:zL}),Ak={fft:Th,ifft:dc,rfft:Nh,irfft:K0},xk={hammingWindow:yz,hannWindow:dk,frame:pk,stft:vz},Ie={flipLeftRight:Iz,grayscaleToRGB:Tz,resizeNearestNeighbor:yk,resizeBilinear:gk,rotateWithOffset:Ez,cropAndResize:kz,nonMaxSuppression:_z,nonMaxSuppressionAsync:Lz,nonMaxSuppressionWithScore:Wz,nonMaxSuppressionWithScoreAsync:Uz,nonMaxSuppressionPadded:Hz,nonMaxSuppressionPaddedAsync:qz,threshold:Jz,transform:eL},a5={bandPart:nL,gramSchmidt:rL,qr:oL},bk={absoluteDifference:uL,computeWeightedLoss:_a,cosineDistance:dL,hingeLoss:hL,huberLoss:mL,logLoss:yL,meanSquaredError:xL,sigmoidCrossEntropy:wL,softmaxCrossEntropy:IL},vk={sparseFillEmptyRows:TL,sparseReshape:EL,sparseSegmentMean:_L,sparseSegmentSum:$L},wk={stringNGrams:FL,stringSplit:ML,stringToHashBucketFast:LL},Da=class extends fw{minimize(e,t=!1,n){let{value:s,grads:r}=this.computeGradients(e,n);if(n!=null){let a=n.map(o=>({name:o.name,tensor:r[o.name]}));this.applyGradients(a)}else this.applyGradients(r);return ee(r),t?s:(s.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return Dw(e,t)}dispose(){this.iterations_!=null&&ee(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:Ce(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(Da,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var r2=class extends Da{constructor(e,t,n=null){super(),this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accum_grad`,variable:Y(()=>lt(r).variable(a))}),this.accumulatedUpdates[s]==null&&(this.accumulatedUpdates[s]={originalName:`${n}/accum_var`,variable:Y(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedGrads[s].variable,l=this.accumulatedUpdates[s].variable;Y(()=>{let u=ce(z(i,this.rho),z(bt(o),1-this.rho)),c=z(me(Fn(ce(l,this.epsilon)),Fn(ce(i,this.epsilon))),o),p=ce(z(l,this.rho),z(bt(c),1-this.rho));i.assign(u),l.assign(p);let d=ce(z(c,-this.learningRate),r);r.assign(d)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(ee(this.accumulatedGrads.map(e=>e.variable)),ee(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};r2.className="Adadelta";ci(r2);var a2=class extends Da{constructor(e,t=.1){super(),this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulatedGrads[s]==null&&(this.accumulatedGrads[s]={originalName:`${n}/accumulator`,variable:Y(()=>Qc(r.shape,this.initialAccumulatorValue).variable(!1))});let a=Array.isArray(e)?e[s].tensor:e[n];if(a==null)return;let o=this.accumulatedGrads[s].variable;Y(()=>{let i=ce(o,bt(a));o.assign(i);let l=ce(z(me(a,Fn(ce(i,B.backend.epsilon()))),-this.learningRate),r);r.assign(l)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&ee(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};a2.className="Adagrad";ci(a2);var o2=class extends Da{constructor(e,t,n,s=null){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],Y(()=>{this.accBeta1=Ce(t).variable(),this.accBeta2=Ce(n).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Y(()=>{let n=ge(1,this.accBeta1),s=ge(1,this.accBeta2);t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:Y(()=>lt(o).variable(i))}),this.accumulatedSecondMoment[a]==null&&(this.accumulatedSecondMoment[a]={originalName:`${r}/v`,variable:Y(()=>lt(o).variable(i))});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedSecondMoment[a].variable,p=ce(z(u,this.beta1),z(l,1-this.beta1)),d=ce(z(c,this.beta2),z(bt(l),1-this.beta2)),h=me(p,n),f=me(d,s);u.assign(p),c.assign(d);let m=ce(z(me(h,ce(Fn(f),this.epsilon)),-this.learningRate),o);o.assign(m)}),this.accBeta1.assign(z(this.accBeta1,this.beta1)),this.accBeta2.assign(z(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&ee(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),Y(()=>{this.accBeta1.assign(Ca(this.beta1,this.iterations_+1)),this.accBeta2.assign(Ca(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};o2.className="Adam";ci(o2);var i2=class extends Da{constructor(e,t,n,s=null,r=0){super(),this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=s,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],Y(()=>{this.iteration=Ce(0).variable(),this.accBeta1=Ce(t).variable()}),s==null&&(this.epsilon=B.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);Y(()=>{let n=ge(1,this.accBeta1),s=me(-this.learningRate,ce(z(this.iteration,this.decay),1));t.forEach((r,a)=>{let o=B.registeredVariables[r],i=!1;this.accumulatedFirstMoment[a]==null&&(this.accumulatedFirstMoment[a]={originalName:`${r}/m`,variable:lt(o).variable(i)}),this.accumulatedWeightedInfNorm[a]==null&&(this.accumulatedWeightedInfNorm[a]={originalName:`${r}/v`,variable:lt(o).variable(i)});let l=Array.isArray(e)?e[a].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[a].variable,c=this.accumulatedWeightedInfNorm[a].variable,p=ce(z(u,this.beta1),z(l,1-this.beta1)),d=z(c,this.beta2),h=rn(l),f=ia(d,h);u.assign(p),c.assign(f);let m=ce(z(me(s,n),me(p,ce(f,this.epsilon))),o);o.assign(m)}),this.iteration.assign(ce(this.iteration,1)),this.accBeta1.assign(z(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&ee(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&ee(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};i2.className="Adamax";ci(i2);var Eh=class extends Da{constructor(e){super(),this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=Array.isArray(e)?e[s].tensor:e[n];if(r==null)return;let a=B.registeredVariables[n];Y(()=>{let o=ce(z(this.c,r),a);a.assign(o)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Sn(Ce(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};Eh.className="SGD";ci(Eh);var l2=class extends Eh{constructor(e,t,n=!1){super(e),this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=Ce(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n];this.accumulations[s]==null&&(this.accumulations[s]={originalName:`${n}/momentum`,variable:Y(()=>lt(r).variable(!1))});let a=this.accumulations[s].variable,o=Array.isArray(e)?e[s].tensor:e[n];o!=null&&Y(()=>{let i,l=ce(z(this.m,a),o);this.useNesterov?i=ce(z(this.c,ce(o,z(l,this.m))),r):i=ce(z(this.c,l),r),a.assign(l),r.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&ee(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};l2.className="Momentum";ci(l2);var u2=class extends Da{constructor(e,t=.9,n=0,s=null,r=!1){if(super(),this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=s,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,s==null&&(this.epsilon=B.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(n=>n.name):Object.keys(e)).forEach((n,s)=>{let r=B.registeredVariables[n],a=!1;this.accumulatedMeanSquares[s]==null&&(this.accumulatedMeanSquares[s]={originalName:`${n}/rms`,variable:Y(()=>lt(r).variable(a))}),this.accumulatedMoments[s]==null&&(this.accumulatedMoments[s]={originalName:`${n}/momentum`,variable:Y(()=>lt(r).variable(a))}),this.accumulatedMeanGrads[s]==null&&this.centered&&(this.accumulatedMeanGrads[s]={originalName:`${n}/mg`,variable:Y(()=>lt(r).variable(a))});let o=Array.isArray(e)?e[s].tensor:e[n];if(o==null)return;let i=this.accumulatedMeanSquares[s].variable,l=this.accumulatedMoments[s].variable;Y(()=>{let u=ce(z(i,this.decay),z(bt(o),1-this.decay));if(this.centered){let c=this.accumulatedMeanGrads[s].variable,p=ce(z(c,this.decay),z(o,1-this.decay)),d=me(z(o,this.learningRate),Fn(ge(u,ce(bt(p),this.epsilon)))),h=ce(z(l,this.momentum),d);i.assign(u),c.assign(p),l.assign(h);let f=ge(r,h);r.assign(f)}else{let c=ce(z(i,this.decay),z(bt(o),1-this.decay)),p=ce(z(l,this.momentum),me(z(o,this.learningRate),Fn(ce(c,this.epsilon))));i.assign(c),l.assign(p);let d=ge(r,p);r.assign(d)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&ee(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&ee(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&ee(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(s=>({originalName:s.name,variable:s.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};u2.className="RMSProp";ci(u2);var Ha=class{static sgd(e){return new Eh(e)}static momentum(e,t,n=!1){return new l2(e,t,n)}static rmsprop(e,t=.9,n=0,s=null,r=!1){return new u2(e,t,n,s,r)}static adam(e=.001,t=.9,n=.999,s=null){return new o2(e,t,n,s)}static adadelta(e=.001,t=.95,n=null){return new r2(e,t,n)}static adamax(e=.002,t=.9,n=.999,s=null,r=0){return new i2(e,t,n,s,r)}static adagrad(e,t=.1){return new a2(e,t)}},Vi={sgd:Ha.sgd,momentum:Ha.momentum,adadelta:Ha.adadelta,adagrad:Ha.adagrad,rmsprop:Ha.rmsprop,adamax:Ha.adamax,adam:Ha.adam},BL=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function o5(){return new Promise(e=>BL(()=>e()))}var T={};He(T,{ERF_A1:()=>tB,ERF_A2:()=>nB,ERF_A3:()=>sB,ERF_A4:()=>rB,ERF_A5:()=>aB,ERF_P:()=>eB,PARALLELIZE_THRESHOLD:()=>i5,RowPartitionType:()=>Zr,SELU_SCALE:()=>Sk,SELU_SCALEALPHA:()=>kk,applyActivation:()=>n2,assertAndGetBroadcastShape:()=>wt,assertAxesAreInnerMostDims:()=>qF,assertParamsConsistent:()=>WL,assignToTypedArray:()=>dB,axesAreInnerMostDims:()=>_A,calculateShapes:()=>rw,checkEinsumDimSizes:()=>yB,checkPadOnDimRoundingMode:()=>ls,combineLocations:()=>Tw,combineRaggedTensorToTensorShapes:()=>UL,complexWithEvenIndex:()=>lB,complexWithOddIndex:()=>uB,computeConv2DInfo:()=>mh,computeConv3DInfo:()=>xw,computeDefaultPad:()=>hA,computeDilation2DInfo:()=>XP,computeOptimalWindowSize:()=>qL,computeOutAndReduceShapes:()=>Nw,computeOutShape:()=>VL,computePool2DInfo:()=>Aw,computePool3DInfo:()=>KP,convertConv2DDataFormat:()=>bw,decodeEinsumEquation:()=>mB,eitherStridesOrDilationsAreOne:()=>oa,expandShapeToKeepDim:()=>ol,exponent:()=>hB,exponents:()=>pB,fromStringArrayToUint8:()=>zB,fromUint8ToStringArray:()=>MB,getAxesPermutation:()=>Ew,getBroadcastDims:()=>tw,getComplexWithIndex:()=>cB,getEinsumComputePath:()=>AB,getEinsumPermutation:()=>gB,getFusedBiasGradient:()=>t2,getFusedDyActivation:()=>e2,getImageCenter:()=>XL,getInnerMostAxes:()=>XF,getPermuted:()=>ZL,getRaggedRank:()=>HL,getReductionAxes:()=>on,getReshaped:()=>KL,getReshapedPermuted:()=>YL,getRowPartitionTypesHelper:()=>GL,getSliceBeginCoords:()=>JL,getSliceSize:()=>QL,getSparseFillEmptyRowsIndicesDenseShapeMismatch:()=>wB,getSparseFillEmptyRowsNegativeIndexErrorMessage:()=>kB,getSparseFillEmptyRowsOutOfRangeIndexErrorMessage:()=>SB,getSparseReshapeEmptyTensorZeroOutputDimErrorMessage:()=>TB,getSparseReshapeInputOutputMismatchErrorMessage:()=>EB,getSparseReshapeInputOutputMultipleErrorMessage:()=>NB,getSparseReshapeMultipleNegativeOneOutputDimErrorMessage:()=>IB,getSparseReshapeNegativeOutputDimErrorMessage:()=>CB,getSparseSegmentReductionIndicesOutOfRangeErrorMessage:()=>$B,getSparseSegmentReductionNegativeSegmentIdsErrorMessage:()=>RB,getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage:()=>_B,getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage:()=>DB,getUndoAxesPermutation:()=>DA,isIdentityPermutation:()=>xB,log:()=>yD,mergeRealAndImagArrays:()=>oB,prepareAndValidate:()=>sw,prepareSplitSize:()=>vB,segment_util:()=>Ik,shouldFuse:()=>s2,slice_util:()=>Gt,splitRealAndImagArrays:()=>iB,tupleValuesAreOne:()=>ro,upcastType:()=>Un,validateDefaultValueShape:()=>jL,validateInput:()=>tA,validateUpdateShape:()=>eA,warn:()=>qa});function WL(e,t){let n=e[0].length;e.forEach((r,a)=>{O(r.length===n,()=>`Error in concat${n}D: rank of tensors[${a}] must be the same as the rank of the rest (${n})`)}),O(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let s=e[0];e.forEach((r,a)=>{for(let o=0;o<n;o++)O(o===t||r[o]===s[o],()=>`Error in concat${n}D: Shape of tensors[${a}] (${r}) does not match the shape of the rest (${s}) along the non-concatenated axis ${a}.`)})}function VL(e,t){let n=e[0].slice();for(let s=1;s<e.length;s++)n[t]+=e[s][t];return n}var Zr;(function(e){e[e.FIRST_DIM_SIZE=0]="FIRST_DIM_SIZE",e[e.VALUE_ROWIDS=1]="VALUE_ROWIDS",e[e.ROW_LENGTHS=2]="ROW_LENGTHS",e[e.ROW_SPLITS=3]="ROW_SPLITS",e[e.ROW_LIMITS=4]="ROW_LIMITS",e[e.ROW_STARTS=5]="ROW_STARTS"})(Zr||(Zr={}));function UL(e,t,n){let s=new Array;if(n==null&&t==null)return s;if(t==null)for(;s.length<e+n.length;)s.push(-1);else s=t.slice();if(n==null)return s;if(e+n.length!==s.length)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.rank = ${e+n.length}, but shape.rank = ${s.length}`);for(let r=1;r<n.length;++r){let a=n[r],o=s[s.length-n.length+r],i=s[o];if(a>=0)if(i>=0){if(i!==a)throw new Error(`rt input.shape and shape=${t} are incompatible: rt input.shape[${r+e}] = ${a} but shape[${r+e}] = ${i}`)}else s[o]=a}return s}function GL(e){let t={FIRST_DIM_SIZE:Zr.FIRST_DIM_SIZE,VALUE_ROWIDS:Zr.VALUE_ROWIDS,ROW_LENGTHS:Zr.ROW_LENGTHS,ROW_SPLITS:Zr.ROW_SPLITS,ROW_LIMITS:Zr.ROW_LIMITS,ROW_STARTS:Zr.ROW_STARTS},n=[];for(let s of e)if(s in t)n.push(t[s]);else break;return n}function HL(e){return e.length===0?0:e[0]===Zr.FIRST_DIM_SIZE?e.length-1:e.length}function jL(e,t){if(e==null||t==null)return;let n=e.length,s=t.length;if(n>=s)throw new Error(`defaultValue.shape=${e} and ragged tensor flatValues.shape=${t}, are incompatible: defaultValue.rank = ${n} must be less than ragged tensor input flatValues.rank = ${s})`);for(let r=0;r<Math.min(n,s-1);++r){let a=e[r],o=t[r+1];if(a>=0&&o>=0&&a!==1&&a!==o)throw new Error(`defaultValue.shape=${e}, and ragged tensor input flatValues.shape=${t} are incompatible: defaultValue.shape[${r-e.length}] = ${a} but ragged tensor input.flatValues.shape[${r-e.length}] = ${o}`)}}var i5=30;function qL(e){return e<=i5?e:wm(e,Math.floor(Math.sqrt(e)))}function XL(e,t,n){let s=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[s,r]}function KL(e,t,n,s=!0){let r=[];if(s)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let a=t.length;for(let o=0;o<a;++o)r=r.concat([e[o+1]/t[o],t[o]]);r=r.concat(e.slice(a+1))}return r}function ZL(e,t,n=!0){let s=[];if(n){s.push(t);for(let r=t+1;r<e;++r)r<=2*t?(s.push(r),s.push(r-(t+1))):s.push(r)}else{let r=[],a=[];for(let o=1;o<e;++o)o>=t*2+1||o%2===1?a.push(o):r.push(o);s.push(...r),s.push(0),s.push(...a)}return s}function YL(e,t,n,s=!0){let r=[];s?r.push(e[0]/n):r.push(e[0]*n);for(let a=1;a<e.length;++a)a<=t.length?s?r.push(t[a-1]*e[a]):r.push(e[a]/t[a-1]):r.push(e[a]);return r}function JL(e,t){let n=[0];for(let s=0;s<t;++s)n.push(e[s][0]);return n}function QL(e,t,n){let s=e.slice(0,1);for(let r=0;r<n;++r)s.push(e[r+1]-t[r][0]-t[r][1]);return s}var kk=1.7580993408473768,Sk=1.0507009873554805,eB=.3275911,tB=.254829592,nB=-.284496736,sB=1.421413741,rB=-1.453152027,aB=1.061405429;function oB(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let s=0;s<n.length;s+=2)n[s]=e[s/2],n[s+1]=t[s/2];return n}function iB(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let s=0;s<e.length;s+=2)t[s/2]=e[s],n[s/2]=e[s+1];return{real:t,imag:n}}function lB(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function uB(e){let t=Math.floor(e.length/4),n=new Float32Array(t),s=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],s[Math.floor(r/4)]=e[r+1];return{real:n,imag:s}}function cB(e,t){let n=e[t*2],s=e[t*2+1];return{real:n,imag:s}}function dB(e,t,n,s){e[s*2]=t,e[s*2+1]=n}function pB(e,t){let n=new Float32Array(e/2),s=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let a=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(a),s[r]=Math.sin(a)}return{real:n,imag:s}}function hB(e,t,n){let s=(n?2:-2)*Math.PI*(e/t),r=Math.cos(s),a=Math.sin(s);return{real:r,imag:a}}var A3="->",fB=/->/g,Lv=",",Bv="...";function mB(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(fB,"").length)/A3.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${A3}").`);let[s,r]=e.split(A3);O(s.indexOf(Bv)===-1,()=>`The ellipsis notation ("${Bv}") is not supported yet.`);let a=s.split(Lv),o=a.length;if(t!==o)throw new Error(`Expected ${o} input tensors, received ${t}`);if(o>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let i=[];for(let d=0;d<r.length;++d){let h=r[d];if(!a.some(f=>f.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);i.indexOf(h)===-1&&i.push(h)}for(let d=0;d<s.length;++d){let h=s[d];i.indexOf(h)===-1&&h!==Lv&&i.push(h)}let l=new Array(a.length);for(let d=0;d<o;++d){if(new Set(a[d].split("")).size!==a[d].length)throw new Error(`Found duplicate axes in input component ${a[d]}. Support for duplicate axes in input is not implemented yet.`);l[d]=[];for(let h=0;h<a[d].length;++h)l[d].push(i.indexOf(a[d][h]))}let u=i.length,c=r.length,p=[];for(let d=c;d<u;++d)p.push(d);return{allDims:i,summedDims:p,idDims:l}}function gB(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let s=[];for(let r=0;r<e;++r)n[r]===-1&&s.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:s}}function yB(e,t,n){let s=new Array(e);for(let r=0;r<n.length;++r){let a=n[r].shape;for(let o=0;o<t[r].length;++o)s[t[r][o]]===void 0?s[t[r][o]]=a[o]:O(s[t[r][o]]===a[o],()=>`Expected dimension ${s[t[r][o]]} at axis ${o} of input shaped ${JSON.stringify(a)}, but got dimension ${a[o]}`)}}function AB(e,t){let n=e,s=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let o=0;o<r;++o)s.push([]);let a=[];for(let o=0;o<n.length;++o){let i=n[o],l=bB(t,i);for(let u of l)a.indexOf(u)===-1&&(s[o].push(u),a.push(u))}return{path:n,steps:s}}function xB(e){return e.every((t,n)=>t===n)}function bB(e,t){let n=[];for(let s=0;s<e.length;++s)(e[s].length===0||e[s].indexOf(t)!==-1||t===-1)&&n.push(s);return n}function vB(e,t,n=0){let s=[];if(typeof t=="number")O(e.shape[n]%t===0,()=>"Number of splits must evenly divide the axis."),s=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((o,i)=>(i===-1&&(o+=1),o),0);O(r<=1,()=>"There should be only one negative value in split array.");let a=t.indexOf(-1);if(a!==-1){let o=t.reduce((i,l)=>l>0?i+l:i);t[a]=e.shape[n]-o}O(e.shape[n]===t.reduce((o,i)=>o+i),()=>"The sum of sizes must match the size of the axis dimension."),s=t}return s}function wB(e){return`Received SparseTensor with denseShape[0] = 0 but
indices.shape[0] = ${e}`}function kB(e,t){return`indices(${e}, 0) is invalid: ${t} < 0`}function SB(e,t,n){return`indices(${e}, 0) is invalid: ${t} >= ${n}`}function IB(e,t){return`only one output dimension may be -1, not both ${e} and ${t}`}function CB(e,t){return`size ${e} must be non-negative, not ${t}`}function TB(){return"reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero"}function NB(e,t){let n=Nt(e),s=Nt(t);return`Input to reshape is a SparseTensor with ${n}
dense values, but the requested shape requires a multiple of ${s}. inputShape=${e} outputShape= ${t}`}function EB(e,t){let n=Nt(e),s=Nt(t);return`Input to reshape is a tensor with ${n} dense values, but the requested shape has ${s}. inputShape=${e} outputShape=${t}`}function RB(){return"segment ids must be >= 0"}function _B(){return"segment ids are not increasing"}function DB(e,t){return`Segment id ${e} out of range [0, ${t}), possibly because segmentIds input is not sorted.`}function $B(e,t,n){return`Bad: indices[${e}] == ${t} out of range [0, ${n})`}var Ik={};He(Ik,{collectGatherOpShapeInfo:()=>OB,computeOutShape:()=>FB,segOpComputeOptimalWindowSize:()=>PB});function PB(e,t){let n=!1,s;for(e<=i5?(s=e,n=!0):s=wm(e,Math.floor(Math.sqrt(e)));!n;)s>t||s===e?n=!0:s=wm(e,s+1);return s}function FB(e,t,n){let s=[],r=e.length;for(let a=0;a<r;a++)a!==t?s.push(e[a]):s.push(n);return s}function OB(e,t,n,s){let r=t.shape.length,a=e.shape.length;if(s!==0&&(s<-r||s>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${s}`);if(s<0&&(s+=r),s>a)throw new Error(`batchDims (${s}) must be less than rank(x) (
${a}).`);if(n<s)throw new Error(`batchDims (${s}) must be less than or equal to axis (${n}).`);for(let p=0;p<s;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let o=e.shape[n],i=[],l=1,u=1,c=1;for(let p=0;p<s;++p)i.push(e.shape[p]),l*=e.shape[p];for(let p=s;p<n;p++)i.push(e.shape[p]),u*=e.shape[p];for(let p=s;p<r;p++)i.push(t.shape[p]);for(let p=n+1;p<a;p++)i.push(e.shape[p]),c*=e.shape[p];return{batchSize:l,sliceSize:c,outerSize:u,dimSize:o,outputShape:i}}function MB(e){try{return e.map(t=>Cm(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function zB(e){return e.map(t=>lh(t))}var yr={};He(yr,{nonMaxSuppressionV3Impl:()=>hk,nonMaxSuppressionV4Impl:()=>fk,nonMaxSuppressionV5Impl:()=>mk,whereImpl:()=>nk});var Ck={kernelName:ml,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,cu(ye(n,"float32"),-1))}}},LB={kernelName:Sc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=bt(ye(n,"float32")),r=Fn(ge(Ce(1),s));return $t(me(e,r))}}}},BB={kernelName:Ic,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(ge(bt(ye(n,"float32")),1));return me(e,s)}}}},WB={kernelName:Na,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V(i,s.shape)}}}},VB={kernelName:mo,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((s,r)=>{n[r]=()=>e.clone()}),n}},UB={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},GB={kernelName:Nc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>lt(n)}}},HB={kernelName:Ec,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,Fn(ge(Ce(1),bt(ye(n,"float32")))))}}},jB={kernelName:Rc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=Fn(ce(Ce(1),bt(ye(n,"float32"))));return me(e,s)}}}},qB={kernelName:gl,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=ce(bt(n),bt(s)),l=z(e,me(s,i)),u=on(n.shape,r);return u.length>0&&(l=ke(l,u)),V(l,n.shape)},b:()=>{let i=ce(bt(n),bt(s)),l=$t(z(e,me(n,i))),u=on(s.shape,r);return u.length>0&&(l=ke(l,u)),V(l,s.shape)}}}},XB={kernelName:_c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ce(bt(ye(n,"float32")),1))}}},KB={kernelName:Dc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ge(Ce(1),bt(ye(n,"float32"))))}}};function ZB(e,t,n,s,r,a){let o=D(e,"dy","avgPool3dGrad"),i=D(t,"input","avgPool3dGrad"),l=o,u=i,c=!1;i.rank===4&&(c=!0,l=V(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),u=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),O(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),O(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),ls("avgPool3dGrad",r,a);let p={dy:l,input:u},d={filterSize:n,strides:s,pad:r,dimRoundingMode:a},h=B.runKernel(n0,p,d);return c?V(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var YB=W({avgPool3dGrad_:ZB}),JB={kernelName:Gp,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o,dimRoundingMode:i}=n;return{x:()=>YB(e,s,r,a,o,i)}}};function QB(e,t,n,s,r){let a=D(e,"dy","avgPoolGrad"),o=D(t,"input","avgPoolGrad");O(o.rank===a.rank,()=>`Rank of input (${o.rank}) does not match rank of dy (${a.rank})`);let i=o,l=a,u=!1;o.rank===3&&(u=!0,i=V(o,[1,o.shape[0],o.shape[1],o.shape[2]]),l=V(a,[1,a.shape[0],a.shape[1],a.shape[2]])),O(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),O(i.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${i.rank}.`);let c={dy:l,input:i},p={filterSize:n,strides:s,pad:r},d=B.runKernel(t0,c,p);return u?V(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var eW=W({avgPoolGrad_:QB}),tW={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{filterSize:r,strides:a,pad:o}=n;return{x:()=>eW(e,s,r,a,o)}}},nW={kernelName:Ao,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[s,r]=t,{transposeA:a,transposeB:o}=n;return!a&&!o?{a:()=>et(e,r,!1,!0),b:()=>et(s,e,!0,!1)}:!a&&o?{a:()=>et(e,r,!1,!1),b:()=>et(e,s,!0,!1)}:a&&!o?{a:()=>et(r,e,!1,!0),b:()=>et(s,e,!1,!1)}:{a:()=>et(r,e,!0,!0),b:()=>et(e,s,!0,!0)}}},sW={kernelName:yl,gradFunc:(e,t,n)=>{let{blockShape:s,crops:r}=n;return{x:()=>Sh(e,s,r)}}},rW={kernelName:N6,gradFunc:(e,t,n)=>{let s=n,r=s.inputShape,a=s.shape,o=Array.from(a);for(let l=r.length-1;l>=0;l--)if(r[l]===a[l])o[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${a}].`);let i=[];for(let l=0;l<o.length;l++)o[l]>1&&i.push(l);return{x:()=>ke(e,i,!0)}}},aW={kernelName:xo,gradFunc:e=>({x:()=>e.clone()})},oW={kernelName:bo,gradFunc:e=>({x:()=>lt(e)})},iW={kernelName:Ea,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{clipValueMin:r,clipValueMax:a}=n;return{x:()=>Gn(mr(di(s,r),pi(s,a)),e,lt(e))}}},lW={kernelName:jp,inputsToSave:["x"],gradFunc:Ck.gradFunc},uW={kernelName:Al,saveAllInputs:!0,gradFunc:(e,t,n)=>{let s=t.map(l=>l.shape),{axis:r}=n,a=gr(r,t[0].shape)[0],o=s.map(l=>l[a]);return Jt(e,o,a).map(l=>()=>l)}},cW={kernelName:vo,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{dilations:a,strides:o,pad:i,dataFormat:l}=n;return O(ro(a),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`),{x:()=>kA(s.shape,e,r,o,i,l),filter:()=>s5(s,e,r.shape,o,i,l)}}},dW={kernelName:wo,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,{strides:a,pad:o,dataFormat:i,dimRoundingMode:l}=n;return{dy:()=>Sa(e,r,a,o,i,1,l),filter:()=>s5(e,s,r.shape,a,o,i,l)}}};function pW(e,t,n,s,r){let a=e;e.rank===4&&(a=V(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let o=t;o.rank===4&&(o=V(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),O(a.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${a.shape}.`),O(o.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${o.shape}.`),O(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),O(a.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${a.shape[4]}) must match input depth in filter (${n[3]}.`),O(o.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${o.shape[4]}) must match output depth for filter (${n[4]}).`);let i={x:a,dy:o},l={strides:s,pad:r,filterShape:n};return B.runKernel(o0,i,l)}var hW=W({conv3DBackpropFilter_:pW}),fW={kernelName:qp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a}=n;O(ro(s),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let[o,i]=t;return{x:()=>kw(o.shape,e,i,r,a),filter:()=>hW(o,e,i.shape,r,a)}}},mW={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z($t(j0(ye(n,"float32"))),e)}}},gW={kernelName:So,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(q0(ye(n,"float32")),e)}}},yW={kernelName:Io,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r,exclusive:a,reverse:o}=n;return{x:()=>{let i=Ew([r],s.rank),l=D0(e,r,a,!o);return i!=null&&(l=tt(l,i)),l}}}},AW={kernelName:Co,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:s,strides:r,pad:a,dimRoundingMode:o}=n,i=s==null?[1,1]:s;O(ro(i),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${i}'`);let[l,u]=t;return O(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),O(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),O(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),O(oa(r,i),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${i}'.`),ls("depthwiseConv2d",a,o),{x:()=>ck(l.shape,e,u,r,a,i,o),filter:()=>uk(l,e,u.shape,r,a,i,o)}}},xW={kernelName:Xp,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[s,r]=t,a={x:s,filter:r,dy:e},o={x:s,filter:r,dy:e};return{x:()=>B.runKernel(km,a,n),filter:()=>B.runKernel(Sm,o,n)}}},bW={kernelName:No,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,s={dy:e,y:n};return{x:()=>B.runKernel(p0,s)}}},vW={kernelName:$c,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(Fs($t(bt(n))),2/Math.sqrt(Math.PI));return{x:()=>z(e,s)}}},wW={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,n)}}},kW={kernelName:kl,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>V(e,n.shape)}}},SW={kernelName:Sl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,Fs(n))}}},IW={kernelName:Ro,gradFunc:e=>({x:()=>lt(e)})},CW={kernelName:_o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=me(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(me(i,ye(u,"float32")))}}}},TW={kernelName:Do,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:s}=n,[r,a,o,i]=t,l=i==null?Ce(1):i,u=on(a.shape,r.shape),c=[];if(a.rank===1){for(let b=0;b<r.shape.length-1;++b)c.push(r.shape[b]);c.push(1)}let p=ge(r,a),d=z(e,l),h=U0(ce(o,Ce(s))),f=z(z(z(h,h),h),Ce(-.5));return{x:()=>a.rank===1?V(z(z(e,Ks(V(h,[1,1,1,a.shape[0]]),c)),l),r.shape):V(z(z(e,h),l),r.shape),mean:()=>{let b=z(z(h,Ce(-1)),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},variance:()=>{let b=z(z(f,p),d);return a.rank===1&&(b=ke(b,u)),V(b,a.shape)},scale:()=>{let b=z(p,h),w=z(e,b);return a.rank===1&&(w=ke(w,u)),V(w,a.shape)},offset:()=>{let b=e;return a.rank===1&&(b=ke(b,u)),V(b,a.shape)}}}},NW={kernelName:Cl,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[s,r]=t,{axis:a}=n,o=gr(a,s.shape)[0];return{x:()=>{let l=s.shape,u=r.size,c=l.slice(0,o),p=c.length,d=l.slice(a,l.length).slice(1),h=d.length,f=Wv(0,p),m=Wv(p+1,p+1+h),g=Vv([c,[u],d]),y=V(e,g),x=V(r,[u]),A=Vv([[p],f,m]),b=tt(y,A),w=J0(b,x,s.shape[o]),k=DA(A);return w=tt(w,k),w},indices:()=>r}}};function Wv(e,t){let n=[];for(let s=e;s<t;++s)n.push(s);return n}function Vv(e){let t=[];for(let n=0;n<e.length;++n)for(let s=0;s<e[n].length;++s)t.push(e[n][s]);return t}var EW={kernelName:$o,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>lt(n),b:()=>lt(s)}}},RW={kernelName:Po,gradFunc:e=>({x:()=>ye(e,"float32")})},_W={kernelName:Fc,gradFunc:e=>({x:()=>lt(e)})},DW={kernelName:Oc,gradFunc:e=>({x:()=>lt(e)})},$W={kernelName:El,gradFunc:e=>({x:()=>lt(e)})},PW={kernelName:Fo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{alpha:r}=n,a=vs(s,0);return{x:()=>Gn(a,e,z(e,r))}}},FW={kernelName:Mc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ce(n,1))}}},OW={kernelName:Oo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ye(n,"float32"))}}},MW={kernelName:R6,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n;return{logits:()=>{let o=Fs(s);return ge(e,z(ke(e,r,!0),o))}}}};function zW(e,t,n,s=5,r=1,a=1,o=.5){let i={x:e,y:t,dy:n},l={depthRadius:s,bias:r,alpha:a,beta:o};return B.runKernel(g0,i,l)}var LW=W({localResponseNormalizationBackprop_:zW}),BW={kernelName:Yp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{depthRadius:a,bias:o,alpha:i,beta:l}=n;return{x:()=>LW(s,r,e,a,o,i,l)}}};function Tk(e,t,n,s){return t.rank<n.rank&&(t=V(t,ol(t.shape,s))),e.rank<n.rank&&(e=V(e,ol(e.shape,s))),{x:()=>z(e,ye(Ps(n,t),e.dtype))}}var Uv={kernelName:Mo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{reductionIndices:r}=s,a=t[0],o=t[1],i=gr(r,a.shape),l=Tk(e,o,a,i);return{x:()=>l.x()}}},WW={kernelName:zo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(di(n,s),"float32")),b:()=>z(e,ye(P0(n,s),"float32"))}}};function VW(e,t,n,s,r,a,o){let i=D(e,"dy","maxPool3dGrad"),l=D(t,"input","maxPool3dGrad"),u=D(n,"output","maxPool3dGrad"),c=i,p=l,d=u,h=!1;l.rank===4&&(h=!0,c=V(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),p=V(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),d=V(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),O(c.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${c.rank}.`),O(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),O(d.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${d.rank}.`),ls("maxPool3dGrad",a,o);let f={dy:c,input:p,output:d},m={filterSize:s,strides:r,pad:a,dimRoundingMode:o},g=B.runKernel(A0,f,m);return h?V(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var UW=W({maxPool3dGrad_:VW}),GW={kernelName:Jp,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=n;return{x:()=>UW(e,s,r,a,o,i,l)}}};function HW(e,t,n,s,r,a,o){let i=D(e,"dy","maxPoolGrad"),l=D(t,"input","maxPoolGrad"),u=D(n,"output","maxPoolGrad");O(l.rank===i.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${i.rank})`),O(i.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${i.rank}.`),O(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),ls("maxPoolGrad",a,o);let c={dy:i,input:l,output:u},p={filterSize:s,strides:r,pad:a,dimRoundingMode:o};return B.runKernel(y0,c,p)}var jW=W({maxPoolGrad_:HW}),qW={kernelName:Lo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s,r]=t,{filterSize:a,strides:o,pad:i}=n;return{x:()=>jW(e,s,r,a,o,i)}}},XW={kernelName:Bo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=gr(r,s.shape),i=Nw(s.shape,a)[1],l=Nt(i);return{x:()=>{let c=s.shape.slice();a.forEach(h=>{c[h]=1});let p=V(e,c);return me(z(p,Ds(s.shape,"float32")),l)}}}},KW={kernelName:Wo,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let s=n,{axis:r}=s,[a,o]=t,i=gr(r,a.shape),l=Tk(e,o,a,i);return{x:()=>l.x()}}},ZW={kernelName:Vo,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t;return{a:()=>z(e,ye(pi(n,s),"float32")),b:()=>z(e,ye(vs(n,s),"float32"))}}},YW={kernelName:Uo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},JW={kernelName:Lc,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=on(n.shape,r);return i.length>0?V(ke(e,i),n.shape):e},b:()=>{let i=z(e,$t(ed(me(n,s)))),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},QW={kernelName:Go,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=z(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);return l.length>0?V(ke(i,l),s.shape):i}}}},eV={kernelName:Pl,gradFunc:e=>({x:()=>$t(e)})},tV={kernelName:Ll,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>Vt(n.shape,"float32")}}},nV={kernelName:zl,gradFunc:e=>({x:()=>lt(e)})},sV={kernelName:Bl,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:s}=n;return On(e,s).map(a=>()=>a)}},Gv={kernelName:Ho,inputsToSave:["x"],gradFunc:(e,t,n)=>{let s=t[0],{paddings:r}=n,a=r.map(o=>o[0]);return{x:()=>ze(e,a,s.shape)}}},rV={kernelName:jo,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,s,r]=t,a=n,o=s,i=wt(a.shape,o.shape);return{a:()=>{let c=ye(o,"float32"),p=z(e,z(c,Ca(a,ge(c,Ce(1))))),d=on(a.shape,i);return d.length>0&&(p=ke(p,d)),V(p,a.shape)},b:()=>{let c=vs(a,0),p=Gn(c,Os(a),lt(a)),d=z(e,z(r,p)),h=on(o.shape,i);return h.length>0&&(d=ke(d,h)),V(d,o.shape)}}}},aV={kernelName:qo,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,s]=t,r=vs(n,0);return{x:()=>Gn(r,e,z(e,s)),alpha:()=>{let a=Gn(r,lt(e),z(e,n)),o=on(s.shape,e.shape);return o.length>0&&(a=ke(a,o)),V(a,s.shape)}}}};function oV(e,t,n){let s=e.shape.slice();s[n]=1;let r=V(t,s),a=_p(e,n,!0,!1),o=_p(e,n,!0,!0),i=z(a,o);return z(r,i)}function iV(e,t,n){let s=e.shape.length,r=s-n.length,a=T.getAxesPermutation(n,s),o=e;a!=null&&(o=tt(e,a));let i=o.shape.slice(),u=i.splice(s-n.length,n.length).reduce((d,h)=>d*h,1);i.push(u);let c=o.reshape(i),p=oV(c,t,r);if(p=p.reshape(o.shape),a!=null){let d=T.getUndoAxesPermutation(a);p=tt(p,d)}return p}var lV={kernelName:Xo,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{axis:r}=n,a=[];return r==null?a=s.shape.map((o,i)=>i):typeof r=="number"?a=[r]:a=r,{x:()=>iV(s,e,a)}}},uV={kernelName:To,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=me(e,ye(s,"float32")),l=on(n.shape,r);return l.length>0?V(ke(i,l),n.shape):i},b:()=>{let i=z(e,ye(n,"float32")),l=on(s.shape,r);l.length>0&&(i=V(ke(i,l),s.shape));let u=bt(s);return $t(me(i,ye(u,"float32")))}}}},cV={kernelName:Wl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,$t(bt(n)))}}},dV={kernelName:Jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,s=z(pi(n,6),cu(n));return{x:()=>z(e,ye(s,"float32"))}}},pV={kernelName:Ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,ye(cu(n),"float32"))}}},hV={kernelName:Vl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>V(e,n.shape)}}},fV={kernelName:Yo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(k0,r,n)}}},mV={kernelName:Zo,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[s]=t,r={dy:e,images:s};return{images:()=>B.runKernel(w0,r,n)}}},gV={kernelName:Ul,gradFunc:(e,t,n)=>{let{dims:s}=n,r=gr(s,e.shape);return{x:()=>Qs(e,r)}}},yV={kernelName:Gl,gradFunc:e=>({x:()=>lt(e)})},AV={kernelName:Qo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>$t(me(e,z(Ca(n,1.5),2)))}}},xV={kernelName:jl,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ye(lt(n),"float32"),t:()=>z(e,ye(n,e.dtype)),e:()=>z(e,ye(vh(n),e.dtype))}}},bV={kernelName:Vc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let s=vs(n,Ce(0)),r=Ce(kk),a=Ce(Sk),o=z(e,a),i=z(z(e,r),Fs(ye(n,"float32")));return Gn(s,o,i)}}}},vV={kernelName:ti,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(n,ge(Ce(1),n)))}}},wV={kernelName:Uc,gradFunc:e=>({x:()=>lt(e)})},kV={kernelName:ei,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(Ah(ye(n,"float32")),e)}}},SV={kernelName:Xl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(_0(ye(n,"float32")),e)}}},IV={kernelName:ql,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{begin:r,size:a}=n,o=s.shape,[i,l]=hw(s,r,a),u=[];for(let c=0;c<e.rank;c++)u.push([i[c],o[c]-i[c]-l[c]]);return{x:()=>sr(e,u)}}},CV={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[s]=t,{dim:r}=n,a=!0,o=z(e,s);return{logits:()=>ge(o,z(ke(o,[r],a),s))}}},TV={kernelName:Gc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,$n(n))}}},Hv={kernelName:Kl,gradFunc:(e,t,n)=>{let{blockShape:s,paddings:r}=n;return{x:()=>yh(e,s,r)}}},jv={kernelName:Zl,gradFunc:(e,t,n)=>{let{axis:s}=n;return{x:()=>It(e,s)}}},NV={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,z(Fn(ye(n,"float32")),2))}}},EV={kernelName:jc,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(e,z(ye(n,"float32"),2))}}},RV={kernelName:ai,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=Ce(2);return{a:()=>z(e,z(r,ge(n,s))),b:()=>z(e,z(r,ge(s,n)))}}},_V={kernelName:li,gradFunc:e=>({x:()=>lt(e)})},DV={kernelName:oi,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,s]=t,r=wt(n.shape,s.shape);return{a:()=>{let i=e,l=on(n.shape,r);return l.length>0&&(i=ke(i,l)),V(i,n.shape)},b:()=>{let i=e,l=on(s.shape,r);return l.length>0&&(i=ke(i,l)),V($t(i),s.shape)}}}},$V={kernelName:si,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,r=s.shape.slice(),{axis:a}=n;gr(a,s.shape).forEach(u=>{r[u]=1});let i=V(e,r),l=z(i,Ds(s.shape,"float32"));return{x:()=>l}}},PV={kernelName:Jl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,bt(Ah(n)))}}},FV={kernelName:ii,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>z(ge(Ce(1),bt(n)),e)}}},OV={kernelName:Ra,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[s]=t,{reps:r}=n;return{x:()=>{let o=lt(s);if(s.rank===1)for(let i=0;i<r[0];++i)o=ce(o,ze(e,[i*s.shape[0]],[s.shape[0]]));else if(s.rank===2)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)o=ce(o,ze(e,[i*s.shape[0],l*s.shape[1]],[s.shape[0],s.shape[1]]));else if(s.rank===3)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)o=ce(o,ze(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2]],[s.shape[0],s.shape[1],s.shape[2]]));else if(s.rank===4)for(let i=0;i<r[0];++i)for(let l=0;l<r[1];++l)for(let u=0;u<r[2];++u)for(let c=0;c<r[3];++c)o=ce(o,ze(e,[i*s.shape[0],l*s.shape[1],u*s.shape[2],c*s.shape[3]],[s.shape[0],s.shape[1],s.shape[2],s.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${s.rank} tensors yet.`);return o}}}},MV={kernelName:ea,gradFunc:(e,t,n)=>{let s=n,{perm:r}=s,a=DA(r);return{x:()=>tt(e,a)}}},zV={kernelName:tu,gradFunc:(e,t,n)=>{let s=n,{axis:r}=s;return{value:()=>ln(e,r)}}},LV={kernelName:oh,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>BV(e,n)}}};function BV(e,t){let n=ia(t,lt(t)),s=td(e,n),r=di(t,Ce(0,"int32")),a=s.rank-r.rank;for(let i=0;i<a;++i)r=Bt(r,i+1);r=mr(r,Ds(s.shape,"bool"));let o=lt(s);return Gn(r,s,o)}var WV={kernelName:nu,gradFunc:e=>({x:()=>lt(e)})},VV=[Ck,LB,BB,WB,VB,UB,GB,HB,jB,qB,XB,KB,JB,tW,nW,sW,rW,aW,oW,iW,lW,uW,dW,cW,fW,mW,gW,yW,AW,xW,uV,bW,vW,wW,kW,SW,CW,IW,TW,NW,EW,RW,_W,DW,$W,PW,FW,OW,MW,BW,Uv,Uv,WW,GW,qW,XW,KW,ZW,YW,JW,QW,eV,tV,nV,sV,Gv,Gv,rV,aV,lV,cV,dV,pV,hV,fV,mV,gV,yV,AV,xV,bV,vV,wV,kV,SV,IV,CV,TV,Hv,Hv,jv,jv,NV,RV,EV,_V,DV,$V,PV,FV,OV,MV,zV,LV,WV];for(let e of VV)_6(e);ae().prototype.abs=function(){return this.throwIfDisposed(),rn(this)};ae().prototype.acos=function(){return this.throwIfDisposed(),aA(this)};ae().prototype.acosh=function(){return this.throwIfDisposed(),oA(this)};ae().prototype.add=function(e){return this.throwIfDisposed(),ce(this,e)};ae().prototype.all=function(e,t){return this.throwIfDisposed(),N0(this,e,t)};ae().prototype.any=function(e,t){return this.throwIfDisposed(),Rp(this,e,t)};ae().prototype.argMax=function(e){return this.throwIfDisposed(),$s(this,e)};ae().prototype.argMin=function(e){return this.throwIfDisposed(),iA(this,e)};ae().prototype.asScalar=function(){return this.throwIfDisposed(),O(this.size===1,()=>"The array must have only 1 element."),V(this,[])};ae().prototype.asType=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.as1D=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.as2D=function(e,t){return this.throwIfDisposed(),V(this,[e,t])};ae().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),V(this,[e,t,n])};ae().prototype.as4D=function(e,t,n,s){return this.throwIfDisposed(),V(this,[e,t,n,s])};ae().prototype.as5D=function(e,t,n,s,r){return this.throwIfDisposed(),V(this,[e,t,n,s,r])};ae().prototype.asin=function(){return this.throwIfDisposed(),lA(this)};ae().prototype.asinh=function(){return this.throwIfDisposed(),uA(this)};ae().prototype.atan=function(){return this.throwIfDisposed(),cA(this)};ae().prototype.atan2=function(e){return this.throwIfDisposed(),dA(this,e)};ae().prototype.atanh=function(){return this.throwIfDisposed(),pA(this)};ae().prototype.avgPool=function(e,t,n,s){return this.throwIfDisposed(),gh(this,e,t,n,s)};ae().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),yh(this,e,t)};ae().prototype.batchNorm=function(e,t,n,s,r){return this.throwIfDisposed(),Kc(this,e,t,n,s,r)};ae().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Ji(this,e)};ae().prototype.cast=function(e){return this.throwIfDisposed(),ye(this,e)};ae().prototype.ceil=function(){return this.throwIfDisposed(),xA(this)};ae().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),As(this,e,t)};ae().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof st&&(e=[e]),It([this,...e],t)};ae().prototype.conv1d=function(e,t,n,s,r,a){return this.throwIfDisposed(),E0(this,e,t,n,s,r,a)};ae().prototype.conv2dTranspose=function(e,t,n,s,r){return this.throwIfDisposed(),R0(this,e,t,n,s,r)};ae().prototype.conv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Sa(this,e,t,n,s,r,a)};ae().prototype.cos=function(){return this.throwIfDisposed(),Ah(this)};ae().prototype.cosh=function(){return this.throwIfDisposed(),_0(this)};ae().prototype.cumprod=function(e,t,n){return this.throwIfDisposed(),_p(this,e,t,n)};ae().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),D0(this,e,t,n)};ae().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),CA(this,e,t)};ae().prototype.depthwiseConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),Zc(this,e,t,n,s,r,a)};ae().prototype.dilation2d=function(e,t,n,s,r){return this.throwIfDisposed(),TA(this,e,t,n,s,r)};ae().prototype.divNoNan=function(e){return this.throwIfDisposed(),NA(this,e)};ae().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};ae().prototype.dot=function(e){return this.throwIfDisposed(),EA(this,e)};ae().prototype.elu=function(){return this.throwIfDisposed(),Yc(this)};ae().prototype.equal=function(e){return this.throwIfDisposed(),Ps(this,e)};ae().prototype.erf=function(){return this.throwIfDisposed(),RA(this)};ae().prototype.euclideanNorm=function(e,t){return this.throwIfDisposed(),$A(this,e,t)};ae().prototype.exp=function(){return this.throwIfDisposed(),Fs(this)};ae().prototype.expandDims=function(e){return this.throwIfDisposed(),Bt(this,e)};ae().prototype.expm1=function(){return this.throwIfDisposed(),PA(this)};ae().prototype.fft=function(){return this.throwIfDisposed(),Th(this)};ae().prototype.flatten=function(){return this.throwIfDisposed(),V(this,[this.size])};ae().prototype.floor=function(){return this.throwIfDisposed(),ed(this)};ae().prototype.floorDiv=function(e){return this.throwIfDisposed(),Xc(this,e)};ae().prototype.gather=function(e,t){return this.throwIfDisposed(),td(this,e,t)};ae().prototype.greaterEqual=function(e){return this.throwIfDisposed(),di(this,e)};ae().prototype.greater=function(e){return this.throwIfDisposed(),vs(this,e)};ae().prototype.ifft=function(){return this.throwIfDisposed(),dc(this)};ae().prototype.irfft=function(){return this.throwIfDisposed(),K0(this)};ae().prototype.isFinite=function(){return this.throwIfDisposed(),FA(this)};ae().prototype.isInf=function(){return this.throwIfDisposed(),OA(this)};ae().prototype.isNaN=function(){return this.throwIfDisposed(),MA(this)};ae().prototype.leakyRelu=function(e){return this.throwIfDisposed(),xh(this,e)};ae().prototype.lessEqual=function(e){return this.throwIfDisposed(),pi(this,e)};ae().prototype.less=function(e){return this.throwIfDisposed(),P0(this,e)};ae().prototype.localResponseNormalization=function(e,t,n,s){return this.throwIfDisposed(),zA(this,e,t,n,s)};ae().prototype.logSigmoid=function(){return this.throwIfDisposed(),LA(this)};ae().prototype.logSoftmax=function(e){return this.throwIfDisposed(),O0(this,e)};ae().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),M0(this,e,t)};ae().prototype.log=function(){return this.throwIfDisposed(),Os(this)};ae().prototype.log1p=function(){return this.throwIfDisposed(),bh(this)};ae().prototype.logicalAnd=function(e){return this.throwIfDisposed(),mr(this,e)};ae().prototype.logicalNot=function(){return this.throwIfDisposed(),vh(this)};ae().prototype.logicalOr=function(e){return this.throwIfDisposed(),z0(this,e)};ae().prototype.logicalXor=function(e){return this.throwIfDisposed(),BA(this,e)};ae().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),et(this,e,t,n)};ae().prototype.maxPool=function(e,t,n,s){return this.throwIfDisposed(),wh(this,e,t,n,s)};ae().prototype.max=function(e,t){return this.throwIfDisposed(),yn(this,e,t)};ae().prototype.maximum=function(e){return this.throwIfDisposed(),ia(this,e)};ae().prototype.mean=function(e,t){return this.throwIfDisposed(),Wt(this,e,t)};ae().prototype.min=function(e,t){return this.throwIfDisposed(),Ia(this,e,t)};ae().prototype.minimum=function(e){return this.throwIfDisposed(),nd(this,e)};ae().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),VA(this,e,t)};ae().prototype.mod=function(e){return this.throwIfDisposed(),lu(this,e)};ae().prototype.mul=function(e){return this.throwIfDisposed(),z(this,e)};ae().prototype.neg=function(){return this.throwIfDisposed(),$t(this)};ae().prototype.norm=function(e,t,n){return this.throwIfDisposed(),Jc(this,e,t,n)};ae().prototype.notEqual=function(e){return this.throwIfDisposed(),il(this,e)};ae().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),lc(this,e,t,n)};ae().prototype.onesLike=function(){return this.throwIfDisposed(),Ms(this)};ae().prototype.pad=function(e,t){return this.throwIfDisposed(),sr(this,e,t)};ae().prototype.pool=function(e,t,n,s,r,a){return this.throwIfDisposed(),UA(this,e,t,n,s,r,a)};ae().prototype.pow=function(e){return this.throwIfDisposed(),Ca(this,e)};ae().prototype.prelu=function(e){return this.throwIfDisposed(),Ih(this,e)};ae().prototype.prod=function(e,t){return this.throwIfDisposed(),GA(this,e,t)};ae().prototype.reciprocal=function(){return this.throwIfDisposed(),qA(this)};ae().prototype.relu=function(){return this.throwIfDisposed(),Vr(this)};ae().prototype.relu6=function(){return this.throwIfDisposed(),W0(this)};ae().prototype.reshapeAs=function(e){return this.throwIfDisposed(),V(this,e.shape)};ae().prototype.reshape=function(e){return this.throwIfDisposed(),V(this,e)};ae().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),gk(this,e,t,n)};ae().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),yk(this,e,t,n)};ae().prototype.reverse=function(e){return this.throwIfDisposed(),Qs(this,e)};ae().prototype.rfft=function(){return this.throwIfDisposed(),Nh(this)};ae().prototype.round=function(){return this.throwIfDisposed(),V0(this)};ae().prototype.rsqrt=function(){return this.throwIfDisposed(),U0(this)};ae().prototype.selu=function(){return this.throwIfDisposed(),G0(this)};ae().prototype.separableConv2d=function(e,t,n,s,r,a){return this.throwIfDisposed(),H0(this,e,t,n,s,r,a)};ae().prototype.sigmoid=function(){return this.throwIfDisposed(),$n(this)};ae().prototype.sign=function(){return this.throwIfDisposed(),XA(this)};ae().prototype.sin=function(){return this.throwIfDisposed(),j0(this)};ae().prototype.sinh=function(){return this.throwIfDisposed(),q0(this)};ae().prototype.slice=function(e,t){return this.throwIfDisposed(),ze(this,e,t)};ae().prototype.softmax=function(e){return this.throwIfDisposed(),uu(this,e)};ae().prototype.softplus=function(){return this.throwIfDisposed(),iu(this)};ae().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),Sh(this,e,t)};ae().prototype.split=function(e,t){return this.throwIfDisposed(),Jt(this,e,t)};ae().prototype.sqrt=function(){return this.throwIfDisposed(),Fn(this)};ae().prototype.square=function(){return this.throwIfDisposed(),bt(this)};ae().prototype.squaredDifference=function(e){return this.throwIfDisposed(),Z0(this,e)};ae().prototype.squeeze=function(e){return this.throwIfDisposed(),rt(this,e)};ae().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof st?[this,e]:[this,...e];return ln(n,t)};ae().prototype.step=function(e){return this.throwIfDisposed(),cu(this,e)};ae().prototype.stridedSlice=function(e,t,n,s,r,a,o,i){return this.throwIfDisposed(),KA(this,e,t,n,s,r,a,o,i)};ae().prototype.sub=function(e){return this.throwIfDisposed(),ge(this,e)};ae().prototype.sum=function(e,t){return this.throwIfDisposed(),ke(this,e,t)};ae().prototype.tan=function(){return this.throwIfDisposed(),ZA(this)};ae().prototype.tanh=function(){return this.throwIfDisposed(),al(this)};ae().prototype.tile=function(e){return this.throwIfDisposed(),Ks(this,e)};ae().prototype.toBool=function(){return this.throwIfDisposed(),ye(this,"bool")};ae().prototype.toFloat=function(){return this.throwIfDisposed(),ye(this,"float32")};ae().prototype.toInt=function(){return this.throwIfDisposed(),ye(this,"int32")};ae().prototype.topk=function(e,t){return this.throwIfDisposed(),YA(this,e,t)};ae().prototype.transpose=function(e){return this.throwIfDisposed(),tt(this,e)};ae().prototype.unique=function(e){return this.throwIfDisposed(),JA(this,e)};ae().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),J0(this,e,t)};ae().prototype.unstack=function(e){return this.throwIfDisposed(),On(this,e)};ae().prototype.where=function(e,t){return this.throwIfDisposed(),Gn(e,this,t)};ae().prototype.zerosLike=function(){return this.throwIfDisposed(),lt(this)};var ga=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,ga.prototype)}},Pr=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Pr.prototype)}},j=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,j.prototype)}},Xe=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Xe.prototype)}},Nk=class extends Error{constructor(e){super(e),Object.setPrototypeOf(this,Nk.prototype)}},Ek=class{constructor(e){this.maxEntries=e||100,this.cache=new Map}get(e){let t;return this.cache.has(e)&&(t=this.cache.get(e),this.cache.delete(e),this.cache.set(e,t)),t}put(e,t){if(this.cache.has(e))this.cache.delete(e);else if(this.cache.size>=this.maxEntries){let n=this.cache.keys().next().value;this.cache.delete(n)}this.cache.set(e,t)}getMaxEntries(){return this.maxEntries}setMaxEntries(e){if(e<0)throw new Error(`The maxEntries of LRU caches must be at least 0, but got ${e}.`);if(this.maxEntries>e)for(let t=0;t<this.maxEntries-e;t++){let n=this.cache.keys().next().value;this.cache.delete(n)}this.maxEntries=e}};function ll(e,t){if(Array.isArray(e)){let n=[];for(let s=0;s<t;s++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Yr(e,t){if(!e)throw new Nk(t)}function qv(e,t){let n=0;for(let s of e)s===t&&n++;return n}function gs(e){return e.length===1?e[0]:e}function Dt(e){return Array.isArray(e)?e:[e]}function ya(e){let n=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return n[0]!=="_"?n:"private"+n}function ji(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ur={};function l5(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function H3(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>H3(t));else{let t=Object.keys(e);for(let n of t){let s=e[n];s!=null&&typeof s=="object"&&(!Array.isArray(s)&&s.type==="ndarray"&&typeof s.value=="number"?e[n]=s.value:H3(s))}}}function Rh(e,t={},n={},s="object",r=!1){if(typeof e=="string"){let a=e,o;if(a in n)o=n[a];else if(a in ur)o=ur[a];else if(o=t[a],o==null)throw new j(`Unknown ${s}: ${e}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return o}else{let a=e;if(a.className==null||a.config==null)throw new j(`${s}: Improper config format: ${JSON.stringify(a)}.
'className' and 'config' must set.`);let o=a.className,i,l;if(o in n?[i,l]=n[o]:o in ur?[i,l]=ur.className:o in t&&([i,l]=t[o]),i==null)throw new j(`Unknown ${s}: ${o}. This may be due to one of the following reasons:
1. The ${s} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
2. The custom ${s} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ur))u[h]=ur[h];for(let h of Object.keys(n))u[h]=n[h];let c=a.config;c.customObjects=u;let p=Object.assign({},ur);for(let h of Object.keys(n))ur[h]=n[h];H3(a.config);let d=l(i,a.config,n,r);return ur=Object.assign({},p),d}else{let u=Object.assign({},ur);for(let p of Object.keys(n))ur[p]=n[p];let c=new i(a.config);return ur=Object.assign({},u),c}}}function UV(e,t){return e<t?-1:e>t?1:0}function Yf(e,t){return-1*UV(e,t)}function Ja(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function GV(e){if(e==null)throw new j(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function du(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new j(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function u5(e,t,n=0,s=1/0){return Yr(n>=0),Yr(s>=n),Array.isArray(e)&&e.length>=n&&e.length<=s&&e.every(r=>typeof r===t)}function In(e,t){Array.isArray(e)?(v.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,s)=>In(n,`element ${s+1} of ${t}`))):v.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${Rk(e)}.`)}function Rk(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>Rk(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function HV(e,t,n){let s=n!=null?n():v.now(),r;return(...o)=>{let i=n!=null?n():v.now();return i-s<t||(s=i,r=e(...o)),r}}function _k(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}var jV=0;function Dk(){return jV++}var Jf={};function c2(e=""){return e in Jf||(Jf[e]=0),Jf[e]+=1,e+Jf[e].toString()}var qV=["channelsFirst","channelsLast"],XV=["nearest","bilinear"],KV=["valid","same","causal"],ZV=["max","avg"],YV=["sum","mul","concat","ave"],ju=new Map;function Qt(e){du(qV,"DataFormat",e)}function JV(e){du(XV,"InterpolationFormat",e)}function rr(e){du(KV,"PaddingMode",e)}function $k(e){du(ZV,"PoolMode",e)}var xp=[],Xv="/";function Qi(e,t){xp.push(e);try{let n=t();return xp.pop(),n}catch(n){throw xp.pop(),n}}function QV(){return xp.length===0?"":xp.join(Xv)+Xv}function Pk(e){if(!Ok(e))throw new Error("Not a valid tensor name: '"+e+"'");return QV()+e}function Fk(e){if(!Ok(e))throw new Error("Not a valid tensor name: '"+e+"'");ju.has(e)||ju.set(e,0);let t=ju.get(e);if(ju.set(e,ju.get(e)+1),t>0){let n=`${e}_${t}`;return ju.set(n,1),n}else return e}var eU=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function Ok(e){return!!e.match(eU)}function tU(e){return e===parseInt(e.toString(),10)}function Qa(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let s=1;for(let r=t;r<n;++r)s*=e[r];return s}function hc(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s<t&&(t=s)}return t}function oo(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let s=e[n];s>t&&(t=s)}return t}function Lr(e,t){if(t<e)throw new j(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let s=e;s<t;++s)n.push(s);return n}var x3;function mn(){return x3==null&&(x3=Ls().epsilon()),x3}function Br(){return"channelsLast"}function d2(e,t){return ye(e,t)}function _h(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),V(e,n)}function nU(e,t){return Y(()=>{if(e.shape.length!==2)throw new j(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=_h(e,1);return j3(n,[1,t,1])})}function sU(e){let t=[Qa(e.shape)];return V(e,t)}function rU(e){if(e.rank<=1)throw new j(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],Qa(e.shape,1)];return V(e,t)}function el(e,t,n){return Y(()=>{switch(e.rank){case 1:return Ch(e,t,n);case 2:return X0(e,[t,0],[n,e.shape[1]]);case 3:return hi(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return ao(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return ze(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return ze(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new j(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function b3(e,t,n){return Y(()=>{switch(e.rank){case 1:return Ch(e,t,n);case 2:return X0(e,[0,t],[e.shape[0],n]);case 3:return hi(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return ao(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function Qf(e,t,n,s){return Y(()=>{switch(e.rank){case 1:return Ch(e,t,n);case 2:switch(s){case 1:return el(e,t,n);case 2:return b3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 3:switch(s){case 1:return el(e,t,n);case 2:return hi(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return b3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}case 4:switch(s){case 1:return el(e,t,n);case 2:return ao(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return ao(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return b3(e,t,n);default:throw new j(`The axis is not within the rank of the tensor ${s}`)}default:throw new j(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function c5(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),It(e,t)}function Kv(e,t){switch(e.rank){case 1:return bA([e,t]);case 2:return ou([e,t],0);case 3:return vA([e,t],0);case 4:return wA([e,t],0);default:throw new j(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function j3(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new j(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Ks(e,t)}function p2(e,t=0,n=1,s,r){return B0(e,t,n,s,r)}function ta(e,t,n,s){if(e.rank<2||t.rank<2)throw new Xe(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],a=t.shape.slice(-2)[0];if(r!==a)throw new Xe(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2)return pc.matMul({a:e,b:t,transposeA:!1,transposeB:!1,bias:s?q3(e.rank,s,Br()):null,activation:n});{let r=e.shape.slice(),a=r.pop();e=V(e,[-1,a]);let o=t.shape.slice(),i=o.pop(),l=o.pop(),u=[...o,i],c=Array.from({length:t.rank},(f,m)=>m===0?t.rank-2:m<=t.rank-2?m-1:m);t=V(tt(t,c),[l,-1]);let p=[...r,...u],d=!1,h=!1;return V(pc.matMul({a:e,b:t,transposeA:d,transposeB:h,bias:s?q3(e.rank,s,Br()):null,activation:n}),p)}}function Mk(e,t,n){return Y(()=>(Array.isArray(t)?t=Pt(t,"int32"):t=ye(t,"int32"),td(e,t,n)))}function Dh(e){return z(e,e)}function q3(e,t,n){let s=t.shape;if(t.rank!==1&&t.rank!==e)throw new j(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1,1]):V(t,[1,s[3],s[0],s[1],s[2]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===4){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1,1]):V(t,[1,s[2],s[0],s[1]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,1,s[0]]):V(t,[1].concat(s))}else if(e===3){if(n==="channelsFirst")return s.length===1?V(t,[1,s[0],1]):V(t,[1,s[1],s[0]]);if(n==="channelsLast")return s.length===1?V(t,[1,1,s[0]]):V(t,[1].concat(s))}else if(e<3)return t;throw new j(`Unsupported input rank by biasAdd: ${t.rank}`)}function Ur(e,t,n){return Y(()=>(n==null&&(n=Br()),Qt(n),ce(e,q3(e.rank,t,n))))}function aU(e,t=1){if(t!==1)throw new Xe(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return Yc(e)}function oU(e){return Y(()=>me(e,ce(rn(e),1)))}function zk(e,t,n,s){return Y(()=>t5(e,t,n,s))}function iU(e){return Y(()=>{let t=ce(.5,z(.2,e));return As(t,0,1)})}function $h(e,t,n=!1){return n?e():t()}var lU=["fanIn","fanOut","fanAvg"],uU=["normal","uniform","truncatedNormal"];function cU(e){du(lU,"FanMode",e)}function dU(e){du(uU,"Distribution",e)}var Ar=class extends pe.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},d5=class extends Ar{apply(e,t){return Vt(e,t)}};d5.className="Zeros";pe.registerClass(d5);var h2=class extends Ar{apply(e,t){return Ds(e,t)}};h2.className="Ones";pe.registerClass(h2);var p5=class extends Ar{constructor(e){if(super(),typeof e!="object")throw new j(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new j(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return Y(()=>z(Ce(this.value),Ds(e,t)))}getConfig(){return{value:this.value}}};p5.className="Constant";pe.registerClass(p5);var h5=class extends Ar{constructor(e){super(),this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return sd(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};h5.className="RandomUniform";pe.registerClass(h5);var f5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`randomNormal does not support dType ${t}.`);return p2(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};f5.className="RandomNormal";pe.registerClass(f5);var m5=class extends Ar{constructor(e){super(),this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`truncatedNormal does not support dType ${t}.`);return Y0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};m5.className="TruncatedNormal";pe.registerClass(m5);var g5=class extends Ar{constructor(e){super(),this.gain=e.gain!=null?e.gain:1}apply(e,t){return Y(()=>{if(e.length!==2||e[0]!==e[1])throw new j("Identity matrix initializer can only be used for 2D square matrices.");return z(this.gain,$0(e[0]))})}getConfig(){return{gain:this.gain}}};g5.className="Identity";pe.registerClass(g5);function pU(e,t="channelsLast"){let n,s;if(Qt(t),e.length===2)n=e[0],s=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=Qa(e,2);n=e[1]*r,s=e[0]*r}else if(t==="channelsLast"){let r=Qa(e,0,e.length-2);n=e[e.length-2]*r,s=e[e.length-1]*r}}else{let r=Qa(e);n=Math.sqrt(r),s=Math.sqrt(r)}return[n,s]}var xs=class extends Ar{constructor(e){if(super(),e.scale<0)throw new j(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,cU(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,dU(this.distribution),this.seed=e.seed}apply(e,t){let n=pU(e),s=n[0],r=n[1],a=this.scale;if(this.mode==="fanIn"?a/=Math.max(1,s):this.mode==="fanOut"?a/=Math.max(1,r):a/=Math.max(1,(s+r)/2),this.distribution==="normal"){let o=Math.sqrt(a);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new Xe(`${this.getClassName()} does not support dType ${t}.`);return Y0(e,0,o,t,this.seed)}else{let o=Math.sqrt(3*a);return sd(e,-o,o,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};xs.className="VarianceScaling";pe.registerClass(xs);var f2=class extends xs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xs.className}};f2.className="GlorotUniform";pe.registerClass(f2);var m2=class extends xs{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xs.className}};m2.className="GlorotNormal";pe.registerClass(m2);var g2=class extends xs{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xs.className}};g2.className="HeNormal";pe.registerClass(g2);var y2=class extends xs{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xs.className}};y2.className="HeUniform";pe.registerClass(y2);var A2=class extends xs{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return xs.className}};A2.className="LeCunNormal";pe.registerClass(A2);var x2=class extends xs{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return xs.className}};x2.className="LeCunNormal";pe.registerClass(x2);var y5=class extends Ar{constructor(e){if(super(),this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new Xe("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return Y(()=>{if(e.length<2)throw new Xe("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,s=p2(n,0,1,"float32"),r=a5.gramSchmidt(s);return e[0]>e[1]&&(r=tt(r)),z(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};y5.className="Orthogonal";pe.registerClass(y5);var Zv={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function Yv(e,t={}){return Rh(e,pe.SerializationMap.getMap().classNameMap,t,"initializer")}function Ut(e){return l5(e)}function Ft(e){if(typeof e=="string"){let t=e in Zv?Zv[e]:e;if(t==="GlorotNormal")return new m2;if(t==="GlorotUniform")return new f2;if(t==="HeNormal")return new g2;if(t==="HeUniform")return new y2;if(t==="LeCunNormal")return new A2;if(t==="LeCunUniform")return new x2;{let n={};return n.className=t,n.config={},Yv(n)}}else return e instanceof Ar?e:Yv(e)}function X3(e){return Array.isArray(e)&&Array.isArray(e[0])}function Rm(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Ke(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new j(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function At(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new j(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function _m(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((s,r)=>s*r);return t}var Jv="Variable",Lk=class{constructor(e,t="float32",n=Jv,s=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=Dk(),n=n==null?Jv:n,this.originalName=Pk(n),this.name=Fk(this.originalName),this.trainable_=s,this.constraint=r,this.val=QA(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),hU(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function hU(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function K3(e){return e.map(t=>t.read())}function A5(e){e.forEach(t=>{t[0].write(t[1])})}var an=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Fr=class{constructor(e,t,n,s,r,a,o){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=s,this.callArgs=r,this.outputTensorIndex=o,this.id=Dk(),a!=null&&(this.originalName=Pk(a),this.name=Fk(this.originalName)),this.rank=t.length}},fU=0,b2=class{constructor(e,t){this.callArgs=t,this.id=fU++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},mU=0,ut=class extends pe.Serializable{constructor(e={}){super(),this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=mU++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=ya(n)+"_"+c2(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let s=e.dtype;s==null&&(s=e.inputDType),s==null&&(s="float32"),this.dtype=s}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Pr(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new j(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return gs(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return gs(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new ga(`Layer ${this.name} is not connected, no input to return.`);return gs(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new ga(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new ga(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return gs(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=Dt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=Dt(this.inputSpec);if(e.length!==t.length)throw new j(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let s=e[n],r=t[n];if(r==null)continue;let a=s.rank;if(r.ndim!=null&&a!==r.ndim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${a}`);if(r.maxNDim!=null&&a>r.maxNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${a}`);if(r.minNDim!=null&&a<r.minNDim)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${a}.`);if(r.dtype!=null&&s.dtype!==r.dtype)throw new j(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${s.dtype}.`);if(r.axes){let o=s.shape;for(let i in r.axes){let l=Number(i),u=r.axes[i],c=l>=0?o[l]:o[o.length+l];if(u!=null&&[u,null].indexOf(c)===-1)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${o}.`)}}if(r.shape!=null)for(let o=0;o<r.shape.length;++o){let i=r.shape[o],l=s.shape[o];if(i!=null&&l!=null&&i!==l)throw new j(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${s.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=Dt(e),s=!0;for(let a of n)if(!(a instanceof Fr)){s=!1;break}let r=!0;for(let a of n)if(a instanceof Fr){r=!1;break}if(s===r)throw new j("Arguments to apply() must be all SymbolicTensors or all Tensors");return Qi(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let a=[];for(let o of Dt(e))a.push(o.shape);this.build(gs(a)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let a=this.call(e,t),o=Dt(a),i=[];for(let l of o)n.indexOf(l)!==-1&&(l=l.clone()),i.push(l);if(a=gs(i),this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return a}else{let a=gU(e),o=this.computeOutputShape(a),i,l=yU(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?a[0]:a),o!=null&&o.length>0&&Array.isArray(o[0])?i=o.map((u,c)=>new Fr(l,u,this,Dt(e),t,this.name,c)):i=new Fr(l,o,this,Dt(e),t,this.name),this.addInboundNode(e,i,null,null,a,o,t),this._refCount++,this.activityRegularizer!=null)throw new Xe("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return i}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,s)=>{n!=null&&e[s]!=null&&e[s]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new ga(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new ga(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Pr(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return _m(this.weights)}build(e){this.built=!0}getWeights(e=!1){return K3(e?this.trainableWeights:this.weights)}setWeights(e){Y(()=>{let t=this.weights;if(t.length!==e.length)throw new j(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],s=K3(t);for(let r=0;r<s.length;++r){let a=s[r],o=t[r],i=e[r];if(!v.arraysEqual(a.shape,i.shape))throw new j(`Layer weight shape ${a.shape} not compatible with provided weight shape ${i.shape}`);n.push([o,i])}A5(n)})}addWeight(e,t,n,s,r,a,o,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new j(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(s=i!=null?i():Ft("zeros"));let l=s.apply(t,n),u=new Lk(l,n,e,a,o);return l.dispose(),r!=null&&this.addLoss(()=>r.apply(u.read())),a==null&&(a=!0),a?this._trainableWeights.push(u):this._nonTrainableWeights.push(u),u}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=Dt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,s,r,a,o=null){let i=Dt(e);t=Dt(t),n=Dt(n),s=Dt(s),r=Rm(r),a=Rm(a);let l=[],u=[],c=[];for(let p of i)l.push(p.sourceLayer),u.push(p.nodeIndex),c.push(p.tensorIndex);new b2({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:c,inputTensors:i,outputTensors:t,inputMasks:n,outputMasks:s,inputShapes:r,outputShapes:a},o);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount===0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function gU(e){e=Dt(e);let t=[];for(let n of e)t.push(n.shape);return gs(t)}function yU(e){return"float32"}function Bk(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let s=t.inboundNodes[n];if(s.inboundLayers.length===0)return s.inputTensors;{let r=[];for(let a=0;a<s.inboundLayers.length;a++){let o=s.inputTensors[a],i=s.inboundLayers[a],l=s.nodeIndices[a],u=Bk(o,i,l);for(let c of u)r.indexOf(c)===-1&&r.push(c)}return r}}}var ad=class extends ut{constructor(e){if(super({dtype:e.dtype,name:e.name!=null?e.name:c2("input").toString()}),e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new j("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new j("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new j("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let s=new Fr(this.dtype,this.batchInputShape,this,[],{},this.name);s.nodeIndex=0,s.tensorIndex=0,new b2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[s],outputTensors:[s],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new j(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};ad.className="InputLayer";pe.registerClass(ad);function Wk(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new j("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new ad({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}function AU(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ye(t,e.dtype)}catch(n){throw new j(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var Ki=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof Ki)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=AU(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new j(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Fr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Fr){if(this.id2Value[e.id]==null)throw new j(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new j(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&ee(this.id2Mask)}},Dm=new Ek,$m=new Ek;function xU(e){Dm!=null&&Dm.setMaxEntries(e),$m!=null&&$m.setMaxEntries(e)}function up(e,t,n,s){let r=n==null?!1:n.training,a=Array.isArray(e),o=a?e:[e],i=o.map(f=>f.name),l=[],u=t.names();for(let f of i)u.indexOf(f)!==-1?l.push(t.getValue(f)):l.push(null);s!=null&&(s.maxNumTensors=-1/0,s.minNumTensors=1/0);let c=i.join(",")+"|"+t.names().sort().join(","),p=Dm.get(c),d;if(p==null){let f=bU(o,t);p=f.sorted,d=f.recipientCounts,Dm.put(c,p),$m.put(c,d)}d={},r||Object.assign(d,$m.get(c));let h=new Ki(t);for(let f=0;f<p.length;++f){if(s!=null){let _=Nm().numTensors;_>s.maxNumTensors&&(s.maxNumTensors=_),_<s.minNumTensors&&(s.minNumTensors=_)}let m=p[f],g=m.sourceLayer;if(g instanceof ad)continue;let y=[],x=[],A=[],b=!1;for(let _ of m.inputs){let $=h.getValue(_),R=h.getMask(_);y.push($),x.push(R),R!=null&&(b=!0),r||(d[_.name]--,d[_.name]===0&&!t.hasKey(_)&&i.indexOf(_.name)===-1&&!$.isDisposed&&_.sourceLayer.stateful!==!0&&A.push($))}b&&(n=n||{},n.mask=x[0]);let w=Dt(g.apply(y,n)),k=null;g.supportsMasking&&(k=g.computeMask(y,x));let C=wU(m),E=Array.isArray(C)?C:[C];for(let _=0;_<E.length;++_){h.hasKey(E[_])||h.add(E[_],w[_],Array.isArray(k)?k[0]:k);let $=i.indexOf(E[_].name);$!==-1&&(l[$]=w[_])}r||ee(A)}return h.disposeMasks(),a?l:l[0]}function bU(e,t){v.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],s={};if(e.length===1){let r=Qv(e[0],t);n=r.sorted,s=r.recipientMap}else{let r=new Set;for(let a of e){let{sorted:o,recipientMap:i}=Qv(a,t);for(let l of o)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in i)s[l]==null&&(s[l]=new Set),i[l].forEach(u=>s[l].add(u))}}return{sorted:n,recipientCounts:vU(s)}}function vU(e){let t={};for(let n in e)t[n]=e[n].size;return t}function Qv(e,t){let n=new Set,s=[],r={};for(let i of t.names())n.add(i);let a=[],o=[];for(a.push(e);a.length>0;){let i=a[a.length-1];if(n.has(i.name)){a.pop();continue}let l=o[o.length-1]===a.length-1;if(i.inputs.length===0||l)a.pop(),s.push(i),n.add(i.name),l&&o.pop();else{o.push(a.length-1);for(let u of i.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(i.name),!n.has(u.name)&&a.push(u)}}return{sorted:s,recipientMap:r}}function wU(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let s=0;s<e.sourceLayer.inboundNodes.length;++s)for(let r of e.sourceLayer.inboundNodes[s].outputTensors)if(r.id===e.id){n=s;break}t=e.sourceLayer.getOutputAt(n)}return t}var kU=H();kU.registerFlag("TOPOLOGICAL_SORT_CACHE_MAX_ENTRIES",()=>100,xU);var Vk={};He(Vk,{maxNorm:()=>SU,minMaxNorm:()=>TU,nonNeg:()=>CU,unitNorm:()=>IU});function x5(e,t){return Y(()=>Fn(ke(z(e,e),t,!0)))}var Ph=class extends pe.Serializable{getConfig(){return{}}},b5=class extends Ph{constructor(e){super(),this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>{let t=x5(e,this.axis),n=As(t,0,this.maxValue);return z(e,me(n,ce(mn(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};b5.className="MaxNorm";pe.registerClass(b5);var v5=class extends Ph{constructor(e){super(),this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>me(e,ce(mn(),x5(e,this.axis))))}getConfig(){return{axis:this.axis}}};v5.className="UnitNorm";pe.registerClass(v5);var w5=class extends Ph{apply(e){return Vr(e)}};w5.className="NonNeg";pe.registerClass(w5);var k5=class extends Ph{constructor(e){super(),this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return Y(()=>{let t=x5(e,this.axis),n=ce(z(this.rate,As(t,this.minValue,this.maxValue)),z(1-this.rate,t));return z(e,me(n,ce(mn(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};k5.className="MinMaxNorm";pe.registerClass(k5);var e7={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function An(e){return l5(e)}function t7(e,t={}){return Rh(e,pe.SerializationMap.getMap().classNameMap,t,"constraint")}function xn(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in e7?e7[e]:e,config:{}};return t7(n)}else return e instanceof Ph?e:t7(e)}function SU(e){return new b5(e)}function IU(e){return new v5(e)}function CU(){return new w5}function TU(e){return new k5(e)}var Uk={};He(Uk,{constant:()=>RU,glorotNormal:()=>MU,glorotUniform:()=>OU,heNormal:()=>zU,heUniform:()=>LU,identity:()=>PU,leCunNormal:()=>BU,leCunUniform:()=>WU,ones:()=>EU,orthogonal:()=>VU,randomNormal:()=>DU,randomUniform:()=>_U,truncatedNormal:()=>$U,varianceScaling:()=>FU,zeros:()=>NU});function NU(){return new d5}function EU(){return new h2}function RU(e){return new p5(e)}function _U(e){return new h5(e)}function DU(e){return new f5(e)}function $U(e){return new m5(e)}function PU(e){return new g5(e)}function FU(e){return new xs(e)}function OU(e){return new f2(e)}function MU(e){return new m2(e)}function zU(e){return new g2(e)}function LU(e){return new y2(e)}function BU(e){return new A2(e)}function WU(e){return new x2(e)}function VU(e){return new y5(e)}var Gk={};He(Gk,{Layer:()=>ut,RNN:()=>la,RNNCell:()=>Lh,activation:()=>fH,add:()=>kH,alphaDropout:()=>oj,average:()=>SH,averagePooling1d:()=>Rx,averagePooling2d:()=>_x,averagePooling3d:()=>Dx,avgPool1d:()=>$H,avgPool2d:()=>FH,avgPool3d:()=>MH,avgPooling1d:()=>PH,avgPooling2d:()=>OH,avgPooling3d:()=>zH,batchNormalization:()=>RH,bidirectional:()=>JH,concatenate:()=>IH,conv1d:()=>aH,conv2d:()=>oH,conv2dTranspose:()=>iH,conv3d:()=>lH,conv3dTranspose:()=>uH,convLstm2d:()=>XH,convLstm2dCell:()=>KH,cropping2D:()=>dH,dense:()=>mH,depthwiseConv2d:()=>hH,dot:()=>EH,dropout:()=>gH,elu:()=>QG,embedding:()=>wH,flatten:()=>AH,gaussianDropout:()=>aj,gaussianNoise:()=>rj,globalAveragePooling1d:()=>LH,globalAveragePooling2d:()=>BH,globalMaxPool1d:()=>ej,globalMaxPool2d:()=>tj,globalMaxPooling1d:()=>F8,globalMaxPooling2d:()=>O8,gru:()=>VH,gruCell:()=>UH,input:()=>l8,inputLayer:()=>JG,layerNormalization:()=>_H,leakyReLU:()=>tH,lstm:()=>GH,lstmCell:()=>HH,masking:()=>ij,maxPool1d:()=>nj,maxPool2d:()=>sj,maxPooling1d:()=>M8,maxPooling2d:()=>z8,maxPooling3d:()=>WH,maximum:()=>CH,minimum:()=>TH,multiply:()=>NH,permute:()=>vH,prelu:()=>nH,reLU:()=>eH,repeatVector:()=>xH,reshape:()=>bH,rnn:()=>ZH,separableConv2d:()=>cH,simpleRNN:()=>jH,simpleRNNCell:()=>qH,softmax:()=>sH,spatialDropout1d:()=>yH,stackedRNNCells:()=>YH,thresholdedReLU:()=>rH,timeDistributed:()=>QH,upSampling2d:()=>pH,zeroPadding2d:()=>DH});async function ja(e){if(e==null)return;let t=[],n=[],s=[];for(let r in e){let a=e[r];if(typeof a!="number"){let o=a;t.push(o.data()),n.push(r),s.push(o)}}if(t.length>0){let r=await Promise.all(t);for(let a=0;a<r.length;++a)e[n[a]]=r[a][0];ee(s)}}function Hk(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var n7;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(n7||(n7={}));var UU=125,fc=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},jk=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},GU=class extends fc{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let s in t){let r=t[s];if(typeof r=="number")this.totals.hasOwnProperty(s)||(this.totals[s]=0),this.totals[s]=this.totals[s]+r*n;else{let a;s in this.totals?a=this.totals[s]:this.totals[s]=0;let o=Y(()=>ce(this.totals[s],z(r,n)));this.totals[s]=o,a!=null&&a.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:Y(()=>{let s=z(me(1,this.seen),this.totals[n]);t[n]=s,this.totals[n].dispose(),Sn(t[n])}))}},qk=class extends fc{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let a=this.history[r];for(let o=0;o<a.length;++o)if(typeof a[o]!="number"){let i=a[o];e.push(i.data()),t.push(r),n.push(o)}}let s=await Promise.all(e);for(let r=0;r<s.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=s[r][0]}},Xk=class extends fc{constructor(e,t){if(super(),this.currentEpoch=0,this.nowFunc=e.nowFunc,this.nextFrameFunc=e.nextFrameFunc||o5,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=UU),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");v.isNumber(this.yieldEvery)&&(this.maybeWait=HV(this.maybeWait.bind(this),this.yieldEvery,this.nowFunc)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let s=[];this.yield!=null&&(await ja(n),s.push(this.yield(e,t,n))),s.push(this.nextFrameFunc()),await Promise.all(s)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await ja(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await ja(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(this.nextFrameFunc()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await ja(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await ja(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(this.nextFrameFunc()):v.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await ja(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await ja(e),await this.trainEnd(e))}};function Kk(e,t){return e==null&&(e={}),e instanceof fc?[e]:Array.isArray(e)&&e[0]instanceof fc?e:Dt(e).map(s=>new Xk(s,t))}var pr=class{constructor(){}static registerCallbackConstructor(e,t){v.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),pr.checkForDuplicate(t),pr.constructors[e]==null&&(pr.constructors[e]=[]),pr.constructors[e].push(t)}static checkForDuplicate(e){for(let t in pr.constructors)pr.constructors[+t].forEach(s=>{if(s===e)throw new j("Duplicate callback constructor.")})}static clear(){pr.constructors={}}static createCallbacks(e){let t=[];for(let n in pr.constructors){let s=+n;e>=s&&t.push(...pr.constructors[s])}return t.map(n=>new n)}};pr.constructors={};function Zk(e,t,n,s,r,a,o,i,l){let u=new qk,c=[new GU,...pr.createCallbacks(t)];e!=null&&c.push(...e),c.push(u);let p=new jk(c);return p.setParams({epochs:n,initialEpoch:s,samples:r,steps:a,batchSize:o,verbose:t,doValidation:i,metrics:l}),{callbackList:p,history:u}}function Mr(e,t={},n=!1){return Rh(e,pe.SerializationMap.getMap().classNameMap,t,"layer",n)}function Pm(e,t){return Y(()=>{e.dtype!=="float32"&&(e=ye(e,"float32"));let n=ke(Dh(e),t,!0),s=Qc(n.shape,mn()),r=Fn(ia(n,s));return me(e,r)})}function pu(e,t){return Y(()=>Wt(Dh(ge(t,e)),-1))}function v2(e,t){return Y(()=>Wt(rn(ge(t,e)),-1))}function od(e,t){return Y(()=>{let n=ge(e,t),s=As(rn(e),mn(),Number.MAX_VALUE),r=rn(me(n,s));return z(100,Wt(r,-1))})}function HU(e,t){return Y(()=>{let n=As(t,mn(),Number.MAX_VALUE),s=Os(ce(1,n)),r=As(e,mn(),Number.MAX_VALUE),a=Os(ce(1,r));return Wt(Dh(ge(s,a)),-1)})}function jU(e,t){return Y(()=>{let n=ia(0,ge(1,z(e,t)));return Wt(Dh(n),-1)})}function qU(e,t){return Y(()=>{let n=ia(0,ge(1,z(e,t)));return Wt(n,-1)})}function XU(e,t){return Y(()=>{let n=ke(z(e,t),-1),s=yn(z(ge(1,e),t),-1);return ia(0,ce(1,ge(s,n)))})}function KU(e,t){return Y(()=>{let n=Math.log(2),s=ge(t,e),r=ge(ce(s,iu(z(-2,s))),n);return Wt(r,-1)})}function Dp(e,t,n=!1){return Y(()=>{if(n)t=uu(t);else{let s=ke(t,t.shape.length-1,!0);t=me(t,s)}return t=As(t,mn(),1-mn()),$t(ke(z(ye(e,"float32"),Os(t)),t.shape.length-1))})}function Fm(e,t,n=!1){return Y(()=>{let s=ye(ed(sU(e)),"int32");t=As(t,mn(),1-mn());let r=t.shape,a=V(lc(s,r[r.length-1]),r);return Dp(a,t,n)})}function ZU(e,t){if(!v.arraysEqual(e.shape,t.shape))throw new j(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return Y(()=>{let n=Vr(t),s=$t(rn(t));return ce(ge(n,z(t,e)),bh(Fs(s)))})}function w2(e,t){return Y(()=>{let n;return n=As(t,mn(),1-mn()),n=Os(me(n,ge(1,n))),Wt(ZU(e,n),-1)})}function YU(e,t){return Y(()=>{let n=As(e,mn(),1),s=As(t,mn(),1);return ke(z(e,Os(me(n,s))),-1)})}function JU(e,t){return Y(()=>{let n=Os(ce(mn(),t));return Wt(ge(t,z(e,n)),-1)})}function S5(e,t){return Y(()=>{let n=Pm(e,-1),s=Pm(t,-1),r=z(n,s);return $t(ke(r,-1))})}var Om={meanSquaredError:pu,meanAbsoluteError:v2,meanAbsolutePercentageError:od,meanSquaredLogarithmicError:HU,squaredHinge:jU,hinge:qU,categoricalHinge:XU,logcosh:KU,categoricalCrossentropy:Dp,sparseCategoricalCrossentropy:Fm,binaryCrossentropy:w2,kullbackLeiblerDivergence:YU,poisson:JU,cosineProximity:S5};function v3(e){if(typeof e=="string"){if(e in Om)return Om[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new j(t)}else return e}function I5(e,t){return Y(()=>{let n=z(.5,Ms(t)),s=d2(vs(t,n),e.dtype);return Wt(Ps(e,s),-1)})}function C5(e,t){return Y(()=>d2(Ps($s(e,-1),$s(t,-1)),"float32"))}function Yk(e,t){return Y(()=>ye(ke(mr(Ps(e,1),Ps(t,1))),"float32"))}function QU(e,t){return Y(()=>ye(ke(mr(Ps(e,1),Ps(t,0))),"float32"))}function eG(e,t){return Y(()=>ye(ke(mr(Ps(e,0),Ps(t,1))),"float32"))}function Jk(e,t){return Y(()=>{let n=Yk(e,t),s=eG(e,t),r=ce(n,s);return ye(Gn(vs(r,0),me(n,r),0),"float32")})}function tG(e,t){return Y(()=>{let n=Yk(e,t),s=QU(e,t),r=ce(n,s);return ye(Gn(vs(r,0),me(n,r),0),"float32")})}function Qk(e,t){return w2(e,t)}function e8(e,t){return e.rank===t.rank&&(e=rt(e,[e.rank-1])),t=$s(t,-1),t.dtype!==e.dtype&&(t=ye(t,e.dtype)),ye(Ps(e,t),"float32")}var nG=pu,sG=pu,rG=v2,aG=v2,oG=od,iG=od,T5=Dp,lG=S5,t8=Fm,Mm={binaryAccuracy:I5,categoricalAccuracy:C5,precision:Jk,categoricalCrossentropy:T5,sparseCategoricalCrossentropy:t8,mse:nG,MSE:sG,mae:rG,MAE:aG,mape:oG,MAPE:iG,cosine:lG};function uG(e){if(typeof e=="string"&&e in Mm)return Mm[e];if(typeof e!="string"&&e!=null)return e;throw new j(`Unknown metric ${e}`)}function em(e){if(Yr(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(Om))if(Om[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(Mm))if(Mm[n]===e){t=n;break}return t!==void 0?t:e.name}}function cG(e){let t={Adagrad:()=>Vi.adagrad(.01),Adadelta:()=>Vi.adadelta(1,.95,mn()),Adam:()=>Vi.adam(.001,.9,.999,mn()),Adamax:()=>Vi.adamax(.002,.9,.999,mn(),0),RMSProp:()=>Vi.rmsprop(.001,.9,0,mn()),SGD:()=>Vi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new j(`Unknown Optimizer ${e}`)}var s7=1*1024*1024;function r7(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!Z3(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let s=JSON.stringify(e);s.length>s7&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${s.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${s7}.`)}}function Z3(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!Z3(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!Z3(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function dG(e,t,n,s=console.log){let r=hG(e),a=["Layer (type)","Input Shape","Output shape","Param #"];r?(t=t||90,n=n||[.32,.61,.89,1]):(t=t||115,n=n||[.24,.48,.7,.8,1]),n[n.length-1]<=1&&(n=n.map(c=>Math.floor(t*c)));let o;if(!r){a.push("Receives inputs"),o=[];for(let c in e.nodesByDepth)o.push(...e.nodesByDepth[c])}s("_".repeat(t)),zm(a,n,s),s("=".repeat(t));let i=e.layers;for(let c=0;c<i.length;++c)r?fG(i[c],n,s):mG(i[c],n,o,s),s((c===i.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=pG(e),u=_m(e.nonTrainableWeights);s(`Total params: ${l+u}`),s(`Trainable params: ${l}`),s(`Non-trainable params: ${u}`),s("_".repeat(t))}function pG(e){let t;return e.collectedTrainableWeights!=null?t=_m(e.collectedTrainableWeights):t=_m(e.trainableWeights),t}function hG(e){let t=!0,n=[],s=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}s.push(...r)}if(t)for(let r of e.layers){let a=!1;for(let o of r.inboundNodes)if(s.indexOf(o)!==-1)if(a){t=!1;break}else a=!0;if(!t)break}return t}function zm(e,t,n=console.log){let s="";for(let r=0;r<e.length;++r)r>0&&(s=s.slice(0,s.length-1)+" "),s+=e[r],s=s.slice(0,t[r]),s+=" ".repeat(t[r]-s.length);n(s)}function fG(e,t,n){let s,r;try{r=e.inboundNodes.map(l=>JSON.stringify(l.inputShapes)).join(",")}catch(l){r="multiple"}try{s=JSON.stringify(e.outputShape)}catch(l){s="multiple"}let a=e.name,o=e.getClassName(),i=[`${a} (${o})`,r,s,e.countParams().toString()];zm(i,t,n)}function mG(e,t,n,s){let r,a;try{a=e.inboundNodes.map(p=>JSON.stringify(p.inputShapes)).join(",")}catch(p){a="multiple"}try{r=JSON.stringify(e.outputShape)}catch(p){r="multiple"}let o=[];for(let p of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(p)===-1))for(let d=0;d<p.inboundLayers.length;++d){let h=p.inboundLayers[d].name,f=p.nodeIndices[d],m=p.tensorIndices[d];o.push(`${h}[${f}][${m}]`)}let i=e.name,l=e.getClassName(),u=o.length===0?"":o[0],c=[`${i} (${l})`,a,r,e.countParams().toString(),u];zm(c,t,s);for(let p=1;p<o.length;++p)zm(["","","","",o[p]],t,s)}function n8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function $p(e,t){if(e===null)return null;if(typeof e=="string")return ji(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];n8(t,r,a)?n.push(a):n.push($p(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s];if(s==="name"&&typeof r=="string")n[s]=r;else{let a=ji(s);n[a]=$p(r,a)}}return n}}function Y3(e,t){if(e==null)return null;if(typeof e=="string")return ya(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],s=e.length;for(let r=0;r<s;++r){let a=e[r];n8(t,r,a)?n.push(a):n.push(Y3(a,t))}return n}else{let n={};for(let s of Object.keys(e)){let r=e[s],a=ya(s);(s==="name"||s==="className")&&typeof r=="string"?n[a]=r:n[a]=Y3(r,s)}return n}}var N5="3.20.0",Kr=class extends ut{constructor(e){if(super({}),this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=c2(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],Ja(this.inputs).length!==this.inputs.length)throw new j(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);Ja(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;this.outputLayers.push(x),this.outputLayersNodeIndices.push(A),this.outputLayersTensorIndices.push(b)}for(let y of this.inputs){let x=y.sourceLayer,A=y.nodeIndex,b=y.tensorIndex;Yr(A===0,"input layer has >1 nodes"),Yr(b===0,"input layer has >1 tensors"),this.inputLayers.push(x),this.inputLayersNodeIndices.push(A),this.inputLayersTensorIndices.push(b)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let x=this.inputLayers[y];if(!(x instanceof ad))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${x.getClassName()}.`);this.inputNames.push(x.name),this.feedInputShapes.push(x.batchInputShape),this.feedInputNames.push(x.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},s={},r={},a={},o=[],i=(y,x,A,b,w,k)=>{(b==null||w==null||k==null)&&(b=y.sourceLayer,w=y.nodeIndex,k=y.tensorIndex);let C=b.inboundNodes[w];if(A.indexOf(C)!==-1)throw new Pr(`The tensor ${y.name} at layer "${b.name}" is part of a cycle.`);if(x.indexOf(C)!==-1)return;this.containerNodes.add(Kr.nodeKey(b,w)),b.id in a||(a[b.id]=Object.keys(a).length),A.indexOf(C)===-1&&A.push(C);let E=C.inboundLayers.length;for(let _=0;_<E;_++){let $=C.inputTensors[_],R=C.inboundLayers[_],P=C.nodeIndices[_],S=C.tensorIndices[_];i($,x,A,R,P,S)}for(x.push(C);A.indexOf(C)>=0;)A.splice(A.indexOf(C),1);o.push(C)},l=[],u=[];for(let y of this.outputs)i(y,l,u);let c=o.slice().reverse();for(let y of c){n[y.id]=y,y.id in t||(t[y.id]=0);let x=t[y.id],A=s[y.outboundLayer.id]==null?0:s[y.outboundLayer.id];x=Math.max(x,A),s[y.outboundLayer.id]=x,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=x;for(let b=0;b<y.inboundLayers.length;b++){let w=y.inboundLayers[b],k=y.nodeIndices[b],C=w.inboundNodes[k],E=t[C.id]==null?0:t[C.id];t[C.id]=Math.max(x+1,E),n[C.id]=C}}let p={};for(let y in t){let x=t[y];x in p||(p[x]=[]),p[x].push(n[y])}let d={};for(let y in s){let x=s[y];x in d||(d[x]=[]),d[x].push(r[y])}let h=Object.keys(d).map(y=>parseInt(y,10)).sort(Yf);this.layers=[];for(let y of h){let x=d[y];x.sort((A,b)=>{let w=a[A.id],k=a[b.id];return w<k?-1:w>k?1:0});for(let A of x)A instanceof Kr&&this.internalContainerRefs.push(A),this.layers.push(A)}this.layersByDepth=d,h=Object.keys(p).map(y=>parseInt(y,10)).sort(Yf);let f=this.inputs.slice(),m=[];for(let y of h)for(let x of p[y]){let A=x.outboundLayer;if(A!=null){for(let b of x.inputTensors)if(f.indexOf(b)===-1)throw new Pr(`Graph disconnected: cannot obtain value for tensor ${b} at layer "${A.name}". The following previous layers were accessed without issue: ${m}`);for(let b of x.outputTensors)f.push(b);m.push(A.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let x=g.filter(A=>A===y).length;if(x!==1)throw new Pr(`The name "${y}" is used ${x} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new b2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount===0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new j("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},s=0;for(let a of this.layers)for(let o of a.weights){if(n[o.originalName]!=null)throw new j(`Duplicate weight name: ${o.originalName}`);n[o.originalName]=o,s++}let r=[];for(let a in e){let o=a;if(n[a]==null){let i=a.split("/");o=i.slice(0,-2).concat([i[i.length-1]]).join("/")}if(n[o]!=null)r.push([n[o],e[a]]);else if(t)throw new j(`Provided weight data has no target variable: ${a}`);delete n[o]}if(t){let a=[];for(let o in n)a.push(o);if(a.length>0)throw new j(`${a.length} of ${s} weights are not set: ${a}`)}A5(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${N5}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Y3(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return Y(()=>{e=Dt(e);let n=new Ki;for(let s=0;s<this.inputs.length;++s)n.add(this.inputs[s],e[s]);return up(this.outputs,n,t)})}computeMask(e,t){return Y(()=>{e=Dt(e);let n;return t==null?n=ll(null,e.length):n=Dt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=Rm(e);if(t.length!==this.inputLayers.length)throw new j(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let o=0;o<t.length;o++){let i=this.inputLayers[o],l=t[o],u=i.name+"_0_0";n[u]=l}let s=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(Yf);if(s.length>1)for(let o of s){let i=this.nodesByDepth[o];for(let l of i){let u=l.outboundLayer;if(this.inputLayers.map(f=>f.id).indexOf(u.id)!==-1)continue;let c=[];for(let f=0;f<l.inboundLayers.length;f++){let m=l.inboundLayers[f],g=l.nodeIndices[f],y=l.tensorIndices[f],x=`${m.name}_${g}_${y}`,A=n[x];c.push(A)}let p=u.computeOutputShape(gs(c)),d=Rm(p),h=u.inboundNodes.indexOf(l);for(let f=0;f<d.length;f++){let m=`${u.name}_${h}_${f}`;n[m]=d[f]}}}let r=[],a=[];for(let o=0;o<this.outputLayers.length;o++){let i=this.outputLayers[o],l=this.outputLayersNodeIndices[o],u=this.outputLayersTensorIndices[o],c=`${i.name}_${l}_${u}`;a.push(c)}for(let o=0;o<a.length;o++){let i=a[o];Yr(i in n),r.push(n[i])}return gs(r)}runInternalGraph(e,t){t==null&&(t=ll(null,e.length));let n={};for(let i=0;i<this.inputs.length;++i){let l=this.inputs[i],u=e[i],c=t[i];n[l.id]=[u,c]}let s=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(Yf);for(let i of s){let l=this.nodesByDepth[i];for(let u of l){let c=u.outboundLayer,p=u.inputTensors,d=u.outputTensors,h=new Array;for(let f of p)f.id in n&&h.push(n[f.id]);if(h.length===p.length){let f={},m,g,y,x;if(u.callArgs!=null&&(f=u.callArgs),h.length===1){let[A,b]=h[0];f.mask==null&&(f.mask=b),y=Dt(c.call(A,f)),x=Dt(c.computeMask(A,b)),m=[A],g=[b]}else m=h.map(A=>A[0]),g=h.map(A=>A[1]),f.mask==null&&(f.mask=g),y=Dt(c.call(m,f)),x=Dt(c.computeMask(m,g));if(c.activityRegularizer)throw new Xe("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let A=0;A<d.length;++A){let b=d[A],w=y[A],k=x[A];n[b.id]=[w,k]}}}}let r=[],a=[],o=[];for(let i of this.outputs){Yr(i.id in n,`Could not compute output ${i.name} : ${i.id}`);let[l,u]=n[i.id];o.push(l.shape),r.push(l),a.push(u)}return[r,a,o]}buildNodeConversionMap(e){let t={},n;for(let s of this.layers){n=s instanceof Kr?1:0;for(let r=0;r<s.inboundNodes.length;r++){let a=Kr.nodeKey(s,r);this.containerNodes.has(a)&&(t[a]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new j(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new j("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new j(`No such layer: ${e}`)}calculateLosses(){return Y(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let s=Kr.nodeKey(t,n);this.containerNodes.has(s)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let a of this.layers){let o=a.getClassName(),i=a.getConfig(),l=[];for(let c=0;c<a.inboundNodes.length;c++){let p=a.inboundNodes[c],d=Kr.nodeKey(a,c),h={};if(this.containerNodes.has(d)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(f){console.warn(`Layer ${a.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let f=[];for(let m=0;m<p.inboundLayers.length;m++){let g=p.inboundLayers[m],y=p.nodeIndices[m],x=p.tensorIndices[m],A=Kr.nodeKey(g,y),b=t[A];b==null&&(b=0),f.push([g.name,b,x,h])}l.push(f)}}}let u={};u.name=a.name,u.className=o,u.config=i,u.inboundNodes=l,n.push(u)}e.layers=n;let s=[];for(let a=0;a<this.inputLayers.length;a++){let o=this.inputLayers[a],i=this.inputLayersNodeIndices[a],l=Kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.inputLayersTensorIndices[a];s.push([o.name,u,c])}e.inputLayers=s;let r=[];for(let a=0;a<this.outputLayers.length;a++){let o=this.outputLayers[a],i=this.outputLayersNodeIndices[a],l=Kr.nodeKey(o,i);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let c=this.outputLayersTensorIndices[a];r.push([o.name,u,c])}return e.outputLayers=r,e}static fromConfig(e,t,n={},s=!1){let r={},a={};function o(m,g){m.name in a?a[m.name].push(g):a[m.name]=[g]}function i(m,g){let y=[],x;for(let A of g){let b=A[0],w=A[1],k=A[2];if(x=A[3]==null?{}:A[3],!(b in r)){o(m,g);return}let C=r[b];if(C.inboundNodes.length<=w){o(m,g);return}let E=C.inboundNodes[w];y.push(E.outputTensors[k])}y.length>0&&m.apply(gs(y),x)}function l(m){let g=m.name,y=Mr(m,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(s),r[g]=y,m.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new j(`Corrupted configuration, expected array for nodeData: ${A}`);o(y,A)})}let u=t.name,c=t.layers;for(let m of c)l(m);for(;!GV(a);)for(let m of c){let g=r[m.name];if(g.name in a){let y=a[g.name];delete a[g.name];for(let x of y)i(g,x)}}let p=[],d=[],h=t.inputLayers;for(let m of h){let g=m[0],y=m[1],x=m[2];Yr(g in r);let b=r[g].inboundNodes[y].outputTensors;p.push(b[x])}let f=t.outputLayers;for(let m of f){let g=m[0],y=m[1],x=m[2];Yr(g in r);let b=r[g].inboundNodes[y].outputTensors;d.push(b[x])}return new e({inputs:p,outputs:d,name:u})}get stateful(){if(this._stateful)throw new j("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){Y(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function gG(e,t,n){let s=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(s===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==s)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${s} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(a=>{a in e?r.push(e[a]):r.push(null)}),r}else throw new Error(`The model has multiple (${s}) outputs, so ${n} must be either an array with ${s} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function s8(e,t){return gG(e,t,"classWeight")}async function r8(e,t,n,s){if(t!=null||s!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=Y(()=>{if(e.shape.length===1)return Vn(e);if(e.shape.length===2){if(e.shape[1]>1)return $s(e,1);if(e.shape[1]===1)return V(e,[e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),a=Array.from(await r.data());ee(r);let o=[];return a.forEach(i=>{if(n[i]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${i} exists in the data but not in classWeight`);o.push(n[i])}),Pt(o,"float32")}else return null}function yG(e,t){return z(e,t)}var AG=32;function a8(e,t){let n,s,r=t;n=r.xs,s=r.ys,v.assert(n!=null&&s!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let a=a7("input",e.inputNames,n),o=a7("output",e.outputNames,s),i=a[0].shape[0];v.assert(a.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${a.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),v.assert(o.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${o.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<a.length;l++)v.assert(a[l].shape[0]===i,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${a[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);for(let l=0;l<o.length;l++)v.assert(o[l].shape[0]===i,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${o[l].shape[0]}; expected ${i} based on input ${e.inputNames[0]}.`);return{xs:a,ys:o}}function a7(e,t,n){if(n instanceof st)return[n];if(Array.isArray(n))return v.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let s=[];for(let r of t){if(n[r]==null)throw new j(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);s.push(n[r])}return s}}function xG(e){if(e.length===3)throw new Xe("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function bG(e,t,n){let s=n.batchesPerEpoch!=null;if(v.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),v.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),v.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),v.assert(!s||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),v.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,a,o;if(r)if(o7(n.validationData))v.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=xG(n.validationData);a=g.xs,o=g.ys}let i=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let c=Kk(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:d,history:h}=Zk(c,p,n.epochs,null,null,vG(t,n),null,r,u);d.setModel(e),e.history=h,await d.onTrainBegin(),e.stopTraining_=!1;let f=n.initialEpoch==null?0:n.initialEpoch,m=await t.iterator();for(;f<n.epochs;){let g={};await d.onEpochBegin(f);let y=0,x=0;for(s||(m=await t.iterator());!s||y<n.batchesPerEpoch;){let A=await m.next();if(s&&A.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(A.value!=null){let{xs:b,ys:w}=a8(e,A.value),k={};k.batch=x,k.size=b[0].shape[0],await d.onBatchBegin(x,k);let C=[];if(n.classWeight!=null){let $=s8(n.classWeight,e.outputNames);for(let R=0;R<$.length;++R)C.push(await r8(w[R],null,$[R]))}let E=b.concat(w).concat(C),_=i(E);ee(E);for(let $=0;$<l.length;++$){let R=l[$],P=_[$];k[R]=P,Sn(P)}await d.onBatchEnd(x,k),Hk(k),x++,y++}if(s?y>=n.batchesPerEpoch:A.done){if(r){let b;o7(n.validationData)?b=Dt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):b=Dt(e.evaluate(a,o,{batchSize:n.validationBatchSize==null?AG:n.validationBatchSize,verbose:0}));for(let w=0;w<e.metricsNames.length;++w)g[`val_${e.metricsNames[w]}`]=b[w]}break}if(e.stopTraining_)break}if(await d.onEpochEnd(f,g),f++,e.stopTraining_)break}return await d.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function vG(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function o7(e){return typeof e.iterator=="function"}function wG(e){return typeof e.next=="function"}async function kG(e,t,n){n=n||{};let s=n.batches!=null,r=e.testFunction,a=[];if(n.verbose>0)throw new Xe("Verbose mode is not implemented yet.");v.assert(!s||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let o=wG(t)?t:await t.iterator(),i=0,l=0;for(;!s||l<n.batches;){let u=await o.next();if(a=Y(()=>{if(u.value){let{xs:c,ys:p}=a8(e,u.value),d=c.concat(p),h=Y(()=>r(d));if(ee(d),l===0)for(let m=0;m<h.length;++m)a.push(Ce(0));let f=d[0].shape[0];for(let m=0;m<h.length;++m){let g=h[m],y=a[m];a[m]=Y(()=>ce(a[m],z(f,g))),l>0&&ee(y)}ee(h),i+=f,++l}return a}),u.done){s&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<a.length;++u){let c=a[u];a[u]=me(a[u],i),ee(c)}return gs(a)}function J3(e){v.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function cp(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(s=>el(s,t,n-t)):el(e,t,n-t)}function E5(e,t){return Y(()=>e==null?null:Array.isArray(e)?e.map(n=>E5(n,t)):Mk(e,t.dtype==="int32"?t:ye(t,"int32")))}function Q3(e,t){let n=[],s=0,r=null;for(;s<e;)r=s+t,r>=e&&(r=e),n.push([s,r]),s=r;return n}async function SG(e,t,n,s,r,a,o,i,l,u,c,p,d,h,f){r==null&&(r=32),a==null&&(a=1),c==null&&(c=!0),d==null&&(d=0);let m=!1;if(l!=null&&u!=null&&(m=!0),f!=null&&(m=!0,h==null))throw new j("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Lr(0,g)),o==null&&(o=1);let{callbackList:x,history:A}=Zk(i,o,a,d,g,h,r,m,p);x.setModel(e),e.history=A,await x.onTrainBegin(),e.stopTraining_=!1;for(let b=d;b<a;++b){await x.onEpochBegin(b);let w={};if(h!=null)throw new Xe("stepsPerEpoch mode is not implemented yet.");{if(c==="batch")throw new Xe("batch shuffling is not implemneted yet");c&&v.shuffle(y);let k=Pt(y),C=Q3(g,r);for(let E=0;E<C.length;++E){let _={};if(await x.onBatchBegin(E,_),Y(()=>{let $=C[E][0],R=C[E][1],P=el(k,$,R-$);_.batch=E,_.size=R-$;let S=E5(n,P),M=t(S);for(let L=0;L<s.length;++L){let U=s[L],K=M[L];_[U]=K,Sn(K)}if(E===C.length-1&&m){let L=e.testLoop(l,u,r);for(let U=0;U<s.length;++U){let K=s[U],q=L[U];Sn(q),w["val_"+K]=q}}}),await x.onBatchEnd(E,_),Hk(_),e.stopTraining_)break}k.dispose()}if(await x.onEpochEnd(b,w),e.stopTraining_)break}return await x.onTrainEnd(),await e.history.syncData(),e.history}async function IG(e,t,n,s={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,a,o,i,l,u,c,p,d;try{let h=s.batchSize==null?32:s.batchSize;J3(h);let f=!1,m=await e.standardizeUserData(t,n,s.sampleWeight,s.classWeight,f,h);r=m[0],a=m[1],d=m[2];let g=!1,y;if(s.validationData!=null&&s.validationData.length>0){if(g=!0,s.validationData.length===2)l=s.validationData[0],u=s.validationData[1];else throw s.validationData.length===3?new Xe("validationData including sample weights is not supported yet."):new j(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${s.validationData} is invalid.`);let _=!0,$=await e.standardizeUserData(l,u,null,null,_,h);c=$[0],p=$[1],y=c.concat(p)}else if(s.validationSplit!=null&&s.validationSplit>0&&s.validationSplit<1){g=!0;let _=Math.floor(r[0].shape[0]*(1-s.validationSplit)),$=r[0].shape[0];c=cp(r,_,$),o=r,r=cp(r,0,_),p=cp(a,_,$),i=a,a=cp(a,0,_),y=c.concat(p)}else s.validationSteps!=null&&(g=!0);let x=r.concat(a).concat(d);e.checkTrainableWeightsConsistency();let A=e.makeTrainFunction(),b=e.getDedupedMetricsNames(),w,k;g?(e.makeTestFunction(),w=e.testFunction,k=b.slice().concat(b.map(_=>"val_"+_))):(w=null,y=[],k=b.slice());let C=Kk(s.callbacks,s.yieldEvery);return await SG(e,A,x,b,h,s.epochs,s.verbose,C,w,y,s.shuffle,k,s.initialEpoch,null,null)}finally{e.isTraining=!1,$r(r,t),$r(a,n),$r(o,t),$r(i,n),$r(c,l),$r(p,u),d!=null&&ee(d)}}function o8(e){let t=[];e instanceof st&&(e=[e]);for(let n=0;n<e.length;++n){let s=e[n];if(s.rank===1)t.push(_h(s,1));else{if(s.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(s)}}return t}function $r(e,t){if(e==null)return;let n=[];if(t instanceof st)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let a=t[r];n.push(a.id)}let s=[];if(e instanceof st)n.indexOf(e.id)===-1&&s.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&s.push(r)});else if(e!=null)for(let r in e){let a=e[r];n.indexOf(a.id)===-1&&s.push(a)}s.forEach(r=>{r.isDisposed||r.dispose()})}function CG(e){return e instanceof st}function ey(e){return Array.isArray(e)}function i7(e){return!CG(e)&&!ey(e)}function l7(e,t,n,s=!0,r=""){if(t==null||t.length===0){if(e!=null){let o=!1;if(ey(e)&&e.length>0)o=!0;else if(i7(e)){for(let i in e)if(e.hasOwnProperty(i)){o=!0;break}}else o=!0;if(o)throw new j(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(o=>null);let a;if(i7(e)){e=e,a=[];for(let o of t){if(e[o]==null)throw new j(`No data provided for "${o}". Need data for each key in: ${t}`);a.push(e[o])}}else if(ey(e)){if(e=e,e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);a=e}else{if(e=e,t.length>1)throw new j(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);a=[e]}if(a=o8(a),n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s). but got array with shape ${i.shape}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c>=0&&u!==c)throw new j(`${r} expected a batch of elements where each example has shape [${n[o].slice(1,n[o].length)}] (i.e.,tensor shape [*,${n[o].slice(1,n[o].length)}]) but the ${r} received an input with ${i.shape[0]} examples, each with shape [${i.shape.slice(1,i.shape.length)}] (tensor shape [${i.shape}])`)}}return a}function TG(e,t,n){let s=Ja(e.map(a=>a.shape[0]));s.sort();let r=Ja(t.map(a=>a.shape[0]));if(r.sort(),s.length>1)throw new j(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(a=>a.shape))}`);if(r.length>1)throw new j(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(a=>a.shape))}`);if(s.length>0&&r.length>0&&!v.arraysEqual(s,r))throw new j(`Input Tensors should have the same number of samples as target Tensors. Found ${s[0]} input sample(s) and ${r[0]} target sample(s).`)}function NG(e,t,n){let s=[pu,w2,Dp];for(let r=0;r<e.length;++r){let a=e[r],o=t[r],i=n[r];if(o!=null){if(o===Dp&&a.shape[a.shape.length-1]===1)throw new j(`You are passing a target array of shape ${a.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(s.indexOf(o)!==-1){let l=a.shape.slice(1),u=i.slice(1);for(let c=0;c<l.length;++c){let p=l[c],d=u[c];if(d!=null&&p!==d)throw new j(`A target Tensor with shape ${a.shape} was passed for an output of shape ${i}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function u7(e,t,n,s=!0,r=""){let a;if(Array.isArray(e)){if(e.length!==t.length)throw new j(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);a=e}else{if(t.length>1)throw new j(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);a=[e]}if(n!=null)for(let o=0;o<t.length;++o){if(n[o]==null)continue;let i=a[o];if(i.shape.length!==n[o].length)throw new j(`Error when checking ${r}: expected ${t[o]} to have ${n[o].length} dimension(s), but got array with shape ${JSON.stringify(i.shape)}`);for(let l=0;l<n[o].length;++l){if(l===0&&!s)continue;let u=i.shape[l],c=n[o][l];if(c!=null&&c!==u)throw new j(`Error when checking ${r}: expected ${t[o]} to have shape ${JSON.stringify(n[o])} but got array with shape ${JSON.stringify(i.shape)}.`)}}}function EG(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(s=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(s=>n);{let s=[];for(let r of t){let a=n.hasOwnProperty(r)?n[r]:[];Array.isArray(a)||(a=[a]),s.push(a)}return s}}var RG="layers-model",va=class extends Kr{constructor(e){super(e),this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new j("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");dG(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=cG(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof Da))throw new j("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let a in e.loss)if(this.outputNames.indexOf(a)===-1)throw new j(`Unknown entry in loss dictionary: "${a}". Only expected the following keys: ${this.outputNames}`);for(let a of this.outputNames)e.loss[a]==null&&console.warn(`Output "${a}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${a} during training`),t.push(v3(e.loss[a]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new j(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(o=>v3(o))}else{let a=v3(e.loss);this.outputs.forEach(o=>{t.push(a)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let a=0;a<this.outputs.length;++a){let o=this.internalOutputShapes[a],i=this.outputNames[a];this.feedOutputNames.push(i),this.feedOutputShapes.push(o),this.feedLossFns.push(this.lossFunctions[a])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Qi("loss",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=this.lossFunctions[a];this.outputs.length>1&&(this.metricsTensors.push([o,a]),this.metricsNames.push(this.outputNames[a]+"_loss"))}});let s=EG(e.metrics,this.outputNames),r=(a,o,i)=>{this.outputNames.length>1&&(o=this.outputNames[a]+"_"+o),this.metricsNames.push(o),this.metricsTensors.push([i,a])};Qi("metric",()=>{for(let a=0;a<this.outputs.length;++a){if(n.indexOf(a)!==-1)continue;let o=s[a];(l=>{let u="",c,p,d;for(let h of l){if(typeof h=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(h)!==-1){let m=this.internalOutputShapes[a];m[m.length-1]===1||this.lossFunctions[a]===w2?["accuracy","acc"].indexOf(h)!==-1?p=I5:["crossentropy","ce"].indexOf(h)!==-1&&(p=Qk):this.lossFunctions[a]===Fm?["accuracy","acc"].indexOf(h)!==-1?p=e8:["crossentropy","ce"].indexOf(h)!==-1&&(p=t8):["accuracy","acc"].indexOf(h)!==-1?p=C5:["crossentropy","ce"].indexOf(h)!==-1&&(p=T5);let g;["accuracy","acc"].indexOf(h)!==-1?g="acc":["crossentropy","ce"].indexOf(h)!==-1&&(g="ce"),d=p,c=u+g}else d=uG(h),c=u+em(h);let f;Qi(c,()=>{f=d}),r(a,c,f)}})(o)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let s=n.batchSize==null?32:n.batchSize;J3(s);let r=!0,a=this.standardizeUserDataXY(e,t,r,s);try{let o=a[0].concat(a[1]);this.makeTestFunction();let i=this.testFunction,l=this.testLoop(i,o,s,n.verbose,n.steps);return gs(l)}finally{$r(a[0],e),$r(a[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),kG(this,e,t)}checkNumSamples(e,t,n,s="steps"){let r;if(n!=null){if(r=null,t!=null)throw new j(`If ${s} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new j(`Either the input data should have a defined shape, or ${s} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new j("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),s=n?t:[t],r=this.retrieveSymbolicTensors(s),a=new Ki;if(e instanceof st&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new j(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let i=0;i<this.inputs.length;++i)a.add(this.inputs[i],e[i])}else for(let i of this.inputs){let l=e[i.name];if(l==null)throw new j(`No value is provided for the model's input ${i.name}`);a.add(i,l)}let o=up(r,a);return n?o:o[0]}retrieveSymbolicTensors(e){let t=ll(null,e.length),n=e.length;for(let s of this.layers){let r=Array.isArray(s.output)?s.output:[s.output],a=r.map(o=>o.name);for(let o=0;o<e.length;++o){let i=a.indexOf(e[o]);if(i!==-1&&(t[o]=r[i],n--),n===0)break}if(n===0)break}if(n>0){let s=[];throw t.forEach((r,a)=>{r==null&&s.push(e[a])}),new j(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(s)}`)}return t}predictLoop(e,t=32,n=!1){return Y(()=>{let s=this.checkNumSamples(e);if(n)throw new Xe("Verbose predictLoop() is not implemented yet.");let r=Q3(s,t),a=this.outputs.map(o=>[]);for(let o=0;o<r.length;++o)Y(()=>{let l=r[o][0],u=r[o][1],c=cp(e,l,u),p=[];if(Array.isArray(c))for(let h=0;h<c.length;++h)p.push({key:this.inputs[h],value:c[h]});else p.push({key:this.inputs[0],value:c});let d=new Ki(p);return up(this.outputs,d)}).forEach((l,u)=>a[u].push(l));return gs(a.map(o=>It(o,0)))})}predict(e,t={}){let n=o8(e);u7(n,this.inputNames,this.feedInputShapes,!1);try{let s=t.batchSize==null?32:t.batchSize;return J3(s),this.predictLoop(n,s)}finally{$r(n,e)}}predictOnBatch(e){u7(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,s){if(this.optimizer_==null)throw new Pr("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let a=0;a<this.feedOutputShapes.length;++a){let o=this.feedOutputShapes[a];this.feedLossFns[a]===Fm?r.push(o.slice(0,o.length-1).concat([1])):r.push(o)}if(e=l7(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=l7(t,this.feedOutputNames,r,!1,"target"),TG(e,t,null),NG(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&s!=null&&s>0&&e[0].shape[0]%s!==0)throw new j(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${s}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,s,r=!0,a){let[o,i]=this.standardizeUserDataXY(e,t,r,a);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(s!=null){let u=s8(s,this.outputNames);l=[];for(let c=0;c<u.length;++c)l.push(await r8(i[c],null,u[c]))}return[o,i,l]}testLoop(e,t,n,s=0,r){return Y(()=>{let a=this.checkNumSamples(t,n,r,"steps"),o=[];if(s>0)throw new Xe("Verbose mode is not implemented yet.");if(r!=null)throw new Xe("steps mode in testLoop() is not implemented yet");{let i=Q3(a,n),l=Pt(Lr(0,a));for(let u=0;u<i.length;++u){let c=i[u][0],p=i[u][1],d=el(l,c,p-c),h=E5(t,d),f=e(h);if(u===0)for(let m=0;m<f.length;++m)o.push(Ce(0));for(let m=0;m<f.length;++m){let g=f[m];o[m]=ce(o[m],z(p-c,g))}}for(let u=0;u<o.length;++u)o[u]=me(o[u],a)}return o})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let s=e[n],r=s;qv(e,s)>1&&(r+=`_${qv(e.slice(0,n),s)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),s=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),a=[],o=()=>{let c=[];for(let f=0;f<this.inputs.length;++f)c.push({key:this.inputs[f],value:n[f]});let p=new Ki(c),d=up(this.outputs,p,{training:!0}),h;for(let f=0;f<this.lossFunctions.length;++f){let m=this.lossFunctions[f],g=m(s[f],d[f]);r[f]!=null&&(g=yG(g,r[f]));let y=Wt(g);t.push(y),f===0?h=g:h=ce(h,g)}for(let f=0;f<this.metricsTensors.length;++f){let m;if(this.outputs.length>1&&f<this.outputs.length)m=t[f];else{let g=this.metricsTensors[f][0],y=this.metricsTensors[f][1];m=Wt(g(s[y],d[y]))}Sn(m),a.push(m)}return h=Wt(h),this.calculateLosses().forEach(f=>{h=ce(h,f)}),h},i=this.collectedTrainableWeights.map(c=>c.read()),l=!0;return[this.optimizer_.minimize(o,l,i)].concat(a)}}makeTestFunction(){this.testFunction=e=>Y(()=>{let t=[],n,s=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),a=[];for(let l=0;l<this.inputs.length;++l)a.push({key:this.inputs[l],value:s[l]});let o=new Ki(a),i=up(this.outputs,o);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],c=Wt(u(r[l],i[l]));l===0?n=c:n=ce(n,c),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],c=this.metricsTensors[l][1],p=Wt(u(r[c],i[c]));t.push(p)}return t})}async fit(e,t,n={}){return IG(this,e,t,n)}async fitDataset(e,t){return bG(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),s=n[0],r=n[1],o=this.makeTrainFunction()(s.concat(r)),i=[];for(let l of o){let u=await l.data();i.push(u[0])}return ee(o),$r(n[0],e),$r(n[1],t),gs(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,s=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let a=0;a<s.length;++a)n&&!s[a].trainable||t.push({name:s[a].originalName,tensor:r[a]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Nm().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Nm().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=ya(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>ya(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let s of t)if(typeof n[s]=="string")e[s]=ya(n[s]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[ya(em(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>ya(em(e)));{let e={};for(let t in this.metrics)e[t]=ya(em(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=$p(e.optimizer_config),n=Mr(t),s;if(typeof e.loss=="string")s=ji(e.loss);else if(Array.isArray(e.loss))s=e.loss.map(a=>ji(a));else if(e.loss!=null){s={};for(let a in e.loss)s[a]=ji(e.loss[a])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(a=>ji(a));else if(e.metrics!=null){r={};for(let a in e.metrics)r[a]=ji(e.metrics[a])}this.compile({loss:s,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let l=_s.getSaveHandlers(e);if(l.length===0)throw new j(`Cannot find any save handlers for URL '${e}'`);if(l.length>1)throw new j(`Found more than one (${l.length}) save handlers for URL '${e}'`);e=l[0]}if(e.save==null)throw new j("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await _s.encodeWeights(this.getNamedWeights(t)),s=!1,r=null,o={modelTopology:this.toJSON(r,s),format:RG,generatedBy:`TensorFlow.js tfjs-layers v${N5}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){o.trainingConfig=this.getTrainingConfig();let l="optimizer",{data:u,specs:c}=await _s.encodeWeights(await this.optimizer.getWeights(),l);n.specs.push(...c),n.data=_s.concatenateArrayBuffers([n.data,u])}return this.userDefinedMetadata!=null&&(r7(this.userDefinedMetadata,this.name,!0),o.userDefinedMetadata=this.userDefinedMetadata),o.weightData=n.data,o.weightSpecs=n.specs,e.save(o)}setUserDefinedMetadata(e){r7(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};va.className="Model";pe.registerClass(va);var i8=class extends va{};i8.className="Functional";pe.registerClass(i8);async function _G(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let s=$p(n),r=Mr(s,t);if(e.weightsManifest!=null){let a=await _s.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(i=>i.originalName)),o={};for(let i of r.weights)o[i.originalName]=a[i.originalName];r.loadWeights(o),ee(a)}return r}async function DG(e,t){if(t==null&&(t={}),typeof e=="string"){let n=_s.getLoadHandlers(e,t);if(n.length===0)n.push(_s.browserHTTPRequest(e,t));else if(n.length>1)throw new j(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return $G(e,void 0,t)}async function $G(e,t,n){if(n==null&&(n={}),e.load==null)throw new j("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let s=await e.load(),r=s.modelTopology;r.model_config!=null&&(r=r.model_config);let a=n.strict==null?!0:n.strict,o=s.weightData!=null&&s.weightSpecs!=null&&a,i=Mr($p(r),t,o),l=s.trainingConfig;if(l!=null&&i.loadTrainingConfig(l),s.userDefinedMetadata!=null&&i.setUserDefinedMetadata(s.userDefinedMetadata),s.weightData!=null){if(s.weightSpecs==null)throw new j("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:c}=PG(s.weightData,s.weightSpecs);i.loadWeights(u,a),i.optimizer!=null&&c.length>0&&await i.optimizer.setWeights(c),ee(u),ee(c.map(p=>p.tensor))}return i}function PG(e,t){let n=_s.decodeWeights(e,t),s={},r=[];return t.forEach(a=>{a.group==="optimizer"?r.push({name:a.name,tensor:n[a.name]}):s[a.name]=n[a.name]}),{modelWeights:s,optimizerWeights:r}}var mc=class extends va{constructor(e){if(super({inputs:[],outputs:[]}),e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:c2("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(n=>n<0))throw new j(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof mc||e instanceof va,n;if(t){if(n=e,n.outputs.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new j("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new j("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let s=Wk({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(s)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new j(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new j("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=Bk(this.outputs[0])}this.inboundNodes=[],new b2({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:ll(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(s=>s.shape),outputShapes:this.outputs[0].shape})}else{let s=e.apply(this.outputs[0]);if(Array.isArray(s))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[s],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(At(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new va({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Pr("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},s=!1){let r,a={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new j("Legacy serialization format not supported yet.");r=t}else v.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,a=t;let o=new e(a);if(!(o instanceof mc))throw new Xe(`Sequential.fromConfig called on non-Sequential input: ${o}`);for(let i of r){let u=Mr(i,void 0,s);s&&u.setFastWeightInitDuringBuild(!0),o.add(u)}return o}set stopTraining(e){if(this.model==null)throw new j("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new j("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};mc.className="Sequential";pe.registerClass(mc);function FG(e){return new va(e)}function OG(e){return new mc(e)}function MG(e,t){return t==null&&(t={}),DG(e,t)}function l8(e){return Wk(e)}function zG(e,t){pr.registerCallbackConstructor(e,t)}var ws=class extends pe.Serializable{getConfig(){return{}}},u8=class extends ws{apply(e,t=1){return aU(e,t)}};u8.className="elu";pe.registerClass(u8);var c8=class extends ws{apply(e){return G0(e)}};c8.className="selu";pe.registerClass(c8);var d8=class extends ws{apply(e){return Vr(e)}};d8.className="relu";pe.registerClass(d8);var p8=class extends ws{apply(e){return Y(()=>nd(6,Vr(e)))}};p8.className="relu6";pe.registerClass(p8);var h8=class extends ws{apply(e){return e}};h8.className="linear";pe.registerClass(h8);var f8=class extends ws{apply(e){return $n(e)}};f8.className="sigmoid";pe.registerClass(f8);var m8=class extends ws{apply(e){return iU(e)}};m8.className="hardSigmoid";pe.registerClass(m8);var g8=class extends ws{apply(e){return iu(e)}};g8.className="softplus";pe.registerClass(g8);var y8=class extends ws{apply(e){return oU(e)}};y8.className="softsign";pe.registerClass(y8);var A8=class extends ws{apply(e){return al(e)}};A8.className="tanh";pe.registerClass(A8);var R5=class extends ws{apply(e,t=-1){return uu(e,t)}};R5.className="softmax";pe.registerClass(R5);var x8=class extends ws{apply(e,t=-1){return O0(e,t)}};x8.className="logSoftmax";pe.registerClass(x8);var b8=class extends ws{apply(e,t=1){return Y(()=>z($n(z(e,t)),e))}};b8.className="swish";pe.registerClass(b8);var v8=class extends ws{apply(e){return Y(()=>z(e,al(iu(e))))}};v8.className="mish";pe.registerClass(v8);function io(e){return e.getClassName()}function w3(e,t={}){return Rh(e,pe.SerializationMap.getMap().classNameMap,t,"activation")}function lo(e){if(e==null){let t={};return t.className="linear",t.config={},w3(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},w3(t)}else return e instanceof ws?e:w3(e)}function _5(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var w8=class extends pe.Serializable{},Fh=class extends w8{constructor(e){super(),_5(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return Y(()=>{let t=Vt([1]);return this.hasL1&&(t=ce(t,ke(z(this.l1,rn(e))))),this.hasL2&&(t=ce(t,ke(z(this.l2,Dh(e))))),V(t,[])})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Fh.className="L1L2";pe.registerClass(Fh);function LG(e){return _5(e),new Fh({l1:e!=null?e.l1:null,l2:0})}function BG(e){return _5(e),new Fh({l2:e!=null?e.l2:null,l1:0})}var c7={l1l2:"L1L2"};function St(e){return l5(e)}function d7(e,t={}){return Rh(e,pe.SerializationMap.getMap().classNameMap,t,"regularizer")}function Ot(e){if(e==null)return null;if(typeof e=="string"){let n={className:e in c7?c7[e]:e,config:{}};return d7(n)}else return e instanceof w8?e:d7(e)}var D5=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Ke(e);let n=Vr(e);return this.maxValue!=null&&(n=As(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};D5.className="ReLU";pe.registerClass(D5);var $5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return xh(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};$5.className="LeakyReLU";pe.registerClass($5);var P5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=Ft(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=Ot(e.alphaRegularizer),this.alphaConstraint=xn(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new j(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=At(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let s of this.sharedAxes)t[s-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let s=1;s<e.length;++s)n[s]=e[s];this.inputSpec=[new an({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Ke(e),Ih(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Ut(this.alphaInitializer),alphaRegularizer:St(this.alphaRegularizer),alphaConstraint:An(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};P5.className="PReLU";pe.registerClass(P5);var F5=class extends ut{constructor(e){if(super(e==null?{}:e),this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new Xe(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Ke(e);return Yc(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};F5.className="ELU";pe.registerClass(F5);var O5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Ke(e);return z(n,ye(vs(n,this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};O5.className="ThresholdedReLU";pe.registerClass(O5);var M5=class extends ut{constructor(e){super(e==null?{}:e),this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new R5().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Ke(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};M5.className="Softmax";pe.registerClass(M5);function sc(e,t,n){if(typeof e=="number")return ll(e,t);if(e.length!==t)throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let s=0;s<t;++s){let r=e[s];if(!tU(r))throw new j(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function zr(e,t,n,s,r=1){if(e==null)return e;let a=t+(t-1)*(r-1),o;return n==="same"?o=e:o=e-a+1,Math.floor((o+s-1)/s)}function Jr(e,t,n,s){if(e==null)return null;if(s==="valid")e=e*t+oo([n-t,0]);else if(s==="same")e=e*t;else throw new j(`Unsupport padding mode: ${s}.`);return e}function z5(e,t){return Y(()=>(Qt(t),t==="channelsFirst"?tt(e,[0,2,3,1]):e))}function k8(e,t){return Y(()=>(Qt(t),t==="channelsFirst"?tt(e,[0,2,3,4,1]):e))}function WG(e,t,n,s=1,r="valid",a,o=1){return Y(()=>{if(a==null&&(a=Br()),Qt(a),e.shape.length!==3)throw new j(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new j(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new j(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(a==="channelsFirst"&&(e=tt(e,[0,2,1])),r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let i=E0(e,t,s,r==="same"?"same":"valid","NWC",o);return n!=null&&(i=Ur(i,n)),i})}function p7(e,t,n,s=[1,1],r="valid",a,o,i=null){return Y(()=>{if(a==null&&(a=Br()),Qt(a),e.rank!==3&&e.rank!==4)throw new j(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new j(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=z5(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=pc.conv2d({x:l,filter:t,strides:s,pad:r==="same"?"same":"valid",dilations:o,dataFormat:"NHWC",bias:n,activation:i}),a==="channelsFirst"&&(l=tt(l,[0,3,1,2])),l})}function VG(e,t,n,s=[1,1,1],r="valid",a,o){return Y(()=>{if(a==null&&(a=Br()),Qt(a),e.rank!==4&&e.rank!==5)throw new j(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new j(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let i=k8(e,a);if(r==="causal")throw new Xe("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return i=SA(i,t,s,r==="same"?"same":"valid","NDHWC",o),n!=null&&(i=Ur(i,n)),a==="channelsFirst"&&(i=tt(i,[0,4,1,2,3])),i})}var L5=class extends ut{constructor(e,t){if(super(t),this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",L5.verifyArgs(t),this.rank=e,In(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new Xe(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=sc(t.kernelSize,e,"kernelSize"),this.strides=sc(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,rr(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Qt(this.dataFormat),this.activation=lo(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=Ft(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=xn(t.biasConstraint),this.biasRegularizer=Ot(t.biasRegularizer),this.activityRegularizer=Ot(t.activityRegularizer),this.dilationRate=sc(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new j(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new j(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new j(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Yr("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!u5(e.kernelSize,"number",1,3))throw new j(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:io(this.activation),useBias:this.useBias,biasInitializer:Ut(this.biasInitializer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),biasConstraint:An(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},Oh=class extends L5{constructor(e,t){super(e,t),this.kernel=null,Oh.verifyArgs(t),this.filters=t.filters,In(this.filters,"filters"),this.kernelInitializer=Ft(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=xn(t.kernelConstraint),this.kernelRegularizer=Ot(t.kernelRegularizer)}build(e){e=At(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],s=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return Y(()=>{e=Ke(e);let n,s=this.bias==null?null:this.bias.read(),r=_k(this.activation.getClassName());if(r!=null&&this.rank===2)n=p7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=WG(e,this.kernel.read(),s,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=p7(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=VG(e,this.kernel.read(),s,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new Xe("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=At(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let a=zr(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(a)}let s=[e[0]];return this.dataFormat==="channelsLast"?(s=s.concat(t),s.push(this.filters)):(s.push(this.filters),s=s.concat(t)),s}getConfig(){let e={filters:this.filters,kernelInitializer:Ut(this.kernelInitializer),kernelRegularizer:St(this.kernelRegularizer),kernelConstraint:An(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new j(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},Mh=class extends Oh{constructor(e){super(2,e),Mh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!u5(e.kernelSize,"number",1,2))throw new j(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};Mh.className="Conv2D";pe.registerClass(Mh);var zh=class extends Oh{constructor(e){super(3,e),zh.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new j(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};zh.className="Conv3D";pe.registerClass(zh);var B5=class extends Mh{constructor(e){if(super(e),this.inputSpec=[new an({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==4)throw new j("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return Y(()=>{let n=Ke(e);if(n.shape.length!==4)throw new j(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o;this.dataFormat==="channelsFirst"?(a=2,o=3):(a=1,o=2);let i=s[a],l=s[o],u=this.kernelSize[0],c=this.kernelSize[1],p=this.strides[0],d=this.strides[1],h=Jr(i,p,u,this.padding),f=Jr(l,d,c,this.padding),m=[r,h,f,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,1]));let g=R0(n,this.kernel.read(),m,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=tt(g,[0,3,1,2])),this.bias!=null&&(g=Ur(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3):(n=3,s=1,r=2);let a=this.kernelSize[0],o=this.kernelSize[1],i=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[s]=Jr(t[s],i,a,this.padding),t[r]=Jr(t[r],l,o,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};B5.className="Conv2DTranspose";pe.registerClass(B5);var W5=class extends zh{constructor(e){if(super(e),this.inputSpec=[new an({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new j(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=At(e),e.length!==5)throw new j("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new j("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],s=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",s,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new an({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return Y(()=>{let n=Ke(e);if(n.shape.length!==5)throw new j(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let s=n.shape,r=s[0],a,o,i;this.dataFormat==="channelsFirst"?(i=2,a=3,o=4):(i=1,a=2,o=3);let l=s[i],u=s[a],c=s[o],p=this.kernelSize[0],d=this.kernelSize[1],h=this.kernelSize[2],f=this.strides[0],m=this.strides[1],g=this.strides[2],y=Jr(l,f,p,this.padding),x=Jr(u,m,d,this.padding),A=Jr(c,g,h,this.padding),b=[r,y,x,A,this.filters];this.dataFormat!=="channelsLast"&&(n=tt(n,[0,2,3,4,1]));let w=IA(n,this.kernel.read(),b,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(w=tt(w,[0,4,1,2,3])),this.bias!==null&&(w=Ur(w,this.bias.read(),this.dataFormat)),this.activation!==null&&(w=this.activation.apply(w)),w})}computeOutputShape(e){e=At(e);let t=e.slice(),n,s,r,a;this.dataFormat==="channelsFirst"?(n=1,s=2,r=3,a=4):(n=4,s=1,r=2,a=3);let o=this.kernelSize[0],i=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],c=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[s]=Jr(t[s],u,o,this.padding),t[r]=Jr(t[r],c,i,this.padding),t[a]=Jr(t[a],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};W5.className="Conv3DTranspose";pe.registerClass(W5);var S8=class extends Oh{constructor(e,t){if(super(e,t),this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new j("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new j("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new j(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=Ot(t.depthwiseRegularizer),this.depthwiseConstraint=xn(t.depthwiseConstraint),this.pointwiseInitializer=Ft(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=Ot(t.pointwiseRegularizer),this.pointwiseConstraint=xn(t.pointwiseConstraint)}build(e){if(e=At(e),e.length<this.rank+2)throw new j(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],s=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let o=0;o<this.rank;++o)r.push(1);r.push(n*this.depthMultiplier,this.filters);let a=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",s,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,a,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,a,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,a,this.biasConstraint):this.bias=null,this.inputSpec=[new an({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return Y(()=>{e=Ke(e);let n;if(this.rank===1)throw new Xe("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=tt(e,[0,2,3,1])),n=H0(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=tt(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.pointwiseInitializer=Ut(this.pointwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.pointwiseRegularizer=St(this.pointwiseRegularizer),e.depthwiseConstraint=An(this.depthwiseConstraint),e.pointwiseConstraint=An(this.pointwiseConstraint),e}};S8.className="SeparableConv";var V5=class extends S8{constructor(e){super(2,e)}};V5.className="SeparableConv2D";pe.registerClass(V5);var k2=class extends Oh{constructor(e){super(1,e),k2.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!u5(e.kernelSize,"number",1,1))throw new j(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};k2.className="Conv1D";pe.registerClass(k2);var U5=class extends ut{constructor(e){super(e),typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return Y(()=>{if(e=Ke(e),this.dataFormat==="channelsLast"){let n=Qf(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return Qf(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=Qf(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return Qf(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};U5.className="Cropping2D";pe.registerClass(U5);var G5=class extends ut{constructor(e){super(e),this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Qt(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,JV(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return Y(()=>{let n=Ke(e),s=n.shape;if(this.dataFormat==="channelsFirst"){n=tt(n,[0,2,3,1]);let r=this.size[0]*s[2],a=this.size[1]*s[3],o=this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a]);return tt(o,[0,3,1,2])}else{let r=this.size[0]*s[1],a=this.size[1]*s[2];return this.interpolation==="nearest"?Ie.resizeNearestNeighbor(n,[r,a]):Ie.resizeBilinear(n,[r,a])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat,interpolation:this.interpolation},t=super.getConfig();return Object.assign(e,t),e}};G5.className="UpSampling2D";pe.registerClass(G5);function UG(e,t,n=[1,1],s="valid",r,a){return Y(()=>{r==null&&(r=Br()),Qt(r);let o=z5(e,r);if(e.rank!==4)throw new j(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new j(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return o=Zc(o,t,n,s==="same"?"same":"valid","NHWC",a),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}var H5=class extends L5{constructor(e){super(2,e),this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=Ft(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=xn(e.depthwiseConstraint),this.depthwiseRegularizer=Ot(e.depthwiseRegularizer)}build(e){if(e=At(e),e.length<4)throw new j(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new j(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],s=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",s,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{e=Ke(e);let n=UG(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=Ur(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=zr(t,this.kernelSize[0],this.padding,this.strides[0]),a=zr(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],s,r,a]:[e[0],r,a,s]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Ut(this.depthwiseInitializer),e.depthwiseRegularizer=St(this.depthwiseRegularizer),e.depthwiseConstraint=An(this.depthwiseRegularizer),e}};H5.className="DepthwiseConv2D";pe.registerClass(H5);function I8(e,t,n,s){if(Array.isArray(e)){if(t!=null||n!=null)throw new j("When inputs is an array, neither initialState or constants should be provided");s!=null&&(n=e.slice(e.length-s,e.length),e=e.slice(0,e.length-s)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(a){return a==null||Array.isArray(a)?a:[a]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function C8(e,t,n,s=!1,r,a,o=!1,i=!1){return Y(()=>{let l=t.shape.length;if(l<3)throw new j(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Lr(2,l));if(t=tt(t,u),a!=null)throw new Xe("The rnn() functoin of the deeplearn.js backend does not support constants yet.");o&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=ye(ye(r,"bool"),"float32"),r.rank===l-1&&(r=Bt(r,-1)),r=tt(r,u)),s&&(t=Qs(t,0),r!=null&&(r=Qs(r,0)));let c=[],p,d=n,h=t.shape[0],f=On(t),m;r!=null&&(m=On(r));for(let y=0;y<h;++y){let x=f[y],A=Y(()=>e(x,d));if(r==null)p=A[0],d=A[1];else{let b=Y(()=>{let w=m[y],k=ge(Ms(w),w),C=ce(z(A[0],w),z(d[0],k)),E=d.map((_,$)=>ce(z(A[1][$],w),z(_,k)));return{output:C,newStates:E}});p=b.output,d=b.newStates}i&&c.push(p)}let g;return i&&(g=ln(c,1)),[p,g,d]})}var la=class extends ut{constructor(e){super(e);let t;if(e.cell==null)throw new j("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new C2({cells:e.cell}):t=e.cell,t.stateSize==null)throw new j("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new an({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Lr(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){X3(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],s;if(this.returnSequences?s=[e[0],e[1],n]:s=[e[0],n],this.returnState){let r=[];for(let a of t)r.push([e[0],a]);return[s].concat(r)}else return s}computeMask(e,t){return Y(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let s=this.states.map(r=>null);return[n].concat(s)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){if(this.numConstants!=null)throw new Xe("Constants support is not implemented in RNN yet.");X3(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,s=e.slice(2);this.inputSpec[0]=new an({shape:[n,null,...s]});let r=[e[0]].concat(e.slice(2));this.cell.build(r);let a;if(Array.isArray(this.cell.stateSize)?a=this.cell.stateSize:a=[this.cell.stateSize],this.stateSpec!=null){if(!v.arraysEqual(this.stateSpec.map(o=>o.shape[o.shape.length-1]),a))throw new j(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=a.map(o=>new an({shape:[null,o]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){Y(()=>{if(!this.stateful)throw new ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_=[Vt([n,this.cell.stateSize])];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(s=>Vt([n,s])):this.states_[0]=Vt([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let s=0;s<this.states_.length;++s){let r=e[s],a=Array.isArray(this.cell.stateSize)?this.cell.stateSize[s]:this.cell.stateSize,o=[n,a];if(!v.arraysEqual(r.shape,o))throw new j(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${r.shape}`);this.states_[s]=r}}this.states_=this.states_.map(s=>Sn(s.clone()))})}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=I8(e,n,s,this.numConstants);e=r.inputs,n=r.initialState,s=r.constants;let a=[],o=[];if(n!=null){t.initialState=n,a=a.concat(n),this.stateSpec=[];for(let l of n)this.stateSpec.push(new an({shape:l.shape}));o=o.concat(this.stateSpec)}if(s!=null&&(t.constants=s,a=a.concat(s),this.numConstants=s.length),a[0]instanceof Fr){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Y(()=>{let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;e=Ke(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let a=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==a)throw new j(`RNN Layer has ${a} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let o={training:s},l=C8((h,f)=>{let m=this.cell.call([h].concat(f),o);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),u=l[0],c=l[1],p=l[2];this.stateful&&this.resetStates(p,s);let d=this.returnSequences?c:u;return this.returnState?[d].concat(p):d})}getInitialState(e){return Y(()=>{let t=Vt(e.shape);return t=ke(t,[1,2]),t=_h(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?j3(t,[1,n]):t):this.cell.stateSize>1?[j3(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===la.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let s=t.cell,r=Mr(s,n);return new e(Object.assign(t,{cell:r}))}};la.className="RNN";pe.registerClass(la);var Lh=class extends ut{},S2=class extends Lh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,In(this.units,"units"),this.activation=lo(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=xn(e.kernelConstraint),this.recurrentConstraint=xn(e.recurrentConstraint),this.biasConstraint=xn(e.biasConstraint),this.dropout=hc([1,oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=hc([1,oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{if(e=e,e.length!==2)throw new j(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let s=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=uo({ones:()=>Ms(e),rate:this.dropout,training:s,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=uo({ones:()=>Ms(n),rate:this.recurrentDropout,training:s,dropoutFunc:this.dropoutFunc}));let r,a=this.dropoutMask,o=this.recurrentDropoutMask;a!=null?r=ta(z(e,a),this.kernel.read()):r=ta(e,this.kernel.read()),this.bias!=null&&(r=Ur(r,this.bias.read())),o!=null&&(n=z(n,o));let i=ce(r,ta(n,this.recurrentKernel.read()));return this.activation!=null&&(i=this.activation.apply(i)),[i,i]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:io(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:An(this.kernelConstraint),recurrentConstraint:An(this.recurrentConstraint),biasConstraint:An(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};S2.className="SimpleRNNCell";pe.registerClass(S2);var j5=class extends la{constructor(e){e.cell=new S2(e),super(e)}call(e,t){return Y(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return new e(t)}};j5.className="SimpleRNN";pe.registerClass(j5);var I2=class extends Lh{constructor(e){if(super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new j("GRUCell does not support reset_after parameter set to true.");this.units=e.units,In(this.units,"units"),this.activation=lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=xn(e.kernelConstraint),this.recurrentConstraint=xn(e.recurrentConstraint),this.biasConstraint=xn(e.biasConstraint),this.dropout=hc([1,oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=hc([1,oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=At(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return Y(()=>{if(e=e,e.length!==2)throw new j(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,s=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=uo({ones:()=>Ms(e),rate:this.dropout,training:n,count:3,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=uo({ones:()=>Ms(s),rate:this.recurrentDropout,training:n,count:3,dropoutFunc:this.dropoutFunc}));let r=this.dropoutMask,a=this.recurrentDropoutMask,o,i,l;0<this.dropout&&this.dropout<1&&(e=z(e,r[0]));let u=ta(e,this.kernel.read());this.useBias&&(u=Ur(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,a[0]));let c=this.recurrentKernel.read(),[p,d]=Jt(c,[2*this.units,this.units],c.rank-1),h=ta(s,p),[f,m,g]=Jt(u,3,u.rank-1),[y,x]=Jt(h,2,h.rank-1);o=this.recurrentActivation.apply(ce(f,y)),i=this.recurrentActivation.apply(ce(m,x));let A=ta(z(i,s),d);l=this.activation.apply(ce(g,A));let b=ce(z(o,s),z(ce(1,$t(o)),l));return[b,b]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:io(this.activation),recurrentActivation:io(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:An(this.kernelConstraint),recurrentConstraint:An(this.recurrentConstraint),biasConstraint:An(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};I2.className="GRUCell";pe.registerClass(I2);var q5=class extends la{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new I2(e),super(e)}call(e,t){return Y(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};q5.className="GRU";pe.registerClass(q5);var Bh=class extends Lh{constructor(e){super(e),this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,In(this.units,"units"),this.activation=lo(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=lo(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=Ft(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=Ot(e.kernelRegularizer),this.recurrentRegularizer=Ot(e.recurrentRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.kernelConstraint=xn(e.kernelConstraint),this.recurrentConstraint=xn(e.recurrentConstraint),this.biasConstraint=xn(e.biasConstraint),this.dropout=hc([1,oo([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=hc([1,oo([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.dropoutFunc=e.dropoutFunc,this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=At(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let s;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,a=this.units;s=new(t=class extends Ar{apply(i,l){let u=r.apply([a]),c=new h2().apply([a]),p=r.apply([a*2]);return Kv(Kv(u,c),p)}},t.className="CustomInit",t)}else s=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,s,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return Y(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new j(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let s=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=uo({ones:()=>Ms(e),rate:this.dropout,training:n,count:4,dropoutFunc:this.dropoutFunc})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=uo({ones:()=>Ms(s),rate:this.recurrentDropout,training:n,count:4,dropoutFunc:this.dropoutFunc}));let a=this.dropoutMask,o=this.recurrentDropoutMask,i,l,u,c;0<this.dropout&&this.dropout<1&&(e=z(e,a[0]));let p=ta(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(s=z(s,o[0])),p=ce(p,ta(s,this.recurrentKernel.read())),this.useBias&&(p=Ur(p,this.bias.read()));let[d,h,f,m]=Jt(p,4,p.rank-1);i=this.recurrentActivation.apply(d),l=this.recurrentActivation.apply(h),u=ce(z(l,r),z(i,this.activation.apply(f))),c=this.recurrentActivation.apply(m);let g=z(c,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:io(this.activation),recurrentActivation:io(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),recurrentInitializer:Ut(this.recurrentInitializer),biasInitializer:Ut(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:St(this.kernelRegularizer),recurrentRegularizer:St(this.recurrentRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:An(this.kernelConstraint),recurrentConstraint:An(this.recurrentConstraint),biasConstraint:An(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};Bh.className="LSTMCell";pe.registerClass(Bh);var X5=class extends la{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new Bh(e),super(e)}call(e,t){return Y(()=>{this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};X5.className="LSTM";pe.registerClass(X5);var C2=class extends Lh{constructor(e){super(e),this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return Y(()=>{e=e;let n=e.slice(1),s=[];for(let o of this.cells.slice().reverse())Array.isArray(o.stateSize)?s.push(n.splice(0,o.stateSize.length)):s.push(n.splice(0,1));s.reverse();let r=[],a;for(let o=0;o<this.cells.length;++o){let i=this.cells[o];n=s[o],o===0?a=[e[0]].concat(n):a=[a[0]].concat(n),a=i.call(a,t),r.push(a.slice(1))}n=[];for(let o of r.slice().reverse())n.push(...o);return[a[0]].concat(n)})}build(e){X3(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,s)=>{Qi(`RNNCell_${s}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=r=>({className:r.getClassName(),config:r.getConfig()}),s={cells:this.cells.map(t)};return Object.assign({},e,s)}static fromConfig(e,t,n={}){let s=[];for(let r of t.cells)s.push(Mr(r,n));return new e({cells:s})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return K3(e)}setWeights(e){let t=[];for(let n of this.cells){let s=n.weights.length,r=e.splice(s);for(let a=0;a<n.weights.length;++a)t.push([n.weights[a],r[a]])}A5(t)}};C2.className="StackedRNNCells";pe.registerClass(C2);function uo(e){let{ones:t,rate:n,training:s=!1,count:r=1,dropoutFunc:a}=e,o=()=>a!=null?a(t(),n):zk(t(),n),i=()=>$h(o,t,s);return!r||r<=1?Sn(i().clone()):Array(r).fill(void 0).map(i).map(u=>Sn(u.clone()))}var GG=function(e,t){var n={};for(var s in e)Object.prototype.hasOwnProperty.call(e,s)&&t.indexOf(s)<0&&(n[s]=e[s]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,s=Object.getOwnPropertySymbols(e);r<s.length;r++)t.indexOf(s[r])<0&&Object.prototype.propertyIsEnumerable.call(e,s[r])&&(n[s[r]]=e[s[r]]);return n},T8=class extends la{constructor(e){if(e.unroll)throw new Xe("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new Xe("It is not possible at the moment to stack convolutional cells.");super(e),this.inputSpec=[new an({ndim:5})]}call(e,t){return Y(()=>{if(this.cell.dropoutMask!=null&&(ee(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(ee(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new j("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,s=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:s,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return Y(()=>{let{stateSize:t}=this.cell,n=e.shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)],a=Vt(r);return Array.isArray(t)?Array(t.length).fill(a):[a]})}resetStates(e,t=!1){Y(()=>{if(!this.stateful)throw new ga("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,s=this.computeSingleOutputShape(n),r=[s[0],...s.slice(2)];if(n[0]==null)throw new j("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_=[Vt(r)];else if(e==null)ee(this.states_),this.keptStates!=null&&(ee(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>Vt(r)):this.states_[0]=Vt(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new j(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):ee(this.states_);for(let o=0;o<this.states_.length;++o){let i=e[o],l=r;if(!v.arraysEqual(i.shape,l))throw new j(`State ${o} is incompatible with layer ${this.name}: expected shape=${l}, received shape=${i.shape}`);this.states_[o]=i}}this.states_=this.states_.map(o=>Sn(o.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:s,padding:r,strides:a,dilationRate:o}=this.cell,i=t==="channelsFirst",l=e[i?3:2],u=e[i?4:3],c=zr(l,s[0],r,a[0],o[0]),p=zr(u,s[1],r,a[1],o[1]);return[...e.slice(0,2),...i?[n,c,p]:[c,p,n]]}};T8.className="ConvRNN2D";var T2=class extends Bh{constructor(e){let{filters:t,kernelSize:n,strides:s,padding:r,dataFormat:a,dilationRate:o}=e;super(Object.assign({},e,{units:t})),this.filters=t,In(this.filters,"filters"),this.kernelSize=sc(n,2,"kernelSize"),this.kernelSize.forEach(i=>In(i,"kernelSize")),this.strides=sc(s||1,2,"strides"),this.strides.forEach(i=>In(i,"strides")),this.padding=r||"valid",rr(this.padding),this.dataFormat=a||"channelsLast",Qt(this.dataFormat),this.dilationRate=sc(o||1,2,"dilationRate"),this.dilationRate.forEach(i=>In(i,"dilationRate"))}build(e){var t;e=At(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new j(`The channel dimension of the input should be defined. Found ${e[n]}`);let s=e[n],r=4,a=this.kernelSize.concat([s,this.filters*r]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let o=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",o,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let i;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;i=new(t=class extends Ar{apply(p,d){let h=l.apply([u]),f=Ds([u]),m=l.apply([u*2]);return c5([h,f,m])}},t.className="CustomInit",t)}else i=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,i,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return Y(()=>{if(e.length!==3)throw new j(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,s=e[0],r=e[1],a=e[2],o=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=uo({ones:()=>Ms(s),rate:this.dropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let i=this.dropoutMask,l=(Z,J,Q)=>!J||!J[Q]?Z:z(J[Q],Z),u=l(s,i,0),c=l(s,i,1),p=l(s,i,2),d=l(s,i,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=uo({ones:()=>Ms(r),rate:this.recurrentDropout,training:n,count:o,dropoutFunc:this.dropoutFunc}));let h=this.recurrentDropoutMask,f=l(r,h,0),m=l(r,h,1),g=l(r,h,2),y=l(r,h,3),x=3,[A,b,w,k]=Jt(this.kernel.read(),o,x),[C,E,_,$]=this.useBias?Jt(this.bias.read(),o):[null,null,null,null];u=this.inputConv(u,A,C,this.padding),c=this.inputConv(c,b,E,this.padding),p=this.inputConv(p,w,_,this.padding),d=this.inputConv(d,k,$,this.padding);let[R,P,S,M]=Jt(this.recurrentKernel.read(),o,x);f=this.recurrentConv(f,R),m=this.recurrentConv(m,P),g=this.recurrentConv(g,S),y=this.recurrentConv(y,M);let L=this.recurrentActivation.apply(ce(u,f)),U=this.recurrentActivation.apply(ce(c,m)),K=ce(z(U,a),z(L,this.activation.apply(ce(p,g)))),q=z(this.recurrentActivation.apply(ce(d,y)),this.activation.apply(K));return[q,q,K]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=GG(e,["units"]),s={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,s)}inputConv(e,t,n,s){let r=Sa(e,t,this.strides,s||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?Ur(r,n,this.dataFormat):r}recurrentConv(e,t){return Sa(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};T2.className="ConvLSTM2DCell";pe.registerClass(T2);var K5=class extends T8{constructor(e){let t=new T2(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};K5.className="ConvLSTM2D";pe.registerClass(K5);var N2=class extends ut{constructor(e){super(e),this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let s=0;s<this.noiseShape.length;++s)n.push(this.noiseShape[s]==null?t[s]:this.noiseShape[s]);return n}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(0<this.rate&&this.rate<1){let s=t.training==null?!1:t.training,r=this.getNoiseShape(n);return $h(()=>zk(n,this.rate,r,this.seed),()=>n,s)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};N2.className="Dropout";pe.registerClass(N2);var Z5=class extends N2{constructor(e){super(e),this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};Z5.className="SpatialDropout1D";pe.registerClass(Z5);var Y5=class extends ut{constructor(e){if(super(e),this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,In(this.units,"units"),this.activation=lo(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=Ft(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=Ft(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=xn(e.kernelConstraint),this.biasConstraint=xn(e.biasConstraint),this.kernelRegularizer=Ot(e.kernelRegularizer),this.biasRegularizer=Ot(e.biasRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=At(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=At(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=_k(this.activation.getClassName()),r;return s!=null?r=ta(n,this.kernel.read(),s,this.bias?this.bias.read():null):(r=ta(n,this.kernel.read()),this.bias!=null&&(r=Ur(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:io(this.activation),useBias:this.useBias,kernelInitializer:Ut(this.kernelInitializer),biasInitializer:Ut(this.biasInitializer),kernelRegularizer:St(this.kernelRegularizer),biasRegularizer:St(this.biasRegularizer),activityRegularizer:St(this.activityRegularizer),kernelConstraint:An(this.kernelConstraint),biasConstraint:An(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};Y5.className="Dense";pe.registerClass(Y5);var J5=class extends ut{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=At(e);for(let t of e.slice(1))if(t==null)throw new j(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],Qa(e,1)]}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let s=[0];for(let r=2;r<n.rank;++r)s.push(r);s.push(1),n=tt(n,s)}return rU(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};J5.className="Flatten";pe.registerClass(J5);var Q5=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.activation=lo(e.activation)}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.activation.apply(n)})}getConfig(){let e={activation:io(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};Q5.className="Activation";pe.registerClass(Q5);var ex=class extends ut{constructor(e){super(e),this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return Y(()=>(e=Ke(e),nU(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};ex.className="RepeatVector";pe.registerClass(ex);var tx=class extends ut{constructor(e){super(e),this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",s=t.slice(),r=1,a=null;for(let i=0;i<s.length;++i){let l=s[i];if(this.isUnknown(l))if(a===null)a=i;else throw new j("Can only specifiy one unknown dimension.");else r*=l}let o=Qa(e);if(a!==null){if(r===0||o%r!==0)throw new j(n);s[a]=o/r}else if(o!==r)throw new j(n);return s}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=n.shape,r=s.slice(0,1).concat(this.fixUnknownDimension(s.slice(1),this.targetShape));return V(n,r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};tx.className="Reshape";pe.registerClass(tx);var nx=class extends ut{constructor(e){if(super(e),e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Lr(1,e.dims.length+1);if(!v.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new an({ndim:this.dims.length+1})]}computeOutputShape(e){e=At(e);let t=e.slice();return this.dims.forEach((n,s)=>{t[s+1]=e[n]}),t}call(e,t){return tt(Ke(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};nx.className="Permute";pe.registerClass(nx);var sx=class extends ut{constructor(e){super(e==null?{}:e),this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Ke(e),s=-1;return Rp(il(n,this.maskValue),s)}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e),s=-1,r=!0,a=Rp(il(n,this.maskValue),s,r);return z(n,ye(a,n.dtype))})}};sx.className="Masking";pe.registerClass(sx);var rx=class extends ut{constructor(e){if(super(e),this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(Dt(e.inputLength))}this.inputDim=e.inputDim,In(this.inputDim,"inputDim"),this.outputDim=e.outputDim,In(this.outputDim,"outputDim"),this.embeddingsInitializer=Ft(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=Ot(e.embeddingsRegularizer),this.activityRegularizer=Ot(e.activityRegularizer),this.embeddingsConstraint=xn(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return Y(()=>this.maskZero?(e=Ke(e),il(e,lt(e))):null)}computeOutputShape(e){if(e=At(e),this.inputLength==null)return[...e,this.outputDim];let t=Dt(this.inputLength);if(t.length!==e.length-1)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let s=0;s<t.length;++s){let r=t[s],a=e[s+1];if(r!=null&&a!=null&&r!==a)throw new j(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=a),n++}}return[e[0],...t,this.outputDim]}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);n.dtype!=="int32"&&(n=d2(n,"int32"));let s=Mk(this.embeddings.read(),V(n,[n.size]));return V(s,At(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Ut(this.embeddingsInitializer),embeddingsRegularizer:St(this.embeddingsRegularizer),activityRegularizer:St(this.activityRegularizer),embeddingsConstraint:An(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};rx.className="Embedding";pe.registerClass(rx);var hu=class extends ut{constructor(e){super(e||{}),this.supportsMasking=!0}mergeFunction(e){throw new Xe}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let s=0;s<t.length;++s){let r=e[e.length-t.length+s],a=t[s];if(r==null||a==null||r<0||a<0)n.push(null);else if(r===1)n.push(a);else if(a===1)n.push(r);else{if(r!==a)throw new j("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[At(e)]),e=e,e.length<2)throw new j(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=Ja(t),t.length>1)throw new j(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let a=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,a)}let s=e.map(r=>r.length);e.indexOf(null)===-1&&Ja(s).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return Y(()=>{if(e=e,this.reshapeRequired){let n=[],s=e.map(r=>r.rank);if(s.indexOf(null)===-1){let r=oo(s);for(let a of e){let o=a.rank;for(let i=0;i<r-o;++i)a=_h(a,1);n.push(a)}return this.mergeFunction(n)}else{let r=!1;for(let i of e){let l=i.rank;if(l==null){let u=i.shape,c=u[0],p=u.slice(1).concat([c]),d=V(i,[c].concat(Qa(u.slice(1))));d=tt(d,[1,0]),d=V(d,p),n.push(d),r=!0}else if(l>1){let u=Lr(1,l).concat([0]);n.push(tt(i,u)),r=!0}else n.push(i)}let a=this.mergeFunction(n),o=a.rank;if(r){if(o==null){let i=a.shape,l=i.length,u=i[l-1],c=[u].concat(i.slice(0,i.length-1));a=V(tt(V(a,[-1,u]),[1,0]),c)}else if(o>1){let i=[o-1].concat(Lr(0,o-1));a=tt(a,i)}}return a}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let s=1;s<e.length;++s){let r=e[s]==null?null:e[s].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let s of e)s!=null&&s[0]!==null&&n.push(s[0]);return n=Ja(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return Y(()=>{if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an Array");if(!Array.isArray(e))throw new j("`inputs` should be an Array");if(t.length!==e.length)throw new j(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(s=>s==null))return null;t=t.map(s=>s==null?s:Bt(s,0));let n=t[0];for(let s=1;s<t.length-1;++s)n=mr(n,t[s]);return n})}},ax=class extends hu{constructor(e){super(e)}mergeFunction(e){return Y(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return t})}};ax.className="Add";pe.registerClass(ax);var ox=class extends hu{constructor(e){super(e)}mergeFunction(e){return Y(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=z(t,e[n]);return t})}};ox.className="Multiply";pe.registerClass(ox);var ix=class extends hu{constructor(e){super(e)}mergeFunction(e){return Y(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ce(t,e[n]);return z(1/e.length,t)})}};ix.className="Average";pe.registerClass(ix);var lx=class extends hu{constructor(e){super(e)}mergeFunction(e){return Y(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=ia(t,e[n]);return t})}};lx.className="Maximum";pe.registerClass(lx);var ux=class extends hu{constructor(e){super(e)}mergeFunction(e){return Y(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=nd(t,e[n]);return t})}};ux.className="Minimum";pe.registerClass(ux);var cx=class extends hu{constructor(e){super(e),this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new j("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let s of e)if(s!=null){t=!1;break}if(t)return;let n=[];for(let s=0;s<e.length;++s){let r=e[s].slice();r.splice(this.axis,1);let a=!1;for(let o of n)if(v.arraysEqual(o,r)){a=!0;break}a||n.push(r)}if(n.length>1)throw new j("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return Y(()=>c5(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new j("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),s=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[s]==null||r[s]==null){n[s]=null;break}n[s]+=r[s]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new j("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new j("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new j(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return Y(()=>{let n=!0;if(t.forEach(a=>{if(a!=null){n=!1;return}}),n)return null;let s=[];for(let a=0;a<e.length;++a)t[a]==null?s.push(ye(Ms(e[a]),"bool")):t[a].rank<e[a].rank?s.push(Bt(t[a],-1)):s.push(t[a]);let r=It(s,this.axis);return N0(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};cx.className="Concatenate";pe.registerClass(cx);function rp(e,t){for(;e<0;)e+=t;return e}function HG(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new Xe("batchDot is not implemented for tensors of 4D or higher rank yet");if(v.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),v.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new Xe("batchDot is not implemented for complex64-type Tensors yet.");let s=e.shape.length,r=t.shape.length;n==null&&(n=[s-1,r-2]);let a=n;return Y(()=>{let o;if(s>r){o=s-r;let l=[];for(let u=0;u<o;++u)l.push(1);t=V(t,t.shape.concat(l))}else if(r>s){o=r-s;let l=[];for(let u=0;u<o;++u)l.push(1);e=V(e,e.shape.concat(l))}else o=0;let i;if(e.shape.length===2&&t.shape.length===2)a[0]===a[1]?i=ke(z(e,t),a[0]):i=ke(z(tt(e,[1,0]),t),a[1]);else{let l=a[0]!==e.shape.length-1,u=a[1]===t.shape.length-1;i=et(e,t,l,u)}if(o>0){let l;s>r?l=s+r-3:l=s-1;let u=[];for(let c=l;c<l+o;++c)u.push(c);i=rt(i,u)}return i.shape.length===1&&(i=Bt(i,1)),i})}var dx=class extends hu{constructor(e){super(e),this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);if(t[s[0]]!==n[s[1]])throw new j(`Dimension incompatibility: ${t[s[0]]} !== ${n[s[1]]}`)}mergeFunction(e){if(e.length!==2)throw new j(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],s;return Array.isArray(this.axes)?s=this.axes.map((r,a)=>rp(r,e[a].shape.length)):s=[rp(this.axes,t.shape.length),rp(this.axes,n.shape.length)],this.normalize&&(t=Pm(t,s[0]),n=Pm(n,s[1])),HG(t,n,s)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[rp(this.axes,e.length),rp(this.axes,t.length)],n}computeOutputShape(e){v.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new Xe("Dot layer does not support tensors of 4D or higher rank yet.");let s=this.interpretAxes(t,n);t.splice(s[0],1),n.splice(s[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};dx.className="Dot";pe.registerClass(dx);var px=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);return $h(()=>ce(p2(n.shape,0,this.stddev),n),()=>n,t.training||!1)})}};px.className="GaussianNoise";pe.registerClass(px);var hx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Y(()=>{this.invokeCallHook(e,t);let n=Ke(e);return this.rate>0&&this.rate<1?$h(()=>{let r=Math.sqrt(this.rate/(1-this.rate));return z(n,p2(n.shape,1,r))},()=>n,t.training||!1):n})}};hx.className="GaussianDropout";pe.registerClass(hx);var fx=class extends ut{constructor(e){super(e),this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Ke(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return Y(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return $h(()=>{let r=Ke(e),a=1.6732632423543772,o=1.0507009873554805,i=-a*o,l=di(sd(n),this.rate);l=d2(l,"float32");let u=((1-this.rate)*(1+this.rate*i**2))**-.5,c=-u*i*this.rate,p=ce(z(r,l),z(ce(l,-1),i));return ce(z(p,u),c)},()=>Ke(e),t.training||!1)}return e})}};fx.className="AlphaDropout";pe.registerClass(fx);function Pp(e,t,n,s,r,a=.001){let o;if(e.rank===2)o=mA(e,t,n,s,r,a);else if(e.rank===3)o=gA(e,t,n,s,r,a);else if(e.rank===4)o=yA(e,t,n,s,r,a);else throw new Xe(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return o}function jG(e,t,n,s,r=.001){return Y(()=>{let a=kh(e,s),o=a.mean,i=a.variance;return[Pp(e,o,i,n,t,r),o,i]})}function qG(e,t,n,s,r=.001){return Y(()=>{let a=kh(e,s),o=a.mean,i=a.variance,l=[];for(let f of Lr(0,e.rank))s.indexOf(f)!==-1?l.push(1):l.push(e.shape[f]);let u=V(o,l),c=V(i,l),p=t==null?null:V(t,l),d=n==null?null:V(n,l);return[Pp(e,u,c,d,p,r),o,i]})}function XG(e,t,n,s,r=.001){return v.arraysEqual(s.slice().sort(),Lr(0,e.rank-1))?jG(e,t,n,s,r):qG(e,t,n,s,r)}var mx=class extends ut{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.movingMeanInitializer=Ft(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=Ft(e.movingVarianceInitializer||"ones"),this.betaConstraint=xn(e.betaConstraint),this.gammaConstraint=xn(e.gammaConstraint),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer)}build(e){e=At(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new j(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new an({ndim:e.length,axes:{[t]:n}})];let s=[n];this.scale&&(this.gamma=this.addWeight("gamma",s,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",s,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",s,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",s,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return Y(()=>{let n=t.training==null?!1:t.training,s=Ke(e),r=s.shape,a=r.length,o=Lr(0,a),i=this.axis>=0?this.axis:this.axis+a;o.splice(i,1);let l=ll(1,a);l[i]=r[i];let u=o.slice();u.sort();let c=!v.arraysEqual(u,Lr(0,a).slice(0,a-1)),p=()=>{if(c){let y=V(this.movingMean.read(),l),x=V(this.movingVariance.read(),l),A=this.center?V(this.beta.read(),l):null,b=this.scale?V(this.gamma.read(),l):null;return Pp(s,y,x,A,b,this.epsilon)}else return Pp(s,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[d,h,f]=XG(s,this.gamma.read(),this.beta.read(),o,this.epsilon),m=(y,x,A)=>{Y(()=>{let b=1-A,w=y.read(),k=z(ge(w,x),b);y.write(ge(w,k))})};return(()=>{m(this.movingMean,h,this.momentum),m(this.movingVariance,f,this.momentum)})(),d})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),movingMeanInitializer:Ut(this.movingMeanInitializer),movingVarianceInitializer:Ut(this.movingVarianceInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer),betaConstraint:An(this.betaConstraint),gammaConstraint:An(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};mx.className="BatchNormalization";pe.registerClass(mx);var gx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=Ft(e.betaInitializer||"zeros"),this.gammaInitializer=Ft(e.gammaInitializer||"ones"),this.betaRegularizer=Ot(e.betaRegularizer),this.gammaRegularizer=Ot(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=At(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==Ja(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),s=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,s):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,s):this.beta=null,this.built=!0}call(e,t){let n=Ke(e),s=n.shape,r=s.length;return Y(()=>{let{mean:o,variance:i}=kh(n,this.axis,!0),l=ll(1,r);for(let f of this.axis)l[f]=s[f];let u=f=>f!=null&&f.shape.length!==r?V(f,l):f,c=this.scale?u(this.gamma.read()):null,p=this.center?u(this.beta.read()):null,d=[],h=[];for(let f=0;f<r;++f)this.axis.indexOf(f)!==-1?(d.push(s[f]),h.push(1)):(d.push(1),h.push(s[f]));return o=Ks(o,d),i=Ks(i,d),c!=null&&(c=Ks(c,h)),p!=null&&(p=Ks(p,h)),Pp(n,o,i,p,c,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Ut(this.betaInitializer),gammaInitializer:Ut(this.gammaInitializer),betaRegularizer:St(this.betaRegularizer),gammaRegularizer:St(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};gx.className="LayerNormalization";pe.registerClass(gx);function KG(e,t,n){return Y(()=>{if(e.rank!==4)throw new j(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new j("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Br()),n!=="channelsLast"&&n!=="channelsFirst")throw new j(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let s;return n==="channelsFirst"?s=[[0,0],[0,0],t[0],t[1]]:s=[[0,0],t[0],t[1],[0,0]],sr(e,s)})}var yx=class extends ut{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Br():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new j(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new j(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new j(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return Y(()=>KG(Ke(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};yx.className="ZeroPadding2D";pe.registerClass(yx);function E2(e,t,n,s,r,a){return Y(()=>{Qt(r),$k(a),rr(s),n==null&&(n=[1,1]),s==null&&(s="valid"),r==null&&(r=Br()),a==null&&(a="max"),e=z5(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=wh(e,t,n,i):o=gh(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,3,1,2])),o})}function N8(e,t,n,s,r,a){return Y(()=>{Qt(r),$k(a),rr(s),n==null&&(n=[1,1,1]),s==null&&(s="valid"),r==null&&(r=Br()),a==null&&(a="max"),e=k8(e,r);let o,i=s==="same"?"same":"valid";return a==="max"?o=WA(e,t,n,i):o=fA(e,t,n,i),r==="channelsFirst"&&(o=tt(o,[0,4,1,2,3])),o})}var E8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new j(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(In(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new j(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);In(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,rr(this.padding),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){e=At(e);let t=zr(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return Y(()=>{this.invokeCallHook(e,t),e=_h(Ke(e),2);let n=this.poolingFunction(Ke(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return rt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},Ax=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),E2(e,t,n,s,r,"max")}};Ax.className="MaxPooling1D";pe.registerClass(Ax);var xx=class extends E8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),E2(e,t,n,s,r,"avg")}};xx.className="AveragePooling1D";pe.registerClass(xx);var R8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new j(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];In(this.poolSize,"poolSize"),In(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Qt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=zr(t,this.poolSize[0],this.padding,this.strides[0]),n=zr(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return Y(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},bx=class extends R8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),E2(e,t,n,s,r,"max")}};bx.className="MaxPooling2D";pe.registerClass(bx);var vx=class extends R8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),E2(e,t,n,s,r,"avg")}};vx.className="AveragePooling2D";pe.registerClass(vx);var _8=class extends ut{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new j(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];In(this.poolSize,"poolSize"),In(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Qt(this.dataFormat),rr(this.padding),this.inputSpec=[new an({ndim:5})]}computeOutputShape(e){e=At(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],s=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=zr(t,this.poolSize[0],this.padding,this.strides[0]),n=zr(n,this.poolSize[1],this.padding,this.strides[1]),s=zr(s,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,s]:[e[0],t,n,s,e[4]]}call(e,t){return Y(()=>(this.invokeCallHook(e,t),this.poolingFunction(Ke(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},wx=class extends _8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),N8(e,t,n,s,r,"max")}};wx.className="MaxPooling3D";pe.registerClass(wx);var kx=class extends _8{constructor(e){super(e)}poolingFunction(e,t,n,s,r){return Qt(r),rr(s),N8(e,t,n,s,r,"avg")}};kx.className="AveragePooling3D";pe.registerClass(kx);var D8=class extends ut{constructor(e){super(e),this.inputSpec=[new an({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new Xe}},Sx=class extends D8{constructor(e){super(e||{})}call(e,t){return Y(()=>{let n=Ke(e);return Wt(n,1)})}};Sx.className="GlobalAveragePooling1D";pe.registerClass(Sx);var Ix=class extends D8{constructor(e){super(e||{})}call(e,t){return Y(()=>{let n=Ke(e);return yn(n,1)})}};Ix.className="GlobalMaxPooling1D";pe.registerClass(Ix);var $8=class extends ut{constructor(e){super(e),this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Qt(this.dataFormat),this.inputSpec=[new an({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new Xe}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},Cx=class extends $8{call(e,t){return Y(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?Wt(n,[1,2]):Wt(n,[2,3])})}};Cx.className="GlobalAveragePooling2D";pe.registerClass(Cx);var Tx=class extends $8{call(e,t){return Y(()=>{let n=Ke(e);return this.dataFormat==="channelsLast"?yn(n,[1,2]):yn(n,[2,3])})}};Tx.className="GlobalMaxPooling2D";pe.registerClass(Tx);var P8=class extends ut{constructor(e){super(e),this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let s=t.layer,r=Mr(s,n);delete t.layer;let a={layer:r};return Object.assign(a,t),new e(a)}},Nx=class extends P8{constructor(e){super(e),this.supportsMasking=!0}build(e){if(e=At(e),e.length<3)throw new j(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=At(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),s=e[1];return[n[0],s].concat(n.slice(1))}call(e,t){return Y(()=>(e=Ke(e),C8((a,o)=>[Ke(this.layer.call(a,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};Nx.className="TimeDistributed";pe.registerClass(Nx);function ZG(e){du(YV,"BidirectionalMergeMode",e)}var YG="concat",Ex=class extends P8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Mr(n),t.goBackwards=t.goBackwards!==!0;let s={};if(s.className=e.layer.getClassName(),s.config=t,this.backwardLayer=Mr(s),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?YG:e.mergeMode,ZG(this.mergeMode),e.weights)throw new Xe("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,s,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,s=[n]):this.mergeMode==null?s=[n,n.slice()]:s=[n],this.returnState?this.mergeMode==null?s.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):gs(s)}apply(e,t){let n=t==null?null:t.initialState,s=t==null?null:t.constants;t==null&&(t={});let r=I8(e,n,s,this.numConstants);if(e=r.inputs,n=r.initialState,s=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&s==null)return super.apply(e,t);let a=[],o=[];if(n!=null){let l=n.length;if(l%2>0)throw new j("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,a.push(...n);let u=n.map(c=>new an({shape:c.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),o.push(...u)}if(s!=null)throw new Xe("Support for constants in Bidirectional layers is not implemented yet.");let i=a[0]instanceof Fr;for(let l of a)if(l instanceof Fr!==i)throw new j("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(i){let l=[e].concat(a),u=this.inputSpec.concat(o),c=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=c,p}else return super.apply(e,t)}call(e,t){return Y(()=>{let n=t.initialState,s,r;if(n==null)s=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let i=n.slice(0,n.length/2),l=n.slice(n.length/2);s=this.forwardLayer.call(e,Object.assign(t,{initialState:i})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let a;this.returnState&&(Array.isArray(s)&&(a=s.slice(1).concat(r.slice(1))),s=s[0],r=r[0]),this.returnSequences&&(r=Qs(r,1));let o;return this.mergeMode==="concat"?o=c5([s,r]):this.mergeMode==="sum"?o=ce(s,r):this.mergeMode==="ave"?o=z(.5,ce(s,r)):this.mergeMode==="mul"?o=z(s,r):this.mergeMode==null&&(o=[s,r]),this.returnState?this.mergeMode==null?o.concat(a):[o].concat(a):o})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Qi(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Qi(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let r=this.forwardLayer.states.map(a=>null);return Array.isArray(n)?n.concat(r).concat(r):[n].concat(r).concat(r)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Mr(t.layer);if(delete t.layer,t.numConstants!=null)throw new Xe("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let s=t;return s.layer=n,new e(s)}};Ex.className="Bidirectional";pe.registerClass(Ex);function JG(e){return new ad(e)}function QG(e){return new F5(e)}function eH(e){return new D5(e)}function tH(e){return new $5(e)}function nH(e){return new P5(e)}function sH(e){return new M5(e)}function rH(e){return new O5(e)}function aH(e){return new k2(e)}function oH(e){return new Mh(e)}function iH(e){return new B5(e)}function lH(e){return new zh(e)}function uH(e){return new W5(e)}function cH(e){return new V5(e)}function dH(e){return new U5(e)}function pH(e){return new G5(e)}function hH(e){return new H5(e)}function fH(e){return new Q5(e)}function mH(e){return new Y5(e)}function gH(e){return new N2(e)}function yH(e){return new Z5(e)}function AH(e){return new J5(e)}function xH(e){return new ex(e)}function bH(e){return new tx(e)}function vH(e){return new nx(e)}function wH(e){return new rx(e)}function kH(e){return new ax(e)}function SH(e){return new ix(e)}function IH(e){return new cx(e)}function CH(e){return new lx(e)}function TH(e){return new ux(e)}function NH(e){return new ox(e)}function EH(e){return new dx(e)}function RH(e){return new mx(e)}function _H(e){return new gx(e)}function DH(e){return new yx(e)}function Rx(e){return new xx(e)}function $H(e){return Rx(e)}function PH(e){return Rx(e)}function _x(e){return new vx(e)}function FH(e){return _x(e)}function OH(e){return _x(e)}function Dx(e){return new kx(e)}function MH(e){return Dx(e)}function zH(e){return Dx(e)}function LH(e){return new Sx(e)}function BH(e){return new Cx(e)}function F8(e){return new Ix(e)}function O8(e){return new Tx(e)}function M8(e){return new Ax(e)}function z8(e){return new bx(e)}function WH(e){return new wx(e)}function VH(e){return new q5(e)}function UH(e){return new I2(e)}function GH(e){return new X5(e)}function HH(e){return new Bh(e)}function jH(e){return new j5(e)}function qH(e){return new S2(e)}function XH(e){return new K5(e)}function KH(e){return new T2(e)}function ZH(e){return new la(e)}function YH(e){return new C2(e)}function JH(e){return new Ex(e)}function QH(e){return new Nx(e)}var ej=F8,tj=O8,nj=M8,sj=z8;function rj(e){return new px(e)}function aj(e){return new hx(e)}function oj(e){return new fx(e)}function ij(e){return new sx(e)}var L8={};He(L8,{MAPE:()=>Aj,MSE:()=>vj,binaryAccuracy:()=>lj,binaryCrossentropy:()=>uj,categoricalAccuracy:()=>dj,categoricalCrossentropy:()=>pj,cosineProximity:()=>mj,mape:()=>xj,meanAbsoluteError:()=>gj,meanAbsolutePercentageError:()=>yj,meanSquaredError:()=>bj,mse:()=>wj,precision:()=>hj,recall:()=>fj,sparseCategoricalAccuracy:()=>cj});function lj(e,t){return I5(e,t)}function uj(e,t){return Qk(e,t)}function cj(e,t){return e8(e,t)}function dj(e,t){return C5(e,t)}function pj(e,t){return T5(e,t)}function hj(e,t){return Jk(e,t)}function fj(e,t){return tG(e,t)}function mj(e,t){return S5(e,t)}function gj(e,t){return v2(e,t)}function yj(e,t){return od(e,t)}function Aj(e,t){return od(e,t)}function xj(e,t){return od(e,t)}function bj(e,t){return pu(e,t)}function vj(e,t){return pu(e,t)}function wj(e,t){return pu(e,t)}var B8={};He(B8,{modelFromJSON:()=>_G});var W8={};He(W8,{l1:()=>Sj,l1l2:()=>kj,l2:()=>Ij});function kj(e){return new Fh(e)}function Sj(e){return LG(e)}function Ij(e){return BG(e)}var V8=class extends fc{constructor(){super(...arguments),this.model=null}setModel(e){if(!(e instanceof va))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function tm(e,t){return e<t}function h7(e,t){return e>t}var U8=class extends V8{constructor(e){if(super(),e==null&&(e={}),e.restoreBestWeights)throw new Xe("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=tm:this.mode==="max"?this.monitorFunc=h7:this.monitor.indexOf("acc")!==-1?this.monitorFunc=h7:this.monitorFunc=tm,this.monitorFunc===tm&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===tm?1/0:-1/0}async onEpochEnd(e,t){await ja(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Cj(e){return new U8(e)}var Tj={earlyStopping:Cj},Nj=H();Nj.registerFlag("KEEP_INTERMEDIATE_TENSORS",()=>!1,e=>{e&&console.warn("Keep intermediate tensors is ON. This will print the values of all intermediate tensors during model inference. Not all models support this mode. For details, check e2e/benchmarks/ model_config.js. This significantly impacts performance.")});var dr;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_QINT16=15]="DT_QINT16",e[e.DT_QUINT16=16]="DT_QUINT16",e[e.DT_UINT16=17]="DT_UINT16",e[e.DT_COMPLEX128=18]="DT_COMPLEX128",e[e.DT_HALF=19]="DT_HALF",e[e.DT_RESOURCE=20]="DT_RESOURCE",e[e.DT_VARIANT=21]="DT_VARIANT",e[e.DT_UINT32=22]="DT_UINT32",e[e.DT_UINT64=23]="DT_UINT64",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF",e[e.DT_QINT16_REF=115]="DT_QINT16_REF",e[e.DT_QUINT16_REF=116]="DT_QUINT16_REF",e[e.DT_UINT16_REF=117]="DT_UINT16_REF",e[e.DT_COMPLEX128_REF=118]="DT_COMPLEX128_REF",e[e.DT_HALF_REF=119]="DT_HALF_REF",e[e.DT_RESOURCE_REF=120]="DT_RESOURCE_REF",e[e.DT_VARIANT_REF=121]="DT_VARIANT_REF",e[e.DT_UINT32_REF=122]="DT_UINT32_REF",e[e.DT_UINT64_REF=123]="DT_UINT64_REF"})(dr||(dr={}));var f7;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(f7||(f7={}));var $x={};function Ej(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};$x[e]=n}function G8(e){return $x[e]}function Rj(e){delete $x[e]}function I(e,t,n,s,r){let a=t.inputParams[e];if(a&&a.inputIndexStart!==void 0){let i=a.inputIndexStart,l=a.inputIndexEnd===0?void 0:a.inputIndexEnd===void 0?i+1:a.inputIndexEnd;if(a.type==="tensor")return rs(t.inputNames[a.inputIndexStart],n,s,r);if(a.type==="tensors")return t.inputNames.slice(i,l).map(d=>rs(d,n,s,r));let u=rs(t.inputNames.slice(i)[0],n,s,r),c=u.dataSync();return a.type==="number"?c[0]:v.toNestedArray(u.shape,c)}let o=t.attrParams[e];return o&&o.value}function rs(e,t,n,s){let[r,a]=Es(e);if(s!=null){let i=s.getHashTableHandleByName(r);if(i!=null)return i}let o=n.currentContextIds.find(i=>!!t[Lm(r,i)]);return o!==void 0?t[Lm(r,o)][a]:void 0}function _j(e,t,n){return t[Lm(e,n.currentContextId)]}function Qr(e,t){let[n,s,r]=Es(e);return[Lm(n,t&&t.currentContextId),s,r]}function Lm(e,t){return t?`${e}-${t}`:e}function Es(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],s=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,s]}function pm(e,t,n){let s=I("pad",e,t,n);if(s==="explicit"){s=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let a=0;a<4;a++)r[a][0]=s[a*2],r[a][1]=s[a*2+1];return r}return s}function Aa(e){return e.kept?e:Vn(e)}var H8={};He(H8,{json:()=>Dj});var Dj=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],j8={};He(j8,{json:()=>$j});var $j=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],q8={};He(q8,{json:()=>Pj});var Pj=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcatV2",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListLength",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}]},{tfOpName:"TensorListResize",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"size",type:"number"}]}],X8={};He(X8,{json:()=>Fj});var Fj=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],K8={};He(K8,{json:()=>Oj});var Oj=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomStandardNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],Z8={};He(Z8,{json:()=>Mj});var Mj=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],Y8={};He(Y8,{json:()=>zj});var zj=[{tfOpName:"LowerBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"UpperBound",category:"evaluation",inputs:[{start:0,name:"sortedSequence",type:"tensor"},{start:1,name:"values",type:"tensor"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],J8={};He(J8,{json:()=>Lj});var Lj=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],Q8={};He(Q8,{json:()=>Bj});var Bj=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],eS={};He(eS,{json:()=>Wj});var Wj=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]},{tfOpName:"ImageProjectiveTransformV3",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"transforms",type:"tensor"},{start:2,name:"outputShape",type:"number[]"},{start:3,name:"fillValue",type:"number"}],attrs:[{tfName:"interpolation",name:"interpolation",type:"string"},{tfName:"fill_mode",name:"fillMode",type:"string"}]}],tS={};He(tS,{json:()=>Vj});var Vj=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],nS={};He(nS,{json:()=>Uj});var Uj=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],sS={};He(sS,{json:()=>Gj});var Gj=[{tfOpName:"EuclideanNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",defaultValue:!1}]},{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],rS={};He(rS,{json:()=>Hj});var Hj=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumprod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],aS={};He(aS,{json:()=>jj});var jj=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],oS={};He(oS,{json:()=>qj});var qj=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],iS={};He(iS,{json:()=>Xj});var Xj=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],lS={};He(lS,{json:()=>Kj});var Kj=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],uS={};He(uS,{json:()=>Zj});var Zj=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]},{tfOpName:"BroadcastArgs",category:"transformation",inputs:[{start:0,name:"s0",type:"tensor"},{start:1,name:"s1",type:"tensor"}],attrs:[]}],m7=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[H8,j8,q8,X8,K8,Z8,Y8,J8,Q8,eS,tS,nS,sS,rS,aS,oS,iS,lS,uS],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,s)=>(n[s.tfOpName]=s,n),{})}transformGraph(e,t={}){let n=e.node,s=[],r=[],a=[],o=n.reduce((f,m)=>(f[m.name]=this.mapNode(m),m.op.startsWith("Placeholder")?s.push(f[m.name]):m.op==="Const"?r.push(f[m.name]):(m.input==null||m.input.length===0)&&a.push(f[m.name]),f),{}),i=[],l=[],u={},c={};t!=null&&(u=this.mapSignatureEntries(t.inputs),c=this.mapSignatureEntries(t.outputs));let p=Object.keys(o);p.forEach(f=>{let m=o[f];m.inputNames.forEach((g,y)=>{let[x,,A]=Qr(g),b=o[x];if(b.outputs!=null){let w=b.outputs.indexOf(A);if(w!==-1){let k=`${x}:${w}`;m.inputNames[y]=k}}m.inputs.push(b),b.children.push(m)})}),Object.keys(c).length===0?p.forEach(f=>{let m=o[f];m.children.length===0&&l.push(m)}):Object.keys(c).forEach(f=>{let[m]=Qr(f),g=o[m];g!=null&&(g.signatureKey=c[f],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(f=>{let[m]=Qr(f),g=o[m];g&&(g.signatureKey=u[f],i.push(g))}):i=s;let d={};e.library!=null&&e.library.function!=null&&(d=e.library.function.reduce((f,m)=>(f[m.signature.name]=this.mapFunction(m),f),{}));let h={nodes:o,inputs:i,outputs:l,weights:r,placeholders:s,signature:t,functions:d};return a.length>0&&(h.initNodes=a),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=G8(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(s=>s.startsWith("^")?s.slice(1):s),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((s,r)=>(s[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},s),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((s,r)=>{let a=r.type,o;switch(r.type){case"string":o=ty(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ty(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":o=ly(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ly(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":o=sy(e.attr,r.tfName,r.defaultValue||0),o===void 0&&!!r.tfDeprecatedName&&(o=sy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":o=iy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=iy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":o=ny(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ny(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":o=cy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=cy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":o=oy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=oy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":o=uy(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=uy(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":o=ry(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ry(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":o=ay(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=ay(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":o=g7(e.attr,r.tfName,r.defaultValue),o===void 0&&!!r.tfDeprecatedName&&(o=g7(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return s[r.name]={value:o,type:a},s},{})),n}mapFunction(e){let t=e.nodeDef,n=[],s=[],r={};t!=null&&(r=t.reduce((c,p)=>(c[p.name]=this.mapNode(p),p.op==="Const"&&s.push(c[p.name]),c),{}));let a=[],o=[];e.signature.inputArg.forEach(c=>{let[p]=Qr(c.name),d={name:p,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:Px(c.type),type:"dtype"}},children:[]};d.signatureKey=c.name,a.push(d),r[p]=d}),Object.keys(r).forEach(c=>{let p=r[c];p.inputNames.forEach((d,h)=>{let[f,,m]=Qr(d),g=r[f];if(g.outputs!=null){let y=g.outputs.indexOf(m);if(y!==-1){let x=`${f}:${y}`;p.inputNames[h]=x}}p.inputs.push(g),g.children.push(p)})});let l=e.ret;e.signature.outputArg.forEach(c=>{let[p,d]=Qr(l[c.name]),h=r[p];h!=null&&(h.defaultOutput=d,o.push(h))});let u=this.mapArgsToSignature(e);return{nodes:r,inputs:a,outputs:o,weights:s,placeholders:n,signature:u}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Yj(e){let t=H().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function cS(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Yj(e);return t?n:n.toLowerCase()}function ty(e,t,n,s=!1){let r=e[t];return r!=null?cS(r.s,s):n}function ny(e,t,n){let s=e[t];return s?s.b:n}function sy(e,t,n){let s=e[t]||{},r=s.i!=null?s.i:s.f!=null?s.f:n;return typeof r=="number"?r:parseInt(r,10)}function Px(e){switch(typeof e=="string"&&(e=dr[e]),e){case dr.DT_FLOAT:case dr.DT_HALF:return"float32";case dr.DT_INT32:case dr.DT_INT64:case dr.DT_INT8:case dr.DT_UINT8:return"int32";case dr.DT_BOOL:return"bool";case dr.DT_DOUBLE:return"float32";case dr.DT_STRING:return"string";default:return null}}function g7(e,t,n){let s=e[t];return s&&s.func?s.func.name:n}function ry(e,t,n){let s=e[t];return s&&s.type?Px(s.type):n}function ay(e,t,n){let s=e[t];return s&&s.list&&s.list.type?s.list.type.map(r=>Px(r)):n}function dS(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function oy(e,t,n){let s=e[t];return s&&s.shape?dS(s.shape):n}function iy(e,t,n){let s=e[t];return s?((s.list.f&&s.list.f.length?s.list.f:s.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function ly(e,t,n,s=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(a=>cS(a,s)):n}function uy(e,t,n){let s=e[t];return s&&s.list&&s.list.shape?s.list.shape.map(r=>dS(r)):n}function cy(e,t,n){let s=e[t];return s&&s.list&&s.list.b?s.list.b:n}var Jj=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(s=>this.getInput(s)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((s,r)=>(s[r]=this.getAttr(r),s),{}))}getInput(e){return rs(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return rs(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return sy(this.node.rawAttrs,e,t);if(n.s!=null)return ty(this.node.rawAttrs,e,t);if(n.b!=null)return ny(this.node.rawAttrs,e,t);if(n.shape!=null)return oy(this.node.rawAttrs,e,t);if(n.type!=null)return ry(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return iy(this.node.rawAttrs,e,t);if(n.list.s!=null)return ly(this.node.rawAttrs,e,t);if(n.list.shape!=null)return uy(this.node.rawAttrs,e,t);if(n.list.b!=null)return cy(this.node.rawAttrs,e,t);if(n.list.type!=null)return ay(this.node.rawAttrs,e,t)}return t}},Mn={};He(Mn,{OP_SCOPE_SUFFIX:()=>Wy,abs:()=>rn,acos:()=>aA,acosh:()=>oA,add:()=>ce,addN:()=>T0,all:()=>N0,any:()=>Rp,argMax:()=>$s,argMin:()=>iA,asin:()=>lA,asinh:()=>uA,atan:()=>cA,atan2:()=>dA,atanh:()=>pA,avgPool:()=>gh,avgPool3d:()=>fA,basicLSTMCell:()=>vw,batchNorm:()=>Kc,batchNorm2d:()=>mA,batchNorm3d:()=>gA,batchNorm4d:()=>yA,batchToSpaceND:()=>yh,bincount:()=>AA,booleanMaskAsync:()=>sk,broadcastArgs:()=>ww,broadcastTo:()=>Ji,buffer:()=>We,cast:()=>ye,ceil:()=>xA,clipByValue:()=>As,clone:()=>Vn,complex:()=>ka,concat:()=>It,concat1d:()=>bA,concat2d:()=>ou,concat3d:()=>vA,concat4d:()=>wA,conv1d:()=>E0,conv2d:()=>Sa,conv2dTranspose:()=>R0,conv3d:()=>SA,conv3dTranspose:()=>IA,cos:()=>Ah,cosh:()=>_0,cosineWindow:()=>Q0,cumprod:()=>_p,cumsum:()=>D0,denseBincount:()=>Sw,depthToSpace:()=>CA,depthwiseConv2d:()=>Zc,diag:()=>Iw,dilation2d:()=>TA,div:()=>me,divNoNan:()=>NA,dot:()=>EA,dropout:()=>t5,einsum:()=>Cw,elu:()=>Yc,enclosingPowerOfTwo:()=>n5,equal:()=>Ps,erf:()=>RA,euclideanNorm:()=>$A,exp:()=>Fs,expandDims:()=>Bt,expm1:()=>PA,eye:()=>$0,fft:()=>Th,fill:()=>Qc,floor:()=>ed,floorDiv:()=>Xc,fused:()=>pc,gather:()=>td,gatherND:()=>ik,greater:()=>vs,greaterEqual:()=>di,ifft:()=>dc,imag:()=>fh,image:()=>Ie,inTopKAsync:()=>lk,irfft:()=>K0,isFinite:()=>FA,isInf:()=>OA,isNaN:()=>MA,leakyRelu:()=>xh,less:()=>P0,lessEqual:()=>pi,linalg:()=>a5,linspace:()=>_w,localResponseNormalization:()=>zA,log:()=>Os,log1p:()=>bh,logSigmoid:()=>LA,logSoftmax:()=>O0,logSumExp:()=>M0,logicalAnd:()=>mr,logicalNot:()=>vh,logicalOr:()=>z0,logicalXor:()=>BA,losses:()=>bk,lowerBound:()=>$w,matMul:()=>et,max:()=>yn,maxPool:()=>wh,maxPool3d:()=>WA,maxPoolWithArgmax:()=>Pw,maximum:()=>ia,mean:()=>Wt,meshgrid:()=>Fw,min:()=>Ia,minimum:()=>nd,mirrorPad:()=>VA,mod:()=>lu,moments:()=>kh,movingAverage:()=>rk,mul:()=>z,multiRNNCell:()=>Ow,multinomial:()=>Mw,neg:()=>$t,norm:()=>Jc,notEqual:()=>il,oneHot:()=>lc,ones:()=>Ds,onesLike:()=>Ms,op:()=>W,outerProduct:()=>zw,pad:()=>sr,pad1d:()=>Lw,pad2d:()=>Bw,pad3d:()=>Ww,pad4d:()=>Vw,pool:()=>UA,pow:()=>Ca,prelu:()=>Ih,print:()=>Hy,prod:()=>GA,raggedTensorToTensor:()=>Uw,rand:()=>Gw,randomGamma:()=>Hw,randomNormal:()=>B0,randomStandardNormal:()=>jw,randomUniform:()=>sd,range:()=>cc,real:()=>uc,reciprocal:()=>qA,relu:()=>Vr,relu6:()=>W0,reshape:()=>V,reverse:()=>Qs,reverse1d:()=>qw,reverse2d:()=>Xw,reverse3d:()=>Kw,reverse4d:()=>Zw,rfft:()=>Nh,round:()=>V0,rsqrt:()=>U0,scalar:()=>Ce,scatterND:()=>ak,searchSorted:()=>L0,selu:()=>G0,separableConv2d:()=>H0,setdiff1dAsync:()=>Yw,sigmoid:()=>$n,sign:()=>XA,signal:()=>xk,sin:()=>j0,sinh:()=>q0,slice:()=>ze,slice1d:()=>Ch,slice2d:()=>X0,slice3d:()=>hi,slice4d:()=>ao,softmax:()=>uu,softplus:()=>iu,spaceToBatchND:()=>Sh,sparse:()=>vk,sparseToDense:()=>ok,spectral:()=>Ak,split:()=>Jt,sqrt:()=>Fn,square:()=>bt,squaredDifference:()=>Z0,squeeze:()=>rt,stack:()=>ln,step:()=>cu,stridedSlice:()=>KA,string:()=>wk,sub:()=>ge,sum:()=>ke,tan:()=>ZA,tanh:()=>al,tensor:()=>ct,tensor1d:()=>Pt,tensor2d:()=>fr,tensor3d:()=>Yy,tensor4d:()=>Jw,tensor5d:()=>Qw,tensor6d:()=>ek,tile:()=>Ks,topk:()=>YA,transpose:()=>tt,truncatedNormal:()=>Y0,unique:()=>JA,unsortedSegmentSum:()=>J0,unstack:()=>On,upperBound:()=>tk,variable:()=>QA,where:()=>Gn,whereAsync:()=>e5,zeros:()=>Vt,zerosLike:()=>lt});var Qj=(e,t,n,s=Mn)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[s.add(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[s.addN(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[s.mod(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[s.mul(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[s.div(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[s.divNoNan(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[s.floorDiv(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[s.sub(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[s.minimum(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[s.maximum(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[s.pow(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[s.squaredDifference(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},eq=(e,t,n,s=Mn)=>{switch(e.op){case"Abs":case"ComplexAbs":return[s.abs(I("x",e,t,n))];case"Acos":return[s.acos(I("x",e,t,n))];case"Acosh":return[s.acosh(I("x",e,t,n))];case"Asin":return[s.asin(I("x",e,t,n))];case"Asinh":return[s.asinh(I("x",e,t,n))];case"Atan":return[s.atan(I("x",e,t,n))];case"Atan2":return[s.atan2(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[s.atanh(I("x",e,t,n))];case"Ceil":return[s.ceil(I("x",e,t,n))];case"Complex":return[s.complex(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[s.cos(I("x",e,t,n))];case"Cosh":return[s.cosh(I("x",e,t,n))];case"Elu":return[s.elu(I("x",e,t,n))];case"Erf":return[s.erf(I("x",e,t,n))];case"Exp":return[s.exp(I("x",e,t,n))];case"Expm1":return[s.expm1(I("x",e,t,n))];case"Floor":return[s.floor(I("x",e,t,n))];case"Log":return[s.log(I("x",e,t,n))];case"Log1p":return[s.log1p(I("x",e,t,n))];case"Imag":return[s.imag(I("x",e,t,n))];case"Neg":return[s.neg(I("x",e,t,n))];case"Reciprocal":return[s.reciprocal(I("x",e,t,n))];case"Real":return[s.real(I("x",e,t,n))];case"Relu":return[s.relu(I("x",e,t,n))];case"Round":return[s.round(I("x",e,t,n))];case"Selu":return[s.selu(I("x",e,t,n))];case"Sigmoid":return[s.sigmoid(I("x",e,t,n))];case"Sin":return[s.sin(I("x",e,t,n))];case"Sign":return[s.sign(I("x",e,t,n))];case"Sinh":return[s.sinh(I("x",e,t,n))];case"Softplus":return[s.softplus(I("x",e,t,n))];case"Sqrt":return[s.sqrt(I("x",e,t,n))];case"Square":return[s.square(I("x",e,t,n))];case"Tanh":return[s.tanh(I("x",e,t,n))];case"Tan":return[s.tan(I("x",e,t,n))];case"ClipByValue":return[s.clipByValue(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[s.relu6(I("x",e,t,n))];case"Rsqrt":return[s.rsqrt(rs(e.inputNames[0],t,n))];case"Prod":return[s.prod(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[s.leakyRelu(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[s.prelu(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[s.isNaN(rs(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function hr(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){v.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let s=0;s<e.length;s++){let r=e[s],a=t[s];v.assert(r<0||a<0||r===a,()=>n+` Shapes ${e} and ${t} must match`)}}}function y7(e){return!(typeof e=="number"||e.some(t=>t<0))}function ap(e,t,n){let s=dy(e,n),r=!y7(s);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${s}`);if(r&&t.forEach(a=>{s=dy(a.shape,s)}),!y7(s))throw new Error(`Non-fully-defined elementShape: ${s}`);return s}function dy(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let s=0;s<e.length;++s){let r=e[s],a=t[s];if(r>=0&&a>=0&&r!==a)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[s]=r>=0?r:a}return n}var tq=class{constructor(e,t,n,s,r,a,o){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=s,this.identicalElementShapes=r,this.dynamicSize=a,this.clearAfterRead=o,this.tensors=[],this.closed_=!1,this.idTensor=Ce(0),Sn(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),hr(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Sn(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,s)=>this.write(n,t[s]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let s=0;s<this.size();s++)e.push(s)}if(e.length===0)return ct([],[0].concat(this.elementShape));let n=this.readMany(e);return hr(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),ln(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ct([],[0].concat(this.elementShape));let t=[];for(let s=0;s<this.size();s++)t.push(s);let n=this.readMany(t);return hr(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),It(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,On(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,s=e.map(i=>(n+=i,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,a=[];Y(()=>{t=V(t,[1,n,r]);for(let i=0;i<e.length;++i){let l=i===0?0:s[i-1],u=[0,l,0],c=[1,e[i],r];a[i]=V(ze(t,u,c),this.elementShape)}return a});let o=[];for(let i=0;i<e.length;i++)o[i]=i;this.writeMany(o,a)}},gc=class{constructor(e,t,n,s=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);hr(t,r.shape,"TensorList shape mismatch: "),Sn(r)}),this.idTensor=Ce(0),this.maxNumElements=s,Sn(this.idTensor)}get id(){return this.idTensor.id}copy(){return new gc([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);hr(e,this.elementShape,"TensorList shape mismatch: ");let s=ap(this.elementShape,this.tensors,e);return Y(()=>{let r=this.tensors.map(a=>V(a,s));return ln(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=ap(this.elementShape,this.tensors,e),s=this.tensors.pop();return s.kept=!1,hr(s.shape,e,"TensorList shape mismatch: "),V(s,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(hr(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Sn(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);let t=new gc([],this.elementShape,this.elementDtype,this.maxNumElements);t.tensors.length=e;for(let n=0;n<Math.min(this.tensors.length,e);++n)t.tensors[n]=this.tensors[n];return t}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);hr(this.tensors[e].shape,t,"TensorList shape mismatch: ");let s=ap(this.elementShape,this.tensors,t);return V(this.tensors[e],s)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);hr(this.elementShape,t.shape,"TensorList shape mismatch: "),Sn(t),this.tensors[e]!=null&&(this.tensors[e].kept=!1),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);hr(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let s=ap(this.elementShape,this.tensors,n);return e.length===0?ct([],[0].concat(s)):Y(()=>{let r=e.map(a=>V(this.tensors[a],s));return ln(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);hr(this.elementShape,t,"TensorList shape mismatch: ");let n=ap(this.elementShape,this.tensors,t);return this.size()===0?ct([],[0].concat(n)):Y(()=>{let s=this.tensors.map(r=>V(r,n));return It(s,0)})}};function nq(e,t,n){let s=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);hr(r,t,"TensorList shape mismatch: ");let a=On(e);return new gc(a,t,s)}function sq(e,t,n,s){return new gc([],e,t,s)}function rq(e,t,n,s){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(s!=null&&s!==-1&&r>=s)throw new Error(`Max index must be < array size (${r} vs. ${s})`);let a=new gc([],n,e.dtype,s),o=On(e,0);return t.forEach((i,l)=>{a.setItem(i,o[l])}),a}function aq(e,t,n){let s=0,r=t.map(c=>(s+=c,s));if(s!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
tensor.shape[0], but sum of lengths is
${s}, and tensor's shape is: ${e.shape}`);let a=e.shape.slice(1),o=dy(a,n),i=s===0?0:e.size/s,l=Y(()=>{let c=[];e=V(e,[1,s,i]);for(let p=0;p<t.length;++p){let d=p===0?0:r[p-1],h=[0,d,0],f=[1,t[p],i];c[p]=V(ze(e,h,f),o)}return e.dispose(),c}),u=new gc([],n,e.dtype,t.length);for(let c=0;c<l.length;c++)u.setItem(c,l[c]);return u}var oq=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let s=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),a=I("cond",e,t,n),o=I("args",e,t,n);return(await a.data())[0]?n.functionMap[s].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(o,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let s=I("body",e,t,n),r=I("cond",e,t,n),a=I("args",e,t,n),o=await n.functionMap[r].executeFunctionAsync(a,n.tensorArrayMap,n.tensorListMap),i=a.map(c=>c.id),l=await o[0].data();o.forEach(c=>{!c.kept&&i.indexOf(c.id)===-1&&c.dispose()});let u=a;for(;l[0];){let c=u;u=await n.functionMap[s].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);c.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let d=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await d[0].data(),d.forEach(h=>{!h.kept&&i.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let s=I("pred",e,t,n);return[Aa(s)]}case"Switch":{let s=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Aa(r)),(await s.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let s=e.inputNames.find(r=>rs(r,t,n)!==void 0);if(s){let r=rs(s,t,n);return[Aa(r)]}return}case"Enter":{let s=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(s),[Aa(r)]}case"Exit":{let s=I("tensor",e,t,n);return n.exitFrame(),[Aa(s)]}case"NextIteration":{let s=I("tensor",e,t,n);return n.nextIteration(),[Aa(s)]}case"TensorArrayV3":{let s=I("size",e,t,n),r=I("dtype",e,t,n),a=I("elementShape",e,t,n),o=I("dynamicSize",e,t,n),i=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),c=new tq(u,r,s,a,l,o,i);return n.addTensorArray(c),[c.idTensor,Ce(1)]}case"TensorArrayWriteV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.write(r,a),[o.idTensor]}case"TensorArrayReadV3":{let s=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(s.id).read(r)]}case"TensorArrayGatherV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("dtype",e,t,n);return[n.getTensorArray(s.id).gather(r,a)]}case"TensorArrayScatterV3":{let s=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),a=I("tensor",e,t,n),o=n.getTensorArray(s.id);return o.scatter(r,a),[o.idTensor]}case"TensorArrayConcatV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id),a=I("dtype",e,t,n);return[r.concat(a)]}case"TensorArraySplitV3":{let s=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),a=I("lengths",e,t,n),o=n.getTensorArray(s.id);return o.split(a,r),[o.idTensor]}case"TensorArraySizeV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return[Ce(r.size(),"int32")]}case"TensorArrayCloseV3":{let s=I("tensorArrayId",e,t,n),r=n.getTensorArray(s.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("tensor",e,t,n),o=n.getTensorList(s.id);return o.setItem(r,a),[o.idTensor]}case"TensorListGetItem":{let s=I("tensorListId",e,t,n),r=I("index",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).getItem(r,a,o)]}case"TensorListScatterV2":case"TensorListScatter":{let s=I("indices",e,t,n),r=I("tensor",e,t,n),a=I("elementShape",e,t,n),o=I("numElements",e,t,n),i=rq(r,s,a,o);return n.addTensorList(i),[i.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let s=I("elementShape",e,t,n),r=I("elementDType",e,t,n),a;e.op==="TensorListReserve"?a="numElements":a="maxNumElements";let o=I(a,e,t,n),i=e.op==="TensorListReserve"?-1:o,l=sq(s,r,o,i);return n.addTensorList(l),[l.idTensor]}case"TensorListGather":{let s=I("tensorListId",e,t,n),r=I("indices",e,t,n),a=I("elementShape",e,t,n),o=I("elementDType",e,t,n);return[n.getTensorList(s.id).gather(r,o,a)]}case"TensorListStack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=I("numElements",e,t,n);return[n.getTensorList(s.id).stack(r,a,o)]}case"TensorListFromTensor":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n),o=nq(s,r,a);return n.addTensorList(o),[o.idTensor]}case"TensorListConcat":case"TensorListConcatV2":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id),a=I("dtype",e,t,n),o=I("elementShape",e,t,n);return[r.concat(a,o)]}case"TensorListPushBack":{let s=I("tensorListId",e,t,n),r=I("tensor",e,t,n),a=n.getTensorList(s.id);return a.pushBack(r),[a.idTensor]}case"TensorListPopBack":{let s=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),a=I("elementDType",e,t,n);return[n.getTensorList(s.id).popBack(r,a)]}case"TensorListSplit":{let s=I("tensor",e,t,n),r=I("elementShape",e,t,n),a=I("lengths",e,t,n),o=aq(s,a,r);return n.addTensorList(o),[o.idTensor]}case"TensorListLength":{let s=I("tensorListId",e,t,n),r=n.getTensorList(s.id);return[Ce(r.size(),"int32")]}case"TensorListResize":{let s=I("tensorListId",e,t,n),r=I("size",e,t,n),o=n.getTensorList(s.id).resize(r);return n.addTensorList(o),[o.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function A7(e,t,n){let[s,r]=I("fusedOps",e,t,n),a=s==="biasadd",o=!a,i=r==="prelu",l=s==="fusedbatchnorm",u=I("numArgs",e,t,n);if(a){if(i&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&a&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let c=I("strides",e,t,n),p=pm(e,t,n),d=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[f,m]=I("args",e,t,n);o&&(m=f,f=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:c,pad:p,dataFormat:d,dilations:h,biasArg:f,preluArg:m,activationFunc:r,leakyreluAlpha:g}}var iq=(e,t,n,s=Mn)=>{switch(e.op){case"Conv1D":{let r=I("stride",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[s.conv1d(I("x",e,t,n),I("filter",e,t,n),r,a,o,i)]}case"Conv2D":{let r=I("strides",e,t,n),a=pm(e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv2d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,o,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=A7(e,t,n);return[s.fused.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"FusedDepthwiseConv2dNative":{let{stride:r,pad:a,dataFormat:o,dilations:i,biasArg:l,preluArg:u,activationFunc:c,leakyreluAlpha:p}=A7(e,t,n);return[s.fused.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[r[1],r[2]],pad:a,dataFormat:o,dilations:[i[1],i[2]],bias:l,activation:c,preluActivationWeights:u,leakyreluAlpha:p})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let r=I("outputShape",e,t,n),a=I("strides",e,t,n),o=pm(e,t,n);return[s.conv2dTranspose(I("x",e,t,n),I("filter",e,t,n),r,[a[1],a[2]],o)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let r=I("strides",e,t,n),a=pm(e,t,n),o=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[s.depthwiseConv2d(I("input",e,t,n),I("filter",e,t,n),[r[1],r[2]],a,i,[o[1],o[2]])]}case"Conv3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[s.conv3d(I("x",e,t,n),I("filter",e,t,n),[r[1],r[2],r[3]],a,o,[i[1],i[2],i[3]])]}case"AvgPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPool":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a)]}case"MaxPoolWithArgmax":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:l,indexes:u}=s.maxPoolWithArgmax(I("x",e,t,n),[o[1],o[2]],[r[1],r[2]],a,i);return[l,u]}case"AvgPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.avgPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"MaxPool3D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("kernelSize",e,t,n);return[s.maxPool3d(I("x",e,t,n),[o[1],o[2],o[3]],[r[1],r[2],r[3]],a)]}case"Dilation2D":{let r=I("strides",e,t,n),a=I("pad",e,t,n),o=I("dilations",e,t,n),i=r[1],l=r[2],u=o[1],c=o[2];return[s.dilation2d(I("x",e,t,n),I("filter",e,t,n),[i,l],a,[u,c],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},lq=(e,t,n,s=Mn)=>{switch(e.op){case"Fill":{let r=I("shape",e,t,n),a=I("dtype",e,t,n),o=I("value",e,t,n);return[s.fill(r,o,a)]}case"LinSpace":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("num",e,t,n);return[s.linspace(r,a,o)]}case"Multinomial":{let r=I("logits",e,t,n),a=I("numSamples",e,t,n),o=I("seed",e,t,n);return[s.multinomial(r,a,o)]}case"OneHot":{let r=I("indices",e,t,n),a=I("depth",e,t,n),o=I("onValue",e,t,n),i=I("offValue",e,t,n),l=I("dtype",e,t,n);return[s.oneHot(r,a,o,i,l)]}case"Ones":return[s.ones(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[s.onesLike(I("x",e,t,n))];case"RandomStandardNormal":return[s.randomStandardNormal(I("shape",e,t,n),I("dtype",e,t,n),I("seed",e,t,n))];case"RandomUniform":return[s.randomUniform(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let r=I("start",e,t,n),a=I("stop",e,t,n),o=I("step",e,t,n);return[s.range(r,a,o,I("dtype",e,t,n))]}case"TruncatedNormal":{let r=I("shape",e,t,n),a=I("mean",e,t,n),o=I("stdDev",e,t,n),i=I("seed",e,t,n);return[s.truncatedNormal(r,a,o,I("dtype",e,t,n),i)]}case"Zeros":return[s.zeros(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[s.zerosLike(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function k3(e,t,n){let s=I("boxes",e,t,n),r=I("scores",e,t,n),a=I("maxOutputSize",e,t,n),o=I("iouThreshold",e,t,n),i=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:s,scores:r,maxOutputSize:a,iouThreshold:o,scoreThreshold:i,softNmsSigma:l}}var uq=async(e,t,n,s,r=Mn)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u,softNmsSigma:c}=k3(e,t,n),p=await r.image.nonMaxSuppressionWithScoreAsync(a,o,i,l,u,c);return[p.selectedIndices,p.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=k3(e,t,n),c=I("padToMaxOutputSize",e,t,n),p=await r.image.nonMaxSuppressionPaddedAsync(a,o,i,l,u,c);return[p.selectedIndices,p.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:o,maxOutputSize:i,iouThreshold:l,scoreThreshold:u}=k3(e,t,n);return[await r.image.nonMaxSuppressionAsync(a,o,i,l,u)]}case"Where":{let a=r.cast(I("condition",e,t,n),"bool"),o=[await r.whereAsync(a)];return a.dispose(),o}case"ListDiff":return r.setdiff1dAsync(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},cq=(e,t,n,s=Mn)=>{switch(e.op){case"LowerBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.lowerBound(r,a)]}case"TopKV2":{let r=I("x",e,t,n),a=I("k",e,t,n),o=I("sorted",e,t,n),i=s.topk(r,a,o);return[i.values,i.indices]}case"UpperBound":{let r=I("sortedSequence",e,t,n),a=I("values",e,t,n);return[s.upperBound(r,a)]}case"Unique":{let r=I("x",e,t,n),a=s.unique(r);return[a.values,a.indices]}case"UniqueV2":{let r=I("x",e,t,n),a=I("axis",e,t,n),o=s.unique(r,a);return[o.values,o.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},dq=(e,t,n,s=Mn)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let r=I("default",e,t,n);return[rs(e.name,t,n)||r];case"Placeholder":return[rs(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let c=I("x",e,t,n);return[Aa(c)]}case"IdentityN":return I("x",e,t,n).map(c=>Aa(c));case"Snapshot":let a=I("x",e,t,n);return[Aa(a)];case"Shape":return[s.tensor1d(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(c=>s.tensor1d(c.shape));case"Size":return[s.scalar(I("x",e,t,n).size,"int32")];case"Rank":return[s.scalar(I("x",e,t,n).rank,"int32")];case"NoOp":return[s.scalar(1)];case"Print":let o=I("x",e,t,n),i=I("data",e,t,n),l=I("message",e,t,n),u=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(l);for(let c=0;c<i.length;c++)console.log(Array.prototype.slice.call(i[c].dataSync()).slice(0,u));return[o];default:throw TypeError(`Node type ${e.op} is not implemented`)}},pq=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=Ce(0),this.tensorMap=new Map,Sn(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return Ce(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(s=>s.dispose()),this.tensorMap.clear(),Y(()=>{let s=On(t),r=n.length,a=s.length;v.assert(r===a,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${a} elements.`);for(let o=0;o<r;o++){let i=n[o],l=s[o];Sn(l),this.tensorMap.set(i,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return Y(()=>{let s=[];for(let r=0;r<n.length;r++){let a=n[r],o=this.findWithDefault(a,t);s.push(o)}return ln(s)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},hq=async(e,t,n,s)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),a=I("valueDType",e,t,n),o=new pq(r,a);return s.addHashTable(e.name,o),[o.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("values",e,t,n);return[await s.getHashTableById(r.id).import(a,o)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,s),a=I("keys",e,t,n),o=I("defaultValue",e,t,n);return[await s.getHashTableById(r.id).find(a,o)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,s);return[s.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},fq=(e,t,n,s=Mn)=>{switch(e.op){case"ResizeBilinear":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeBilinear(r,[a[0],a[1]],o,i)]}case"ResizeNearestNeighbor":{let r=I("images",e,t,n),a=I("size",e,t,n),o=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[s.image.resizeNearestNeighbor(r,[a[0],a[1]],o,i)]}case"CropAndResize":{let r=I("image",e,t,n),a=I("boxes",e,t,n),o=I("boxInd",e,t,n),i=I("cropSize",e,t,n),l=I("method",e,t,n),u=I("extrapolationValue",e,t,n);return[s.image.cropAndResize(r,a,o,i,l,u)]}case"ImageProjectiveTransformV3":{let r=I("images",e,t,n),a=I("transforms",e,t,n),o=I("outputShape",e,t,n),i=I("fillValue",e,t,n),l=I("interpolation",e,t,n),u=I("fillMode",e,t,n);return[s.image.transform(r,a,l.toLowerCase(),u.toLowerCase(),i,o)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},mq=(e,t,n,s=Mn)=>{switch(e.op){case"Equal":return[s.equal(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[s.notEqual(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[s.greater(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[s.greaterEqual(I("a",e,t,n),I("b",e,t,n))];case"Less":return[s.less(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[s.lessEqual(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[s.logicalAnd(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[s.logicalNot(I("a",e,t,n))];case"LogicalOr":return[s.logicalOr(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[s.where(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},gq=(e,t,n,s=Mn)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[s.matMul(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[s.einsum(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[s.transpose(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[r,a]=I("fusedOps",e,t,n),o=r==="biasadd",i=a==="prelu",l=I("numArgs",e,t,n),u=I("leakyreluAlpha",e,t,n);if(o){if(i&&l!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&l!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[c,p]=I("args",e,t,n);return[s.fused.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:c,activation:a,preluActivationWeights:p,leakyreluAlpha:u})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yq=(e,t,n,s=Mn)=>{switch(e.op){case"EuclideanNorm":return[s.euclideanNorm(I("x",e,t,n),I("axis",e,t,n),I("keepDims",e,t,n))];case"FusedBatchNorm":case"FusedBatchNormV2":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[s.batchNorm(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[s.localResponseNormalization(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[s.softmax(I("x",e,t,n))];case"LogSoftmax":return[s.logSoftmax(I("x",e,t,n))];case"SparseToDense":return[s.sparseToDense(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Aq=(e,t,n,s=Mn)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.max(I("x",e,t,n),i,l)]}case"Mean":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.mean(I("x",e,t,n),i,l)]}case"Min":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.min(I("x",e,t,n),i,l)]}case"Sum":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.sum(I("x",e,t,n),i,l)]}case"All":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.all(I("x",e,t,n),i,l)]}case"Any":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.any(I("x",e,t,n),i,l)]}case"ArgMax":{let i=I("axis",e,t,n);return[s.argMax(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[s.argMin(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),l=I("keepDims",e,t,n);return[s.prod(I("x",e,t,n),i,l)]}case"Cumprod":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumprod(I("x",e,t,n),i,l,u)]}case"Cumsum":{let i=I("axis",e,t,n),l=I("exclusive",e,t,n),u=I("reverse",e,t,n);return[s.cumsum(I("x",e,t,n),i,l,u)]}case"Bincount":let r=I("x",e,t,n),a=I("weights",e,t,n),o=I("size",e,t,n);return[s.bincount(r,a,o)];case"DenseBincount":{let i=I("x",e,t,n),l=I("weights",e,t,n),u=I("size",e,t,n),c=I("binaryOutput",e,t,n);return[s.denseBincount(i,l,u,c)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},xq=(e,t,n,s=Mn)=>{switch(e.op){case"ConcatV2":case"Concat":{let r=I("n",e,t,n),a=I("axis",e,t,n),o=I("tensors",e,t,n);return o=o.slice(0,r),[s.concat(o,a)]}case"Gather":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gather(r,s.cast(a,"int32"),0)]}case"GatherV2":{let r=I("axis",e,t,n),a=I("batchDims",e,t,n),o=I("x",e,t,n),i=I("indices",e,t,n);return[s.gather(o,s.cast(i,"int32"),r,a)]}case"Reverse":{let r=I("dims",e,t,n),a=[];for(let i=0;i<r.length;i++)r[i]&&a.push(i);let o=I("x",e,t,n);return[s.reverse(o,a)]}case"ReverseV2":{let r=I("axis",e,t,n),a=I("x",e,t,n);return[s.reverse(a,r)]}case"Slice":{let r=I("begin",e,t,n),a=I("size",e,t,n);return[s.slice(I("x",e,t,n),r,a)]}case"StridedSlice":{let r=I("begin",e,t,n),a=I("end",e,t,n),o=I("strides",e,t,n),i=I("beginMask",e,t,n),l=I("endMask",e,t,n),u=I("ellipsisMask",e,t,n),c=I("newAxisMask",e,t,n),p=I("shrinkAxisMask",e,t,n),d=I("x",e,t,n);return[s.stridedSlice(d,r,a,o,i,l,u,c,p)]}case"Pack":return Y(()=>{let r=I("axis",e,t,n),a=I("tensors",e,t,n),o=a[0].shape,i=s.squeeze(a[0]).shape,l=a.map(u=>{let c=v.arraysEqual(u.shape,o);if(!c&&!v.arraysEqual(s.squeeze(u).shape,i))throw new Error("the input tensors shape does not match");return c?u:s.reshape(u,o)});return[s.stack(l,r)]});case"Unpack":{let r=I("axis",e,t,n),a=I("tensor",e,t,n);return s.unstack(a,r)}case"Tile":{let r=I("reps",e,t,n);return[s.tile(I("x",e,t,n),r)]}case"Split":case"SplitV":{let r=I("axis",e,t,n),a=I("numOrSizeSplits",e,t,n),o=I("x",e,t,n);return s.split(o,a,r)}case"ScatterNd":{let r=I("indices",e,t,n),a=I("values",e,t,n),o=I("shape",e,t,n);return[s.scatterND(r,a,o)]}case"GatherNd":{let r=I("x",e,t,n),a=I("indices",e,t,n);return[s.gatherND(r,a)]}case"SparseToDense":{let r=I("sparseIndices",e,t,n),a=I("outputShape",e,t,n),o=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[s.sparseToDense(r,o,a,o.dtype===i.dtype?i:s.cast(i,o.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},bq=(e,t,n,s=Mn)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:r,outputValues:a,emptyRowIndicator:o,reverseIndexMap:i}=s.sparse.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[r,a,o,i]}case"SparseReshape":{let{outputIndices:r,outputShape:a}=s.sparse.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[r,a]}case"SparseSegmentMean":return[s.sparse.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[s.sparse.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},vq=(e,t,n,s=Mn)=>{switch(e.op){case"FFT":return[s.fft(I("x",e,t,n))];case"IFFT":return[s.ifft(I("x",e,t,n))];case"RFFT":return[s.rfft(I("x",e,t,n))];case"IRFFT":return[s.irfft(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},wq=(e,t,n,s=Mn)=>{switch(e.op){case"StringNGrams":{let{nGrams:r,nGramsSplits:a}=s.string.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[r,a]}case"StringSplit":{let{indices:r,values:a,shape:o}=s.string.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[r,a,o]}case"StringToHashBucketFast":return[s.string.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},kq=(e,t,n,s=Mn)=>{switch(e.op){case"Cast":return[s.cast(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let r=I("axis",e,t,n);return[s.expandDims(I("x",e,t,n),r)]}case"Squeeze":{let r=I("axis",e,t,n);return[s.squeeze(I("x",e,t,n),r)]}case"Reshape":return[s.reshape(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[s.mirrorPad(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[s.pad(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let r=I("blockShape",e,t,n),a=I("paddings",e,t,n);return[s.spaceToBatchND(I("x",e,t,n),r,a)]}case"BatchToSpaceND":{let r=I("blockShape",e,t,n),a=I("crops",e,t,n);return[s.batchToSpaceND(I("x",e,t,n),r,a)]}case"DepthToSpace":{let r=I("blockSize",e,t,n),a=I("dataFormat",e,t,n).toUpperCase();return[s.depthToSpace(I("x",e,t,n),r,a)]}case"BroadcastTo":return[s.broadcastTo(I("x",e,t,n),I("shape",e,t,n))];case"BroadcastArgs":return[s.broadcastArgs(I("s0",e,t,n),I("s1",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function x7(e,t,n,s,r=Y){let a=((o,i,l)=>{switch(o.category){case"arithmetic":return r(()=>Qj(o,i,l));case"basic_math":return r(()=>eq(o,i,l));case"control":return oq(o,i,l);case"convolution":return r(()=>iq(o,i,l));case"creation":return r(()=>lq(o,i,l));case"dynamic":return uq(o,i,l);case"evaluation":return r(()=>cq(o,i,l));case"image":return r(()=>fq(o,i,l));case"graph":return r(()=>dq(o,i,l));case"logical":return r(()=>mq(o,i,l));case"matrices":return r(()=>gq(o,i,l));case"normalization":return r(()=>yq(o,i,l));case"reduction":return r(()=>Aq(o,i,l));case"slice_join":return r(()=>xq(o,i,l));case"sparse":return r(()=>bq(o,i,l));case"spectral":return r(()=>vq(o,i,l));case"string":return r(()=>wq(o,i,l));case"transformation":return r(()=>kq(o,i,l));case"hash_table":return hq(o,i,l,s);case"custom":let u=G8(o.op);if(u&&u.customExecutor)return u.customExecutor(new Jj(o,i,l));throw TypeError(`Custom op ${o.op} is not registered.`);default:throw TypeError(`Unknown op '${o.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return v.isPromise(a)?a.then(o=>[].concat(o)):[].concat(a)}var b7=class{constructor(e={},t={},n={},s={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=s,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function v7(e,t,n,s){let r=new Set,a=[],o=null,i=null,l=new Set,u=Object.keys(e).map(d=>Es(d)[0]),c=[];s!=null&&(c=s.map(d=>Es(d.name)[0]));let p=[...t];for(;p.length>0;){let d=p.pop();if((pS(d)||Nq(d)||Eq(d))&&o==null&&(o=d,i=o.children.map(h=>h.name).filter(h=>r.has(h))),r.add(d.name),n[d.name]==null&&u.indexOf(d.name)===-1&&c.indexOf(d.name)===-1){if(d.inputs.length===0){a.push(d.name);continue}d.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:a,dynamicNode:o,syncInputs:i}}function Sq(e,t,n){let{usedNodes:s,inputs:r}=n,a=[],o=Object.keys(r).map(c=>Es(c)[0]).map(c=>e.nodes[c]),i=e.initNodes;o.forEach(c=>{s.has(c.name)&&a.push(c)}),e.weights.forEach(c=>{s.has(c.name)&&a.push(c)}),i!=null&&i.forEach(c=>{s.has(c.name)&&a.push(c)});let l=new Set,u=[];for(;a.length>0;){let c=a.pop();l.add(c.name),t[c.name]||u.push(c),c.children.forEach(p=>{!l.has(p.name)&&s.has(p.name)&&p.inputs.every(d=>l.has(d.name))&&a.push(p)})}return u}var Iq=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Cq=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Tq=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function pS(e){return Iq.indexOf(e.op)>=0}function Nq(e){return Cq.indexOf(e.op)>=0}function Eq(e){return Tq.indexOf(e.op)>=0}var py=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this.intermediateTensors={},this.keepTensorForDebug=!1,this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new py(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(s=>s.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),s=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+s.join(this.SEPERATOR)}compile(e,t){let n=v7(e,t,this.weightMap,this._initNodes),{missingInputs:s,dynamicNode:r,syncInputs:a}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${a}]`);if(s.length>0){let o=t.map(l=>l.name),i=Object.keys(e);throw new Error(`Cannot compute the outputs [${o}] from the provided inputs [${i}]. Missing the following inputs: [${s}]`)}return Sq(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let s=n.map(c=>this.graph.nodes[Es(c)[0]]),r=t.map(c=>Es(c)[0]),a=r.map(c=>this.graph.nodes[c]);this.resetIntermediateTensors(),a.length===0&&(a=this._outputs);let o=this.getCompilationKey(s,a),i=this.compiledMap.get(o);i==null&&(i=this.compile(e,a),this.compiledMap.set(o,i));let l={},u={};return Y(()=>{let c=new b7(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(f=>{let[m,g]=Es(f),y=[];y[g]=e[f],p[m]=y});let d=this.getFrozenTensorIds(p),h={};for(let f=0;f<i.length;f++){let m=i[f];if(!p[m.name]){let g=x7(m,p,c,this._resourceManager);if(v.isPromise(g))throw new Error(`The execution of the op '${m.op}' returned a promise. Please use model.executeAsync() instead.`);p[m.name]=g,this.checkTensorForDisposal(m.name,m,p,c,d,r,h)}}return this.parent==null&&c.dispose(d),t.map(f=>rs(f,p,c))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(s=>s.id)));return new Set(t)}checkTensorForDisposal(e,t,n,s,r,a,o){t.category==="control"||a.indexOf(e)!==-1||(n[e].forEach(i=>{i!=null&&(o[i.id]=(o[i.id]||0)+t.children.length)}),t.inputs.forEach(i=>{if(i.category!=="control"){let l=_j(i.name,n,s);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let c=o[u.id];if(c===1){if(!this.keepTensorForDebug)u.dispose();else{let[p,d]=Qr(t.name,s);this.intermediateTensors[p]?this.intermediateTensors[p][d]=u:(this.intermediateTensors[p]=[],this.intermediateTensors[p][d]=u)}delete o[u.id]}else c!=null&&o[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}disposeIntermediateTensors(){!this.intermediateTensors||(Object.keys(this.intermediateTensors).forEach(e=>this.intermediateTensors[e].forEach(t=>t.dispose())),this.disposeTensorsMap())}disposeTensorsMap(){!this.tensorsMap||Object.keys(this.tensorsMap).forEach(e=>{this.tensorsMap[e].forEach(n=>{n&&!n.kept&&!n.isDisposed&&!this.keepIds.has(n.id)&&n.dispose()})})}getIntermediateTensors(){return this.tensorsMap}resetIntermediateTensors(){for(let e in this.intermediateTensors)this.intermediateTensors[e].forEach(t=>t.dispose()),delete this.intermediateTensors[e]}async _executeAsync(e,t,n=!1,s={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));try{this.keepTensorForDebug=H().getBool("KEEP_INTERMEDIATE_TENSORS")}catch(u){console.warn(u.message)}this.resetIntermediateTensors();let a=new b7(this.weightMap,s,r,this.functionExecutorMap);this.tensorsMap=await this.executeWithControlFlow(e,a,t,n);let o=t.map(u=>rs(u,this.tensorsMap,a)),i=o.map(u=>u.id),l=Object.keys(e).map(u=>e[u].id);return this.keepIds=new Set([...i,...l,...this.weightIds]),this.keepTensorForDebug||this.disposeTensorsMap(),this.parent==null&&a.dispose(this.keepIds),o}async executeFunctionAsync(e,t,n){let s=e.reduce((r,a,o)=>(r[this.inputs[o].name]=a,r),{});return this._executeAsync(s,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,s){let r=Object.keys(e),a=r.map(x=>this.graph.nodes[Es(x)[0]]),o=n.map(x=>Es(x)[0]),i=o.map(x=>this.graph.nodes[x]);i.length===0&&(i=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:c,syncInputs:p}=v7(e,i,this.weightMap,this._initNodes),d=[...a,...this.graph.weights,...this._initNodes||[]].map(x=>({node:x,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(x=>{let[A,b]=Es(x),w=[];w[b]=e[x],h[A]=w});let f={},m=this.getFrozenTensorIds(h),g={};for(;d.length>0;){let x=this.processStack(a,d,t,h,g,m,o,f,l);await Promise.all(x)}c==null&&!s&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=i.filter(x=>!pS(x)&&!rs(x.name,h,t)).map(x=>x.name);if(y.length>0){let x="";throw c!=null&&(x=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${x}`)}return h}processStack(e,t,n,s,r,a,o,i,l){let u=[];for(;t.length>0;){let c=t.pop();n.currentContext=c.contexts;let p="";if(c.node.op==="Enter"&&I("isConstant",c.node,s,n)&&([p]=Qr(c.node.name,n)),s[c.node.name]==null){let d=x7(c.node,s,n,this._resourceManager);p||([p]=Qr(c.node.name,n));let h=n.currentContext;v.isPromise(d)?u.push(d.then(f=>(s[p]=f,n.currentContext=h,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l),f))):(s[p]=d,this.checkTensorForDisposal(p,c.node,s,n,a,o,i),this.processChildNodes(c.node,t,n,s,r,l))}else this.processChildNodes(c.node,t,n,s,r,l)}return u}processChildNodes(e,t,n,s,r,a){e.children.forEach(o=>{let[i]=Qr(o.name,n);r[i]||!a.has(o.name)||(o.op==="Merge"?o.inputNames.some(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})):o.inputNames.every(l=>!!rs(l,s,n))&&(r[i]=!0,t.push({contexts:n.currentContext,node:o})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[s]=Es(t),r=this.graph.nodes[s];if(r.attrParams.shape&&r.attrParams.shape.value){let a=r.attrParams.shape.value,o=a.length===n.shape.length&&n.shape.every((i,l)=>a[l]===-1||a[l]===i);v.assert(o,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${a}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&v.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let s=this._signature.inputs[n];t[s.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[s]=Es(n);return this.graph.nodes[s]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Es(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Rq=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},_q="?tfjs-format=file",Dq="model.json",Wh=class{constructor(e,t={},n=_s){this.modelUrl=e,this.loadOptions=t,this.version="n/a",this.io=n,t==null&&(this.loadOptions={}),this.resourceManager=new Rq}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}get modelStructuredOutputKeys(){return this.structuredOutputKeys}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=this.io.browserHTTPRequest(e,this.loadOptions);else{let t=this.io.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(this.io.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=this.handler.load();return v.isPromise(e)?e.then(t=>this.loadSync(t)):this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n=this.artifacts.signature;if(this.artifacts.userDefinedMetadata!=null){let r=this.artifacts.userDefinedMetadata;r.signature!=null&&(n=r.signature),r.structuredOutputKeys!=null&&(this.structuredOutputKeys=r.structuredOutputKeys)}this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let s=this.io.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new py(m7.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(s),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=m7.Instance.transformGraph(e.modelInitializer);this.initializer=new py(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=this.io.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){let n=this.execute(e,this.outputNodes);if(this.structuredOutputKeys){let s=n instanceof st?[n]:n,r={};return s.forEach((a,o)=>r[this.structuredOutputKeys[o]]=a),r}return n}normalizeInputs(e){if(!(e instanceof st)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,s)=>(t[n]=e[s],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}getIntermediateTensors(){return this.executor.getIntermediateTensors()}disposeIntermediateTensors(){this.executor.disposeIntermediateTensors()}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function Fx(e,t={},n=_s){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&typeof e=="string"&&(e=Pq(e));let s=new Wh(e,t,n);return await s.load(),s}function $q(e){if(e==null)throw new Error("modelUrl in loadGraphModelSync() cannot be null. Please provide a url or an IOHandler that loads the model");if(!e.load)throw new Error(`modelUrl IO Handler ${e} has no load function`);let t=new Wh(e);return t.load(),t}function Pq(e){return e.endsWith("/")||(e=e+"/"),`${e}${Dq}${_q}`}var Fq="3.20.0",hS={};He(hS,{CSVDataset:()=>wS,Dataset:()=>id,FileDataSource:()=>ES,TextLineDataset:()=>vS,URLDataSource:()=>RS,array:()=>rX,csv:()=>mX,func:()=>gX,generator:()=>yX,microphone:()=>xX,version_data:()=>bX,webcam:()=>AX,zip:()=>aX});var Oq=ho(Jm()),Mq=ho(Jm());function zq(e,t){return Bm(e,t)}function Bm(e,t,n=new Map,s=new Set){if(e==null)return null;if(typeof Blob=="function"&&e instanceof Blob)return e.slice();if(s.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(yc(e)){let a=Array.isArray(e)?[]:{};s.add(e);for(let o in e){let i=e[o],l=Bm(i,t,n,s);a[o]=l}return s.delete(e),e.__proto__&&(a.__proto__=e.__proto__),a}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Lq(e,t=mS){return fS(e,t)}function fS(e,t,n=new Set){let s=e[0];if(n.has(s))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(yc(s)){let a=Array.isArray(s)?[]:{};n.add(s);for(let o in s){let i=e.map(u=>u[o]),l=fS(i,t,n);a[o]=l}return n.delete(s),a}else throw new Error(`Can't recurse into non-iterable type: ${s}`);else return r.value}function mS(e){return e===null?null:yc(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function gS(e,t){let n=new Map;Bm(e,t,n);for(let r of Array.from(n.keys())){let a=n.get(r);if(v.isPromise(a)){let o=await a;n.set(r,o)}}return Bm(e,t,n)}function yc(e){let t=!1;if(H().get("IS_BROWSER"))t=e instanceof TextDecoder;else{let{StringDecoder:n}=m6();t=e instanceof n}return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof st)&&!(e instanceof Promise)&&!t)}function Bq(e){return e==null||Wq(e)||Array.isArray(e)||typeof e=="object"&&e instanceof st||v.isTypedArray(e)}function Wq(e){return e===null||typeof e!="object"&&typeof e!="function"}function Vq(e){return zq(e,Uq)}function Uq(e){return e instanceof st?{value:e.clone(),recurse:!1}:yc(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var yS=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},Ox=class extends yS{constructor(){super(Ox.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let s=0;s<n;s++)t[s]=this.get(this.wrap(this.begin+s));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};Ox.INITIAL_CAPACITY=32;function AS(e){return new jq(e)}function Mx(e){return new qq(e)}function Gq(e,t){return new xS(e,t)}function Hq(e,t=Za.FAIL){return new nX(e,t)}var Cn=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new eX(this,e)}filter(e){return new Jq(this,e)}map(e){return new Qq(this,e)}mapAsync(e){return new w7(this,e)}serialMapAsync(e){return new w7(this,e).serial()}flatmap(e){return new tX(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Yq(this,e,t)}columnMajorBatch(e,t=!0,n=mS){return this.rowMajorBatch(e,t).map(r=>Lq(r,n))}concatenate(e,t){return new xS(AS([this,e]),t)}take(e){return e<0||e==null?this:new Zq(this,e)}skip(e){return e<0||e==null?this:new Kq(this,e)}prefetch(e){return new bS(this,e)}shuffle(e,t){return new sX(this,e,t)}serial(){return new Xq(this)}},jq=class extends Cn{constructor(e){super(),this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Vq(e),done:!1}}},qq=class extends Cn{constructor(e){super(),this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},Xq=class extends Cn{constructor(e){super(),this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Kq=class extends Cn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;ee(e.value)}return this.upstream.next()}},Zq=class extends Cn{constructor(e,t){super(),this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Yq=class extends Cn{constructor(e,t,n=!0){super(),this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Jq=class extends Cn{constructor(e,t){super(),this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;ee(e.value)}}},Qq=class extends Cn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Or.getTensorsInContainer(e.value),n=this.transform(e.value),s=Or.getTensorsInContainer(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},eX=class extends Cn{constructor(e,t){super(),this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},w7=class extends Cn{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Or.getTensorsInContainer(e.value),n=await this.transform(e.value),s=Or.getTensorsInContainer(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return{value:n,done:!1}}},zx=class extends Cn{constructor(){super(),this.outputQueue=new Ox,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},tX=class extends zx{constructor(e,t){super(),this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Or.getTensorsInContainer(e.value),n=this.transform(e.value),s=Or.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Or.isTensorInList(r,s)||r.dispose();return!0}},xS=class extends Cn{constructor(e,t){super(),this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},Za;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(Za||(Za={}));var nX=class extends Cn{constructor(e,t=Za.FAIL){super(),this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function s(a){return a instanceof Cn?{value:a.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await gS(this.iterators,s);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case Za.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case Za.SHORTEST:return{value:null,done:!0};case Za.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},bS=class extends Cn{constructor(e,t){super(),this.upstream=e,this.bufferSize=t,this.buffer=new yS(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},sX=class extends bS{constructor(e,t,n){super(e,t),this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=Mq.alea(n||v.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},id=class{constructor(){this.size=null}batch(e,t=!0){let n=this;v.assert(e>0,()=>`batchSize needs to be positive, but it is
${e}`);let s;return this.size===1/0||this.size==null?s=this.size:t?s=Math.ceil(this.size/e):s=Math.floor(this.size/e),Ns(async()=>(await n.iterator()).columnMajorBatch(e,t,oX),s)}concatenate(e){let t=this,n;return this.size===1/0||e.size===1/0?n=1/0:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Ns(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===1/0?n=1/0:n=null,Ns(async()=>(await t.iterator()).filter(s=>Y(()=>e(s))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Ns(async()=>(await t.iterator()).map(n=>Y(()=>e(n))),this.size)}mapAsync(e){let t=this;return Ns(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Ns(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=1/0:n=null,Ns(async()=>{let s=Mx(async()=>({value:await t.iterator(),done:!1}));return Gq(s.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Ns(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let s=this,r=Oq.alea(t||v.now().toString());return Ns(async()=>{let a=r.int32();return n&&(a+=r.int32()),(await s.iterator()).shuffle(e,a.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Ns(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===1/0)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};id.MAX_BUFFER_SIZE=1e4;function Ns(e,t=null){return new class extends id{constructor(){super(...arguments),this.size=t}async iterator(){return e()}}}function rX(e){return Ns(async()=>AS(e),e.length)}function aX(e){if(!yc(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Ns(async()=>{let n=await gS(e,s=>{if(s instanceof id)return{value:s.iterator(),recurse:!1};if(yc(s))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Hq(n,Za.SHORTEST)},t)}function oX(e){if(e===null)return null;let t=e[0];return Bq(t)?{value:iX(e),recurse:!1}:{value:null,recurse:!0}}function iX(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof st?ln(e):ct(e)}var vS=class extends id{constructor(e){super(),this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
`).map(s=>(s.endsWith("\r")&&(s=s.slice(0,-1)),s))}},nm='"',op=Symbol("out"),k7=Symbol("field"),sm=Symbol("quote"),S3=Symbol("quoteafterquote"),S7=Symbol("quoteinquote"),wS=class extends id{constructor(e,t){super(),this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new vS(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(v.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&v.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((s,r)=>(s[r]=s[r]+1||1,s),{}),n=Object.keys(t).filter(s=>t[s]>1);if(v.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let s of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(s)===-1)throw new Error('The key "'+s+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let t=await(await this.base.iterator()).next();if(t.done)throw new Error("No data was found for CSV parsing.");let n=t.value;return this.parseRow(n,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},s={};for(let r=0;r<this.fullColumnNames.length;r++){let a=this.fullColumnNames[r],o=this.columnConfigs?this.columnConfigs[a]:null;if(!(this.configuredColumnsOnly&&!o)){let i=t[r],l=null;if(i==="")if(o&&o.default!==void 0)l=o.default;else{if(o&&(o.required||o.isLabel))throw new Error(`Required column ${a} is empty in this line: ${e}`);l=void 0}else{let u=Number(i);if(isNaN(u))o&&o.dtype==="bool"?l=this.getBoolean(i):l=i;else if(!o||!o.dtype)l=u;else switch(o.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(i);break;default:l=u}}o&&o.isLabel?s[a]=l:n[a]=l}}return Object.keys(s).length===0?n:{xs:n,ys:s}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],s=0,r=e.length,a=op;for(let o=0;o<r;o++)switch(a){case op:switch(e.charAt(o)){case nm:s=o+1,a=sm;break;case this.delimiter:if(s=o+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),a=op;break;default:a=k7,s=o;break}break;case k7:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o)),a=op,s=o+1;break;default:}break;case sm:switch(e.charAt(o)){case nm:a=S3;break;default:}break;case S3:switch(e.charAt(o)){case this.delimiter:n.push(e.substring(s,o-1)),a=op,s=o+1;break;case nm:a=sm;break;default:a=S7;break}break;case S7:switch(e.charAt(o)){case nm:a=sm;break;default:}break;default:}if(a===S3?n.push(e.substring(s,r-1)):n.push(e.substring(s)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},kS=class extends Cn{constructor(e){super(),this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(!H().get("IS_BROWSER"))throw new Error("microphone API is only supported in browser environment.");let t=new kS(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let s=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(s,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let s=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(s,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(s=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-1/0&&s({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),s({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((s,r)=>n.set(s,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(v.sizeFromShape(t));return n.set(e,n.length-e.length),ct(n,t)}},SS=class extends Cn{constructor(e,t){if(super(),this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Pt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,s=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,a=(1-s)/2,o=r+n,i=s+a;this.cropBox=fr([a,r,i,o],[1,4])}else this.cropBox=fr([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(!H().get("IS_BROWSER"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new SS(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&v.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=nr.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return Y(()=>{let t=Bt(ye(e,"float32"),0),n;n=Ie.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let s=n.shape;return V(n,s.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(t=>t.stop());try{this.webcamVideoElement.srcObject=null}catch(t){console.log(t),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},IS=class{},CS=class extends Cn{split(e){return new lX(this,e)}},lX=class extends CS{constructor(e,t){super(),this.upstream=e,this.impl=new uX(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},uX=class extends zx{constructor(e,t){super(),this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},cX=class extends Cn{decodeUTF8(){return new dX(this)}},dX=class extends CS{constructor(e){super(),this.upstream=e,this.impl=new pX(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},pX=class extends zx{constructor(e){if(super(),this.upstream=e,H().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=m6();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return H().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},TS=class extends cX{constructor(e,t={}){super(),this.file=e,this.options=t,v.assert(e instanceof Uint8Array||(H().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((t,n)=>{let s=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)t(new Uint8Array(this.file.slice(this.offset,s)));else{let r=new FileReader;r.onload=o=>{let i=r.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return n(new TypeError("FileReader returned unknown type."));t(i)},r.onabort=o=>n(new Error("Aborted")),r.onerror=o=>n(new Error(o.type));let a=this.file.slice(this.offset,s);r.readAsArrayBuffer(a)}this.offset=s}),done:!1}}};async function hX(e,t={},n){let s,r;typeof e=="string"?s=e:(s=e.url,r=fX(e));let a=await(n||v.fetch)(s,r);if(a.ok){let o=new Uint8Array(await a.arrayBuffer());return new TS(o,t)}else throw new Error(a.statusText)}var fX=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function NS(e){return typeof e=="string"&&e.slice(0,7)==="file://"}var ES=class extends IS{constructor(e,t={}){super(),this.input=e,this.options=t}async iterator(){if(NS(this.input)&&H().get("IS_NODE")){let e=$y();this.input=e.readFileSync(this.input.slice(7))}return new TS(this.input,this.options)}},RS=class extends IS{constructor(e,t={}){super(),this.url=e,this.fileOptions=t}async iterator(){return NS(this.url)?new ES(this.url,this.fileOptions).iterator():hX(this.url,this.fileOptions)}};function mX(e,t={}){return new wS(new RS(e),t)}function gX(e){let t=Mx(e);return Ns(async()=>t)}function yX(e){return Ns(async()=>{let t=await e();return Mx(()=>t.next())})}async function AX(e,t){return SS.create(e,t)}async function xX(e){return kS.create(e)}var bX="3.20.0";function Te(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var vX=yr.whereImpl,Lx=class extends wc{constructor(){super(),this.blockSize=48,this.firstUse=!0,this.data=new Up(this,Yt())}nextDataId(){return Lx.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,H().get("IS_NODE")&&T.warn(`
============================
Hi, looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, visit https://github.com/tensorflow/tfjs-node for more details.
============================`));let s={id:this.nextDataId()};return this.data.set(s,{values:e,dtype:n,refCount:1}),s}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return{dataId:s,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,s,r){this.data.set(e,{values:t,dtype:s,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let s=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return T.mergeRealAndImagArrays(s,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}makeOutput(e,t,n){return Yt().makeTensorFromTensorInfo(this.makeTensorInfo(t,n,e),this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){Te([e],"where");let t=this.readSync(e.dataId);return vX(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Lx.nextDataId=0;var Bx={};He(Bx,{addImpl:()=>$S,bincountImpl:()=>Vx,bincountReduceImpl:()=>PS,castImpl:()=>DS,ceilImpl:()=>FS,concatImpl:()=>Ux,equalImpl:()=>OS,expImpl:()=>zS,expm1Impl:()=>BS,floorImpl:()=>WS,gatherNdImpl:()=>VS,gatherV2Impl:()=>US,greaterEqualImpl:()=>HS,greaterImpl:()=>GS,lessEqualImpl:()=>qS,lessImpl:()=>jS,linSpaceImpl:()=>XS,logImpl:()=>KS,maxImpl:()=>ZS,maximumImpl:()=>YS,minimumImpl:()=>JS,multiplyImpl:()=>Gx,negImpl:()=>QS,notEqualImpl:()=>eI,prodImpl:()=>tI,raggedTensorToTensorImpl:()=>nI,rangeImpl:()=>jx,rsqrtImpl:()=>sI,scatterImpl:()=>Qu,sigmoidImpl:()=>uK,simpleAbsImpl:()=>_S,sliceImpl:()=>Vm,sparseFillEmptyRowsImpl:()=>aI,sparseReshapeImpl:()=>oI,sparseSegmentReductionImpl:()=>qx,sqrtImpl:()=>pK,squaredDifferenceImpl:()=>iI,stridedSliceImpl:()=>lI,stringNGramsImpl:()=>Xx,stringSplitImpl:()=>Kx,stringToHashBucketFastImpl:()=>Zx,subImpl:()=>uI,tileImpl:()=>cI,topKImpl:()=>pI,transposeImpl:()=>Hx,uniqueImpl:()=>hI});function _S(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var wX=e=>{let{x:t}=e.inputs,n=e.backend;Te(t,"abs");let s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return s=_S(r),n.makeOutput(s,t.shape,t.dtype)},kX={kernelName:ml,backendName:"cpu",kernelFunc:wX};function dn(e){return(t,n,s,r,a)=>{let o=T.assertAndGetBroadcastShape(t,n),i=o.length,l=v.computeStrides(o),u=v.sizeFromShape(o),c=v.getTypedArrayFromDType(a,u),p=t.length,d=n.length,h=v.computeStrides(t),f=v.computeStrides(n),m=T.getBroadcastDims(t,o),g=T.getBroadcastDims(n,o);if(m.length+g.length===0)for(let y=0;y<c.length;++y)c[y]=e(s[y%s.length],r[y%r.length]);else for(let y=0;y<c.length;++y){let x=v.indexToLoc(y,i,l),A=x.slice(-p);m.forEach(C=>A[C]=0);let b=v.locToIndex(A,p,h),w=x.slice(-d);g.forEach(C=>w[C]=0);let k=v.locToIndex(w,d,f);c[y]=e(s[b],r[k])}return[c,o]}}function Rs(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=n.makeTensorInfo(s.shape,"complex64"),l=n.data.get(i.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(s.shape,"float32",a),imag:n.makeTensorInfo(r.shape,"float32",o)},i}var SX={kernelName:Hp,backendName:"cpu",kernelFunc:Rs};function Wm(e,t,n="float32"){if(n==="complex64"){let r=Wm(e,t,"float32"),a=Wm(e,t,"float32");return Rs({inputs:{real:r,imag:a},backend:e})}let s=v.makeZerosTypedArray(v.sizeFromShape(t),n);return e.makeTensorInfo(t,n,s)}function aa(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var IX={kernelName:Po,backendName:"cpu",kernelFunc:aa};function ul(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.real,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var CX={kernelName:Qp,backendName:"cpu",kernelFunc:ul};function DS(e,t,n,s){if(s==="int32"){let r=Int32Array.from(e);return[t,"int32",r]}if(s==="bool"){let r=v.toTypedArray([0],n),[a,o]=dn((i,l)=>i!==l?1:0)(t,[],e,r,"bool");return[o,"bool",a]}throw new Error(`Error in Cast: failed to cast ${n} to ${s}`)}function co(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return aa({inputs:{x:r},backend:n});let c=Wm(n,r.shape,r.dtype),p=co({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),d=Rs({inputs:{real:p,imag:c},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),d}if(r.dtype==="complex64"){let c=ul({inputs:{input:r},backend:n}),p=co({inputs:{x:c},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(c),p}if(!v.hasEncodingLoss(r.dtype,a)){let c=aa({inputs:{x:r},backend:n});return{dataId:c.dataId,shape:c.shape,dtype:a}}let o=n.data.get(r.dataId).values,[i,l,u]=DS(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}var TX={kernelName:xo,backendName:"cpu",kernelFunc:co};function Tn(e,t,n,s){return n==null?({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;Te([o,i],e);let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=o.dtype==="string"?T.fromUint8ToStringArray(u):u,d=o.dtype==="string"?T.fromUint8ToStringArray(c):c,h=s||o.dtype,[f,m]=t(o.shape,i.shape,p,d,h);return l.makeTensorInfo(m,h,f)}:({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(o.dtype==="complex64"||i.dtype==="complex64"){let u=co({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),c=l.data.get(u.dataId),p=c.complexTensorInfos.real,d=c.complexTensorInfos.imag,h=l.data.get(p.dataId).values,f=l.data.get(d.dataId).values,m=co({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(m.dataId),y=g.complexTensorInfos.real,x=g.complexTensorInfos.imag,A=l.data.get(y.dataId).values,b=l.data.get(x.dataId).values,[w,k,C]=n(o.shape,i.shape,h,f,A,b),E=l.makeTensorInfo(C,"float32",w),_=l.makeTensorInfo(C,"float32",k),$=Rs({inputs:{real:E,imag:_},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(m),l.disposeIntermediateTensorInfo(E),l.disposeIntermediateTensorInfo(_),$}else{let u=l.data.get(o.dataId).values,c=l.data.get(i.dataId).values,p=s||o.dtype,[d,h]=t(o.shape,i.shape,u,c,p);return l.makeTensorInfo(h,p,d)}}}function Wx(e){return(t,n,s,r,a,o)=>{let i=T.assertAndGetBroadcastShape(t,n),l=v.sizeFromShape(i),u=i.length,c=v.computeStrides(i),p=v.getTypedArrayFromDType("float32",l),d=v.getTypedArrayFromDType("float32",l),h=T.getBroadcastDims(t,i),f=T.getBroadcastDims(n,i),m=T.mergeRealAndImagArrays(s,r),g=T.mergeRealAndImagArrays(a,o),y=t.length,x=v.computeStrides(t),A=n.length,b=v.computeStrides(n);if(h.length+f.length===0)for(let w=0;w<p.length;w++){let k=w%m.length,C=w%g.length,E=e(m[k*2],m[k*2+1],g[C*2],g[C*2+1]);p[w]=E.real,d[w]=E.imag}else for(let w=0;w<p.length;w++){let k=v.indexToLoc(w,u,c),C=k.slice(-y);h.forEach(P=>C[P]=0);let E=v.locToIndex(C,y,x),_=k.slice(-A);f.forEach(P=>_[P]=0);let $=v.locToIndex(_,A,b),R=e(m[E*2],m[E*2+1],g[$*2],g[$*2+1]);p[w]=R.real,d[w]=R.imag}return[p,d,i]}}var $S=dn((e,t)=>e+t),NX=Wx((e,t,n,s)=>({real:e+n,imag:t+s})),Ac=Tn(Na,$S,NX),EX={kernelName:Na,backendName:"cpu",kernelFunc:Ac};function Vx(e,t,n,s,r){let a=v.sizeFromShape(s),o=v.makeZerosTypedArray(r,n);for(let i=0;i<e.length;i++){let l=e[i];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(a>0?o[l]+=t[i]:o[l]+=1)}return o}function PS(e,t,n,s=!1){let r=e.shape[0],a=e.shape[1],o=We([r,n],t.dtype);for(let i=0;i<r;i++)for(let l=0;l<a;l++){let u=e.get(i,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(s?o.set(1,i,u):t.size>0?o.set(o.get(i,u)+t.get(i,l),i,u):o.set(o.get(i,u)+1,i,u))}return o}function fi(e){return(t,n,s)=>{let r=v.getTypedArrayFromDType(n,t.length);for(let a=0;a<t.length;++a)r[a]=e(t[a],s);return r}}function xt(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=v.sizeFromShape(o.shape),c=n||o.dtype,p=v.getArrayFromDType(c,u);for(let d=0;d<u;++d)p[d]=t(l[d],r);return i.makeTensorInfo(o.shape,c,p)}}function ld(e,t,n){return({inputs:s,attrs:r,backend:a})=>{let{x:o}=s;if(Te(o,e),o.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let i=a,l=i.data.get(o.dataId).values,u=n||o.dtype,c=t(l,u,r);return i.makeTensorInfo(o.shape,u,c)}}var FS=fi(e=>Math.ceil(e)),RX=ld(bo,FS),_X={kernelName:bo,backendName:"cpu",kernelFunc:RX};function Ux(e,t,n,s){let r=v.getArrayFromDType(n,v.sizeFromShape(t));if(s&&n!=="string"){let a=0;e.forEach(o=>{let i=v.sizeFromShape(o.shape);r.set(o.vals,a),a+=i})}else{let a=0;e.forEach(o=>{let i=n==="string"?T.fromUint8ToStringArray(o.vals):o.vals,l=0;for(let u=0;u<o.shape[0];++u){let c=u*t[1]+a;for(let p=0;p<o.shape[1];++p)r[c+p]=i[l++]}a+=o.shape[1]})}return r}var OS=dn((e,t)=>e===t?1:0),MS=Tn(wl,OS,null,"bool"),DX={kernelName:wl,backendName:"cpu",kernelFunc:MS},zS=fi(e=>Math.exp(e)),LS=ld(Eo,zS,"float32"),$X={kernelName:Eo,backendName:"cpu",kernelFunc:LS},BS=fi(e=>Math.expm1(e)),PX=ld(Sl,BS),FX={kernelName:Sl,backendName:"cpu",kernelFunc:PX},WS=fi(e=>Math.floor(e)),OX=ld(Ro,WS),MX={kernelName:Ro,backendName:"cpu",kernelFunc:OX};function VS(e,t,n,s,r,a,o,i,l){let u=We([s,a],n);for(let c=0;c<s;c++){let p=[],d=0;for(let h=0;h<r;h++){let f=e[c*r+h];d+=f*o[h],p.push(f)}if(d<0||d>=l/a)throw new Error(`Invalid indices: ${p} does not index into ${i}`);for(let h=0;h<a;h++)u.values[c*a+h]=t.get(...t.indexToLoc(d*a+h))}return u}function US(e,t,n){let s=We(n,e.dtype);for(let r=0;r<s.size;++r){let o=s.indexToLoc(r).slice(),i=o[0],l=o[2],u=t.locToIndex([i,l]);o[2]=t.values[u];let c=e.locToIndex(o);0<=c&&c<e.values.length&&(s.values[r]=e.values[c])}return s}var GS=dn((e,t)=>e>t?1:0),zX=Tn(Nl,GS,null,"bool"),LX={kernelName:Nl,backendName:"cpu",kernelFunc:zX},HS=dn((e,t)=>e>=t?1:0),BX=Tn($o,HS,null,"bool"),WX={kernelName:$o,backendName:"cpu",kernelFunc:BX},jS=dn((e,t)=>e<t?1:0),VX=Tn(Rl,jS,null,"bool"),UX={kernelName:Rl,backendName:"cpu",kernelFunc:VX},qS=dn((e,t)=>e<=t?1:0),GX=Tn(_l,qS,null,"bool"),HX={kernelName:_l,backendName:"cpu",kernelFunc:GX};function XS(e,t,n){let s=(t-e)/(n-1),r=v.makeZerosTypedArray(n,"float32");r[0]=e;for(let a=1;a<r.length;a++)r[a]=r[a-1]+s;return r}var KS=fi(e=>Math.log(e)),jX=ld(Oo,KS),qX={kernelName:Oo,backendName:"cpu",kernelFunc:jX};function ZS(e,t,n,s){let r=v.getTypedArrayFromDType(s,v.sizeFromShape(n));for(let a=0;a<r.length;++a){let o=a*t,i=e[o];for(let l=0;l<t;++l){let u=e[o+l];(Number.isNaN(u)||u>i)&&(i=u)}r[a]=i}return r}var YS=dn((e,t)=>Math.max(e,t)),XX=Tn(zo,YS),KX={kernelName:zo,backendName:"cpu",kernelFunc:XX},JS=dn((e,t)=>Math.min(e,t)),ZX=Tn(Vo,JS),YX={kernelName:Vo,backendName:"cpu",kernelFunc:ZX},Gx=dn((e,t)=>e*t),JX=Wx((e,t,n,s)=>({real:e*n-t*s,imag:e*s+t*n})),R2=Tn(Go,Gx,JX),QX={kernelName:Go,backendName:"cpu",kernelFunc:R2};function QS(e,t,n){let s=v.createScalarValue(-1,n);return Gx([],t,s,e,n)}function eK(e){let{inputs:t,backend:n}=e,{x:s}=t;Te(s,"neg");let r=n.data.get(s.dataId).values,[a,o]=QS(r,s.shape,s.dtype);return n.makeTensorInfo(o,s.dtype,a)}var tK={kernelName:Pl,backendName:"cpu",kernelFunc:eK},eI=dn((e,t)=>e!==t?1:0),nK=Tn(Fl,eI,null,"bool"),sK={kernelName:Fl,backendName:"cpu",kernelFunc:nK};function Hx(e,t,n,s,r){let a=t.length,o=v.sizeFromShape(t),i=v.computeStrides(t),l=v.computeStrides(r),u=v.getTypedArrayFromDType(n,v.sizeFromShape(r));for(let c=0;c<o;++c){let p=v.indexToLoc(c,a,i),d=new Array(p.length);for(let f=0;f<d.length;f++)d[f]=p[s[f]];let h=v.locToIndex(d,a,l);u[h]=e[c]}return u}function bs(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{perm:a}=n;Te(r,"transpose");let o=r.shape.length,i=new Array(o);for(let p=0;p<i.length;p++)i[p]=r.shape[a[p]];let l=s.data.get(r.dataId).values,u=Hx(l,r.shape,r.dtype,a,i);return{dataId:s.write(u,i,r.dtype),shape:i,dtype:r.dtype}}var rK={kernelName:ea,backendName:"cpu",kernelFunc:bs};function tI(e,t,n,s){let[r,a]=T.computeOutAndReduceShapes(e,s),o=Un(t,"int32"),i=v.makeZerosTypedArray(v.sizeFromShape(r),o),l=v.sizeFromShape(a);for(let u=0;u<i.length;++u){let c=u*l,p=1;for(let d=0;d<l;++d)p*=n[c+d];i[u]=p}return{outVals:i,outShape:r,outDtype:o}}function aK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"prod");let i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=T.getAxesPermutation(l,i),c=l,p=r,d=[];u!=null&&(p=bs({inputs:{x:r},backend:n,attrs:{perm:u}}),d.push(p),c=T.getInnerMostAxes(c.length,i));let h=n.data.get(p.dataId).values,{outVals:f,outShape:m,outDtype:g}=tI(p.shape,p.dtype,h,c),y=m;return o&&(y=T.expandShapeToKeepDim(m,l)),d.forEach(x=>n.disposeIntermediateTensorInfo(x)),n.makeTensorInfo(y,g,f)}var oK={kernelName:Xo,backendName:"cpu",kernelFunc:aK},cr=T.RowPartitionType,hy=class{constructor(e,t,n,s,r,a,o,i,l,u){this.shape=e,this.shapeShape=t,this.values=n,this.valuesShape=s,this.valuesDType=r,this.defaultValue=a,this.defaultValueShape=o,this.rowPartitionValues=i,this.rowPartitionValuesShapes=l,this.rowPartitionTypes=T.getRowPartitionTypesHelper(u),this.raggedRank=T.getRaggedRank(this.rowPartitionTypes)}getRowPartitionTypeByDimension(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionTypes[e+1]:this.rowPartitionTypes[e]}getRowPartitionTensor(e){return this.rowPartitionTypes[0]===cr.FIRST_DIM_SIZE?this.rowPartitionValues[e+1]:this.rowPartitionValues[e]}getMaxWidth(e){let t=this.getRowPartitionTensor(e-1);switch(this.getRowPartitionTypeByDimension(e-1)){case cr.VALUE_ROWIDS:return hy.getMaxWidthValueRowID(t);case cr.ROW_SPLITS:return hy.getMaxWidthRowSplit(t);default:throw new Error(`Cannot handle partition type ${cr[this.getRowPartitionTypeByDimension(e-1)]}`)}}static getMaxWidthRowSplit(e){let t=e.length;if(t===0||t===1)return 0;let n=0;for(let s=0;s<t-1;++s){let r=e[s+1]-e[s];r>n&&(n=r)}return n}static getMaxWidthValueRowID(e){let t=e.length;if(t===0)return 0;let n=0,s=e[0],r=0;for(let a=1;a<t;++a){let o=e[a];o!==s&&(s=o,r=Math.max(a-n,r),n=a)}return Math.max(t-n,r)}tensorShapeFromTensor(e,t,n=!0){if(t.length===0){if(e[0]===-1)return[];throw new Error("The only valid scalar shape tensor is the fully unknown shape specified as -1.")}return C7(e,n)}calculateOutputSize(e){let t=this.valuesShape,n=this.defaultValueShape;T.validateDefaultValueShape(n,t);let s=this.tensorShapeFromTensor(this.shape,this.shapeShape),a=T.combineRaggedTensorToTensorShapes(this.raggedRank,s,t);a[0]<0&&(a[0]=e);for(let o=1;o<=this.raggedRank;++o)a[o]<0&&(a[o]=this.getMaxWidth(o));return a}calculateFirstParentOutputIndex(e,t,n){let s=Math.min(e,n),r=[],a=0;for(let o=0;o<s;++o,a+=t)r.push(a);for(let o=s;o<e;++o)r.push(-1);return v.assert(r.length===e,()=>"Final length of result must be equal to firstDimension."),r}calculateOutputIndexRowSplit(e,t,n,s){let r=e.length,a=[];for(let o=0;o<r-1;++o){let i=e[o+1]-e[o],l=Math.min(s,i),u=t[o];u===-1&&(l=0);for(let c=0;c<l;++c)a.push(u),u+=n;for(let c=0;c<i-l;++c)a.push(-1)}if(r>0&&a.length!==e[r-1])throw new Error("Invalid row split size.");return a}calculateOutputIndexValueRowID(e,t,n,s){let r=e.length,a=[];if(r===0)return[];let o=0,i=e[0];if(i>=t.length)throw new Error(`Got currentValueRowId=${i}, which is not less than ${t.length}`);let l=t[i];a.push(l);for(let u=1;u<r;++u){let c=e[u];if(c===i)l>=0&&(++o,o<s?l+=n:l=-1);else{if(o=0,i=c,c>=t.length)throw new Error(`Got nextValueRowId=${c} which is not less than ${t.length}`);l=t[c]}a.push(l)}if(a.length!==e.length)throw new Error("Invalid row ids.");return a}calculateOutputIndex(e,t,n,s){let r=this.getRowPartitionTensor(e),a=this.getRowPartitionTypeByDimension(e);switch(a){case cr.VALUE_ROWIDS:return this.calculateOutputIndexValueRowID(r,t,n,s);case cr.ROW_SPLITS:if(r.length-1>t.length)throw new Error(`Row partition size is greater than output size: ${r.length-1} > ${t.length}`);return this.calculateOutputIndexRowSplit(r,t,n,s);default:throw new Error(`Unsupported partition type: ${cr[a]}`)}}getFirstDimensionSize(){let e=this.rowPartitionValues[0];if(this.rowPartitionTypes.length===0)throw new Error("No row_partition_types given.");let t=this.rowPartitionTypes[0];switch(t){case cr.FIRST_DIM_SIZE:return e[0];case cr.VALUE_ROWIDS:throw new Error("Cannot handle VALUE_ROWIDS in first dimension.");case cr.ROW_SPLITS:return this.rowPartitionValuesShapes[0][0]-1;default:throw new Error(`Cannot handle type ${cr[t]}`)}}compute(){if(this.rowPartitionValues[0].length<=0)throw new Error("Invalid first partition input. Tensor requires at least one element.");let t=this.getFirstDimensionSize(),n=this.calculateOutputSize(t),s=new Array(this.raggedRank+1);s[s.length-1]=1;for(let i=s.length-2;i>=0;--i)s[i]=s[i+1]*n[i+1];let r=C7(n,!1),a=v.getArrayFromDType(this.valuesDType,v.sizeFromShape(r));if(s[0]*n[0]>0){let i=this.calculateFirstParentOutputIndex(t,s[0],n[0]);for(let l=1;l<=this.raggedRank;++l)i=this.calculateOutputIndex(l-1,i,s[l],n[l]);this.setOutput(this.raggedRank,i,a,r)}return[r,a]}setOutput(e,t,n,s){if(n.length===0)return;let r=this.values,a=n,o=s.slice();o=o.slice(e+1);let i=v.sizeFromShape(o),l=t.length,u=this.defaultValue;if(u.length!==i&&u.length!==1){let h=this.defaultValueShape;Y(()=>{let f=V(u,h);u=Ji(f,o).dataSync()})}let c=0,p=0,d=0;for(let h=0;h<=l;++h){let f=h<l?t[h]:-1;if(f===d){++d;continue}if(p<d){let m=r.subarray(c*i),g=a.subarray(p*i),y=(d-p)*i;I7(g,m,y)}if(h>=l){let m=n.length;f=Math.floor(m/i)}if(f>d)if(this.defaultValue.length===1)a.subarray(d*i,f*i).fill(this.defaultValue[0]),d=f;else for(;f>d;){let m=a.slice(d*i);I7(m,u,i),++d}f<0?(c=h+1,p=d):(c=h,p=d,d=p+1)}}};function I7(e,t,n){for(let s=0;s<n;s++)e[s]=t[s]}function C7(e,t){let n=[];for(let s of e){if(s<0){if(!t)throw new Error(`Dimension ${s} must be >= 0`);if(s<-1)throw new Error(`Dimension ${s} must be >= -1`);s=-1}n.push(s)}return n}function nI(e,t,n,s,r,a,o,i,l,u){return new hy(e,t,n,s,r,a,o,i,l,u).compute()}function jx(e,t,n,s){let r=e===t,a=e<t&&n<0,o=t<e&&n>1;if(r||a||o)return v.makeZerosTypedArray(0,s);let i=Math.abs(Math.ceil((t-e)/n)),l=v.makeZerosTypedArray(i,s);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var sI=fi(e=>1/Math.sqrt(e)),iK=ld(Qo,sI),lK={kernelName:Qo,backendName:"cpu",kernelFunc:iK};function Qu(e,t,n,s,r,a,o,i,l,u){let c=[s/r,r],p=e.values,d=t.values;if(s===0)return We(n,t.dtype);let h=We(c,t.dtype);typeof l=="string"||typeof l=="number"?h.values.fill(l):typeof l=="boolean"&&h.values.fill(+l);for(let f=0;f<a;f++){let m=[],g=0;for(let y=0;y<o;y++){let x=p[f*o+y];m.push(x),g+=x*i[y]}if(g<0||g>=s/r)throw new Error(`Invalid indices: ${m} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=d[f*r+y]:h.values[g*r+y]=t.rank===0?d[0]:d[f*r+y]}return h}var uK=fi(e=>1/(1+Math.exp(-e))),rI=xt(ti,e=>1/(1+Math.exp(-e))),cK={kernelName:ti,backendName:"cpu",kernelFunc:rI};function Vm(e,t,n,s,r){let a=Gt.isSliceContinous(s,t,n),o=v.sizeFromShape(n),i=v.computeStrides(s);if(a){let p=Gt.computeFlatOffset(t,i);return r==="string"?e.slice(p,p+o):e.subarray(p,p+o)}let l=r==="string"?T.fromUint8ToStringArray(e):e,u=We(s,r,l),c=We(n,r);for(let p=0;p<c.size;++p){let d=c.indexToLoc(p),h=d.map((f,m)=>f+t[m]);c.set(u.get(...h),...d)}return r==="string"?T.fromStringArrayToUint8(c.values):c.values}function cl(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s;Te(r,"slice");let[i,l]=Gt.parseSliceParams(r,a,o);Gt.assertParamsValid(r,i,l);let u=n.data.get(r.dataId).values,c=Vm(u,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}var dK={kernelName:ql,backendName:"cpu",kernelFunc:cl};function aI(e,t,n,s,r,a,o){let i=t[0],l=a[0],u=new Array(l),c=new Array(i),p=t[1];if(l===0){if(i!==0)throw new Error(T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(i));let g=v.getArrayFromDType(n,0),y=v.getArrayFromDType(r,0);return[g,[0,p],y,u,c]}let d=!0,h=0,f=new Array(l).fill(0);for(let g=0;g<i;++g){let y=e[g*p];if(y<0)throw new Error(T.getSparseFillEmptyRowsNegativeIndexErrorMessage(g,y));if(y>=l)throw new Error(T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(g,y,l));++f[y],d=d&&y>=h,h=y}let m=!0;for(let g=0;g<l;++g){let y=f[g]===0;u[g]=y,m=m&&!y,f[g]=Math.max(f[g],1),g>0&&(f[g]+=f[g-1])}if(m&&d){let g=e,y=s;for(let x=0;x<i;++x)c[x]=x;return[g,[i,p],y,u,c]}else{let g=f[l-1],y=v.getArrayFromDType(n,g*p),x=v.getArrayFromDType(r,g),A=new Array(l).fill(0);for(let b=0;b<i;++b){let w=e[b*p],k=A[w],C=(w===0?0:f[w-1])+k;A[w]++;for(let E=0;E<p;++E)y[C*p+E]=e[b*p+E];x[C]=s[b],c[b]=C}for(let b=0;b<l;++b)if(A[b]===0){let k=b===0?0:f[b-1];y[k*p+0]=b;for(let C=1;C<p;++C)y[k*p+C]=0;x[k]=o}return[y,[g,p],x,u,c]}}function oI(e,t,n,s,r){let a=v.sizeFromShape(s),o=t[0],i=r.length,l=[],u=1,c=-1;for(let g=0;g<i;++g){let y=r[g];if(y===-1){if(c!==-1)throw new Error(T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(c,g));c=g,l.push(1)}else{if(y<0)throw new Error(T.getSparseReshapeNegativeOutputDimErrorMessage(g,y));u*=y,l.push(y)}}if(c!==-1){if(u<=0)throw new Error(T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage());let g=Math.trunc(a/u);if(u*g!==a)throw new Error(T.getSparseReshapeInputOutputMultipleErrorMessage(s,l));l[c]=g}if(v.sizeFromShape(l)!==a)throw new Error(T.getSparseReshapeInputOutputMismatchErrorMessage(s,l));let d=s.length,h=[];if(d>0){h[d-1]=1;for(let g=d-2;g>=0;--g)h[g]=h[g+1]*s[g+1]}let f=[];if(i>0){f[i-1]=1;for(let g=i-2;g>=0;--g)f[g]=f[g+1]*l[g+1]}let m=v.getArrayFromDType(n,o*i);for(let g=0;g<o;++g){let y=0;for(let x=0;x<d;++x)y+=e[g*d+x]*h[x];for(let x=0;x<i;++x)m[g*i+x]=Math.trunc(y/f[x]),y%=f[x]}return[m,[o,i],l]}function qx(e,t,n,s,r,a=!1,o=0){let i=s.length,l=[t[0],e.length/t[0]],u=l[1],p=i>0?r[i-1]+1:0;if(p<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let d=t.slice();d[0]=p;let h=d.reduce((A,b)=>A*b,1),f=v.getArrayFromDType(n,h);if(i===0)return p>0&&f.fill(o),[f,d];if(p<=0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let m=0,g=1,y=0,x=r[m];for(;;){let A=0;if(g<i){if(A=r[g],x===A){++g;continue}if(x>=A)throw new Error(T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage())}if(x<0||x>=p)throw new Error(T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(x,p));x>y&&f.fill(o,y*u,x*u);for(let b=m;b<g;++b){let w=s[b];if(w<0||w>=l[0])throw new Error(T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(b,s[b],l[0]));for(let k=0;k<u;k++)f[x*u+k]+=e[w*u+k]}if(a)for(let b=0;b<u;b++)f[x*u+b]/=g-m;if(m=g,++g,y=x+1,x=A,g>i)break}return y<p&&f.fill(o,y*u,p*u),[f,d]}var pK=fi(e=>Math.sqrt(e)),hK=xt(ni,e=>Math.sqrt(e)),fK={kernelName:ni,backendName:"cpu",kernelFunc:hK},iI=dn((e,t)=>{let n=e-t;return n*n}),mK=Tn(ai,iI),gK={kernelName:ai,backendName:"cpu",kernelFunc:mK};function lI(e,t,n,s){let r=We(e,t.dtype);for(let a=0;a<r.size;a++){let o=r.indexToLoc(a),i=new Array(o.length);for(let l=0;l<i.length;l++)i[l]=o[l]*n[l]+s[l];r.set(t.get(...i),...o)}return r}var yK=class{constructor(e,t,n,s,r,a){this.separator=v.encodeString(e),this.nGramWidths=t,this.leftPad=v.encodeString(n),this.rightPad=v.encodeString(s),this.padWidth=r,this.preserveShort=a}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,s,r,a){for(let o=0;o<r;++o){let i=this.getPadWidth(a),l=Math.max(0,i-o),u=Math.max(0,i-(r-(o+1))),c=a-(l+u),p=t+(l>0?0:o-i),d=0;d+=l*this.leftPad.length;for(let y=0;y<c;++y)d+=e[p+y].length;d+=u*this.rightPad.length,d+=(l+u+c-1)*this.separator.length,n[s+o]=new Uint8Array(d);let f=n[s+o],m=0,g=y=>y.forEach(x=>f[m++]=x);for(let y=0;y<l;++y)g(this.leftPad),g(this.separator);for(let y=0;y<c-1;++y)g(e[p+y]),g(this.separator);if(c>0){g(e[p+c-1]);for(let y=0;y<u;++y)g(this.separator),g(this.rightPad)}else{for(let y=0;y<u-1;++y)g(this.rightPad),g(this.separator);g(this.rightPad)}}}compute(e,t){let n=e.length,s=t.length;if(s>0){let i=t[0];if(i!==0)throw new Error(`First split value must be 0, got ${i}`);for(let l=1;l<s;++l){let u=t[l]>=i;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${i}, ${n}]`);i=t[l]}if(i!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${i}`)}let r=s-1,a=v.getArrayFromDType("int32",s);if(n===0||s===0){let i=new Array(n);for(let l=0;l<=r;++l)a[l]=0;return[i,a]}a[0]=0;for(let i=1;i<=r;++i){let l=t[i]-t[i-1],u=0;this.nGramWidths.forEach(c=>{u+=this.getNumNGrams(l,c)}),this.preserveShort&&l>0&&u===0&&(u=1),a[i]=a[i-1]+u}let o=new Array(a[r]);for(let i=0;i<r;++i){let l=t[i],u=a[i];if(this.nGramWidths.forEach(c=>{let p=t[i+1]-t[i],d=this.getNumNGrams(p,c);this.createNGrams(e,l,o,u,d,c),u+=d}),this.preserveShort&&u===a[i]){let c=t[i+1]-t[i];if(c===0)continue;let p=c+2*this.padWidth,d=1;this.createNGrams(e,l,o,u,d,p)}}return[o,a]}};function Xx(e,t,n,s,r,a,o,i){return new yK(n,s,r,a,o,i).compute(e,t)}function AK(e,t,n,s){if(!e.length)return;if(t.length===0){for(let a=0;a<e.length;++a)s.push(e.subarray(a,a+1));return}if(t.length===1){let a=t[0],o=e.indexOf(a);for(;o!==-1;){let i=e.subarray(0,o);(!n||i.length!==0)&&s.push(i),e=e.subarray(o+1),o=e.indexOf(a)}(!n||e.length!==0)&&s.push(e);return}let r=0;for(let a=0;a<e.length+1;a++)if(a===e.length||t.indexOf(e[a])!==-1){let o=e.subarray(r,a);(!n||o.length!==0)&&s.push(o),r=a+1}}function Kx(e,t,n){let s=e.length,r=[],a=0,o=0,i=new Array(s);for(let d=0;d<s;++d){let h=r.length;AK(e[d],t,n,r);let f=r.length-h;i[d]=f,a+=f,o=Math.max(o,f)}let l=v.getArrayFromDType("int32",a*2),u=new Array(a),c=[s,o],p=0;for(let d=0;d<s;++d)for(let h=0;h<i[d];++h)l[p*2]=d,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,c]}function Zx(e,t){let n=v.getArrayFromDType("int32",e.length);for(let s=0;s<e.length;++s)n[s]=v.fingerPrint64(e[s]).modulo(t).getLowBitsUnsigned();return n}var uI=dn((e,t)=>e-t),xK=Wx((e,t,n,s)=>({real:e-n,imag:t-s})),Yx=Tn(oi,uI,xK),bK={kernelName:oi,backendName:"cpu",kernelFunc:Yx};function cI(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let s=We(n,e.dtype);for(let r=0;r<s.values.length;++r){let a=s.indexToLoc(r),o=new Array(e.rank);for(let l=0;l<o.length;l++)o[l]=a[l]%e.shape[l];let i=e.locToIndex(o);s.values[r]=e.values[i]}return s}var dp=(e,t)=>{let n=t.value-e.value;return n===0?e.index-t.index:n};function dI(e,t,n=0,s=e.length-1){for(;s>n;){if(s-n>600){let i=s-n+1,l=t-n+1,u=Math.log(i),c=.5*Math.exp(2*u/3),p=.5*Math.sqrt(u*c*(i-c)/i)*Math.sign(l-i/2),d=Math.max(n,Math.floor(t-l*c/i+p)),h=Math.min(s,Math.floor(t+(i-l)*c/i+p));dI(e,t,d,h)}let r=e[t],a=n,o=s;for(v.swap(e,n,t),dp(e[s],r)>0&&v.swap(e,n,s);a<o;){for(v.swap(e,a,o),a++,o--;dp(e[a],r)<0;)a=a+1;for(;dp(e[o],r)>0;)o=o-1}dp(e[n],r)===0?v.swap(e,n,o):(o=o+1,v.swap(e,o,s)),o<=t&&(n=o+1),t<=o&&(s=o-1)}}function pI(e,t,n,s,r){let a=t[t.length-1],[o,i]=[e.length/a,a],l=v.getTypedArrayFromDType(n,o*s),u=v.getTypedArrayFromDType("int32",o*s);for(let p=0;p<o;p++){let d=p*i,h=e.subarray(d,d+i),f=new Array(h.length);h.forEach((x,A)=>f[A]={value:x,index:A}),s<f.length&&(dI(f,s),f=f.slice(0,s)),r&&f.sort(dp);let m=p*s,g=l.subarray(m,m+s),y=u.subarray(m,m+s);for(let x=0;x<s;x++)g[x]=f[x].value,y[x]=f[x].index}let c=t.slice();return c[c.length-1]=s,[We(c,n,l),We(c,"int32",u)]}function hI(e,t,n,s){let r=v.parseAxisParam(t,n)[0],a=[1,n[0],1];for(let f=0;f<r;f++)a[0]*=n[f];a[1]=n[r];for(let f=r+1;f<n.length;f++)a[2]*=n[f];let o={},i=new Int32Array(n[r]),l=new gn(a,s,e),u=[],c=a[0]===1&&a[2]===1;for(let f=0;f<n[r];f++){let m;if(c)m=e[f].toString();else{let g=[];for(let y=0;y<a[0];y++)for(let x=0;x<a[2];x++)g.push(l.get(y,f,x));m=g.join(",")}if(o[m]!==void 0)i[f]=o[m];else{let g=Object.keys(o).length;o[m]=g,i[f]=g,u.push(f)}}let p=a.slice();p[1]=Object.keys(o).length;let d=new gn(p,s);u.forEach((f,m)=>{for(let g=0;g<a[0];g++)for(let y=0;y<a[2];y++)d.set(l.get(g,f,y),g,m,y)});let h=n.slice();return h[r]=p[1],{outputValues:d.values,outputShape:h,indices:i}}ru("cpu",()=>new Lx,1);var fI=xt(No,e=>e>=0?e:Math.exp(e)-1),vK={kernelName:No,backendName:"cpu",kernelFunc:fI};function mI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s;Te([r],"leakyRelu");let o=v.sizeFromShape(r.shape),i=n.data.get(r.dataId).values,l=v.getTypedArrayFromDType("float32",o);for(let u=0;u<i.length;u++)l[u]=i[u]<0?a*i[u]:i[u];return n.makeTensorInfo(r.shape,"float32",l)}var wK={kernelName:Fo,backendName:"cpu",kernelFunc:mI},kK=dn((e,t)=>e<0?t*e:e);function gI(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t;Te([s,r],"prelu");let a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,[i,l]=kK(s.shape,r.shape,a,o,"float32");return n.makeTensorInfo(l,"float32",i)}var SK={kernelName:qo,backendName:"cpu",kernelFunc:gI},yI=xt(Ko,e=>Math.max(0,e)),IK={kernelName:Ko,backendName:"cpu",kernelFunc:yI},AI=xt(Jo,e=>Math.min(Math.max(0,e),6)),CK={kernelName:Jo,backendName:"cpu",kernelFunc:AI};function Um(e,t,n,s,r){if(n==="linear")return aa({inputs:{x:t},backend:e});if(n==="relu")return yI({inputs:{x:t},backend:e});if(n==="elu")return fI({inputs:{x:t},backend:e});if(n==="relu6")return AI({inputs:{x:t},backend:e});if(n==="prelu")return gI({inputs:{x:t,alpha:s},backend:e});if(n==="leakyrelu")return mI({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return rI({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function Et(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=v.sizeFromShape(r.shape),i=v.inferFromImplicitShape(a,o),l=v.sizeFromShape(i);v.assert(o===l,()=>`The new shape (${i}) has ${l} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let c=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;c.shape=i,p.shape=i}return{dataId:r.dataId,shape:i,dtype:r.dtype}}var TK={kernelName:Vl,backendName:"cpu",kernelFunc:Et};function xI(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;Te([r,a],"matMul");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=au.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=Et({inputs:{x:r},backend:n,attrs:{shape:b}}),C=Et({inputs:{x:a},backend:n,attrs:{shape:w}}),E=o?k.shape[1]:k.shape[2],_=o?k.shape[2]:k.shape[1],$=i?C.shape[1]:C.shape[2],R=Math.max(g,y),P=n.data.get(k.dataId).values,S=n.data.get(C.dataId).values,M=v.computeStrides(k.shape),L=v.computeStrides(C.shape),[U,K,q]=o?[M[0],1,M[1]]:[M[0],M[1],1],[Z,J,Q]=i?[1,L[1],L[0]]:[L[1],1,L[0]],ie=_*$,re=We([R,_,$],k.dtype),de=re.values,ue=n.blockSize;for(let Ae=0;Ae<R;Ae++)for(let oe=0;oe<_;oe+=ue)for(let Re=0;Re<$;Re+=ue)for(let _e=0;_e<E;_e+=ue){let Ve=Math.min(oe+ue,_),Me=Math.min(Re+ue,$),it=Math.min(_e+ue,E);for(let gt=oe;gt<Ve;gt++)for(let pt=Re;pt<Me;pt++){let yt=0;for(let Oe=_e;Oe<it;Oe++){let Ct=Math.min(Ae,g-1)*U,kt=Math.min(Ae,y-1)*Q,Kn=P[Ct+gt*K+Oe*q],nn=S[Oe*Z+pt*J+kt];yt+=Kn*nn}de[Ae*ie+(gt*$+pt)]+=yt}}return n.disposeIntermediateTensorInfo(k),n.disposeIntermediateTensorInfo(C),n.makeTensorInfo(A,re.dtype,re.values)}var NK={kernelName:Ao,backendName:"cpu",kernelFunc:xI};function EK(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d,h,f,m=[];d=xI({inputs:{a:r,b:a},attrs:{transposeA:l,transposeB:u},backend:n}),o&&(h=Ac({inputs:{a:d,b:o},backend:n}),m.push(d),d=h),c&&(f=Um(n,d,c,i,p),m.push(d),d=f);for(let y of m)n.disposeIntermediateTensorInfo(y);return d}var RK={kernelName:to,backendName:"cpu",kernelFunc:EK},_K=xt(Sc,e=>Math.acos(e)),DK={kernelName:Sc,backendName:"cpu",kernelFunc:_K},$K=xt(Ic,e=>Math.acosh(e)),PK={kernelName:Ic,backendName:"cpu",kernelFunc:$K};function FK(e){let{inputs:t,backend:n}=e,s=t;Te(t,"addN");let r=s.map(i=>n.data.get(i.dataId).values),a=We(s[0].shape,s[0].dtype),o=a.values;for(let i=0;i<s.length;i++){let l=r[i];for(let u=0;u<o.length;u++)o[u]+=l[u]}return n.makeTensorInfo(a.shape,a.dtype,a.values)}var OK={kernelName:mo,backendName:"cpu",kernelFunc:FK};function MK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"all");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=bs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("all",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A&&w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var zK={kernelName:Cc,backendName:"cpu",kernelFunc:MK};function LK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"any");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=bs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("any",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];A=A||w}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var BK={kernelName:Tc,backendName:"cpu",kernelFunc:LK};function WK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMax");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=bs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMax",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w>x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var VK={kernelName:go,backendName:"cpu",kernelFunc:WK};function UK(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s;Te(r,"argMin");let o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=bs({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),o=[o[0]],T.assertAxesAreInnerMostDims("argMin",o,l.shape.length);let[c,p]=T.computeOutAndReduceShapes(l.shape,o),d=v.sizeFromShape(c),h=v.makeZerosTypedArray(d,"int32"),f=v.sizeFromShape(p),m=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*f,x=m[y],A=0;for(let b=0;b<f;++b){let w=m[y+b];w<x&&(x=w,A=b)}h[g]=A}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(c,"int32",h)}var GK={kernelName:Nc,backendName:"cpu",kernelFunc:UK},HK=xt(Ec,e=>Math.asin(e)),jK={kernelName:Ec,backendName:"cpu",kernelFunc:HK},qK=xt(Rc,e=>Math.asinh(e)),XK={kernelName:Rc,backendName:"cpu",kernelFunc:qK},KK=xt(_c,e=>Math.atan(e)),ZK={kernelName:_c,backendName:"cpu",kernelFunc:KK},YK=dn((e,t)=>Math.atan2(e,t)),JK=Tn(gl,YK),QK={kernelName:gl,backendName:"cpu",kernelFunc:JK},eZ=xt(Dc,e=>Math.atanh(e)),tZ={kernelName:Dc,backendName:"cpu",kernelFunc:eZ};function Jx(e,t,n,s,r,a){let o=r.strideHeight,i=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,c=r.effectiveFilterHeight,p=r.effectiveFilterWidth,d=r.padInfo.top,h=r.padInfo.left,f=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,m=We(r.outShape,n),g=m.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],x=r.outShape[2]*r.outShape[3],A=r.outShape[3];for(let b=0;b<r.batchSize;++b){let w=b*y,k=b*s[0];for(let C=0;C<r.inChannels;++C)for(let E=0;E<r.outHeight;++E){let _=E*o-d,$=Math.max(0,_),R=Math.min(r.inHeight,c+_),P=w+E*x;for(let S=0;S<r.outWidth;++S){let M=S*i-h,L=Math.max(0,M),U=Math.min(r.inWidth,p+M),K=f,q=0,Z=0;for(let Q=$;Q<R;Q+=l){let ie=k+Q*s[1];for(let re=L;re<U;re+=u){let de=ie+re*s[2],ue=e[de+C];a==="max"&&ue>K?K=ue:a==="avg"&&(q+=ue,Z++)}if(isNaN(K))break}let J=P+S*A+C;g[J]=a==="avg"?q/Z:K}}}return m}function bI(e,t,n,s,r=!1,a=!1){let o=We(s.outShape,"int32"),i=s.strideHeight,l=s.strideWidth,u=s.dilationHeight,c=s.dilationWidth,p=s.effectiveFilterHeight,d=s.effectiveFilterWidth,h=s.padInfo.top,f=s.padInfo.left,m=We(t,n,e);for(let g=0;g<s.batchSize;++g)for(let y=0;y<s.inChannels;++y)for(let x=0;x<s.outHeight;++x){let A=x*i-h,b=A;for(;b<0;)b+=u;let w=Math.min(s.inHeight,p+A);for(let k=0;k<s.outWidth;++k){let C=k*l-f,E=C;for(;E<0;)E+=c;let _=Math.min(s.inWidth,d+C),$=Number.NEGATIVE_INFINITY,R=-1;for(let P=b;P<w;P+=u){let S=P-A;for(let M=E;M<_;M+=c){let L=M-C,U=m.get(g,P,M,y);U>$&&($=U,r?R=a?((g*s.inHeight+P)*s.inWidth+M)*s.inChannels+y:(P*s.inWidth+M)*s.inChannels+y:R=S*d+L)}}o.set(R,g,x,k,y)}}return o}function vI(e,t,n,s,r,a){let o=r.strideDepth,i=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,c=r.dilationHeight,p=r.dilationWidth,d=r.effectiveFilterDepth,h=r.effectiveFilterHeight,f=r.effectiveFilterWidth,m=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,x=a==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,A=We(r.outShape,n),b=A.values,w=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],k=r.outShape[2]*r.outShape[3]*r.outShape[4],C=r.outShape[3]*r.outShape[4],E=r.outShape[4];for(let _=0;_<r.batchSize;++_){let $=_*w,R=_*s[0];for(let P=0;P<r.inChannels;++P)for(let S=0;S<r.outDepth;++S){let M=S*o-m,L=M;for(;L<0;)L+=u;let U=Math.min(r.inDepth,d+M),K=$+S*k;for(let q=0;q<r.outHeight;++q){let Z=q*i-g,J=Z;for(;J<0;)J+=c;let Q=Math.min(r.inHeight,h+Z),ie=K+q*C;for(let re=0;re<r.outWidth;++re){let de=re*l-y,ue=de;for(;ue<0;)ue+=p;let Ae=Math.min(r.inWidth,f+de),oe=ie+re*E,Re=x,_e=0,Ve=0;for(let it=L;it<U;it+=u){let gt=R+it*s[1];for(let pt=J;pt<Q;pt+=c){let yt=gt+pt*s[2];for(let Oe=ue;Oe<Ae;Oe+=p){let Ct=yt+Oe*s[3],kt=e[Ct+P];if(a==="max"&&kt>Re?Re=kt:a==="avg"&&(_e+=kt,Ve++),isNaN(Re))break}if(isNaN(Re))break}if(isNaN(Re))break}let Me=oe+P;b[Me]=a==="avg"?_e/Ve:Re}}}}return A}function nZ(e,t){let n=We(t.outShape,"int32"),s=t.strideDepth,r=t.strideHeight,a=t.strideWidth,o=t.dilationDepth,i=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,c=t.effectiveFilterHeight,p=t.effectiveFilterWidth,d=t.padInfo.front,h=t.padInfo.top,f=t.padInfo.left;for(let m=0;m<t.batchSize;++m)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let x=y*s-d,A=x;for(;A<0;)A+=o;let b=Math.min(t.inDepth,u+x);for(let w=0;w<t.outHeight;++w){let k=w*r-h,C=k;for(;C<0;)C+=i;let E=Math.min(t.inHeight,c+k);for(let _=0;_<t.outWidth;++_){let $=_*a-f,R=$;for(;R<0;)R+=l;let P=Math.min(t.inWidth,p+$),S=Number.NEGATIVE_INFINITY,M=-1;for(let L=A;L<b;L+=o){let U=L-x;for(let K=C;K<E;K+=i){let q=K-k;for(let Z=R;Z<P;Z+=l){let J=Z-$,Q=e.get(m,L,K,Z,g);Q>=S&&(S=Q,M=U*c*p+q*c+J)}}}n.set(M,m,y,w,_,g)}}}return n}function sZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=aa({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Jx(d,r.shape,r.dtype,h,c,"avg");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var rZ={kernelName:yo,backendName:"cpu",kernelFunc:sZ};function aZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"avgPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=vI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"avg");return n.makeTensorInfo(d.shape,"float32",d.values)}var oZ={kernelName:Gp,backendName:"cpu",kernelFunc:aZ};function iZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"avgPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=c.strideDepth,d=c.strideHeight,h=c.strideWidth,f=c.filterDepth,m=c.filterHeight,g=c.filterWidth,y=c.dilationDepth,x=c.dilationHeight,A=c.dilationWidth,b=c.effectiveFilterDepth,w=c.effectiveFilterHeight,k=c.effectiveFilterWidth,C=b-1-c.padInfo.front,E=k-1-c.padInfo.left,_=w-1-c.padInfo.top,$=We(a.shape,"float32"),R=1/(f*m*g),P=n.bufferSync(r);for(let S=0;S<c.batchSize;++S)for(let M=0;M<c.inChannels;++M)for(let L=0;L<c.inDepth;++L)for(let U=0;U<c.inHeight;++U)for(let K=0;K<c.inWidth;++K){let q=L-C,Z=U-_,J=K-E,Q=0;for(let ie=0;ie<b;ie+=y){let re=(q+ie)/p;if(!(re<0||re>=c.outDepth||Math.floor(re)!==re))for(let de=0;de<w;de+=x){let ue=(Z+de)/d;if(!(ue<0||ue>=c.outHeight||Math.floor(ue)!==ue))for(let Ae=0;Ae<k;Ae+=A){let oe=(J+Ae)/h;if(oe<0||oe>=c.outWidth||Math.floor(oe)!==oe)continue;Q+=P.get(S,re,ue,oe,M)}}}$.set(Q*R,S,L,U,K,M)}return n.makeTensorInfo($.shape,$.dtype,$.values)}var lZ={kernelName:n0,backendName:"cpu",kernelFunc:iZ};function uZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;Te([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=c.strideHeight,d=c.strideWidth,h=c.filterHeight,f=c.filterWidth,m=c.dilationHeight,g=c.dilationWidth,y=c.effectiveFilterHeight,x=c.effectiveFilterWidth,A=x-1-c.padInfo.left,b=y-1-c.padInfo.top,w=We(o.shape,"float32"),k=1/(h*f),C=n.data.get(r.dataId).values,E=We(r.shape,"float32",C);for(let _=0;_<c.batchSize;++_)for(let $=0;$<c.inChannels;++$)for(let R=0;R<c.inHeight;++R)for(let P=0;P<c.inWidth;++P){let S=R-b,M=P-A,L=0;for(let U=0;U<y;U+=m){let K=(S+U)/p;if(!(K<0||K>=c.outHeight||Math.floor(K)!==K))for(let q=0;q<x;q+=g){let Z=(M+q)/d;if(Z<0||Z>=c.outWidth||Math.floor(Z)!==Z)continue;L+=E.get(_,K,Z,$)}}w.set(L*k,_,R,P,$)}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var cZ={kernelName:t0,backendName:"cpu",kernelFunc:uZ};function dZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,scale:a,offset:o,mean:i,variance:l}=t;v.assert(i.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||i.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(a==null||i.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),Te([r,i,l,a,o],"batchNorm");let{varianceEpsilon:u}=s;u==null&&(u=.001);let c=n.data.get(r.dataId).values,p=n.data.get(i.dataId).values,d=n.data.get(l.dataId).values,h=a?n.data.get(a.dataId).values:new Float32Array([1]),f=o?n.data.get(o.dataId).values:new Float32Array([0]),m=new Float32Array(c.length),g=f.length,y=h.length,x=d.length,A=p.length,b=0,w=0,k=0,C=0;for(let E=0;E<c.length;++E)m[E]=f[b++]+(c[E]-p[w++])*h[k++]/Math.sqrt(d[C++]+u),b>=g&&(b=0),w>=A&&(w=0),k>=y&&(k=0),C>=x&&(C=0);return n.makeTensorInfo(r.shape,r.dtype,m)}var pZ={kernelName:Do,backendName:"cpu",kernelFunc:dZ};function hZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;Te([r],"batchToSpaceND");let i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=Et({inputs:{x:r},backend:n,attrs:{shape:l}}),f=bs({inputs:{x:h},backend:n,attrs:{perm:u}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:c}}),g=cl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var fZ={kernelName:yl,backendName:"cpu",kernelFunc:hZ};function mZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=Vx(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var gZ={kernelName:s0,backendName:"cpu",kernelFunc:mZ};function yZ(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.data.get(s.dataId).values,o=n.data.get(r.dataId).values,i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var AZ={kernelName:r0,backendName:"cpu",kernelFunc:yZ},xZ=xt(Ea,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),bZ={kernelName:Ea,backendName:"cpu",kernelFunc:xZ},vZ=e=>{let{x:t}=e.inputs,n=e.backend,s=new Float32Array(v.sizeFromShape(t.shape)),r=n.data.get(t.dataId),a=r.complexTensorInfos.real,o=r.complexTensorInfos.imag,i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values;for(let u=0;u<i.length;u++){let c=i[u],p=l[u];s[u]=Math.hypot(c,p)}return n.makeOutput(s,t.shape,"float32")},wZ={kernelName:jp,backendName:"cpu",kernelFunc:vZ};function xc(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.data.get(s.dataId).complexTensorInfos.imag,a=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,a)}var kZ={kernelName:Zp,backendName:"cpu",kernelFunc:xc};function bc(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(m=>m.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(m=>v.sizeFromShape(m.shape)>0);if(i.length===1)return aa({inputs:{x:i[0]},backend:n});let l=i.map(m=>m.shape);if(T.assertParamsConsistent(l,a),i[0].dtype==="complex64"){let m=i.map(b=>ul({inputs:{input:b},backend:n})),g=i.map(b=>xc({inputs:{input:b},backend:n})),y=bc({inputs:m,backend:n,attrs:{axis:a}}),x=bc({inputs:g,backend:n,attrs:{axis:a}}),A=Rs({inputs:{real:y,imag:x},backend:n});return m.forEach(b=>n.disposeIntermediateTensorInfo(b)),g.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),A}let u=i.map(m=>{let g=v.sizeFromShape(m.shape.slice(a));return Et({inputs:{x:m},backend:n,attrs:{shape:[-1,g]}})}),c=u.map(m=>({vals:n.data.get(m.dataId).values,shape:m.shape}));o=T.computeOutShape(u.map(m=>m.shape),1);let p=u[0].shape[0]===1,d=Ux(c,o,t[0].dtype,p),h=T.computeOutShape(i.map(m=>m.shape),a),f=n.makeTensorInfo(h,t[0].dtype,d);return u.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var SZ={kernelName:Al,backendName:"cpu",kernelFunc:bc};function wI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s;Te([r,a],"conv2d");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h=d.filterHeight,f=d.filterWidth,m=d.dilationHeight,g=d.dilationWidth,y=d.padInfo.left,x=d.padInfo.top,A=d.dataFormat==="channelsLast",b=new gn(d.outShape,r.dtype),w=v.computeStrides(r.shape),k=v.computeStrides(a.shape),C=w[0],E=A?w[1]:w[2],_=A?w[2]:1,$=A?1:w[1],R=b.strides[0],P=A?b.strides[1]:b.strides[2],S=A?b.strides[2]:1,M=A?1:b.strides[1],L=n.data.get(r.dataId).values,U=n.data.get(a.dataId).values,K=b.values;for(let q=0;q<d.batchSize;++q){let Z=q*C,J=q*R;for(let Q=0;Q<d.outHeight;++Q){let ie=J+Q*P,re=Q*d.strideHeight-x;for(let de=0;de<h;++de){let ue=re+de*m;if(ue<0||ue>=d.inHeight)continue;let Ae=de*k[0],oe=Z+ue*E;for(let Re=0;Re<d.outWidth;++Re){let _e=ie+Re*S,Ve=Re*d.strideWidth-y;for(let Me=0;Me<f;++Me){let it=Ve+Me*g;if(it<0||it>=d.inWidth)continue;let gt=Ae+Me*k[1],pt=oe+it*_,yt=gt;for(let Oe=0;Oe<d.inChannels;++Oe){let Ct=L[pt+Oe*$];for(let kt=0;kt<d.outChannels;++kt)K[_e+kt*M]+=Ct*U[yt+kt];yt+=d.outChannels}}}}}}return n.makeTensorInfo(b.shape,b.dtype,K)}var IZ={kernelName:vo,backendName:"cpu",kernelFunc:wI};function CZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"conv2dBackpropFilter");let p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),{strideHeight:h,strideWidth:f,filterHeight:m,filterWidth:g}=d,y=d.dataFormat==="channelsLast",x=new gn(d.filterShape,"float32"),A=d.padInfo.left,b=d.padInfo.top,w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=new gn(r.shape,r.dtype,w),E=new gn(a.shape,a.dtype,k);for(let _=0;_<m;++_){let $=Math.max(0,Math.ceil((b-_)/h)),R=Math.min(d.outHeight,(d.inHeight+b-_)/h);for(let P=0;P<g;++P){let S=Math.max(0,Math.ceil((A-P)/f)),M=Math.min(d.outWidth,(d.inWidth+A-P)/f);for(let L=0;L<d.inChannels;++L)for(let U=0;U<d.outChannels;++U){let K=0;for(let q=0;q<d.batchSize;++q)for(let Z=$;Z<R;++Z){let J=_+Z*h-b;for(let Q=S;Q<M;++Q){let ie=P+Q*f-A;y?K+=C.get(q,J,ie,L)*E.get(q,Z,Q,U):K+=C.get(q,L,J,ie)*E.get(q,U,Z,Q)}}x.set(K,_,P,L,U)}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var TZ={kernelName:a0,backendName:"cpu",kernelFunc:CZ};function NZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s;Te([r,a],"conv2dBackpropInput");let p=v.computeStrides(a.shape),d=v.computeStrides(r.shape),h=T.convertConv2DDataFormat(u),f=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,h),m=new gn(f.inShape,"float32"),g=m.values,y=n.data.get(r.dataId).values,x=n.data.get(a.dataId).values,[A,b,w]=p,{batchSize:k,filterHeight:C,filterWidth:E,inChannels:_,inHeight:$,inWidth:R,outChannels:P,outHeight:S,outWidth:M,strideHeight:L,strideWidth:U}=f;h=f.dataFormat;let K=C-1-f.padInfo.top,q=E-1-f.padInfo.left,Z=h==="channelsLast",J=m.strides[0],Q=Z?m.strides[1]:m.strides[2],ie=Z?m.strides[2]:1,re=Z?1:m.strides[1],de=d[0],ue=Z?d[1]:d[2],Ae=Z?d[2]:1,oe=Z?1:d[1];for(let Re=0;Re<k;++Re)for(let _e=0;_e<_;++_e)for(let Ve=0;Ve<$;++Ve){let Me=Ve-K,it=Math.max(0,Math.ceil(Me/L)),gt=Math.min(S,(C+Me)/L);for(let pt=0;pt<R;++pt){let yt=pt-q,Oe=Math.max(0,Math.ceil(yt/U)),Ct=Math.min(M,(E+yt)/U),kt=0;for(let nn=it;nn<gt;++nn){let Ss=nn*L-Me;for(let fn=Oe;fn<Ct;++fn){let Zn=fn*U-yt,Is=de*Re+ue*nn+Ae*fn,Cs=A*(C-1-Ss)+b*(E-1-Zn)+w*_e;for(let Bn=0;Bn<P;++Bn){let js=y[Is+oe*Bn],Yn=x[Cs+Bn];kt+=js*Yn}}}let Kn=J*Re+Q*Ve+ie*pt+re*_e;g[Kn]=kt}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var EZ={kernelName:wo,backendName:"cpu",kernelFunc:NZ};function RZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s;Te([r,a],"conv3d");let u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),{filterDepth:c,filterHeight:p,filterWidth:d,dilationDepth:h,dilationHeight:f,dilationWidth:m,padInfo:g}=u,y=g.front,x=g.left,A=g.top,b=new gn(u.outShape,r.dtype),w=n.data.get(r.dataId).values,k=n.data.get(a.dataId).values,C=b.values,E=v.computeStrides(r.shape),_=v.computeStrides(a.shape);for(let $=0;$<u.batchSize;++$){let R=$*E[0],P=$*b.strides[0];for(let S=0;S<u.outDepth;++S){let M=P+S*b.strides[1],L=S*u.strideDepth-y;for(let U=0;U<c;++U){let K=L+U*h;if(K<0||K>=u.inDepth)continue;let q=U*_[0],Z=R+K*E[1];for(let J=0;J<u.outHeight;++J){let Q=M+J*b.strides[2],ie=J*u.strideHeight-A;for(let re=0;re<p;++re){let de=ie+re*f;if(de<0||de>=u.inHeight)continue;let ue=q+re*_[1],Ae=Z+de*E[2];for(let oe=0;oe<u.outWidth;++oe){let Re=Q+oe*u.outChannels,_e=oe*u.strideWidth-x;for(let Ve=0;Ve<d;++Ve){let Me=_e+Ve*m;if(Me<0||Me>=u.inWidth)continue;let it=ue+Ve*_[2],gt=Ae+Me*u.inChannels,pt=it;for(let yt=0;yt<u.inChannels;++yt){let Oe=w[gt+yt];for(let Ct=0;Ct<u.outChannels;++Ct)C[Re+Ct]+=Oe*k[pt+Ct];pt+=u.outChannels}}}}}}}}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var _Z={kernelName:qp,backendName:"cpu",kernelFunc:RZ};function DZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s;Te([r,a],"conv3dBackpropFilterV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(r.shape,l,o,1,i),d=p.strideDepth,h=p.strideHeight,f=p.strideWidth,m=p.filterDepth,g=p.filterHeight,y=p.filterWidth,x=new gn(p.filterShape,"float32"),A=x.values,[b,w,k,C]=x.strides,E=n.data.get(a.dataId).values,[_,$,R,P]=c,S=n.data.get(r.dataId).values,[M,L,U,K]=u,q=p.padInfo.front,Z=p.padInfo.left,J=p.padInfo.top;for(let Q=0;Q<m;++Q){let ie=Math.max(0,Math.ceil((q-Q)/d)),re=Math.min(p.outDepth,(p.inDepth+q-Q)/d),de=Q*b;for(let ue=0;ue<g;++ue){let Ae=Math.max(0,Math.ceil((J-ue)/h)),oe=Math.min(p.outHeight,(p.inHeight+J-ue)/h),Re=ue*w+de;for(let _e=0;_e<y;++_e){let Ve=Math.max(0,Math.ceil((Z-_e)/f)),Me=Math.min(p.outWidth,(p.inWidth+Z-_e)/f),it=_e*k+Re;for(let gt=0;gt<p.inChannels;++gt){let pt=gt*C+it;for(let yt=0;yt<p.outChannels;++yt){let Oe=0;for(let Ct=0;Ct<p.batchSize;++Ct){let kt=Ct*M,Kn=Ct*_;for(let nn=ie;nn<re;++nn){let fn=(Q+nn*d-q)*L+kt,Zn=nn*$+Kn;for(let Is=Ae;Is<oe;++Is){let Bn=(ue+Is*h-J)*U+fn,js=Is*R+Zn;for(let Yn=Ve;Yn<Me;++Yn){let ha=(_e+Yn*f-Z)*K+Bn,_u=Yn*P+js;Oe+=S[ha+gt]*E[_u+yt]}}}}A[pt+yt]=Oe}}}}}return n.makeTensorInfo(x.shape,x.dtype,x.values)}var $Z={kernelName:o0,backendName:"cpu",kernelFunc:DZ};function PZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s;Te([r],"conv3dBackpropInputV2");let u=v.computeStrides(r.shape),c=v.computeStrides(a.shape),p=T.computeConv3DInfo(l,a.shape,i,1,o),d=new gn(p.inShape,"float32"),h=d.values,[f,m,g,y]=d.strides,x=n.data.get(r.dataId).values,[A,b,w,k]=u,C=n.data.get(a.dataId).values,[E,_,$,R]=c,{batchSize:P,filterDepth:S,filterHeight:M,filterWidth:L,inChannels:U,inDepth:K,inHeight:q,inWidth:Z,outChannels:J,outDepth:Q,outHeight:ie,outWidth:re,strideDepth:de,strideHeight:ue,strideWidth:Ae}=p,oe=S-1-p.padInfo.front,Re=M-1-p.padInfo.top,_e=L-1-p.padInfo.left;for(let Ve=0;Ve<P;++Ve)for(let Me=0;Me<U;++Me)for(let it=0;it<K;++it){let gt=it-oe,pt=Math.max(0,Math.ceil(gt/de)),yt=Math.min(Q,(S+gt)/de);for(let Oe=0;Oe<q;++Oe){let Ct=Oe-Re,kt=Math.max(0,Math.ceil(Ct/ue)),Kn=Math.min(ie,(M+Ct)/ue);for(let nn=0;nn<Z;++nn){let Ss=nn-_e,fn=Math.max(0,Math.ceil(Ss/Ae)),Zn=Math.min(re,(L+Ss)/Ae),Is=0;for(let Cs=pt;Cs<yt;++Cs){let Bn=Cs*de-gt;for(let js=kt;js<Kn;++js){let Yn=js*ue-Ct;for(let pa=fn;pa<Zn;++pa){let ha=pa*Ae-Ss,_u=A*Ve+b*Cs+w*js+k*pa,Ba=E*(S-1-Bn)+_*(M-1-Yn)+$*(L-1-ha)+R*Me;for(let fa=0;fa<J;++fa){let Ud=x[_u+fa],Du=C[Ba+fa];Is+=Ud*Du}}}}h[f*Ve+m*it+g*Oe+y*nn+Me]=Is}}}return n.makeTensorInfo(d.shape,d.dtype,d.values)}var FZ={kernelName:i0,backendName:"cpu",kernelFunc:PZ},OZ=xt(ko,e=>Math.cos(e)),MZ={kernelName:ko,backendName:"cpu",kernelFunc:OZ},zZ=xt(So,e=>Math.cosh(e)),LZ={kernelName:So,backendName:"cpu",kernelFunc:zZ};function BZ(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,[c,p,d,h]=r.shape,f=a.shape[0],[m,g]=i,y=We([f,m,g,h],"float32"),x=n.data.get(a.dataId).values,A=n.data.get(o.dataId).values,b=n.data.get(r.dataId).values,w=v.computeStrides(r.shape),k=v.computeStrides(y.shape);for(let C=0;C<f;C++){let E=C*4,_=x[E],$=x[E+1],R=x[E+2],P=x[E+3],S=A[C];if(S>=c)continue;let M=m>1?(R-_)*(p-1)/(m-1):0,L=g>1?(P-$)*(d-1)/(g-1):0;for(let U=0;U<m;U++){let K=m>1?_*(p-1)+U*M:.5*(_+R)*(p-1);if(K<0||K>p-1){for(let q=0;q<g;q++)for(let Z=0;Z<h;Z++){let J=Z+q*k[2]+U*k[1]+C*k[0];y.values[J]=u}continue}if(l==="bilinear"){let q=Math.floor(K),Z=Math.ceil(K),J=K-q;for(let Q=0;Q<g;Q++){let ie=g>1?$*(d-1)+Q*L:.5*($+P)*(d-1);if(ie<0||ie>d-1){for(let Ae=0;Ae<h;Ae++){let oe=Ae+Q*k[2]+U*k[1]+C*k[0];y.values[oe]=u}continue}let re=Math.floor(ie),de=Math.ceil(ie),ue=ie-re;for(let Ae=0;Ae<h;Ae++){let oe=Ae+re*w[2]+q*w[1]+S*w[0],Re=b[oe];oe=Ae+de*w[2]+q*w[1]+S*w[0];let _e=b[oe];oe=Ae+re*w[2]+Z*w[1]+S*w[0];let Ve=b[oe];oe=Ae+de*w[2]+Z*w[1]+S*w[0];let Me=b[oe],it=Re+(_e-Re)*ue,gt=Ve+(Me-Ve)*ue;oe=Ae+Q*k[2]+U*k[1]+C*k[0],y.values[oe]=it+(gt-it)*J}}}else for(let q=0;q<g;++q){let Z=g>1?$*(d-1)+q*L:.5*($+P)*(d-1);if(Z<0||Z>d-1){for(let ie=0;ie<h;ie++){let re=ie+q*k[2]+U*k[1]+C*k[0];y.values[re]=u}continue}let J=Math.round(Z),Q=Math.round(K);for(let ie=0;ie<h;ie++){let re=ie+J*w[2]+Q*w[1]+S*w[0],de=ie+q*k[2]+U*k[1]+C*k[0];y.values[de]=b[re]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var WZ={kernelName:bl,backendName:"cpu",kernelFunc:BZ};function VZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumprod");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=bs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumprod in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Un(u.dtype,"int32"),d=v.makeOnesTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?1:h[A];else{let b=m(y,x-1);d[A]=o?h[b]*d[b]:h[A]*d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=bs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var UZ={kernelName:xl,backendName:"cpu",kernelFunc:VZ};function GZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;Te(r,"cumsum");let l=T.getAxesPermutation([a],r.shape.length),u=r;l!=null&&(u=bs({inputs:{x:r},backend:n,attrs:{perm:l}}));let c=T.getInnerMostAxes(1,r.shape.length)[0];if(c!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${c}`);let p=Un(u.dtype,"int32"),d=v.makeZerosTypedArray(v.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,f=u.shape[u.shape.length-1],m=i?(y,x)=>y+f-x-1:(y,x)=>y+x;for(let y=0;y<h.length;y+=f)for(let x=0;x<f;x++){let A=m(y,x);if(x===0)d[A]=o?0:h[A];else{let b=m(y,x-1);d[A]=o?h[b]+d[b]:h[A]+d[b]}}let g=n.makeTensorInfo(u.shape,p,d);if(l!=null){let y=T.getUndoAxesPermutation(l),x=bs({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),x}return g}var HZ={kernelName:Io,backendName:"cpu",kernelFunc:GZ};function jZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Vx(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=PS(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var qZ={kernelName:l0,backendName:"cpu",kernelFunc:jZ};function XZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s;v.assert(o==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${o}`);let i=r.shape[0],l=r.shape[1],u=r.shape[2],c=r.shape[3],p=l*a,d=u*a,h=c/(a*a),f=n.data.get(r.dataId).values,m=new Float32Array(i*p*d*h),g=0;for(let y=0;y<i;++y)for(let x=0;x<p;++x){let A=Math.floor(x/a),b=x%a;for(let w=0;w<d;++w){let k=Math.floor(w/a),C=w%a,E=(b*a+C)*h;for(let _=0;_<h;++_){let R=_+E+c*(k+u*(A+l*y));m[g++]=f[R]}}}return n.makeTensorInfo([i,p,d,h],r.dtype,m)}var KZ={kernelName:vl,backendName:"cpu",kernelFunc:XZ};function kI(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s;Te([r,a],"depthwiseConv2DNative");let c=v.computeStrides(r.shape),p=v.computeStrides(a.shape),d=l;d==null&&(d=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${d}'`);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,u,!0),{filterHeight:f,filterWidth:m,dilationHeight:g,dilationWidth:y,padInfo:x}=h,A=x.left,b=x.top,w=h.outChannels/h.inChannels,k=new gn(h.outShape,r.dtype),C=n.data.get(r.dataId).values,E=n.data.get(a.dataId).values,_=k.values;for(let $=0;$<h.batchSize;++$){let R=$*c[0],P=$*k.strides[0];for(let S=0;S<h.outHeight;++S){let M=P+S*k.strides[1],L=S*h.strideHeight-b;for(let U=0;U<f;++U){let K=L+U*g;if(K<0||K>=h.inHeight)continue;let q=U*p[0],Z=R+K*c[1];for(let J=0;J<h.outWidth;++J){let Q=M+J*k.strides[2],ie=J*h.strideWidth-A;for(let re=0;re<m;++re){let de=ie+re*y;if(de<0||de>=h.inWidth)continue;let ue=q+re*p[1],Ae=Z+de*h.inChannels,oe=Q,Re=ue;for(let _e=0;_e<h.inChannels;++_e){let Ve=C[Ae+_e];for(let Me=0;Me<w;++Me)_[oe+Me]+=Ve*E[Re+Me];oe+=w,Re+=w}}}}}}return n.makeTensorInfo(k.shape,k.dtype,k.values)}var ZZ={kernelName:Co,backendName:"cpu",kernelFunc:kI};function YZ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s;Te([r,a],"depthwiseConv2dNativeBackpropFilter");let p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),{strideHeight:d,strideWidth:h,filterHeight:f,filterWidth:m}=p,g=new gn(p.filterShape,"float32"),y=p.padInfo.left,x=p.padInfo.top,A=p.outChannels/p.inChannels,b=n.data.get(r.dataId).values,w=new gn(r.shape,r.dtype,b),k=n.data.get(a.dataId).values,C=new gn(a.shape,a.dtype,k);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((x-E)/d)),$=Math.min(p.outHeight,(p.inHeight+x-E)/d);for(let R=0;R<m;++R){let P=Math.max(0,Math.ceil((y-R)/h)),S=Math.min(p.outWidth,(p.inWidth+y-R)/h);for(let M=0;M<p.outChannels;++M){let L=Math.trunc(M/A),U=M%A,K=0;for(let q=0;q<p.batchSize;++q)for(let Z=_;Z<$;++Z){let J=E+Z*d-x;for(let Q=P;Q<S;++Q){let ie=R+Q*h-y;K+=w.get(q,J,ie,L)*C.get(q,Z,Q,M)}}g.set(K,E,R,L,U)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var JZ={kernelName:u0,backendName:"cpu",kernelFunc:YZ};function QZ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s;Te([r,a],"depthwiseConv2DNativeBackpropInput");let p=v.computeStrides(r.shape),d=v.computeStrides(a.shape),h=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),f=new gn(h.inShape,"float32"),m=f.values,[g,y,x]=f.strides,A=n.data.get(r.dataId).values,[b,w,k]=p,C=n.data.get(a.dataId).values,[E,_,$]=d,{batchSize:R,filterHeight:P,filterWidth:S,inChannels:M,inHeight:L,inWidth:U,outChannels:K,outHeight:q,outWidth:Z,strideHeight:J,strideWidth:Q}=h,ie=P-1-h.padInfo.top,re=S-1-h.padInfo.left,de=K/M;for(let ue=0;ue<R;++ue)for(let Ae=0;Ae<M;++Ae)for(let oe=0;oe<L;++oe){let Re=oe-ie,_e=Math.max(0,Math.ceil(Re/J)),Ve=Math.min(q,(P+Re)/J);for(let Me=0;Me<U;++Me){let it=Me-re,gt=Math.max(0,Math.ceil(it/Q)),pt=Math.min(Z,(S+it)/Q),yt=0;for(let Oe=_e;Oe<Ve;++Oe){let Ct=Oe*J-Re;for(let kt=gt;kt<pt;++kt){let Kn=kt*Q-it,nn=b*ue+w*Oe+k*kt,Ss=E*(P-1-Ct)+_*(S-1-Kn)+$*Ae;for(let fn=0;fn<de;++fn){let Zn=Ae*de+fn,Is=A[nn+Zn],Cs=C[Ss+fn];yt+=Is*Cs}}}m[g*ue+y*oe+x*Me+Ae]=yt}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var eY={kernelName:c0,backendName:"cpu",kernelFunc:QZ};function tY(e){let{inputs:t,backend:n}=e,{x:s}=t,r=v.sizeFromShape(s.shape),a=n.data.get(s.dataId).values,o=We([r,r],s.dtype),i=o.values;for(let u=0;u<a.length;u++)i[u*r+u]=a[u];let l=[...s.shape,...s.shape];return n.makeTensorInfo(l,o.dtype,o.values)}var nY={kernelName:d0,backendName:"cpu",kernelFunc:tY},sY={kernelName:Xp,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r}=e,{strides:a,pad:o,dilations:i}=n,l=t,u=l.data.get(s.dataId).values,c=s.shape.length,p=l.data.get(r.dataId).values,d=r.shape.length,{batchSize:h,inHeight:f,inWidth:m,inChannels:g,outHeight:y,outWidth:x,padInfo:A,strideHeight:b,strideWidth:w,filterHeight:k,filterWidth:C,dilationHeight:E,dilationWidth:_,outShape:$}=T.computeDilation2DInfo(s.shape,r.shape,a,o,"NHWC",i),R=v.sizeFromShape($),P=$.length,S=v.getArrayFromDType(s.dtype,R);for(let L=0;L<h;++L)for(let U=0;U<y;++U){let K=U*b-A.top;for(let q=0;q<x;++q){let Z=q*w-A.left;for(let J=0;J<g;++J){let Q=Number.MIN_SAFE_INTEGER;for(let re=0;re<k;++re){let de=K+re*E;if(de>=0&&de<f)for(let ue=0;ue<C;++ue){let Ae=Z+ue*_;if(Ae>=0&&Ae<m){let oe=v.locToIndex([L,de,Ae,J],c,v.computeStrides(s.shape)),Re=v.locToIndex([re,ue,J],d,v.computeStrides(r.shape)),_e=u[oe]+p[Re];_e>Q&&(Q=_e)}}}let ie=v.locToIndex([L,U,q,J],P,v.computeStrides($));S[ie]=Q}}}return{dataId:l.write(v.toTypedArray(S,s.dtype),$,s.dtype),shape:$,dtype:s.dtype}}},rY={kernelName:Sm,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${Sm}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let $=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<d;++S)for(let M=0;M<g;++M){let L=M*A-x.top;for(let U=0;U<y;++U){let K=U*b-x.left;for(let q=0;q<m;++q){let Z=Number.MIN_SAFE_INTEGER,J=0,Q=0;for(let ie=0;ie<w;++ie){let re=L+ie*C;if(re>=0&&re<h)for(let de=0;de<k;++de){let ue=K+de*E;if(ue>=0&&ue<f){let Ae=c[S][re][ue][q]+p[ie][de][q];Ae>Z&&(Z=Ae,J=ie,Q=de)}}}R[J][Q][q]+=$[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},aY={kernelName:km,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:s,filter:r,dy:a}=e,{strides:o,pad:i,dilations:l}=n,u=t,c=v.toNestedArray(s.shape,u.data.get(s.dataId).values),p=v.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:d,inHeight:h,inWidth:f,inChannels:m,outHeight:g,outWidth:y,padInfo:x,strideHeight:A,strideWidth:b,filterHeight:w,filterWidth:k,dilationHeight:C,dilationWidth:E,outShape:_}=T.computeDilation2DInfo(s.shape,r.shape,o,i,"NHWC",l);v.assert(a.rank===_.length,()=>`Error in ${km}, dy must have the same rank as output ${_.length}, but got ${a.rank}`);let $=v.toNestedArray(_,u.data.get(a.dataId).values),R=v.makeZerosNestedTypedArray(s.shape,s.dtype);for(let S=0;S<d;++S)for(let M=0;M<g;++M){let L=M*A-x.top;for(let U=0;U<y;++U){let K=U*b-x.left;for(let q=0;q<m;++q){let Z=Number.MIN_SAFE_INTEGER,J=L<0?0:L,Q=K<0?0:K;for(let ie=0;ie<w;++ie){let re=L+ie*C;if(re>=0&&re<h)for(let de=0;de<k;++de){let ue=K+de*E;if(ue>=0&&ue<f){let Ae=c[S][re][ue][q]+p[ie][de][q];Ae>Z&&(Z=Ae,J=re,Q=ue)}}}R[S][J][Q][q]+=$[S][M][U][q]}}}return{dataId:u.write(v.toTypedArray(R,s.dtype),s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}};function Vh(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"sum");let i;r.dtype==="bool"?i=co({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):i=aa({inputs:{x:r},backend:n});let l=i.shape.length,u=v.parseAxisParam(a,i.shape),c=T.getAxesPermutation(u,l),p=u,d=i;c!=null&&(d=bs({inputs:{x:i},backend:n,attrs:{perm:c}}),p=T.getInnerMostAxes(p.length,l)),T.assertAxesAreInnerMostDims("sum",p,d.shape.length);let[h,f]=T.computeOutAndReduceShapes(d.shape,p),m=T.upcastType(d.dtype,"int32"),g=Wm(n,h,m),y=v.sizeFromShape(f),x=n.data.get(g.dataId).values,A=n.data.get(d.dataId).values;for(let b=0;b<x.length;++b){let w=b*y,k=0;for(let C=0;C<y;++C)k+=A[w+C];x[b]=k}if(o){let b=T.expandShapeToKeepDim(g.shape,u),w=g;g=Et({inputs:{x:g},backend:n,attrs:{shape:b}}),n.disposeIntermediateTensorInfo(w)}return n.disposeIntermediateTensorInfo(i),c!=null&&n.disposeIntermediateTensorInfo(d),g}var oY={kernelName:si,backendName:"cpu",kernelFunc:Vh};function iY(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=bs({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Et({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=R2({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=Vh({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var lY={kernelName:Kp,backendName:"cpu",kernelFunc:iY};function uY(e){let{inputs:t,backend:n}=e,{dy:s,y:r}=t;Te([s,r],"eluGrad");let a=new Float32Array(v.sizeFromShape(r.shape)),o=n.data.get(r.dataId).values,i=n.data.get(s.dataId).values;for(let l=0;l<o.length;++l){let u=o[l];u>=1?a[l]=i[l]:a[l]=i[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",a)}var cY={kernelName:p0,backendName:"cpu",kernelFunc:uY},dY=T.ERF_P,pY=T.ERF_A1,hY=T.ERF_A2,fY=T.ERF_A3,mY=T.ERF_A4,gY=T.ERF_A5,yY=xt($c,e=>{let t=Math.sign(e),n=Math.abs(e),s=1/(1+dY*n);return t*(1-((((gY*s+mY)*s+fY)*s+hY)*s+pY)*s*Math.exp(-n*n))}),AY={kernelName:$c,backendName:"cpu",kernelFunc:yY};function Gm(e){let{inputs:t,backend:n,attrs:s}=e,{input:r}=t,{dim:a}=s,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),Et({inputs:{x:r},backend:n,attrs:{shape:i}})}var xY={kernelName:kl,backendName:"cpu",kernelFunc:Gm},bY=dn((e,t)=>e/t),Qx=Tn(To,bY),fy={kernelName:To,backendName:"cpu",kernelFunc:Qx};function SI(e,t,n){let s=e.shape,r=s[0],a=s[1],o=n.data.get(e.dataId),i=o.complexTensorInfos.real,l=o.complexTensorInfos.imag,u=[r,a],c=v.sizeFromShape(u),p=v.getTypedArrayFromDType("float32",c),d=v.getTypedArrayFromDType("float32",c);for(let g=0;g<r;g++){let y=cl({inputs:{x:i},backend:n,attrs:{begin:[g,0],size:[1,a]}}),x=cl({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,a]}}),A=Rs({inputs:{real:y,imag:x},backend:n}),{real:b,imag:w}=vY(A,t,n),k=T.mergeRealAndImagArrays(b,w);for(let C=0;C<a;C++){let E=T.getComplexWithIndex(k,C);p[g*a+C]=E.real,d[g*a+C]=E.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(A)}let h=n.makeTensorInfo(u,"float32",p),f=n.makeTensorInfo(u,"float32",d),m=Rs({inputs:{real:h,imag:f},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}function vY(e,t,n){let s=v.sizeFromShape(e.shape),r=n.data.get(e.dataId),a=n.data.get(r.complexTensorInfos.real.dataId).values,o=n.data.get(r.complexTensorInfos.imag.dataId).values;if(wY(s)){let i=my(a,o,s,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",i.real),c=n.makeTensorInfo(l,"float32",i.imag),p=n.makeTensorInfo([],"float32",v.createScalarValue(s,"float32")),d=aa({inputs:{x:p},backend:n}),h=fy.kernelFunc({inputs:{a:u,b:p},backend:n}),f=fy.kernelFunc({inputs:{a:c,b:d},backend:n}),m=n.data.get(h.dataId).values,g=n.data.get(f.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),{real:m,imag:g}}return i}else{let i=T.mergeRealAndImagArrays(a,o),l=kY(i,s,t);return T.splitRealAndImagArrays(l)}}function wY(e){return(e&e-1)===0}function my(e,t,n,s,r){if(n===1)return{real:e,imag:t};let a=T.mergeRealAndImagArrays(e,t),o=n/2,i=T.complexWithEvenIndex(a),l=i.real,u=i.imag,c=[l.length],p=r.makeTensorInfo(c,"float32",l),d=r.makeTensorInfo(c,"float32",u),h=Rs({inputs:{real:p,imag:d},backend:r}),f=T.complexWithOddIndex(a),m=f.real,g=f.imag,y=[m.length],x=r.makeTensorInfo(y,"float32",m),A=r.makeTensorInfo(y,"float32",g),b=Rs({inputs:{real:x,imag:A},backend:r}),w=my(l,u,o,s,r),k=w.real,C=w.imag,E=[k.length],_=r.makeTensorInfo(E,"float32",k),$=r.makeTensorInfo(E,"float32",C),R=Rs({inputs:{real:_,imag:$},backend:r}),P=my(m,g,o,s,r),S=P.real,M=P.imag,L=[S.length],U=r.makeTensorInfo(L,"float32",S),K=r.makeTensorInfo(L,"float32",M),q=Rs({inputs:{real:U,imag:K},backend:r}),Z=T.exponents(n,s),J=[Z.real.length],Q=r.makeTensorInfo(J,"float32",Z.real),ie=r.makeTensorInfo(J,"float32",Z.imag),re=Rs({inputs:{real:Q,imag:ie},backend:r}),de=R2({inputs:{a:re,b:q},backend:r}),ue=Ac({inputs:{a:R,b:de},backend:r}),Ae=Yx({inputs:{a:R,b:de},backend:r}),oe=ul({inputs:{input:ue},backend:r}),Re=ul({inputs:{input:Ae},backend:r}),_e=xc({inputs:{input:ue},backend:r}),Ve=xc({inputs:{input:Ae},backend:r}),Me=bc({inputs:[oe,Re],backend:r,attrs:{axis:0}}),it=bc({inputs:[_e,Ve],backend:r,attrs:{axis:0}}),gt=r.data.get(Me.dataId).values,pt=r.data.get(it.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(d),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(b),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(R),r.disposeIntermediateTensorInfo(U),r.disposeIntermediateTensorInfo(K),r.disposeIntermediateTensorInfo(q),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(ie),r.disposeIntermediateTensorInfo(re),r.disposeIntermediateTensorInfo(de),r.disposeIntermediateTensorInfo(ue),r.disposeIntermediateTensorInfo(Ae),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(_e),r.disposeIntermediateTensorInfo(Re),r.disposeIntermediateTensorInfo(Ve),r.disposeIntermediateTensorInfo(Me),r.disposeIntermediateTensorInfo(it),{real:gt,imag:pt}}function kY(e,t,n){let s=new Float32Array(t*2);for(let r=0;r<t;r++){let a=0,o=0;for(let i=0;i<t;i++){let l=T.exponent(r*i,t,n),u=T.getComplexWithIndex(e,i);a+=u.real*l.real-u.imag*l.imag,o+=u.real*l.imag+u.imag*l.real}n&&(a/=t,o/=t),T.assignToTypedArray(s,a,o,r)}return s}function SY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Et({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=SI(i,!1,n),u=Et({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var IY={kernelName:h0,backendName:"cpu",kernelFunc:SY};function eb(e){let{backend:t,attrs:n}=e,{shape:s,value:r,dtype:a}=n,o=a||v.inferDtype(r),i=v.getArrayFromDType(o,v.sizeFromShape(s));return TY(i,r,o),t.makeTensorInfo(s,o,i)}var CY={kernelName:Pc,backendName:"cpu",kernelFunc:eb};function TY(e,t,n){e.fill(t)}var NY={kernelName:Il,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,r=n,a=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[o,i,l,u]=s.shape,c=r.data.get(s.dataId).values;for(let d=0;d<o;d++){let h=d*l*i*u;for(let f=0;f<i;f++){let m=f*(l*u);for(let g=0;g<l;g++){let y=g*u;for(let x=0;x<u;x++){let A=Math.round(l-g-1),b=h+m+y+x,w=c[b];if(A>=0&&A<l){let k=A*u,C=h+m+k+x;w=c[C]}a[b]=w}}}}return{dataId:r.write(a,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},EY=dn((e,t)=>Math.floor(e/t)),RY=Tn(_o,EY,null,"int32"),_Y={kernelName:_o,backendName:"cpu",kernelFunc:RY};function DY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=wI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;if(c==="NCHW"&&o.shape.length===1&&o.shape[0]!==1){let y=Et({inputs:{x:o},backend:n,attrs:{shape:[o.shape[0],1,1]}});m=Ac({inputs:{a:m,b:y},backend:n}),n.disposeIntermediateTensorInfo(y)}else m=Ac({inputs:{a:m,b:o},backend:n});n.disposeIntermediateTensorInfo(g)}if(h){let g=m;if(c==="NCHW"&&h==="prelu"&&i.shape.length===1&&i.shape[0]!==1){let y=Et({inputs:{x:i},backend:n,attrs:{shape:[i.shape[0],1,1]}});m=Um(n,m,h,y,f),n.disposeIntermediateTensorInfo(y)}else m=Um(n,m,h,i,f);n.disposeIntermediateTensorInfo(g)}return m}var $Y={kernelName:no,backendName:"cpu",kernelFunc:DY};function PY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=kI({inputs:{x:r,filter:a},backend:n,attrs:{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d}});if(o){let g=m;m=Ac({inputs:{a:m,b:o},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=m;m=Um(n,m,h,i,f),n.disposeIntermediateTensorInfo(g)}return m}var FY={kernelName:so,backendName:"cpu",kernelFunc:PY};function OY(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=v.sizeFromShape(s.shape),o=r.shape,i=o[o.length-1],[l,u,c,p]=T.prepareAndValidate(s,r);if(u===0)return n.makeTensorInfo(l,s.dtype,[]);let d=n.data.get(r.dataId).values,h=n.bufferSync(s),f=VS(d,h,s.dtype,u,i,c,p,s.shape,a);return n.makeTensorInfo(l,s.dtype,f.values)}var MY={kernelName:Tl,backendName:"cpu",kernelFunc:OY};function zY(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s;Te([r,a],"gatherV2");let l=v.parseAxisParam(o,r.shape)[0],u=n.data.get(a.dataId).values,c=r.shape[l];for(let b=0;b<u.length;++b){let w=u[b];v.assert(w<=c-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${c-1}]`)}let p=i;i==null&&(p=0);let d=v.sizeFromShape(a.shape),h=T.segment_util.collectGatherOpShapeInfo(r,a,l,p),f=Et({inputs:{x:r},backend:n,attrs:{shape:[h.batchSize,h.outerSize,h.dimSize,h.sliceSize]}}),m=Et({inputs:{x:a},backend:n,attrs:{shape:[h.batchSize,d/h.batchSize]}}),g=[h.batchSize,h.outerSize,d/h.batchSize,h.sliceSize],y=n.bufferSync(m),x=n.bufferSync(f),A=US(x,y,g);return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),n.makeTensorInfo(h.outputShape,A.dtype,A.values)}var LY={kernelName:Cl,backendName:"cpu",kernelFunc:zY};function BY(e){let{inputs:t,backend:n}=e,{input:s}=t,r=v.sizeFromShape(s.shape),a=s.shape[s.shape.length-1],o=r/a,i=Et({inputs:{x:s},backend:n,attrs:{shape:[o,a]}}),l=SI(i,!0,n),u=Et({inputs:{x:l},backend:n,attrs:{shape:s.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var WY={kernelName:f0,backendName:"cpu",kernelFunc:BY},VY=xt(Fc,e=>Number.isFinite(e)?1:0,"bool"),UY={kernelName:Fc,backendName:"cpu",kernelFunc:VY},GY=xt(Oc,e=>Math.abs(e)===1/0?1:0,"bool"),HY={kernelName:Oc,backendName:"cpu",kernelFunc:GY},jY=xt(El,e=>Number.isNaN(e)?1:0,"bool"),qY={kernelName:El,backendName:"cpu",kernelFunc:jY};function XY(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=XS(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var KY={kernelName:m0,backendName:"cpu",kernelFunc:XY},ZY=xt(Mc,e=>Math.log1p(e)),YY={kernelName:Mc,backendName:"cpu",kernelFunc:ZY},JY=dn((e,t)=>e&&t),QY=Tn(Dl,JY,null,"bool"),eJ={kernelName:Dl,backendName:"cpu",kernelFunc:QY},tJ=xt($l,e=>e?0:1,"bool"),nJ={kernelName:$l,backendName:"cpu",kernelFunc:tJ},sJ=dn((e,t)=>e||t),rJ=Tn(zc,sJ,null,"bool"),aJ={kernelName:zc,backendName:"cpu",kernelFunc:rJ};function oJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s;Te(r,"LRN");let u=r.shape[3],c=u-1,p=n.data.get(r.dataId).values,d=v.sizeFromShape(r.shape),h=new Float32Array(d);function f(m){let g=m%u,y=m-g+Math.max(0,g-a),x=m-g+Math.min(g+a,c),A=0;for(;y<=x;y++){let b=p[y];A+=b*b}return A}for(let m=0;m<d;m++){let g=f(m),y=p[m]*Math.pow(o+i*g,-l);h[m]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var iJ={kernelName:Yp,backendName:"cpu",kernelFunc:oJ};function lJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s;Te(o,"LRNGrad");let p=v.sizeFromShape(o.shape),d=o.shape[3],h=n.data.get(o.dataId).values,f=n.data.get(r.dataId).values,m=n.data.get(a.dataId).values,g=new Float32Array(p),y=p;for(let x=0;x<y;x++){let A=x%d,b=x-A+Math.max(0,A-i),w=x-A+Math.min(d,A+i+1),k=0;for(let C=b;C<w;C++)k+=Math.pow(f[C],2);k=u*k+l;for(let C=b;C<w;C++){let E=-2*u*c*f[C]*m[x]/k;x===C&&(E+=Math.pow(k,-c)),E*=h[x],g[C]+=E}}return n.makeTensorInfo(o.shape,r.dtype,g)}var uJ={kernelName:g0,backendName:"cpu",kernelFunc:lJ};function II(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=n,l=r.shape,u=l.length,c=v.parseAxisParam(a,l),p=c,d=T.getAxesPermutation(p,u),h=i.data.get(r.dataId).values;if(d!=null){let b=new Array(u);for(let w=0;w<b.length;w++)b[w]=l[d[w]];h=Hx(h,l,r.dtype,d,b),p=T.getInnerMostAxes(p.length,u),l=b}Te(r,"max"),T.assertAxesAreInnerMostDims("max",p,u);let[f,m]=T.computeOutAndReduceShapes(l,p),g=v.sizeFromShape(m),y=ZS(h,g,f,r.dtype),x=i.write(y,f,r.dtype),A=f;return o&&(A=T.expandShapeToKeepDim(f,c)),{dataId:x,shape:A,dtype:r.dtype}}var cJ={kernelName:Mo,backendName:"cpu",kernelFunc:II};function dJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;Te(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l),p;if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))p=aa({inputs:{x:r},backend:n});else{let d=n.data.get(r.dataId).values,h=v.computeStrides(r.shape),f=Jx(d,r.shape,r.dtype,h,c,"max");p=n.makeTensorInfo(c.outShape,r.dtype,f.values)}return p}var pJ={kernelName:Lo,backendName:"cpu",kernelFunc:dJ};function hJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s;Te(r,"maxPool3d");let c=T.computePool3DInfo(r.shape,a,o,1,i,l,u),p=n.data.get(r.dataId).values,d=vI(p,r.shape,r.dtype,v.computeStrides(r.shape),c,"max");return n.makeTensorInfo(d.shape,"float32",d.values)}var fJ={kernelName:Jp,backendName:"cpu",kernelFunc:hJ};function mJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=s;Te([r,a],"maxPool3DGrad");let c=T.computePool3DInfo(a.shape,o,i,1,l,u),p=n.bufferSync(a),d=nZ(p,c),h=c.strideDepth,f=c.strideHeight,m=c.strideWidth,g=c.dilationDepth,y=c.dilationHeight,x=c.dilationWidth,A=c.effectiveFilterDepth,b=c.effectiveFilterHeight,w=c.effectiveFilterWidth,k=A-1-c.padInfo.front,C=w-1-c.padInfo.left,E=b-1-c.padInfo.top,_=We(a.shape,"float32"),$=n.bufferSync(r);for(let R=0;R<c.batchSize;++R)for(let P=0;P<c.inChannels;++P)for(let S=0;S<c.inDepth;++S)for(let M=0;M<c.inHeight;++M)for(let L=0;L<c.inWidth;++L){let U=S-k,K=M-E,q=L-C,Z=0;for(let J=0;J<A;J+=g){let Q=(U+J)/h;if(!(Q<0||Q>=c.outDepth||Math.floor(Q)!==Q))for(let ie=0;ie<b;ie+=y){let re=(K+ie)/f;if(!(re<0||re>=c.outHeight||Math.floor(re)!==re))for(let de=0;de<w;de+=x){let ue=(q+de)/m;if(ue<0||ue>=c.outWidth||Math.floor(ue)!==ue)continue;let Ae=A*b*w-1-d.get(R,Q,re,ue,P),oe=J*b*w+ie*w+de,Re=Ae===oe?1:0;if(Re===0)continue;Z+=$.get(R,Q,re,ue,P)*Re}}}_.set(Z,R,S,M,L,P)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var gJ={kernelName:A0,backendName:"cpu",kernelFunc:mJ};function yJ(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;Te([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=n.data.get(i.dataId).values,f=We(d.outShape,i.dtype,bI(h,i.shape,i.dtype,d).values),m=d.strideHeight,g=d.strideWidth,y=d.dilationHeight,x=d.dilationWidth,A=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=b-1-d.padInfo.left,k=A-1-d.padInfo.top,C=We(i.shape,"float32"),E=n.data.get(r.dataId).values,_=We(r.shape,"float32",E);for(let $=0;$<d.batchSize;++$)for(let R=0;R<d.inChannels;++R)for(let P=0;P<d.inHeight;++P)for(let S=0;S<d.inWidth;++S){let M=P-k,L=S-w,U=0;for(let K=0;K<A;K+=y){let q=(M+K)/m;if(!(q<0||q>=d.outHeight||Math.floor(q)!==q))for(let Z=0;Z<b;Z+=x){let J=(L+Z)/g;if(J<0||J>=d.outWidth||Math.floor(J)!==J)continue;let Q=A*b-1-f.get($,q,J,R),ie=K*b+Z,re=Q===ie?1:0;if(re===0)continue;U+=_.get($,q,J,R)*re}}C.set(U,$,P,S,R)}return n.makeTensorInfo(C.shape,C.dtype,C.values)}var AJ={kernelName:y0,backendName:"cpu",kernelFunc:yJ};function xJ(e,t,n,s,r){let a=v.computeStrides(t),o=Jx(e,t,n,a,r,"max"),i=bI(e,t,n,r,!0,s);return[o.values,i.values]}var bJ={kernelName:x0,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;Te(s,"MaxPoolWithArgmax");let u=l.data.get(s.dataId).values,c=T.computePool2DInfo(s.shape,r,a,[1,1],o),[p,d]=xJ(u,s.shape,s.dtype,i,c),h=l.write(p,c.outShape,s.dtype),f=l.write(d,c.outShape,s.dtype);return[{dataId:h,shape:c.outShape,dtype:s.dtype},{dataId:f,shape:c.outShape,dtype:"int32"}]}};function vJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=v.parseAxisParam(a,r.shape),u=T.computeOutAndReduceShapes(r.shape,i)[1],c=v.sizeFromShape(u),p=[],d=n.makeTensorInfo([],"float32",new Float32Array([c]));p.push(d);let h=co({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});p.push(h);let f=Qx({inputs:{a:h,b:d},backend:n});p.push(f);let m=Vh({inputs:{x:f},backend:n,attrs:{axis:a,keepDims:o}});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),m}var wJ={kernelName:Bo,backendName:"cpu",kernelFunc:vJ};function kJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;Te(r,"min");let i=v.parseAxisParam(a,r.shape),l=i,u=T.getAxesPermutation(l,r.shape.length),c=r;u!=null&&(c=bs({inputs:{x:r},backend:n,attrs:{perm:u}}),l=T.getInnerMostAxes(l.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",l,c.shape.length);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=v.sizeFromShape(d),f=v.makeZerosTypedArray(v.sizeFromShape(p),c.dtype),m=n.data.get(c.dataId).values;for(let y=0;y<f.length;++y){let x=y*h,A=m[x];for(let b=0;b<h;++b){let w=m[x+b];(Number.isNaN(w)||w<A)&&(A=w)}f[y]=A}u!=null&&n.disposeIntermediateTensorInfo(c);let g=n.makeTensorInfo(p,c.dtype,f);if(o){let y=T.expandShapeToKeepDim(p,i),x=Et({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),x}return g}var SJ={kernelName:Wo,backendName:"cpu",kernelFunc:kJ};function IJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,mode:o}=s;Te(r,"mirrorPad");let i=a.map((A,b)=>A[0]+r.shape[b]+A[1]),l=a.map(A=>A[0]),u=a.map((A,b)=>A[0]+r.shape[b]),c=o==="reflect"?0:1,p=n.data.get(r.dataId).values,d=r.shape.length,h=v.computeStrides(r.shape),f=v.sizeFromShape(i),m=i.length,g=v.computeStrides(i),y=v.getTypedArrayFromDType(r.dtype,f);for(let A=0;A<f;A++){let b=v.indexToLoc(A,m,g);for(let k=0;k<m;k++)b[k]<l[k]?b[k]=l[k]*2-b[k]-c:b[k]>=u[k]&&(b[k]=(u[k]-1)*2-b[k]+c);b=b.map((k,C)=>k-l[C]);let w=v.locToIndex(b,d,h);y[A]=p[w]}return{dataId:n.write(y,i,r.dtype),shape:i,dtype:r.dtype}}var CJ={kernelName:Uo,backendName:"cpu",kernelFunc:IJ},TJ=dn((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),NJ=Tn(Lc,TJ),EJ={kernelName:Lc,backendName:"cpu",kernelFunc:NJ},RJ=ho(Jm());function CI(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=r.shape.length,i=a;if(i===-1&&(i=o-1),i!==o-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${o} and dim was ${i}`);let l=v.parseAxisParam([i],r.shape),u=II({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),c=T.expandShapeToKeepDim(u.shape,l),p=Et({inputs:{x:u},backend:n,attrs:{shape:c}}),d=Yx({inputs:{a:r,b:p},backend:n}),h=LS({inputs:{x:d},backend:n}),f=Vh({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),m=Et({inputs:{x:f},backend:n,attrs:{shape:c}}),g=Qx({inputs:{a:h,b:m},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(m),g}var _J={kernelName:ri,backendName:"cpu",kernelFunc:CI};function DJ(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s;Te(r,"multinomial");let l=i?r:CI({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],c=l.shape[1],p=n.data.get(l.dataId).values,d=[u,a],h=v.makeZerosTypedArray(v.sizeFromShape(d),"int32");for(let f=0;f<u;++f){let m=f*c,g=new Float32Array(c-1);g[0]=p[m];for(let A=1;A<g.length;++A)g[A]=g[A-1]+p[m+A];let y=RJ.alea(o.toString()),x=f*a;for(let A=0;A<a;++A){let b=y();h[x+A]=g.length;for(let w=0;w<g.length;w++)if(b<g[w]){h[x+A]=w;break}}}return i||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(d,"int32",h)}var $J={kernelName:b0,backendName:"cpu",kernelFunc:DJ},PJ=yr.nonMaxSuppressionV3Impl;function FJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s;Te(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,{selectedIndices:p}=PJ(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var OJ={kernelName:Ol,backendName:"cpu",kernelFunc:FJ},MJ=yr.nonMaxSuppressionV4Impl;function zJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s;Te(r,"NonMaxSuppressionPadded");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,{selectedIndices:d,validOutputs:h}=MJ(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var LJ={kernelName:Bc,backendName:"cpu",kernelFunc:zJ},BJ=yr.nonMaxSuppressionV5Impl;function WJ(e){let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s;Te(r,"NonMaxSuppressionWithScore");let c=n.data.get(r.dataId).values,p=n.data.get(a.dataId).values,d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=BJ(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var VJ={kernelName:Ml,backendName:"cpu",kernelFunc:WJ};function UJ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s;Te(r,"oneHot");let u=v.sizeFromShape(r.shape),c=new Float32Array(u*o);c.fill(l);let p=n.data.get(r.dataId).values;for(let d=0;d<u;++d)p[d]>=0&&p[d]<o&&(c[d*o+p[d]]=i);return n.makeTensorInfo([...r.shape,o],a,c)}var GJ={kernelName:Ll,backendName:"cpu",kernelFunc:UJ};function Hm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ul({inputs:{input:s},backend:n}),a=Hm({inputs:{x:r},backend:n}),o=xc({inputs:{input:s},backend:n}),i=Hm({inputs:{x:o},backend:n}),l=Rs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return eb({backend:n,attrs:{shape:s.shape,value:0,dtype:s.dtype}})}var HJ={kernelName:nu,backendName:"cpu",kernelFunc:Hm};function TI(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(s.dtype==="complex64"){let r=ul({inputs:{input:s},backend:n}),a=TI({inputs:{x:r},backend:n}),o=xc({inputs:{input:s},backend:n}),i=Hm({inputs:{x:o},backend:n}),l=Rs({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return eb({backend:n,attrs:{shape:s.shape,value:1,dtype:s.dtype}})}var jJ={kernelName:zl,backendName:"cpu",kernelFunc:TI};function NI(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Gm({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Gm({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=bc({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var qJ={kernelName:Bl,backendName:"cpu",kernelFunc:NI};function XJ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;Te(r,"pad");let i=a.map((x,A)=>x[0]+r.shape[A]+x[1]),l=a.map(x=>x[0]),u=n.data.get(r.dataId).values,c=v.sizeFromShape(r.shape),p=r.shape.length,d=v.computeStrides(r.shape),h=v.sizeFromShape(i),f=i.length,m=v.computeStrides(i),g=v.getTypedArrayFromDType(r.dtype,h);o!==0&&g.fill(o);for(let x=0;x<c;x++){let b=v.indexToLoc(x,p,d).map((k,C)=>k+l[C]),w=v.locToIndex(b,f,m);g[w]=u[x]}return{dataId:n.write(g,i,r.dtype),shape:i,dtype:r.dtype}}var EI={kernelName:Ho,backendName:"cpu",kernelFunc:XJ},KJ=dn((e,t)=>Math.pow(e,t)),ZJ=Tn(jo,KJ),YJ={kernelName:jo,backendName:"cpu",kernelFunc:ZJ};function JJ(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.data.get(r.dataId).values,c=n.data.get(a.dataId).values,p=n.data.get(o.dataId).values,d=i.map(g=>n.data.get(g.dataId).values),h=i.map(g=>g.shape),[f,m]=nI(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var QJ={kernelName:v0,backendName:"cpu",kernelFunc:JJ};function eQ(e){let{backend:t,attrs:n}=e,{start:s,stop:r,dtype:a,step:o}=n,i=jx(s,r,o,a);return t.makeTensorInfo([i.length],a,i)}var tQ={kernelName:Wc,backendName:"cpu",kernelFunc:eQ},nQ=xt(Wl,e=>1/e),sQ={kernelName:Wl,backendName:"cpu",kernelFunc:nQ};function rQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeBilinear");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(v.sizeFromShape([p,u,c,f])),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=0,b=y[0]/x[0],w=y[1]/x[1];for(let k=0;k<p;k++)for(let C=0;C<u;C++){let E;o?E=b*(C+.5)-.5:E=b*C;let _=Math.max(0,Math.floor(E)),$=E-_,R=Math.min(d-1,Math.ceil(E)),P=k*l[0]+_*l[1],S=k*l[0]+R*l[1];for(let M=0;M<c;M++){let L;o?L=w*(M+.5)-.5:L=w*M;let U=Math.max(0,Math.floor(L)),K=L-U,q=Math.min(h-1,Math.ceil(L)),Z=P+U*l[2],J=S+U*l[2],Q=P+q*l[2],ie=S+q*l[2];for(let re=0;re<f;re++){let de=m[Z+re],ue=m[J+re],Ae=m[Q+re],oe=m[ie+re],Re=de+(Ae-de)*K,_e=ue+(oe-ue)*K,Ve=Re+(_e-Re)*$;g[A++]=Ve}}}return n.makeTensorInfo([p,u,c,f],"float32",g)}var aQ={kernelName:Yo,backendName:"cpu",kernelFunc:rQ};function oQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeBilinearGrad");let i=v.computeStrides(r.shape),[l,u,c,p]=r.shape,[,d,h]=a.shape,f=new Float32Array(l*u*c*p),m=[o&&d>1?u-1:u,o&&h>1?c-1:c],g=[o&&d>1?d-1:d,o&&h>1?h-1:h],y=m[0]/g[0],x=m[1]/g[1],A=n.data.get(a.dataId).values,b=0;for(let w=0;w<l;w++){let k=w*i[0];for(let C=0;C<d;C++){let E=C*y,_=Math.floor(E),$=Math.min(Math.ceil(E),u-1),R=k+_*i[1],P=k+$*i[1],S=E-_,M=1-S;for(let L=0;L<h;L++){let U=L*x,K=Math.floor(U),q=Math.min(Math.ceil(U),c-1),Z=U-K,J=1-Z,Q=R+K*i[2],ie=R+q*i[2],re=P+K*i[2],de=P+q*i[2],ue=M*J,Ae=M*Z,oe=S*J,Re=S*Z;for(let _e=0;_e<p;_e++){let Ve=A[b++];f[Q+_e]+=Ve*ue,f[ie+_e]+=Ve*Ae,f[re+_e]+=Ve*oe,f[de+_e]+=Ve*Re}}}}return n.makeTensorInfo([l,c,u,p],"float32",f)}var iQ={kernelName:k0,backendName:"cpu",kernelFunc:oQ};function lQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s;Te(r,"resizeNearestNeighbor");let l=v.computeStrides(r.shape),[u,c]=i,[p,d,h,f]=r.shape,m=n.data.get(r.dataId).values,g=new Float32Array(p*u*c*f),y=[a&&u>1?d-1:d,a&&c>1?h-1:h],x=[a&&u>1?u-1:u,a&&c>1?c-1:c],A=y[0]/x[0],b=y[1]/x[1],w=0;for(let k=0;k<p;k++){let C=k*l[0];for(let E=0;E<u;E++){let _=o?A*(E+.5):A*E,$=Math.min(d-1,a?Math.round(_):Math.floor(_));o&&($=Math.max(0,$));let R=C+$*l[1];for(let P=0;P<c;P++){let S=o?b*(P+.5):b*P,M=Math.min(h-1,a?Math.round(S):Math.floor(S));o&&(M=Math.max(0,M));let L=R+M*l[2];for(let U=0;U<f;U++){let K=m[L+U];g[w++]=K}}}}return n.makeTensorInfo([p,u,c,f],r.dtype,g)}var uQ={kernelName:Zo,backendName:"cpu",kernelFunc:lQ};function cQ(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s;Te([a,r],"resizeNearestNeighborGrad");let i=v.computeStrides(r.shape),l=v.computeStrides(a.shape),[u,c,p,d]=r.shape,[,h,f]=a.shape,m=new Float32Array(u*c*p*d),g=n.data.get(a.dataId).values,y=[o&&h>1?c-1:c,o&&f>1?p-1:p],x=[o&&h>1?h-1:h,o&&f>1?f-1:f],A=y[0]/x[0],b=y[1]/x[1],w=1/A,k=1/b,C=Math.ceil(w)*2+2,E=Math.ceil(k)*2+2;for(let _=0;_<u;_++){let $=_*i[0];for(let R=0;R<c;R++){let P=$+R*i[1],S=Math.floor(R*w),M=Math.floor(S-C/2);for(let L=0;L<p;L++){let U=P+L*i[2],K=Math.floor(L*k),q=Math.floor(K-E/2);for(let Z=0;Z<d;Z++){let J=0;for(let Q=0;Q<C;Q++){let ie=Q+M;if(ie<0||ie>=h)continue;let re=$+ie*l[1],de=ie*A,ue=Math.min(c-1,o?Math.round(de):Math.floor(de));if(R===ue)for(let Ae=0;Ae<E;Ae++){let oe=Ae+q;if(oe<0||oe>=f)continue;let Re=re+oe*l[2],_e=oe*b,Ve=Math.min(p-1,o?Math.round(_e):Math.floor(_e));L===Ve&&(J+=g[Re+Z])}}m[U+Z]=J}}}}return n.makeTensorInfo(r.shape,r.dtype,m)}var dQ={kernelName:w0,backendName:"cpu",kernelFunc:cQ};function pQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s;Te(r,"reverse");let o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return aa({inputs:{x:r},backend:n});let l=new gn(r.shape,r.dtype),u=n.bufferSync(r);for(let c=0;c<l.size;c++){let p=l.indexToLoc(c),d=p.slice();i.forEach(h=>d[h]=r.shape[h]-1-d[h]),l.set(u.get(...d),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var hQ={kernelName:Ul,backendName:"cpu",kernelFunc:pQ},fQ={kernelName:su,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=v.getTypedArrayFromDType(s.dtype,v.sizeFromShape(s.shape)),[u,c,p,d]=s.shape,[h,f]=T.getImageCenter(o,c,p),m=255,g=Math.sin(r),y=Math.cos(r),x=i.data.get(s.dataId).values;for(let b=0;b<u;b++){let w=b*p*c*d;for(let k=0;k<c;k++){let C=k*(p*d);for(let E=0;E<p;E++){let _=E*d;for(let $=0;$<d;$++){let R=[u,k,E,$],P=R[2],S=R[1],M=(P-h)*y-(S-f)*g,L=(P-h)*g+(S-f)*y;M=Math.round(M+h),L=Math.round(L+f);let U=a;if(typeof a!="number"&&($===3?U=m:U=a[$]),M>=0&&M<p&&L>=0&&L<c){let q=L*(p*d),Z=M*d,J=w+q+Z+$;U=x[J]}let K=w+C+_+$;l[K]=U}}}}return{dataId:i.write(l,s.shape,s.dtype),shape:s.shape,dtype:s.dtype}}},mQ=xt(Gl,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2===0?t:t+1}),gQ={kernelName:Gl,backendName:"cpu",kernelFunc:mQ};function yQ(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=!0,h=n.bufferSync(r),f=n.bufferSync(a),m=Qu(h,f,o,p,u,l,i,c,0,d);return n.makeTensorInfo(o,m.dtype,m.values)}var AQ={kernelName:Hl,backendName:"cpu",kernelFunc:yQ};function xQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<t?n=r+1:s=r;return s}function bQ(e,t){let n=0,s=e.length,r=0;for(;n<s;)r=Math.floor((n+s)/2),e[r]<=t?n=r+1:s=r;return s}function vQ(e,t,n,s,r,a){let o=v.getArrayFromDType("int32",n*r);for(let i=0;i<n;++i){let l=e.slice(i*s,(i+1)*s),u=i*r;for(let c=0;c<r;++c)o[u+c]=a==="left"?xQ(l,t[c+u]):bQ(l,t[c+u])}return o}function wQ(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,u=vQ(i,l,r.shape[0],r.shape[1],a.shape[1],o);return n.makeTensorInfo(a.shape,"int32",u)}var kQ={kernelName:S0,backendName:"cpu",kernelFunc:wQ};function SQ(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t;Te([s,r,a],"select");let o=s.shape.length,i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=Un(r.dtype,a.dtype),p=v.makeZerosTypedArray(v.sizeFromShape(r.shape),c),d=0,h=o===0||o>1||r.shape.length===1?1:v.sizeFromShape(r.shape.slice(1));for(let f=0;f<i.length;f++)for(let m=0;m<h;m++)i[f]===1?p[d++]=l[f]:p[d++]=u[f];return n.makeTensorInfo(r.shape,c,p)}var IQ={kernelName:jl,backendName:"cpu",kernelFunc:SQ},CQ=T.SELU_SCALEALPHA,TQ=T.SELU_SCALE,NQ=xt(Vc,e=>e>=0?TQ*e:CQ*(Math.exp(e)-1)),EQ={kernelName:Vc,backendName:"cpu",kernelFunc:NQ},RQ=xt(Uc,e=>e<0?-1:e>0?1:0),_Q={kernelName:Uc,backendName:"cpu",kernelFunc:RQ},DQ=xt(ei,e=>Math.sin(e)),$Q={kernelName:ei,backendName:"cpu",kernelFunc:DQ},PQ=xt(Xl,e=>Math.sinh(e)),FQ={kernelName:Xl,backendName:"cpu",kernelFunc:PQ},OQ=11920928955078125e-23,T7=Math.log(OQ)+2,MQ=xt(Gc,e=>{let t=e>-T7,n=e<T7,s=Math.exp(e),r;return n?r=s:t?r=e:r=Math.log(1+s),r}),zQ={kernelName:Gc,backendName:"cpu",kernelFunc:MQ};function LQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;Te([r],"spaceToBatchND");let i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=EI.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=Et({inputs:{x:u},backend:n,attrs:{shape:c}}),x=bs({inputs:{x:m},backend:n,attrs:{perm:p}}),w=Et({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(x),w}var BQ={kernelName:Kl,backendName:"cpu",kernelFunc:LQ};function WQ(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.data.get(s.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(a.dataId).values,c=n.data.get(o.dataId).values[0],[p,d,h,f,m]=aI(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var VQ={kernelName:eh,backendName:"cpu",kernelFunc:WQ};function UQ(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.data.get(r.dataId).values),i=n.data.get(s.dataId).values,l=Array.from(n.data.get(a.dataId).values),[u,c,p]=oI(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var GQ={kernelName:Hc,backendName:"cpu",kernelFunc:UQ};function HQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=qx(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var jQ={kernelName:th,backendName:"cpu",kernelFunc:HQ};function qQ(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);if(r.shape[0]!==a.shape[0])throw new Error("segmentIds and indices should have same size.");let o=n.data.get(s.dataId).values,i=n.data.get(r.dataId).values,l=n.data.get(a.dataId).values,[u,c]=qx(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var XQ={kernelName:nh,backendName:"cpu",kernelFunc:qQ};function KQ(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1,f=n.bufferSync(r),m;switch(a.dtype){case"bool":{let g=n.bufferSync(a),y=Boolean(n.data.get(o.dataId).values[0]);m=Qu(f,g,i,d,c,u,l,p,y,h);break}case"float32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Qu(f,g,i,d,c,u,l,p,y,h);break}case"int32":{let g=n.bufferSync(a),y=n.data.get(o.dataId).values[0];m=Qu(f,g,i,d,c,u,l,p,y,h);break}case"string":{let g=n.bufferSync(a),y=v.decodeString(n.data.get(o.dataId).values[0]);m=Qu(f,g,i,d,c,u,l,p,y,h);break}default:throw new Error(`Unsupported type ${a.dtype}`)}return n.makeTensorInfo(i,m.dtype,m.values)}var ZQ={kernelName:sh,backendName:"cpu",kernelFunc:KQ};function YQ(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=cl({inputs:{x:r},backend:n,attrs:{begin:u,size:d}});return u[i]+=p,h})}var JQ={kernelName:Zl,backendName:"cpu",kernelFunc:YQ},QQ={kernelName:jc,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t;Te(n,"square");let r=s.data.get(n.dataId).values,a=new Float32Array(r.length);for(let i=0;i<r.length;++i){let l=r[i];a[i]=l*l}return{dataId:s.write(a,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},eee=xt(li,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),tee={kernelName:li,backendName:"cpu",kernelFunc:eee};function nee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s;Te(r,"stridedSlice");let{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Et({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),C=cl({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Et({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(C)}else{let k=n.bufferSync(r),C=lI(h,k,b,x);w=n.makeTensorInfo(f,C.dtype,C.values)}return w}var see={kernelName:Yl,backendName:"cpu",kernelFunc:nee};function ree(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.data.get(c.dataId).values,h=n.data.get(p.dataId).values,[f,m]=Xx(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var aee={kernelName:qc,backendName:"cpu",kernelFunc:ree};function oee(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.data.get(a.dataId).values,l=n.data.get(o.dataId).values[0],[u,c,p]=Kx(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var iee={kernelName:rh,backendName:"cpu",kernelFunc:oee};function lee(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.data.get(a.dataId).values,i=Zx(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var uee={kernelName:ah,backendName:"cpu",kernelFunc:lee},cee=xt(Jl,e=>Math.tan(e)),dee={kernelName:Jl,backendName:"cpu",kernelFunc:cee},pee=xt(ii,e=>Math.tanh(e)),hee={kernelName:ii,backendName:"cpu",kernelFunc:pee};function fee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;Te(r,"tile");let o=cI(n.bufferSync(r),a);return n.makeTensorInfo(o.shape,o.dtype,o.values)}var mee={kernelName:Ra,backendName:"cpu",kernelFunc:fee};function gee(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s;Te(r,"topk");let i=n.data.get(r.dataId).values,[l,u]=pI(i,r.shape,r.dtype,a,o);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var yee={kernelName:Ql,backendName:"cpu",kernelFunc:gee};function Aee(e){let{inputs:t,attrs:n,backend:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=n,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=v.computeStrides(r.shape),x=y[0],A=y[1],b=y[2],w=v.computeStrides(g),k=w[0],C=w[1],E=w[2],_=v.getTypedArrayFromDType(r.dtype,v.sizeFromShape(g));_.fill(l);let $=s.data.get(r.dataId).values,R=s.data.get(a.dataId).values;for(let S=0;S<c;++S){let M=a.shape[0]===1?R:R.subarray(S*8,S*8+8);for(let L=0;L<f;++L)for(let U=0;U<m;++U)for(let K=0;K<h;++K){let q,Z=M[6]*U+M[7]*L+1;if(Z===0)continue;let J=(M[0]*U+M[1]*L+M[2])/Z,Q=(M[3]*U+M[4]*L+M[5])/Z,ie=N7(J,d,i),re=N7(Q,p,i);switch(o){case"nearest":q=See($,p,d,x,A,b,S,re,ie,K,l);break;case"bilinear":q=Iee($,p,d,x,A,b,S,re,ie,K,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${o}`)}let de=S*k+L*C+U*E+K;_[de]=q}return s.makeTensorInfo(g,r.dtype,_)}return{dataId:s.write(_,g,r.dtype),shape:r.shape,dtype:r.dtype}}var xee={kernelName:eu,backendName:"cpu",kernelFunc:Aee};function N7(e,t,n){switch(n){case"reflect":return bee(e,t);case"wrap":return vee(e,t);case"nearest":return kee(e,t);case"constant":default:return wee(e,t)}}function bee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=2*t;n<s&&(n=s*Math.trunc(-n/s)+n),n=n<-t?n+s:-n-1}else if(n>t-1)if(t<=1)n=0;else{let s=2*t;n-=s*Math.trunc(n/s),n>=t&&(n=s-n-1)}return v.clamp(0,n,t-1)}function vee(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let s=t-1;n+=t*(Math.trunc(-n/s)+1)}else if(n>t-1)if(t<=1)n=0;else{let s=t-1;n-=t*Math.trunc(n/s)}return v.clamp(0,n,t-1)}function wee(e,t){return e}function kee(e,t){return v.clamp(0,e,t-1)}function pp(e,t,n,s,r,a,o,i,l,u,c){let p=o*s+i*r+l*a+u;return 0<=i&&i<t&&0<=l&&l<n?e[p]:c}function See(e,t,n,s,r,a,o,i,l,u,c){let p=Math.round(i),d=Math.round(l);return pp(e,t,n,s,r,a,o,p,d,u,c)}function Iee(e,t,n,s,r,a,o,i,l,u,c){let p=Math.floor(i),d=Math.floor(l),h=p+1,f=d+1,m=(f-l)*pp(e,t,n,s,r,a,o,p,d,u,c)+(l-d)*pp(e,t,n,s,r,a,o,p,f,u,c),g=(f-l)*pp(e,t,n,s,r,a,o,h,d,u,c)+(l-d)*pp(e,t,n,s,r,a,o,h,f,u,c);return(h-i)*m+(i-p)*g}function Cee(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;Te(a,"unique");let o=s.data.get(a.dataId).values,{outputValues:i,outputShape:l,indices:u}=hI(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var Tee={kernelName:I0,backendName:"cpu",kernelFunc:Cee};function Nee(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape.length,i=r.shape[a],l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o).fill(0),p=r.shape.slice();p[a]=1;let d=new Array(i);for(let h=0;h<d.length;h++){c[a]=h;let f=cl({inputs:{x:r},backend:n,attrs:{begin:c,size:p}});d[h]=Et({inputs:{x:f},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(f)}return d}var Eee={kernelName:tu,backendName:"cpu",kernelFunc:Nee};function Ree(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s;Te(r,"unsortedSegmentSum");let i=r.shape.length,l=a.shape.length,u=[],c=[],p=i-l,d=a;for(let f=0;f<p;++f){let m=Gm({inputs:{input:d},backend:n,attrs:{dim:f+1}});d=m,c.push(m)}for(let f=0;f<o;++f){let m=v.createScalarValue(f,"int32"),g=n.makeTensorInfo([],"int32",m),y=MS({inputs:{a:g,b:d},backend:n}),x=co({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),A=R2({inputs:{a:x,b:r},backend:n}),b=Vh({inputs:{x:A},backend:n,attrs:{axis:0,keepDims:!1}});u.push(b),c.push(g),c.push(y),c.push(x),c.push(A),c.push(b)}let h=NI({inputs:u,backend:n,attrs:{axis:0}});return c.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var _ee={kernelName:oh,backendName:"cpu",kernelFunc:Ree},Dee=[RK,kX,DK,PK,EX,OK,zK,BK,VK,GK,jK,XK,ZK,QK,tZ,rZ,oZ,lZ,cZ,NK,pZ,fZ,gZ,AZ,TX,_X,bZ,SX,wZ,SZ,IZ,TZ,EZ,_Z,$Z,FZ,MZ,LZ,WZ,UZ,HZ,qZ,KZ,ZZ,JZ,eY,nY,sY,rY,aY,lY,vK,cY,DX,AY,$X,xY,FX,IY,CY,NY,MX,_Y,$Y,FY,MY,LY,LX,WX,IX,WY,kZ,UY,HY,qY,wK,UX,HX,KY,qX,YY,eJ,nJ,aJ,iJ,uJ,cJ,KX,pJ,fJ,gJ,AJ,bJ,wJ,SJ,YX,CJ,EJ,$J,QX,tK,OJ,LJ,VJ,sK,GJ,jJ,qJ,EI,YJ,SK,oK,QJ,tQ,CX,fy,sQ,IK,CK,TK,aQ,iQ,uQ,dQ,hQ,fQ,gQ,lK,AQ,kQ,IQ,EQ,cK,_Q,$Q,FQ,dK,_J,zQ,BQ,VQ,GQ,jQ,XQ,ZQ,JQ,fK,QQ,gK,tee,see,aee,iee,uee,bK,oY,dee,hee,mee,yee,xee,rK,Tee,Eee,_ee,HJ];for(let e of Dee)tr(e);var RI={};He(RI,{assertNotComplex:()=>cd,bindCanvasToFramebuffer:()=>Uee,bindColorTextureToFramebuffer:()=>fm,bindTextureToProgramUniformSampler:()=>HI,bindTextureUnit:()=>VI,bindVertexBufferToProgramAttribute:()=>gy,callAndCheck:()=>Se,canBeRepresented:()=>_I,createFragmentShader:()=>PI,createFramebuffer:()=>WI,createProgram:()=>FI,createStaticIndexBuffer:()=>zI,createStaticVertexBuffer:()=>MI,createTexture:()=>LI,createVertexShader:()=>$I,getBatchDim:()=>dl,getExtensionOrThrow:()=>hp,getFramebufferErrorMessage:()=>jI,getMaxTexturesInShader:()=>ZI,getNumChannels:()=>Wee,getProgramUniformLocation:()=>GI,getProgramUniformLocationOrThrow:()=>UI,getRowsCols:()=>pl,getShapeAs3D:()=>mm,getTextureShapeFromLogicalShape:()=>XI,getWebGLDisjointQueryTimerVersion:()=>YI,getWebGLErrorMessage:()=>DI,getWebGLMaxTextureSize:()=>KI,hasExtension:()=>Ys,isCapableOfRenderingToFloatTexture:()=>JI,isDownloadFloatTextureEnabled:()=>QI,isReshapeFree:()=>Op,isWebGLFenceEnabled:()=>e9,isWebGLVersionEnabled:()=>Ay,linkProgram:()=>OI,logShaderSourceAndInfoLog:()=>nb,resetMaxTextureSize:()=>Gee,resetMaxTexturesInShader:()=>Hee,unbindColorTextureFromFramebuffer:()=>yy,unbindTextureUnit:()=>Vee,validateFramebuffer:()=>fp,validateProgram:()=>hm,validateTextureSize:()=>BI});var qi={},rm={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function _2(e,t){qi[e]=t}function Wr(e,t){if(!(e in qi)||t!=null){let s=Pee(e,t);if(s!==null)qi[e]=s;else return console.log("Could not get context for WebGL version",e),null}let n=qi[e];return n==null||n.isContextLost()?(delete qi[e],Wr(e)):(n.disable(n.DEPTH_TEST),n.disable(n.STENCIL_TEST),n.disable(n.BLEND),n.disable(n.DITHER),n.disable(n.POLYGON_OFFSET_FILL),n.disable(n.SAMPLE_COVERAGE),n.enable(n.SCISSOR_TEST),n.enable(n.CULL_FACE),n.cullFace(n.BACK),qi[e])}function $ee(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function Pee(e,t){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let n=t==null?$ee(e):t;return n.addEventListener("webglcontextlost",s=>{s.preventDefault(),delete qi[e]},!1),H().getBool("SOFTWARE_WEBGL_ENABLED")&&(rm.failIfMajorPerformanceCaveat=!1),e===1?n.getContext("webgl",rm)||n.getContext("experimental-webgl",rm):n.getContext("webgl2",rm)}var Fp;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Fp||(Fp={}));var Zs;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(Zs||(Zs={}));var Dn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(Dn||(Dn={}));function Uh(e,t){return[t,e]}function Fee(e,t){return e*t}function am(e){let t=v.sizeFromShape(e),n=Math.ceil(t/4);return v.sizeToSquarishShape(n)}function ud(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function Oee(e,t){let[n,s]=ud(e,t);return n*s*4}function tb(e,t){let n=e,s,r,a,o,i,l,u,c,p,d;return H().getNumber("WEBGL_VERSION")===2?(s=n.R32F,r=n.R16F,a=n.RGBA16F,o=n.RGBA32F,i=n.RED,u=4,c=1,p=n.HALF_FLOAT,d=n.FLOAT,l=n.RGBA8):(s=e.RGBA,r=e.RGBA,a=e.RGBA,o=n.RGBA,i=e.RGBA,u=4,c=4,p=t!=null?t.HALF_FLOAT_OES:null,d=e.FLOAT,l=e.RGBA),{internalFormatFloat:s,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:a,internalFormatPackedFloat:o,textureFormatFloat:i,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:c,textureTypeHalfFloat:p,textureTypeFloat:d}}function Se(e,t){let n=t();return H().getBool("DEBUG")&&Mee(e),n}function Mee(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+DI(e,t))}var zee=596e-10,Lee=65504;function _I(e){return!!(H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||zee<Math.abs(e)&&Math.abs(e)<Lee)}function DI(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function hp(e,t){return $a(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function $I(e,t){let n=$a(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function PI(e,t){let n=$a(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(Se(e,()=>e.shaderSource(n,t)),Se(e,()=>e.compileShader(n)),H().get("ENGINE_COMPILE_ONLY"))return n;if(e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw nb(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var Bee=/ERROR: [0-9]+:([0-9]+):/g;function nb(e,t){let n=Bee.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let s=+n[1],r=e.split(`
`),a=r.length.toString().length+2,o=r.map((p,d)=>v.rightPad((d+1).toString(),a)+p),i=0;for(let p=0;p<o.length;p++)i=Math.max(o[p].length,i);let l=o.slice(0,s-1),u=o.slice(s-1,s),c=o.slice(s);console.log(l.join(`
`)),console.log(t.split(`
`)[0]),console.log(`%c ${v.rightPad(u[0],i)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(c.join(`
`))}function FI(e){return $a(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function OI(e,t){if(Se(e,()=>e.linkProgram(t)),!H().get("ENGINE_COMPILE_ONLY")&&e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function hm(e,t){if(Se(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function MI(e,t){let n=$a(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function zI(e,t){let n=$a(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),Se(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function Wee(){return H().getNumber("WEBGL_VERSION")===2?1:4}function LI(e){return $a(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function BI(e,t){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let s=`[${e}x${t}]`;throw new Error("Requested texture size "+s+" is invalid.")}if(e>n||t>n){let s=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+s+" greater than WebGL maximum on this browser / GPU "+r+".")}}function WI(e){return $a(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function gy(e,t,n,s,r,a,o){let i=e.getAttribLocation(t,n);return i===-1?!1:(Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,s)),Se(e,()=>e.vertexAttribPointer(i,r,e.FLOAT,!1,a,o)),Se(e,()=>e.enableVertexAttribArray(i)),!0)}function VI(e,t,n){qI(e,n),Se(e,()=>e.activeTexture(e.TEXTURE0+n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function Vee(e,t){qI(e,t),Se(e,()=>e.activeTexture(e.TEXTURE0+t)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function UI(e,t,n){return $a(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function GI(e,t,n){return e.getUniformLocation(t,n)}function HI(e,t,n,s){Se(e,()=>VI(e,t,s)),Se(e,()=>e.uniform1i(n,s))}function Uee(e){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),Se(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function fm(e,t,n){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function yy(e,t){Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),Se(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function fp(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+jI(e,t))}function jI(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function $a(e,t,n){let s=Se(e,()=>t());if(s==null)throw new Error(n);return s}function qI(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,s=t+e.TEXTURE0;if(s<e.TEXTURE0||s>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function dl(e,t=2){return v.sizeFromShape(e.slice(0,e.length-t))}function pl(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function mm(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[dl(e),...pl(e)]),t}function XI(e,t=!1){let n=H().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,a)=>a>=e.length-2?v.nearestLargerEven(e[a]):e[a]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=v.squeezeShape(e).newShape);let s=v.sizeFromShape(e);if(e.length<=1&&s<=n)return[1,s];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=dl(e),a=2,o=2;return e.length&&([a,o]=pl(e)),s=r*(a/2)*(o/2),v.sizeToSquarishShape(s).map(i=>i*2)}return v.sizeToSquarishShape(s)}function om(e){return e%2===0}function Op(e,t){if(e=e.slice(-2),t=t.slice(-2),v.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],s=t.slice(-1)[0];if(n===s||om(n)&&om(s)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&om(e[0])&&om(t[0])}var gm,ym;function KI(e){if(gm==null){let t=Wr(e);gm=t.getParameter(t.MAX_TEXTURE_SIZE)}return gm}function Gee(){gm=null}function Hee(){ym=null}function ZI(e){if(ym==null){let t=Wr(e);ym=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,ym)}function YI(e){if(e===0)return 0;let t,n=Wr(e);return Ys(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:Ys(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function Ys(e,t){return e.getExtension(t)!=null}function Ay(e){try{if(Wr(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function JI(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Ys(t,"OES_texture_float"))return!1}else if(!Ys(t,"EXT_color_buffer_float"))return!1;return xy(t)}function QI(e){if(e===0)return!1;let t=Wr(e);if(e===1){if(!Ys(t,"OES_texture_float")||!Ys(t,"WEBGL_color_buffer_float"))return!1}else{if(Ys(t,"EXT_color_buffer_float"))return xy(t);let s="EXT_color_buffer_half_float";if(Ys(t,s)){let r=t.getExtension(s);return jee(t,r)}return!1}return xy(t)}function xy(e){let t=tb(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let s=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,s,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let a=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,a),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(a),o}function jee(e,t){let n=tb(e,t),s=e.createTexture();e.bindTexture(e.TEXTURE_2D,s);let r=1,a=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,a,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let o=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,o),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,s,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(s),e.deleteFramebuffer(o),i}function e9(e){return e!==2?!1:Wr(e).fenceSync!=null}function cd(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&v.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var $e=H();$e.registerFlag("HAS_WEBGL",()=>$e.getNumber("WEBGL_VERSION")>0);$e.registerFlag("WEBGL_VERSION",()=>Ay(2)?2:Ay(1)?1:0);$e.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);$e.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>$e.get("WEBGL_VERSION")===2);$e.registerFlag("WEBGL_CPU_FORWARD",()=>!0);$e.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);$e.registerFlag("WEBGL_PACK",()=>$e.getBool("HAS_WEBGL"));$e.registerFlag("WEBGL_PACK_NORMALIZATION",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_CLIP",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_PACK_REDUCE",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_LAZILY_UNPACK",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_CONV_IM2COL",()=>$e.getBool("WEBGL_PACK"));$e.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>KI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>ZI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=$e.getNumber("WEBGL_VERSION");return e===0?0:YI(e)});$e.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>$e.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!ch.isMobile());$e.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>JI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>$e.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:$e.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));$e.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>QI($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_FENCE_API_ENABLED",()=>e9($e.getNumber("WEBGL_VERSION")));$e.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>$e.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);$e.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});$e.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>ch.isMobile()?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});$e.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);$e.registerFlag("WEBGL_USE_SHAPES_UNIFORMS",()=>!1);$e.registerFlag("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e5);$e.registerFlag("TOPK_K_CPU_HANDOFF_THRESHOLD",()=>128);$e.registerFlag("WEBGL_EXP_CONV",()=>!1);$e.registerFlag("SOFTWARE_WEBGL_ENABLED",()=>$e.getBool("IS_TEST"));function us(){let e,t,n,s,r,a,o,i,l,u;return H().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",s="in",r="texture",a="outputColor",o="out vec4 outputColor;",i=`
bool isnan_custom(float val) {
uint floatToUint = floatBitsToUint(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan_custom(val.x),
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
}
#define isnan(value) isnan_custom(value)
`,l="",u=`
#define round(value) newRound(value)
int newRound(float value) {
return int(floor(value + 0.5));
}
ivec4 newRound(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`):(e="",t="attribute",n="varying",s="varying",r="texture2D",a="gl_FragColor",o="",i=`
#define isnan(value) isnan_custom(value)
bool isnan_custom(float val) {
return (val > 0. || val < 1. || val == 0.) ? false : true;
}
bvec4 isnan_custom(vec4 val) {
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
}
`,l=`
uniform float INFINITY;
bool isinf(float val) {
return abs(val) == INFINITY;
}
bvec4 isinf(vec4 val) {
return equal(abs(val), vec4(INFINITY));
}
`,u=`
int round(float value) {
return int(floor(value + 0.5));
}
ivec4 round(vec4 value) {
return ivec4(floor(value + vec4(0.5)));
}
`),{version:e,attribute:t,varyingVs:n,varyingFs:s,texture2D:r,output:a,defineOutput:o,defineSpecialNaN:i,defineSpecialInf:l,defineRound:u}}function fu(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / ${r}`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * ${r}`:`index -= ${e[a]} * ${r}`;return`${o}; ${i};`}).join("")}function D2(e,t,n="index"){let s=v.computeStrides(t);return s.map((r,a)=>{let o=`int ${e[a]} = ${n} / outShapeStrides[${a}]`,i=a===s.length-1?`int ${e[a+1]} = ${n} - ${e[a]} * outShapeStrides[${a}]`:`index -= ${e[a]} * outShapeStrides[${a}]`;return`${o}; ${i};`}).join("")}function qee(e,t){let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}function Xee(e,t,n="index"){let s=e.map((a,o)=>o),r=qee(s,t);return r.map((a,o)=>{let i=`int ${e[o]} = ${n} / ${r[o]}`,l=o===r.length-1?`int ${e[o+1]} = ${n} - ${e[o]} * ${r[o]}`:`index -= ${e[o]} * ${r[o]}`;return`${i}; ${l};`}).join("")}function sb(e){let t=v.computeStrides(e).map(n=>n.toString());return`
int getFlatIndex(ivec3 coords) {
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
}
`}function rb(){return`
int getFlatIndex(ivec3 coords) {
return coords.x * outShapeStrides[0] + coords.y * outShapeStrides[1] + coords.z;
}
`}var t9=`
const float FLOAT_MAX = 1.70141184e38;
const float FLOAT_MIN = 1.17549435e-38;
lowp vec4 encode_float(highp float v) {
if (isnan(v)) {
return vec4(255, 255, 255, 255);
}
highp float av = abs(v);
if(av < FLOAT_MIN) {
return vec4(0.0, 0.0, 0.0, 0.0);
} else if(v > FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
} else if(v < -FLOAT_MAX) {
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
}
highp vec4 c = vec4(0,0,0,0);
highp float e = floor(log2(av));
highp float m = exp2(fract(log2(av))) - 1.0;
c[2] = floor(128.0 * m);
m -= c[2] / 128.0;
c[1] = floor(32768.0 * m);
m -= c[1] / 32768.0;
c[0] = floor(8388608.0 * m);
highp float ebias = e + 127.0;
c[3] = floor(ebias / 2.0);
ebias -= c[3] * 2.0;
c[2] += floor(ebias) * 128.0;
c[3] += 128.0 * step(0.0, -v);
return c / 255.0;
}
`,{getBroadcastDims:n9}=T;function Kee(e,t,n){let s=[];if(e.forEach(h=>{let f=v.sizeFromShape(h.shapeInfo.logicalShape);if(h.shapeInfo.isUniform?s.push(`uniform float ${h.name}${f>1?`[${f}]`:""};`):(s.push(`uniform sampler2D ${h.name};`),s.push(`uniform int offset${h.name};`)),n.enableShapeUniforms){let{uniformShape:m}=ab(n.packedInputs,h.shapeInfo.logicalShape,h.shapeInfo.texShape);switch(m.length){case 1:s.push(`uniform int ${h.name}Shape;`);break;case 2:s.push(`uniform ivec2 ${h.name}Shape;`);break;case 3:s.push(`uniform ivec3 ${h.name}Shape;`);break;case 4:s.push(`uniform ivec4 ${h.name}Shape;`);break;default:break}s.push(`uniform ivec2 ${h.name}TexShape;`)}}),n.enableShapeUniforms){switch(t.logicalShape.length){case 1:s.push("uniform int outShape;");break;case 2:s.push("uniform ivec2 outShape;"),s.push("uniform int outShapeStrides;");break;case 3:s.push("uniform ivec3 outShape;"),s.push("uniform ivec2 outShapeStrides;");break;case 4:s.push("uniform ivec4 outShape;"),s.push("uniform ivec3 outShapeStrides;");break;default:break}s.push("uniform ivec2 outTexShape;")}n.customUniforms&&n.customUniforms.forEach(h=>{s.push(`uniform ${h.type} ${h.name}${h.arrayIndex?`[${h.arrayIndex}]`:""};`)});let r=s.join(`
`),a=e.map(h=>Zee(h,t,n.packedInputs,n.enableShapeUniforms)).join(`
`),o=t.texShape,i=us(),l=Qee(i),u,c,p=nte(i);return t.isPacked?(u=Yee(t.logicalShape,o,n.enableShapeUniforms),c=tte(i)):(u=Jee(t.logicalShape,o,n.enableShapeUniforms),c=ete(i)),n.packedInputs&&(p+=ote),[p,l,c,r,u,a,n.userCode].join(`
`)}function dd(e,t=!1){let n=e.shapeInfo.logicalShape;switch(n.length){case 0:return Ate(e,t);case 1:return bte(e,t);case 2:return wte(e,t);case 3:return Ste(e,t);case 4:return Cte(e,t);case 5:return Tte(e);case 6:return Nte(e);default:throw new Error(`${n.length}-D input sampling is not yet supported`)}}function s9(e,t){switch(e.shapeInfo.logicalShape.length){case 0:return yte(e);case 1:return xte(e,t);case 2:return vte(e,t);case 3:return kte(e,t);default:return Ite(e,t)}}function Zee(e,t,n=!1,s){let r="";n?r+=s9(e,s):r+=dd(e,s);let a=e.shapeInfo.logicalShape,o=t.logicalShape;return a.length<=o.length&&(n?r+=Ete(e,t):r+=Rte(e,t)),r}function Yee(e,t,n){switch(e.length){case 0:return r9();case 1:return ite(e,t,n);case 2:return mte(e,t,n);case 3:return ute(e,t,n);default:return dte(e,t,n)}}function Jee(e,t,n){switch(e.length){case 0:return r9();case 1:return lte(e,t,n);case 2:return gte(e,t,n);case 3:return cte(e,t,n);case 4:return pte(e,t,n);case 5:return hte(e,t);case 6:return fte(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function Qee(e){return`
float sampleTexture(sampler2D textureSampler, vec2 uv) {
return ${e.texture2D}(textureSampler, uv).r;
}
`}function ete(e){return`
void setOutput(float val) {
${e.output} = vec4(val, 0, 0, 0);
}
`}function tte(e){return`
void setOutput(vec4 val) {
${e.output} = val;
}
`}function nte(e){return`${e.version}
precision highp float;
precision highp int;
precision highp sampler2D;
${e.varyingFs} vec2 resultUV;
${e.defineOutput}
const vec2 halfCR = vec2(0.5, 0.5);
struct ivec5
{
int x;
int y;
int z;
int w;
int u;
};
struct ivec6
{
int x;
int y;
int z;
int w;
int u;
int v;
};
uniform float NAN;
${e.defineSpecialNaN}
${e.defineSpecialInf}
${e.defineRound}
int imod(int x, int y) {
return x - y * (x / y);
}
int idiv(int a, int b, float sign) {
int res = a / b;
int mod = imod(a, b);
if (sign < 0. && mod != 0) {
res -= 1;
}
return res;
}
//Based on the work of Dave Hoskins
//https://www.shadertoy.com/view/4djSRW
#define HASHSCALE1 443.8975
float random(float seed){
vec2 p = resultUV * seed;
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
p3 += dot(p3, p3.yzx + 19.19);
return fract((p3.x + p3.y) * p3.z);
}
${ste}
${rte}
${ate}
`}var ste=`
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
int texelIndex = index / 2;
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,rte=`
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
int texNumC, int row, int col) {
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
int texR = texelIndex / texNumC;
int texC = texelIndex - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ate=`
vec2 packedUVfrom3D(int texNumR, int texNumC,
int texelsInBatch, int texelsInLogicalRow, int b,
int row, int col) {
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
int texR = index / texNumC;
int texC = index - texR * texNumC;
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
}
`,ote=`
float getChannel(vec4 frag, vec2 innerDims) {
vec2 modCoord = mod(innerDims, 2.);
return modCoord.x == 0. ?
(modCoord.y == 0. ? frag.r : frag.g) :
(modCoord.y == 0. ? frag.b : frag.a);
}
float getChannel(vec4 frag, int dim) {
float modCoord = mod(float(dim), 2.);
return modCoord == 0. ? frag.r : frag.g;
}
`;function r9(){return`
int getOutputCoords() {
return 0;
}
`}function ite(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return s[0]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.x * ceil(float(outTexShape[1]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.x * ${s[1]}.0);
}
`:s[1]===1?n?`
int getOutputCoords() {
return 2 * int(resultUV.y * ceil(float(outTexShape[0]) / 2.0));
}
`:`
int getOutputCoords() {
return 2 * int(resultUV.y * ${s[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
return 2 * (resTexRC.x * packedTexShape[1] + resTexRC.y);
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
return 2 * (resTexRC.x * ${s[1]} + resTexRC.y);
}
`}function lte(e,t,n){return t[0]===1?n?`
int getOutputCoords() {
return int(resultUV.x * float(outTexShape[1]));
}
`:`
int getOutputCoords() {
return int(resultUV.x * ${t[1]}.0);
}
`:t[1]===1?n?`
int getOutputCoords() {
return int(resultUV.y * float(outTexShape[0]));
}
`:`
int getOutputCoords() {
return int(resultUV.y * ${t[0]}.0);
}
`:n?`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
return resTexRC.x * outTexShape[1] + resTexRC.y;
}
`:`
int getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
return resTexRC.x * ${t[1]} + resTexRC.y;
}
`}function ute(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[2]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec3(b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[2]/2),a=r*Math.ceil(e[1]/2);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec3(b, r, c);
}
`}function cte(e,t,n){if(n)return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${D2(["r","c","d"],e)}
return ivec3(r, c, d);
}
`;let s=fu(["r","c","d"],e);return`
ivec3 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec3(r, c, d);
}
`}function dte(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int texelsInLogicalRow = int(ceil(float(outShape[3]) / 2.0));
int texelsInBatch = texelsInLogicalRow * int(ceil(float(outShape[2]) / 2.0));
int texelsInBatchN = texelsInBatch * outShape[1];
int b2 = index / texelsInBatchN;
index -= b2 * texelsInBatchN;
int b = index / texelsInBatch;
index -= b * texelsInBatch;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec4(b2, b, r, c);
}
`;let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],r=Math.ceil(e[e.length-1]/2),a=r*Math.ceil(e[e.length-2]/2),o=a,i="",l="b, r, c";for(let u=2;u<e.length-1;u++)o*=e[e.length-u-1],i=`
int b${u} = index / ${o};
index -= b${u} * ${o};
`+i,l=`b${u}, `+l;return`
ivec${e.length} getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
${i}
int b = index / ${a};
index -= b * ${a};
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec${e.length}(${l});
}
`}function pte(e,t,n){if(n)return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
${D2(["r","c","d","d2"],e)}
return ivec4(r, c, d, d2);
}
`;let s=fu(["r","c","d","d2"],e);return`
ivec4 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${s}
return ivec4(r, c, d, d2);
}
`}function hte(e,t){let n=fu(["r","c","d","d2","d3"],e);return`
ivec5 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec5 outShape = ivec5(r, c, d, d2, d3);
return outShape;
}
`}function fte(e,t){let n=fu(["r","c","d","d2","d3","d4"],e);return`
ivec6 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
${n}
ivec6 result = ivec6(r, c, d, d2, d3, d4);
return result;
}
`}function mte(e,t,n){let s=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(v.arraysEqual(e,t))return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
return 2 * ivec2(resultUV.yx * vec2(packedTexShape[0], packedTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return 2 * ivec2(resultUV.yx * vec2(${s[0]}, ${s[1]}));
}
`;let r=Math.ceil(e[1]/2);return n?`
ivec2 getOutputCoords() {
ivec2 packedTexShape = ivec2(ceil(float(outTexShape[0]) / 2.0), ceil(float(outTexShape[1]) / 2.0));
int texelsInLogicalRow = int(ceil(float(outShape[1]) / 2.0));
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(packedTexShape[0], packedTexShape[1]));
int index = resTexRC.x * packedTexShape[1] + resTexRC.y;
int r = 2 * (index / texelsInLogicalRow);
int c = imod(index, texelsInLogicalRow) * 2;
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${s[0]}, ${s[1]}));
int index = resTexRC.x * ${s[1]} + resTexRC.y;
int r = 2 * (index / ${r});
int c = imod(index, ${r}) * 2;
return ivec2(r, c);
}
`}function gte(e,t,n){return v.arraysEqual(e,t)?n?`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(outTexShape[0], outTexShape[1]));
}
`:`
ivec2 getOutputCoords() {
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
}
`:e[1]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(index, 0);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(index, 0);
}
`:e[0]===1?n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
return ivec2(0, index);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
return ivec2(0, index);
}
`:n?`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(outTexShape[0], outTexShape[1]));
int index = resTexRC.x * outTexShape[1] + resTexRC.y;
int r = index / outShape[1];
int c = index - r * outShape[1];
return ivec2(r, c);
}
`:`
ivec2 getOutputCoords() {
ivec2 resTexRC = ivec2(resultUV.yx *
vec2(${t[0]}, ${t[1]}));
int index = resTexRC.x * ${t[1]} + resTexRC.y;
int r = index / ${e[1]};
int c = index - r * ${e[1]};
return ivec2(r, c);
}
`}function mu(e){return`offset${e}`}function yte(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),s=us();return`
vec4 ${n}() {
return ${s.texture2D}(${t}, halfCR);
}
`}function Ate(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`float ${s}() {return ${n};}`;let[r,a]=e.shapeInfo.texShape;if(r===1&&a===1)return`
float ${s}() {
return sampleTexture(${n}, halfCR);
}
`;let o=mu(n);if(t)return`
float ${s}() {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], ${o});
return sampleTexture(${n}, uv);
}
`;let[i,l]=e.shapeInfo.texShape;return`
float ${s}() {
vec2 uv = uvFromFlat(${i}, ${l}, ${o});
return sampleTexture(${n}, uv);
}
`}function xte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,a=us();if(t)return`
vec4 ${s}(int index) {
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
vec2 uv = packedUVfrom1D(
packedTexShape[0], packedTexShape[1], index);
return ${a.texture2D}(${n}, uv);
}
`;let o=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];return`
vec4 ${s}(int index) {
vec2 uv = packedUVfrom1D(
${o[0]}, ${o[1]}, index);
return ${a.texture2D}(${n}, uv);
}
`}function bte(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1);if(e.shapeInfo.isUniform)return`
float ${s}(int index) {
${pd(e)}
}
`;let r=e.shapeInfo.texShape,a=r[0],o=r[1];if(o===1&&a===1)return`
float ${s}(int index) {
return sampleTexture(${n}, halfCR);
}
`;let i=mu(n);return o===1?t?`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / float(${n}TexShape[0]));
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${a}.0);
return sampleTexture(${n}, uv);
}
`:a===1?t?`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / float(${n}TexShape[1]), 0.5);
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${o}.0, 0.5);
return sampleTexture(${n}, uv);
}
`:t?`
float ${s}(int index) {
vec2 uv = uvFromFlat(${n}TexShape[0], ${n}TexShape[1], index + ${i});
return sampleTexture(${n}, uv);
}
`:`
float ${s}(int index) {
vec2 uv = uvFromFlat(${a}, ${o}, index + ${i});
return sampleTexture(${n}, uv);
}
`}function vte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=a[0],i=a[1],l=us();if(a!=null&&v.arraysEqual(n,a))return t?`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return ${l.texture2D}(${s}, uv);
}
`:`
vec4 ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${o}.0);
return ${l.texture2D}(${s}, uv);
}
`;if(t)return`
vec4 ${r}(int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom2D(valuesPerRow, packedTexShape[0], packedTexShape[1], row, col);
return ${l.texture2D}(${s}, uv);
}
`;let u=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],c=Math.ceil(n[1]/2);return`
vec4 ${r}(int row, int col) {
vec2 uv = packedUVfrom2D(${c}, ${u[0]}, ${u[1]}, row, col);
return ${l.texture2D}(${s}, uv);
}
`}function wte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape;if(a!=null&&v.arraysEqual(n,a)){if(t)return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`;let d=a[0],h=a[1];return`
float ${r}(int row, int col) {
vec2 uv = (vec2(col, row) + halfCR) / vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`}let{newShape:o,keptDims:i}=v.squeezeShape(n),l=o;if(l.length<n.length){let d=hd(e,l),h=["row","col"];return`
${dd(d,t)}
float ${r}(int row, int col) {
return ${r}(${fd(h,i)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col) {
int index = round(dot(vec2(row, col), vec2(${n[1]}, 1)));
${pd(e)}
}
`;let u=a[0],c=a[1],p=mu(s);return c===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / float(${s}TexShape[0]));
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2(0.5, (index + 0.5) / ${u}.0);
return sampleTexture(${s}, uv);
}
`:u===1?t?`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${s}Shape[1], 1, 1));
vec2 uv = vec2((index + 0.5) / float(${s}TexShape[1]), 0.5);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
float index = dot(vec3(row, col, ${p}), vec3(${n[1]}, 1, 1));
vec2 uv = vec2((index + 0.5) / ${c}.0, 0.5);
return sampleTexture(${s}, uv);
}
`:t?`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${s}Shape[1] + col + ${p};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${n[1]} + col + ${p};
vec2 uv = uvFromFlat(${u}, ${c}, index);
return sampleTexture(${s}, uv);
}
`}function kte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=e.shapeInfo.texShape,o=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)];if(n[0]===1){let d=n.slice(1),h=[1,2],f=hd(e,d),m=["b","row","col"];return`
${s9(f,t)}
vec4 ${r}(int b, int row, int col) {
return ${r}(${fd(m,h)});
}
`}let i=us();if(t)return`
vec4 ${r}(int b, int row, int col) {
ivec2 packedTexShape = ivec2(ceil(float(${s}TexShape[0]) / 2.0), ceil(float(${s}TexShape[1]) / 2.0));
int valuesPerRow = int(ceil(float(${s}Shape[2]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${s}Shape[1]) / 2.0));
vec2 uv = packedUVfrom3D(
packedTexShape[0], packedTexShape[1], texelsInBatch, valuesPerRow, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`;let l=o[0],u=o[1],c=Math.ceil(n[2]/2),p=c*Math.ceil(n[1]/2);return`
vec4 ${r}(int b, int row, int col) {
vec2 uv = packedUVfrom3D(
${l}, ${u}, ${p}, ${c}, b, row, col);
return ${i.texture2D}(${s}, uv);
}
`}function Ste(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[1]*n[2],o=n[2],{newShape:i,keptDims:l}=v.squeezeShape(n),u=i;if(u.length<n.length){let m=hd(e,u),g=["row","col","depth"];return`
${dd(m,t)}
float ${r}(int row, int col, int depth) {
return ${r}(${fd(g,l)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth) {
int index = round(dot(vec3(row, col, depth),
vec3(${a}, ${o}, 1)));
${pd(e)}
}
`;let c=e.shapeInfo.texShape,p=c[0],d=c[1],h=e.shapeInfo.flatOffset;if(d===a&&h==null)return t?`
float ${r}(int row, int col, int depth) {
int stride1 = ${s}Shape[2];
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(stride1, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = float(row);
float texC = dot(vec2(col, depth), vec2(${o}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;if(d===o&&h==null)return t?`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${s}Shape[1], 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
float texR = dot(vec2(row, col), vec2(${n[1]}, 1));
float texC = float(depth);
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${d}.0, ${p}.0);
return sampleTexture(${s}, uv);
}
`;let f=mu(s);return t?`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int stride0 = ${s}Shape[1] * ${s}Shape[2];
int stride1 = ${s}Shape[2];
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${a} + col * ${o} + depth + ${f};
vec2 uv = uvFromFlat(${p}, ${d}, index);
return sampleTexture(${s}, uv);
}
`}function Ite(e,t){let n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=us();if(t)return`
vec4 ${s}(int b2, int b, int row, int col) {
int valuesPerRow = int(ceil(float(${n}Shape[3]) / 2.0));
int texelsInBatch = valuesPerRow * int(ceil(float(${n}Shape[2]) / 2.0));
int index = b * texelsInBatch + (row / 2) * valuesPerRow + (col / 2);
texelsInBatch *= ${n}Shape[1];
index = b2 * texelsInBatch + index;
ivec2 packedTexShape = ivec2(ceil(float(${n}TexShape[0]) / 2.0), ceil(float(${n}TexShape[1]) / 2.0));
int texR = index / packedTexShape[1];
int texC = index - texR * packedTexShape[1];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(packedTexShape[1], packedTexShape[0]); return ${r.texture2D}(${n}, uv);
}
`;let a=e.shapeInfo.logicalShape,o=a.length,i=e.shapeInfo.texShape,l=[Math.ceil(i[0]/2),Math.ceil(i[1]/2)],u=l[0],c=l[1],p=Math.ceil(a[o-1]/2),d=p*Math.ceil(a[o-2]/2),h="int b, int row, int col",f=`b * ${d} + (row / 2) * ${p} + (col / 2)`;for(let m=2;m<o-1;m++)h=`int b${m}, `+h,d*=a[o-m-1],f=`b${m} * ${d} + `+f;return`
vec4 ${s}(${h}) {
int index = ${f};
int texR = index / ${c};
int texC = index - texR * ${c};
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${c}, ${u});
return ${r.texture2D}(${n}, uv);
}
`}function Cte(e,t){let n=e.shapeInfo.logicalShape,s=e.name,r="get"+s.charAt(0).toUpperCase()+s.slice(1),a=n[3],o=n[2]*a,i=n[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(n);if(l.length<n.length){let x=hd(e,l),A=["row","col","depth","depth2"];return`
${dd(x,t)}
float ${r}(int row, int col, int depth, int depth2) {
return ${r}(${fd(A,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${r}(int row, int col, int depth, int depth2) {
int index = round(dot(vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, 1)));
${pd(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1],f=`int stride2 = ${s}Shape[3];`,m=`int stride1 = ${s}Shape[2] * stride2;`,g=`int stride0 = ${s}Shape[1] * stride1;`;if(h===i&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
${f}
${m}
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(stride1, stride2, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = float(row);
float texC =
dot(vec3(col, depth, depth2),
vec3(${o}, ${a}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;if(h===a&&c==null)return t?`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${s}Shape[1] * ${s}Shape[2], ${s}Shape[2], 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}TexShape[1], ${s}TexShape[0]);
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
float texR = dot(vec3(row, col, depth),
vec3(${n[1]*n[2]}, ${n[2]}, 1));
float texC = float(depth2);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${s}, uv);
}
`;let y=mu(s);return t?`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
${f}
${m}
${g}
int index = row * stride0 + col * stride1 +
depth * stride2 + depth2;
vec2 uv = uvFromFlat(${s}TexShape[0], ${s}TexShape[1], index + ${y});
return sampleTexture(${s}, uv);
}
`:`
float ${r}(int row, int col, int depth, int depth2) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} +
depth * ${a} + depth2;
vec2 uv = uvFromFlat(${d}, ${h}, index + ${y});
return sampleTexture(${s}, uv);
}
`}function Tte(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],a=t[3]*r,o=t[2]*a,i=t[1]*o,{newShape:l,keptDims:u}=v.squeezeShape(t);if(l.length<t.length){let m=hd(e,l),g=["row","col","depth","depth2","depth3"];return`
${dd(m)}
float ${s}(int row, int col, int depth, int depth2, int depth3) {
return ${s}(${fd(g,u)});
}
`}if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float index = dot(
vec4(row, col, depth, depth2),
vec4(${i}, ${o}, ${a}, ${r})) +
depth3;
${pd(e)}
}
`;let c=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,d=p[0],h=p[1];if(h===i&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${o}, ${a}, ${r}, 1));
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;if(h===r&&c==null)return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
float texR = dot(
vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]},
${t[2]*t[3]}, ${t[3]}, 1));
int texC = depth3;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${h}.0, ${d}.0);
return sampleTexture(${n}, uv);
}
`;let f=mu(n);return`
float ${s}(int row, int col, int depth, int depth2, int depth3) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${i} + col * ${o} + depth * ${a} +
depth2 * ${r} + depth3 + ${f};
vec2 uv = uvFromFlat(${d}, ${h}, index);
return sampleTexture(${n}, uv);
}
`}function Nte(e){let t=e.shapeInfo.logicalShape,n=e.name,s="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:a}=v.squeezeShape(t);if(r.length<t.length){let g=hd(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
${dd(g)}
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
return ${s}(${fd(y,a)});
}
`}let o=t[5],i=t[4]*o,l=t[3]*i,u=t[2]*l,c=t[1]*u;if(e.shapeInfo.isUniform)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int index = round(dot(
vec4(row, col, depth, depth2),
vec4(${c}, ${u}, ${l}, ${i})) +
dot(
vec2(depth3, depth4),
vec2(${o}, 1)));
${pd(e)}
}
`;let p=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,h=d[0],f=d[1];if(f===c&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
int texR = row;
float texC = dot(vec4(col, depth, depth2, depth3),
vec4(${u}, ${l}, ${i}, ${o})) +
float(depth4);
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;if(f===o&&p==null)return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
float texR = dot(vec4(row, col, depth, depth2),
vec4(${t[1]*t[2]*t[3]*t[4]},
${t[2]*t[3]*t[4]},
${t[3]*t[4]},
${t[4]})) + float(depth3);
int texC = depth4;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${f}.0, ${h}.0);
return sampleTexture(${n}, uv);
}
`;let m=mu(n);return`
float ${s}(int row, int col, int depth,
int depth2, int depth3, int depth4) {
// Explicitly use integer operations as dot() only works on floats.
int index = row * ${c} + col * ${u} + depth * ${l} +
depth2 * ${i} + depth3 * ${o} + depth4 + ${m};
vec2 uv = uvFromFlat(${h}, ${f}, index);
return sampleTexture(${n}, uv);
}
`}function pd(e){let t=e.name,n=v.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
for (int i = 0; i < ${n}; i++) {
if (i == index) {
return ${t}[i];
}
}
`}function Ete(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=e.shapeInfo.logicalShape.length,o=t.logicalShape.length,i=n9(e.shapeInfo.logicalShape,t.logicalShape),l=vt(o),u=o-a,c,p=["x","y","z","w","u","v"];a===0?c="":o<2&&i.length>=1?c="coords = 0;":c=i.map(x=>`coords.${p[x+u]} = 0;`).join(`
`);let d="";o<2&&a>0?d="coords":d=e.shapeInfo.logicalShape.map((x,A)=>`coords.${p[A+u]}`).join(", ");let h="return outputValue;",m=v.sizeFromShape(e.shapeInfo.logicalShape)===1,y=v.sizeFromShape(t.logicalShape)===1;if(a===1&&!m&&!y)h=`
return vec4(outputValue.xy, outputValue.xy);
`;else if(m&&!y)o===1?h=`
return vec4(outputValue.x, outputValue.x, 0., 0.);
`:h=`
return vec4(outputValue.x);
`;else if(i.length){let x=a-2,A=a-1;i.indexOf(x)>-1&&i.indexOf(A)>-1?h="return vec4(outputValue.x);":i.indexOf(x)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":i.indexOf(A)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
vec4 ${r}() {
${l} coords = getOutputCoords();
${c}
vec4 outputValue = get${s}(${d});
${h}
}
`}function Rte(e,t){let n=e.name,s=n.charAt(0).toUpperCase()+n.slice(1),r="get"+s+"AtOutCoords",a=t.texShape,o=e.shapeInfo.texShape,i=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&i===l&&e.shapeInfo.flatOffset==null&&v.arraysEqual(o,a))return`
float ${r}() {
return sampleTexture(${n}, resultUV);
}
`;let u=vt(l),c=n9(e.shapeInfo.logicalShape,t.logicalShape),p=l-i,d,h=["x","y","z","w","u","v"];i===0?d="":l<2&&c.length>=1?d="coords = 0;":d=c.map(m=>`coords.${h[m+p]} = 0;`).join(`
`);let f="";return l<2&&i>0?f="coords":f=e.shapeInfo.logicalShape.map((m,g)=>`coords.${h[g+p]}`).join(", "),`
float ${r}() {
${u} coords = getOutputCoords();
${d}
return get${s}(${f});
}
`}function vt(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function ab(e,t,n){let{newShape:s,keptDims:r}=v.squeezeShape(t),a=t.length,o=e&&a===3&&t[0]===1,i=o?t.slice(1):s,l=!e&&a>1&&!v.arraysEqual(t,n)&&s.length<a||o;return{useSqueezeShape:l,uniformShape:l?i:t,keptDims:r}}function hd(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function fd(e,t){return t.map(n=>e[n]).join(", ")}function _te(e,t,n,s){let r=n.map((c,p)=>{let d={logicalShape:c.shape,texShape:c.isUniform?null:c.texData.texShape,isUniform:c.isUniform,isPacked:c.isUniform?!1:c.texData.isPacked,flatOffset:null};return c.texData!=null&&c.texData.slice!=null&&c.texData.slice.flatOffset>0&&(d.flatOffset=c.texData.slice.flatOffset),{name:t.variableNames[p],shapeInfo:d}}),a=r.map(c=>c.shapeInfo),o={logicalShape:s.shape,texShape:s.texData.texShape,isUniform:!1,isPacked:s.texData.isPacked,flatOffset:null},i=Kee(r,o,t),l=PI(e.gl,i),u=e.createProgram(l);return H().get("ENGINE_COMPILE_ONLY")?{program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o,uniformLocations:null,customUniformLocations:null,infLoc:null,nanLoc:null,inShapesLocations:null,inTexShapesLocations:null,outShapeLocation:null,outShapeStridesLocation:null,outTexShapeLocation:null}:Object.assign({program:t,fragmentShader:l,source:i,webGLProgram:u,inShapeInfos:a,outShapeInfo:o},a9(e,t,u))}function a9(e,t,n){let s={},r={},a={},o=[],i,l,u,c=null,p=null;p=e.getUniformLocation(n,"NAN",!1),H().getNumber("WEBGL_VERSION")===1&&(c=e.getUniformLocation(n,"INFINITY",!1));let d=!1;for(let h=0;h<t.variableNames.length;h++){let f=t.variableNames[h];s[f]=e.getUniformLocation(n,f,d),s[`offset${f}`]=e.getUniformLocation(n,`offset${f}`,d),t.enableShapeUniforms&&(r[`${f}Shape`]=e.getUniformLocation(n,`${f}Shape`,d),a[`${f}TexShape`]=e.getUniformLocation(n,`${f}TexShape`,d))}return t.enableShapeUniforms&&(i=e.getUniformLocation(n,"outShape",d),u=e.getUniformLocation(n,"outShapeStrides",d),l=e.getUniformLocation(n,"outTexShape",d)),t.customUniforms&&t.customUniforms.forEach((h,f)=>{o[f]=e.getUniformLocation(n,h.name,d)}),{uniformLocations:s,customUniformLocations:o,infLoc:c,nanLoc:p,inShapesLocations:r,inTexShapesLocations:a,outShapeLocation:i,outShapeStridesLocation:u,outTexShapeLocation:l}}function E7(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,s)=>{let r=n.logicalShape,a=t[s],o=a.shape;if(!v.arraysEqual(r,o))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${o} must match`);if(n.isUniform&&a.isUniform)return;let i=n.texShape,l=a.isUniform?null:a.texData.texShape;if(!v.arraysEqual(i,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${i} and ${l} must match`)})}function Dte(e,t,n,s,r){t.program.enableShapeUniforms||(E7(t.inShapeInfos,n),E7([t.outShapeInfo],[s]));let a=s.texData.texture,o=s.texData.texShape;s.texData.isPacked?e.setOutputPackedMatrixTexture(a.texture,o[0],o[1]):e.setOutputMatrixTexture(a.texture,o[0],o[1]),e.setProgram(t.webGLProgram),H().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,1/0),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((l,u)=>{let c=t.program.variableNames[u],p=t.uniformLocations[c],d=t.uniformLocations[`offset${c}`],h=t.inShapesLocations[`${c}Shape`],f=t.inTexShapesLocations[`${c}TexShape`];if(h){let{uniformShape:m}=ab(t.program.packedInputs,l.shape,l.texData.texShape);switch(m.length){case 1:e.gl.uniform1iv(h,new Int32Array(m));break;case 2:e.gl.uniform2iv(h,new Int32Array(m));break;case 3:e.gl.uniform3iv(h,new Int32Array(m));break;case 4:e.gl.uniform4iv(h,new Int32Array(m));break;default:break}}if(f&&e.gl.uniform2i(f,l.texData.texShape[0],l.texData.texShape[1]),p!=null){if(l.isUniform){if(v.sizeFromShape(l.shape)<2)e.gl.uniform1f(p,l.uniformValues[0]);else{let m=l.uniformValues;m instanceof Float32Array||(m=new Float32Array(m)),e.gl.uniform1fv(p,m)}return}l.texData.slice!=null&&d!=null&&e.gl.uniform1i(d,l.texData.slice.flatOffset),e.setInputMatrixTexture(l.texData.texture.texture,p,u)}});let i=t.outShapeLocation;if(i)switch(s.shape.length){case 1:e.gl.uniform1iv(i,new Int32Array(s.shape));break;case 2:e.gl.uniform2iv(i,new Int32Array(s.shape));break;case 3:e.gl.uniform3iv(i,new Int32Array(s.shape));break;case 4:e.gl.uniform4iv(i,new Int32Array(s.shape));break;default:break}if(t.outShapeStridesLocation){let l=v.computeStrides(s.shape);switch(s.shape.length){case 2:e.gl.uniform1iv(t.outShapeStridesLocation,new Int32Array(l));break;case 3:e.gl.uniform2iv(t.outShapeStridesLocation,new Int32Array(l));break;case 4:e.gl.uniform3iv(t.outShapeStridesLocation,new Int32Array(l));break;default:break}}t.outTexShapeLocation&&e.gl.uniform2i(t.outTexShapeLocation,s.texData.texShape[0],s.texData.texShape[1]),t.program.customUniforms&&r&&t.program.customUniforms.forEach((l,u)=>{let c=t.customUniformLocations[u],p=r[u];if(l.type==="float")e.gl.uniform1fv(c,p);else if(l.type==="vec2")e.gl.uniform2fv(c,p);else if(l.type==="vec3")e.gl.uniform3fv(c,p);else if(l.type==="vec4")e.gl.uniform4fv(c,p);else if(l.type==="int")e.gl.uniform1iv(c,p);else if(l.type==="ivec2")e.gl.uniform2iv(c,p);else if(l.type==="ivec3")e.gl.uniform3iv(c,p);else if(l.type==="ivec4")e.gl.uniform4iv(c,p);else throw Error(`uniform type ${l.type} is not supported yet.`)}),e.executeProgram()}function $te(e,t,n){let s="";t.concat(n).forEach(o=>{let i=o.texData!=null&&o.texData.slice!=null&&o.texData.slice.flatOffset>0;if(e.enableShapeUniforms&&!o.isUniform){let l=o.texData.texShape,{useSqueezeShape:u,uniformShape:c,keptDims:p}=ab(e.packedInputs,o.shape,l),d="",h="",f="";if(c.length===1&&e.packedInputs){let w=[Math.ceil(l[0]/2),Math.ceil(l[1]/2)];d=`${w[0]>1}_${w[1]>1}`}else if(c.length===2&&!e.packedInputs)h=`${c[0]>1}_${c[1]>1}`;else if(c.length>2&&!e.packedInputs){let w=v.computeStrides(c);f=`${w[0]===l[1]}_${w[w.length-1]===l[1]}`}let m=o.shape.length,g=c.length===2&&v.arraysEqual(o.shape,l),y=v.sizeFromShape(o.shape)===1,x=T.getBroadcastDims(o.shape,n.shape),A=!e.packedInputs&&m===n.shape.length&&v.arraysEqual(l,n.texData.texShape),b=e.packedInputs||c.length>2?"":`${l[0]>1}_${l[1]>1}`;s+=`${m}_${A}_${u?p:""}_${c.length}_${y}_${x}_${g}_${d}_${h}_${f}_${b}_${i}`}else{let l=o.isUniform?"uniform":o.texData.texShape;s+=`${o.shape}_${l}_${i}`}});let r=e.userCode,a=e.constructor.name;return a+="_"+s+"_"+r+`${H().getNumber("WEBGL_VERSION")}`,a}function cs(e){return H().getBool("WEBGL_USE_SHAPES_UNIFORMS")&&e<=4}var Pte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Fp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?D2(["r","c","d"],e):fu(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getA(rc.x, rc.y, rc.z);
}
${t.output} = result;
}
`}},Fte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Fp.DENSE,this.customUniforms=[{name:"texShape",type:"ivec2"}];let t=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
ivec3 outCoordsFromFlatIndex(int index) {
${this.enableShapeUniforms?D2(["r","c","d"],e):fu(["r","c","d"],e)}
return ivec3(r, c, d);
}
void main() {
ivec2 resTexRC = ivec2(resultUV.yx * vec2(texShape[0], texShape[1]));
int index = 4 * (resTexRC.x * texShape[1] + resTexRC.y);
vec4 result = vec4(0.);
for (int i=0; i<4; i++) {
int flatIndex = index + i;
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
}
${t.output} = result;
}
`}},Ote=class{constructor(e){this.variableNames=["A"],this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=`
${t9}
void main() {
float x = getAAtOutCoords();
${t.output} = encode_float(x);
}
`}},Mte=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=Zs.DOWNLOAD;let t=us();this.outputShape=e,this.userCode=`
${t9}
void main() {
ivec3 coords = getOutputCoords();
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
${t.output} = encode_float(x);
}
`}},zte=class{constructor(e,t=!1){this.variableNames=["A"],this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="result";t&&(s="floor(result * 255. + 0.5)"),this.userCode=`
${this.enableShapeUniforms?rb():sb(e)}
void main() {
ivec3 coords = getOutputCoords();
int flatIndex = getFlatIndex(coords);
int offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
vec4 values = ${n.texture2D}(A, uv);
float result;
if(offset == 0) {
result = values[0];
} else if(offset == 1) {
result = values[1];
} else if(offset == 2) {
result = values[2];
} else {
result = values[3];
}
${n.output} = vec4(${s}, 0., 0., 0.);
}
`}},Lte=class{constructor(e,t=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.customUniforms=[{name:"texShape",type:"ivec2"}];let n=us();this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let s="",r="result";t&&(r="floor(result * 255. + 0.5)");for(let a=0;a<=1;a++)for(let o=0;o<=1;o++){let i=a*2+o;s+=`
localCoords = coords;
if(localCoords[2] + ${o} < ${this.enableShapeUniforms?"outShape[2]":`${e[2]}`}) {
localCoords[2] += ${o};
if (localCoords[1] + ${a} < ${this.enableShapeUniforms?"outShape[1]":`${e[1]}`}) {
localCoords[1] += ${a};
flatIndex = getFlatIndex(localCoords);
offset = imod(flatIndex, 4);
flatIndex = idiv(flatIndex, 4, 1.);
int r = flatIndex / texShape[1];
int c = imod(flatIndex, texShape[1]);
vec2 uv = (vec2(c, r) + halfCR) / vec2(texShape[1], texShape[0]);
values = ${n.texture2D}(A, uv);
if (offset == 0) {
result[${i}] = values[0];
} else if (offset == 1) {
result[${i}] = values[1];
} else if (offset == 2) {
result[${i}] = values[2];
} else {
result[${i}] = values[3];
}
}
}
`}this.userCode=`
${this.enableShapeUniforms?rb():sb(e)}
void main() {
ivec3 coords = getOutputCoords();
vec4 result = vec4(0.);
int flatIndex, r, c, offset;
ivec3 localCoords;
vec2 uv;
vec4 values;
${s}
${n.output} = ${r};
}
`}},o9={};He(o9,{bindVertexProgramAttributeStreams:()=>m9,createBufferFromOutputTexture:()=>A9,createFloat16MatrixTexture:()=>d9,createFloat16PackedMatrixTexture:()=>f9,createFloat32MatrixTexture:()=>c9,createIndexBuffer:()=>u9,createPackedMatrixTexture:()=>h9,createUnsignedBytesMatrixTexture:()=>p9,createVertexBuffer:()=>l9,createVertexShader:()=>i9,downloadByteEncodedFloatMatrixFromOutputTexture:()=>b9,downloadFloat32MatrixFromBuffer:()=>x9,downloadMatrixFromPackedOutputTexture:()=>w9,downloadPackedMatrixFromBuffer:()=>v9,getInternalFormatForFloat16MatrixTexture:()=>ib,getInternalFormatForFloat16PackedMatrixTexture:()=>cb,getInternalFormatForFloat32MatrixTexture:()=>ob,getInternalFormatForPackedMatrixTexture:()=>ub,getInternalFormatForUnsignedBytesMatrixTexture:()=>lb,uploadDenseMatrixToTexture:()=>g9,uploadPixelDataToTexture:()=>y9});function i9(e){let t=us(),n=`${t.version}
precision highp float;
${t.attribute} vec3 clipSpacePos;
${t.attribute} vec2 uv;
${t.varyingVs} vec2 resultUV;
void main() {
gl_Position = vec4(clipSpacePos, 1);
resultUV = uv;
}`;return $I(e,n)}function l9(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return MI(e,t)}function u9(e){let t=new Uint16Array([0,1,2,2,1,3]);return zI(e,t)}function Gh(e,t,n,s,r,a){BI(t,n);let o=LI(e),i=e.TEXTURE_2D;return Se(e,()=>e.bindTexture(i,o)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MIN_FILTER,e.NEAREST)),Se(e,()=>e.texParameteri(i,e.TEXTURE_MAG_FILTER,e.NEAREST)),H().getNumber("WEBGL_VERSION")===1?Se(e,()=>e.texImage2D(i,0,s,t,n,0,r,a,null)):Se(e,()=>e.texStorage2D(i,1,s,t,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null)),{texture:o,texShape:[n,t]}}function ob(e){return e.internalFormatFloat}function c9(e,t,n,s){let[r,a]=Uh(t,n);return Gh(e,r,a,ob(s),s.textureFormatFloat,e.FLOAT)}function ib(e){return e.internalFormatHalfFloat}function d9(e,t,n,s){let[r,a]=Uh(t,n);return Gh(e,r,a,ib(s),s.textureFormatFloat,s.textureTypeHalfFloat)}function lb(e){return e.downloadTextureFormat}function p9(e,t,n,s){let[r,a]=Uh(t,n);return Gh(e,r,a,lb(s),e.RGBA,e.UNSIGNED_BYTE)}function ub(e){return e.internalFormatPackedFloat}function h9(e,t,n,s){let[r,a]=ud(t,n);return Gh(e,r,a,ub(s),e.RGBA,e.FLOAT)}function cb(e){return e.internalFormatPackedHalfFloat}function f9(e,t,n,s){let[r,a]=ud(t,n);return Gh(e,r,a,cb(s),e.RGBA,s.textureTypeHalfFloat)}function m9(e,t,n){return Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),gy(e,t,"clipSpacePos",n,3,20,0)&&gy(e,t,"uv",n,2,20,12)}function g9(e,t,n,s,r,a){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t));let o,i,l;r instanceof Uint8Array?(o=new Uint8Array(n*s*4),i=e.UNSIGNED_BYTE,l=e.RGBA):(o=new Float32Array(n*s*4),i=e.FLOAT,l=a.internalFormatPackedFloat),o.set(r),H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n,s,e.RGBA,i,o)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,s,0,e.RGBA,i,o)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function y9(e,t,n){Se(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,n.width,n.height,e.RGBA,e.UNSIGNED_BYTE,n.data)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):H().getNumber("WEBGL_VERSION")===2?Se(e,()=>e.texSubImage2D(e.TEXTURE_2D,0,0,0,e.RGBA,e.UNSIGNED_BYTE,n)):Se(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),Se(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function A9(e,t,n,s){let r=e.createBuffer();Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let i=4*4*t*n;return Se(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,i,e.STREAM_READ)),Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),Se(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function x9(e,t,n){let s=e,r=new Float32Array(n);return s.bindBuffer(s.PIXEL_PACK_BUFFER,t),s.getBufferSubData(s.PIXEL_PACK_BUFFER,0,r),s.bindBuffer(s.PIXEL_PACK_BUFFER,null),r}function b9(e,t,n,s){let[r,a]=Uh(t,n),o=4,i=new Uint8Array(Fee(t*n,o));return Se(e,()=>e.readPixels(0,0,r,a,s.downloadTextureFormat,e.UNSIGNED_BYTE,i)),new Float32Array(i.buffer)}function v9(e,t,n,s,r,a,o,i){let l=e,u=new Float32Array(Oee(a,o));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function w9(e,t,n){let s=new Float32Array(t*n*4);return Se(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,s)),s}var rc=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=H().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,_2(t,e)):this.gl=Wr(t);let n="WEBGL_color_buffer_float",s="EXT_color_buffer_half_float";if(this.parallelCompilationExtension=this.gl.getExtension("KHR_parallel_shader_compile"),H().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",a="OES_texture_half_float";if(this.textureFloatExtension=hp(this.gl,r),Ys(this.gl,a))this.textureHalfFloatExtension=hp(this.gl,a);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),Ys(this.gl,s))this.colorBufferHalfFloatExtension=hp(this.gl,s);else if(H().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",Ys(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(Ys(this.gl,s))this.colorBufferHalfFloatExtension=this.gl.getExtension(s);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=l9(this.gl),this.indexBuffer=u9(this.gl),this.framebuffer=WI(this.gl),this.textureConfig=tb(this.gl,this.textureHalfFloatExtension)}get debug(){return H().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;Se(e,()=>e.finish()),Se(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),Se(e,()=>e.deleteFramebuffer(this.framebuffer)),Se(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),Se(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),Se(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),c9(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),d9(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),p9(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),y9(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,s){this.throwIfDisposed(),g9(this.gl,e,t,n,s,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),f9(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),h9(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(yy(this.gl,this.framebuffer),this.outputTexture=null),Se(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>b9(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,s,r,a){return v9(this.gl,e,t,n,s,r,a,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return x9(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let s=A9(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),s}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(H().getBool("WEBGL_FENCE_API_ENABLED")){let s=e,r=s.fenceSync(s.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let a=s.clientWaitSync(r,0,0);return a===s.ALREADY_SIGNALED||a===s.CONDITION_SATISFIED},t=r}else H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>w9(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl;this.vertexShader==null&&(this.vertexShader=i9(t));let n=FI(t);return Se(t,()=>t.attachShader(n,this.vertexShader)),Se(t,()=>t.attachShader(n,e)),OI(t,n),this.debug&&hm(t,n),this.vertexAttrsAreBound||(this.setProgram(n),this.vertexAttrsAreBound=m9(t,this.program,this.vertexBuffer)),n}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&Se(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&hm(this.gl,this.program),Se(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?UI(this.gl,e,t):GI(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),Se(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),HI(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[s,r]=ud(t,n);this.setOutputMatrixTextureDriver(e,s,r)}setOutputMatrixWriteRegion(e,t,n,s){this.setOutputMatrixWriteRegionDriver(n,e,s,t)}setOutputPackedMatrixWriteRegion(e,t,n,s){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&hm(this.gl,this.program),fp(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),Se(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),Se(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=hp(this.gl,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(s.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await v.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,s=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(s.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),s=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),s&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=Bte(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&v.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),fm(this.gl,e,this.framebuffer),this.debug&&fp(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(fm(this.gl,this.outputTexture,this.framebuffer),this.debug&&fp(this.gl)):yy(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let s=this.gl;fm(s,e,this.framebuffer),this.debug&&fp(s),this.outputTexture=e,Se(s,()=>s.viewport(0,0,t,n)),Se(s,()=>s.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,s){this.throwIfDisposed(),Se(this.gl,()=>this.gl.scissor(e,t,n,s))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function Bte(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{addImpl:Wte,bincountImpl:k9,bincountReduceImpl:Vte,castImpl:Ute,ceilImpl:Gte,concatImpl:Hte,equalImpl:jte,expImpl:qte,expm1Impl:Xte,floorImpl:Kte,gatherNdImpl:Zte,gatherV2Impl:Yte,greaterImpl:Jte,greaterEqualImpl:Qte,lessImpl:ene,lessEqualImpl:tne,linSpaceImpl:nne,logImpl:sne,maxImpl:rne,maximumImpl:ane,minimumImpl:one,multiplyImpl:ine,negImpl:lne,notEqualImpl:une,prodImpl:cne,raggedTensorToTensorImpl:dne,rangeImpl:pne,rsqrtImpl:hne,scatterImpl:fne,sigmoidImpl:mne,simpleAbsImpl:S9,sliceImpl:gne,sparseFillEmptyRowsImpl:yne,sparseReshapeImpl:Ane,sparseSegmentReductionImpl:I9,sqrtImpl:xne,stridedSliceImpl:bne,stringNGramsImpl:vne,stringSplitImpl:wne,stringToHashBucketFastImpl:kne,subImpl:Sne,tileImpl:Ine,topKImpl:Cne,transposeImpl:db,uniqueImpl:Tne}=Bx;function C9(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function as(e,t){return t===1?[e]:C9(e,t)}function Nne(e,t){if(e===1)return"rc";let n="";for(let s=0;s<e;s++)n+=t[s],s<e-1&&(n+=",");return n}var Ene=class{constructor(e){if(this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.enableShapeUniforms=cs(this.outputShape.length),this.rank===0)this.userCode=`
void main() {
setOutput(vec4(getA(), 0., 0., 0.));
}
`;else{let t=as("rc",this.rank),n=vt(this.rank),s=this.getOutOfBoundsCondition(t),r=this.getSetup(t),a=this.getOutput(t);this.userCode=`
void main() {
${n} rc = getOutputCoords();
if(${s}) {
setOutput(vec4(0));
} else {
${r}
setOutput(vec4(${a}));
}
}
`}}getSourceCoordsArr(e){let t=[];for(let n=0;n<=1;n++)for(let s=0;s<=1;s++){let r=`${n===0?"r":"rp1"}, ${s===0?"c":"cp1"}`;for(let a=2;a<this.rank;a++)r=`${e[e.length-1-a]},`+r;t.push(r)}return t}getOutOfBoundsCondition(e){if(this.rank===1)return`rc > ${this.enableShapeUniforms?"outShape":this.outputShape[0]}`;let t="";for(let n=this.rank-2;n<this.rank;n++)t+=`${e[n]} >= ${this.enableShapeUniforms?`outShape[${n}]`:this.outputShape[n]}`,n<this.rank-1&&(t+="||");return t}getSetup(e){if(this.rank===1)return"";let t=e.slice(-2),n=this.enableShapeUniforms?`outShape[${this.rank} - 1]`:this.outputShape[this.rank-1],s=this.enableShapeUniforms?`outShape[${this.rank} - 2]`:this.outputShape[this.rank-2];return`
int r = ${t[0]};
int c = ${t[1]};
int rp1 = r + 1;
int cp1 = c + 1;
bool cEdge = cp1 >= ${n};
bool rEdge = rp1 >= ${s};
`}getOutput(e){let t=this.getSourceCoordsArr(e);return this.rank===1?`getA(rc), (rc + 1 >= ${this.enableShapeUniforms?"outShape":this.outputShape[0]} ? 0. : getA(rc + 1)), 0, 0`:`getA(${t[0]}),
cEdge ? 0. : getA(${t[1]}),
rEdge ? 0. : getA(${t[2]}),
rEdge || cEdge ? 0. : getA(${t[3]})`}},T9=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec3"}],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let n="";for(let s=0;s<4;s++){let r="thisRC = rc;";s%2===1&&(r+="thisRC.z += 1;"),s>1&&(r+="thisRC.y += 1;"),n+=`
${r}
${s>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
int flatIndex = getFlatIndex(thisRC);
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
result[${s}] =
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
${s>0?"}":""}
`}this.userCode=`
${Rne(t,this.enableShapeUniforms)}
${this.enableShapeUniforms?rb():sb(e)}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0.);
ivec3 thisRC;
int rows = ${this.enableShapeUniforms?"outShape[1]":e[1]};
int cols = ${this.enableShapeUniforms?"outShape[2]":e[2]};
${n}
setOutput(result);
}
`}};function Rne(e,t){return`
ivec3 inputCoordsFromReshapedOutCoords(int index) {
${t?Xee(["r","c","d"],"inputShape"):fu(["r","c","d"],e)}
return ivec3(r, c, d);
}
`}var _ne=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let s=_7(t,n),r=D7(e,s,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let a=R7(e,s,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=a,this.log();let i=this.freeTextures[r].shift();return this.usedTextures[r].push(i),i}let o;return s===Dn.PACKED_2X2_FLOAT32?o=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):s===Dn.PACKED_2X2_FLOAT16?o=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT32?o=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):s===Dn.UNPACKED_FLOAT16?o=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):s===Dn.PACKED_4X1_UNSIGNED_BYTE&&(o=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(o),this.numUsedTextures++,this._numBytesAllocated+=a,this.log(),o}releaseTexture(e,t,n,s){if(this.freeTextures==null)return;let r=_7(n,s),a=D7(t,r,s);a in this.freeTextures||(this.freeTextures[a]=[]);let o=R7(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,s),i=H().get("WEBGL_DELETE_TEXTURE_THRESHOLD");i!==-1&&this._numBytesAllocated>i?(this.gpgpu.deleteMatrixTexture(e.texture),this._numBytesAllocated-=o):(this.freeTextures[a].push(e),this.numFreeTextures++,this._numBytesFree+=o),this.numUsedTextures--;let l=this.usedTextures[a],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t.texture)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function Dne(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F)return 16;if(t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;if(t===n.RGBA8)return 4;throw new Error(`Unknown internal format ${t}`)}function R7(e,t,n,s,r){let a=$ne(t,s),o;if(r){let[l,u]=ud(e[0],e[1]);o=l*u}else{let[l,u]=Uh(e[0],e[1]);o=l*u}let i=Dne(n,a);return o*i}function $ne(e,t){switch(e){case Dn.PACKED_2X2_FLOAT32:return ub(t);case Dn.PACKED_2X2_FLOAT16:return cb(t);case Dn.UNPACKED_FLOAT32:return ob(t);case Dn.UNPACKED_FLOAT16:return ib(t);case Dn.PACKED_4X1_UNSIGNED_BYTE:return lb(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function Pne(e){return H().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?Dn.PACKED_2X2_FLOAT32:Dn.UNPACKED_FLOAT32:e?Dn.PACKED_2X2_FLOAT16:Dn.UNPACKED_FLOAT16}function _7(e,t){if(e===Zs.UPLOAD)return Dn.PACKED_2X2_FLOAT32;if(e===Zs.RENDER||e==null)return Pne(t);if(e===Zs.DOWNLOAD||e===Zs.PIXELS)return Dn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function D7(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var ba=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
float unaryOperation(float x) {
${t}
}
void main() {
float x = getAAtOutCoords();
float y = unaryOperation(x);
setOutput(y);
}
`}},xr="if (isnan(x)) return x;",Fne="return x;",$7="return abs(x);",One="return (x >= 0.0) ? x : (exp(x) - 1.0);",Mne=xr+`
return (x < 0.0) ? 0.0 : x;
`,zne=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,qu="return x;",Lne="return 1.0 / (1.0 + exp(-1.0 * x));",Bne="return x;",Wne=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,Vne=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Une=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,Gne="return 1.0 / (1.0 + exp(-1.0 * x));",Zi=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
vec4 unaryOperation(vec4 x) {
${t}
}
void main() {
vec4 x = getAAtOutCoords();
vec4 y = unaryOperation(x);
setOutput(y);
}
`}},Hne=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let t=e.length,n=as("rc",t),s=vt(t),r=Nne(t,n),a=n.slice(-2),o=t<=1?"rc":`vec2(${a.join(",")})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 packedInput = getA(${r});
setOutput(getChannel(packedInput, ${o}));
}
`}},jne=yr.whereImpl,qne=1e-7,Xne=1e-4,im={};function Kne(e){return e in im||(im[e]={}),im[e]}var Zne=H().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),Yne=600;function Jne(){return H().global.screen==null?1024:H().global.screen.height*H().global.screen.width*window.devicePixelRatio*Yne/1024/1024}var md=class extends wc{constructor(e){if(super(),this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!H().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");let t;if(e!=null){if(e instanceof rc)t=e;else{let n=Wr(H().getNumber("WEBGL_VERSION"),e);t=new rc(n)}this.binaryCache={},this.gpgpuCreatedLocally=!1}else{let n=Wr(H().getNumber("WEBGL_VERSION"));t=new rc(n),this.binaryCache=Kne(H().getNumber("WEBGL_VERSION")),this.gpgpuCreatedLocally=!0}this.gpgpu=t,this.canvas=this.gpgpu.gl.canvas,this.textureManager=new _ne(this.gpgpu),this.numMBBeforeWarning=Jne(),this.texData=new Up(this,Yt())}nextDataId(){return md.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((H().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||H().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.texData.set(s,{shape:t,dtype:n,values:e,usage:Zs.UPLOAD,refCount:1}),s}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,s,r){if(H().getBool("DEBUG")&&this.checkNumericalProblems(t),s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:s,values:t,usage:Zs.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:s,complexTensorInfos:r,slice:a,shape:o,isPacked:i}=t;if(a!=null){let p;i?p=new Zi(o,qu):p=new ba(o,qu);let d=this.runWebGLProgram(p,[{dataId:e,shape:o,dtype:s}],s),h=this.readSync(d.dataId);return this.disposeIntermediateTensorInfo(d),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(s==="string")return n;let l=this.activeTimers!=null,u;l&&(u=v.now());let c;if(s==="complex64"){let p=this.readSync(r.real.dataId),d=this.readSync(r.imag.dataId);c=T.mergeRealAndImagArrays(p,d)}else c=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=v.now()-u),this.convertAndCacheOnCPU(e,c)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(f=>h.push(f))}let t=this.texData.get(e),{values:n,shape:s,slice:r,dtype:a,complexTensorInfos:o,isPacked:i}=t;if(r!=null){let h;i?h=new Zi(s,qu):h=new ba(s,qu);let f=this.runWebGLProgram(h,[{dataId:e,shape:s,dtype:a}],a),m=this.read(f.dataId);return this.disposeIntermediateTensorInfo(f),m}if(n!=null)return this.convertAndCacheOnCPU(e);if(H().getBool("DEBUG")&&!H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&H().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(a!=="complex64"&&H().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture.texture,...am(s))}this.pendingRead.set(e,[]),a!=="complex64"&&await this.gpgpu.createAndWaitForFence();let c;if(a==="complex64"){let h=await Promise.all([this.read(o.real.dataId),this.read(o.imag.dataId)]),f=h[0],m=h[1];c=T.mergeRealAndImagArrays(f,m)}else if(l==null)c=this.getValuesFromTexture(e);else{let h=v.sizeFromShape(s);c=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}if(u!=null&&this.disposeIntermediateTensorInfo(u),l!=null){let h=this.gpgpu.gl;Se(h,()=>h.deleteBuffer(l))}let p=this.convertAndCacheOnCPU(e,c),d=this.pendingRead.get(e);return this.pendingRead.delete(e),d.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&Yt().removeDataId(e,this),this.pendingDeletes--),p}readToGPU(e,t={}){let n=this.texData.get(e),{values:s,shape:r,slice:a,dtype:o,isPacked:i,texture:l}=n;if(o==="complex64")throw new Error("Does not support reading texture for complex64 dtype.");if(a!=null){let d;i?d=new Zi(r,qu):d=new ba(r,qu);let h=this.runWebGLProgram(d,[{dataId:e,shape:r,dtype:o}],o),f=this.readToGPU(h,t);return this.disposeIntermediateTensorInfo(h),f}if(l==null)throw s!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let u=this.decode(e,t.customTexShape),c=Yt().makeTensorFromTensorInfo(u),p=this.texData.get(u.dataId);return Object.assign({tensorRef:c},p.texture)}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!_I(n))throw H().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:s}=this.texData.get(e),r=v.sizeFromShape(t);if(H().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),d=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(d.texture.texture,...am(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let a=H().getBool("WEBGL_PACK")&&s===!0,o=a?mm(t):t,i=a?new Mte(o):new Ote(o),l=this.runWebGLProgram(i,[{shape:o,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),c=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),c}timerAvailable(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}time(e){let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(i=>i.query)).filter(i=>i!=null),a=v.flatten(this.activeTimers.map(i=>i.name)).filter(i=>i!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};return(async()=>{if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let i=await Promise.all(r);o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else o.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,o})()}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:v.now(),endMs:null}}endTimer(e){return H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=v.now(),e)}async getQueryTime(e){if(H().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:s,usage:r,isPacked:a,slice:o}=this.texData.get(e),i=o&&o.origDataId||e,l=this.dataRefCount.get(i);l>1?this.dataRefCount.set(i,l-1):(this.dataRefCount.delete(i),t!=null&&(this.numBytesInGPU-=this.computeBytes(s,n),this.textureManager.releaseTexture(t,s,r,a)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture.texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=Zne){return H().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&v.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){T.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return jne(e.shape,t)}packedUnaryOp(e,t,n){let s=new Zi(e.shape,t),r=this.compileAndRun(s,[e],n);return Yt().makeTensorFromTensorInfo(r)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let s=S9(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,s)}if(H().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,$7,e.dtype);let t=new ba(e.shape,$7),n=this.compileAndRun(t,[e]);return Yt().makeTensorFromTensorInfo(n)}makeTensorInfo(e,t,n){let s;if(t==="string"&&n!=null&&n.length>0&&v.isString(n[0])){let r=n.map(a=>v.encodeString(a));s=this.write(r,e,t)}else s=this.write(n,e,t);return this.texData.get(s).usage=null,{dataId:s,shape:e,dtype:t}}makeOutput(e,t,n){return Yt().makeTensorFromTensorInfo(this.makeTensorInfo(e,t,n),this)}unpackTensor(e){let t=new Hne(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new Ene(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[dl(e.shape),...pl(e.shape)],s={dtype:e.dtype,shape:n,dataId:e.dataId},r=[dl(t),...pl(t)],a=new T9(r,n),o=!0,i=[n],l=this.runWebGLProgram(a,[s],e.dtype,i,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}decode(e,t){let n=this.texData.get(e),{isPacked:s,shape:r,dtype:a}=n;if(t!=null){let p=v.sizeFromShape(r),d=t[0]*t[1]*4;v.assert(p<=d,()=>"customTexShape is too small. Row * Column * 4 should be equal or larger than the size of the tensor data.")}let o=mm(r),i;s?i=new Fte(o):i=new Pte(o);let l=!0,u=[t!=null?t:am(o)],c=this.runWebGLProgram(i,[{shape:o,dtype:a,dataId:e}],a,u,l,t);return{dtype:a,shape:r,dataId:c.dataId}}runWebGLProgram(e,t,n,s,r=!1,a){let o=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(o.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Fp.DENSE){let g=a!=null?a:am(e.outputShape);i.texShape=g.map(y=>y*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),v.sizeFromShape(o.shape)===0)return i.values=v.getTypedArrayFromDType(o.dtype,0),o;let l=[],u=t.map(g=>{if(g.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let y=this.texData.get(g.dataId);if(y.texture==null){if(!e.packedInputs&&v.sizeFromShape(g.shape)<=H().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:g.shape,texData:null,isUniform:!0,uniformValues:y.values};e.packedInputs&&(y.isPacked=!0,y.shape=g.shape)}if(this.uploadToGPU(g.dataId),!!y.isPacked!=!!e.packedInputs)g=y.isPacked?this.unpackTensor(g):this.packTensor(g),l.push(g),y=this.texData.get(g.dataId);else if(y.isPacked&&!Op(y.shape,g.shape)){let x=g,A=g.shape;g.shape=y.shape,g=this.packedReshape(g,A),l.push(g),y=this.texData.get(g.dataId),x.shape=A}return{shape:g.shape,texData:y,isUniform:!1}});this.uploadToGPU(o.dataId);let c={shape:o.shape,texData:i,isUniform:!1},p=$te(e,u,c),d=this.getAndSaveBinary(p,()=>_te(this.gpgpu,e,u,c)),h=this.activeTimers!=null,f;h&&(f=this.startTimer()),H().get("ENGINE_COMPILE_ONLY")||Dte(this.gpgpu,d,u,c,s),l.forEach(g=>this.disposeIntermediateTensorInfo(g)),h&&(f=this.endTimer(f),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(f)}));let m=H().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let g=v.now();g-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=g)}if(!H().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let g=this.unpackTensor(o);return this.disposeIntermediateTensorInfo(o),g}return o}compileAndRun(e,t,n,s,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,s,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(H().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(t=>{this.gpgpu.deleteProgram(this.binaryCache[t].webGLProgram),delete this.binaryCache[t]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=Y(()=>{if(!H().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=H().getBool("DEBUG");H().set("DEBUG",!1);let t=this.abs(Ce(1e-8)).dataSync()[0];if(H().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?qne:Xne}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:s,values:r,texture:a,usage:o,isPacked:i}=t;if(a!=null)return;let l=this.activeTimers!=null,u;l&&(u=v.now());let c=t.texShape;if(c==null&&(c=XI(n,i),t.texShape=c),r!=null){let p=mm(n),d,h=c[1],f=c[0],m=r instanceof Uint8Array||r instanceof Uint8ClampedArray;(i||!m)&&([h,f]=ud(c[0],c[1])),i?d=new Lte(p,m):d=new zte(p,m);let g=m?[f,h]:c,y=this.makeTensorInfo(g,s),x=this.texData.get(y.dataId);m?x.usage=Zs.PIXELS:x.usage=Zs.UPLOAD,x.texShape=g,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(y.dataId),h,f,r);let A=[[f,h]],b=!0,w=this.runWebGLProgram(d,[y],s,A,b),k=this.texData.get(w.dataId);t.texShape=k.texShape,t.isPacked=k.isPacked,t.usage=k.usage,H().get("ENGINE_COMPILE_ONLY")?this.disposeData(w.dataId):(t.texture=k.texture,t.values=null,this.texData.delete(w.dataId)),this.disposeIntermediateTensorInfo(y),l&&(this.uploadWaitMs+=v.now()-u)}else{let p=this.acquireTexture(c,o,s,i);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:s}=n;return this.releaseGPUData(e),t!=null&&(n.values=Qne(t,s)),n.values}acquireTexture(e,t,n,s){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,s)}computeBytes(e,t){return e[0]*e[1]*v.bytesPerElement(t)}checkCompileCompletion(){for(let[,e]of Object.entries(this.binaryCache))this.checkCompletion_(e)}async checkCompileCompletionAsync(){let e=[];if(this.gpgpu.parallelCompilationExtension){for(let[,t]of Object.entries(this.binaryCache))e.push(this.checkCompletionAsync_(t));return Promise.all(e)}else{for(let[,t]of Object.entries(this.binaryCache)){let n=new Promise(s=>{try{this.checkCompletion_(t),s(!0)}catch(r){throw r}});e.push(n)}return Promise.all(e)}}async checkCompletionAsync_(e){return this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.parallelCompilationExtension.COMPLETION_STATUS_KHR)?this.checkCompletion_(e):(await o5(),this.checkCompletionAsync_(e))}checkCompletion_(e){if(this.gpgpu.gl.getProgramParameter(e.webGLProgram,this.gpgpu.gl.LINK_STATUS)===!1)throw console.log(this.gpgpu.gl.getProgramInfoLog(e.webGLProgram)),this.gpgpu.gl.getShaderParameter(e.fragmentShader,this.gpgpu.gl.COMPILE_STATUS)===!1?(nb(e.source,this.gpgpu.gl.getShaderInfoLog(e.fragmentShader)),new Error("Failed to compile fragment shader.")):new Error("Failed to link vertex and fragment shaders.");return!0}getUniformLocations(){for(let[,e]of Object.entries(this.binaryCache)){let{uniformLocations:t,customUniformLocations:n,infLoc:s,nanLoc:r,inShapesLocations:a,inTexShapesLocations:o,outShapeLocation:i,outShapeStridesLocation:l,outTexShapeLocation:u}=a9(this.gpgpu,e.program,e.webGLProgram);e.uniformLocations=t,e.customUniformLocations=n,e.infLoc=s,e.nanLoc=r,e.inShapesLocations=a,e.inTexShapesLocations=o,e.outShapeLocation=i,e.outShapeStridesLocation=l,e.outTexShapeLocation=u}}};md.nextDataId=0;function Qne(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let s=0;s<n.length;++s)n[s]=Math.round(e[s]);return n}else throw new Error(`Unknown dtype ${t}`)}var ese="3.20.0";function N9(){H().set("WEBGL_FORCE_F16_TEXTURES",!0)}ch.isBrowser()&&ru("webgl",()=>new md,2);var tse={forceHalfFloat:N9},E9=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,vc=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.enableShapeUniforms=cs(this.outputShape.length),this.userCode=`
float binaryOperation(float a, float b) {
${e}
}
void main() {
float a = getAAtOutCoords();
float b = getBAtOutCoords();
setOutput(binaryOperation(a, b));
}
`}},$2=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`,Hh=class{constructor(e,t,n,s=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length;this.enableShapeUniforms=cs(r);let a="";if(s)if(r===0||v.sizeFromShape(this.outputShape)===1)a=`
result.y = 0.;
result.z = 0.;
result.w = 0.;
`;else if(a=`
${vt(r)} coords = getOutputCoords();
`,r===1)this.enableShapeUniforms?a+=`
result.y = (coords + 1) >= outShape ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`:a+=`
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
result.z = 0.;
result.w = 0.;
`;else{let i=as("coords",r);this.enableShapeUniforms?a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= outShape[${r} - 2];
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= outShape[${r} - 1];
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`:a+=`
bool nextRowOutOfBounds =
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
bool nextColOutOfBounds =
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
result.y = nextColOutOfBounds ? 0. : result.y;
result.z = nextRowOutOfBounds ? 0. : result.z;
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
`}this.userCode=`
vec4 binaryOperation(vec4 a, vec4 b) {
${e}
}
void main() {
vec4 a = getAAtOutCoords();
vec4 b = getBAtOutCoords();
vec4 result = binaryOperation(a, b);
${a}
setOutput(result);
}
`}};function zs(e){let{inputs:t,backend:n}=e,{x:s}=t;return n.incRef(s.dataId),{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}var nse={kernelName:Po,backendName:"webgl",kernelFunc:zs};function mi(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.texData.get(a.dataId),i=zs({inputs:{x:s},backend:n}),l=zs({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var sse={kernelName:Hp,backendName:"webgl",kernelFunc:mi},R9="return (a < 0.) ? b * a : a;",_9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function rse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=n.makeTensorInfo([],"float32",v.createScalarValue(a,"float32")),i=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hh(_9,r.shape,o.shape):new vc(R9,r.shape,o.shape),l=n.runWebGLProgram(i,[r,o],"float32");return n.disposeIntermediateTensorInfo(o),l}var ase={kernelName:Fo,backendName:"webgl",kernelFunc:rse},D9="return (a < 0.) ? b * a : a;",$9=`
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
`;function ose(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hh($9,s.shape,r.shape):new vc(D9,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],"float32")}var ise={kernelName:qo,backendName:"webgl",kernelFunc:ose},gd="if (isnan(x)) return x;",lse=`
if (isnan(a)) return a;
if (isnan(b)) return b;
`,use=`
result.r = isNaN.r > 0. ? NAN : result.r;
result.g = isNaN.g > 0. ? NAN : result.g;
result.b = isNaN.b > 0. ? NAN : result.b;
result.a = isNaN.a > 0. ? NAN : result.a;
`;function dt({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:s}){return({inputs:r,backend:a})=>{let{x:o}=r,i=a,l=s||o.dtype;if(i.shouldExecuteOnCPU([o])&&n!=null){let p=i.texData.get(o.dataId),d=n(p.values,l);return i.makeTensorInfo(o.shape,l,d)}let u=H().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,c;return u?c=new Zi(o.shape,t):c=new ba(o.shape,e),i.runWebGLProgram(c,[o],l)}}function zn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:s=!1,cpuKernelImpl:r,dtype:a}){return({inputs:o,backend:i})=>{let{a:l,b:u}=o,c=i;if(s&&l.dtype==="complex64"){let f=c.texData.get(l.dataId),m=c.texData.get(u.dataId),[g,y]=[[f.complexTensorInfos.real,m.complexTensorInfos.real],[f.complexTensorInfos.imag,m.complexTensorInfos.imag]].map(A=>{let[b,w]=A,k={dataId:b.dataId,dtype:b.dtype,shape:l.shape},C={dataId:w.dataId,dtype:w.dtype,shape:u.shape},E=new vc(e,l.shape,u.shape);return c.runWebGLProgram(E,[k,C],Un(b.dtype,w.dtype))}),x=mi({inputs:{real:g,imag:y},backend:c});return c.disposeIntermediateTensorInfo(g),c.disposeIntermediateTensorInfo(y),x}let p=a||Un(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||c.shouldExecuteOnCPU([l,u]))&&r!=null){let f=c.texData.get(l.dataId).values,m=c.texData.get(u.dataId).values,g=l.dtype==="string"?T.fromUint8ToStringArray(f):f,y=l.dtype==="string"?T.fromUint8ToStringArray(m):m,[x,A]=r(l.shape,u.shape,g,y,p),b=c.makeTensorInfo(A,p),w=c.texData.get(b.dataId);return w.values=x,b}let d=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return d?h=new Hh(t,l.shape,u.shape,n):h=new vc(e,l.shape,u.shape),c.runWebGLProgram(h,[l,u],p)}}function Mp(e,t=!1){if(e==="linear")return t?Bne:Fne;if(e==="relu")return t?Vne:Mne;if(e==="elu")return t?Wne:One;if(e==="relu6")return t?Une:zne;if(e==="prelu")return t?$9:D9;if(e==="leakyrelu")return t?_9:R9;if(e==="sigmoid")return t?Gne:Lne;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var P9=class{constructor(e,t,n,s=!1,r=!1,a=!1,o=null,i=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n,this.enableShapeUniforms=cs(this.outputShape.length);let u=s?e[1]:e[2],c=Math.ceil(u/2),p=s?"i * 2, rc.y":"rc.y, i * 2",d=r?"rc.z, i * 2":"i * 2, rc.z",h=s?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],f=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],m="",g="";o&&(i?m=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${o}
}`:l?m=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${o}
}`:m=`vec4 activation(vec4 x) {
${o}
}`,g="result = activation(result);");let y=a?"result += getBiasAtOutCoords();":"";a&&this.variableNames.push("bias"),i&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let x="rc.x",A="rc.x";e[0]<t[0]?x=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(A=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
${m}
// Don't use uniform for sharedDimensionPacked for performance.
const float sharedDimension = ${c}.0;
vec4 dot2x2ARowBCol(ivec3 rc) {
vec4 result = vec4(0);
for (int i = 0; i < ${c}; i++) {
int batchA = ${x};
int batchB = ${A};
vec4 a = getMatrixA(batchA, ${p});
vec4 b = getMatrixB(batchB, ${d});
// These swizzled products need to be separately added.
// See: https://github.com/tensorflow/tfjs/issues/1735
result += (${h[0]} * ${f[0]});
result += (${h[1]} * ${f[1]});
}
return result;
}
void main() {
ivec3 rc = getOutputCoords();
vec4 result = dot2x2ARowBCol(rc);
${y}
${g}
setOutput(result);
}
`}},P7={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},F7=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.userCode=`
float binaryOpComplex(
float areal, float aimag, float breal, float bimag) {
${e}
}
void main() {
float areal = getARealAtOutCoords();
float aimag = getAImagAtOutCoords();
float breal = getBRealAtOutCoords();
float bimag = getBImagAtOutCoords();
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
}
`}},O7="return a * b;";function pb(e){let{inputs:t,backend:n}=e,{a:s,b:r}=t,a=T.upcastType(s.dtype,r.dtype);if(s.dtype==="complex64"){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),u=new F7(P7.REAL,s.shape,r.shape),c=new F7(P7.IMAG,s.shape,r.shape),p=[{dataId:i.complexTensorInfos.real.dataId,dtype:i.complexTensorInfos.real.dtype,shape:s.shape},{dataId:i.complexTensorInfos.imag.dataId,dtype:i.complexTensorInfos.imag.dtype,shape:s.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=mi({inputs:{real:d,imag:h},backend:n});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}if(n.shouldExecuteOnCPU([s,r])){let i=n.texData.get(s.dataId),l=n.texData.get(r.dataId),[u,c]=ine(s.shape,r.shape,i.values,l.values,a),p=n.makeTensorInfo(c,a),d=n.texData.get(p.dataId);return d.values=u,p}let o;return H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?o=new Hh(O7,s.shape,r.shape):o=new vc(O7,s.shape,r.shape),n.runWebGLProgram(o,[s,r],a)}var cse={kernelName:Go,backendName:"webgl",kernelFunc:pb};function dse(e,t,n){let s=[dl(e.shape),...pl(e.shape)],r={dtype:e.dtype,shape:s,dataId:e.dataId},a=[dl(t),...pl(t)],o=new T9(a,s),i=!0,l=[s],u=n.runWebGLProgram(o,[r],e.dtype,l,i);return{dataId:u.dataId,shape:t,dtype:u.dtype}}function ve(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{shape:a}=s,o=n,i=v.sizeFromShape(r.shape),l=v.inferFromImplicitShape(a,i),u=v.sizeFromShape(l);v.assert(i===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`);let c=o.texData.get(r.dataId);return c.isPacked&&!Op(r.shape,l)&&!(c.texture!==null&&Op(c.shape,l))?dse(r,l,o):(o.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var pse={kernelName:Vl,backendName:"webgl",kernelFunc:ve},M7=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o=Math.floor(n/4)*4,i=n%4,l="sumValue += dot(values, ones);";if(t!=null){let c=1/t;l=`sumValue += dot(values * ${v.isInt(c)?c.toPrecision(2):c}, ones);`}let u="";r%n>0&&(u=`
if (inIdx < 0 || inIdx >= ${r}) {
return 0.0;
}
`),this.userCode=`
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${u}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
float sumValue = 0.0;
for (int i = 0; i < ${o}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${l}
}
int inIdx = inOffset + ${o};
if (${i===1}) {
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
${l}
} else if (${i===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1), 0.0, 0.0);
${l}
} else if (${i===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2), 0.0);
${l}
}
setOutput(sumValue);
}
`}},hse=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:s,inSize:r,outSize:a}=e;this.outputShape=[s,a];let o="0.0",i="";t==="prod"?o="1.0":t==="min"?(o="1.0 / 1e-20",i="min"):t==="max"&&(o="-1.0 / 1e-20",i="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,c=n%4,p=`
if (${t==="sum"}) {
sumValue += dot(values, ones);
} else if (${t==="prod"}) {
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
prodValue *= tmp[0] * tmp[1];
} else {
minMaxValue = ${i}(values, minMaxValue);
if (${t==="min"} || ${t==="max"}) {
minMaxValue = ${i}(values, minMaxValue);
bvec4 isNaN = isnan(values);
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
minMaxValue = vec4(NAN);
}
}
}
`,d="vec4";t==="all"?(o="1.0",p=`
bool reducedAllValue = all(values);
float floatedReducedAllValue = float(reducedAllValue);
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
`,d="bvec4"):t==="any"&&(o="0.0",p=`
bool reducedAnyValue = any(values);
float floatedReducedAnyValue = float(reducedAnyValue);
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
`,d="bvec4");let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`),this.userCode=`
const float initializationValue = ${o};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float getValue(int batch, int inIdx) {
${h}
return getX(batch, inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${n};
vec4 minMaxValue = vec4(${o});
float prodValue = 1.0;
float sumValue = 0.0;
float allValue = 1.0;
float anyValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
${d} values = ${d}(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
${p}
} else if (${c===2}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
${p}
} else if (${c===3}) {
${d} values = ${d}(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
${p}
}
setOutput(${l});
}
`}};function fse(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],s=T.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:s,outSize:Math.ceil(n/s)})}return t}function gu(e,t,n,s){let r=fse(e.shape),a=e;for(let o=0;o<r.length;o++){let{inSize:i,windowSize:l,outSize:u}=r[o],c,p;n==="mean"?c=o===0?new M7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},i):new M7({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u}):c=new hse({windowSize:l,inSize:i,batchSize:e.shape[0],outSize:u},n),p=a,a=s.runWebGLProgram(c,[a],t),p.dataId!==e.dataId&&s.disposeIntermediateTensorInfo(p)}return a}var mse=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=gse(t);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function gse(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],s=new Array(t);for(let r=0;r<e.length;r++)s[e[r]]=n[r];return s.join()}var yse=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let s=vt(this.rank),r=C9("rc",this.rank),a=new Array(this.rank);for(let u=0;u<t.length;u++)a[t[u]]=r[u];let o=`vec2(${a.slice(-2).join()})`,i=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${a.join()}), ${o})`;this.userCode=`
void main() {
${s} rc = getOutputCoords();
vec4 result = vec4(0.);
result[0] = ${l};
if(${i}) {
result[1] = ${l};
}
--${r[this.rank-1]};
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
result[2] = ${l};
if(${i}) {
result[3] = ${l};
}
}
setOutput(result);
}
`}};function P2(e,t,n){let s=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new yse(e.shape,t):new mse(e.shape,t);return n.runWebGLProgram(s,[e],e.dtype)}function Ase(e,t,n,s){let r=t,a=e.shape.length,o=v.parseAxisParam(r,e.shape),i=o,l=T.getAxesPermutation(i,a),u=l!=null,c=e;u&&(c=P2(e,l,s),i=T.getInnerMostAxes(i.length,a)),T.assertAxesAreInnerMostDims("sum",i,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,i),h=p;n&&(h=T.expandShapeToKeepDim(p,o));let f=v.sizeFromShape(d),g=v.sizeFromShape(e.shape)/f,y=ve({inputs:{x:c},attrs:{shape:[g,f]},backend:s}),x=uh(e.dtype),A=gu(y,x,"sum",s),b=ve({inputs:{x:A},attrs:{shape:h},backend:s});return s.disposeIntermediateTensorInfo(y),s.disposeIntermediateTensorInfo(A),u&&s.disposeIntermediateTensorInfo(c),b}function F2(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Ase(r,a,o,n)}var xse={kernelName:si,backendName:"webgl",kernelFunc:F2};function os(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];let u;if(o.shouldExecuteOnCPU([r])){let p=o.texData.get(r.dataId).values,d=db(p,r.shape,r.dtype,a,l);u=o.makeTensorInfo(l,r.dtype);let h=o.texData.get(u.dataId);h.values=d}else u=P2(r,a,o);return u}var bse={kernelName:ea,backendName:"webgl",kernelFunc:os},F9=1e3;function jm({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=au.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],C=ve({inputs:{x:e},backend:r,attrs:{shape:w}}),E=ve({inputs:{x:t},backend:r,attrs:{shape:k}}),_=[C,E],$=Math.max(y,x),R=n?C.shape[1]:C.shape[2],P=a!=null,S=o!=null,M=l==="leakyrelu",L=l!=null?Mp(l,!0):null,U=P||S||M||L!=null,K;if((h===1||f===1)&&R>F9&&U===!1){let Z=C,J=E;n&&(Z=os({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),_.push(Z)),s&&(J=os({inputs:{x:E},backend:r,attrs:{perm:[0,2,1]}}),_.push(J));let Q=f!==1,ie=f===1,re=Z;Q&&(re=ve({inputs:{x:Z},backend:r,attrs:{shape:[$,R,1]}}),_.push(re));let de=f===1?2:1,ue=J;ie&&(ue=ve({inputs:{x:J},backend:r,attrs:{shape:[$,1,R]}}),_.push(ue));let Ae=pb({inputs:{a:re,b:ue},backend:r});K=F2({inputs:{x:Ae},backend:r,attrs:{axis:de,keepDims:!0}}),_.push(Ae)}else{let Z=Un(e.dtype,t.dtype),J=new P9(w,k,[$,h,f],n,s,P,L,S,M),Q=[C,E];if(a!=null&&Q.push(a),S&&Q.push(o),M){let ie=r.makeTensorInfo([],"float32",v.createScalarValue(i,"float32"));Q.push(ie),_.push(ie)}K=r.runWebGLProgram(J,Q,Z)}let q=ve({inputs:{x:K},backend:r,attrs:{shape:b}});_.push(K);for(let Z of _)r.disposeIntermediateTensorInfo(Z);return q}function vse(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return jm({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var wse={kernelName:to,backendName:"webgl",kernelFunc:vse},z7="return abs(x);";function kse(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])&&s.dtype!=="complex64"){let a=n.texData.get(s.dataId),o=S9(a.values);return n.makeTensorInfo(s.shape,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Zi(s.shape,z7):r=new ba(s.shape,z7),n.runWebGLProgram(r,[s],s.dtype)}var Sse={kernelName:ml,backendName:"webgl",kernelFunc:kse},Ise=xr+`
if (abs(x) > 1.) {
return NAN;
}
return acos(x);
`,Cse=dt({opSnippet:Ise}),Tse={kernelName:Sc,backendName:"webgl",kernelFunc:Cse},Nse=xr+`
if (x < 1.0) return NAN;
return log(x + sqrt(x * x - 1.0));`,Ese=dt({opSnippet:Nse}),Rse={kernelName:Ic,backendName:"webgl",kernelFunc:Ese},L7="return a + b;",_se=zn({opSnippet:L7,packedOpSnippet:L7,supportsComplex:!0,cpuKernelImpl:Wte}),Dse={kernelName:Na,backendName:"webgl",kernelFunc:_se},$se=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
float result = ${s};
setOutput(result);
}
`}},Pse=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,a)=>`T${a}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let s=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
void main() {
${n.join(`
`)}
vec4 result = ${s};
setOutput(result);
}
`}};function Am(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return zs({inputs:{x:s[0]},backend:n});if(s.length>H().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let l=Math.floor(s.length/2),u=Am({inputs:s.slice(0,l),backend:n}),c=Am({inputs:s.slice(l),backend:n});return Am({inputs:[u,c],backend:n})}let r=s.map(l=>l.dtype).reduce((l,u)=>Un(l,u)),a=s.map(l=>l.shape),i=H().getBool("WEBGL_PACK")?new Pse(s[0].shape,a):new $se(s[0].shape,a);return n.runWebGLProgram(i,s,r)}var Fse={kernelName:mo,backendName:"webgl",kernelFunc:Am};function Ose(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("all",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=gu(m,m.dtype,"all",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Mse={kernelName:Cc,backendName:"webgl",kernelFunc:Ose};function zse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,i)),T.assertAxesAreInnerMostDims("any",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=gu(m,m.dtype,"any",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var Lse={kernelName:Tc,backendName:"webgl",kernelFunc:zse},Bse=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:s,batchSize:r,outSize:a}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,a];let o=t==="max"?">":"<",i=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = outIdx * ${s};
int bestIndex = inOffset;
float bestValue = getA(batch, bestIndex);
for (int i = 0; i < ${s}; i++) {
int inIdx = ${i};
float candidate = getA(batch, inIdx);
if (candidate ${o} bestValue) {
bestValue = candidate;
bestIndex = inIdx;
}
}
setOutput(float(bestIndex));
}
`}},Wse=class{constructor(e,t,n,s){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,v.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],a=Math.ceil(r/t);this.outputShape=e.slice(0,-1),a>1&&this.outputShape.push(a),s||this.variableNames.push("bestIndicesA");let o=this.outputShape,i=o.length,l=vt(i),u=as("coords",i),c,p;if(a===1){p=i+1;let C=vt(p);c=`
${C} sourceLocR = ${C}(${u.join()}, 0);
++${u[i-1]};
${C} sourceLocG = ${C}(${u.join()}, 0);
++${u[i-2]};
${C} sourceLocA = ${C}(${u.join()}, 0);
--${u[i-1]};
${C} sourceLocB = ${C}(${u.join()}, 0);
--${u[i-2]};`}else p=i,c=`
${l} sourceLocR = coords;
++${u[i-1]};
${l} sourceLocG = coords;
++${u[i-2]};
${l} sourceLocA = coords;
--${u[i-1]};
${l} sourceLocB = coords;
--${u[i-2]};`;let d=["x","y","z","w","u","v"].slice(0,p),h="."+d[p-1],f=d.map(C=>"int "+C),m=as("sourceLocR",p-1).concat("inIdx.r"),g=as("sourceLocG",p-1).concat("inIdx.g"),y=as("sourceLocB",p-1).concat("inIdx.b"),x=as("sourceLocA",p-1).concat("inIdx.a"),A=n==="max"?"greaterThan":"lessThan",b=s?"":`
inIdx = round(vec4(getBestIndicesAChannel(${m.join()}),
getBestIndicesAChannel(${g.join()}),
getBestIndicesAChannel(${y.join()}),
getBestIndicesAChannel(${x.join()})));`,w=`vec4(
getAChannel(${m.join()}),
hasNextCol ? getAChannel(${g.join()}) : 0.,
hasNextRow ? getAChannel(${y.join()}) : 0.,
hasNextRow && hasNextCol ? getAChannel(${x.join()}) : 0.)`,k=s?"":`
float getBestIndicesAChannel(${f.join()}) {
return getChannel(getBestIndicesA(${d.join()}),
vec2(${d.slice(-2).join()}));
}`;this.userCode=`
float getAChannel(${f.join()}) {
return getChannel(getA(${d.join()}),
vec2(${d.slice(-2).join()}));
}
${k}
void main() {
${l} coords = getOutputCoords();
bool hasNextCol = ${u[i-1]} < ${o[i-1]-1};
bool hasNextRow = ${u[i-2]} < ${o[i-2]-1};
${c}
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
sourceLocB${h}, sourceLocA${h}) * ${t};
ivec4 inIdx = srcIdx;
vec4 bestIndex = vec4(inIdx);
vec4 bestValue = ${w};
for (int i = 0; i < ${t}; i++) {
inIdx = srcIdx;
${b}
vec4 candidate = ${w};
bvec4 nan = isnan(candidate);
bvec4 replace = bvec4(
vec4(${A}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
replace.y ? candidate.y : bestValue.y,
replace.z ? candidate.z : bestValue.z,
replace.w ? candidate.w : bestValue.w);
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
srcIdx++;
}
setOutput(bestIndex);
}
`}};function O9(e,t,n,s=null){let r=t.shape[0],a=t.shape[1];s!=null&&(r=s.shape[0],a=s.shape[1]);let o=T.computeOptimalWindowSize(a),i={windowSize:o,inSize:a,batchSize:r,outSize:Math.ceil(a/o)},l=new Bse(i,n,s==null),u=[t];s!=null&&u.push(s);let c=e.runWebGLProgram(l,u,"int32");if(c.shape[1]===1)return c;let p=O9(e,t,n,c);return e.disposeIntermediateTensorInfo(c),p}function M9(e,t,n,s=null){let r=s!=null?s.shape:t.shape,a=r[r.length-1],o=T.computeOptimalWindowSize(a),i=new Wse(r,o,n,s==null),l=s==null?[t]:[t,s],u=e.runWebGLProgram(i,l,"int32");if(u.shape.length===t.shape.length){let c=M9(e,t,n,u);return e.disposeIntermediateTensorInfo(u),c}return u}function z9(e,t,n,s){let r=[n];if(T.assertAxesAreInnerMostDims("arg"+s.charAt(0).toUpperCase()+s.slice(1),r,t.shape.length),!H().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let a=[],o=e.texData.get(t.dataId),i=o!==null&&o.isPacked,l=t;i&&(l=e.unpackTensor(t),a.push(l));let[u,c]=T.computeOutAndReduceShapes(l.shape,r),p=v.sizeFromShape(c),d=ve({inputs:{x:l},backend:e,attrs:{shape:[-1,p]}});a.push(d);let h=O9(e,d,s);a.push(h);let f=ve({inputs:{x:h},backend:e,attrs:{shape:u}});return a.forEach(m=>e.disposeIntermediateTensorInfo(m)),f}return M9(e,t,s)}function Vse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=z9(n,l,o[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Use={kernelName:go,backendName:"webgl",kernelFunc:Vse};function Gse(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=os({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=z9(n,l,o[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),c}var Hse={kernelName:Nc,backendName:"webgl",kernelFunc:Gse},jse=xr+`
if (abs(x) > 1.) {
return NAN;
}
return asin(x);
`,qse=dt({opSnippet:jse}),Xse={kernelName:Ec,backendName:"webgl",kernelFunc:qse},Kse=xr+"return log(x + sqrt(x * x + 1.0));",Zse=dt({opSnippet:Kse}),Yse={kernelName:Rc,backendName:"webgl",kernelFunc:Zse},Jse=xr+`
return atan(x);
`,Qse=dt({opSnippet:Jse}),ere={kernelName:_c,backendName:"webgl",kernelFunc:Qse},tre=lse+`
return atan(a, b);
`,nre=`
vec4 result = atan(a, b);
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+use+`
return result;
`,sre=zn({opSnippet:tre,packedOpSnippet:nre}),rre={kernelName:gl,backendName:"webgl",kernelFunc:sre},are=xr+`
if ((x < -1.0) || (x > 1.0)) return NAN;
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,ore=dt({opSnippet:are}),ire={kernelName:Dc,backendName:"webgl",kernelFunc:ore},zp=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideHeight,i=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterHeight,p=e.effectiveFilterWidth,d=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let f=t==="avg",m=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(f||(y="-1.0 / 1e-20"),n){let C=">=";this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
float avgValue = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${p};
wC += ${u}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xR, xC, d);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${C} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?m:g:`wR * ${p} + wC`};
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let x="max",A=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(A="avgValue / count");let b=Math.floor(a/4)*4,w=a%4,k=`
if (${f}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${x}(values, minMaxValue);
}
`;this.userCode=`
const ivec2 strides = ivec2(${o}, ${i});
const ivec2 pads = ivec2(${d}, ${h});
const float initializationValue = ${y};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xR, int xC, int d) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xR, xC, d);
}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d = coords[3];
ivec2 xRCCorner = coords.yz * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// max/min x(?, ?, d) to get y(yR, yC, d).
// ? = to be determined
vec4 minMaxValue = vec4(${y});
float avgValue = 0.0;
count = 0.0;
for (int wR = 0; wR < ${c};
wR += ${l}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${b}; wC += 4) {
int xC = xCCorner + wC * ${u};
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
getValue(batch, xR, xC + 3 * ${u}, d)
);
${k}
}
int xC = xCCorner + ${b};
if (${w===1}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
initializationValue,
initializationValue,
initializationValue
);
${k}
} else if (${w===2}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
initializationValue,
initializationValue
);
${k}
} else if (${w===3}) {
vec4 values = vec4(
getValue(batch, xR, xC, d),
getValue(batch, xR, xC + ${u}, d),
getValue(batch, xR, xC + 2 * ${u}, d),
initializationValue
);
${k}
}
}
setOutput(${A});
}
`}},hb=class{constructor(e,t,n,s=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let a=e.filterWidth,o=e.strideDepth,i=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,c=e.dilationHeight,p=e.dilationWidth,d=e.effectiveFilterDepth,h=e.effectiveFilterHeight,f=e.effectiveFilterWidth,m=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let x=t==="avg",A="0.0";if(x||(A="-1.0 / 1e-20"),n){let _=">=";this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
// ? = to be determined
float minMaxValue = 0.0;
float minMaxValueFound = 0.0;
int minMaxPosition = 0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${f};
wC += ${p}) {
int xC = xCCorner + wC;
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float value = getX(batch, xD, xR, xC, ch);
// If a min / max value has already been found, use it. If not,
// use the current value.
float currMinMaxValue = mix(
value, minMaxValue, minMaxValueFound);
if (value ${_} currMinMaxValue) {
minMaxValue = value;
minMaxValueFound = 1.0;
minMaxPosition = ${s?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${f} +
wR * ${f} + wC`};
}
}
}
}
setOutput(float(minMaxPosition));
}
`;return}let b="max",w=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(w="avgValue / count");let k=Math.floor(a/4)*4,C=a%4,E=`
if (${x}) {
avgValue += dot(values, ones);
} else {
minMaxValue = ${b}(values, minMaxValue);
}
`;this.userCode=`
const ivec3 strides =
ivec3(${o}, ${i}, ${l});
const ivec3 pads = ivec3(${m}, ${g}, ${y});
const float initializationValue = ${A};
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
float count = 0.0;
float getValue(int batch, int xD, int xR, int xC, int ch) {
if (xC < 0 || xC >= ${e.inWidth}) {
return initializationValue;
}
count += 1.0;
return getX(batch, xD, xR, xC, ch);
}
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xDCorner = xCorner.x;
int xRCorner = xCorner.y;
int xCCorner = xCorner.z;
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
// ? = to be determined
vec4 minMaxValue = vec4(${A});
float avgValue = 0.0;
count = 0.0;
for (int wD = 0; wD < ${d};
wD += ${u}) {
int xD = xDCorner + wD;
if (xD < 0 || xD >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${h};
wR += ${c}) {
int xR = xRCorner + wR;
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${k}; wC += 4) {
int xC = xCCorner + wC * ${p};
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
);
${E}
}
int xC = xCCorner + ${k};
if (${C===1}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
initializationValue,
initializationValue,
initializationValue
);
${E}
} else if (${C===2}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
initializationValue,
initializationValue
);
${E}
} else if (${C===3}) {
vec4 values = vec4(
getValue(batch, xD, xR, xC, ch),
getValue(batch, xD, xR, xC + ${p}, ch),
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
initializationValue
);
${E}
}
}
setOutput(${w});
}
}
`}};function lre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;cd(r,"avgPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return zs({inputs:{x:r},backend:n});let p=new zp(c,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var ure={kernelName:yo,backendName:"webgl",kernelFunc:lre};function cre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l,dataFormat:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,l,u),d=new hb(p,"avg",!1);return n.runWebGLProgram(d,[r],"float32")}var dre={kernelName:Gp,backendName:"webgl",kernelFunc:cre},pre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=i-1-e.padInfo.top,c=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
const ivec2 pads = ivec2(${u}, ${c});
const float avgMultiplier = float(${p});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${i};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${l};
wC+= ${o}) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
dotProd += dyValue * avgMultiplier;
}
}
setOutput(dotProd);
}
`}},hre=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.effectiveFilterDepth,p=e.effectiveFilterHeight,d=e.effectiveFilterWidth,h=c-1-e.padInfo.front,f=p-1-e.padInfo.top,m=d-1-e.padInfo.left,g=1/(t*n*s);this.userCode=`
const ivec3 pads = ivec3(${h}, ${f}, ${m});
const float avgMultiplier = float(${g});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${c};
wD += ${i}) {
float dyD = float(dyDCorner + wD) / ${r}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${p};
wR += ${l}) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${d};
wC += ${u}) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
dotProd += dyValue * avgMultiplier;
}
}
}
setOutput(dotProd);
}
`}};function fre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new hre(d);return n.runWebGLProgram(h,[r],o.dtype)}var mre={kernelName:n0,backendName:"webgl",kernelFunc:fre};function gre(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a;cd([r,a],"avgPoolGrad");let{filterSize:i,strides:l,pad:u}=s,c=T.computePool2DInfo(o.shape,i,l,1,u),p=new pre(c);return n.runWebGLProgram(p,[r],o.dtype)}var yre={kernelName:t0,backendName:"webgl",kernelFunc:gre};function Are(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return jm({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var xre={kernelName:Ao,backendName:"webgl",kernelFunc:Are},bre=class{constructor(e,t,n,s,r,a){this.outputShape=[],this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="0.0";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="1.0";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
float x = getXAtOutCoords();
float mean = getMeanAtOutCoords();
float variance = getVarianceAtOutCoords();
float offset = ${o};
float scale = ${i};
float inv = scale * inversesqrt(variance + float(${a}));
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
}
`}},vre=class{constructor(e,t,n,s,r,a){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n);let o="vec4(0.0)";s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset"),o="getOffsetAtOutCoords()");let i="vec4(1.0)";r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),i="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
void main() {
vec4 offset = ${o};
vec4 scale = ${i};
vec4 x = getXAtOutCoords();
vec4 mean = getMeanAtOutCoords();
vec4 variance = getVarianceAtOutCoords();
vec4 inv = scale * inversesqrt(variance + vec4(${a}));
setOutput((x - mean) * inv + offset);
}
`}},wre=({inputs:e,backend:t,attrs:n})=>{let{x:s,mean:r,variance:a,offset:o,scale:i}=e;v.assert(r.shape.length===a.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),v.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),v.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[s,r,a],c=null;o!=null&&(c=o.shape,u.push(o));let p=null;i!=null&&(p=i.shape,u.push(i));let d=H().getBool("WEBGL_PACK_NORMALIZATION")?new vre(s.shape,r.shape,a.shape,c,p,l):new bre(s.shape,r.shape,a.shape,c,p,l);return t.runWebGLProgram(d,u,u[0].dtype)},kre={kernelName:Do,backendName:"webgl",kernelFunc:wre},Sre=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=vt(this.rank);this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let n=Ire(this.rank),s,r=e.map((a,o)=>`sourceLoc.${by[o]} = start[${o}] + coords.${by[o]};`);s=`
${t} sourceLoc;
${t} coords = getOutputCoords();
${r.join(`
`)}
`,this.userCode=`
void main() {
${s}
setOutput(getSource(${n}));
}
`}},by=["x","y","z","w","u","v"];function Ire(e){if(e===1)return"sourceLoc";if(e<=6)return by.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var Cre=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length,this.customUniforms=[{name:"start",arrayIndex:this.rank,type:"int"}];let t=vt(this.rank),n=as("coords",this.rank),s=as("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${s.slice(-2).join()})`,a=`getChannel(getSource(${s.join()}), ${r})`,o=`
result.x = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.y = ${a};
--${s[this.rank-1]};
}
`,i=this.rank===1?"":`
--${n[this.rank-1]};
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
++${s[this.rank-2]};
result.z = ${a};
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
++${s[this.rank-1]};
result.w = ${a};
}
}
`,l=this.rank<=4?`sourceLoc = coords +
${t}(${e.map((u,c)=>`start[${c}]`).join()});`:e.map((u,c)=>`${s[c]} = ${n[c]} + start[${c}];`).join(`
`);this.userCode=`
void main() {
${t} coords = getOutputCoords();
${t} sourceLoc;
${l}
vec4 result = vec4(0.);
${o}
${i}
setOutput(result);
}
`}};function Tre(e,t,n,s){let r=s.texData.get(e.dataId),a=s.makeTensorInfo(n,e.dtype),o=s.texData.get(a.dataId);Object.assign(o,r),o.refCount=1,o.shape=n,o.dtype=e.dtype;let i=Gt.computeFlatOffset(t,v.computeStrides(e.shape));r.slice&&(i+=r.slice.flatOffset),o.slice={flatOffset:i,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=s.dataRefCount.get(o.slice.origDataId)||1;return s.dataRefCount.set(o.slice.origDataId,l+1),a}function yd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),d=gne(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}let{isPacked:u}=n.texData.get(r.dataId),c=Gt.isSliceContinous(r.shape,i,l);if(u||!c){let p=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new Cre(l):new Sre(l),d=[i];return n.runWebGLProgram(p,[r],r.dtype,d)}return n.uploadToGPU(r.dataId),Tre(r,i,l,n)}var Nre={kernelName:ql,backendName:"webgl",kernelFunc:yd},Ere=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=ve({inputs:{x:r},backend:n,attrs:{shape:l}}),m=os({inputs:{x:f},backend:n,attrs:{perm:u}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:c}}),y=yd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeIntermediateTensorInfo(x)),y},Rre={kernelName:yl,backendName:"webgl",kernelFunc:Ere};function _re(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o}=s,i=n.readSync(r.dataId),l=n.readSync(a.dataId),u=k9(i,l,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,u)}var Dre={kernelName:s0,backendName:"webgl",kernelFunc:_re};function $re(e){let{inputs:t,backend:n}=e,{s0:s,s1:r}=t,a=n.readSync(s.dataId),o=n.readSync(r.dataId),i=T.assertAndGetBroadcastShape(Array.from(a),Array.from(o));return n.makeTensorInfo([i.length],"int32",Int32Array.from(i))}var Pre={kernelName:r0,backendName:"webgl",kernelFunc:$re},Fre="return float(a != b);",L9=zn({opSnippet:Fre,cpuKernelImpl:une,dtype:"bool"}),Ore={kernelName:Fl,backendName:"webgl",kernelFunc:L9};function jh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return zs({inputs:{x:r.complexTensorInfos.real},backend:n})}var Mre={kernelName:Qp,backendName:"webgl",kernelFunc:jh},zre="return float(int(x));";function Lre(e,t){let n=new ba(e.shape,zre),s=t.runWebGLProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function vy(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return zs({inputs:{x:r},backend:n});let o=Vt(r.shape),i=vy({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=mi({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeIntermediateTensorInfo(i),l}if(r.dtype==="complex64"){let o=jh({inputs:{input:r},backend:n}),i=vy({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeIntermediateTensorInfo(o),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=zs({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.texData.get(r.dataId).values,[i,l,u]=Ute(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return Lre(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=L9({inputs:{a:r,b:o},backend:n});return n.disposeIntermediateTensorInfo(o),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var Bre={kernelName:xo,backendName:"webgl",kernelFunc:vy},B7="return ceil(x);",Wre=dt({opSnippet:B7,packedOpSnippet:B7,cpuKernelImpl:Gte}),Vre={kernelName:bo,backendName:"webgl",kernelFunc:Wre},Ure=class{constructor(e){this.variableNames=["A"],this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
float value = getAAtOutCoords();
if (isnan(value)) {
setOutput(value);
return;
}
setOutput(clamp(value, minVal, maxVal));
}
`}},Gre=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"minVal",type:"float"},{name:"maxVal",type:"float"}],this.outputShape=e,this.userCode=`
void main() {
vec4 value = getAAtOutCoords();
if (any(isnan(value))) {
setOutput(value);
return;
}
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
}
`}};function Hre(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i;H().getBool("WEBGL_PACK_CLIP")?i=new Gre(r.shape):i=new Ure(r.shape);let l=[[a],[o]];return n.runWebGLProgram(i,[r],r.dtype,l)}var jre={kernelName:Ea,backendName:"webgl",kernelFunc:Hre},qre=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
void main() {
float re = abs(getRealAtOutCoords());
float im = abs(getImagAtOutCoords());
float mx = max(re, im);
// sadly the length function in glsl is not underflow-safe
// (at least not on Intel GPUs). So the safe solution is
// to ensure underflow-safety in all cases.
setOutput(
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
);
}
`}};function W7(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function Xre(e){let{inputs:t,backend:n}=e,{x:s}=t,r=n.texData.get(s.dataId),a=new qre(s.shape),o=[W7(s,r.complexTensorInfos.real),W7(s,r.complexTensorInfos.imag)];return n.runWebGLProgram(a,o,o[0].dtype)}var Kre={kernelName:jp,backendName:"webgl",kernelFunc:Xre},Zre=class{constructor(e){this.outputShape=[],this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((a,o)=>`T${o}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let a=1;a<t.length;a++)t[a]=t[a-1]+e[a][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let a=1;a<t.length;a++){let o=t[a-1];n.push(`else if (yC < ${t[a]}) setOutput(getT${a}(yR, yC-${o}));`)}let s=t.length,r=t[t.length-1];n.push(`else setOutput(getT${s}(yR, yC-${r}));`),this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int yR = coords.x;
int yC = coords.y;
${n.join(`
`)}
}
`}},Yre=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=T.computeOutShape(e,t);let n=this.outputShape,s=n.length,r=vt(s),a=as("coords",s),o=["x","y","z","w","u","v"].slice(0,s);this.variableNames=e.map((f,m)=>`T${m}`);let i=new Array(e.length-1);i[0]=e[0][t];for(let f=1;f<i.length;f++)i[f]=i[f-1]+e[f][t];let l=o[t],u=o.slice(-2),c=o.join(),p=`if (${l} < ${i[0]}) {
return getChannel(
getT0(${c}), vec2(${u.join()}));
}`;for(let f=1;f<i.length;f++){let m=i[f-1];p+=`
if (${l} < ${i[f]} && ${l} >= ${i[f-1]}) {
return getChannel(
getT${f}(${lm(o,l,m)}),
vec2(${lm(u,l,m)}));
}`}let d=i.length,h=i[i.length-1];p+=`
return getChannel(
getT${d}(${lm(o,l,h)}),
vec2(${lm(u,l,h)}));`,this.userCode=`
float getValue(${o.map(f=>"int "+f)}) {
${p}
}
void main() {
${r} coords = getOutputCoords();
vec4 result = vec4(getValue(${a}), 0., 0., 0.);
${a[s-1]} = ${a[s-1]} + 1;
if (${a[s-1]} < ${n[s-1]}) {
result.g = getValue(${a});
}
${a[s-2]} = ${a[s-2]} + 1;
if (${a[s-2]} < ${n[s-2]}) {
result.a = getValue(${a});
}
${a[s-1]} = ${a[s-1]} - 1;
if (${a[s-2]} < ${n[s-2]} &&
${a[s-1]} < ${n[s-1]}) {
result.b = getValue(${a});
}
setOutput(result);
}
`}};function lm(e,t,n){let s=e.indexOf(t);return e.map((a,o)=>o===s?`${a} - ${n}`:a).join()}function O2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.texData.get(s.dataId);return zs({inputs:{x:r.complexTensorInfos.imag},backend:n})}var Jre={kernelName:Zp,backendName:"webgl",kernelFunc:O2};function mp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let p=e.map(g=>jh({inputs:{input:g},backend:n})),d=e.map(g=>O2({inputs:{input:g},backend:n})),h=mp(p,t,n),f=mp(d,t,n),m=mi({inputs:{real:h,imag:f},backend:n});return p.forEach(g=>n.disposeIntermediateTensorInfo(g)),d.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),m}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let p=e.map(x=>{let A=v.sizeFromShape(x.shape.slice(t));return ve({inputs:{x},backend:n,attrs:{shape:[-1,A]}})}),d=p.map(x=>({vals:n.readSync(x.dataId),shape:x.shape})),h=T.computeOutShape(p.map(x=>x.shape),1),f=p[0].shape[0]===1,m=Hte(d,h,s,f),g=T.computeOutShape(e.map(x=>x.shape),t),y=n.makeTensorInfo(g,s,m);return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}let a=H().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER");if(e.length>a){let p=[];for(let h=0;h<e.length;h+=a){let f=e.slice(h,h+a);p.push(mp(f,t,n))}let d=mp(p,t,n);for(let h of p)n.disposeIntermediateTensorInfo(h);return d}if(H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let p=new Yre(e.map(d=>d.shape),t);return n.runWebGLProgram(p,e,s)}let{tensors2D:o,outShape:i}=Qre(e,t,n),l=new Zre(o.map(p=>p.shape)),u=n.runWebGLProgram(l,o,s);o.forEach(p=>n.disposeIntermediateTensorInfo(p));let c=ve({inputs:{x:u},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(u),c}function Qre(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>ve({inputs:{x:a},attrs:{shape:[-1,v.sizeFromShape(a.shape.slice(t))]},backend:n})),outShape:s}}function B9(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return zs({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),mp(i,a,n)}var eae={kernelName:Al,backendName:"webgl",kernelFunc:B9},W9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let a=e.padInfo.top,o=e.padInfo.left,i=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,c=e.dilationWidth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4,m=e.dataFormat==="channelsLast",g=m?1:2,y=m?2:3,x=m?3:1,A="",b="";n&&(s?A=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?A=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:A=`
float activation(float x) {
${n}
}
`,b="result = activation(result);");let w=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${A}
const ivec2 strides = ivec2(${i}, ${l});
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d2 = coords[${x}];
ivec2 xRCCorner =
ivec2(coords[${g}], coords[${y}]) * strides - pads;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${u};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${c};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 wValues = vec4(
getW(wR, wC, d1, d2),
getW(wR, wC, d1 + 1, d2),
getW(wR, wC, d1 + 2, d2),
getW(wR, wC, d1 + 3, d2)
);
if (${m}) {
vec4 xValues = vec4(
getX(batch, xR, xC, d1),
getX(batch, xR, xC, d1 + 1),
getX(batch, xR, xC, d1 + 2),
getX(batch, xR, xC, d1 + 3)
);
dotProd += dot(xValues, wValues);
} else {
vec4 xValues = vec4(
getX(batch, d1, xR, xC),
getX(batch, d1 + 1, xR, xC),
getX(batch, d1 + 2, xR, xC),
getX(batch, d1 + 3, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
if (${f===1}) {
if (${m}) {
dotProd +=
getX(batch, xR, xC, ${h}) *
getW(wR, wC, ${h}, d2);
} else {
dotProd +=
getX(batch, ${h}, xR, xC) *
getW(wR, wC, ${h}, d2);
}
} else if (${f===2}) {
vec2 wValues = vec2(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2)
);
if (${m}) {
vec2 xValues = vec2(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1)
);
dotProd += dot(xValues, wValues);
} else {
vec2 xValues = vec2(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC)
);
dotProd += dot(xValues, wValues);
}
} else if (${f===3}) {
vec3 wValues = vec3(
getW(wR, wC, ${h}, d2),
getW(wR, wC, ${h} + 1, d2),
getW(wR, wC, ${h} + 2, d2)
);
if (${m}) {
vec3 xValues = vec3(
getX(batch, xR, xC, ${h}),
getX(batch, xR, xC, ${h} + 1),
getX(batch, xR, xC, ${h} + 2)
);
dotProd += dot(xValues, wValues);
} else {
vec3 xValues = vec3(
getX(batch, ${h}, xR, xC),
getX(batch, ${h} + 1, xR, xC),
getX(batch, ${h} + 2, xR, xC)
);
dotProd += dot(xValues, wValues);
}
}
}
}
float result = dotProd;
${w}
${b}
setOutput(result);
}
`}},tae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,s=e.padInfo.left,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,c=e.filterDepth,p=e.filterHeight,d=e.filterWidth,h=Math.floor(e.inChannels/4)*4,f=e.inChannels%4;this.userCode=`
const ivec3 strides = ivec3(${r}, ${a}, ${o});
const ivec3 pads = ivec3(${t}, ${n}, ${s});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d2 = coords.u;
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
int xFCorner = xFRCCorner.x;
int xRCorner = xFRCCorner.y;
int xCCorner = xFRCCorner.z;
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
// y(yF, yR, yC, d2). ? = to be determined. : = across all
// values in that axis.
float dotProd = 0.0;
for (int wF = 0; wF < ${c}; wF++) {
int xF = xFCorner + wF * ${i};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int wR = 0; wR < ${p}; wR++) {
int xR = xRCorner + wR * ${l};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int wC = 0; wC < ${d}; wC++) {
int xC = xCCorner + wC * ${u};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
for (int d1 = 0; d1 < ${h}; d1 += 4) {
vec4 xValues = vec4(
getX(batch, xF, xR, xC, d1),
getX(batch, xF, xR, xC, d1 + 1),
getX(batch, xF, xR, xC, d1 + 2),
getX(batch, xF, xR, xC, d1 + 3)
);
vec4 wValues = vec4(
getW(wF, wR, wC, d1, d2),
getW(wF, wR, wC, d1 + 1, d2),
getW(wF, wR, wC, d1 + 2, d2),
getW(wF, wR, wC, d1 + 3, d2)
);
dotProd += dot(xValues, wValues);
}
if (${f===1}) {
dotProd +=
getX(batch, xF, xR, xC, ${h}) *
getW(wF, wR, wC, ${h}, d2);
} else if (${f===2}) {
vec2 xValues = vec2(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1)
);
vec2 wValues = vec2(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2)
);
dotProd += dot(xValues, wValues);
} else if (${f===3}) {
vec3 xValues = vec3(
getX(batch, xF, xR, xC, ${h}),
getX(batch, xF, xR, xC, ${h} + 1),
getX(batch, xF, xR, xC, ${h} + 2)
);
vec3 wValues = vec3(
getW(wF, wR, wC, ${h}, d2),
getW(wF, wR, wC, ${h} + 1, d2),
getW(wF, wR, wC, ${h} + 2, d2)
);
dotProd += dot(xValues, wValues);
}
}
}
}
setOutput(dotProd);
}
`}},V9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.padInfo.left,o=e.strideWidth,i=e.dilationWidth,l=e.filterHeight,u=e.filterWidth,c=u,p=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let m=0;m<u;m++)p+=`
vec4 xTexelC${m*2};
int xTexelC${m*2}Ready;
vec4 xTexelC${m*2+1};
int xTexelC${m*2+1}Ready;
vec4 xC${m};`;p+=`
for (int r = 0; r < ${l}; r++) {
for (int d1 = 0; d1 < ${e.inChannels}; d1 += 2) {
`;for(let m=0;m<u;m++)p+=`
xTexelC${m*2} = vec4(0.0);
xTexelC${m*2}Ready = 0;
xTexelC${m*2+1} = vec4(0.0);
xTexelC${m*2+1}Ready = 0;
xC${m} = vec4(0.0);`;p+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let m=0;m<(c+1)/2;m++){let g=m*2;if(p+=`
xC = xCCorner + ${g*i};
`,o===1){if(g<u&&(a%2===1?(p+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
`,i===1&&g>0?p+=`
xC${g} = vec4(xTexelC${g-2}.zw, xTexelC${g}.xy);
`:p+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${g} = vec4(previous.zw, xTexelC${g}.xy);
} else {
xC${g} = vec4(0.0, 0.0, xTexelC${g}.xy);
}
`):p+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xC${g} = xTexelC${g};
`,g+1<u)){let y=a%2===0?v.nearestLargerEven(i):i;i%2===0&&a%2===1||i%2!==0&&a%2!==1?(p+=`
xCOffset = xC + imod(pads[1], 2) + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
`,i>1?p+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${g+1} = vec4(previous.zw, xTexelC${g+1}.xy);
} else {
xC${g+1} = vec4(0.0, 0.0, xTexelC${g+1}.xy);
}
`:p+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.xy);
`):y===1?p+=`
xC${g+1} = xTexelC${g};
`:p+=`
xCOffset = xC + ${y};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g+1} = xTexelC${g+1};
`}}else g<u&&(a%2===1?(p+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.0);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`,g+1<u&&(p+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${g+1} = vec4(xTexelC${g+1}.xy, final.xy);
`)):(p+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${g}Ready == 0) {
xTexelC${g} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${g}.zw = vec2(0.0);
}
xTexelC${g}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${g+1}Ready == 0) {
xTexelC${g+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${g+1}.zw = vec2(0.);
}
xTexelC${g+1}Ready = 1;
}
xC${g} = vec4(
xTexelC${g}.xy, xTexelC${g+1}.xy);
`,g+1<u&&(p+=`
xC${g+1} = vec4(xTexelC${g}.zw, xTexelC${g+1}.zw);
`)));g<u&&(p+=`
wTexel = getW(r, ${g}, d1, d2);
dotProd += xC${g}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`,g+1<u&&(p+=`
wTexel = getW(r, ${g+1}, d1, d2);
dotProd += xC${g+1}.xxzz * vec4(wTexel.xy, wTexel.xy);
if(d1 + 1 < ${e.inChannels}) {
dotProd += xC${g+1}.yyww * vec4(wTexel.zw, wTexel.zw);
}
`))}p+=`
}
`,p+=`
}
`,p+=`
}
`;let d="",h="";n&&(s?d=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?d=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:d=`vec4 activation(vec4 x) {
${n}
}`,h="result = activation(result);");let f=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${d}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${p}
vec4 result = dotProd - vec4(0.000000000000001);
${f}
${h}
setOutput(result);
}
`}},nae=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"inputShape",type:"ivec4"},{name:"pad",type:"ivec2"},{name:"stride",type:"ivec2"},{name:"dilation",type:"ivec2"},{name:"inChannels",type:"int"},{name:"itemsPerBlockRow",type:"int"},{name:"outWidth",type:"int"}],this.outputShape=e,this.enableShapeUniforms=cs(this.outputShape.length);let{dataFormat:n}=t,s=us(),r=n==="channelsLast",a=r?1:2,o=r?2:3,i=this.enableShapeUniforms?"if(blockIndex < outShape[2] && pos < outShape[1]) {":`if(blockIndex < ${e[2]} && pos < ${e[1]}) {`,l="";for(let u=0;u<=1;u++)for(let c=0;c<=1;c++)l+=`
blockIndex = rc.z + ${c};
pos = rc.y + ${u};
${i}
offsetY = int(blockIndex / outWidth) * stride[0] - pad[0];
d0 = offsetY + dilation[0] * (pos / itemsPerBlockRow);
if(d0 < inputShape[${a}] && d0 >= 0) {
// Use custom imod instead mod. On Intel GPU, mod may generate
// unexpected value.
// https://github.com/tensorflow/tfjs/issues/5447
offsetX = imod(blockIndex, outWidth) * stride[1] - pad[1];
d1 = offsetX + dilation[1] * (imod(pos, itemsPerBlockRow) /
inChannels);
if(d1 < inputShape[${o}] && d1 >= 0) {
ch = imod(pos, inChannels);
if (${r}) {
innerDims = vec2(d1, ch);
result[${u*2+c}] = getChannel(
getA(rc.x, d0, int(innerDims.x),
int(innerDims.y)), innerDims);
} else {
innerDims = vec2(d0, d1);
result[${u*2+c}] = getChannel(
getA(rc.x, ch, int(innerDims.x),
int(innerDims.y)), innerDims);
}
}
}
}
`;this.userCode=`
void main() {
ivec3 rc = getOutputCoords();
vec4 result = vec4(0);
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
vec2 innerDims;
${l}
${s.output} = result;
}
`}};function qm(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function U9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=e.shape,u=s.texData.get(e.dataId),c=n.inChannels,p=l[0]*l[1]*l[2],d=n.outChannels,h=n.dataFormat==="channelsLast",f=!1,m=!1,g,y=[];if(a!=null){let b=qm(a.shape,h);b!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:b}}),y.push(a))}if(r!=null){let b=qm(r.shape,h);b!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:b}}),y.push(r))}if(!((p===1||d===1)&&c>F9)&&u.isPacked&&h&&u.texture!=null&&l[2]%2!==0&&v.arraysEqual(u.shape.slice(-3),l.slice(-3))){let b=l[0]*l[1]*(l[2]+1),w={dataId:e.dataId,shape:[1,b,n.inChannels],dtype:e.dtype},k=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,v.assert(Op(u.shape,w.shape),()=>`packed reshape ${u.shape} to ${w.shape} isn't free`);let C=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(C);let E=jm({a:w,b:C,backend:s,transposeA:f,transposeB:m,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),_=s.texData.get(E.dataId);v.assert(_.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=k,_.shape=n.outShape,g=zs({inputs:{x:E},backend:s}),g.shape=n.outShape,y.push(E)}else{let b=n.outHeight*n.outWidth,w=ve({inputs:{x:e},backend:s,attrs:{shape:h?[n.batchSize,b,n.inChannels]:[n.batchSize,n.inChannels,b]}}),k=ve({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}}),C=jm({a:h?w:k,b:h?k:w,transposeA:!h,transposeB:m,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});g=ve({inputs:{x:C},backend:s,attrs:{shape:n.outShape}}),y.push(w),y.push(k),y.push(C)}for(let b of y)s.disposeIntermediateTensorInfo(b);return g}function G9({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let{filterWidth:l,filterHeight:u,inChannels:c,outWidth:p,outHeight:d,dataFormat:h}=n,f=h==="channelsLast",m=l*u*c,g=d*p,y=[n.batchSize,m,g],x=!0,A=!1,b=[];if(a!=null){let q=qm(a.shape,f);q!=null&&(a=ve({inputs:{x:a},backend:s,attrs:{shape:q}}),b.push(a))}if(r!=null){let q=qm(r.shape,f);q!=null&&(r=ve({inputs:{x:r},backend:s,attrs:{shape:q}}),b.push(r))}let w=ve({inputs:{x:t},backend:s,attrs:{shape:[1,m,v.sizeFromShape(t.shape)/m]}});b.push(w);let k=new nae(y,n),C=[e.shape,[n.padInfo.top,n.padInfo.left],[n.strideHeight,n.strideWidth],[n.dilationHeight,n.dilationWidth],[n.inChannels],[n.filterWidth*n.inChannels],[n.outWidth]],E=s.runWebGLProgram(k,[e],"float32",C),_=ve({inputs:{x:E},backend:s,attrs:{shape:y}});b.push(E),b.push(_);let $=r!=null,R=a!=null,P=i==="leakyrelu",S=i?Mp(i,!0):null,M=new P9(f?_.shape:w.shape,f?w.shape:_.shape,f?[n.batchSize,g,n.outChannels]:[n.batchSize,n.outChannels,g],x,A,$,S,R,P),L=f?[_,w]:[w,_];if(r&&L.push(r),R&&L.push(a),P){let q=s.makeTensorInfo([],"float32",v.createScalarValue(o,"float32"));L.push(q),b.push(q)}let U=s.runWebGLProgram(M,L,"float32"),K=ve({inputs:{x:U},backend:s,attrs:{shape:n.outShape}});b.push(U);for(let q of b)s.disposeIntermediateTensorInfo(q);return K}function sae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p),h;if(d.filterHeight===1&&d.filterWidth===1&&d.dilationHeight===1&&d.dilationWidth===1&&d.strideHeight===1&&d.strideWidth===1&&(d.padInfo.type==="SAME"||d.padInfo.type==="VALID"))h=U9({x:r,filter:a,convInfo:d,backend:n});else if(d.strideWidth<=2&&p==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let m=new V9(d),g=[[d.padInfo.top,d.padInfo.left],[d.strideHeight,d.strideWidth],[d.dilationHeight,d.dilationWidth],[d.inHeight,d.inWidth]];h=n.runWebGLProgram(m,[r,a],"float32",g)}else if(H().getBool("WEBGL_CONV_IM2COL"))h=G9({x:r,filter:a,convInfo:d,backend:n});else{let m=new W9(d);h=n.runWebGLProgram(m,[r,a],"float32")}let f=ve({inputs:{x:h},backend:n,attrs:{shape:d.outShape}});return n.disposeIntermediateTensorInfo(h),f}var rae={kernelName:vo,backendName:"webgl",kernelFunc:sae},aae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.dataFormat==="channelsLast";this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int d2 = coords.w;
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
if (${a}) {
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
} else {
float dyValue = getDy(b, d2, yR, yC);
float xValue = getX(b, d1, xR, xC);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},oae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=e.dataFormat==="channelsLast",o=t-1-e.padInfo.top,i=n-1-e.padInfo.left,l=a?1:2,u=a?2:3,c=a?3:1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[${c}];
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
if (${a}) {
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
} else {
float xValue = getDy(batch, d2, idyR, idyC);
float wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}},iae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.padInfo.front,a=e.padInfo.top,o=e.padInfo.left;this.userCode=`
void main() {
ivec5 coords = getOutputCoords();
int wF = coords.x;
int wR = coords.y;
int wC = coords.z;
int d1 = coords.w;
int d2 = coords.u;
float dotProd = 0.0;
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yF = 0; yF < ${e.outDepth}; yF++) {
int xF = wF + yF * ${t} - ${r};
if (xF < 0 || xF >= ${e.inDepth}) {
continue;
}
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${n} - ${a};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${s} - ${o};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yF, yR, yC, d2);
float xValue = getX(b, xF, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
}
setOutput(dotProd);
}
`}},lae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,s=e.filterWidth,r=e.strideDepth,a=e.strideHeight,o=e.strideWidth,i=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=s-1-e.padInfo.left;this.userCode=`
const ivec3 pads = ivec3(${i}, ${l}, ${u});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyFCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
float dotProd = 0.0;
for (int wF = 0; wF < ${t}; wF++) {
float dyF = float(dyFCorner + wF) / ${r}.0;
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
continue;
}
int idyF = int(dyF);
int wFPerm = ${t} - 1 - wF;
for (int wR = 0; wR < ${n}; wR++) {
float dyR = float(dyRCorner + wR) / ${a}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${n} - 1 - wR;
for (int wC = 0; wC < ${s}; wC++) {
float dyC = float(dyCCorner + wC) / ${o}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${s} - 1 - wC;
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
float xValue = getDy(batch, idyF, idyR, idyC, d2);
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
dotProd += xValue * wValue;
}
}
}
}
setOutput(dotProd);
}
`}};function uae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,filterShape:c}=s,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,c,o,1,i,u,!1,p),h=new aae(d);return n.runWebGLProgram(h,[r,a],"float32")}var cae={kernelName:a0,backendName:"webgl",kernelFunc:uae};function dae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=new oae(d);return n.runWebGLProgram(h,[r,a],"float32")}var pae={kernelName:wo,backendName:"webgl",kernelFunc:dae};function hae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeConv3DInfo(r.shape,a.shape,o,l,i),c=new tae(u);return n.runWebGLProgram(c,[r,a],"float32")}var fae={kernelName:qp,backendName:"webgl",kernelFunc:hae};function mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,pad:i,filterShape:l}=s,u=T.computeConv3DInfo(r.shape,l,o,1,i),c=new iae(u);return n.runWebGLProgram(c,[r,a],"float32")}var gae={kernelName:o0,backendName:"webgl",kernelFunc:mae};function yae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{pad:o,strides:i,inputShape:l}=s,u=T.computeConv3DInfo(l,a.shape,i,1,o),c=new lae(u);return n.runWebGLProgram(c,[r,a],"float32")}var Aae={kernelName:i0,backendName:"webgl",kernelFunc:yae},xae=gd+`
return cos(x);
`,bae=dt({opSnippet:xae}),vae={kernelName:ko,backendName:"webgl",kernelFunc:bae},wae=`
float e2x = exp(-x);
return (e2x + 1.0 / e2x) / 2.0;
`,kae=dt({opSnippet:wae}),Sae={kernelName:So,backendName:"webgl",kernelFunc:kae},Iae=class{constructor(e,t,n,s,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[a,o,i,l]=e,[u]=t,[c,p]=n;this.outputShape=[u,c,p,l];let d=s==="bilinear"?1:0,[h,f]=[`${o-1}.0`,`${i-1}.0`],[m,g,y]=c>1?[`${(o-1)/(c-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[x,A,b]=p>1?[`${(i-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${f} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${f}`];this.userCode=`
const float height_ratio = float(${m});
const float width_ratio = float(${x});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int y = coords[1];
int x = coords[2];
int d = coords[3];
// get box vals
float y1 = getBoxes(b,0);
float x1 = getBoxes(b,1);
float y2 = getBoxes(b,2);
float x2 = getBoxes(b,3);
// get image in batch index
int bInd = round(getBoxInd(b));
if(bInd < 0 || bInd >= ${a}) {
return;
}
float height_scale = ${g};
float width_scale = ${A};
float in_y = ${y};
if( in_y < 0.0 || in_y > ${h} ) {
setOutput(float(${r}));
return;
}
float in_x = ${b};
if( in_x < 0.0 || in_x > ${f} ) {
setOutput(float(${r}));
return;
}
vec2 sourceFracIndexCR = vec2(in_x,in_y);
if(${d} == 1) {
// Compute the four integer indices.
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
float top = topLeft + (topRight - topLeft) * fracCR.x;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
float newValue = top + (bottom - top) * fracCR.y;
setOutput(newValue);
} else {
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestCR = ivec2(floor(
sourceFracIndexCR + vec2(0.5,0.5)));
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
setOutput(newValue);
}
}
`}},Cae=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Iae(r.shape,a.shape,i,l,u);return n.runWebGLProgram(c,[r,a,o],"float32")},Tae={kernelName:bl,backendName:"webgl",kernelFunc:Cae},Lp;(function(e){e.Prod="*",e.Sum="+"})(Lp||(Lp={}));var V7=class{constructor(e,t,n,s){this.op=e,this.outputShape=t,this.variableNames=["x"],this.customUniforms=[{name:"index",type:"float"}];let r=this.outputShape.length,a=this.op===Lp.Prod?"1.0":"0.0",o=n?a:`getX(${U7(r,"coords",this.op)})`,i=this.outputShape[this.outputShape.length-1],l="",u="";n?(l=s?`end != ${i-1}`:"end != 0",u=s?"end + 1":"end - 1"):(l=s?`end + pow2 < ${i}`:"end >= pow2",u=s?"end + pow2":"end - pow2"),this.userCode=`
void main() {
${vt(r)} coords = getOutputCoords();
int end = ${G7(r,"coords",this.op)};
float val = ${o};
int pow2 = int(pow(2.0, index));
if (${l}) {
int idx = ${u};
${G7(r,"coords",this.op)} = idx;
val ${this.op}= getX(${U7(r,"coords",this.op)});
}
setOutput(val);
}
`}};function U7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function G7(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw new Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function H9(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=os({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGL cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=zs({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new V7(e,l.shape,!1,a),f=[[d]],m=p;p=n.runWebGLProgram(h,[p],p.dtype,f),n.disposeIntermediateTensorInfo(m)}if(r){let d=new V7(e,l.shape,r,a),h=p;p=n.runWebGLProgram(d,[p],p.dtype),n.disposeIntermediateTensorInfo(h)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=os({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(l),h}return p}function Nae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return H9(Lp.Prod,r,n,a,o,i)}var Eae={kernelName:xl,backendName:"webgl",kernelFunc:Nae};function Rae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return H9(Lp.Sum,r,n,a,o,i)}var _ae={kernelName:Io,backendName:"webgl",kernelFunc:Rae};function Dae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,weights:a}=t,{size:o,binaryOutput:i}=s;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=k9(l,u,a.dtype,a.shape,o);return n.makeTensorInfo([o],a.dtype,c)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(a),c=Vte(l,u,o,i);return n.makeTensorInfo(c.shape,a.dtype,c.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var $ae={kernelName:l0,backendName:"webgl",kernelFunc:Dae},Pae=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int h = ${this.getHeightCoordString()};
int w = ${this.getWidthCoordString()};
int d = ${this.getDepthCoordString()};
int in_h = h / ${t};
int offset_h = imod(h, ${t});
int in_w = w / ${t};
int offset_w = imod(w, ${t});
int offset_d = (offset_h * ${t} + offset_w) *
${this.getOutputDepthSize()};
int in_d = d + offset_d;
float result = ${this.getInputSamplingString()};
setOutput(result);
}
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Fae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=new Pae(f,a,o);return n.runWebGLProgram(m,[r],r.dtype)}var Oae={kernelName:vl,backendName:"webgl",kernelFunc:Fae},j9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.filterHeight,o=e.filterWidth,i=e.outChannels/e.inChannels,l="",u="";n&&(s?l=`float activation(float a) {
float b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?l=`float activation(float a) {
float b = getLeakyreluAlphaAtOutCoords();
${n}
}`:l=`
float activation(float x) {
${n}
}
`,u="result = activation(result);");let c=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${l}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${i};
int q = d2 - d1 * ${i};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
for (int wR = 0; wR < ${a}; wR++) {
int xR = xRCorner + wR * dilations[0];
if (xR < 0 || xR >= inDims[0]) {
continue;
}
for (int wC = 0; wC < ${o}; wC++) {
int xC = xCCorner + wC * dilations[1];
if (xC < 0 || xC >= inDims[1]) {
continue;
}
float xVal = getX(batch, xR, xC, d1);
float wVal = getW(wR, wC, d1, q);
dotProd += xVal * wVal;
}
}
float result = dotProd;
${c}
${u}
setOutput(result);
}
`}},q9=class{constructor(e,t=!1,n=null,s=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"pads",type:"ivec2"},{name:"strides",type:"ivec2"},{name:"dilations",type:"ivec2"},{name:"inDims",type:"ivec2"}],this.outputShape=e.outShape,this.enableShapeUniforms=cs(this.outputShape.length);let a=e.outChannels/e.inChannels,o=e.padInfo.left,i=e.strideWidth,l=e.dilationWidth,u=e.filterHeight,c=e.filterWidth,p=c,d=`
int xR; int xC; int xCOffset;
vec4 wTexel; vec4 previous; vec4 final;`;for(let g=0;g<c;g++)d+=`
vec4 xTexelC${g*2};
int xTexelC${g*2}Ready;
vec4 xTexelC${g*2+1};
int xTexelC${g*2+1}Ready;
vec4 xC${g};`;d+=`
for (int r = 0; r < ${u}; r++) {
`;for(let g=0;g<c;g++)d+=`
xTexelC${g*2} = vec4(0.0);
xTexelC${g*2}Ready = 0;
xTexelC${g*2+1} = vec4(0.0);
xTexelC${g*2+1}Ready = 0;
xC${g} = vec4(0.0);`;d+=`
xR = xRCorner + r * dilations[0];
if (xR >=0 && xR < inDims[0]) {
`;for(let g=0;g<(p+1)/2;g++){let y=g*2;if(d+=`
xC = xCCorner + ${y*l};
`,i===1){if(y<c&&(o%2===1?(d+=`
xCOffset = xC + 1;
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
`,l===1&&y>0?d+=`
xC${y} = vec4(xTexelC${y-2}.zw, xTexelC${y}.xy);
`:d+=`
xCOffset = xC + 1 - 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
previous.zw = vec2(0.0);
}
xC${y} = vec4(previous.zw, xTexelC${y}.xy);
} else {
xC${y} = vec4(0.0, 0.0, xTexelC${y}.xy);
}
`):d+=`
if (xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xC${y} = xTexelC${y};
`,y+1<c)){let x=o%2===0?v.nearestLargerEven(l):l;l%2===0&&o%2===1||l%2!==0&&o%2!==1?(d+=`
xCOffset = xC + imod(pads[1], 2) + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
`,l>1?d+=`
xCOffset -= 2;
if (xCOffset >= 0 && xCOffset < inDims[1]) {
previous = getX(batch, xR, xCOffset, d1);
xC${y+1} = vec4(previous.zw, xTexelC${y+1}.xy);
} else {
xC${y+1} = vec4(0.0, 0.0, xTexelC${y+1}.xy);
}
`:d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.xy);
`):x===1?d+=`
xC${y+1} = xTexelC${y};
`:d+=`
xCOffset = xC + ${x};
if (xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y+1} = xTexelC${y+1};
`}}else y<c&&(o%2===1?(d+=`
xCOffset = xC + 1 - strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xCOffset, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
if(xC + 1 >= 0 && xC + 1 < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xC + 1, d1);
// Need to manually clear unused channels in case
// we're reading from recycled texture.
if (xC + 2 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.0);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`,y+1<c&&(d+=`
final = vec4(0.0);
xCOffset = xC + 1 + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1]) {
final = getX(batch, xR, xCOffset, d1);
}
xC${y+1} = vec4(xTexelC${y+1}.xy, final.xy);
`)):(d+=`
if(xC >= 0 && xC < inDims[1] && xTexelC${y}Ready == 0) {
xTexelC${y} = getX(batch, xR, xC, d1);
if (xC + 1 >= inDims[1]) {
xTexelC${y}.zw = vec2(0.0);
}
xTexelC${y}Ready = 1;
}
xCOffset = xC + strides[1];
if(xCOffset >= 0 && xCOffset < inDims[1] && xTexelC${y+1}Ready == 0) {
xTexelC${y+1} = getX(batch, xR, xCOffset, d1);
if (xCOffset + 1 >= inDims[1]) {
xTexelC${y+1}.zw = vec2(0.);
}
xTexelC${y+1}Ready = 1;
}
xC${y} = vec4(
xTexelC${y}.xy, xTexelC${y+1}.xy);
`,y+1<c&&(d+=`
xC${y+1} = vec4(xTexelC${y}.zw, xTexelC${y+1}.zw);
`)));y<c&&(d+=`
wTexel = getW(r, ${y}, d1, q);
dotProd += xC${y} * vec4(wTexel.xz, wTexel.xz);
`,y+1<c&&(d+=`
wTexel = getW(r, ${y+1}, d1, q);
dotProd += xC${y+1} * vec4(wTexel.xz, wTexel.xz);
`))}d+=`
}
`,d+=`
}
`;let h="",f="";n&&(s?h=`vec4 activation(vec4 a) {
vec4 b = getPreluActivationWeightsAtOutCoords();
${n}
}`:r?h=`vec4 activation(vec4 a) {
vec4 b = getLeakyreluAlphaAtOutCoords();
${n}
}`:h=`vec4 activation(vec4 x) {
${n}
}`,f="result = activation(result);");let m=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
${h}
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
ivec2 xRCCorner = coords.yz * strides - pads;
int d2 = coords.w;
int d1 = d2 / ${a};
int q = d2 - d1 * ${a};
int xRCorner = xRCCorner.x;
int xCCorner = xRCCorner.y;
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
vec4 dotProd = vec4(0.000000000000001);
${d}
vec4 result = dotProd - vec4(0.000000000000001);
${m}
${f}
setOutput(result);
}
`}};function Mae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l,dimRoundingMode:u}=s,c=l;c==null&&(c=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(o,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${o} and dilations '${c}'`);let p=T.computeConv2DInfo(r.shape,a.shape,o,c,i,u,!0),d;H().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels===1?d=new q9(p):d=new j9(p);let h=[[p.padInfo.top,p.padInfo.left],[p.strideHeight,p.strideWidth],[p.dilationHeight,p.dilationWidth],[p.inHeight,p.inWidth]];return n.runWebGLProgram(d,[r,a],"float32",h)}var zae={kernelName:Co,backendName:"webgl",kernelFunc:Mae},Lae=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,s=e.padInfo.top,r=e.padInfo.left,a=e.outChannels/e.inChannels;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int wR = coords.x;
int wC = coords.y;
int d1 = coords.z;
int dm = coords.w;
int d2 = d1 * ${a} + dm;
float dotProd = 0.0;
// TO DO: Vec4 over the batch size
for (int b = 0; b < ${e.batchSize}; b++) {
for (int yR = 0; yR < ${e.outHeight}; yR++) {
int xR = wR + yR * ${t} - ${s};
if (xR < 0 || xR >= ${e.inHeight}) {
continue;
}
for (int yC = 0; yC < ${e.outWidth}; yC++) {
int xC = wC + yC * ${n} - ${r};
if (xC < 0 || xC >= ${e.inWidth}) {
continue;
}
float dyValue = getDy(b, yR, yC, d2);
float xValue = getX(b, xR, xC, d1);
dotProd += (xValue * dyValue);
}
}
}
setOutput(dotProd);
}
`}},Bae=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,s=e.strideHeight,r=e.strideWidth,a=t-1-e.padInfo.top,o=n-1-e.padInfo.left,i=e.outChannels/e.inChannels;this.userCode=`
const ivec2 pads = ivec2(${a}, ${o});
void main() {
ivec4 coords = getOutputCoords();
int batch = coords[0];
int d1 = coords[3];
ivec2 dyCorner = coords.yz - pads;
int dyRCorner = dyCorner.x;
int dyCCorner = dyCorner.y;
float dotProd = 0.0;
for (int wR = 0; wR < ${t}; wR++) {
float dyR = float(dyRCorner + wR) / ${s}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
int wRPerm = ${t} - 1 - wR;
for (int wC = 0; wC < ${n}; wC++) {
float dyC = float(dyCCorner + wC) / ${r}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
int wCPerm = ${n} - 1 - wC;
// TO DO: Vec4 over the channelMul
for (int dm = 0; dm < ${i}; dm++) {
int d2 = d1 * ${i} + dm;
float xValue = getDy(batch, idyR, idyC, d2);
float wValue = getW(wRPerm, wCPerm, d1, dm);
dotProd += xValue * wValue;
}
}
}
setOutput(dotProd);
}
`}};function Wae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,dy:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,filterShape:c}=s,p=T.computeConv2DInfo(r.shape,c,o,i,l,u,!0),d=new Lae(p);return n.runWebGLProgram(d,[r,a],"float32")}var Vae={kernelName:u0,backendName:"webgl",kernelFunc:Wae};function Uae(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{strides:o,dilations:i,pad:l,dimRoundingMode:u,inputShape:c}=s,p=T.computeConv2DInfo(c,a.shape,o,i,l,u,!0),d=new Bae(p);return n.runWebGLProgram(d,[r,a],"float32")}var Gae={kernelName:c0,backendName:"webgl",kernelFunc:Uae},Hae=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
setOutput(val);
}
`}};function jae(e){let{inputs:t,backend:n}=e,{x:s}=t,r=[...s.shape,...s.shape],a=v.sizeFromShape(s.shape),o=ve({inputs:{x:s},backend:n,attrs:{shape:[a]}}),i=new Hae(a),l=n.runWebGLProgram(i,[o],o.dtype),u=ve({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var qae={kernelName:d0,backendName:"webgl",kernelFunc:jae},Xae=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:s,strideHeight:r,strideWidth:a,filterHeight:o,filterWidth:i,dilationHeight:l,dilationWidth:u}=e,{top:c,left:p}=s;this.userCode=`
const ivec2 strides = ivec2(${r}, ${a});
const ivec2 pads = ivec2(${c}, ${p});
const float neg_infinity = -3.4e38;
void main() {
ivec4 coords = getOutputCoords();
int batch = coords.x;
int d1 = coords.w;
ivec2 outTopLeftCorner =
coords.yz * strides - pads;
int hBeg = outTopLeftCorner.x;
int wBeg = outTopLeftCorner.y;
float curVal = neg_infinity;
for (int h = 0; h < ${o}; h++) {
int hIn = hBeg + h * ${l};
if (hIn >= 0 && hIn < ${t}) {
for (int w = 0; w < ${i}; w++) {
int wIn = wBeg + w * ${u};
if (wIn >= 0 && wIn < ${n}) {
float xVal = getX(batch, hIn, wIn, d1);
float wVal = getW(h, w, d1);
float val = xVal + wVal;
if (val > curVal) {
curVal = val;
}
}
}
}
}
float result = curVal;
setOutput(result);
}
`}};function Kae(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dilations:l}=s,u=T.computeDilation2DInfo(r.shape,a.shape,o,i,"NHWC",l),c,p=new Xae(u);c=n.runWebGLProgram(p,[r,a],"float32");let d=ve({inputs:{x:c},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(c),d}var Zae={kernelName:Xp,backendName:"webgl",kernelFunc:Kae};function Yae(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=os({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=ve({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=pb({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=F2({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeIntermediateTensorInfo(m);return d}var Jae={kernelName:Kp,backendName:"webgl",kernelFunc:Yae},Qae="return (x >= 0.0) ? x : (exp(x) - 1.0);",eoe=`
vec4 result;
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
return result;
`,toe=dt({opSnippet:Qae,packedOpSnippet:eoe}),noe={kernelName:No,backendName:"webgl",kernelFunc:toe},soe="return (b >= 1.0) ? a : a * (b + 1.0);",roe=`
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
`,aoe=e=>{let{inputs:t,backend:n}=e,{dy:s,y:r}=t,a=H().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Hh(roe,s.shape,r.shape):new vc(soe,s.shape,r.shape);return n.runWebGLProgram(a,[s,r],s.dtype)},ooe={kernelName:p0,backendName:"webgl",kernelFunc:aoe},ioe=`
return vec4(equal(a, b));
`,loe="return float(a == b);",uoe=zn({opSnippet:loe,packedOpSnippet:ioe,dtype:"bool",cpuKernelImpl:jte}),coe={kernelName:wl,backendName:"webgl",kernelFunc:uoe},doe=`
// Error function is calculated approximately with elementary function.
// See "Handbook of Mathematical Functions with Formulas,
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
float p = ${T.ERF_P};
float a1 = ${T.ERF_A1};
float a2 = ${T.ERF_A2};
float a3 = ${T.ERF_A3};
float a4 = ${T.ERF_A4};
float a5 = ${T.ERF_A5};
float sign = sign(x);
x = abs(x);
float t = 1.0 / (1.0 + p * x);
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
`,poe=dt({opSnippet:doe}),hoe={kernelName:$c,backendName:"webgl",kernelFunc:poe},foe=gd+`
return exp(x);
`,moe=`
vec4 result = exp(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,X9=dt({opSnippet:foe,packedOpSnippet:moe,cpuKernelImpl:qte,dtype:"float32"}),goe={kernelName:Eo,backendName:"webgl",kernelFunc:X9};function wy(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),ve({inputs:{x:a},backend:s,attrs:{shape:i}})}var yoe={kernelName:kl,backendName:"webgl",kernelFunc:wy},H7="return exp(x) - 1.0;",Aoe=dt({opSnippet:H7,packedOpSnippet:H7,cpuKernelImpl:Xte}),xoe={kernelName:Sl,backendName:"webgl",kernelFunc:Aoe},j7=class{constructor(e,t,n){this.variableNames=["real","imag"];let s=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,a=n?`${s}.0`:"1.0",o;if(e==="real")o="return real * expR - imag * expI;";else if(e==="imag")o="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
const float exponentMultiplier = ${r};
float unaryOpComplex(float real, float expR, float imag, float expI) {
${o}
}
float mulMatDFT(int batch, int index) {
float indexRatio = float(index) / float(${s});
float exponentMultiplierTimesIndexRatio =
exponentMultiplier * indexRatio;
float result = 0.0;
for (int i = 0; i < ${s}; i++) {
// x = (-2|2 * PI / N) * index * i;
float x = exponentMultiplierTimesIndexRatio * float(i);
float expR = cos(x);
float expI = sin(x);
float real = getReal(batch, i);
float imag = getImag(batch, i);
result +=
unaryOpComplex(real, expR, imag, expI) / ${a};
}
return result;
}
void main() {
ivec2 coords = getOutputCoords();
setOutput(mulMatDFT(coords[0], coords[1]));
}
`}};function K9(e,t,n){let s=n.texData.get(e.dataId),r=v.sizeFromShape(e.shape),a=e.shape[e.shape.length-1],o=r/a,i=ve({inputs:{x:e},backend:n,attrs:{shape:[o,a]}}),l=i.shape,u=new j7("real",l,t),c=new j7("imag",l,t),p=[{dataId:s.complexTensorInfos.real.dataId,dtype:s.complexTensorInfos.real.dtype,shape:l},{dataId:s.complexTensorInfos.imag.dataId,dtype:s.complexTensorInfos.imag.dtype,shape:l}],d=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(c,p,"float32"),f=mi({inputs:{real:d,imag:h},backend:n});n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h);let m=ve({inputs:{x:f},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(f),m}function boe(e){let{inputs:t,backend:n}=e,{input:s}=t;return K9(s,!1,n)}var voe={kernelName:h0,backendName:"webgl",kernelFunc:boe},woe=class{constructor(e,t){this.outputShape=[],this.customUniforms=[{name:"value",type:"float"}],this.variableNames=["x"],this.outputShape=e,this.userCode=`
void main() {
// Input can be obtained from uniform value.
setOutput(value);
}
`}};function qh(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new woe(s,r),i=[[r]];return t.runWebGLProgram(o,[],a,i)}}var koe={kernelName:Pc,backendName:"webgl",kernelFunc:qh},Soe=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int coordX = ${t} - x - 1;
float outputValue;
if(coordX >= 0 && coordX < ${t}) {
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
} else {
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
}
setOutput(outputValue);
}
`}},Ioe={kernelName:Il,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new Soe(n.shape);return s.runWebGLProgram(r,[n],n.dtype)}},q7="return floor(x);",Coe=dt({opSnippet:q7,packedOpSnippet:q7,cpuKernelImpl:Kte}),Toe={kernelName:Ro,backendName:"webgl",kernelFunc:Coe},Noe=`
float s = sign(a) * sign(b);
int ia = round(a);
int ib = round(b);
if (ib != 0) {
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
return float(idiv(ia, ib, s));
} else {
return NAN;
}
`,Eoe=`
ivec4 ia = round(a);
ivec4 ib = round(b);
bvec4 cond = notEqual(ib, ivec4(0));
ivec4 result = ivec4(0);
vec4 s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
result[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
result[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
result[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
result[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4(result);
`,Roe=zn({opSnippet:Noe,packedOpSnippet:Eoe,dtype:"int32"}),_oe={kernelName:_o,backendName:"webgl",kernelFunc:Roe},Doe=class{constructor(e){this.variableNames=["A"];let t=us(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
setOutput(floor(value * 255.0 + 0.5));
}
`}},$oe=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=us(),[n,s]=e;this.outputShape=e,this.userCode=`
void main() {
ivec3 coords = getOutputCoords();
int texR = coords[0];
int texC = coords[1];
int depth = coords[2];
vec4 result = vec4(0.);
for(int row=0; row<=1; row++) {
for(int col=0; col<=1; col++) {
texC = coords[1] + row;
depth = coords[2] + col;
vec2 uv = (vec2(texC, texR) + halfCR) /
vec2(${s}.0, ${n}.0);
vec4 values = ${t.texture2D}(A, uv);
float value;
if (depth == 0) {
value = values.r;
} else if (depth == 1) {
value = values.g;
} else if (depth == 2) {
value = values.b;
} else if (depth == 3) {
value = values.a;
}
result[row * 2 + col] = floor(value * 255.0 + 0.5);
}
}
${t.output} = result;
}
`}},Poe={kernelName:Sp,backendName:"webgl",kernelFunc:Foe},Xu,I3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");function Foe(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s,o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],c=[u,l],p=[u,l,a];if(i||o){let m=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Xu==null||m!==I3)&&(I3=m,Xu=document.createElement("canvas").getContext("2d",{willReadFrequently:I3})),Xu.canvas.width=l,Xu.canvas.height=u,Xu.drawImage(r,0,0,l,u),r=Xu.canvas}let d=n.makeTensorInfo(c,"int32");n.texData.get(d.dataId).usage=Zs.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(d.dataId),r);let h=H().getBool("WEBGL_PACK")?new $oe(p):new Doe(p),f=n.runWebGLProgram(h,[d],"int32");return n.disposeData(d.dataId),f}function Ooe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m),y,x=[],A=o!=null,b=i!=null,w=h==="leakyrelu",k=()=>{let E=[r,a],_=($,R)=>{if(R==="NCHW"&&$.shape.length===1&&$.shape[0]!==1){let P=ve({inputs:{x:$},backend:n,attrs:{shape:[$.shape[0],1,1]}});return x.push(P),P}return $};if(A&&E.push(_(o,c)),b&&E.push(_(i,c)),w){let $=n.makeTensorInfo([],"float32",v.createScalarValue(f,"float32"));E.push($),x.push($)}return E};if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=U9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else if(g.strideWidth<=2&&m==="channelsLast"&&H().getBool("WEBGL_EXP_CONV")){let E=h?Mp(h,!0):null,_=new V9(g,A,E,b,w),$=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],R=k();y=n.runWebGLProgram(_,R,"float32",$)}else if(H().getBool("WEBGL_CONV_IM2COL"))y=G9({x:r,filter:a,convInfo:g,backend:n,bias:o,activation:h,preluActivationWeights:i,leakyreluAlpha:f});else{let E=h?Mp(h,!1):null,_=new W9(g,A,E,b,w),$=k();y=n.runWebGLProgram(_,$,"float32")}let C=ve({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return x.push(y),x.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var Moe={kernelName:no,backendName:"webgl",kernelFunc:Ooe};function zoe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=[],m=c;m==null&&(m=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,m),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${m}'`);let g=T.computeConv2DInfo(r.shape,a.shape,l,m,u,p,!0),y=H().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels===1,x=d?Mp(d,y):null,A=[r,a],b=o!=null,w=i!=null,k=d==="leakyrelu";if(b&&A.push(o),w&&A.push(i),k){let $=n.makeTensorInfo([],"float32",v.createScalarValue(h,"float32"));A.push($),f.push($)}let C;y?C=new q9(g,b,x,w,k):C=new j9(g,b,x,w,k);let E=[[g.padInfo.top,g.padInfo.left],[g.strideHeight,g.strideWidth],[g.dilationHeight,g.dilationWidth],[g.inHeight,g.inWidth]],_=n.runWebGLProgram(C,A,"float32",E);return f.forEach($=>n.disposeIntermediateTensorInfo($)),_}var Loe={kernelName:so,backendName:"webgl",kernelFunc:zoe},Boe=class{constructor(e,t,n,s){this.sliceDim=e,this.strides=t,this.paramsShape=s,this.variableNames=["x","indices"],this.outputShape=n;let r=vt(t.length),a=vt(n.length),o=this.sliceDim>1?"strides[j]":"strides",i=vt(s.length),l=s.length>1?"paramsShape[j]":"paramsShape";this.userCode=`
${r} strides = ${r}(${this.strides});
${i} paramsShape = ${i}(${this.paramsShape});
void main() {
${a} coords = getOutputCoords();
int flattenIndex = 0;
bool out_of_bounds = false;
for (int j = 0; j < ${this.sliceDim}; j++) {
int index = round(getIndices(coords[0], j));
out_of_bounds = out_of_bounds || index < 0;
out_of_bounds = out_of_bounds || index >= ${l};
flattenIndex += index * ${o};
}
setOutput(out_of_bounds ? 0.0 : getX(flattenIndex, coords[1]));
}
`}};function Woe(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=ve({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=ve({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let y=n.readSync(r.dataId),x=n.bufferSync(s),A=Zte(y,x,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,A.values)}let f=new Boe(o,p,[u,c],s.shape),m=n.runWebGLProgram(f,[h,d],h.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),g}var Voe={kernelName:Tl,backendName:"webgl",kernelFunc:Woe},Uoe=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=vt(this.rank),s=Goe(e,2);this.userCode=`
void main() {
${n} resRC = getOutputCoords();
int index = int(getIndices(resRC.x, resRC.z));
float inBounds = (index >= 0) && (index < ${e[2]}) ? 1.0 : 0.0;
setOutput(inBounds * getA(${s}));
}
`}};function Goe(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e.length;r++)r===2?s.push("index"):s.push(`${n[r]}`);return s.join()}function Z9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0];if(H().get("DEBUG")){let x=n.readSync(a.dataId),A=r.shape[l];for(let b=0;b<x.length;++b){let w=x[b];v.assert(w<=A-1&&w>=0,()=>`GatherV2: the index value ${w} is not in [0, ${A-1}]`)}}let u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=ve({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=ve({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])||r.dtype==="string"){let x=n.bufferSync(h),A=n.bufferSync(d),b=Yte(A,x,f);return p.forEach(w=>n.disposeIntermediateTensorInfo(w)),n.makeTensorInfo(u.outputShape,b.dtype,b.values)}let m=new Uoe(d.shape,f),g=n.runWebGLProgram(m,[d,h],d.dtype);p.push(g);let y=ve({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeIntermediateTensorInfo(x)),y}var Hoe={kernelName:Cl,backendName:"webgl",kernelFunc:Z9},joe="return float(a > b);",qoe=`
return vec4(greaterThan(a, b));
`,Xoe=zn({opSnippet:joe,packedOpSnippet:qoe,cpuKernelImpl:Jte,dtype:"bool"}),Koe={kernelName:Nl,backendName:"webgl",kernelFunc:Xoe},Zoe="return float(a >= b);",Yoe=`
return vec4(greaterThanEqual(a, b));
`,Joe=zn({opSnippet:Zoe,packedOpSnippet:Yoe,dtype:"bool",cpuKernelImpl:Qte}),Qoe={kernelName:$o,backendName:"webgl",kernelFunc:Joe};function eie(e){let{inputs:t,backend:n}=e,{input:s}=t;return K9(s,!0,n)}var tie={kernelName:f0,backendName:"webgl",kernelFunc:eie},nie="return float(!isnan(x) && !isinf(x));",sie=dt({opSnippet:nie,dtype:"bool"}),rie={kernelName:Fc,backendName:"webgl",kernelFunc:sie},aie="return float(isinf(x));",oie=dt({opSnippet:aie,dtype:"bool"}),iie={kernelName:Oc,backendName:"webgl",kernelFunc:oie},lie="return float(isnan(x));",uie=dt({opSnippet:lie,dtype:"bool"}),cie={kernelName:El,backendName:"webgl",kernelFunc:uie},die="return float(a < b);",pie=`
return vec4(lessThan(a, b));
`,hie=zn({opSnippet:die,packedOpSnippet:pie,cpuKernelImpl:ene,dtype:"bool"}),fie={kernelName:Rl,backendName:"webgl",kernelFunc:hie},mie="return float(a <= b);",gie=`
return vec4(lessThanEqual(a, b));
`,yie=zn({opSnippet:mie,packedOpSnippet:gie,cpuKernelImpl:tne,dtype:"bool"}),Aie={kernelName:_l,backendName:"webgl",kernelFunc:yie};function xie(e){let{backend:t,attrs:n}=e,{start:s,stop:r,num:a}=n,o=nne(s,r,a);return t.makeTensorInfo([o.length],"float32",o)}var bie={kernelName:m0,backendName:"webgl",kernelFunc:xie},vie=gd+`
return x < 0.0 ? 0./0. : log(x);
`,wie=`
vec4 result = log(x);
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : (x.r < 0.0 ? 0./0. : result.r);
result.g = isNaN.g ? x.g : (x.g < 0.0 ? 0./0. : result.g);
result.b = isNaN.b ? x.b : (x.b < 0.0 ? 0./0. : result.b);
result.a = isNaN.a ? x.a : (x.a < 0.0 ? 0./0. : result.a);
return result;
`,kie=dt({opSnippet:vie,packedOpSnippet:wie,cpuKernelImpl:sne}),Sie={kernelName:Oo,backendName:"webgl",kernelFunc:kie},Iie=gd+`
return log(1.0 + x);
`,Cie=dt({opSnippet:Iie}),Tie={kernelName:Mc,backendName:"webgl",kernelFunc:Cie},Nie="return float(a >= 1.0 && b >= 1.0);",Eie=`
return vec4(
vec4(greaterThanEqual(a, vec4(1.0))) *
vec4(greaterThanEqual(b, vec4(1.0))));
`,Rie=zn({opSnippet:Nie,packedOpSnippet:Eie,dtype:"bool"}),_ie={kernelName:Dl,backendName:"webgl",kernelFunc:Rie},Die="return float(!(x >= 1.0));",$ie=dt({opSnippet:Die}),Pie={kernelName:$l,backendName:"webgl",kernelFunc:$ie},Fie="return float(a >= 1.0 || b >= 1.0);",Oie=`
return min(
vec4(greaterThanEqual(a, vec4(1.0))) +
vec4(greaterThanEqual(b, vec4(1.0))),
vec4(1.0));
`,Mie=zn({opSnippet:Fie,packedOpSnippet:Oie,dtype:"bool"}),zie={kernelName:zc,backendName:"webgl",kernelFunc:Mie},Lie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[];let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
int d = coords[3];
float x = getX(b, r, c, d);
float sum = 0.0;
for (int j = -${a}; j <= ${a}; j++) {
int idx = d + j;
if (idx >= 0 && idx <= ${o}) {
float z = getX(b, r, c, idx);
sum += z * z;
}
}
float val = x * ${i};
setOutput(val);
}
`}},Bie=class{constructor(e,t,n,s,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let a=t,o=e[3]-1;this.outputShape=e;let i,l=`float(${n}) + float(${s}) * sum`;r===.5?i=`inversesqrt(${l})`:r===1?i=`1.0/(${l})`:i=`exp(log(${l}) * float(-${r}));`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords.x;
int r = coords.y;
int c = coords.z;
int d = coords.w;
bool hasNextCol = d < ${this.outputShape[3]};
bool hasNextRow = c < ${this.outputShape[2]};
vec4 sum = vec4(0.);
vec4 xFragAtOutputCoords = getX(b, r, c, d);
vec4 xAtOutputCoords = vec4(
getChannel(xFragAtOutputCoords, vec2(c, d)),
hasNextCol ?
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
hasNextRow ?
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
(hasNextRow && hasNextCol) ?
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
);
int firstChannel = d - ${a};
vec2 cache = vec2(0.);
if(firstChannel >= 0){
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
if(hasNextRow){
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
}
}
ivec2 depth = ivec2(d, d + 1);
for (int j = - ${a}; j <= ${a}; j++) {
ivec2 idx = depth + j;
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${o}));
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
if(depthInRange || depthPlusOneInRange){
vec4 z = vec4(0.);
vec4 xFragAtCurrentDepth;
z.xz = cache.xy;
if(depthPlusOneInRange && hasNextCol){
xFragAtCurrentDepth = idx.y != d ?
getX(b, r, c, idx.y) : xFragAtOutputCoords;
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
if(hasNextRow){
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
}
}
cache.xy = z.yw;
sum += z * z;
}
}
vec4 result = xAtOutputCoords * ${i};
setOutput(result);
}
`}},Wie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{depthRadius:a,bias:o,alpha:i,beta:l}=s,u=H().getBool("WEBGL_PACK_NORMALIZATION")?new Bie(r.shape,a,o,i,l):new Lie(r.shape,a,o,i,l);return n.runWebGLProgram(u,[r],r.dtype)},Vie={kernelName:Yp,backendName:"webgl",kernelFunc:Wie},Uie=class{constructor(e,t,n,s,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=s,this.beta=r,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int r = coords[1];
int c = coords[2];
float result = 0.0;
for (int d = 0; d < ${this.depth}; ++d) {
int depthBegin = int(max(0.0, float(d - ${t})));
int depthEnd = int(min(float(${this.depth}),
float(d + ${t} + 1)));
const int MIN_DEPTH_BEGIN = 0;
const int MAX_DEPTH_END = ${this.depth};
float norm = 0.0;
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd) {
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
}
else {
break;
}
}
norm = float(${s}) * norm + float(${n});
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
if (k < depthBegin){
continue;
}
else if (k >= depthBegin && k < depthEnd){
float dyi = -2.0 * float(${s})
* float(${r})
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
/ norm;
if (k == d) {
dyi += pow(norm, -1.0 * ${r});
}
if (k == coords[3]) {
dyi *= getDy(b, r, c, d);
result += dyi;
}
}
else {
break;
}
}
}
setOutput(result);
}
`}},Gie=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r,y:a,dy:o}=t,{depthRadius:i,bias:l,alpha:u,beta:c}=s,p=new Uie(r.shape,i,l,u,c);return n.runWebGLProgram(p,[r,a,o],r.dtype)},Hie={kernelName:g0,backendName:"webgl",kernelFunc:Gie};function jie(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=gu(i,e.dtype,"max",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}function Y9(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=n.shouldExecuteOnCPU([r]),h=r;if(p){if(d){let A=n.texData.get(h.dataId).values,b=new Array(i);for(let C=0;C<b.length;C++)b[C]=r.shape[c[C]];let w=db(A,r.shape,r.dtype,c,b);h=n.makeTensorInfo(b,r.dtype);let k=n.texData.get(h.dataId);k.values=w}else h=P2(r,c,n);u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("max",u,i);let[f,m]=T.computeOutAndReduceShapes(h.shape,u),g=f;o&&(g=T.expandShapeToKeepDim(f,l));let y;if(d){let A=n.texData.get(h.dataId).values,b=rne(A,v.sizeFromShape(m),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let w=n.texData.get(y.dataId);w.values=b}else y=jie(h,m,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var qie={kernelName:Mo,backendName:"webgl",kernelFunc:Y9},Xie=E9+`
return max(a, b);
`,Kie=`
vec4 result = vec4(max(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+$2+`
return result;
`,Zie=zn({opSnippet:Xie,packedOpSnippet:Kie,cpuKernelImpl:ane}),Yie={kernelName:zo,backendName:"webgl",kernelFunc:Zie};function Jie(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t;cd(r,"maxPool");let{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1;v.assert(T.eitherStridesOrDilationsAreOne(o,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${o} and dilations '${u}'`);let c=T.computePool2DInfo(r.shape,a,o,u,i,l);if(c.filterWidth===1&&c.filterHeight===1&&v.arraysEqual(c.inShape,c.outShape))return zs({inputs:{x:r},backend:n});let p=new zp(c,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var Qie={kernelName:Lo,backendName:"webgl",kernelFunc:Jie};function ele(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dataFormat:l,dimRoundingMode:u}=s,c=[1,1,1],p=T.computePool3DInfo(r.shape,a,o,c,i,u,l),d=new hb(p,"max",!1);return n.runWebGLProgram(d,[r],r.dtype)}var tle={kernelName:Jp,backendName:"webgl",kernelFunc:ele},nle=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,s=e.dilationHeight,r=e.effectiveFilterHeight,a=e.effectiveFilterWidth,o=r-1-e.padInfo.top,i=a-1-e.padInfo.left,l=r*a-1;this.userCode=`
const ivec2 pads = ivec2(${o}, ${i});
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 dyRCCorner = coords.yz - pads;
int dyRCorner = dyRCCorner.x;
int dyCCorner = dyRCCorner.y;
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wR = 0; wR < ${r};
wR += ${s}) {
float dyR = float(dyRCorner + wR) / ${t}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${a}; wC++) {
float dyC = float(dyCCorner + wC) / ${n}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(b, idyR, idyC, d);
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue = wR * ${a} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
setOutput(dotProd);
}
`}},sle=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,s=e.strideWidth,r=e.dilationDepth,a=e.dilationHeight,o=e.dilationWidth,i=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,c=i-1-e.padInfo.front,p=l-1-e.padInfo.top,d=u-1-e.padInfo.left,h=i*l*u-1;this.userCode=`
const ivec3 pads = ivec3(${c}, ${p}, ${d});
void main() {
ivec5 coords = getOutputCoords();
int batch = coords.x;
int ch = coords.u;
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
int dyDCorner = dyCorner.x;
int dyRCorner = dyCorner.y;
int dyCCorner = dyCorner.z;
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
// dx(xD, xR, xC, ch).
// ? = to be determined. : = across all values in that axis.
float dotProd = 0.0;
for (int wD = 0; wD < ${i};
wD += ${r}) {
float dyD = float(dyDCorner + wD) / ${t}.0;
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
continue;
}
int idyD = int(dyD);
for (int wR = 0; wR < ${l};
wR += ${a}) {
float dyR = float(dyRCorner + wR) / ${n}.0;
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
fract(dyR) > 0.0) {
continue;
}
int idyR = int(dyR);
for (int wC = 0; wC < ${u};
wC += ${o}) {
float dyC = float(dyCCorner + wC) / ${s}.0;
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
fract(dyC) > 0.0) {
continue;
}
int idyC = int(dyC);
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
int maxPosValue = ${h} -
int(getMaxPos(batch, idyD, idyR, idyC, ch));
// Get the current value, check it against the value from the
// position matrix.
int curPosValue =
wD * ${l} * ${u} +
wR * ${u} + wC;
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
dotProd += dyValue * mask;
}
}
}
setOutput(dotProd);
}
`}};function rle(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a}=t,o=a,{filterSize:i,strides:l,pad:u,dimRoundingMode:c}=s,p=[1,1,1],d=T.computePool3DInfo(o.shape,i,l,p,u,c),h=new hb(d,"max",!0),f=n.runWebGLProgram(h,[o],o.dtype),m=new sle(d),g=n.runWebGLProgram(m,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),g}var ale={kernelName:A0,backendName:"webgl",kernelFunc:rle};function ole(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,input:a,output:o}=t,i=a;cd([a,o],"maxPoolGrad");let{filterSize:l,strides:u,pad:c,dimRoundingMode:p}=s,d=T.computePool2DInfo(i.shape,l,u,1,c,p),h=!0,f=new zp(d,"max",h),m=n.runWebGLProgram(f,[i],i.dtype),g=new nle(d),y=n.runWebGLProgram(g,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),y}var ile={kernelName:y0,backendName:"webgl",kernelFunc:ole};function lle(e,t,n,s){let r=new zp(n,"max",!1),a=s.runWebGLProgram(r,[e],"float32");r=new zp(n,"max",!0,!0,t);let o=s.runWebGLProgram(r,[e],"float32");return[a,o]}var ule={kernelName:x0,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{filterSize:r,strides:a,pad:o,includeBatchInIndex:i}=t,l=n;v.assert(s.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${s.shape.length}.`);let u=[1,1];v.assert(T.eitherStridesOrDilationsAreOne(a,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${a} and dilations '${u}'`);let c=T.computePool2DInfo(s.shape,r,a,u,o),[p,d]=lle(s,i,c,l);return[p,d]}};function cle(e,t,n,s){let r=v.sizeFromShape(t),o=v.sizeFromShape(e.shape)/r,i=ve({inputs:{x:e},attrs:{shape:[o,r]},backend:s}),l=gu(i,"float32","mean",s),u=ve({inputs:{x:l},attrs:{shape:n},backend:s});return s.disposeIntermediateTensorInfo(i),s.disposeIntermediateTensorInfo(l),u}var dle={kernelName:Bo,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{keepDims:r,axis:a}=t,o=n,i=s.shape.length,l=v.parseAxisParam(a,s.shape),u=l,c=T.getAxesPermutation(u,i),p=c!=null,d=o.shouldExecuteOnCPU([s]),h=[],f=s;if(p){if(d){let b=o.texData.get(f.dataId).values,w=new Array(i);for(let E=0;E<w.length;E++)w[E]=s.shape[c[E]];let k=db(b,s.shape,s.dtype,c,w);f=o.makeTensorInfo(w,s.dtype);let C=o.texData.get(f.dataId);C.values=k}else f=P2(s,c,o);h.push(f),u=T.getInnerMostAxes(u.length,i)}T.assertAxesAreInnerMostDims("sum",u,i);let[m,g]=T.computeOutAndReduceShapes(f.shape,u),y=m;r&&(y=T.expandShapeToKeepDim(m,l));let x=cle(f,g,y,o);for(let A of h)o.disposeIntermediateTensorInfo(A);return x}};function ple(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=v.parseAxisParam(a,r.shape),u=l,c=T.getAxesPermutation(u,i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),u=T.getInnerMostAxes(u.length,r.shape.length)),T.assertAxesAreInnerMostDims("min",u,i);let[d,h]=T.computeOutAndReduceShapes(p.shape,u),f=v.sizeFromShape(h),m=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,f]}}),g=gu(m,m.dtype,"min",n),y;if(o){let x=T.expandShapeToKeepDim(d,l);y=ve({inputs:{x:g},backend:n,attrs:{shape:x}})}else y=ve({inputs:{x:g},backend:n,attrs:{shape:d}});return n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(g),c!=null&&n.disposeIntermediateTensorInfo(p),y}var hle={kernelName:Wo,backendName:"webgl",kernelFunc:ple},fle=E9+`
return min(a, b);
`,mle=`
vec4 result = vec4(min(a, b));
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
`+$2+`
return result;
`,gle=zn({opSnippet:fle,packedOpSnippet:mle,cpuKernelImpl:one}),yle={kernelName:Vo,backendName:"webgl",kernelFunc:gle},Ale=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,c)=>u[0]+e[c]+u[1]);let s=e.length,r=vt(s),a=t.map(u=>u[0]).join(","),o=t.map((u,c)=>u[0]+e[c]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s),l=n==="reflect"?0:1;if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start) {
outC = start * 2 - outC - ${l};
} else if(outC >= end) {
outC = (end - 1) * 2 - outC + ${l};
}
setOutput(getX(outC - start));
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
for (int i = 0; i < ${s}; i++) {
if (outC[i] < start[i]) {
outC[i] = start[i] * 2 - outC[i] - ${l};
} else if(outC[i] >= end[i]) {
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
}
}
${r} coords = outC - start;
setOutput(getX(${i}));
}
`}},xle=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,f)=>h[0]+e[f]+h[1]);let s=e.length,r=vt(s),a=t.map(h=>h[0]).join(","),o=t.map((h,f)=>h[0]+e[f]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,d="";if(s===1){let h=`
${r} source = rc;
if (source < start) {
source = start * 2 - source - ${p};
} else if (source >= end) {
source = (end - 1) * 2 - source + ${p};
}
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
`}else{let h=`
${r} source = rc;
${r} lt = ${r}(lessThan(source, start));
${r} gte = ${r}(greaterThanEqual(source, end));
${r} orig = 1 - (lt + gte);
source = orig * source +
lt * (start * 2 - source - ${p}) +
gte * ((end - 1) * 2 - source + ${p});
source -= start;
`;d=`
${r} rc = outputLoc;
${h}
result[0] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[1] = getChannel(getX(${l.join()}), ${c});
}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {
${h}
result[2] = getChannel(getX(${l.join()}), ${c});
${i[s-1]} += 1;
if(${u}) {
${h}
result[3] = getChannel(getX(${l.join()}), ${c});
}
}
`}this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${d}
setOutput(result);
}
`}},ble=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{paddings:r,mode:a}=n,o=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new xle(s.shape,r,a):new Ale(s.shape,r,a);return t.runWebGLProgram(o,[s],s.dtype)},vle={kernelName:Uo,backendName:"webgl",kernelFunc:ble},wle=`if (b == 0.0) return NAN;
return mod(a, b);`,kle=`
vec4 result = mod(a, b);
vec4 isNaN = vec4(equal(b, vec4(0.0)));
`+$2+`
return result;
`,Sle=zn({opSnippet:wle,packedOpSnippet:kle}),Ile={kernelName:Lc,backendName:"webgl",kernelFunc:Sle},Cle=class{constructor(e,t,n){this.variableNames=["probs"],this.customUniforms=[{name:"seed",type:"float"}],this.outputShape=[e,n],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
float r = random(seed);
float cdf = 0.0;
for (int i = 0; i < ${t-1}; i++) {
cdf += getProbs(batch, i);
if (r < cdf) {
setOutput(float(i));
return;
}
}
// If no other event happened, last event happened.
setOutput(float(${t-1}));
}
`}},Tle=`
if (a == b) {
return 1.0;
};
return a / b;`,Nle=`
// vec4 one = vec4(equal(a, b));
// return one + (vec4(1.0) - one) * a / b;
vec4 result = a / b;
if(a.x == b.x) {
result.x = 1.;
}
if(a.y == b.y) {
result.y = 1.;
}
if(a.z == b.z) {
result.z = 1.;
}
if(a.w == b.w) {
result.w = 1.;
}
return result;
`,J9=zn({opSnippet:Tle,packedOpSnippet:Nle,checkOutOfBounds:!0}),Ele={kernelName:To,backendName:"webgl",kernelFunc:J9},X7="return a - b;",Q9=zn({opSnippet:X7,packedOpSnippet:X7,supportsComplex:!0,cpuKernelImpl:Sne}),Rle={kernelName:oi,backendName:"webgl",kernelFunc:Q9};function eC(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=Y9({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=ve({inputs:{x:i},backend:n,attrs:{shape:l}}),c=Q9({inputs:{a:r,b:u},backend:n}),p=X9({inputs:{x:c},backend:n}),d=F2({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=ve({inputs:{x:d},backend:n,attrs:{shape:l}}),f=J9({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(h),f}var _le={kernelName:ri,backendName:"webgl",kernelFunc:eC};function Dle(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{numSamples:a,seed:o,normalized:i}=s,l=i?r:eC({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],c=l.shape[1],p=new Cle(u,c,a),d=[[o]],h=n.runWebGLProgram(p,[l],"int32",d);return i||n.disposeIntermediateTensorInfo(l),h}var $le={kernelName:b0,backendName:"webgl",kernelFunc:Dle},Ple=xr+`
return -x;
`,Fle=`
vec4 result = -x;
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`;function Ole(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.texData.get(s.dataId),[o,i]=lne(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r;return H().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Zi(s.shape,Fle):r=new ba(s.shape,Ple),n.runWebGLProgram(r,[s],s.dtype)}var Mle={kernelName:Pl,backendName:"webgl",kernelFunc:Ole},zle=yr.nonMaxSuppressionV3Impl;function Lle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=zle(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var Ble={kernelName:Ol,backendName:"webgl",kernelFunc:Lle},Wle=yr.nonMaxSuppressionV4Impl;function Vle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,padToMaxOutputSize:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),{selectedIndices:d,validOutputs:h}=Wle(c,p,o,i,l,u);return[n.makeTensorInfo([d.length],"int32",new Int32Array(d)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var Ule={kernelName:Bc,backendName:"webgl",kernelFunc:Vle},Gle=yr.nonMaxSuppressionV5Impl;function Hle(e){T.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=Gle(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var jle={kernelName:Ml,backendName:"webgl",kernelFunc:Hle},qle=class{constructor(e,t,n,s){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int index = round(getIndices(coords.x));
setOutput(mix(float(${s}), float(${n}),
float(index == coords.y)));
}
`}},Xle=e=>{let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=v.sizeFromShape(r.shape),c=new qle(u,o,i,l),p=ve({inputs:{x:r},backend:n,attrs:{shape:[u]}}),d=n.runWebGLProgram(c,[p],a);n.disposeIntermediateTensorInfo(p);let h=[...r.shape,o],f=ve({inputs:{x:d},backend:n,attrs:{shape:h}});return n.disposeIntermediateTensorInfo(d),f},Kle={kernelName:Ll,backendName:"webgl",kernelFunc:Xle};function Xm(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=jh({inputs:{input:s},backend:n}),a=Xm({inputs:{x:r},backend:n}),o=O2({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=mi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return qh({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var Zle={kernelName:nu,backendName:"webgl",kernelFunc:Xm};function tC(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=jh({inputs:{input:s},backend:n}),a=tC({inputs:{x:r},backend:n}),o=O2({inputs:{input:s},backend:n}),i=Xm({inputs:{x:o},backend:n}),l=mi({inputs:{real:a,imag:i},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(a),n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(i),l}else return qh({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var Yle={kernelName:zl,backendName:"webgl",kernelFunc:tC};function Jle(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return wy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=wy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=B9({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeIntermediateTensorInfo(c)),u}var Qle={kernelName:Bl,backendName:"webgl",kernelFunc:Jle},eue=class{constructor(e,t,n){this.variableNames=["x"],this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let s=e.length,r=vt(s),a=t.map(l=>l[0]).join(","),o=t.map((l,u)=>l[0]+e[u]).join(","),i=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,s);if(s===1){this.userCode=`
int start = ${a};
int end = ${o};
void main() {
int outC = getOutputCoords();
if (outC < start || outC >= end) {
setOutput(value);
} else {
setOutput(getX(outC - start));
}
}
`;return}this.userCode=`
${r} start = ${r}(${a});
${r} end = ${r}(${o});
void main() {
${r} outC = getOutputCoords();
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
setOutput(value);
} else {
${r} coords = outC - start;
setOutput(getX(${i}));
}
}
`}},tue=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.customUniforms=[{name:"value",type:"float"}],this.outputShape=t.map((f,m)=>f[0]+e[m]+f[1]);let s=e.length,r=vt(s),a=t.map(f=>f[0]).join(","),o=t.map((f,m)=>f[0]+e[m]).join(","),i=as("rc",s),l=as("source",s),u=`${i[s-1]} < ${this.outputShape[s-1]}`,c=s===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${i[s-1]} += 1;
if(${u}) {
`,s===1?"":`}
rc = outputLoc;
${i[s-2]} += 1;
if(${i[s-2]} < ${this.outputShape[s-2]}) {`,s===1?"":` ${i[s-1]} += 1;
if(${u}) {`],d=s===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let f=0,m=s===1?2:4;f<m;f++)h+=`
${p[f]}
if (${d}) {
result[${f}] = float(value);
} else {
${r} source = rc - start;
result[${f}] = getChannel(getX(${l.join()}), ${c});
}
`;h+=s===1?"} ":"}}",this.userCode=`
const ${r} start = ${r}(${a});
const ${r} end = ${r}(${o});
void main() {
${r} outputLoc = getOutputCoords();
vec4 result = vec4(0.);
${h}
setOutput(result);
}
`}},nC=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return qh({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tue(r.shape,a,o):new eue(r.shape,a,o),l=[[o]];return n.runWebGLProgram(i,[r],r.dtype,l)},nue={kernelName:Ho,backendName:"webgl",kernelFunc:nC},sue=`
if(a < 0.0 && floor(b) < b){
return NAN;
}
if (b == 0.0) {
return 1.0;
}
return (round(mod(b, 2.0)) != 1) ?
pow(abs(a), b) : sign(a) * pow(abs(a), b);
`,rue=`
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
vec4 result = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
bvec4 isExpZero = equal(b, vec4(0.0));
result.r = isExpZero.r ? 1.0 : result.r;
result.g = isExpZero.g ? 1.0 : result.g;
result.b = isExpZero.b ? 1.0 : result.b;
result.a = isExpZero.a ? 1.0 : result.a;
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
`+$2+`
return result;
`,aue=zn({opSnippet:sue,packedOpSnippet:rue}),oue={kernelName:jo,backendName:"webgl",kernelFunc:aue};function iue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s,i=r.shape.length,l=[],u=v.parseAxisParam(a,r.shape),c=u,p=T.getAxesPermutation(c,i),d=r;p!=null&&(d=os({inputs:{x:r},backend:n,attrs:{perm:p}}),c=T.getInnerMostAxes(c.length,i),l.push(d)),T.assertAxesAreInnerMostDims("prod",c,i);let h;if(n.shouldExecuteOnCPU([d])){let f=n.texData.get(d.dataId).values,{outVals:m,outShape:g,outDtype:y}=cne(d.shape,d.dtype,f,c);h=n.makeTensorInfo(g,y,m)}else{let[f,m]=T.computeOutAndReduceShapes(d.shape,c),g=v.sizeFromShape(m),y=ve({inputs:{x:d},backend:n,attrs:{shape:[-1,g]}}),x=uh(r.dtype),A=gu(y,x,"prod",n);h=ve({inputs:{x:A},backend:n,attrs:{shape:f}}),l.push(y),l.push(A)}if(o){l.push(h);let f=T.expandShapeToKeepDim(h.shape,u);h=ve({inputs:{x:h},backend:n,attrs:{shape:f}})}return l.forEach(f=>n.disposeIntermediateTensorInfo(f)),h}var lue={kernelName:Xo,backendName:"webgl",kernelFunc:iue};function uue(e){let{inputs:t,backend:n,attrs:s}=e,{shape:r,values:a,defaultValue:o,rowPartitionTensors:i}=t,{rowPartitionTypes:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),p=n.readSync(o.dataId),d=i.map(g=>n.readSync(g.dataId)),h=i.map(g=>g.shape),[f,m]=dne(u,r.shape,c,a.shape,a.dtype,p,o.shape,d,h,l);return n.makeTensorInfo(f,a.dtype,m)}var cue={kernelName:v0,backendName:"webgl",kernelFunc:uue},sC=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=pne(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},due={kernelName:Wc,backendName:"webgl",kernelFunc:sC},pue="return 1.0 / x;",hue=dt({opSnippet:pue}),fue={kernelName:Wl,backendName:"webgl",kernelFunc:hue},mue=xr+`
return (x < 0.0) ? 0.0 : x;
`,gue=`
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,yue=dt({opSnippet:mue,packedOpSnippet:gue}),Aue={kernelName:Ko,backendName:"webgl",kernelFunc:yue},xue=xr+`
return (x < 0.0) ? 0.0 : min(6.0, x);
`,bue=`
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,vue=dt({opSnippet:xue,packedOpSnippet:bue}),wue={kernelName:Jo,backendName:"webgl",kernelFunc:vue},kue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
ivec2 sourceCeilRC = ivec2(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
float top = topLeft + (topRight - topLeft) * fracRC.y;
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
float newValue = top + (bottom - top) * fracRC.x;
setOutput(newValue);
}
`}},Sue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${p};
// Compute the four integer indices.
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
ivec3 sourceCeilRC = ivec3(
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
// In parallel, construct four corners for all four components in
// packed 2x2 cell.
vec4 topLeft = vec4(
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 bottomLeft = vec4(
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
vec4 topRight = vec4(
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec4 bottomRight = vec4(
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
vec4 newValue = mix(top, bottom, fracRC.x);
setOutput(newValue);
}
`}};function Iue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new Sue(r.shape,l,u,a,o):new kue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],"float32")}var Cue={kernelName:Yo,backendName:"webgl",kernelFunc:Iue},Tue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(startRLerp - float(winHeight / 2));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(startCLerp - float(winWidth / 2));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float dxR = float(dyR) * heightScale;
int topDxRIndex = int(floor(dxR));
int bottomDxRIndex = int(min(ceil(dxR), ${s-1}.0));
float dxRLerp = dxR - float(topDxRIndex);
float inverseDxRLerp = 1.0 - dxRLerp;
float dxC = float(dyC) * widthScale;
int leftDxCIndex = int(floor(dxC));
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
float dxCLerp = dxC - float(leftDxCIndex);
float inverseDxCLerp = 1.0 - dxCLerp;
if (r == topDxRIndex && c == leftDxCIndex) {
// topLeft
accumulator +=
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
}
if (r == topDxRIndex && c == rightDxCIndex) {
// topRight
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
}
if (r == bottomDxRIndex && c == leftDxCIndex) {
// bottomLeft
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
}
if (r == bottomDxRIndex && c == rightDxCIndex) {
// bottomRight
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Nue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Tue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Eue={kernelName:k0,backendName:"webgl",kernelFunc:Nue},Rue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":d="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec2 effectiveInputOverOutputRatioRC = vec2(
${u[0]/c[0]},
${u[1]/c[1]});
const vec2 inputShapeRC = vec2(${o}.0, ${i}.0);
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
ivec2 yRC = coords.yz;
// Fractional source index.
vec2 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec2 sourceNearestRC = ivec2(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutput(newValue);
}
`}},_ue=class{constructor(e,t,n,s,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[a,o,i,l]=e;this.outputShape=[a,t,n,l];let u=[s&&t>1?o-1:o,s&&n>1?i-1:i],c=[s&&t>1?t-1:t,s&&n>1?n-1:n],p=s?"0.5":"0.0",d;r?d="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":d="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
const vec3 effectiveInputOverOutputRatioRC = vec3(
${u[0]/c[0]},
${u[1]/c[1]},
${u[1]/c[1]});
const vec3 inputShapeRC = vec3(${o}.0, ${i}.0,
${i}.0);
float getAValue(int b, int r, int c, int d) {
return getChannel(getA(b, r, c, d), vec2(c, d));
}
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
// Calculate values for next column in yRC.z.
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
// Fractional source index.
vec3 sourceFracIndexRC = ${d};
// Compute the coordinators of nearest neighbor point.
ivec3 sourceNearestRC = ivec3(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
// Should we calculate next column and row elements in 2x2 packed cell.
bool hasNextCol = d < ${l-1};
bool hasNextRow = coords.z < ${n-1};
vec4 newValue = vec4(
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
: 0.0,
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
: 0.0,
(hasNextRow && hasNextCol) ?
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
setOutput(newValue);
}
`}};function Due(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=H().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new _ue(r.shape,l,u,a,o):new Rue(r.shape,l,u,a,o);return n.runWebGLProgram(c,[r],r.dtype)}var $ue={kernelName:Zo,backendName:"webgl",kernelFunc:Due},Pue=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,s,r]=t,[,a,o]=e,i=[n&&a>1?s-1:s,n&&o>1?r-1:r],l=[n&&a>1?a-1:a,n&&o>1?o-1:o],u=i[0]/l[0],c=i[1]/l[1],p=1/u,d=1/c,h=Math.ceil(p)*2+2,f=Math.ceil(d)*2+2;this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int b = coords[0];
int d = coords[3];
int r = coords[1];
int c = coords[2];
float accumulator = 0.0;
const float heightScale = float(${u});
const float widthScale = float(${c});
const float invHeightScale = float(${p});
const float invWidthScale = float(${d});
const int winHeight = int(${h});
const int winWidth = int(${f});
// Compute bounds for where in dy we will look
float startRLerp = floor(float(r) * invHeightScale);
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
float startCLerp = floor(float(c) * invWidthScale);
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
// Loop over dy
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
int dyR = dyROffset + startDyR;
// Guard against the window exceeding the bounds of dy
if (dyR < 0 || dyR >= ${a}) {
continue;
}
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
int dyC = dyCOffset + startDyC;
// Guard against the window exceeding the bounds of dy
if (dyC < 0 || dyC >= ${o}) {
continue;
}
float sourceFracRow =
float(${i[0]}) *
(float(dyR) / float(${l[0]}));
float sourceFracCol =
float(${i[1]}) *
(float(dyC) / float(${l[1]}));
int sourceNearestRow = int(min(
float(int(${s}) - 1),
${n} ? float(round(sourceFracRow)) :
float(floor(sourceFracRow))));
int sourceNearestCol = int(min(
float(int(${r}) - 1),
${n} ? float(round(sourceFracCol)) :
float(floor(sourceFracCol))));
if (r == sourceNearestRow && c == sourceNearestCol) {
accumulator += getDy(b, dyR, dyC, d);
}
}
}
// End loop over dy
setOutput(accumulator);
}
`}};function Fue(e){let{inputs:t,backend:n,attrs:s}=e,{images:r,dy:a}=t,{alignCorners:o}=s,i=new Pue(a.shape,r.shape,o);return n.runWebGLProgram(i,[a],a.dtype)}var Oue={kernelName:w0,backendName:"webgl",kernelFunc:Fue},Mue=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
void main() {
int coord = getOutputCoords();
setOutput(getX(${e[0]} - coord - 1));
}
`;return}let s=o=>t.indexOf(o)!==-1&&e[o]!==1?`${e[o]} - coords[${o}] - 1`:`coords[${o}]`,r=e.map((o,i)=>s(i)).join(","),a=vt(n);this.userCode=`
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${r}));
}
`}},zue=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let s=as("rc",n),r=`${s[n-1]} + 1 < ${this.outputShape[n-1]}`,a=`${s[n-2]} + 1 < ${this.outputShape[n-2]}`,o=vt(n);n===1?this.userCode=`
void main(){
int rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = getChannel(getX(${e[0]} - rc - 1),
${e[0]} - rc - 1);
if(${r}){
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
${e[0]} - (rc + 1) - 1);
}
setOutput(result);
}
`:this.userCode=`
void main() {
${o} rc = getOutputCoords();
vec4 result = vec4(0.);
result.r = ${i(s.slice())};
if(${r}){
result.g = ${l(s.slice())};
}
if(${a}) {
result.b = ${u(s.slice())};
if(${r}) {
result.a = ${c(s.slice())};
}
}
setOutput(result);
}
`;function i(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function c(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let f=e.map((y,x)=>d(x,h)),m=f.join(","),g=f.slice(-2).join(",");return`getChannel(getX(${m}), vec2(${g}))`}function d(h,f){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${f[h]} - 1`:`${f[h]}`}}};function Lue(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=r.shape.length,i=v.parseAxisParam(a,r.shape);if(o===0)return zs({inputs:{x:r},backend:n});let l=H().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new zue(r.shape,i):new Mue(r.shape,i);return n.runWebGLProgram(l,[r],r.dtype)}var Bue={kernelName:Ul,backendName:"webgl",kernelFunc:Lue},Wue=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[],this.customUniforms=[{name:"params",type:"vec4"}];let n=e[1],s=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
vec3 fill = vec3(${t.join(",")});
float outputValue = fill[coords[3]];`,this.userCode=`
void main() {
ivec4 coords = getOutputCoords();
int x = coords[2];
int y = coords[1];
float coordXFloat = (float(x) - params[0]) * params[3] -
(float(y) - params[1]) * params[2];
float coordYFloat = (float(x) - params[0]) * params[2] +
(float(y) - params[1]) * params[3];
int coordX = int(round(coordXFloat + params[0]));
int coordY = int(round(coordYFloat + params[1]));
${r}
if(coordX >= 0 && coordX < ${s} && coordY >= 0 && coordY < ${n}) {
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
}
setOutput(outputValue);
}
`}},Vue={kernelName:su,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new Wue(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[[u,c,Math.sin(r),Math.cos(r)]];return i.runWebGLProgram(l,[s],s.dtype,p)}},Uue=`
// OpenGL ES does not support round function.
// The algorithm is based on banker's rounding.
float base = floor(x);
if ((x - base) < 0.5) {
return floor(x);
} else if ((x - base) > 0.5) {
return ceil(x);
} else {
if (mod(base, 2.0) == 0.0) {
return base;
} else {
return base + 1.0;
}
}
`,Gue=dt({opSnippet:Uue}),Hue={kernelName:Gl,backendName:"webgl",kernelFunc:Gue},jue="return inversesqrt(x);",que=dt({opSnippet:jue,cpuKernelImpl:hne}),Xue={kernelName:Qo,backendName:"webgl",kernelFunc:que},rC=class{constructor(e,t,n,s,r,a,o=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=a;let i=vt(r.length),l=vt(a.length),u="";n===1?u="i":n===2&&(u="i, j");let c=`getIndices(${u})`,p="";s===1?p="i":s===2&&(p="i, coords[1]");let d=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
${i} strides = ${i}(${r});
void main() {
${l} coords = getOutputCoords();
float sum = 0.0;
bool found = false;
for (int i = 0; i < ${e}; i++) {
int flattenedIndex = 0;
for (int j = 0; j < ${t}; j++) {
int index = round(${c});
flattenedIndex += index * ${h};
}
if (flattenedIndex == coords[0]) {
sum += ${d};
found = true;
}
}
setOutput(mix(getDefaultValue(), sum, float(found)));
}
`}};function Kue(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=ve({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=ve({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new rC(l,i,h.shape.length,f.shape.length,c,d),y=n.runWebGLProgram(g,[f,h,m],f.dtype),x=ve({inputs:{x:y},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(m),x}var Zue={kernelName:Hl,backendName:"webgl",kernelFunc:Kue},Yue=class{constructor(e,t,n,s){this.variableNames=["sortedSequence","values"],this.customUniforms=[{name:"numInputs",type:"int"}],this.outputShape=[e,n];let r="while (left < right) {",a=`for (int i = 0; i < ${Math.ceil(Math.log2(t+1))}; ++i) { if (left >= right) break;`,o=H().getNumber("WEBGL_VERSION")===2?r:a,i=s==="left"?"<":"<=";this.userCode=`
int findBound(int batch, float value) {
int left = 0;
int right = numInputs;
int mid;
${o}
mid = (left + right) / 2;
if (getSortedSequence(batch, mid) ${i} value) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int valueIndex = coords[1];
float value = getValues(batch, valueIndex);
setOutput(float(findBound(batch, value)));
}
`}};function Jue(e){let{inputs:t,backend:n,attrs:s}=e,{sortedSequence:r,values:a}=t,{side:o}=s,i=new Yue(r.shape[0],r.shape[1],a.shape[1],o),l=[[r.shape[1]]];return n.runWebGLProgram(i,[r,a],"int32",l)}var Que={kernelName:S0,backendName:"webgl",kernelFunc:Jue},ece=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let s,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",s="resRC";else{let o=["resRC.x","resRC.y","resRC.z","resRC.w"],i=[],l=[];for(let u=0;u<t.length;u++)l.push(`${o[u]}`),u<e&&i.push(`${o[u]}`);s=i.join(),r=l.join()}let a=vt(n);this.userCode=`
void main() {
${a} resRC = getOutputCoords();
float cVal = getC(${s});
if (cVal >= 1.0) {
setOutput(getA(${r}));
} else {
setOutput(getB(${r}));
}
}
`}};function tce(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new ece(s.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(o,[s,r,a],Un(r.dtype,a.dtype))}var nce={kernelName:jl,backendName:"webgl",kernelFunc:tce},sce=`
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
// see: https://arxiv.org/abs/1706.02515
float scaleAlpha = ${T.SELU_SCALEALPHA};
float scale = ${T.SELU_SCALE};
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
`,rce=dt({opSnippet:sce}),ace={kernelName:Vc,backendName:"webgl",kernelFunc:rce},oce=gd+`
return 1.0 / (1.0 + exp(-1.0 * x));
`,ice=`
vec4 result = 1.0 / (1.0 + exp(-1.0 * x));
bvec4 isNaN = isnan(x);
result.r = isNaN.r ? x.r : result.r;
result.g = isNaN.g ? x.g : result.g;
result.b = isNaN.b ? x.b : result.b;
result.a = isNaN.a ? x.a : result.a;
return result;
`,lce=dt({opSnippet:oce,packedOpSnippet:ice,cpuKernelImpl:mne}),uce={kernelName:ti,backendName:"webgl",kernelFunc:lce},cce=`
if (isnan(x)) { return 0.0; }
return sign(x);
`,dce=dt({opSnippet:cce}),pce={kernelName:Uc,backendName:"webgl",kernelFunc:dce},hce=gd+`
return sin(x);
`,fce=dt({opSnippet:hce}),mce={kernelName:ei,backendName:"webgl",kernelFunc:fce},gce=`
float e2x = exp(x);
return (e2x - 1.0 / e2x) / 2.0;
`,yce=dt({opSnippet:gce}),Ace={kernelName:Xl,backendName:"webgl",kernelFunc:yce},xce=`
float epsilon = 1.1920928955078125e-7;
float threshold = log(epsilon) + 2.0;
bool too_large = x > -threshold;
bool too_small = x < threshold;
float result;
float exp_x = exp(x);
if (too_large){
result = x;
}
else if (too_small){
result = exp_x;
}
else{
result = log(exp_x + 1.0);
}
return result;
`,bce=dt({opSnippet:xce}),vce={kernelName:Gc,backendName:"webgl",kernelFunc:bce},wce=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=nC({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=ve({inputs:{x:c},backend:n,attrs:{shape:p}}),m=os({inputs:{x:f},backend:n,attrs:{perm:d}}),g=ve({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},kce={kernelName:Kl,backendName:"webgl",kernelFunc:wce};function Sce(e){let{inputs:t,backend:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=t;if(a.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
${a.shape}`);if(s.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
${s.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
${r.shape}`);if(o.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
${o.shape}`);let i=n.readSync(s.dataId),l=n.readSync(r.dataId),u=n.readSync(a.dataId),c=n.readSync(o.dataId)[0],[p,d,h,f,m]=yne(i,s.shape,s.dtype,l,r.dtype,u,c);return[n.makeTensorInfo(d,s.dtype,p),n.makeTensorInfo([d[0]],r.dtype,h),n.makeTensorInfo([f.length],"bool",new Uint8Array(f.map(g=>Number(g)))),n.makeTensorInfo([m.length],s.dtype,new Int32Array(m))]}var Ice={kernelName:eh,backendName:"webgl",kernelFunc:Sce};function Cce(e){let{inputs:t,backend:n}=e,{inputIndices:s,inputShape:r,newShape:a}=t;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=Array.from(n.readSync(r.dataId)),i=n.readSync(s.dataId),l=Array.from(n.readSync(a.dataId)),[u,c,p]=Ane(i,s.shape,s.dtype,o,l);return[n.makeTensorInfo(c,s.dtype,u),n.makeTensorInfo([p.length],a.dtype,new Int32Array(p))]}var Tce={kernelName:Hc,backendName:"webgl",kernelFunc:Cce};function Nce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=I9(o,s.shape,s.dtype,i,l,!0);return n.makeTensorInfo(c,s.dtype,u)}var Ece={kernelName:th,backendName:"webgl",kernelFunc:Nce};function Rce(e){let{inputs:t,backend:n}=e,{data:s,indices:r,segmentIds:a}=t;if(s.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
${a.shape}`);let o=n.readSync(s.dataId),i=n.readSync(r.dataId),l=n.readSync(a.dataId),[u,c]=I9(o,s.shape,s.dtype,i,l);return n.makeTensorInfo(c,s.dtype,u)}var _ce={kernelName:nh,backendName:"webgl",kernelFunc:Rce};function Dce(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let y=n.bufferSync(r),x=n.bufferSync(a),A=v.decodeString(n.readSync(o.dataId)[0]),b=fne(y,x,i,d,c,u,l,p,A,h);return n.makeTensorInfo(i,b.dtype,b.values)}let f=new rC(u,l,r.shape.length,a.shape.length,p,[d,1],h),m=n.runWebGLProgram(f,[a,r,o],a.dtype),g=ve({inputs:{x:m},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(m),g}var $ce={kernelName:sh,backendName:"webgl",kernelFunc:Dce};function Pce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=yd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var Fce={kernelName:Zl,backendName:"webgl",kernelFunc:Pce},K7="return sqrt(x);",Oce=dt({opSnippet:K7,packedOpSnippet:K7,cpuKernelImpl:xne}),Mce={kernelName:ni,backendName:"webgl",kernelFunc:Oce},zce="return x * x;",Lce=dt({opSnippet:zce}),Bce={kernelName:jc,backendName:"webgl",kernelFunc:Lce},Z7="return (a - b) * (a - b);",Wce=zn({opSnippet:Z7,packedOpSnippet:Z7}),Vce={kernelName:ai,backendName:"webgl",kernelFunc:Wce};function Uce({inputs:e,attrs:t,backend:n}){let{x:s}=e,r=xr+`
return x > 0.0 ? 1.0 : float(${t.alpha});
`,a=new ba(s.shape,r);return n.runWebGLProgram(a,[s],s.dtype)}var Gce={kernelName:li,backendName:"webgl",kernelFunc:Uce},Hce=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let s=n.length,r=vt(n.length),a=vt(n.length),o="";if(s===1)o="coords * strides + begin";else{let i=0;o=n.map((l,u)=>(i++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${i-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
${r} begin = ${r}(${e});
${r} strides = ${r}(${t});
void main() {
${a} coords = getOutputCoords();
setOutput(getX(${o}));
}
`}};function jce(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ve({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let C=Gt.computeOutShape(x,A,b),E=yd({inputs:{x:r},backend:n,attrs:{begin:x,size:C}});w=ve({inputs:{x:E},backend:n,attrs:{shape:f}}),n.disposeIntermediateTensorInfo(E)}else if(n.shouldExecuteOnCPU([r])){let E=n.readSync(r.dataId),_=We(r.shape,r.dtype,E),$=bne(h,_,b,x);w=n.makeTensorInfo(f,r.dtype,$.values)}else{let E=new Hce(x,b,h);w=n.runWebGLProgram(E,[r],r.dtype)}let k=ve({inputs:{x:w},backend:n,attrs:{shape:f}});return n.disposeIntermediateTensorInfo(w),k}var qce={kernelName:Yl,backendName:"webgl",kernelFunc:jce};function Xce(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=vne(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var Kce={kernelName:qc,backendName:"webgl",kernelFunc:Xce};function Zce(e){let{inputs:t,backend:n,attrs:s}=e,{skipEmpty:r}=s,{input:a,delimiter:o}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(a.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${a.shape}`);if(o.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${o.shape}`);let i=n.readSync(a.dataId),l=n.readSync(o.dataId)[0],[u,c,p]=wne(i,l,r),d=c.length;return[n.makeTensorInfo([d,2],"int32",u),n.makeTensorInfo([d],"string",c),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var Yce={kernelName:rh,backendName:"webgl",kernelFunc:Zce};function Jce(e){let{inputs:t,backend:n,attrs:s}=e,{numBuckets:r}=s,{input:a}=t;if(a.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let o=n.readSync(a.dataId),i=kne(o,r);return n.makeTensorInfo(a.shape,"int32",i)}var Qce={kernelName:ah,backendName:"webgl",kernelFunc:Jce},ede="return tan(x);",tde=dt({opSnippet:ede}),nde={kernelName:Jl,backendName:"webgl",kernelFunc:tde},sde=`
float e2x = exp(-2.0 * abs(x));
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
`,rde=dt({opSnippet:sde}),ade={kernelName:ii,backendName:"webgl",kernelFunc:rde},ode=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[a]*t[a];this.outputShape=n,this.rank=n.length;let s=vt(this.rank),r=ide(e);this.userCode=`
void main() {
${s} resRC = getOutputCoords();
setOutput(getA(${r}));
}
`}};function ide(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],s=[];for(let r=0;r<e.length;r++)s.push(`imod(${n[r]}, ${e[r]})`);return s.join()}function aC(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(r.dtype==="string"||r.shape.length>5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=Ine(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new ode(r.shape,a);return n.runWebGLProgram(o,[r],r.dtype)}var lde={kernelName:Ra,backendName:"webgl",kernelFunc:aC},ude=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"negativeInf",type:"float"},{name:"dir",type:"int"},{name:"inc",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced above,
// Figure5(a) shows that element[1] is in the
// second half of the group when group size is 2, but it is in the
// first half of the group when group size is 4.
bool isFirstInPair = imod(elemIdx, 2 * inc) < inc;
int i = isFirstInPair ? elemIdx : elemIdx - inc;
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + inc : int(getIndices(batch, i + inc));
float x0 = i0 < n ? getX(batch, i0) : negativeInf;
float x1 = i1 < n ? getX(batch, i1) : negativeInf;
// Denotes which direction indices are in (ascending or descending).
bool reverse = imod(elemIdx, 2 * dir) >= dir;
bool isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) { // Elements in opposite order of direction
int iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutput(float(i0));
} else {
setOutput(float(i1));
}
}
`}},cde=class{constructor(e){this.variableNames=["x","indices"],this.customUniforms=[{name:"n",type:"int"},{name:"firstPass",type:"int"},{name:"k",type:"int"}],this.outputShape=e,this.userCode=`
void main() {
// Takes max of indices (0, k), (1, k + 1), (2, k + 2) ...
ivec2 coords = getOutputCoords();
int batch = coords[0];
int elemIdx = coords[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _ (k=4),
// we only need to output the indices at positions |, the indices at
// positions _ can be thrown away, see Figure5(b) After Phase 2
// (Merge phase) in the Bitonic Top K paper referenced above.
// For example, the paper shows we only need to output the orange bars.
// The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back
// to the previous sequence to find the corresponding value,
// we need to double the index. When we double the index,
// we basically interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k position
// of each 2k positions by - elemIdx % k. E.g. for output at
// index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
int i = elemIdx < k ? elemIdx : (elemIdx * 2 - imod(elemIdx, k));
int i0 = firstPass == 1 ? i : int(getIndices(batch, i));
int i1 = firstPass == 1 ? i + k : int(getIndices(batch, i + k));
float x0 = getX(batch, i0);
float x1 = i1 < n ? getX(batch, i1) : x0;
setOutput(x0 >= x1 ? float(i0) : float(i1));
}
`}};function Bi(e,t){t!==null&&e.disposeIntermediateTensorInfo(t)}function Y7(e){let t=1;for(;t<e;)t*=2;return t}function dde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=H().getNumber("TOPK_LAST_DIM_CPU_HANDOFF_SIZE_THRESHOLD"),l=H().getNumber("TOPK_K_CPU_HANDOFF_THRESHOLD"),u=r.shape,c=u[u.length-1];if(n.shouldExecuteOnCPU([r])||c<i||a>l){let $=n.readSync(r.dataId),[R,P]=Cne($,u,r.dtype,a,o);return[n.makeTensorInfo(R.shape,R.dtype,R.values),n.makeTensorInfo(P.shape,P.dtype,P.values)]}if(a===0)return u[u.length-1]=0,[n.makeTensorInfo(u,r.dtype,[]),n.makeTensorInfo(u,"int32",[])];if(c===1)return[r,qh({attrs:{shape:u,dtype:"int32",value:0},backend:n})];let p=n.texData.get(r.dataId),d=p!==null&&p.isPacked,h=d?n.unpackTensor(r):r,m=v.sizeFromShape(u)/c,g=ve({inputs:{x:h},attrs:{shape:[m,c]},backend:n});d&&Bi(n,h);let y=Y7(a),x=Y7(c),A=null,b=()=>A===null?[g,g]:[g,A],w=($,R,P)=>{let S=b(),M=new ude(P),U=[[c],[A===null?1:0],[Number.NEGATIVE_INFINITY],[$],[R]],K=A;A=n.runWebGLProgram(M,S,"int32",U),Bi(n,K)};for(let $=1;$<y;$*=2){let R=$*2;for(let P=$;P>=1;P/=2)w(R,P,[m,x])}for(let $=x;$>y;$/=2){let R=b(),P=new cde([m,$/2]),M=[[c],[A===null?1:0],[y]],L=A;A=n.runWebGLProgram(P,R,"int32",M),Bi(n,L);let U=y/2,K=U*2;for(let q=U;q>=1;q/=2)w(K,q,A.shape)}let k=A;A=yd({inputs:{x:A},backend:n,attrs:{begin:0,size:[m,a]}}),Bi(n,k);let C=Z9({inputs:{x:g,indices:A},backend:n,attrs:{axis:1,batchDims:1}});Bi(n,g);let E=u.slice(0,-1);E.push(a),k=A,A=ve({inputs:{x:A},attrs:{shape:E},backend:n}),Bi(n,k);let _=C;return C=ve({inputs:{x:C},attrs:{shape:E},backend:n}),Bi(n,_),[C,A]}var pde={kernelName:Ql,backendName:"webgl",kernelFunc:dde},hde=class{constructor(e,t,n,s,r,a){this.variableNames=["Image","Transforms"],this.outputShape=a;let o=n==="nearest"?1:2,i;switch(s){case"constant":i=1;break;case"reflect":i=2;break;case"wrap":i=3;break;case"nearest":i=4;break;default:i=1;break}this.userCode=`
float mapCoord(float outCoord, float len) {
float inCoord = outCoord;
if(${i} == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
inCoord;
}
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz2 = 2.0 * len;
inCoord -= sz2 * float(int(float(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
float sz = len - 1.0;
inCoord -= len * float(int(float(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (${i} == 4) {
return clamp(outCoord, 0.0, len - 1.0);
} else {
return outCoord;
}
}
float readWithFillValue(int batch, int coordY, int coordX,
int channel) {
float outputValue;
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = float(${r});
}
return outputValue;
}
void main() {
ivec4 coords = getOutputCoords();
float outputValue;
int batch = coords[0];
int x = coords[2];
int y = coords[1];
int channel = coords[3];
float xf = float(x);
float yf = float(y);
float a1 = getTransforms(batch, 0);
float a2 = getTransforms(batch, 1);
float a3 = getTransforms(batch, 2);
float b1 = getTransforms(batch, 3);
float b2 = getTransforms(batch, 4);
float b3 = getTransforms(batch, 5);
float c1 = getTransforms(batch, 6);
float c2 = getTransforms(batch, 7);
float projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = float(${r});
} else {
float inX = (a1 * xf + a2 * yf + a3) / projection;
float inY = (b1 * xf + b2 * yf + b3) / projection;
float mapX = mapCoord(inX, float(${t}));
float mapY = mapCoord(inY, float(${e}));
if (${o} == 1) {
int coordY = int(round(mapY));
int coordX = int(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
float yFloor = floor(mapY);
float xFloor = floor(mapX);
float yCeil = yFloor + 1.0;
float xCeil = xFloor + 1.0;
float valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
float valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutput(outputValue);
}
`}};function fde(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new hde(p,d,o,i,l,g);return n.runWebGLProgram(y,[r,a],"float32")}var mde={kernelName:eu,backendName:"webgl",kernelFunc:fde};function gde(e){let{inputs:t,attrs:n,backend:s}=e,{axis:r}=n,{x:a}=t;cd(a,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let o=s.readSync(a.dataId),{outputValues:i,outputShape:l,indices:u}=Tne(o,r,a.shape,a.dtype);return[s.makeTensorInfo(l,a.dtype,i),s.makeTensorInfo([u.length],"int32",u)]}var yde={kernelName:I0,backendName:"webgl",kernelFunc:gde};function Ade(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=yd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=ve({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeIntermediateTensorInfo(m)),f}var xde={kernelName:tu,backendName:"webgl",kernelFunc:Ade},bde=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,s=e.batchSize,r=e.inSize,a=e.numSegments,o=a*Math.ceil(r/n);this.outputShape=[s,o];let i="0.0",l="sumValue",u=Math.floor(n/4)*4,c=n%4,p=`
sumValue += dot(values, segFilter);
`,d="";r%n>0&&(d=`
if (inIdx < 0 || inIdx >= ${r}) {
return initializationValue;
}
`);let h="";r%n>0&&(h=`
if (inIdx < 0 || inIdx >= ${r}) {
return -1.0;
}
`),this.userCode=`
const float initializationValue = ${i};
float getValue(int batch, int inIdx) {
${d}
return getX(batch, inIdx);
}
float getSegmentIdAtIndex(int inIdx) {
${h}
return getSegmentIds(inIdx);
}
void main() {
ivec2 coords = getOutputCoords();
int batch = coords[0];
int outIdx = coords[1];
int inOffset = int(floor(float(outIdx) / float(
${a})) * float(${n}));
int currentSeg = int(mod(float(outIdx), float(${a})));
float sumValue = 0.0;
for (int i = 0; i < ${u}; i += 4) {
int inIdx = inOffset + i;
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
getValue(batch, inIdx + 3)
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
);
${p}
}
int inIdx = inOffset + ${u};
if (${c===1}) {
vec4 values = vec4(
getValue(batch, inIdx),
initializationValue,
initializationValue,
initializationValue
);
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
0,
0,
0
);
${p}
} else if (${c===2}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
initializationValue,
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
0,
0
);
${p}
} else if (${c===3}) {
vec4 values = vec4(
getValue(batch, inIdx),
getValue(batch, inIdx + 1),
getValue(batch, inIdx + 2),
initializationValue
);
vec4 segFilter = vec4(
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
0
);
${p}
}
setOutput(${l});
}
`}};function vde(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,segmentIds:a}=t,{numSegments:o}=s,i=r.shape.length,l=[],u=0,c=T.getAxesPermutation([u],i),p=r;c!=null&&(p=os({inputs:{x:r},backend:n,attrs:{perm:c}}),l.push(p),u=T.getInnerMostAxes(1,i)[0]);let d=T.segment_util.computeOutShape(p.shape,u,o),h=v.sizeFromShape([p.shape[u]]),f=ve({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(f);let m=uh(r.dtype),g=(b,w,k,C,E)=>{let _=b.shape[0],$=b.shape[1],R=T.segment_util.segOpComputeOptimalWindowSize($,E),P={windowSize:R,inSize:$,batchSize:_,numSegments:E},S=new bde(P,w),M=n.compileAndRun(S,[b,k],C);if(l.push(M),M.shape[1]===E)return M;let L=sC({backend:n,attrs:{start:0,stop:E,step:1,dtype:"float32"}}),U=aC({inputs:{x:L},backend:n,attrs:{reps:[$/R]}});return l.push(L),l.push(U),g(M,w,U,C,E)},y=g(f,"unsortedSegmentSum",a,m,o),x=ve({inputs:{x:y},backend:n,attrs:{shape:d}}),A=x;if(c!=null){l.push(x);let b=T.getUndoAxesPermutation(c);A=os({inputs:{x:A},backend:n,attrs:{perm:b}})}return l.forEach(b=>n.disposeIntermediateTensorInfo(b)),A}var wde={kernelName:oh,backendName:"webgl",kernelFunc:vde},kde=[wse,Sse,Tse,Rse,Dse,Fse,Mse,Lse,Use,Hse,Xse,Yse,ere,rre,ire,ure,dre,mre,yre,xre,kre,Rre,Dre,Pre,Bre,Vre,jre,sse,Kre,eae,rae,cae,pae,fae,gae,Aae,vae,Sae,Tae,Eae,_ae,$ae,Oae,zae,Vae,Gae,qae,Zae,Jae,noe,ooe,coe,hoe,goe,yoe,xoe,voe,koe,Ioe,Toe,_oe,Poe,Moe,Loe,Voe,Hoe,Koe,Qoe,nse,tie,Jre,rie,iie,cie,ase,fie,Aie,bie,Sie,Tie,_ie,Pie,zie,Vie,Hie,qie,Yie,Qie,tle,ale,ile,ule,dle,hle,yle,vle,Ile,$le,cse,Mle,Ble,Ule,jle,Ore,Kle,Yle,Qle,nue,oue,ise,lue,cue,due,Mre,Ele,fue,Aue,wue,pse,Cue,Eue,$ue,Oue,Bue,Vue,Hue,Xue,Zue,Que,nce,ace,uce,pce,mce,Ace,Nre,_le,vce,kce,Ice,Tce,Ece,_ce,$ce,Fce,Mce,Bce,Vce,Gce,qce,Kce,Yce,Qce,Rle,xse,nde,ade,lde,pde,mde,bse,yde,xde,wde,Zle];for(let e of kde)tr(e);var jt;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(jt||(jt={}));var Bp;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid",e[e.elu=6]="elu"})(Bp||(Bp={}));var oC;function Sde(e){oC=e.wasm.cwrap(to,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function Ide(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s,d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=0;if(o!=null){let E=n.dataIdMap.get(o.dataId);if(E.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${E.shape.length}.`);f=E.id}let m=i==null?0:n.dataIdMap.get(i.dataId).id,g=Bp[c];if(g==null)throw new Error(`${c} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],x=u?a.shape[1]:a.shape[2],A=au.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)),b=n.makeOutput([...A,y,x],r.dtype),w=n.dataIdMap.get(b.dataId).id,k=new Uint8Array(new Int32Array(r.shape).buffer),C=new Uint8Array(new Int32Array(a.shape).buffer);return oC(d,k,r.shape.length,h,C,a.shape.length,l,u,g,f,m,p||0,w),b}var Cde={kernelName:to,backendName:"wasm",setupFunc:Sde,kernelFunc:Ide};function Nn(e,t){let n;function s(a){n=a.wasm.cwrap(e,null,["number","number","number"])}function r(a){let{backend:o,inputs:{x:i}}=a,l=o.dataIdMap.get(i.dataId).id,u=o.makeOutput(i.shape,t||i.dtype),c=o.dataIdMap.get(u.dataId).id;return v.sizeFromShape(u.shape)===0||n(l,jt[i.dtype],c),u}return{kernelName:e,backendName:"wasm",setupFunc:s,kernelFunc:r}}var Tde=Nn(ml);function Ln(e,t,n){let s;function r(o){s=o.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function a(o){let{backend:i,inputs:l}=o,{a:u,b:c}=l,p=i.dataIdMap.get(u.dataId).id,d=i.dataIdMap.get(c.dataId).id,h=n!=null?n:u.dtype,f=T.assertAndGetBroadcastShape(u.shape,c.shape),m=i.makeOutput(f,h);if(v.sizeFromShape(f)===0)return m;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(c.shape).buffer),x=i.dataIdMap.get(m.dataId).id;return(()=>s(p,g,u.shape.length,d,y,c.shape.length,jt[u.dtype],x))(),m}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:a}}var Nde=!0,Ede=Ln(Na,Nde),iC;function Rde(e){iC=e.wasm.cwrap(mo,null,["array","number","number","number"])}function _de(e){let{inputs:t,backend:n}=e,s=n.makeOutput(t[0].shape,t[0].dtype);if(v.sizeFromShape(s.shape)===0)return s;let r=t.map(i=>n.dataIdMap.get(i.dataId).id),a=new Uint8Array(new Int32Array(r).buffer),o=n.dataIdMap.get(s.dataId).id;return iC(a,r.length,jt[s.dtype],o),s}var Dde={kernelName:mo,backendName:"wasm",setupFunc:Rde,kernelFunc:_de};function M2(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(s).set(r),s}var $de={kernelName:Po,backendName:"wasm",kernelFunc:M2},lC;function Pde(e){lC=e.wasm.cwrap(ea,null,["number","array","number","number","number","array","number"])}function po(e){let{inputs:t,backend:n,attrs:s}=e,[r,a]=Ode(t.x.shape,s.perm),o=!0;for(let f=0;f<a.length;f++)a[f]!==f&&(o=!1);let i=Fde(t.x.shape,s.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(o){let f=M2({inputs:t,backend:n});return f.shape=i,f}let u=n.makeOutput(i,l.dtype),c=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,d=new Uint8Array(new Int32Array(a).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return lC(c,h,l.shape.length,jt[l.dtype],p,d,a.length),u}function Fde(e,t){let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];return n}function Ode(e,t){let n=[],s=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&s.push(t[r]);for(let r=0;r<s.length;++r){let a=-1;for(let o=0;o<s.length;++o)s[o]>=r&&(a===-1||s[a]>s[o])&&(a=o);s[a]=r}return[n,s]}var Mde={kernelName:ea,backendName:"wasm",kernelFunc:po,setupFunc:Pde};function gi(e,t,n){let s=e.shape,r=e.shape.length,a=v.parseAxisParam(t,s),o=a,i=T.getAxesPermutation(o,r),l=null,u=!1;if(i!=null){let c=new Array(r);for(let h=0;h<c.length;h++)c[h]=s[i[h]];o=T.getInnerMostAxes(o.length,r),l=po({inputs:{x:e},attrs:{perm:i},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:a,axes:o,inputWasTransposed:u}}var uC;function zde(e){uC=e.wasm.cwrap(Cc,null,["number, number, number"])}function Lde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("all",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;uC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Bde={kernelName:Cc,backendName:"wasm",setupFunc:zde,kernelFunc:Lde},cC;function Wde(e){cC=e.wasm.cwrap(Tc,null,["number, number, number"])}function Vde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("any",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;cC(l,y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ude={kernelName:Tc,backendName:"wasm",setupFunc:Wde,kernelFunc:Vde},dC;function Gde(e){dC=e.wasm.cwrap(go,null,["number","number","number","number","number"])}function Hde(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=o,l=a,{transposed:u,axes:c,inputWasTransposed:p}=gi(a,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==o&&(l=u,i=y)}let d=l.shape.slice(0,-1),h=t.makeOutput(d,"int32"),f=t.dataIdMap.get(h.dataId).id,m=v.sizeFromShape(h.shape),g=l.shape[c[0]];return dC(i,jt[l.dtype],m,g,f),p&&t.disposeData(u.dataId),h}var jde={kernelName:go,backendName:"wasm",kernelFunc:Hde,setupFunc:Gde},pC;function qde(e){pC=e.wasm.cwrap(yo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Xde(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id,{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.strideHeight,x=c.strideWidth,A=c.inChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);if(c.dilationWidth!==1||c.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${c.dilationHeight}, ${c.dilationWidth}].`);let b=s.makeOutput(c.outShape,"float32"),w=s.dataIdMap.get(b.dataId).id;return pC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,w),b}var Kde={kernelName:yo,backendName:"wasm",setupFunc:qde,kernelFunc:Xde};function ys(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a);return v.assert(a===v.sizeFromShape(o),()=>`new shape: ${o}, old shape: ${s.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var Zde={kernelName:Vl,backendName:"wasm",kernelFunc:ys},hC;function Yde(e){hC=e.wasm.cwrap(Ao,null,["number","array","number","number","array","number","number","number","number"])}function Jde(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;if(r.dtype!=="float32"||a.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=a.shape.length,c=o?r.shape[l-2]:r.shape[l-1],p=i?a.shape[u-1]:a.shape[u-2],d=o?r.shape[l-1]:r.shape[l-2],h=i?a.shape[u-2]:a.shape[u-1],f=r.shape.slice(0,-2),m=a.shape.slice(0,-2),g=v.sizeFromShape(f),y=v.sizeFromShape(m),A=au.assertAndGetBroadcastShape(r.shape.slice(0,-2),a.shape.slice(0,-2)).concat([d,h]);v.assert(c===p,()=>`Error in matMul: inner shapes (${c}) and (${p}) of Tensors with shapes ${r.shape} and ${a.shape} and transposeA=${o} and transposeB=${i} must match.`);let b=o?[g,c,d]:[g,d,c],w=i?[y,h,p]:[y,p,h],k=ys({inputs:{x:r},backend:n,attrs:{shape:b}}),C=ys({inputs:{x:a},backend:n,attrs:{shape:w}}),E=n.dataIdMap.get(k.dataId).id,_=n.dataIdMap.get(C.dataId).id,$=o?k.shape[2]:k.shape[1],R=i?C.shape[1]:C.shape[2],P=Math.max(g,y),S=n.makeOutput([P,$,R],k.dtype),M=n.dataIdMap.get(S.dataId).id,L=new Uint8Array(new Int32Array(k.shape).buffer),U=new Uint8Array(new Int32Array(C.shape).buffer);return hC(E,L,k.shape.length,_,U,C.shape.length,o,i,M),n.disposeData(k.dataId),n.disposeData(C.dataId),S.shape=A,S}var Qde={kernelName:Ao,backendName:"wasm",setupFunc:Yde,kernelFunc:Jde};function hl(e){let{inputs:{x:t},attrs:{begin:n,size:s},backend:r}=e,[a,o]=Gt.parseSliceParams(t,n,s),i=Gt.isSliceContinous(t.shape,a,o),l=r.readSync(t.dataId),u=r.makeOutput(o,t.dtype),c=v.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(i){let f=Gt.computeFlatOffset(a,c);return t.dtype==="string"?p.stringBytes=l.slice(f,f+v.sizeFromShape(o)):r.typedArrayFromHeap(u).set(l.subarray(f,f+v.sizeFromShape(o))),u}if(t.dtype==="string"){let f=Vm(l,a,o,t.shape,t.dtype);return p.stringBytes=f,u}let d=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)epe(l,c[0],d,a,o);else if(h===3)tpe(l,c[0],c[1],d,a,o);else if(h===4)npe(l,c[0],c[1],c[2],d,a,o);else{let f=Vm(l,a,o,t.shape,t.dtype);d.set(f)}return u}function epe(e,t,n,s,r){let a=0,o=s[0],i=s[1],l=o+r[0];for(let u=o;u<l;u++){let c=u*t+i;n.set(e.subarray(c,c+r[1]),a),a+=r[1]}}function tpe(e,t,n,s,r,a){let o=0,i=r[0],l=r[1],u=r[2],c=i+a[0],p=l+a[1];for(let d=i;d<c;d++)for(let h=l;h<p;h++){let f=d*t+h*n+u;s.set(e.subarray(f,f+a[2]),o),o+=a[2]}}function npe(e,t,n,s,r,a,o){let i=0,l=a[0],u=a[1],c=a[2],p=l+o[0],d=u+o[1],h=c+o[2],f=a[3];for(let m=l;m<p;m++)for(let g=u;g<d;g++)for(let y=c;y<h;y++){let x=m*t+g*n+y*s+f;r.set(e.subarray(x,x+o[3]),i),i+=o[3]}}var spe={kernelName:ql,backendName:"wasm",kernelFunc:hl};function rpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s,i=a.reduce((y,x)=>y*x),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=ys({inputs:{x:r},backend:n,attrs:{shape:l}}),f=po({inputs:{x:h},backend:n,attrs:{perm:u}}),m=ys({inputs:{x:f},backend:n,attrs:{shape:c}}),g=hl({inputs:{x:m},backend:n,attrs:{begin:p,size:d}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(h.dataId),g}var ape={kernelName:yl,backendName:"wasm",kernelFunc:rpe};function Ad(e){let{inputs:{x:t},attrs:{dtype:n},backend:s}=e,r=s.makeOutput(t.shape,n),a=s.typedArrayFromHeap(t);return s.typedArrayFromHeap(r).set(a),r}var ope={kernelName:xo,backendName:"wasm",kernelFunc:Ad},ipe=Nn(bo),fC;function lpe(e){fC=e.wasm.cwrap(Ea,null,["number","number","number","number"])}function upe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return fC(i,a,o,u),l}var cpe={kernelName:Ea,backendName:"wasm",setupFunc:lpe,kernelFunc:upe};function mC(e){let{inputs:t,backend:n}=e,s=v.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=T.computeOutShape(t.map(h=>h.shape),s),a=t.filter(h=>v.sizeFromShape(h.shape)>0);if(a.length===1)return M2({inputs:{x:a[0]},backend:n});let o=n.makeOutput(r,t[0].dtype);if(v.sizeFromShape(r)===0)return o;let i=a.map(h=>h.shape);if(T.assertParamsConsistent(i,s),a[0].dtype==="string"){let h=a.map(A=>{let b=v.sizeFromShape(A.shape.slice(s));return ys({inputs:{x:A},backend:n,attrs:{shape:[-1,b]}})}),f=h.map(A=>({vals:n.readSync(A.dataId),shape:A.shape}));r=T.computeOutShape(h.map(A=>A.shape),1);let m=h[0].shape[0]===1,g=Ux(f,r,t[0].dtype,m),y=T.computeOutShape(a.map(A=>A.shape),s);o.shape=y;let x=n.dataIdMap.get(o.dataId);return x.stringBytes=T.fromStringArrayToUint8(g),h.forEach(A=>n.disposeData(A.dataId)),o}let l=v.sizeFromShape(a[0].shape.slice(0,s)),u=0,c=a.map(h=>{let f=v.sizeFromShape(h.shape.slice(s));return u+=f,f}),p=a.map(h=>n.typedArrayFromHeap(h)),d=n.typedArrayFromHeap(o);for(let h=0;h<l;h++){let f=h*u;for(let m=0;m<p.length;m++){let g=c[m],y=h*g,x=p[m].subarray(y,y+g);d.set(x,f),f+=g}}return o}var dpe={kernelName:Al,backendName:"wasm",kernelFunc:mC},gC;function ppe(e){gC=e.wasm.cwrap(vo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function hpe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p,dataFormat:d}=n,h=T.convertConv2DDataFormat(d),f=T.computeConv2DInfo(r.shape,a.shape,l,u,c,p,!1,h),m=f.filterHeight,g=f.filterWidth,y=f.padInfo.top,x=f.padInfo.right,A=f.padInfo.bottom,b=f.padInfo.left,w=f.dilationHeight,k=f.dilationWidth,C=f.strideHeight,E=f.strideWidth,_=f.inChannels,$=f.outChannels,R=f.padInfo.type==="SAME"?1:0;if(f.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${f.dataFormat}'. Please use 'channelsLast'.`);let P=s.makeOutput(f.outShape,"float32"),S=s.dataIdMap.get(P.dataId).id;return gC(o,r.shape[0],r.shape[1],r.shape[2],i,m,g,y,x,A,b,R,w,k,C,E,_,$,S),P}var fpe={kernelName:vo,backendName:"wasm",setupFunc:ppe,kernelFunc:hpe},yC;function mpe(e){yC=e.wasm.cwrap(wo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function gpe(e){let{backend:t,inputs:n,attrs:s}=e,{dy:r,filter:a}=n,{strides:o,pad:i,dataFormat:l,dimRoundingMode:u,inputShape:c}=s,p=1,d=T.convertConv2DDataFormat(l),h=T.computeConv2DInfo(c,a.shape,o,p,i,u,!1,d),{batchSize:f,filterHeight:m,filterWidth:g,inChannels:y,inHeight:x,inWidth:A,outChannels:b,outHeight:w,outWidth:k,strideHeight:C,strideWidth:E}=h,_=m-1-h.padInfo.top,$=g-1-h.padInfo.left,R=h.dataFormat==="channelsLast",P=v.computeStrides(h.inShape),S=v.computeStrides(r.shape),[M,L,U]=v.computeStrides(a.shape),K=P[0],q=R?P[1]:P[2],Z=R?P[2]:1,J=R?1:P[1],Q=S[0],ie=R?S[1]:S[2],re=R?S[2]:1,de=R?1:S[1],ue=t.makeOutput(h.inShape,"float32"),Ae=t.dataIdMap.get(ue.dataId).id,oe=t.dataIdMap.get(r.dataId).id,Re=t.dataIdMap.get(a.dataId).id;return yC(oe,Re,f,m,g,x,A,y,w,k,b,C,E,_,$,M,L,U,K,q,Z,J,Q,ie,re,de,Ae),ue}var ype={kernelName:wo,backendName:"wasm",setupFunc:mpe,kernelFunc:gpe},Ape=Nn(ko),xpe=Nn(So),ky;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(ky||(ky={}));var AC;function bpe(e){AC=e.wasm.cwrap(bl,null,["number","number","number","number","array","number","number","number","number","number"])}function vpe(e){let{backend:t,inputs:n,attrs:s}=e,{method:r,extrapolationValue:a,cropSize:o}=s,{image:i,boxes:l,boxInd:u}=n,c=l.shape[0],[p,d]=o,h=[c,p,d,i.shape[3]],f=t.dataIdMap.get(i.dataId),m;i.dtype!=="float32"&&(m=Ad({backend:t,inputs:{x:i},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(m.dataId));let g=f.id,y=t.dataIdMap.get(l.dataId).id,x=t.dataIdMap.get(u.dataId).id,A=t.makeOutput(h,"float32"),b=t.dataIdMap.get(A.dataId).id,w=new Uint8Array(new Int32Array(i.shape).buffer);return AC(g,y,x,c,w,p,d,ky[r],a,b),m!=null&&t.disposeData(m.dataId),A}var wpe={kernelName:bl,backendName:"wasm",setupFunc:bpe,kernelFunc:vpe},xC;function kpe(e){xC=e.wasm.cwrap(xl,null,["number","number","number","number","number","number"])}function Spe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumprod does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=po({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumprod",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;xC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=po({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Ipe={kernelName:xl,backendName:"wasm",setupFunc:kpe,kernelFunc:Spe},bC;function Cpe(e){bC=e.wasm.cwrap(Io,null,["number","number","number","number","number","number"])}function Tpe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s,l=r.shape.length;v.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=T.getAxesPermutation([a],l),c=r;u!==null&&(c=po({inputs:{x:r},attrs:{perm:u},backend:n}));let p=T.getInnerMostAxes(1,l)[0];T.assertAxesAreInnerMostDims("cumsum",[p],l);let d=n.makeOutput(c.shape,c.dtype),h=c.shape[p],f=n.dataIdMap.get(c.dataId).id,m=n.dataIdMap.get(d.dataId).id;bC(f,o?1:0,i?1:0,h,m,jt[r.dtype]);let g=d;if(u!==null){let y=T.getUndoAxesPermutation(u);g=po({inputs:{x:d},attrs:{perm:y},backend:n}),n.disposeData(c.dataId),n.disposeData(d.dataId)}return g}var Npe={kernelName:Io,backendName:"wasm",setupFunc:Cpe,kernelFunc:Tpe},vC;function Epe(e){vC=e.wasm.cwrap(vl,null,["number","number","number","array","number","array","array","number","number"])}function Rpe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=t.makeOutput(f,"float32"),y=t.dataIdMap.get(r.dataId).id,x=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(f).buffer),b=new Uint8Array(new Int32Array(v.computeStrides(f)).buffer),w=t.dataIdMap.get(m.dataId).id;return vC(y,a,o==="NHWC"?1:0,x,r.shape.length-1,A,b,f.length,w),m}var _pe={kernelName:vl,backendName:"wasm",setupFunc:Epe,kernelFunc:Rpe},wC;function Dpe(e){wC=e.wasm.cwrap(Co,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $pe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,o=s.dataIdMap.get(r.dataId).id,i=s.dataIdMap.get(a.dataId).id,{strides:l,dilations:u,pad:c,dimRoundingMode:p}=n,d=u==null?[1,1]:u,h=T.computeConv2DInfo(r.shape,a.shape,l,d,c,p,!0),f=h.filterHeight,m=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,x=h.padInfo.bottom,A=h.padInfo.left,b=h.dilationHeight,w=h.dilationWidth,k=h.strideHeight,C=h.strideWidth,E=h.inChannels,_=h.outChannels,$=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let R=s.makeOutput(h.outShape,"float32"),P=s.dataIdMap.get(R.dataId).id;return wC(o,r.shape[0],r.shape[1],r.shape[2],i,f,m,g,y,x,A,$,b,w,k,C,E,_,P),R}var Ppe={kernelName:Co,backendName:"wasm",setupFunc:Dpe,kernelFunc:$pe},Fpe=Nn(No),Ope=!1,Mpe=Ln(wl,Ope,"bool"),zpe=Nn(Eo,"float32");function Sy(e){let{inputs:t,attrs:n,backend:s}=e,{input:r}=t,{dim:a}=n,o=r.shape.length,i=r.shape.slice(),l=a;return a<0&&(v.assert(-(o+1)<=a,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+a+1),i.splice(l,0,1),ys({inputs:{x:r},backend:s,attrs:{shape:i}})}var Lpe={kernelName:kl,backendName:"wasm",kernelFunc:Sy};function kC(e){let{attrs:{shape:t,value:n,dtype:s},backend:r}=e,a=r.makeOutput(t,s);return r.typedArrayFromHeap(a).fill(n),a}var Bpe={kernelName:Pc,backendName:"wasm",kernelFunc:kC},SC;function Wpe(e){SC=e.wasm.cwrap(Il,null,["number","number","number","number","number","number"])}function Vpe(e){let{inputs:t,backend:n}=e,{image:s}=t,r=n.makeOutput(s.shape,s.dtype),a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,[i,l,u,c]=s.shape;return SC(a,i,l,u,c,o),r}var Upe={kernelName:Il,backendName:"wasm",kernelFunc:Vpe,setupFunc:Wpe},Gpe=Nn(Ro),Hpe=!1,jpe=Ln(_o,Hpe),IC;function qpe(e){IC=e.wasm.cwrap(Do,null,["number","number","number","number","number","number","number"])}function Xpe(e){let{backend:t,inputs:n,attrs:s}=e,{varianceEpsilon:r}=s,{x:a,mean:o,variance:i,offset:l,scale:u}=n,c=t.dataIdMap.get(a.dataId).id,p=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(i.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,f=u!=null?t.dataIdMap.get(u.dataId).id:0,m=t.makeOutput(a.shape,a.dtype);if(v.sizeFromShape(a.shape)===0)return m;let g=t.dataIdMap.get(m.dataId).id;return IC(c,p,d,h,f,r,g),m}var Kpe={kernelName:Do,backendName:"wasm",setupFunc:qpe,kernelFunc:Xpe},CC;function Zpe(e){CC=e.wasm.cwrap(no,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function Ype(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d),g=Bp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let re=s.dataIdMap.get(o.dataId);if(re.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==A)throw new Error(`FusedConv2D bias shape (${re.shape}) does not match the number of output channels (${A})`);b=re.id}let w=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,S=m.strideHeight,M=m.strideWidth,L=m.inChannels,U=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return CC(y,K,q,Z,x,w,k,b,C,E,_,$,U,R,P,S,M,L,A,g,ie,f||0,Q),J}var Jpe={kernelName:no,backendName:"wasm",setupFunc:Zpe,kernelFunc:Ype},TC;function Qpe(e){TC=e.wasm.cwrap(so,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function ehe(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dataFormat:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=n,m=T.computeConv2DInfo(r.shape,a.shape,l,c,u,d,!0),g=Bp[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=s.dataIdMap.get(r.dataId).id,x=s.dataIdMap.get(a.dataId).id,A=m.outChannels,b=0;if(o!=null){let re=s.dataIdMap.get(o.dataId);if(re.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${re.shape.length}.`);if(re.shape[0]!==A)throw new Error(`FusedDepthwiseConv2D bias shape (${re.shape}) does not match the number of output channels (${A})`);b=re.id}let w=m.filterHeight,k=m.filterWidth,C=m.padInfo.top,E=m.padInfo.right,_=m.padInfo.bottom,$=m.padInfo.left,R=m.dilationHeight,P=m.dilationWidth,S=m.strideHeight,M=m.strideWidth,L=m.inChannels,U=m.padInfo.type==="SAME"?1:0,K=m.batchSize,q=m.inHeight,Z=m.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let J=s.makeOutput(m.outShape,"float32"),Q=s.dataIdMap.get(J.dataId).id,ie=i==null?0:s.dataIdMap.get(i.dataId).id;return TC(y,K,q,Z,x,w,k,b,C,E,_,$,U,R,P,S,M,L,A,g,ie,f||0,Q),J}var the={kernelName:so,backendName:"wasm",setupFunc:Qpe,kernelFunc:ehe},NC;function nhe(e){NC=e.wasm.cwrap(Tl,null,["number","number","number","number","number","number","array","number"])}function she(e){let{backend:t,inputs:n}=e,{params:s,indices:r}=n,[a,o,i,l]=Jy.prepareAndValidate(s,r),u=t.makeOutput(a,s.dtype);if(o===0)return u;let c=r.shape,p=c[c.length-1],h=t.dataIdMap.get(s.dataId).id,m=t.dataIdMap.get(r.dataId).id,g=new Uint8Array(new Int32Array(l).buffer),y=t.dataIdMap.get(u.dataId).id;return NC(h,jt[s.dtype],m,o,p,i,g,y),u}var rhe={kernelName:Tl,backendName:"wasm",setupFunc:nhe,kernelFunc:she},EC;function ahe(e){EC=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function ohe(e){let{backend:t,inputs:n,attrs:s}=e,{x:r,indices:a}=n,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=t.readSync(a.dataId),c=r.shape[l];for(let _=0;_<u.length;++_){let $=u[_];v.assert($<=c-1&&$>=0,()=>`GatherV2: the index value ${$} is not in [0, ${c-1}]`)}let p=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),d=ys({inputs:{x:r},attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]},backend:t}),h=v.sizeFromShape(a.shape),f=ys({inputs:{x:a},attrs:{shape:[p.batchSize,h/p.batchSize]},backend:t}),m=[p.batchSize,p.outerSize,h/p.batchSize,p.sliceSize],g=t.makeOutput(m,r.dtype);if(v.sizeFromShape(r.shape)===0)return g;let y=d.shape.length-1,A=t.dataIdMap.get(d.dataId).id,w=t.dataIdMap.get(f.dataId).id,k=t.dataIdMap.get(g.dataId).id,C=new Uint8Array(new Int32Array(v.computeStrides(d.shape)).buffer),E=new Uint8Array(new Int32Array(v.computeStrides(m)).buffer);return EC(A,jt[r.dtype],C,y,w,p.batchSize,E,k),t.disposeData(d.dataId),t.disposeData(f.dataId),g.shape=p.outputShape,g}var ihe={kernelName:Cl,backendName:"wasm",setupFunc:ahe,kernelFunc:ohe},lhe=!1,uhe=Ln(Nl,lhe,"bool"),che=!1,dhe=Ln($o,che,"bool"),RC;function phe(e){RC=e.wasm.cwrap(Fo,null,["number","number","number","number"])}function hhe(e){let{inputs:{x:t},attrs:{alpha:n},backend:s}=e,r=s.dataIdMap.get(t.dataId).id,a=s.makeOutput(t.shape,"float32");if(v.sizeFromShape(t.shape)!==0){let o=s.dataIdMap.get(a.dataId).id;RC(r,jt[t.dtype],n,o)}return a}var fhe={kernelName:Fo,backendName:"wasm",setupFunc:phe,kernelFunc:hhe},mhe=!1,ghe=Ln(Rl,mhe,"bool"),yhe=!1,Ahe=Ln(_l,yhe,"bool"),xhe=Nn(Oo),bhe=!1,vhe=Ln(Dl,bhe,"bool"),whe=Nn($l),khe=!1,She=Ln(zc,khe,"bool"),Ihe=!1,Che=Ln(E6,Ihe,"bool"),_C;function The(e){_C=e.wasm.cwrap(Mo,null,["number","number","number","number"])}function Nhe(e){let{backend:t,inputs:n,attrs:s}=e,{reductionIndices:r,keepDims:a}=s,{x:o}=n,l=t.dataIdMap.get(o.dataId).id,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;u=c,l=A}let f=u.shape.length;T.assertAxesAreInnerMostDims("max",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,o.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;_C(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ehe={kernelName:Mo,backendName:"wasm",setupFunc:The,kernelFunc:Nhe},Rhe=!1,_he=Ln(zo,Rhe),DC;function Dhe(e){DC=e.wasm.cwrap(Lo,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $he(e){let{inputs:t,attrs:n,backend:s}=e,r=t.x,a=s.dataIdMap.get(r.dataId).id;v.assert(r.dtype==="float32",()=>`Error in MaxPool: only float32 input is supported. Got ${r.dtype}.`);let{filterSize:o,strides:i,pad:l,dimRoundingMode:u}=n,c=T.computePool2DInfo(r.shape,o,i,1,l,u),p=c.filterHeight,d=c.filterWidth,h=c.padInfo.top,f=c.padInfo.right,m=c.padInfo.bottom,g=c.padInfo.left,y=c.dilationHeight,x=c.dilationWidth,A=c.strideHeight,b=c.strideWidth,w=c.inChannels,k=c.outChannels;if(c.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${c.dataFormat}'. Please use 'channelsLast'.`);let C=s.makeOutput(c.outShape,"float32"),E=s.dataIdMap.get(C.dataId).id;return DC(a,r.shape[0],r.shape[1],r.shape[2],p,d,h,f,m,g,y,x,A,b,w,k,E),C}var Phe={kernelName:Lo,backendName:"wasm",setupFunc:Dhe,kernelFunc:$he},$C;function Fhe(e){$C=e.wasm.cwrap(Bo,null,["number, number, number"])}function Ohe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t),f=p;if(h){let b=t.dataIdMap.get(c.dataId).id;b!==i&&(u=c,l=b,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("mean",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=u;u.dtype!=="float32"&&(x=Ad({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(x.dataId).id);let A=t.makeOutput(m,"float32");if(v.sizeFromShape(u.shape)!==0){let b=t.dataIdMap.get(A.dataId).id;$C(l,y,b)}if(h&&t.disposeData(c.dataId),a){let b=T.expandShapeToKeepDim(A.shape,d);A.shape=b}return u.dtype!=="float32"&&t.disposeData(x.dataId),A}var Mhe={kernelName:Bo,backendName:"wasm",setupFunc:Fhe,kernelFunc:Ohe},PC;function zhe(e){PC=e.wasm.cwrap(Wo,null,["number","number","number","number"])}function Lhe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t);if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A)}let f=u.shape.length;T.assertAxesAreInnerMostDims("min",p,f);let[m,g]=T.computeOutAndReduceShapes(u.shape,p),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;PC(l,jt[o.dtype],y,A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Bhe={kernelName:Wo,backendName:"wasm",setupFunc:zhe,kernelFunc:Lhe},Whe=!1,Vhe=Ln(Vo,Whe),Iy;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(Iy||(Iy={}));var FC;function Uhe(e){FC=e.wasm.cwrap(Uo,null,["number","array","number","number","array","array","number","number"])}function Ghe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,mode:r}}=e,a=s.map((f,m)=>f[0]+t.shape[m]+f[1]),o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),l=n.dataIdMap.get(i.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),c=s.map(f=>f[0]),p=s.map(f=>f[1]),d=new Uint8Array(new Int32Array(c).buffer),h=new Uint8Array(new Int32Array(p).buffer);return FC(o,u,t.shape.length,jt[t.dtype],d,h,Iy[r],l),i}var Hhe={kernelName:Uo,backendName:"wasm",kernelFunc:Ghe,setupFunc:Uhe},jhe=!0,qhe=Ln(Go,jhe),Xhe=Nn(Pl);function fb(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),s=n[0],r=n[1],a=n[2],o=n[3];return e.wasm._free(t),{pSelectedIndices:s,selectedSize:r,pSelectedScores:a,pValidOutputs:o}}var OC;function Khe(e){OC=e.wasm.cwrap(Ol,"number",["number","number","number","number","number"])}function Zhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o}=s,{boxes:i,scores:l}=n,u=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(l.dataId).id,p=OC(u,c,a,r,o),{pSelectedIndices:d,selectedSize:h,pSelectedScores:f,pValidOutputs:m}=fb(t,p);return t.wasm._free(f),t.wasm._free(m),t.makeOutput([h],"int32",d)}var Yhe={kernelName:Ol,backendName:"wasm",setupFunc:Khe,kernelFunc:Zhe},MC;function Jhe(e){MC=e.wasm.cwrap(Bc,"number",["number","number","number","number","number","bool"])}function Qhe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,padToMaxOutputSize:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=MC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=fb(t,d);t.wasm._free(m);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([],"int32",g);return[y,x]}var efe={kernelName:Bc,backendName:"wasm",setupFunc:Jhe,kernelFunc:Qhe},zC;function tfe(e){zC=e.wasm.cwrap(Ml,"number",["number","number","number","number","number","number"])}function nfe(e){let{backend:t,inputs:n,attrs:s}=e,{iouThreshold:r,maxOutputSize:a,scoreThreshold:o,softNmsSigma:i}=s,{boxes:l,scores:u}=n,c=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,d=zC(c,p,a,r,o,i),{pSelectedIndices:h,selectedSize:f,pSelectedScores:m,pValidOutputs:g}=fb(t,d);t.wasm._free(g);let y=t.makeOutput([f],"int32",h),x=t.makeOutput([f],"float32",m);return[y,x]}var sfe={kernelName:Ml,backendName:"wasm",setupFunc:tfe,kernelFunc:nfe},rfe=!1,afe=Ln(Fl,rfe,"bool"),LC;function ofe(e){LC=e.wasm.cwrap(Ll,null,["number","number","number","number","number"])}function ife(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r}=t,{dtype:a,depth:o,onValue:i,offValue:l}=s,u=n.makeOutput([...r.shape,o],a),c=n.dataIdMap.get(u.dataId).id,d=n.dataIdMap.get(r.dataId).id;return LC(d,o,i,l,c),u}var lfe={kernelName:Ll,backendName:"wasm",setupFunc:ofe,kernelFunc:ife};function ufe(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(1),s}var cfe={kernelName:zl,backendName:"wasm",kernelFunc:ufe};function dfe(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return Sy({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=Sy({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=mC({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var pfe={kernelName:Bl,backendName:"wasm",kernelFunc:dfe},BC;function hfe(e){BC=e.wasm.cwrap(Ho,null,["number","array","number","number","array","array","number","number"])}function ffe(e){let{inputs:{x:t},backend:n,attrs:{paddings:s,constantValue:r}}=e,a=s.map((m,g)=>m[0]+t.shape[g]+m[1]);if(v.sizeFromShape(t.shape)===0)return kC({backend:n,attrs:{shape:a,value:r,dtype:t.dtype}});let o=n.dataIdMap.get(t.dataId).id,i=n.makeOutput(a,t.dtype),u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(t.shape).buffer),p=s.map(m=>m[0]),d=s.map(m=>m[1]),h=new Uint8Array(new Int32Array(p).buffer),f=new Uint8Array(new Int32Array(d).buffer);return BC(o,c,t.shape.length,jt[t.dtype],h,f,r,u),i}var WC={kernelName:Ho,backendName:"wasm",kernelFunc:ffe,setupFunc:hfe},mfe=!1,gfe=Ln(jo,mfe),VC;function yfe(e){VC=e.wasm.cwrap(qo,null,["number","number","number"])}function Afe(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=n.dataIdMap.get(s.dataId).id,o=n.dataIdMap.get(r.dataId).id,i=a,l=s,u=l;l.dtype!=="float32"&&(u=Ad({backend:n,inputs:{x:s},attrs:{dtype:"float32"}}),i=n.dataIdMap.get(u.dataId).id);let c=n.makeOutput(s.shape,"float32"),p=n.dataIdMap.get(c.dataId).id;return VC(i,o,p),l.dtype!=="float32"&&n.disposeData(u.dataId),c}var xfe={kernelName:qo,backendName:"wasm",setupFunc:yfe,kernelFunc:Afe},UC;function bfe(e){UC=e.wasm.cwrap(Xo,null,["number","number","number","number"])}function vfe(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("prod",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;UC(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var wfe={kernelName:Xo,backendName:"wasm",setupFunc:bfe,kernelFunc:vfe},kfe=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=jx(s,r,a,o),l=t.makeOutput([i.length],o);return t.typedArrayFromHeap(l).set(i),l},Sfe={kernelName:Wc,backendName:"wasm",kernelFunc:kfe},Ife=!0,Cfe=Ln(To,Ife),Tfe=Nn(Ko),Nfe=Nn(Jo),GC;function Efe(e){GC=e.wasm.cwrap(Yo,null,["number","number","number","number","number","number","number","number","number","number"])}function Rfe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.dataIdMap.get(r.dataId),g;m.dtype!=="float32"&&(g=Ad({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(g.dataId));let y=m.id,x=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return x;let A=t.dataIdMap.get(x.dataId).id;return GC(y,c,p,d,h,l,u,a?1:0,o?1:0,A),g!=null&&t.disposeData(g.dataId),x}var _fe={kernelName:Yo,backendName:"wasm",setupFunc:Efe,kernelFunc:Rfe},HC;function Dfe(e){HC=e.wasm.cwrap(Zo,null,["number","number","number","number","number","number","number","number","number","number"])}function $fe(e){let{backend:t,inputs:n,attrs:s}=e,{images:r}=n,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,[c,p,d,h]=r.shape,f=[c,l,u,h],m=t.makeOutput(f,"float32");if(v.sizeFromShape(r.shape)===0)return m;let g=t.dataIdMap.get(r.dataId),y;g.dtype!=="float32"&&(y=Ad({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),g=t.dataIdMap.get(y.dataId));let x=g.id,A=t.dataIdMap.get(m.dataId).id;return HC(x,c,p,d,h,l,u,a?1:0,o?1:0,A),y!=null&&t.disposeData(y.dataId),m}var Pfe={kernelName:Zo,backendName:"wasm",setupFunc:Dfe,kernelFunc:$fe},jC;function Ffe(e){jC=e.wasm.cwrap(Ul,null,["number","array","number","array","number","number"])}function Ofe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dims:a}=s,o=v.parseAxisParam(a,r.shape);if(r.shape.length===0)return M2({inputs:{x:r},backend:n});let i=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(i.dataId).id,c=new Uint8Array(new Int32Array(o).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);jC(l,c,o.length,p,r.shape.length,u);let d=ys({inputs:{x:i},attrs:{shape:r.shape},backend:n});return n.disposeData(i.dataId),d}var Mfe={kernelName:Ul,backendName:"wasm",kernelFunc:Ofe,setupFunc:Ffe},qC;function zfe(e){qC=e.wasm.cwrap(su,null,["number","number","number","number","number","number","number","number","array","number","number"])}function Lfe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r}=t,{radians:a,fillValue:o,center:i}=s,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,c=n.dataIdMap.get(l.dataId).id,[p,d,h,f]=r.shape,[m,g]=T.getImageCenter(i,d,h),y=o===0,x=255,A=typeof o=="number"?[o,o,o,y?0:x]:[...o,x],b=new Uint8Array(new Int32Array(A).buffer);return qC(u,p,d,h,f,a,m,g,b,A.length,c),l}var Bfe={kernelName:su,backendName:"wasm",kernelFunc:Lfe,setupFunc:zfe},Wfe=Nn(Gl),Vfe=Nn(Qo),XC;function Ufe(e){XC=e.wasm.cwrap(Hl,null,["number","number","number","number","number","number","array","number","number"])}function Gfe(e){let{backend:t,inputs:n,attrs:s}=e,{indices:r,updates:a}=n,{shape:o}=s,i=t.makeOutput(o,a.dtype);if(v.sizeFromShape(o)===0)return i;let{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=Qy.calculateShapes(a,r,o),f=t.dataIdMap.get(r.dataId).id,g=t.dataIdMap.get(a.dataId).id,y=new Uint8Array(new Int32Array(p).buffer),x=t.dataIdMap.get(i.dataId).id;return XC(f,g,jt[a.dtype],l,u,c,y,d,x),i}var Hfe={kernelName:Hl,backendName:"wasm",setupFunc:Ufe,kernelFunc:Gfe},KC;function jfe(e){KC=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function qfe(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=n.dataIdMap.get(s.dataId).id,i=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(a.dataId).id,u=n.makeOutput(r.shape,r.dtype),c=n.dataIdMap.get(u.dataId).id,p=s.shape.length,d=r.shape.length,h=p===0||p>1||d===1?1:v.sizeFromShape(r.shape.slice(1));return KC(o,i,l,h,c),u}var Xfe={kernelName:jl,backendName:"wasm",kernelFunc:qfe,setupFunc:jfe},ZC;function Kfe(e){ZC=e.wasm.cwrap(ti,null,["number","number"])}function Zfe(e){let{backend:t,inputs:{x:n}}=e,s=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),a=t.dataIdMap.get(r.dataId).id;return v.sizeFromShape(r.shape)===0||ZC(s,a),r}var Yfe={kernelName:"Sigmoid",backendName:"wasm",setupFunc:Kfe,kernelFunc:Zfe},Jfe=Nn(ei),YC;function Qfe(e){YC=e.wasm.cwrap(ri,null,["number","number","number","number"])}function eme(e){let{backend:t,inputs:{logits:n},attrs:{dim:s}}=e,r=t.dataIdMap.get(n.dataId).id,a=t.makeOutput(n.shape,n.dtype),o=t.dataIdMap.get(a.dataId).id,i=n.shape[s],l=v.sizeFromShape(n.shape)/i;return v.sizeFromShape(a.shape)===0||YC(r,o,i,l),a}var tme={kernelName:ri,backendName:"wasm",setupFunc:Qfe,kernelFunc:eme};function nme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s,i=v.sizeFromShape(a),l=[[0,0]];l.push(...o);for(let k=1+a.length;k<r.shape.length;++k)l.push([0,0]);let u=WC.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),c=T.getReshaped(u.shape,a,i,!1),p=T.getPermuted(c.length,a.length,!1),d=T.getReshapedPermuted(u.shape,a,i,!1),m=ys({inputs:{x:u},backend:n,attrs:{shape:c}}),x=po({inputs:{x:m},backend:n,attrs:{perm:p}}),w=ys({inputs:{x},backend:n,attrs:{shape:d}});return n.disposeData(u.dataId),n.disposeData(m.dataId),n.disposeData(x.dataId),w}var sme={kernelName:Kl,backendName:"wasm",kernelFunc:nme},JC;function rme(e){JC=e.wasm.cwrap("SparseFillEmptyRows","number",["number","number","number","number","number","number","number","number","number","number","number","number"])}function ame(e){let{backend:t,inputs:n}=e,{indices:s,values:r,denseShape:a,defaultValue:o}=n,i=s.shape[0],l=s.shape[1],u=t.readSync(a.dataId)[0],c=[i+u,l],p=t.dataIdMap.get(s.dataId).id,d=t.dataIdMap.get(r.dataId).id,h=t.dataIdMap.get(o.dataId).id,f=t.makeOutput(c,s.dtype),m=t.dataIdMap.get(f.dataId).id,g=t.makeOutput(c.slice(0,1),r.dtype),y=t.dataIdMap.get(g.dataId).id,x=t.makeOutput([u],"bool"),A=t.dataIdMap.get(x.dataId).id,b=t.makeOutput([i],s.dtype),w=t.dataIdMap.get(b.dataId).id,k=t.makeOutput([4],"int32"),C=t.dataIdMap.get(k.dataId).id,E=JC(p,d,jt[r.dtype],i,u,l,h,m,y,A,w,C),_=t.readSync(k.dataId),$;switch(_[0]){case 1:{$=T.getSparseFillEmptyRowsIndicesDenseShapeMismatch(_[1]);break}case 2:{$=T.getSparseFillEmptyRowsNegativeIndexErrorMessage(_[1],_[2]);break}case 3:$=T.getSparseFillEmptyRowsOutOfRangeIndexErrorMessage(_[1],_[2],_[3]);break;default:$=""}if(t.disposeData(k.dataId),$)throw t.disposeData(f.dataId),t.disposeData(g.dataId),t.disposeData(x.dataId),t.disposeData(b.dataId),new Error($);let R=f,P=g;return E!==c[0]&&(R=hl({inputs:{x:f},attrs:{begin:0,size:[E,l]},backend:t}),P=hl({inputs:{x:g},attrs:{begin:0,size:E},backend:t}),t.disposeData(f.dataId),t.disposeData(g.dataId)),[R,P,x,b]}var ome={kernelName:eh,backendName:"wasm",setupFunc:rme,kernelFunc:ame},QC;function ime(e){QC=e.wasm.cwrap(Hc,null,["number","number","number","number","number","number","number"])}function lme(e){let{backend:t,inputs:n}=e,{inputIndices:s,inputShape:r,newShape:a}=n;if(s.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
${s.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
${r.shape}`);if(a.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${a.shape}`);let o=t.dataIdMap.get(s.dataId).id,i=t.dataIdMap.get(r.dataId).id,l=t.dataIdMap.get(a.dataId).id,u=s.shape[0],c=v.sizeFromShape(a.shape),p=t.makeOutput([u,c],s.dtype),d=t.dataIdMap.get(p.dataId).id,h=t.makeOutput([c],a.dtype),f=t.dataIdMap.get(h.dataId).id,m=t.makeOutput([3],"int32"),g=t.dataIdMap.get(m.dataId).id;QC(o,i,l,u,d,f,g);let y=t.readSync(m.dataId),x;switch(y[0]){case 0:{x=T.getSparseReshapeMultipleNegativeOneOutputDimErrorMessage(y[1],y[2]);break}case 1:{x=T.getSparseReshapeNegativeOutputDimErrorMessage(y[1],y[2]);break}case 2:x=T.getSparseReshapeEmptyTensorZeroOutputDimErrorMessage();break;case 3:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMultipleErrorMessage(A,b);break}case 4:{let A=Array.from(t.readSync(r.dataId)),b=Array.from(t.readSync(h.dataId));x=T.getSparseReshapeInputOutputMismatchErrorMessage(A,b);break}default:x=""}if(t.disposeData(m.dataId),x)throw t.disposeData(p.dataId),t.disposeData(h.dataId),new Error(x);return[p,h]}var ume={kernelName:Hc,backendName:"wasm",setupFunc:ime,kernelFunc:lme},eT;function tT(e){eT=e.wasm.cwrap("SparseSegmentReduction",null,["number","number","number","number","number","number","number","number","number"])}function nT(e,t){let{backend:n,inputs:s}=e,{data:r,indices:a,segmentIds:o}=s,i=a.shape[0],l=n.readSync(o.dataId,i-1,i)[0],c=i>0?l+1:0;if(c<0)throw new Error(T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage());let p=r.shape.slice();p[0]=c;let d=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(a.dataId).id,f=n.dataIdMap.get(o.dataId).id,m=n.makeOutput(p,r.dtype),g=n.dataIdMap.get(m.dataId).id,y=n.makeOutput([4],"int32"),x=n.dataIdMap.get(y.dataId).id;eT(d,jt[r.dtype],r.shape[0],h,f,g,x,t,0);let A=n.readSync(y.dataId),b;switch(A[0]){case 0:{b=T.getSparseSegmentReductionNegativeSegmentIdsErrorMessage();break}case 1:{b=T.getSparseSegmentReductionNonIncreasingSegmentIdsErrorMessage();break}case 2:b=T.getSparseSegmentReductionSegmentIdOutOfRangeErrorMessage(A[1],A[2]);break;case 3:b=T.getSparseSegmentReductionIndicesOutOfRangeErrorMessage(A[1],A[2],A[3]);break;default:b=""}if(n.disposeData(y.dataId),b)throw n.disposeData(m.dataId),new Error(b);return m}function cme(e){return nT(e,!0)}var dme={kernelName:th,backendName:"wasm",setupFunc:tT,kernelFunc:cme};function pme(e){return nT(e,!1)}var hme={kernelName:nh,backendName:"wasm",setupFunc:tT,kernelFunc:pme};function fme(e){let{inputs:t,attrs:n,backend:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=n,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=new Array(r.shape.length).fill(0),c=r.shape.slice();return l.map(p=>{let d=[...c];d[i]=p;let h=hl({inputs:{x:r},attrs:{begin:u,size:d},backend:s});return u[i]+=p,h})}var mme={kernelName:Zl,backendName:"wasm",kernelFunc:fme},gme=Nn(ni),yme=Nn(jc),Ame=!0,xme=Ln(ai,Ame),sT;function bme(e){sT=e.wasm.cwrap(li,null,["number","number","number","number"])}function vme(e){let{backend:t,inputs:n,attrs:s}=e,{alpha:r}=s,{x:a}=n,o=t.dataIdMap.get(a.dataId).id,i=t.makeOutput(a.shape,a.dtype),l=t.dataIdMap.get(i.dataId).id;return sT(o,r,jt[a.dtype],l),i}var wme={kernelName:li,backendName:"wasm",setupFunc:bme,kernelFunc:vme},rT;function kme(e){rT=e.wasm.cwrap(Yl,null,["number","array","number","array","array","array","array","array","number","number"])}function Sme(e){let{backend:t,inputs:n,attrs:s}=e,{x:r}=n,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=ys({inputs:{x:r},backend:t,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),C=hl({inputs:{x:r},backend:t,attrs:{begin:x,size:k}});w=ys({inputs:{x:C},backend:t,attrs:{shape:f}}),t.disposeData(C.dataId)}else{let k=t.makeOutput(h,"float32"),C=t.dataIdMap.get(r.dataId).id,E=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),_=new Uint8Array(new Int32Array(x).buffer),$=new Uint8Array(new Int32Array(A).buffer),R=new Uint8Array(new Int32Array(b).buffer),P=new Uint8Array(new Int32Array(h).buffer),S=new Uint8Array(new Int32Array(v.computeStrides(h)).buffer),M=t.dataIdMap.get(k.dataId).id;rT(C,E,r.shape.length,_,$,R,P,S,h.length,M),w=ys({inputs:{x:k},backend:t,attrs:{shape:f}}),t.disposeData(k.dataId)}return w}var Ime={kernelName:Yl,backendName:"wasm",setupFunc:kme,kernelFunc:Sme};function Cme(e){let{backend:t,inputs:n,attrs:s}=e,{data:r,dataSplits:a}=n,{separator:o,nGramWidths:i,leftPad:l,rightPad:u,padWidth:c,preserveShortSequences:p}=s,d=t.readSync(r.dataId),h=t.readSync(a.dataId),[f,m]=Xx(d,h,o,i,l,u,c,p),g=t.makeOutput([f.length],"string"),y=t.dataIdMap.get(g.dataId);y.stringBytes=f;let x=t.makeOutput(a.shape,"int32");return t.typedArrayFromHeap(x).set(m),[g,x]}var Tme={kernelName:qc,backendName:"wasm",kernelFunc:Cme};function Nme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r,delimiter:a}=n,{skipEmpty:o}=s,i=t.readSync(r.dataId),l=t.readSync(a.dataId),[u,c,p]=Kx(i,l[0],o),d=c.length,h=t.makeOutput([d,2],"int32");t.typedArrayFromHeap(h).set(u);let m=t.makeOutput([d],"string"),g=t.dataIdMap.get(m.dataId);g.stringBytes=c;let y=t.makeOutput([2],"int32");return t.typedArrayFromHeap(y).set(p),[h,m,y]}var Eme={kernelName:rh,backendName:"wasm",kernelFunc:Nme};function Rme(e){let{backend:t,inputs:n,attrs:s}=e,{input:r}=n,{numBuckets:a}=s,o=t.readSync(r.dataId),i=Zx(o,a),l=t.makeOutput(r.shape,"int32");return t.typedArrayFromHeap(l).set(i),l}var _me={kernelName:ah,backendName:"wasm",kernelFunc:Rme},Dme=!0,$me=Ln(oi,Dme),aT;function Pme(e){aT=e.wasm.cwrap(si,null,["number","number","number","number"])}function Fme(e){let{backend:t,inputs:n,attrs:s}=e,{axis:r,keepDims:a}=s,{x:o}=n,i=t.dataIdMap.get(o.dataId).id,l=i,u=o,{transposed:c,axes:p,originalAxes:d,inputWasTransposed:h}=gi(o,r,t),f=p;if(h){let A=t.dataIdMap.get(c.dataId).id;A!==i&&(u=c,l=A,f=T.getInnerMostAxes(f.length,u.shape.length))}T.assertAxesAreInnerMostDims("sum",f,u.shape.length);let[m,g]=T.computeOutAndReduceShapes(u.shape,f),y=v.sizeFromShape(g),x=t.makeOutput(m,u.dtype);if(v.sizeFromShape(u.shape)!==0){let A=t.dataIdMap.get(x.dataId).id;aT(l,y,jt[x.dtype],A)}if(h&&t.disposeData(c.dataId),a){let A=T.expandShapeToKeepDim(x.shape,d);x.shape=A}return x}var Ome={kernelName:si,backendName:"wasm",setupFunc:Pme,kernelFunc:Fme},Mme=Nn(Jl),zme=Nn(ii),oT;function Lme(e){oT=e.wasm.cwrap(Ra,null,["number","array","number","array","number","number"])}function Bme(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,a=n.dataIdMap.get(r.dataId).id,{reps:o}=s,i=new Array(r.shape.length);for(let d=0;d<i.length;d++)i[d]=r.shape[d]*o[d];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(i).buffer),c=n.makeOutput(i,r.dtype),p=n.dataIdMap.get(c.dataId).id;return oT(a,l,r.shape.length,u,i.length,jt[c.dtype],p),c}var Wme={kernelName:Ra,backendName:"wasm",setupFunc:Lme,kernelFunc:Bme},iT;function Vme(e){iT=e.wasm.cwrap(Ql,null,["number","array","number","number","number","bool","number","number"])}var Ume=({inputs:e,backend:t,attrs:n})=>{let{x:s}=e,{k:r,sorted:a}=n,o=t.dataIdMap.get(s.dataId).id,i=new Uint8Array(new Int32Array(s.shape).buffer),l=s.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,s.dtype),c=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),d=t.dataIdMap.get(p.dataId).id;return iT(o,i,s.shape.length,jt[s.dtype],r,a,c,d),[u,p]},Gme={kernelName:Ql,backendName:"wasm",setupFunc:Vme,kernelFunc:Ume},lT;function Hme(e){lT=e.wasm.cwrap(eu,null,["number","number","bool","number","number","number","number","number","number","array","number","array","number","number","number","number","number"])}function jme(e){let{backend:t,inputs:n,attrs:s}=e,{image:r,transforms:a}=n,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new Uint8Array(new Int32Array(v.computeStrides(r.shape)).buffer),x=new Uint8Array(new Int32Array(v.computeStrides(g)).buffer),A=t.makeOutput(g,r.dtype),b=t.dataIdMap.get(A.dataId).id,k=t.dataIdMap.get(r.dataId).id,E=t.dataIdMap.get(a.dataId).id,_=o==="nearest"?1:2,$;switch(i){case"constant":$=1;break;case"reflect":$=2;break;case"wrap":$=3;break;case"nearest":$=4;break;default:$=1;break}return lT(k,E,a.shape[0]>1,c,f,m,h,d,p,y,r.shape.length-1,x,g.length-1,_,$,l,b),A}var qme={kernelName:eu,backendName:"wasm",setupFunc:Hme,kernelFunc:jme};function Xme(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r.shape[a],i=r.shape.length,l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==a&&(l[u++]=r.shape[h]);let c=new Array(o),p=new Array(i).fill(0),d=r.shape.slice();d[a]=1;for(let h=0;h<c.length;h++)p[a]=h,c[h]=hl({inputs:{x:r},attrs:{begin:p,size:d},backend:n});return c.map(({dataId:h,dtype:f})=>({dataId:h,dtype:f,shape:l}))}var Kme={kernelName:tu,backendName:"wasm",kernelFunc:Xme};function Zme(e){let{inputs:{x:t},backend:n}=e,s=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(s).fill(0),s}var Yme={kernelName:nu,backendName:"wasm",kernelFunc:Zme},Jme=[Cde,Tde,Ede,Dde,Bde,Ude,jde,Kde,Qde,ape,ope,ipe,cpe,dpe,fpe,ype,Ape,xpe,wpe,Ipe,Npe,_pe,Ppe,Fpe,Mpe,zpe,Lpe,Bpe,Upe,Gpe,jpe,Kpe,Jpe,the,rhe,ihe,uhe,dhe,$de,fhe,ghe,Ahe,xhe,vhe,whe,She,Che,Ehe,_he,Phe,Mhe,Bhe,Vhe,Hhe,qhe,Xhe,Yhe,efe,sfe,afe,lfe,cfe,pfe,WC,gfe,xfe,wfe,Sfe,Cfe,Tfe,Nfe,Zde,_fe,Pfe,Mfe,Bfe,Wfe,Vfe,Hfe,Xfe,Yfe,Jfe,spe,tme,sme,ome,ume,dme,hme,mme,gme,yme,xme,wme,Ime,Tme,Eme,_me,$me,Ome,Mme,zme,Wme,Gme,qme,Mde,Kme,Yme];for(let e of Jme)tr(e);var Cy=H();Cy.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));Cy.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(Cy.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var J7=ho(U_()),Qme=ho(G_()),Q7=ho(H_()),e6=J7.default||J7,e0e=Q7.default||Q7,uT=class extends wc{constructor(e){super(),this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.initWithThreadsCount(cT),Ty=this.wasm.tfjs.getThreadsCount(),this.dataIdMap=new Up(this,Yt())}write(e,t,n){let s={id:this.dataIdNextNumber++};return this.move(s,e,t,n,1),s}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=v.now();return e(),{kernelMs:v.now()-t}}move(e,t,n,s,r){let a=this.dataIdNextNumber++;if(s==="string"){let u=t;this.dataIdMap.set(e,{id:a,stringBytes:u,shape:n,dtype:s,memoryOffset:null,refCount:r});return}let o=v.sizeFromShape(n),i=o*v.bytesPerElement(s),l=this.wasm._malloc(i);this.dataIdMap.set(e,{id:a,memoryOffset:l,shape:n,dtype:s,refCount:r}),this.wasm.tfjs.registerTensor(a,o,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,i),l)}async read(e){return this.readSync(e)}readSync(e,t,n){let{memoryOffset:s,dtype:r,shape:a,stringBytes:o}=this.dataIdMap.get(e);if(r==="string")return(t==null||t===0)&&(n==null||n>=o.length)?o:o.slice(t,n);t=t||0,n=n||v.sizeFromShape(a);let i=v.bytesPerElement(r),l=this.wasm.HEAPU8.slice(s+t*i,s+n*i);return s0e(l.buffer,r)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let s;if(n==null)s=this.write(null,e,t);else{let r=this.dataIdNextNumber++;s={id:r},this.dataIdMap.set(s,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let a=v.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,a,n)}return{dataId:s,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let s=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),a=v.sizeFromShape(e);switch(t){case"float32":return new Float32Array(s,r,a);case"int32":return new Int32Array(s,r,a);case"bool":return new Uint8Array(s,r,a);default:throw new Error(`Unknown dtype ${t}`)}}};function t0e(e){return(t,n)=>(v.fetch(e,{credentials:"same-origin"}).then(s=>{s.ok||t.env.a(`failed to load wasm binary file at '${e}'`),s.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(a=>{n(a.instance,a.module)})})}),{})}function t6(e,t,n){if(Km!=null)return Km;let s="tfjs-backend-wasm.wasm";return e&&t?s="tfjs-backend-wasm-threaded-simd.wasm":e&&(s="tfjs-backend-wasm-simd.wasm"),bp!=null&&bp[s]!=null?bp[s]:n+s}async function n0e(){let[e,t]=await Promise.all([H().getAsync("WASM_HAS_SIMD_SUPPORT"),H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,s)=>{let r={};r.locateFile=(i,l)=>{if(i.endsWith(".worker.js")){let u=Qme.wasmWorkerContents.replace(/\n/g,"\\n"),c=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(c)}return i.endsWith(".wasm")?t6(e,t,gp!=null?gp:l):l+i},mb&&(r.instantiateWasm=t0e(t6(e,t,gp!=null?gp:"")));let a=!1;r.onAbort=()=>{if(a||vp)return;vp=!0,s({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"})};let o;t&&e&&Km==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+e6.toString()],{type:"text/javascript"}),o=e6(r)):o=e0e(r),o.then(i=>{a=!0,vp=!1;let l=null;i.tfjs={init:i.cwrap("init",null,[]),initWithThreadsCount:i.cwrap("init_with_threads_count",null,["number"]),getThreadsCount:i.cwrap("get_threads_count","number",[]),registerTensor:i.cwrap("register_tensor",null,["number","number","number"]),disposeData:i.cwrap("dispose_data",l,["number"]),dispose:i.cwrap("dispose",l,[])},n({wasm:i})}).catch(s)})}function s0e(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var r0e=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],Km=null,gp=null,bp={},vp=!1,mb=!1;function a0e(e,t=!1){if(Ky("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");Km=e,mb=t}function z2(e,t=!1){if(vp)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")gp=e;else{bp=e;let n=r0e.filter(s=>bp[s]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}mb=t}var cT=-1,Ty=-1;function o0e(e){cT=e}function i0e(){if(Ty===-1)throw new Error("WASM backend not initialized.");return Ty}var l0e="3.20.0",u0e=2;ru("wasm",async()=>{let{wasm:e}=await n0e();return new uT(e)},u0e);var yi=H();yi.registerFlag("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE",()=>15);yi.registerFlag("WEBGPU_CPU_FORWARD",()=>!0);yi.registerFlag("WEBGPU_MATMUL_PROGRAM_TYPE",()=>-1);yi.registerFlag("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE",()=>!1);yi.registerFlag("WEBGPU_USE_LOW_POWER_GPU",()=>!1);yi.registerFlag("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD",()=>1e3);yi.registerFlag("WEBGPU_USE_PROFILE_TOOL",()=>!1);yi.registerFlag("WEBGPU_IMPORT_EXTERNAL_TEXTURE",()=>!0);var c0e=class{constructor(e){this.device=e,this.numUsedBuffers=0,this.numFreeBuffers=0,this.freeBuffers=new Map,this.usedBuffers=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireUploadBuffer(e,t){return this.acquireBuffer(e,t,!0)}acquireBuffer(e,t,n=!1){let s=n6(e,t);if(this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.usedBuffers.has(s)||this.usedBuffers.set(s,[]),this.numBytesUsed+=e,this.numUsedBuffers++,this.freeBuffers.get(s).length>0){this.numFreeBuffers--;let a=this.freeBuffers.get(s).shift();return this.usedBuffers.get(s).push(a),a}this.numBytesAllocated+=e;let r=this.device.createBuffer({size:e,usage:t,mappedAtCreation:n});return this.usedBuffers.get(s).push(r),r}releaseBuffer(e,t,n){if(this.freeBuffers.size===0)return;let s=n6(t,n);this.freeBuffers.has(s)||this.freeBuffers.set(s,[]),this.freeBuffers.get(s).push(e),this.numFreeBuffers++,this.numUsedBuffers--;let r=this.usedBuffers.get(s),a=r.indexOf(e);if(a<0)throw new Error("Cannot release a buffer that was never provided by this buffer manager");r.splice(a,1),this.numBytesUsed-=t}releaseUploadBuffer(e,t,n){e.mapAsync(GPUMapMode.WRITE).then(()=>{this.releaseBuffer(e,t,n)},s=>{})}getNumUsedBuffers(){return this.numUsedBuffers}getNumFreeBuffers(){return this.numFreeBuffers}dispose(){this.freeBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedBuffers.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeBuffers=new Map,this.usedBuffers=new Map,this.numUsedBuffers=0,this.numFreeBuffers=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function n6(e,t){return`${e}_${t}`}var d0e=class{constructor(e){this.device=e,this.numUsedTextures=0,this.numFreeTextures=0,this.freeTextures=new Map,this.usedTextures=new Map,this.numBytesUsed=0,this.numBytesAllocated=0}acquireTexture(e,t,n,s){let r=r6(n),a=e*t*r,o=s6(e,t,n,s);if(this.freeTextures.has(o)||this.freeTextures.set(o,[]),this.usedTextures.has(o)||this.usedTextures.set(o,[]),this.numBytesUsed+=a,this.numUsedTextures++,this.freeTextures.get(o).length>0){this.numFreeTextures--;let l=this.freeTextures.get(o).shift();return this.usedTextures.get(o).push(l),l}this.numBytesAllocated+=a;let i=this.device.createTexture({size:[e,t],format:n,usage:s});return this.usedTextures.get(o).push(i),i}releaseTexture(e,t,n,s,r){if(this.freeTextures.size===0)return;let a=s6(t,n,s,r);this.freeTextures.has(a)||this.freeTextures.set(a,[]),this.freeTextures.get(a).push(e),this.numFreeTextures++,this.numUsedTextures--;let o=this.usedTextures.get(a),i=o.indexOf(e);if(i<0)throw new Error("Cannot release a texture that was never provided by this texture manager");o.splice(i,1);let l=r6(s),u=t*n*l;this.numBytesUsed-=u}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){this.freeTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.usedTextures.forEach((e,t)=>{e.forEach(n=>{n.destroy()})}),this.freeTextures=new Map,this.usedTextures=new Map,this.numUsedTextures=0,this.numFreeTextures=0,this.numBytesUsed=0,this.numBytesAllocated=0}};function s6(e,t,n,s){return`${e}_${t}_${n}_${s}`}function r6(e){if(e==="rgba8unorm")return 16;throw new Error(`${e} is not supported!`)}function p0e(e,t){if(Math.max(...e)>3)throw new Error("Cannot symbolically compute strides for rank > 4 tensor.");let n=e.length,s=e.map(a=>`${t}[${a}]`),r=new Array(n-1);r[n-2]=s[n-1];for(let a=n-3;a>=0;--a)r[a]=`(${r[a+1]} * ${s[a+1]})`;return r}var h0e=(e,t,n,s)=>{let r={dtype:s.dtype,shape:s.shape},a=f0e(n,r,t),o=e.createShaderModule({code:a,label:t.constructor.name});return e.createComputePipeline({compute:{module:o,entryPoint:"_start"},label:t.constructor.name,layout:"auto"})};function Pn(e){if(e<=1)return"i32";if(e===2)return"vec2<i32>";if(e===3)return"vec3<i32>";if(e===4)return"vec4<i32>";if(e===5)return"vec5";if(e===6)return"vec6";throw Error(`GPU for rank ${e} is not yet supported`)}function wa(e){if(e===0)return"x";if(e===1)return"y";if(e===2)return"z";if(e===3)return"w";if(e===4)return"u";if(e===5)return"v";throw Error(`Index ${e} is not yet supported`)}function Ye(...e){let t;switch(e.length){case 0:t=`
${Wp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
main();
}
fn main()
`;break;case 1:t=`
${Wp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups : vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
main(getGlobalIndex());
}
fn main(${e[0]} : i32)
`;break;default:throw Error("Unreachable")}return t}function Wp(){return`
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
`}function f0e(e,t,n){let s=[];if(s.push(`
const workGroupSizeX = ${n.workGroupSize[0]}u;
const workGroupSizeY = ${n.workGroupSize[1]}u;
const workGroupSizeZ = ${n.workGroupSize[2]}u;
var<private> localId: vec3<u32>;
var<private> globalId: vec3<u32>;
var<private> numWorkgroups: vec3<u32>;
// Only used when the y/z dimension of workgroup size is 1.
fn getGlobalIndex() -> i32 {
${dT(n)?" return i32(globalId.x);":` let localInvocationIndex = localId.z * workGroupSizeX * workGroupSizeY +
localId.y * workGroupSizeX + localId.x;
let workGroupID = (globalId - localId)/vec3<u32>(
workGroupSizeX, workGroupSizeY, workGroupSizeZ);
return i32((workGroupID.z * numWorkgroups.x * numWorkgroups.y +
workGroupID.y * numWorkgroups.x + workGroupID.x) *
(workGroupSizeX * workGroupSizeY * workGroupSizeZ) +
localInvocationIndex);
`}
}
`),n.isFromPixels)return s.push(`
struct Uniform {
size : i32,
numChannels : i32,
outShapeStrides : vec2<i32>,
};
@group(0) @binding(0) var<storage, read_write> result: array<${wp(t.dtype,n.isVec4)}>;
@group(0) @binding(2) var<uniform> uniforms: Uniform;
`),[a6,s.join(`
`),o6(t.shape),n.getUserCode()].join(`
`);let r="struct Uniforms { NAN : f32, ";n.variableNames.forEach((d,h)=>{let f=Pn(e[h].shape.length);r+=`${d.charAt(0).toLowerCase()+d.slice(1)}Shape : ${f}, `}),r+=`outShape : ${Pn(t.shape.length)}, `;let o=t.shape.length-1;r+=`
outShapeStrides: ${Pn(o)}, `,n.size&&(r+="size : i32, "),n.uniforms&&(r+=n.uniforms),r+="};",r=w0e(r),s.push(r),n.atomic?s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<atomic<i32>>;
`):s.push(`
@group(0) @binding(0) var<storage, read_write> result: array<${wp(t.dtype,n.isVec4)}>;
`),n.variableNames.forEach((d,h)=>{s.push(`
@group(0) @binding(${1+h}) var<storage, read> ${d}: array<${n.variableTypes?n.variableTypes[h]:wp(e[h].dtype,n.isVec4)}>;
`)}),r!==""&&s.push(`
@group(0) @binding(${1+n.variableNames.length}) var<uniform> uniforms: Uniforms;
`);let l=x0e(t.shape,n.dispatchLayout),u=[a6,s.join(`
`),o6(t.shape),l,b0e(t.shape.length)];n.atomic||u.push(v0e(t.shape,t.dtype,n.isVec4));let c=e.map((d,h)=>A0e(d,t.shape,n.variableTypes?n.variableTypes[h]==="vec4<f32>":n.isVec4,n.dispatchLayout.x.length===t.shape.length)).join(`
`);return u.push(c),u.push(n.getUserCode()),u.join(`
`)}function m0e(e,t,n,s){let r=e.shaderKey;if(e.isFromPixels)return r;let a=n.map(c=>c.dtype).concat(s.dtype),o=n.map(c=>T.getBroadcastDims(c.shape,s.shape)),i=n.map(c=>v.arraysEqual(c.shape,s.shape)).join("_"),l=o.map(c=>c.join("_")).join(";"),u=dT(e)?"flatDispatch":"";return r+="_"+(e.workGroupSize?e.workGroupSize.join(","):"")+t.map(c=>c.length).join(",")+a.join(",")+e.variableNames.join(",")+l+i+u,r}var a6=`
struct vec5 {x: i32, y: i32, z: i32, w: i32, u: i32};
struct vec6 {x: i32, y: i32, z: i32, w: i32, u: i32, v: i32};
// Checks whether coordinates lie within the bounds of the shape.
fn coordsInBounds2D(coord : vec2<i32>, shape : vec2<i32>) -> bool {
return all(coord >= vec2<i32>(0)) && all(coord < shape);
}
fn coordsInBounds3D(coord : vec3<i32>, shape : vec3<i32>) -> bool {
return all(coord >= vec3<i32>(0)) && all(coord < shape);
}
fn coordsInBounds4D(coord : vec4<i32>, shape : vec4<i32>) -> bool {
return all(coord >= vec4<i32>(0)) && all(coord < shape);
}
fn getIndexFromCoords1D(coord : i32, shape : i32) -> i32 {
return coord;
}
fn getIndexFromCoords2D(coords : vec2<i32>, shape : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(shape.y, 1));
}
fn getIndexFromCoords3D(coords : vec3<i32>, shape : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(shape.y * shape.z, shape.z, 1));
}
fn getIndexFromCoords4D(coords : vec4<i32>, shape : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
shape.y * shape.z * shape.w, shape.z * shape.w, shape.w, 1));
}
fn getIndexFromCoords5D(coords : vec5, shape : vec5) -> i32 {
let shapeStrides: vec5 = vec5(shape.y * shape.z * shape.w * shape.u, shape.z * shape.w * shape.u, shape.w * shape.u, shape.u, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u;
}
fn getIndexFromCoords6D(coords : vec6, shape : vec6) -> i32 {
let shapeStrides: vec6 = vec6(shape.y * shape.z * shape.w * shape.u * shape.v, shape.z * shape.w * shape.u * shape.v, shape.w * shape.u * shape.v, shape.u * shape.v, shape.v, 1);
return coords.x*shapeStrides.x + coords.y*shapeStrides.y + coords.z*shapeStrides.z + coords.w*shapeStrides.w + coords.u*shapeStrides.u + coords.v*shapeStrides.v;
}
fn idiv(a: i32, b: i32, sign: f32) -> i32 {
var res: i32 = a / b;
let modulo: i32 = a % b;
if (sign < 0. && modulo != 0) {
res = res - 1;
}
return res;
}
// NaN defination in IEEE 754-1985 is :
// - sign = either 0 or 1.
// - biased exponent = all 1 bits.
// - fraction = anything except all 0 bits (since all 0 bits represents infinity).
// https://en.wikipedia.org/wiki/IEEE_754-1985#Representation_of_non-numbers
fn isnan(val: f32) -> bool {
let floatToUint: u32 = bitcast<u32>(val);
return (floatToUint & 0x7fffffffu) > 0x7f800000u;
}
fn isnanVec4(val : vec4<f32>) -> vec4<bool> {
return vec4<bool>(isnan(val[0]), isnan(val[1]), isnan(val[2]), isnan(val[3]));
}
`;function o6(e){let t=e.length;if(t<=1)return"fn getCoordsFromIndex(index : i32) -> i32 { return index; }";let n=v.computeStrides(e),s=Pn(t),r=[];for(let o=0;o<t;o++)r.push(`d${o}`);if(n.length===1)return` fn getCoordsFromIndex(index : i32) -> vec2<i32> {
let d0 = index / uniforms.outShapeStrides; let d1 = index - d0 * uniforms.outShapeStrides;
return vec2<i32>(d0, d1);
}`;let a;return a="var index2 = index;"+n.map((o,i)=>{let l=`let ${r[i]} = index2 / uniforms.outShapeStrides.${wa(i)}`,u=i===n.length-1?`let ${r[i+1]} = index2 - ${r[i]} * uniforms.outShapeStrides.${wa(i)}`:`index2 = index2 - ${r[i]} * uniforms.outShapeStrides.${wa(i)}`;return`${l}; ${u};`}).join(""),`
fn getCoordsFromIndex(index : i32) -> ${s} {
${a}
return ${s}(${r.join(",")});
}
`}function g0e(e,t){let n=e.name,s=e.shape.length,r=Pn(s),a="get"+n.charAt(0).toUpperCase()+n.slice(1),o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=o.map(c=>`${c} : i32`).join(", ");if(s<1)return t?`
fn ${a}() -> vec4<f32> {
return vec4<f32>(${n}[0]);
}
`:`
fn ${a}() ->f32 {
return f32(${n}[0]);
}
`;let l=`uniforms.${n.charAt(0).toLowerCase()+n.slice(1)}Shape`,u=`${s}D`;return s===0&&(u="1D"),t?`
fn ${a}(${i}) -> vec4<f32> {
return vec4<f32>(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l}) / 4]);
}
`:`
fn ${a}(${i}) -> f32 {
return f32(${n}[getIndexFromCoords${u}(${r}(${o.join(",")}),
${l})]);
}
`}function y0e(e,t,n,s){let r=e.name,a=r.charAt(0).toUpperCase()+r.slice(1),o="get"+a+"ByOutput",i=e.shape.length,l=t.length,u=Pn(l);if(v.arraysEqual(e.shape,t)&&s)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return vec4<f32>(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return vec4<f32>(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"} / 4]);
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
return f32(${r}[globalIndex]);
}
fn ${o}Coords(coords : ${u}) -> f32 {
return f32(${r}[${l>1?"getOutputIndexFromCoords(coords)":"coords"}]);
}
`;let c=T.getBroadcastDims(e.shape,t),p=l-i,d="";if(i===0)return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> vec4<f32> {
return get${a}();
}
`:`
fn ${o}Index(globalIndex : i32) -> f32{
return get${a}();
}
fn ${o}Coords(coords : ${u}) -> f32{
return get${a}();
}
`;l<2&&c.length>=1?d="coords = 0;":d=c.map(g=>`coords.${wa(g+p)} = 0;`).join(`
`);let h="";if(l<2&&i>0)h="coords";else if(l>1){let g=Pn(i),y=e.shape.map((x,A)=>`coords.${wa(A+p)}`).join(", ");h=`${g}(${y})`}else h="coords";let f=`uniforms.${r.charAt(0).toLowerCase()+r.slice(1)}Shape`,m=`${i}D`;return n?`
fn ${o}Index(globalIndex : i32) -> vec4<f32> {
var coords = getCoordsFromIndex(globalIndex);
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
fn ${o}Coords(coordsIn : ${u}) -> vec4<f32> {
var coords = coordsIn;
${d}
return ${r}[getIndexFromCoords${m}(${h}, ${f}) / 4];
}
`:`
fn ${o}Index(globalIndex : i32) -> f32 {
var coords = getCoordsFromIndex(globalIndex);
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
fn ${o}Coords(coordsIn : ${u}) -> f32 {
var coords = coordsIn;
${d}
return f32(${r}[getIndexFromCoords${m}(${h}, ${f})]);
}
`}function A0e(e,t,n,s){let r=g0e(e,n);return e.shape.length<=t.length&&(r+=y0e(e,t,n,s)),r}function x0e(e,t){let{x:n,y:s=[],z:r=[]}=t,a=e.length;if(n.length===a)return`fn getOutputCoords() -> ${Pn(a)}{
let globalIndex = getGlobalIndex();
return getCoordsFromIndex(globalIndex);
}
`;let o="",i=[n,s,r],l=0;for(let d=0;d<i.length;d++){let h=i[d];if(h.length!==0)if(l+=h.length,h.length===1)o+=`let d${h[0]} = i32(globalId[${d}]);`;else{let f=p0e(h,"uniforms.outShape");o+=`var index${d} = i32(globalId[${d}]);`;for(let m=0;m<f.length;m++)o+=`let d${h[m]} = index${d} / ${f[m]};`,m===f.length-1?o+=`let d${h[m+1]} = index${d} - d${h[m]} * ${f[m]};`:o+=`index${d} = index${d} - d${h[m]} * ${f[m]};`}}let u=[];for(let d=0;d<l;d++)u.push(`d${d}`);let c=Pn(l),p=`fn getOutputCoords() -> ${c} {
${o}
`;return u.length===0?p+=`return ${c}(0); }`:p+=`return ${c}(${u.join(",")}); }`,p}function b0e(e){let t="";switch(e){case 0:case 1:t+=`
fn getOutputIndexFromCoords(coords : i32) -> i32 {
return coords;
}
`;break;case 2:t+=`
fn getOutputIndexFromCoords(coords : vec2<i32>) -> i32 {
return dot(coords, vec2<i32>(uniforms.outShapeStrides, 1));
}
`;break;case 3:t+=`
fn getOutputIndexFromCoords(coords : vec3<i32>) -> i32 {
return dot(coords, vec3<i32>(uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, 1));
}
`;break;case 4:t+=`
fn getOutputIndexFromCoords(coords : vec4<i32>) -> i32 {
return dot(coords, vec4<i32>(
uniforms.outShapeStrides.x, uniforms.outShapeStrides.y, uniforms.outShapeStrides.z, 1));
}
`;break;case 5:t+=`
fn getOutputIndexFromCoords(coords : vec5) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u;
}
`;break;case 6:t+=`
fn getOutputIndexFromCoords(coords : vec6) -> i32 {
return coords.x * uniforms.outShapeStrides.x +
coords.y * uniforms.outShapeStrides.y +
coords.z * uniforms.outShapeStrides.z +
coords.w * uniforms.outShapeStrides.w +
coords.u * uniforms.outShapeStrides.u +
coords.v;
}
`;break;default:v.assert(!1,()=>`Unsupported ${e}D shape`);break}return t}function dT(e){return e.dispatch[1]===1&&e.dispatch[2]===1}function wp(e,t){return e==="float32"?t?"vec4<f32>":"f32":e==="int32"||e==="bool"?t?"vec4<i32>":"i32":e}function v0e(e,t,n){let s=e.length,r=wp(t,n),a;if(n?a=`fn setOutputAtIndex(flatIndex : i32, value : vec4<f32>) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : vec4<i32>) {
result[flatIndex] = ${r}(value);
}`:a=`fn setOutputAtIndex(flatIndex : i32, value : f32) {
result[flatIndex] = ${r}(value);
}
fn setOutputAtIndexI32(flatIndex : i32, value : i32) {
result[flatIndex] = ${r}(value);
}`,s>=2){let o=["d0","d1","d2","d3","d4","d5"].slice(0,s),i=Pn(s);n?a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<f32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex / 4, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : vec4<i32>) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex / 4, value);
}
`:a+=`
fn setOutputAtCoords(${o.map(l=>`${l} : i32`).join(", ")}, value : f32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndex(flatIndex, value);
}
fn setOutputAtCoordsI32(${o.map(l=>`${l} : i32`).join(", ")}, value : i32) {
let flatIndex = getOutputIndexFromCoords(${i}(${o.join(", ")}));
setOutputAtIndexI32(flatIndex, value);
}
`}return a}function w0e(e){let t=/(\w+)\s*:\s*vec(5|6)/g;e=e.replace(t,s=>"@align(16) "+s);let n=/vec(5|6)\s*,\s*(\w+)/g;return e=e.replace(n,(s,r,a)=>`vec${r}, @align(16) ${a}`),e}var pT={};He(pT,{ArrayBufferToTypedArray:()=>mT,GPUBytesPerElement:()=>fT,MatMulProgramType:()=>_r,computeDispatch:()=>Ge,computeWorkGroupInfoForMatMul:()=>hT,computeWorkGroupSizeForConv2d:()=>gb,computeWorkPerThreadForConv2d:()=>yb,flatDispatchLayout:()=>ot,isWebGPUSupported:()=>Ab,tilesFitEvenlyIntoShape:()=>k0e});var tl=e=>{let t=1;for(let n=0;n<e.length;n++)t*=e[n];return t};function k0e(e,t){if(e.length!==t.length)throw new Error(`Cannot compute whether rank ${e.length} tiles fit evenly into rank ${t.length} shape - ranks must match.`);return t.every((n,s)=>n%e[s]===0)}function Ge(e,t,n=[1,1,1],s=[1,1,1]){let[r,a,o]=[Math.ceil(tl(e.x.map(i=>t[i]))/(n[0]*s[0])),e.y?Math.ceil(tl(e.y.map(i=>t[i]))/(n[1]*s[1])):1,e.z?Math.ceil(tl(e.z.map(i=>t[i]))/(n[2]*s[2])):1];return[r,a,o]}function hT(e,t,n,s=!1){let r=[8,8,1],a=[4,4,1];return s||(e<=8&&(a[1]=1),t<=16&&n<=16&&(r[0]=4)),{workGroupSize:r,elementsPerThread:a}}function gb(e,t,n=!1){if(n)return[8,8,1];let s=tl(e.x.map(a=>t[a])),r=tl(e.y.map(a=>t[a]));return s<=4?[4,16,1]:r<=4?[16,4,1]:[16,16,1]}function yb(e,t,n=!1){if(n)return[4,4,1];let s=tl(e.x.map(a=>t[a])),r=tl(e.y.map(a=>t[a]));return s<=4?[1,2,1]:r<=4?[2,1,1]:[2,2,1]}function ot(e){return{x:e.map((t,n)=>n)}}function fT(e){if(e==="float32"||e==="int32"||e==="bool"||e==="string")return 4;if(e==="complex64")return 8;throw new Error(`Unknown dtype ${e}`)}function mT(e,t){if(t==="float32")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"||t==="string")return Uint8Array.from(new Int32Array(e));throw new Error(`Unknown dtype ${t}`)}function Ab(){return(typeof window!="undefined"||typeof WorkerGlobalScope!="undefined")&&!!navigator.gpu}var _r;(function(e){e[e.MatMulReduceProgram=0]="MatMulReduceProgram",e[e.MatMulSplitKProgram=1]="MatMulSplitKProgram",e[e.MatMulSmallOutputSizeProgram=2]="MatMulSmallOutputSizeProgram",e[e.MatMulPackedProgram=3]="MatMulPackedProgram",e[e.MatMulMax=4]="MatMulMax"})(_r||(_r={}));var S0e=H().getNumber("WEBGPU_CPU_HANDOFF_SIZE_THRESHOLD"),I0e=(e,t)=>{let n=e.limits.maxComputeWorkgroupsPerDimension,s=t.dispatchLayout,r=t.dispatch;if(r.every(o=>o<=n))return r;v.assert(r[0]>n&&s.y===void 0&&s.z===void 0,()=>"Dispatch size exceeds WebGPU limits in Y or Z dimension.");let a=Math.ceil(Math.sqrt(r[0]));return a>n?(a=Math.ceil(Math.cbrt(r[0])),v.assert(a<=n,()=>"Total dispatch size exceeds WebGPU maximum."),[a,a,a]):[a,a,1]},L2=class extends wc{constructor(e){if(super(),this.commandQueueOwnedIds=new WeakSet,this.dispatchNumberInEncoder=0,this.disposed=!1,this.downloadWaitMs=0,this.tensorDataPendingDisposal=[],this.stagingPendingDisposal=[],this.uniformPendingDisposal=[],this.uploadWaitMs=0,!Ab())throw new Error("WebGPU is not supported on this device");this.pipelineCache={},this.device=e,this.queue=e.queue,this.currentCommandEncoder=null,this.currentComputePass=null,this.supportTimeQuery=e.features.has("timestamp-query"),this.bufferManager=new c0e(this.device),this.textureManager=new d0e(this.device),this.tensorMap=new Up(this,Yt()),this.supportTimeQuery&&(this.querySet=this.device.createQuerySet({type:"timestamp",count:2})),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(this.dummyCanvas=document.createElement("canvas"),this.dummyCanvas.width=1,this.dummyCanvas.height=1,this.dummyContext=this.dummyCanvas.getContext("webgpu"),this.dummyContext.configure({device:e,format:"bgra8unorm"}),document.body.appendChild(this.dummyCanvas))}nextDataId(){return L2.nextDataId++}floatPrecision(){return 32}defaultGpuBufferUsage(){return GPUBufferUsage.STORAGE|GPUBufferUsage.COPY_SRC|GPUBufferUsage.COPY_DST}disposeData(e,t=!1){if(this.tensorDataPendingDisposal.indexOf(e)>=0)return!1;if(!this.tensorMap.has(e))return!0;let n=this.tensorMap.get(e);if(this.decRef(e),!t&&n.refCount>0)return!1;if(this.commandQueueOwnedIds.has(e))return this.tensorDataPendingDisposal.push(e),!1;let{complexTensorInfos:s}=this.tensorMap.get(e);return s!=null&&(this.disposeData(s.real.dataId,t),this.disposeData(s.imag.dataId,t)),this.releaseResource(e),this.tensorMap.delete(e),!0}memory(){return{numBytesInGPU:this.bufferManager.numBytesUsed,numBytesAllocatedInGPU:this.bufferManager.numBytesAllocated,unreliable:!1}}releaseResource(e){let t=this.tensorMap.get(e);if(!(!t||!t.resourceInfo)){if("texture"in t.resourceInfo){let n=t.resourceInfo;n.texture instanceof GPUTexture&&this.textureManager.releaseTexture(n.texture,n.width,n.height,n.format,n.usage),n.texture=null}else{let n=t.resourceInfo;this.bufferManager.releaseBuffer(n.buffer,n.size,n.usage),n.buffer=null}t.resourceInfo=null}}refCount(e){return this.tensorMap.has(e)?this.tensorMap.get(e).refCount:0}incRef(e){let t=this.tensorMap.get(e);t.refCount++}decRef(e){if(this.tensorMap.has(e)){let t=this.tensorMap.get(e);t.refCount--}}write(e,t,n){if(n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let s={id:this.nextDataId()};return this.tensorMap.set(s,{dtype:n,shape:t,values:e,refCount:1}),s}move(e,t,n,s,r){if(s==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.tensorMap.set(e,{dtype:s,shape:n,values:t,refCount:r})}submitQueue(){this.ensureComputePassEnded(),this.queue.submit([this.currentCommandEncoder.finish()]),this.currentCommandEncoder=null,this.dispatchNumberInEncoder=0,this.commandQueueOwnedIds=new WeakSet,this.tensorDataPendingDisposal.forEach(e=>{this.releaseResource(e),this.tensorMap.delete(e)}),this.uniformPendingDisposal.forEach(e=>this.bufferManager.releaseBuffer(e.buffer,e.size,e.usage)),this.stagingPendingDisposal.forEach(e=>this.bufferManager.releaseUploadBuffer(e.buffer,e.size,e.usage)),this.tensorDataPendingDisposal=[],this.uniformPendingDisposal=[],this.stagingPendingDisposal=[]}ensureCommandEncoderReady(){this.currentCommandEncoder||(this.currentCommandEncoder=this.device.createCommandEncoder())}ensureComputePassEnded(){this.currentComputePass&&(this.currentComputePass.end(),this.currentComputePass=null)}getComputePass(){return this.currentComputePass||(this.currentComputePass=this.currentCommandEncoder.beginComputePass()),this.currentComputePass}async getBufferData(e,t){let n=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(e,0,n,0,t),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=n.getMappedRange().slice(0);return n.unmap(),n!=null&&this.bufferManager.releaseBuffer(n,t,GPUBufferUsage.COPY_DST|GPUBufferUsage.MAP_READ),H().getBool("WEBGPU_USE_PROFILE_TOOL")&&(v.assert(this.dummyContext!==void 0,()=>"Fail to get context for profiling tool"),this.dummyContext.getCurrentTexture()),s}convertAndCacheOnCPU(e,t){let n=this.tensorMap.get(e);return this.releaseResource(e),n.values=t,n.values}readSync(e){let t=this.tensorMap.get(e),{values:n}=t;if(n==null)throw new Error("WebGPU readSync is only available for CPU-resident tensors.");return n}async read(e){if(!this.tensorMap.has(e))throw new Error(`Tensor ${e} was not registered!`);let t=this.tensorMap.get(e),{values:n}=t;if(n!=null)return this.convertAndCacheOnCPU(e,n);let s;if(t.dtype==="complex64"){let r=await Promise.all([this.read(t.complexTensorInfos.real.dataId),this.read(t.complexTensorInfos.imag.dataId)]),a=r[0],o=r[1];s=T.mergeRealAndImagArrays(a,o)}else{let r=t.resourceInfo,a=await this.getBufferData(r.buffer,r.size);s=mT(a,t.dtype)}return this.convertAndCacheOnCPU(e,s),s}readToGPU(e){let t=this.tensorMap.get(e),{values:n,dtype:s,shape:r,resourceInfo:a}=t;if(s==="complex64")throw new Error("Does not support reading buffer for complex64 dtype.");if(a==null)throw n!=null?new Error("Data is not on GPU but on CPU."):new Error("There is no data on GPU or CPU.");let o=a.size,i=this.bufferManager.acquireBuffer(o,a.usage);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(a.buffer,0,i,0,o),this.submitQueue();let l=this.makeTensorInfo(r,s),u=Yt().makeTensorFromTensorInfo(l),c=this.tensorMap.get(l.dataId);return c.resourceInfo={size:o,usage:this.defaultGpuBufferUsage(),buffer:i},{tensorRef:u,buffer:i,bufSize:o}}bufferSync(e){let t=this.readSync(e.dataId);if(e.dtype==="string")try{let n=t.map(s=>v.decodeString(s));return We(e.shape,e.dtype,n)}catch(n){throw new Error("Failed to decode encoded string bytes into utf-8")}return We(e.shape,e.dtype,t)}async time(e){this.supportTimeQuery||console.warn("This device doesn't support timestamp-query extension. Start Chrome browser with flag --disable-dawn-features=disallow_unsafe_apis then try again. Otherwise, zero will be shown for the kernel time when profiling mode is enabled. Using performance.now is not workable for webgpu since it doesn't support synchronous data read from GPU.");let t=this.activeTimers,n=[],s=!1;this.programTimersStack==null?(this.programTimersStack=n,s=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=v.flatten(this.activeTimers.map(l=>l.query)).filter(l=>l!=null),a=v.flatten(this.activeTimers.map(l=>l.name)).filter(l=>l!=null);this.activeTimers=t,s&&(this.programTimersStack=null);let o={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null},i=await Promise.all(r);return o.kernelMs=v.sum(i),o.getExtraProfileInfo=()=>i.map((l,u)=>({name:a[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", "),this.uploadWaitMs=0,this.downloadWaitMs=0,o}makeTensorInfo(e,t,n){return t==="string"&&n!=null&&n.length>0&&v.isString(n[0])&&(n=n.map(r=>v.encodeString(r))),{dataId:this.write(n,e,t),shape:e,dtype:t}}tensorToBinding(e){if(!e)return null;let t=this.tensorMap.get(e.dataId);if("texture"in t.resourceInfo){let s=t.resourceInfo;return s.texture instanceof GPUExternalTexture?s.texture:s.texture.createView()}let n=t.resourceInfo;return{offset:0,size:n.size,buffer:n.buffer}}async getQueryTime(e){return this.supportTimeQuery?this.getTimeFromQuerySet(e):0}uploadToGPU(e){let t=this.tensorMap.get(e);if(t.resourceInfo)return;let n=fT(t.dtype)*v.sizeFromShape(t.shape),s=this.bufferManager.acquireBuffer(n,this.defaultGpuBufferUsage());if(t.resourceInfo={size:n,usage:this.defaultGpuBufferUsage(),buffer:s},t.values){let r=this.bufferManager.acquireUploadBuffer(n,GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC),a=r.getMappedRange();t.dtype==="int32"||t.dtype==="bool"?new Int32Array(a).set(t.values):new Float32Array(a).set(t.values),r.unmap(),this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.copyBufferToBuffer(r,0,s,0,n);let o={size:n,usage:GPUBufferUsage.MAP_WRITE|GPUBufferUsage.COPY_SRC,buffer:r};this.stagingPendingDisposal.push(o)}}makeUniforms(e){let t=0,n=0,s=[];e.forEach(i=>{i.data.length===0&&(i.data=[1]);let l;switch(i.data.length){case 1:l=4;break;case 2:l=8;break;case 3:l=16;break;case 4:l=16;break;case 5:l=16;break;case 6:l=16;break;default:v.assert(!1,()=>`Unsupported ${i.data.length}D shape`)}(n===5||n===6)&&(l=16),t=Math.ceil(t/l)*l,n=i.data.length,s.push(t),t+=i.data.length*4});let r=new ArrayBuffer(t);e.forEach((i,l)=>{let u=s[l];i.type==="int32"?new Int32Array(r,u,i.data.length).set(i.data):i.type==="uint32"?new Uint32Array(r,u,i.data.length).set(i.data):new Float32Array(r,u,i.data.length).set(i.data)});let a=this.bufferManager.acquireBuffer(t,GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM);this.queue.writeBuffer(a,0,r,0,t);let o={size:t,usage:GPUBufferUsage.COPY_DST|GPUBufferUsage.UNIFORM,buffer:a};return this.uniformPendingDisposal.push(o),{offset:0,size:t,buffer:a}}runWebGPUProgram(e,t,n,s,r){if(r||(r=this.makeTensorInfo(e.outputShape,n)),v.sizeFromShape(r.shape)===0)return this.tensorMap.get(r.dataId).values=v.getTypedArrayFromDType(r.dtype,0),r;this.uploadToGPU(r.dataId),e.dispatch=I0e(this.device,e);let a=[],o=[];if(!e.isFromPixels){a.push({type:"float32",data:[NaN]}),o=t.concat(r).map(g=>g.shape);let f="int32";o.map(g=>{a.push({type:f,data:g})});let m=v.computeStrides(r.shape);if(a.push({type:f,data:m}),e.size){let g=v.sizeFromShape(e.outputShape);a.push({type:f,data:[e.isVec4?g/4:g]})}}let i=t.map((f,m)=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");return this.uploadToGPU(f.dataId),{dtype:this.tensorMap.get(f.dataId).dtype,shape:f.shape,name:e.variableNames[m]}}),l=m0e(e,o,i,r),u;l in this.pipelineCache?u=this.pipelineCache[l]:(u=h0e(this.device,e,i,r),this.pipelineCache[l]=u),s&&(a=[...a,...s]);let c=[this.tensorToBinding(r),...t.map(f=>this.tensorToBinding(f)),this.makeUniforms(a)],p=this.device.createBindGroup({layout:u.getBindGroupLayout(0),entries:c.map((f,m)=>({binding:m,resource:f}))});this.ensureCommandEncoderReady();let d=this.getComputePass(),h=this.activeTimers!=null;return h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,0),d.setPipeline(u),d.setBindGroup(0,p),d.dispatchWorkgroups(e.dispatch[0],e.dispatch[1],e.dispatch[2]),h&&this.supportTimeQuery&&d.writeTimestamp(this.querySet,1),this.dispatchNumberInEncoder++,t.forEach(f=>{this.commandQueueOwnedIds.add(f.dataId)}),this.commandQueueOwnedIds.add(r.dataId),H().get("WEBGPU_DEFERRED_SUBMIT_BATCH_SIZE")<=this.dispatchNumberInEncoder&&this.submitQueue(),h&&this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(this.querySet)}),r}async getTimeFromQuerySet(e){let t=this.bufferManager.acquireBuffer(16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),n=this.bufferManager.acquireBuffer(16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST);this.ensureCommandEncoderReady(),this.ensureComputePassEnded(),this.currentCommandEncoder.resolveQuerySet(e,0,2,t,0),this.currentCommandEncoder.copyBufferToBuffer(t,0,n,0,16),this.submitQueue(),await n.mapAsync(GPUMapMode.READ);let s=new BigUint64Array(n.getMappedRange()),r=Number(s[1]-s[0]);return n.unmap(),this.bufferManager.releaseBuffer(n,16,GPUBufferUsage.MAP_READ|GPUBufferUsage.COPY_DST),this.bufferManager.releaseBuffer(t,16,GPUBufferUsage.COPY_SRC|GPUBufferUsage.QUERY_RESOLVE),r/1e6}shouldExecuteOnCPU(e,t=S0e){return H().getBool("WEBGPU_CPU_FORWARD")&&e.every(n=>this.tensorMap.get(n.dataId).resourceInfo==null&&v.sizeFromShape(n.shape)<t)}numDataIds(){return this.tensorMap.numDataIds()-this.tensorDataPendingDisposal.length}dispose(){this.disposed||(this.bufferManager.dispose(),this.textureManager.dispose(),this.disposed=!0)}};L2.nextDataId=0;Ab()&&ru("webgpu",async()=>{H().set("CHECK_COMPUTATION_FOR_ERRORS",!1);let e={powerPreference:H().get("WEBGPU_USE_LOW_POWER_GPU")?"low-power":"high-performance"},t=await navigator.gpu.requestAdapter(e),n=t.limits,s={},r=t.features.has("timestamp-query");s.requiredLimits={maxComputeWorkgroupStorageSize:n.maxComputeWorkgroupStorageSize,maxComputeWorkgroupsPerDimension:n.maxComputeWorkgroupsPerDimension,maxStorageBufferBindingSize:n.maxStorageBufferBindingSize},r&&(s.requiredFeatures=["timestamp-query"]);let a=await t.requestDevice(s);return new L2(a)},3);var qe;(function(e){e[e.MUL=0]="MUL",e[e.ADD=1]="ADD",e[e.ATAN2=2]="ATAN2",e[e.SUB=3]="SUB",e[e.DIV=4]="DIV",e[e.EQUAL=5]="EQUAL",e[e.GREATER=6]="GREATER",e[e.GREATER_EQUAL=7]="GREATER_EQUAL",e[e.LESS=8]="LESS",e[e.LESS_EQUAL=9]="LESS_EQUAL",e[e.LOGICAL_AND=10]="LOGICAL_AND",e[e.NOT_EQUAL=11]="NOT_EQUAL",e[e.SQUARED_DIFFERENCE=12]="SQUARED_DIFFERENCE",e[e.INT_DIV=13]="INT_DIV",e[e.POW=14]="POW",e[e.PRELU=15]="PRELU",e[e.MAX=16]="MAX",e[e.MIN=17]="MIN",e[e.COMPLEX_MULTIPLY_REAL=18]="COMPLEX_MULTIPLY_REAL",e[e.COMPLEX_MULTIPLY_IMAG=19]="COMPLEX_MULTIPLY_IMAG"})(qe||(qe={}));var C0e=`
if (isnan(a)) { return a; }
if (isnan(b)) { return b; }
`,gT=`
if (isNaN.r) {
resultTemp.r = valueForNaN;
}
if (isNaN.g) {
resultTemp.g = valueForNaN;
}
if (isNaN.b) {
resultTemp.b = valueForNaN;
}
if (isNaN.a) {
resultTemp.a = valueForNaN;
}
`,yT=`
let isNaN = isnanVec4(a) | isnanVec4(b);
${gT}
`,T0e="return a + b;",N0e="return areal * breal - aimag * bimag;",E0e="return areal * bimag + aimag * breal;",R0e="return a / b;",_0e="return a * b;",D0e="return (a - b) * (a - b);",$0e="return a - b;",P0e="return f32(a == b);",F0e="return vec4<f32>(a == b);",O0e="return f32(a > b);",M0e="return vec4<f32>(a > b);",z0e="return f32(a >= b);",L0e="return vec4<f32>(a >= b);",B0e="return f32(a < b);",W0e="return vec4<f32>(a < b);",V0e="return f32(a <= b);",U0e="return vec4<f32>(a <= b);",G0e="return f32(f32(a) >= 1.0 && f32(b) >= 1.0);",H0e=`return (vec4<f32>(a >= vec4<f32>(1.0)) *
vec4<f32>(b >= vec4<f32>(1.0)));`,j0e=`
let s = sign(a) * sign(b);
let ia = i32(round(a));
let ib = i32(round(b));
return f32(idiv(ia, ib, s));
`,q0e=`
let ia = vec4<i32>(round(a));
let ib = vec4<i32>(round(b));
let cond = ib != vec4<i32>(0);
var resultTemp = vec4<i32>(0);
let s = sign(a) * sign(b);
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
if (cond[0]) {
resultTemp[0] = idiv(ia[0], ib[0], s[0]);
}
if (cond[1]) {
resultTemp[1] = idiv(ia[1], ib[1], s[1]);
}
if (cond[2]) {
resultTemp[2] = idiv(ia[2], ib[2], s[2]);
}
if (cond[3]) {
resultTemp[3] = idiv(ia[3], ib[3], s[3]);
}
return vec4<f32>(resultTemp);
`,X0e=`
if (isnan(a) || isnan(b)) {
return 1.0;
}
return f32(a != b);
`,K0e=`
var resultTemp = vec4<f32>(a != b);
let valueForNaN = 1.0;
${yT}
return resultTemp;
`,Z0e=`
if(a < 0.0 && floor(b) < b) {
return uniforms.NAN;
}
if (b == 0.0) {
return 1.0;
}
if (round(abs(b) % 2.0) != 1.0) {
return pow(abs(a), b);
}
return sign(a) * pow(abs(a), b);
`,Y0e=`
let isModRound1Bool = vec4<i32>(round(abs(b) % vec4<f32>(2.0))) == vec4<i32>(1);
let isModRound1 = vec4<f32>(isModRound1Bool);
let multiplier = sign(a) * isModRound1 + (vec4<f32>(1.0) - isModRound1);
var resultTemp = multiplier * pow(abs(a), b);
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
let isExpZero = b == vec4<f32>(0.0);
if (isExpZero.r) {
resultTemp.r = 1.0;
}
if (isExpZero.g) {
resultTemp.g = 1.0;
}
if (isExpZero.b) {
resultTemp.b = 1.0;
}
if (isExpZero.a) {
resultTemp.a = 1.0;
}
let isNaN = a < vec4<f32>(0.0) & floor(b) < b;
let valueForNaN = uniforms.NAN;
${gT}
return resultTemp;
`,J0e="if (a < 0.0) { return b * a; } return a;",Q0e=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (b * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`;function C3(e,t,n="uniforms.NAN"){let s=t?yT:C0e;return t?`
let valueForNaN = ${n};
var resultTemp = vec4<f32>(${e}(a, b));
`+s+`
return resultTemp;
`:s+`
return ${e}(a, b);
`}function Zm(e,t){switch(e){case qe.MUL:return _0e;case qe.ADD:return T0e;case qe.ATAN2:return C3("atan2",t);case qe.SUB:return $0e;case qe.DIV:return R0e;case qe.EQUAL:return t?F0e:P0e;case qe.GREATER:return t?M0e:O0e;case qe.GREATER_EQUAL:return t?L0e:z0e;case qe.LESS:return t?W0e:B0e;case qe.LESS_EQUAL:return t?U0e:V0e;case qe.LOGICAL_AND:return t?H0e:G0e;case qe.NOT_EQUAL:return t?K0e:X0e;case qe.SQUARED_DIFFERENCE:return D0e;case qe.INT_DIV:return t?q0e:j0e;case qe.PRELU:return t?Q0e:J0e;case qe.MAX:return C3("max",t);case qe.MIN:return C3("min",t);case qe.POW:return t?Y0e:Z0e;case qe.COMPLEX_MULTIPLY_REAL:return N0e;case qe.COMPLEX_MULTIPLY_IMAG:return E0e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Fe;(function(e){e[e.ABS=0]="ABS",e[e.CEIL=1]="CEIL",e[e.COS=2]="COS",e[e.COSH=3]="COSH",e[e.ELU=4]="ELU",e[e.EXP=5]="EXP",e[e.EXPM1=6]="EXPM1",e[e.FLOOR=7]="FLOOR",e[e.IS_NAN=8]="IS_NAN",e[e.LINEAR=9]="LINEAR",e[e.LOG=10]="LOG",e[e.LOGICAL_NOT=11]="LOGICAL_NOT",e[e.NEG=12]="NEG",e[e.RELU=13]="RELU",e[e.RELU6=14]="RELU6",e[e.LEAKYRELU=15]="LEAKYRELU",e[e.RECIPROCAL=16]="RECIPROCAL",e[e.RSQRT=17]="RSQRT",e[e.SIN=18]="SIN",e[e.SINH=19]="SINH",e[e.SIGMOID=20]="SIGMOID",e[e.SQRT=21]="SQRT",e[e.SQUARE=22]="SQUARE",e[e.TANH=23]="TANH",e[e.TO_INT=24]="TO_INT"})(Fe||(Fe={}));var e2e="return abs(a);",t2e="return ceil(a);",n2e="return cos(a);",s2e=`
let e2x = exp(-a);
return (e2x + 1.0 / e2x) / 2.0;
`,r2e="return exp(a) - 1.0;",a2e="if (a >= 0.0) { return a; } return (exp(a) - 1.0);",o2e=`
var resFloat = exp(a) - vec4<f32>(1.0);
if (a.r >= 0.0) {
resFloat.r = a.r;
}
if (a.g >= 0.0) {
resFloat.g = a.g;
}
if (a.b >= 0.0) {
resFloat.b = a.b;
}
if (a.a >= 0.0) {
resFloat.a = a.a;
}
return resFloat;
`,i2e="return exp(a);",l2e="return floor(a);",u2e="return f32(isnan(a));",c2e="return a;",d2e=`if (a < 0.0) { return 1.0/0.0; }
return log(a);`,p2e="return f32(!(a >= 1.0));",h2e="return -a;",f2e="if (a < 0.0) { return uniforms.alpha * a; } return a;",m2e=`
let aLessThanZero = vec4<f32>(a < vec4<f32>(0.0));
return (aLessThanZero * (uniforms.alpha * a)) + ((vec4<f32>(1.0) - aLessThanZero) * a);
`,g2e="return 1.0 / a;",y2e="return select(a, 0.0, a < 0.0);",A2e="return clamp(a, 0.0, 6.0);",x2e="return clamp(a, vec4<f32>(0.0, 0.0, 0.0, 0.0), vec4<f32>(6.0, 6.0, 6.0, 6.0));",b2e=`
return select(a, vec4<f32>(0.0), a < vec4<f32>(0.0));
`,v2e="return 1.0/sqrt(a);",w2e="return 1.0 / (1.0 + exp(-1.0 * a));",k2e="return sin(a);",S2e=`
let e2x = exp(a);
return (e2x - 1.0 / e2x) / 2.0;
`,I2e="return sqrt(a);",C2e="return a * a;",T2e=`
let e2x = exp(-2.0 * abs(a));
return sign(a) * (1.0 - e2x) / (1.0 + e2x);
`,N2e="return f32(i32((a)));";function Ui(e,t){switch(e){case Fe.ABS:return e2e;case Fe.COS:return n2e;case Fe.COSH:return s2e;case Fe.CEIL:return t2e;case Fe.ELU:return t?o2e:a2e;case Fe.EXP:return i2e;case Fe.EXPM1:return r2e;case Fe.FLOOR:return l2e;case Fe.IS_NAN:return u2e;case Fe.LINEAR:return c2e;case Fe.LOG:return d2e;case Fe.LOGICAL_NOT:return p2e;case Fe.NEG:return h2e;case Fe.LEAKYRELU:return t?m2e:f2e;case Fe.RECIPROCAL:return g2e;case Fe.RELU:return t?b2e:y2e;case Fe.RELU6:return t?x2e:A2e;case Fe.RSQRT:return v2e;case Fe.SIGMOID:return w2e;case Fe.SIN:return k2e;case Fe.SINH:return S2e;case Fe.SQRT:return I2e;case Fe.SQUARE:return C2e;case Fe.TANH:return T2e;case Fe.TO_INT:return N2e;default:throw new Error(`BinaryType ${e} is not implemented!`)}}var Zt=e=>{switch(e){case 1:return"f32";case 2:return"vec2<f32>";case 3:return"vec3<f32>";case 4:return"vec4<f32>";default:throw new Error(`${e}-component is not supported.`)}};function Ai(e,t=!1,n=!1,s=3){if(e===null)return"";let r="";if(e==="linear")r=Ui(Fe.LINEAR);else if(e==="relu")r=Ui(Fe.RELU,n);else if(e==="elu")r=Ui(Fe.ELU,n);else if(e==="relu6")r=Ui(Fe.RELU6,n);else if(e==="prelu")r=Zm(qe.PRELU,n);else if(e==="sigmoid")r=Ui(Fe.SIGMOID,n);else if(e==="leakyrelu")r=Ui(Fe.LEAKYRELU,n);else throw new Error(`Activation ${e} has not been implemented for the WebGPU backend.`);let o=Zt(n?4:1),i="";return t?i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
let b = getPreluActivationWeightsByOutputCoords(coords);
${r}
}`:i=`
fn activation(a : ${o}, coords : vec${s}<i32>) -> ${o} {
${r}
}`,i}function xd(e,t){return`
${e?"value = value + getBiasByOutputCoords(coords);":""}
${t?"value = activation(value, coords);":""}
`}function AT(e,t,n,s,r=!1,a=!1,o=!1,i=1){v.assert(n&&i===1||!n,()=>`transposeA ${n} is not compatible with component size ${i}`);let l=`
let batch = ${e?"0":"batchIn"};
let batchASize = uniforms.aShape[1] * uniforms.aShape[2];
${n?`value = A[(batch * batchASize + col * uniforms.aShape[2] + row) / ${i}];`:`value = A[(batch * batchASize + row * uniforms.aShape[2] + col) / ${i}];`}
`,u;return s===!1?u=`value = B[(batch * batchBSize + row * uniforms.bShape[2] + col) / ${i}];`:u=`value = B[(batch * batchBSize + col * uniforms.bShape[2] + row) / ${i}];`,`
fn mm_readA(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} {
var value = ${Zt(i)}(0.0);
let col = colIn * ${i};
${r&&o?l:`
${n?"if(row < uniforms.dimAOuter && col < uniforms.dimInner)":"if(row < uniforms.aShape[1] && col < uniforms.aShape[2])"}
{
${l}
}
`}
return value;
}
fn mm_readB(batchIn: i32, row: i32, colIn: i32) -> ${Zt(i)} {
let col = colIn * ${i};
let batch = ${t?"0":"batchIn"};
let batchBSize = uniforms.bShape[1] * uniforms.bShape[2];
var value = ${Zt(i)}(0.0);
${u}
return value;
}
`}function xb(e,t,n,s,r,a,o=!1,i=!1,l=!1,u=1){return`
${AT(n,s,r,a,o,i,l,u)}
fn mm_write(batch: i32, row: i32, colIn: i32, valueIn: ${Zt(u)}) {
let col = colIn * ${u};
${o&&i?"":"if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)"}
{
var value = valueIn;
let coords = vec3<i32>(batch, row, col);
${xd(e,t)}
setOutputAtCoords(coords[0], coords[1], coords[2], value);
}
}
`}var E2e=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart / InnerElementSize + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRow + innerRow,
kStart / InnerElementSize + inputCol);
`,R2e=(e,t)=>e?`
let ACached0 = mm_Asub[k * InnerElementSize][localRow];
let ACached1 = mm_Asub[k * InnerElementSize + 1][localRow];
let ACached2 = mm_Asub[k * InnerElementSize + 2][localRow];
${t===3?"":"let ACached3 = mm_Asub[k * InnerElementSize + 3][localRow];"}
for (var i = 0; i < RowPerThread; i = i + 1) {
acc[i] = BCached0 * ACached0[i] + acc[i];
acc[i] = BCached1 * ACached1[i] + acc[i];
acc[i] = BCached2 * ACached2[i] + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached3[i] + acc[i];"}
}`:`
for (var i = 0; i < RowPerThread; i = i + 1) {
let ACached = mm_Asub[tileRow + i][k];
acc[i] = BCached0 * ACached.x + acc[i];
acc[i] = BCached1 * ACached.y + acc[i];
acc[i] = BCached2 * ACached.z + acc[i];
${t===3?"":"acc[i] = BCached3 * ACached.w + acc[i];"}
}`;function B2(e,t,n=!1,s=32,r=!1,a=32,o=!1){let i=t[1]*e[1],l=t[0]*e[0],u=n?i:s,c=n?s:i,p=u/t[0],d=s/t[1];return v.assert((n&&p===4&&e[1]===4||!n&&(p===3||p===4))&&u%t[0]===0&&s%t[1]===0&&e[0]===4,()=>`If transposeA ${n} is true, innerElementSize ${p} and workPerThread[1] ${e[1]} must be 4.
Otherwise, innerElementSize ${p} must be 3 or 4.
tileAWidth ${u} must be divisible by workGroupSize[0]${t[0]}. tileInner ${s} must be divisible by workGroupSize[1] ${t[1]}. ColPerThread ${e[0]} must be 4.`),`
var<workgroup> mm_Asub : array<array<vec${p}<f32>, ${u/p}>, ${c}>;
var<workgroup> mm_Bsub : array<array<vec4<f32>, ${l/e[0]}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const InnerElementSize = ${p};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let localRow = i32(localId.y);
let tileRow = ${o?"0":"localRow * RowPerThread"};
let tileCol = i32(localId.x);
let globalRow = ${o?"0":"i32(globalId.y) * RowPerThread"};
let globalCol = i32(globalId.x);
let batch = ${r?"0":"i32(globalId.z)"};
let globalRowStart = i32(workgroupId.y) * ${i};
let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${a}`:"0"};
var acc: array<vec4<f32>, RowPerThread>;
// Loop over shared dimension.
let tileRowB = localRow * ${d};
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
let inputRow = tileRow + innerRow;
let inputCol = tileCol;
${E2e(n)}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch, kStart + inputRow, globalCol);
}
kStart = kStart + TileInner;
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileInner / InnerElementSize; k = k + 1) {
let BCached0 = mm_Bsub[k * InnerElementSize][tileCol];
let BCached1 = mm_Bsub[k * InnerElementSize + 1][tileCol];
let BCached2 = mm_Bsub[k * InnerElementSize + 2][tileCol];
${p===3?"":"let BCached3 = mm_Bsub[k * InnerElementSize + 3][tileCol];"}
${R2e(n,p)}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
mm_write(batch, globalRow + innerRow, globalCol, acc[innerRow]);
}
}`}var _2e=e=>e?`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
kStart + inputRow,
globalRowStart + inputCol);
`:`
mm_Asub[inputRow][inputCol] = mm_readA(batch,
globalRowStart + inputRow,
kStart + inputCol);
`,D2e=e=>e?"let ACached = mm_Asub[k][tileRow + innerRow];":"let ACached = mm_Asub[tileRow + innerRow][k];";function W2(e,t,n=!1,s=32,r=!1,a=32){let o=e[1]*t[1],i=e[0]*t[0],l=n?o:s,u=n?s:o;v.assert(u%t[1]===0&&l%t[0]===0&&s%t[1]===0,()=>`tileAHight ${u} must be divisible by workGroupSize[1]${t[1]}, tileAWidth ${l} must be divisible by workGroupSize[0]${t[0]}, tileInner ${s} must be divisible by workGroupSize[1]${t[1]}`);let c=u/t[1],p=l/t[0],d=s/t[1];return`
var<workgroup> mm_Asub : array<array<f32, ${l}>, ${u}>;
var<workgroup> mm_Bsub : array<array<f32, ${i}>, ${s}>;
const RowPerThread = ${e[1]};
const ColPerThread = ${e[0]};
const TileInner = ${s};
@compute @workgroup_size(workGroupSizeX, workGroupSizeY, workGroupSizeZ)
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>,
@builtin(workgroup_id) workgroupId: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
numWorkgroups = NumWorkgroups;
let tileRow = i32(localId.y) * RowPerThread;
let tileCol = i32(localId.x) * ColPerThread;
let globalRow = i32(globalId.y) * RowPerThread;
let globalCol = i32(globalId.x) * ColPerThread;
let batch = ${r?"0":"i32(globalId.z)"};
let globalRowStart = i32(workgroupId.y) * ${o};
let numTiles = ${r?`${Math.ceil(a/s)}`:"(uniforms.dimInner - 1) / TileInner + 1"};
var kStart = ${r?`i32(globalId.z) * ${a}`:"0"};
var acc : array<array<f32, ColPerThread>, RowPerThread>;
// Without this initialization strange values show up in acc.
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = 0.0;
}
}
let tileRowA = i32(localId.y) * ${c};
let tileColA = i32(localId.x) * ${p};
let tileRowB = i32(localId.y) * ${d};
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
for (var innerRow = 0; innerRow < ${c}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ${p}; innerCol = innerCol + 1) {
let inputRow = tileRowA + innerRow;
let inputCol = tileColA + innerCol;
${_2e(n)}
}
}
// Load one tile of B into local memory.
for (var innerRow = 0; innerRow < ${d}; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
let inputRow = tileRowB + innerRow;
let inputCol = tileCol + innerCol;
mm_Bsub[inputRow][inputCol] = mm_readB(batch,
kStart + inputRow,
globalCol + innerCol);
}
}
kStart = kStart + TileInner;
workgroupBarrier();
// Compute acc values for a single thread.
var BCached : array<f32, ColPerThread>;
for (var k = 0; k < TileInner; k = k + 1) {
for (var inner = 0; inner < ColPerThread; inner = inner + 1) {
BCached[inner] = mm_Bsub[k][tileCol + inner];
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
${D2e(n)}
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
acc[innerRow][innerCol] = acc[innerRow][innerCol] + ACached * BCached[innerCol];
}
}
}
workgroupBarrier();
}
for (var innerRow = 0; innerRow < RowPerThread; innerRow = innerRow + 1) {
for (var innerCol = 0; innerCol < ColPerThread; innerCol = innerCol + 1) {
mm_write(batch, globalRow + innerRow, globalCol + innerCol,
acc[innerRow][innerCol]);
}
}
}
`}var $2e=e=>e?`
mm_readA(batch, colA, globalRow),
mm_readA(batch, colA + 1, globalRow),
mm_readA(batch, colA + 2, globalRow),
mm_readA(batch, colA + 3, globalRow)
`:`
mm_readA(batch, globalRow, colA),
mm_readA(batch, globalRow, colA + 1),
mm_readA(batch, globalRow, colA + 2),
mm_readA(batch, globalRow, colA + 3)
`;function P2e(e,t=!1){return v.assert(e[1]===1&&e[2]===1,()=>`A linear work group size is required. But got ${e}.`),`
const TileSize = ${e[0]*4};
var<workgroup> mm_Asub : array<vec4<f32>, ${e[0]}>;
${Ye()} {
let tileCol = i32(localId.x);
let globalCol = i32(globalId.x);
let globalRow = i32(globalId.y);
let numTiles = (uniforms.dimInner - 1) / TileSize + 1;
let batch = i32(globalId.z);
// Without this initialization strange values show up in acc.
var acc = 0.0;
// Loop over shared dimension.
for (var t = 0; t < numTiles; t = t + 1) {
// Load one tile of A into local memory.
let colA = t * TileSize + tileCol * 4;
mm_Asub[tileCol] = vec4<f32>(${$2e(t)});
workgroupBarrier();
// Compute acc values for a single thread.
for (var k = 0; k < TileSize / 4; k = k + 1) {
let rowB = t * TileSize + k * 4;
let BCached = vec4<f32>(mm_readB(batch, rowB, globalCol),
mm_readB(batch, rowB + 1, globalCol),
mm_readB(batch, rowB + 2, globalCol),
mm_readB(batch, rowB + 3, globalCol));
let ACached = mm_Asub[k];
acc = acc + dot(ACached, BCached);
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var F2e=class{constructor(e,t,n,s,r=!1,a=!1,o=null,i=null,l=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=t,this.dispatchLayout={x:[2],y:[1],z:[0]};let u=r?e[1]:e[2];if(this.isVec4=(u%4===0&&!r||t[1]%4===0&&r)&&t[2]%4===0&&!a,this.isVectorA=t[1]===1&&!r,!this.isVec4&&this.isVectorA)this.elementsPerThread=[1,1,1],this.workGroupSize=[32,1,1];else{let d=hT(t[1],u,t[2],r);this.workGroupSize=d.workGroupSize,this.elementsPerThread=d.elementsPerThread}this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread);let c=o!=null,p=l!=null;c&&this.variableNames.push("bias"),p&&this.variableNames.push("preluActivationWeights"),this.transposeA=r,this.transposeB=a,this.addBias=c,this.activation=i,this.hasPreluActivationWeights=p,this.batchAEqualOne=n,this.batchBEqualOne=s,[this.fitAOuter,this.fitBOuter,this.fitInner]=this.getShapeFit(t[1],t[2],u),this.shaderKey=`matMulPacked_${this.elementsPerThread}_${r}_${a}_${this.activation}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.isVectorA}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getShapeFit(e,t,n){let s=this.workGroupSize[1]*this.elementsPerThread[1],r=this.workGroupSize[0]*this.elementsPerThread[0];!this.isVec4&&this.isVectorA?this.tileInner=this.workGroupSize[0]*4:this.tileInner=r;let a=e%s===0,o=t%r===0,i=n%this.tileInner===0;return[a,o,i]}getUserCode(){return`
${Ai(this.activation,this.hasPreluActivationWeights,this.isVec4)}
${xb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,this.fitAOuter,this.fitBOuter,this.fitInner,this.isVec4?4:1)}
${this.isVec4?B2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner,!1,null,this.isVectorA):this.isVectorA?P2e(this.workGroupSize,this.transposeA):W2(this.elementsPerThread,this.workGroupSize,this.transposeA,this.tileInner)}
`}};function O2e(){return`
var<workgroup> sumValues : array<f32, workGroupSizeX>;
${Ye()} {
let coords = getOutputCoords();
let batch = coords[0];
let row = coords[1];
let col = coords[2];
var sum = 0.0;
let Length = uniforms.dimInner;
for (var k = i32(localId.x); k < Length; k = k + i32(workGroupSizeX)) {
let dataA = mm_readA(batch, row, k);
let dataB = mm_readB(batch, k, col);
sum = sum + dataA * dataB;
}
sumValues[localId.x] = sum;
workgroupBarrier();
for(var currentSize = workGroupSizeX / 2u; currentSize > 1u;
currentSize = currentSize / 2u) {
if (localId.x < currentSize)
{
sumValues[localId.x] = sumValues[localId.x] + sumValues[localId.x + currentSize];
}
workgroupBarrier();
}
if (localId.x == 0u) {
sum = sumValues[0] + sumValues[1];
mm_write(batch, row, col, sum);
}
}
`}var M2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout={x:[],y:[1,2],z:[0]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize);let l=a!=null,u=i!=null;l&&this.variableNames.push("bias"),u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=t,this.batchBEqualOne=n,this.shaderKey=`matMulReduce_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ai(this.activation,this.hasPreluActivationWeights)}
${xb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${O2e()}
`}};function z2e(e){let t=e[1],n=e[0],s=t>n?t:n;return`
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${t}>;
var<workgroup> mm_Bsub : array<array<f32, ${n}>, ${s}>;
// If the output size is small for matrix multiplication, avoid to use vec4
// and handle some elements per thread to optimally utilize the ALU.
// Read data from global memory to registers firstly, then store them into
// shared memory, so it is instruction-Level parallelism for arithmetic
// operations and others handle IO operations between barrier api, makes ALU
// and load/store units work simultaneously, could improves the performance.
${Ye()} {
let tileRow = i32(localId.y);
let tileCol = i32(localId.x);
let globalRow = i32(globalId.y);
let globalCol = i32(globalId.x);
let batch = i32(globalId.z);
// uniforms.dimInner should be greater than 0.
let numTiles = (uniforms.dimInner - 1) / ${s} + 1;
var acc = 0.0;
var globalColA = tileCol;
var globalRowB = 0;
var regA = mm_readA(batch, globalRow, globalColA);
var regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
var regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var t = 0; t < numTiles; t = t + 1) {
mm_Asub[tileRow][tileCol] = regA;
mm_Bsub[2 * tileRow][tileCol] = regB0;
mm_Bsub[2 * tileRow + 1][tileCol] = regB1;
workgroupBarrier();
regA = mm_readA(batch, globalRow, globalColA);
regB0 = mm_readB(batch, globalRowB + 2 * tileRow, globalCol);
regB1 = mm_readB(batch, globalRowB + 2 * tileRow + 1, globalCol);
globalColA = globalColA + ${s};
globalRowB = globalRowB + ${s};
for (var k = 0; k < ${s}; k = k + 1) {
acc = acc + mm_Asub[tileRow][k] * mm_Bsub[k][tileCol];
}
workgroupBarrier();
}
mm_write(batch, globalRow, globalCol, acc);
}
`}var L2e=class{constructor(e,t,n,s=!1,r=!1,a=null,o=null,i=null){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[16,8,1],this.outputShape=n,this.dispatchLayout={x:[2],y:[1],z:[0]},this.dispatch=[Math.ceil(n[2]/this.workGroupSize[0]),Math.ceil(n[1]/this.workGroupSize[1]),n[0]];let l=a!=null;l&&this.variableNames.push("bias");let u=i!=null;u&&this.variableNames.push("preluActivationWeights"),this.transposeA=s,this.transposeB=r,this.addBias=l,this.activation=o,this.hasPreluActivationWeights=u,this.batchAEqualOne=e[0]===1,this.batchBEqualOne=t[0]===1,this.shaderKey=`matMulSmallOutputSize_${this.activation}_${s}_${r}_${this.batchAEqualOne}_${this.batchBEqualOne}`}getUserCode(){return`
${Ai(this.activation,this.hasPreluActivationWeights)}
${xb(this.addBias,this.activation,this.batchAEqualOne,this.batchBEqualOne,this.transposeA,this.transposeB)}
${z2e(this.workGroupSize)}
`}},B2e=class{constructor(e,t,n,s,r=!1,a=!1){this.variableNames=["A","B"],this.uniforms="dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.workGroupSize=[8,8,1],this.atomic=!0,this.isVec4=!1,this.splitedDimInner=128,v.assert(e[0]===1,()=>"MatMulSplitKProgram only supports batch = 1."),this.outputShape=e,this.dispatchLayout={x:[2],y:[1],z:[0,3]},this.isVec4=(r&&this.outputShape[1]%4===0||!r&&t%4===0)&&this.outputShape[2]%4===0,this.elementsPerThread=[4,4,this.splitedDimInner],this.isVec4||(this.outputShape[1]<16&&(this.elementsPerThread[1]=1),this.outputShape[2]<16&&(this.elementsPerThread[0]=1)),this.dispatch=Ge(this.dispatchLayout,[this.outputShape[0],this.outputShape[1],this.outputShape[2],t],this.workGroupSize,this.elementsPerThread),this.transposeA=r,this.transposeB=a,this.batchAEqualOne=n,this.batchBEqualOne=s,this.shaderKey=`matMulSplitK_${r}_${a}_${n}_${s}_${this.elementsPerThread}_${this.isVec4}`}getUserCode(){let e=s=>`
for (var i = 0; i < ${s}; i = i + 1)
{
var oldValue = atomicLoad(&(result[flatIndex + i]));
var exchanged = false;
for (; !exchanged;) {
let newValueF32 = bitcast<f32>(oldValue) + ${s>1?"value[i]":"value"};
let newValue = bitcast<i32>(newValueF32);
let res = atomicCompareExchangeWeak(&(result[flatIndex + i]), oldValue, newValue);
oldValue = res.old_value;
exchanged = res.exchanged;
}
}
`,t=this.isVec4?4:1;return`
${AT(this.batchAEqualOne,this.batchBEqualOne,!1,this.transposeB,!1,!1,!1,t)}
fn mm_write(batch: i32, row : i32, colIn : i32, value : ${Zt(t)}) {
let col = colIn * ${t};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter) {
let coords = vec3<i32>(batch, row, col);
let flatIndex = getOutputIndexFromCoords(coords);
// The problem is that we should initialize output to zero before using.
// Otherwise, the original value will be added to the result.
${e(t)}
}
}
${this.isVec4?B2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner):W2(this.elementsPerThread,this.workGroupSize,this.transposeA,32,!0,this.splitedDimInner)}
`}},W2e=class{constructor(e,t=null,n=null,s=null){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.addBias=t!=null,this.hasPreluActivationWeights=s!=null,this.activation=n,this.addBias&&this.variableNames.push("bias"),this.hasPreluActivationWeights&&this.variableNames.push("preluActivationWeights"),this.shaderKey=`biasActivation_${n}`}getUserCode(){return`
${Ai(this.activation,this.hasPreluActivationWeights)}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var value = getXByOutputIndex(index);
${xd(this.addBias,this.activation)}
setOutputAtIndex(index, value);
}
}
`}},V2e=class{constructor(e){this.variableNames=[],this.outputShape=[],this.uniforms="value : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="fill"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
setOutputAtIndex(index, uniforms.value);
}
}
`}};function yu(e){let{backend:t,attrs:n}=e,{shape:s,value:r}=n,{dtype:a}=n;if(a=a||v.inferDtype(r),a==="string"){let o=v.getArrayFromDType(a,v.sizeFromShape(s));return o.fill(r),t.makeTensorInfo(s,a,o)}else{let o=new V2e(s),i=[{type:"float32",data:[r]}];return t.runWebGPUProgram(o,[],a,i)}}var U2e={kernelName:Pc,backendName:"webgpu",kernelFunc:yu};function Ue(e){let{inputs:t,attrs:n}=e,{x:s}=t,{shape:r}=n,a=v.sizeFromShape(s.shape),o=v.inferFromImplicitShape(r,a),i=v.sizeFromShape(o);return v.assert(a===i,()=>`The new shape (${o}) has ${i} elements and the old shape (${s.shape}) has ${a} elements. The new shape and old shape must have the same number of elements.`),e.backend.incRef(s.dataId),{dataId:s.dataId,shape:o,dtype:s.dtype}}var G2e={kernelName:Vl,backendName:"webgpu",kernelFunc:Ue};function bb({a:e,b:t,transposeA:n,transposeB:s,backend:r,bias:a=null,preluActivationWeights:o=null,leakyreluAlpha:i=0,activation:l=null}){let u=e.shape.length,c=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],d=s?t.shape[c-1]:t.shape[c-2],h=n?e.shape[u-1]:e.shape[u-2],f=s?t.shape[c-2]:t.shape[c-1],m=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=v.sizeFromShape(m),x=v.sizeFromShape(g),b=au.assertAndGetBroadcastShape(e.shape.slice(0,-2),t.shape.slice(0,-2)).concat([h,f]);v.assert(p===d,()=>`Error in matMul: inner shapes (${p}) and (${d}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${s} must match.`);let w=n?[y,p,h]:[y,h,p],k=s?[x,f,d]:[x,d,f],C=Ue({inputs:{x:e},backend:r,attrs:{shape:w}}),E=Ue({inputs:{x:t},backend:r,attrs:{shape:k}}),_=[C,E],$=Math.max(y,x),R=y===1,P=x===1,S=[C,E],M=[{type:"int32",data:[h]},{type:"int32",data:[f]},{type:"int32",data:[p]}],L,U,K=[$,h,f],q=H().get("WEBGPU_MATMUL_PROGRAM_TYPE");switch(q<0&&(h*f<=128?q=_r.MatMulReduceProgram:$===1&&h<=128&&f<=48&&d>=2e3?q=_r.MatMulSplitKProgram:h<=16&&(f<=512||d>=2*f)||f<=16&&(h<=512||p>=2*h)?q=_r.MatMulSmallOutputSizeProgram:q=_r.MatMulPackedProgram),q){case _r.MatMulReduceProgram:L=new M2e(K,R,P,n,s,a,l,o);break;case _r.MatMulSplitKProgram:{if(U=yu({backend:r,attrs:{shape:K,value:0,dtype:e.dtype}}),L=new B2e(K,d,R,P,n,s),a||l){U=r.runWebGPUProgram(L,S,e.dtype,M,U);let J=new W2e(U.shape,a,l,o),Q=null,ie=[U];a&&ie.push(a),o&&ie.push(o),l==="leakyrelu"&&(Q=[{type:"float32",data:[i]}],J.uniforms+=" alpha : f32,");let re=r.runWebGPUProgram(J,ie,U.dtype,Q);_.push(U);let de=Ue({inputs:{x:re},backend:r,attrs:{shape:b}});_.push(re);for(let ue of _)r.disposeData(ue.dataId);return de}break}case _r.MatMulSmallOutputSizeProgram:L=new L2e(w,k,K,n,s,a,l,o);break;case _r.MatMulPackedProgram:L=new F2e(w,K,R,P,n,s,a,l,o);break;default:throw new Error(`Unsupported MatMulProgramType ${q}.`)}a&&S.push(a),o&&S.push(o),l==="leakyrelu"&&(M.push({type:"float32",data:[i]}),L.uniforms+=" alpha : f32,"),U=r.runWebGPUProgram(L,S,e.dtype,M,U);let Z=Ue({inputs:{x:U},backend:r,attrs:{shape:b}});_.push(U);for(let J of _)r.disposeData(J.dataId);return Z}function H2e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a,bias:o,preluActivationWeights:i}=t,{transposeA:l,transposeB:u,activation:c,leakyreluAlpha:p}=s;return bb({a:r,b:a,transposeA:l,transposeB:u,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:p,activation:c})}var j2e={kernelName:to,backendName:"webgpu",kernelFunc:H2e},i6=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`binaryOpComplex_${e}`,this.op=e}getUserCode(){return`
fn binaryOpComplex(
areal : f32, aimag : f32, breal : f32, bimag : f32) -> f32 {
${Zm(this.op,!1)}
}
${Ye("index")} {
if(index < uniforms.size) {
let areal = getARealByOutputIndex(index);
let aimag = getAImagByOutputIndex(index);
let breal = getBRealByOutputIndex(index);
let bimag = getBImagByOutputIndex(index);
setOutputAtIndex(index, binaryOpComplex(areal, aimag, breal, bimag));
}
}
`}},Ny=class{constructor(e,t,n){this.size=!0,this.variableNames=["A","B"],this.outputShape=T.assertAndGetBroadcastShape(t,n),this.dispatchLayout=ot(this.outputShape),this.op=e,this.useSharedMemoryWithA=t.length===1&&n.length>1&&t[0]<1024,this.useSharedMemoryWithB=n.length===1&&t.length>1&&n[0]<1024,this.useSharedMemoryWithA||this.useSharedMemoryWithB?(this.isVec4=!1,this.lastDimensionSize=this.useSharedMemoryWithB?n[0]:t[0],this.shaderKey=`binary_${this.type}_${e}_${this.lastDimensionSize}_${this.useSharedMemoryWithB}`,this.type="shared",this.workGroupSize=[256,1,1],this.lastDimensionSize<256?this.workPerThread=1:this.lastDimensionSize<512?this.workPerThread=2:this.workPerThread=4):(v.arraysEqual(t,n)&&v.sizeFromShape(t)%4===0?(this.isVec4=!0,this.type="vec4",this.workPerThread=4):(this.isVec4=!1,this.type="plain",this.workPerThread=1),this.shaderKey=`binary_${this.type}_${e}`,this.workGroupSize=[128,1,1]),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1])}getUserCode(){let e;if(this.type==="shared"){let t=this.lastDimensionSize>1?`coords[${this.outputShape.length-1}]`:"0",n=this.useSharedMemoryWithB?`let a = getAByOutputCoords(coords);
let b = sharedBuf[${t}];`:`let a = sharedBuf[${t}];
let b = getBByOutputCoords(coords);`;e=`
fn binaryOperation(a : f32, b : f32) -> f32 {
${Zm(this.op,this.isVec4)}
}
var<workgroup> sharedBuf : array<f32, ${this.lastDimensionSize}>;
${Ye("index")} {
// Fill in the shared memory buffer. Here we need a loop to make sure
// that all data in A|B are uploaded when |sharedMemorySize| is larger
// than work group size.
for(var localIndex = i32(localId.x); localIndex < ${this.lastDimensionSize}; localIndex = localIndex + ${this.workGroupSize[0]}) {
sharedBuf[localIndex] = f32(${this.useSharedMemoryWithB?"B":"A"}[localIndex]);
}
workgroupBarrier();
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${n}
setOutputAtIndex(flatIndex, binaryOperation(a, b));
}
}
}
`}else{let t=this.type==="vec4"?"vec4<f32>":"f32",n=Zm(this.op,this.isVec4);e=`
fn binaryOperation(a : ${t}, b : ${t}) -> ${t} {
${n}
}
${Ye("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
let b = getBByOutputIndex(index);
setOutputAtIndex(index, binaryOperation(a, b));
}
}
`}return e}};function er(e){let{inputs:t}=e,{x:n}=t;return e.backend.incRef(n.dataId),{dataId:n.dataId,shape:n.shape,dtype:n.dtype}}var q2e={kernelName:Po,backendName:"webgpu",kernelFunc:er};function bd(e){let{inputs:t,backend:n}=e,{real:s,imag:r}=t,a=n.makeTensorInfo(s.shape,"complex64"),o=n.tensorMap.get(a.dataId),i=er({inputs:{x:s},backend:n}),l=er({inputs:{x:r},backend:n});return o.complexTensorInfos={real:i,imag:l},a}var X2e={kernelName:Hp,backendName:"webgpu",kernelFunc:bd},Xh=class{constructor(e,t){this.variableNames=["A"],this.size=!0;let n=128;this.workGroupSize=[n,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.op=t,this.shaderKey=`unary_${t}`}getUserCode(){return`
fn unaryOperation(a : f32) -> f32 {
${Ui(this.op,!1)}
}
${Ye("index")} {
if (index < uniforms.size) {
let a = getAByOutputIndex(index);
setOutputAtIndex(index, unaryOperation(a));
}
}
`}};function bn({opType:e,cpuKernelImpl:t,dtype:n}){return({inputs:s,backend:r})=>{let{x:a}=s,o=r,i=n||a.dtype;if(o.shouldExecuteOnCPU([a])&&t!=null){let u=o.tensorMap.get(a.dataId),c=t(u.values,i);return o.makeTensorInfo(a.shape,i,c)}let l=new Xh(a.shape,e);return o.runWebGPUProgram(l,[a],i)}}function Hn({opType:e,cpuKernelImpl:t,supportsComplex:n=!1,dtype:s}){return({inputs:r,backend:a})=>{let{a:o,b:i}=r,l=a;if(n&&o.dtype==="complex64"){let p=l.tensorMap.get(o.dataId),d=l.tensorMap.get(i.dataId),h,f;if(e!==qe.MUL)[h,f]=[[p.complexTensorInfos.real,d.complexTensorInfos.real],[p.complexTensorInfos.imag,d.complexTensorInfos.imag]].map(g=>{let[y,x]=g,A={dataId:y.dataId,dtype:y.dtype,shape:o.shape},b={dataId:x.dataId,dtype:x.dtype,shape:i.shape},w=new Ny(e,o.shape,i.shape);return l.runWebGPUProgram(w,[A,b],Un(y.dtype,x.dtype))});else{let g=new i6(qe.COMPLEX_MULTIPLY_REAL,o.shape,i.shape),y=new i6(qe.COMPLEX_MULTIPLY_IMAG,o.shape,i.shape),x=[{dataId:p.complexTensorInfos.real.dataId,dtype:p.complexTensorInfos.real.dtype,shape:o.shape},{dataId:p.complexTensorInfos.imag.dataId,dtype:p.complexTensorInfos.imag.dtype,shape:o.shape},{dataId:d.complexTensorInfos.real.dataId,dtype:d.complexTensorInfos.real.dtype,shape:i.shape},{dataId:d.complexTensorInfos.imag.dataId,dtype:d.complexTensorInfos.imag.dtype,shape:i.shape}];h=l.runWebGPUProgram(g,x,"float32"),f=l.runWebGPUProgram(y,x,"float32")}let m=bd({inputs:{real:h,imag:f},backend:l});return l.disposeData(h.dataId),l.disposeData(f.dataId),m}let u=s||Un(o.dtype,i.dtype);if((o.dtype==="string"||i.dtype==="string"||l.shouldExecuteOnCPU([o,i]))&&t!=null){let p=l.tensorMap.get(o.dataId).values,d=l.tensorMap.get(i.dataId).values,h=o.dtype==="string"?T.fromUint8ToStringArray(p):p,f=o.dtype==="string"?T.fromUint8ToStringArray(d):d,[m,g]=t(o.shape,i.shape,h,f,u);return l.makeTensorInfo(g,u,m)}let c=new Ny(e,o.shape,i.shape);return l.runWebGPUProgram(c,[o,i],u)}}var{addImpl:K2e,castImpl:Z2e,ceilImpl:Y2e,concatImpl:J2e,equalImpl:Q2e,expImpl:e1e,expm1Impl:t1e,floorImpl:n1e,gatherNdImpl:s1e,gatherV2Impl:r1e,greaterEqualImpl:a1e,greaterImpl:o1e,lessEqualImpl:i1e,lessImpl:l1e,logImpl:u1e,maxImpl:c1e,maximumImpl:d1e,minimumImpl:p1e,multiplyImpl:h1e,negImpl:f1e,notEqualImpl:m1e,prodImpl:g1e,rangeImpl:y1e,rsqrtImpl:A1e,scatterImpl:x1e,simpleAbsImpl:b1e,sliceImpl:v1e,stridedSliceImpl:w1e,stringNGramsImpl:k1e,subImpl:S1e,tileImpl:I1e,topKImpl:C1e,transposeImpl:T1e,uniqueImpl:Hbe}=Bx,N1e=bn({opType:Fe.ABS,cpuKernelImpl:b1e}),E1e={kernelName:ml,backendName:"webgpu",kernelFunc:N1e},R1e=Hn({opType:qe.ADD,cpuKernelImpl:K2e,supportsComplex:!0}),_1e={kernelName:Na,backendName:"webgpu",kernelFunc:R1e},D1e=class{constructor(e){this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e[0],this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="addN"}getUserCode(){let e=[];this.variableNames.forEach(s=>{e.push(`let v${s} = get${s}ByOutputCoords(coords);`)});let t=this.variableNames.map(s=>`v${s}`).join(" + ");return`
${Ye("index")} {
for (var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
${e.join(`
`)}
setOutputAtIndex(flatIndex, ${t});
}
}
}
`}};function $1e(e){let{inputs:t,backend:n}=e,s=t;if(s.length===1)return er({inputs:{x:s[0]},backend:n});let r=s.map(i=>i.dtype).reduce((i,l)=>Un(i,l)),a=s.map(i=>i.shape),o=new D1e(a);return n.runWebGPUProgram(o,s,r)}var P1e={kernelName:mo,backendName:"webgpu",kernelFunc:$1e},xT=class{constructor(e,t,n){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="infinityValue : f32,",this.size=!0;let s=[t];this.op=n==="min"?"<":">";let[r,a]=T.computeOutAndReduceShapes(e,s);this.outputShape=r.length===0?[1]:r,this.dispatchLayout=ot(this.outputShape),v.sizeFromShape(a)<32||v.sizeFromShape(r)>1e3?(this.type="plain",this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize)):(this.type="shared",this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1])),this.inputShape=e,this.shaderKey=`argMinMax_${this.op}_${this.type}`}getUserCode(){let e=()=>this.inputShape.length===1?"uniforms.xShape":`uniforms.xShape.${wa(this.inputShape.length-1)}`,t=()=>{let n="";if(this.outputShape.length===1)this.inputShape.length!==1&&(n+="outputCoords,");else for(let s=0;s<this.outputShape.length;s++)n+=`outputCoords.${wa(s)},`;return n};return this.type==="shared"?`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestIndices : array<i32, ${this.workGroupSize[0]}>;
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
${Ye("index")} {
let outputIndex = index / i32(workGroupSizeX);
let reduceLength = ${e()};
var bestIndex = i32(localId.x);
var bestValue = uniforms.infinityValue;
let outputCoords = getCoordsFromIndex(outputIndex);
for (var k = i32(localId.x); k < reduceLength && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = getX(${t()} k);
if (!isnan(candidate) && candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = k;
}
}
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = bestIndex;
workgroupBarrier();
var reduceSize = min(u32(reduceLength), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
if (candidate ${this.op} bestValue) {
bestValue = candidate;
xBestValues[localId.x] = bestValue;
xBestIndices[localId.x] = xBestIndices[localId.x + interval];
}
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
setOutputAtIndexI32(outputIndex, xBestIndices[localId.x]);
}
}
`:`
${Ye("index")} {
if (index < uniforms.size) {
let outputCoords = getCoordsFromIndex(index);
var bestIndex = 0;
var bestValue = getX(${t()} 0);
let reduceLength = ${e()};
for (var i = 1; i < reduceLength; i++) {
let candidate = getX(${t()} i);
if (candidate ${this.op} bestValue) {
bestValue = candidate;
bestIndex = i;
}
}
setOutputAtIndexI32(index, bestIndex);
}
}
`}},F1e=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[16,16,1];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout={x:[0],y:[1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[1,1,1]),this.shaderKey="transposeShared"}getUserCode(){return`
const TILE_DIM = ${this.workGroupSize[0]};
var<workgroup> tile : array<array<f32, ${this.workGroupSize[0]+1}>, ${this.workGroupSize[0]}>;
${Wp()}
fn _start(@builtin(local_invocation_id) localId : vec3<u32>,
@builtin(workgroup_id) workgroupId : vec3<u32>) {
var x = i32(workgroupId.x) * TILE_DIM + i32(localId.x);
var y = i32(workgroupId.y) * TILE_DIM + i32(localId.y);
let width = uniforms.outShape[0];
let height = uniforms.outShape[1];
if (x < width && y < height) {
tile[localId.y][localId.x] = A[y * width + x];
}
workgroupBarrier();
x = i32(workgroupId.y) * TILE_DIM + i32(localId.x);
y = i32(workgroupId.x) * TILE_DIM + i32(localId.y);
if (x < height && y < width) {
setOutputAtIndex((y * height + x), tile[localId.x]
[localId.y]);
}
}
`}},O1e=class{constructor(e,t){this.variableNames=["A"],this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.newDim=t,this.shaderKey=`transpose_${t}`}getUserCode(){let e=Pn(this.outputShape.length),t=M1e(this.newDim);return`
${Ye("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let resRC = getCoordsFromIndex(flatIndex);
setOutputAtIndex(flatIndex, A[getIndexFromCoords${this.outputShape.length}D(
${e}(${t}), uniforms.aShape)]);
}
}
}
`}};function M1e(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=new Array(t);for(let s=0;s<e.length;s++)n[e[s]]=`resRC.${wa(s)}`;return n.join()}function Ta(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{perm:a}=s,o=n,i=r.shape.length,l=new Array(i);for(let c=0;c<l.length;c++)l[c]=r.shape[a[c]];if(n.shouldExecuteOnCPU([r])){let p=o.tensorMap.get(r.dataId).values,d=T1e(p,r.shape,r.dtype,a,l);return n.makeTensorInfo(l,r.dtype,d)}if(r.shape.length===2&&v.arraysEqual(a,[1,0])){let c=new F1e(r.shape,a);return o.runWebGPUProgram(c,[r],r.dtype)}let u=new O1e(r.shape,a);return o.runWebGPUProgram(u,[r],r.dtype)}var z1e={kernelName:ea,backendName:"webgpu",kernelFunc:Ta};function L1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ta({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMax",[o[0]],l.shape.length);let c=new xT(l.shape,o[0],"max"),p=[{type:"float32",data:[Number.NEGATIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var B1e={kernelName:go,backendName:"webgpu",kernelFunc:L1e};function W1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a}=s,o=v.parseAxisParam(a,r.shape),i=T.getAxesPermutation(o,r.shape.length),l=r,u=[];i!=null&&(l=Ta({inputs:{x:r},backend:n,attrs:{perm:i}}),u.push(l),o=T.getInnerMostAxes(o.length,l.shape.length)),T.assertAxesAreInnerMostDims("argMin",[o[0]],l.shape.length);let c=new xT(l.shape,o[0],"min"),p=[{type:"float32",data:[Number.POSITIVE_INFINITY]}],d=n.runWebGPUProgram(c,[l],"int32",p);return u.forEach(h=>n.disposeData(h.dataId)),d}var V1e={kernelName:Nc,backendName:"webgpu",kernelFunc:W1e},U1e=Hn({opType:qe.ATAN2}),G1e={kernelName:gl,backendName:"webgpu",kernelFunc:U1e},l6=class{constructor(e,t){this.variableNames=["x"],this.uniforms="stride : vec2<i32>, pad : vec2<i32>, dilation : vec2<i32>, convDims : vec2<i32>, filterDims : vec2<i32>,",this.workGroupSize=[128,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`pool2D_${t}`,this.poolType=t}getUserCode(){let e="resultValue = max(value, resultValue);";this.poolType==="avg"&&(e="resultValue = resultValue + value; count = count + 1.0;");let t="resultValue";return this.poolType==="avg"&&(t="resultValue / count"),`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.yz) * uniforms.stride - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var resultValue = ${this.poolType==="avg"?"0.0":"-1.0 / pow(10.0, -20.0)"};
var count = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + uniforms.dilation.x) {
let xR = xRCorner + wR;
if (xR < 0 || xR >= uniforms.convDims.x) {
continue;
}
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + uniforms.dilation.y) {
let xC = xCCorner + wC;
if (xC < 0 || xC >= uniforms.convDims.y) {
continue;
}
let value = getX(batch, xR, xC, coords[3]);
${e}
}
}
setOutputAtIndex(index, ${t});
}
}
`}},H1e=class{constructor(e){this.variableNames=["x"],this.uniforms="stride : vec2<i32>,",this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="poolWithFilterSizeEqualsOne"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d = coords[3];
let xRCCorner = coords.yz * uniforms.stride;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
let value = getX(batch, xRCorner, xCCorner, d);
setOutputAtIndex(index, value);
}
}
`}},j1e=class{constructor(e,t){this.workGroupSize=[64,1,1],this.variableNames=["x"],this.uniforms="reduceSize : i32,",this.size=!0,this.inputShape=[e.batchSize,e.inSize];let[n]=T.computeOutAndReduceShapes(this.inputShape,[1]);this.outputShape=n.length===0?[1]:n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,[1,1,1]),this.reduceType=t,this.shaderKey=`reduce_${t}`}getUserCode(){let e="",t="0.0";this.reduceType==="min"||this.reduceType==="max"?(e=`
if (isnan(candidate)) {
bestValue = uniforms.NAN;
} else if (!isnan(bestValue) && candidate ${this.reduceType==="min"?"<":">"} bestValue)
{ bestValue = candidate; }`,t="f32(x[offset])"):this.reduceType==="sum"||this.reduceType==="mean"?e=" bestValue = bestValue + candidate; ":this.reduceType==="prod"&&(e=" bestValue = bestValue * candidate; ",t="1.0");let n=this.reduceType==="mean"?"setOutputAtIndex(outputIndex, bestValue / f32(uniforms.reduceSize));":"setOutputAtIndex(outputIndex, bestValue);";return`
fn DIV_CEIL(a : u32, b : u32) -> u32 {
return ((a - 1u) / b + 1u);
}
${`
var<workgroup> xBestValues : array<f32, ${this.workGroupSize[0]}>;
`}
fn getOffset(outputIndex : i32) -> i32 {
let outputCoords = getCoordsFromIndex(outputIndex);
let offset = ${this.outputShape.length===1?"outputCoords":"outputCoords[0]"} * uniforms.reduceSize;
return offset;
}
${Ye("index")} {
let outputIndex = index / i32(workGroupSizeX);
let offset = getOffset(outputIndex);
var bestValue = ${t};
let Length = uniforms.reduceSize;
let WorkPerThread = DIV_CEIL(u32(Length), workGroupSizeX);
for (var k = i32(localId.x); k < Length && outputIndex < uniforms.size;
k = k + i32(workGroupSizeX)) {
let candidate = f32(x[offset + k]);
${e}
}
xBestValues[localId.x] = bestValue;
workgroupBarrier();
var reduceSize = min(u32(Length), workGroupSizeX);
for (var currentSize = reduceSize / 2u; reduceSize > 1u;
currentSize = reduceSize / 2u) {
let interval = DIV_CEIL(reduceSize, 2u);
if (localId.x < currentSize) {
let candidate = xBestValues[localId.x + interval];
${e}
xBestValues[localId.x] = bestValue;
}
reduceSize = interval;
workgroupBarrier();
}
if (localId.x == 0u && outputIndex < uniforms.size) {
${n}
}
}
`}};function Kh(e,t,n,s,r){let a=e.shape.length,o=[],i=v.parseAxisParam(t,e.shape),l=i,u=T.getAxesPermutation(l,a),c=e;u!=null&&(c=Ta({inputs:{x:e},attrs:{perm:u},backend:r}),l=T.getInnerMostAxes(l.length,a),o.push(c)),T.assertAxesAreInnerMostDims(s,l,a);let[p,d]=T.computeOutAndReduceShapes(c.shape,l),h=p;n&&(h=T.expandShapeToKeepDim(p,i));let f;if((s==="max"||s==="prod")&&r.shouldExecuteOnCPU([c])){let m=r.tensorMap.get(c.dataId).values;switch(s){case"max":let g=c1e(m,v.sizeFromShape(d),h,e.dtype);f=r.makeTensorInfo(h,e.dtype,g);break;case"prod":let{outVals:y,outShape:x,outDtype:A}=g1e(c.shape,c.dtype,m,l);f=r.makeTensorInfo(x,A,y);break;default:throw new Error(`${s} CPU implementation is not yet supported.`)}}else{let m=v.sizeFromShape(d),y=v.sizeFromShape(c.shape)/m,x={windowSize:m,inSize:m,batchSize:y,outSize:1},A=s==="mean"?"float32":uh(e.dtype),b=[{type:"int32",data:[m]}],w=new j1e(x,s),k=r.runWebGPUProgram(w,[c],A,b);o.push(k),f=Ue({inputs:{x:k},attrs:{shape:h},backend:r})}return o.forEach(m=>r.disposeData(m.dataId)),f}function vb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reductionIndices:a,keepDims:o}=s;return Kh(r,a,o,"max",n)}var q1e={kernelName:Mo,backendName:"webgpu",kernelFunc:vb};function bT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{keepDims:a,axis:o}=s;return Kh(r,o,a,"mean",n)}var X1e={kernelName:Bo,backendName:"webgpu",kernelFunc:bT};function vT(e,t,n,s){if(t.filterWidth===1&&t.filterHeight===1&&v.arraysEqual(t.inShape,t.outShape))return er({inputs:{x:e},backend:s});if(t.filterWidth===t.inWidth&&t.filterHeight===t.inHeight&&t.batchSize===1&&t.padInfo.type==="VALID"){let o=e.shape.length,i=Ue({inputs:{x:e},backend:s,attrs:{shape:[e.shape[o-3]*e.shape[o-2],e.shape[o-1]]}}),l;n==="avg"?l=bT({inputs:{x:i},backend:s,attrs:{axis:0,keepDims:!1}}):(v.assert(n==="max",()=>`Invalid pool type ${n}`),l=vb({inputs:{x:i},backend:s,attrs:{reductionIndices:0,keepDims:!1}}));let u=Ue({inputs:{x:l},backend:s,attrs:{shape:t.outShape}});return s.disposeData(i.dataId),s.disposeData(l.dataId),u}let r,a=[{type:"int32",data:[t.strideHeight,t.strideWidth]}];return t.filterHeight===1&&t.filterWidth===1?r=new H1e(t):(n==="avg"?r=new l6(t,"avg"):(v.assert(n==="max",()=>`Invalid pool type ${n}`),r=new l6(t,"max")),a.push({type:"int32",data:[t.padInfo.top,t.padInfo.left]},{type:"int32",data:[t.dilationHeight,t.dilationWidth]},{type:"int32",data:[t.inHeight,t.inWidth]},{type:"int32",data:[t.effectiveFilterHeight,t.effectiveFilterWidth]})),s.runWebGPUProgram(r,[e],e.dtype,a)}function K1e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return vT(r,c,"avg",n)}var Z1e={kernelName:yo,backendName:"webgpu",kernelFunc:K1e};function Y1e(e){let{inputs:t,backend:n,attrs:s}=e,{a:r,b:a}=t,{transposeA:o,transposeB:i}=s;return bb({a:r,b:a,transposeA:o,transposeB:i,backend:n})}var J1e={kernelName:Ao,backendName:"webgpu",kernelFunc:Y1e},Q1e=class{constructor(e,t){this.variableNames=["source"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.rank=t.length,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.start=e,this.uniforms=`start : ${Pn(e.length)}, `,this.shaderKey="slice"}getUserCode(){let e=Pn(this.rank),t=ege(this.rank),n;return this.start.length===1?n=this.outputShape.map((r,a)=>"sourceLoc = uniforms.start + coords;"):n=this.outputShape.map((r,a)=>`sourceLoc.${Ey[a]} = uniforms.start.${wa(a)} + coords.${Ey[a]};`),`
${Ye("index")} {
if (index < uniforms.size) {
var sourceLoc : ${e};
let coords = getCoordsFromIndex(index);
${n.join(`
`)}
setOutputAtIndex(index, getSource(${t}));
}
}
`}},Ey=["x","y","z","w","u","v"];function ege(e){if(e===1)return"sourceLoc";if(e<=6)return Ey.slice(0,e).map(t=>`sourceLoc.${t}`).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}function vd(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,size:o}=s,[i,l]=Gt.parseSliceParams(r,a,o);if(Gt.assertParamsValid(r,i,l),n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.tensorMap.get(r.dataId),d=v1e(p.values,i,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}if(v.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);let u=new Q1e(i,l),c=[{type:"int32",data:i}];return n.runWebGPUProgram(u,[r],r.dtype,c)}var tge={kernelName:ql,backendName:"webgpu",kernelFunc:vd},nge=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,crops:o}=s;v.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((x,A)=>x*A),l=T.getReshaped(r.shape,a,i),u=T.getPermuted(l.length,a.length),c=T.getReshapedPermuted(r.shape,a,i),p=T.getSliceBeginCoords(o,a.length),d=T.getSliceSize(c,o,a.length),h=[],f=Ue({inputs:{x:r},backend:n,attrs:{shape:l}}),m=Ta({inputs:{x:f},backend:n,attrs:{perm:u}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:c}}),y=vd({inputs:{x:g},backend:n,attrs:{begin:p,size:d}});return h.push(f),h.push(m),h.push(g),h.forEach(x=>n.disposeData(x.dataId)),y},sge={kernelName:yl,backendName:"webgpu",kernelFunc:nge},wT=Hn({opType:qe.NOT_EQUAL,dtype:"bool",cpuKernelImpl:m1e}),rge={kernelName:Fl,backendName:"webgpu",kernelFunc:wT};function Zh(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.real},backend:n})}var age={kernelName:Qp,backendName:"webgpu",kernelFunc:Zh};function oge(e,t){let n=new Xh(e.shape,Fe.TO_INT),s=t.runWebGPUProgram(n,[e],"int32");return{dataId:s.dataId,shape:s.shape,dtype:s.dtype}}function Ry(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{dtype:a}=s;if(a==="complex64"){if(r.dtype==="complex64")return er({inputs:{x:r},backend:n});let o=Vt(r.shape),i=Ry({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=bd({inputs:{real:i,imag:o},backend:n});return o.dispose(),n.disposeData(i.dataId),l}if(r.dtype==="complex64"){let o=Zh({inputs:{input:r},backend:n}),i=Ry({inputs:{x:o},backend:n,attrs:{dtype:a}});return n.disposeData(o.dataId),i}if(!v.hasEncodingLoss(r.dtype,a)){let o=er({inputs:{x:r},backend:n});return{dataId:o.dataId,shape:o.shape,dtype:a}}if(n.shouldExecuteOnCPU([r])){let o=n.tensorMap.get(r.dataId).values,[i,l,u]=Z2e(o,r.shape,r.dtype,a);return n.makeTensorInfo(i,l,u)}if(a==="int32")return oge(r,n);if(a==="bool"){let o=n.makeTensorInfo([],"bool",v.getTypedArrayFromDType("bool",1)),l=wT({inputs:{a:r,b:o},backend:n});return n.disposeData(o.dataId),l}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${a}`)}var ige={kernelName:xo,backendName:"webgpu",kernelFunc:Ry},lge=bn({opType:Fe.CEIL,cpuKernelImpl:Y2e}),uge={kernelName:bo,backendName:"webgpu",kernelFunc:lge},cge=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workPerThread=4,this.workGroupSize=[64,1,1],this.isVec4=!0,this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.shaderKey="clipVec4"}getUserCode(){return`
${Ye("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
var clampedValue : vec4<f32>;
for (var i = 0; i < 4; i = i + 1) {
if (isnan(value[i])) {
clampedValue[i] = value[i];
} else {
clampedValue[i] = clamp(value[i], uniforms.minVal, uniforms.maxVal);
}
}
setOutputAtIndex(index, clampedValue);
}
}
`}},dge=class{constructor(e){this.variableNames=["A"],this.uniforms="minVal : f32, maxVal : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="clip"}getUserCode(){return`
${Ye("index")} {
if(index < uniforms.size) {
let value = getAByOutputIndex(index);
if (isnan(value)) {
setOutputAtIndex(index, value);
return;
}
setOutputAtIndex(index, clamp(value, uniforms.minVal, uniforms.maxVal));
}
}
`}};function pge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{clipValueMin:a,clipValueMax:o}=s,i,l=[{type:"float32",data:[a]},{type:"float32",data:[o]}];return v.sizeFromShape(r.shape)%4===0?i=new cge(r.shape):i=new dge(r.shape),n.runWebGPUProgram(i,[r],r.dtype,l)}var hge={kernelName:Ea,backendName:"webgpu",kernelFunc:pge},fge=class{constructor(e){this.uniforms="",this.workPerThread=4,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=T.computeOutShape(e,1),this.variableNames=e.map((t,n)=>`T${n}`),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]),this.offsetLength=e.length-1;for(let t=0;t<this.offsetLength;t++)this.uniforms+=`offset${t} : i32,`;this.shaderKey="concat"}getUserCode(){let e=[];if(this.offsetLength>0){e.push("if (yC < uniforms.offset0){ setOutputAtCoords(coords.x, coords.y, getT0(yR, yC)); }");for(let r=1;r<this.offsetLength;r++)e.push(`else if (yC < uniforms.offset${[r]}){ setOutputAtCoords(coords.x, coords.y, getT${r}(yR, yC - uniforms.offset${r-1})); }`);let n=this.offsetLength,s=this.offsetLength-1;e.push(`else { setOutputAtCoords(coords.x, coords.y, getT${n}(yR, yC - uniforms.offset${s})); }`)}else e.push("setOutputAtCoords(coords.x, coords.y, getT0(yR, yC));");return`
${Ye("index")} {
for(var i = 0; i < ${this.workPerThread}; i = i + 1) {
let flatIndex = index * ${this.workPerThread} + i;
if(flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let yR = coords.x;
let yC = coords.y;
${e.join(`
`)}
}
}
}
`}};function V2(e){let{inputs:t,backend:n}=e,{input:s}=t,r=n.tensorMap.get(s.dataId);return er({inputs:{x:r.complexTensorInfos.imag},backend:n})}var mge={kernelName:Zp,backendName:"webgpu",kernelFunc:V2};function yp(e,t,n){let s=e[0].dtype;if(s==="complex64"){let f=e.map(A=>Zh({inputs:{input:A},backend:n})),m=e.map(A=>V2({inputs:{input:A},backend:n})),g=yp(f,t,n),y=yp(m,t,n),x=bd({inputs:{real:g,imag:y},backend:n});return f.forEach(A=>n.disposeData(A.dataId)),m.forEach(A=>n.disposeData(A.dataId)),n.disposeData(g.dataId),n.disposeData(y.dataId),x}let r=n.shouldExecuteOnCPU(e);if(s==="string"&&(r=!0),r){let f=e.map(w=>{let k=v.sizeFromShape(w.shape.slice(t));return Ue({inputs:{x:w},backend:n,attrs:{shape:[-1,k]}})}),m=f.map(w=>({vals:n.readSync(w.dataId),shape:w.shape})),g=T.computeOutShape(f.map(w=>w.shape),1),y=f[0].shape[0]===1,x=J2e(m,g,s,y),A=T.computeOutShape(e.map(w=>w.shape),t),b=n.makeTensorInfo(A,s,x);return f.forEach(w=>n.disposeData(w.dataId)),b}let a=n.device.limits.maxStorageBuffersPerShaderStage-1;if(e.length>a){let f=[];for(let g=0;g<e.length;g+=a){let y=e.slice(g,g+a);f.push(yp(y,t,n))}let m=yp(f,t,n);for(let g of f)n.disposeData(g.dataId);return m}let{tensors2D:o,outShape:i}=gge(e,t,n),l=o.map(f=>f.shape),u=new fge(l),c=[],p=new Array(l.length-1);if(p.length>0){p[0]=l[0][1],c.push({type:"int32",data:[p[0]]});for(let f=1;f<p.length;f++)p[f]=p[f-1]+l[f][1],c.push({type:"int32",data:[p[f]]})}let d=n.runWebGPUProgram(u,o,o[0].dtype,c);o.forEach(f=>n.disposeData(f.dataId));let h=Ue({inputs:{x:d},backend:n,attrs:{shape:i}});return n.disposeData(d.dataId),h}function gge(e,t,n){let s=T.computeOutShape(e.map(a=>a.shape),t);return{tensors2D:e.map(a=>Ue({inputs:{x:a},backend:n,attrs:{shape:[v.sizeFromShape(a.shape.slice(0,t)),v.sizeFromShape(a.shape.slice(t))]}})),outShape:s}}function kT(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s,a=v.parseAxisParam(r,t[0].shape)[0],o=T.computeOutShape(t.map(u=>u.shape),a);if(v.sizeFromShape(o)===0)return n.makeTensorInfo(o,t[0].dtype,[]);let i=t.filter(u=>v.sizeFromShape(u.shape)>0);if(i.length===1)return er({inputs:{x:i[0]},backend:n});let l=i.map(u=>u.shape);return T.assertParamsConsistent(l,a),yp(i,a,n)}var yge={kernelName:Al,backendName:"webgpu",kernelFunc:kT};function Age(e,t,n,s,r=!1,a=null,o=!1,i=4,l=4,u=4){let c=_=>{switch(_){case 1:return"resData = x[xIndex];";case 3:return"resData = vec3<f32>(x[xIndex], x[xIndex + 1], x[xIndex + 2]);";case 4:return"resData = x[xIndex / 4];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},p=_=>{switch(_){case 1:return"return W[row * uniforms.wShape[3] + colIn];";case 4:return"return W[row * uniforms.wShape[3] / 4 + colIn];";default:throw new Error(`innerElementSize ${_} is not supported.`)}},d=e?`
let coord = vec4<i32>(batch, xRow, xCol, xCh);
`:`
let coord = vec4<i32>(batch, xCh, xRow, xCol);
`,h=e?`
let coords = vec4<i32>(
batch,
row / outWidth,
row % outWidth,
col);
`:`
let coords = vec4<i32>(
batch,
row,
col / outWidth,
col % outWidth);
`,f=e?"uniforms.xShape[1]":"uniforms.xShape[2]",m=e?"uniforms.xShape[2]":"uniforms.xShape[3]",g=e?"row":"col",y=e?"col":"row",x=`
let inChannels = uniforms.wShape[2];
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
let outRow = ${g} / outWidth;
let outCol = ${g} % outWidth;
let WRow = ${y} / (uniforms.filterDims[1] * inChannels);
let WCol = ${y} / inChannels % uniforms.filterDims[1];
let xRow = outRow * uniforms.stride[0] + uniforms.dilation[0] * WRow - uniforms.pad[0];
let xCol = outCol * uniforms.stride[1] + uniforms.dilation[1] * WCol - uniforms.pad[1];
let xCh = ${y} % inChannels;
var resData = ${Zt(i)}(0.0);
// The bounds checking is always needed since we use it to pad zero for
// the 'same' padding type.
if (xRow >= 0 && xRow < ${f} && xCol >= 0 && xCol < ${m}) {
${d}
let xIndex = getIndexFromCoords4D(coord, uniforms.xShape);
${c(i)}
}
return resData;`,A=e?t&&s?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${x}
}
return ${Zt(i)}(0.0);`:s&&n?`
let col = colIn * ${i};
${x}`:`
let col = colIn * ${i};
if (row < uniforms.dimInner && col < uniforms.dimBOuter) {
${x}
}
return ${Zt(i)}(0.0);`,b=`${p(l)}`,w=Zt(u),k=Zt(e?i:l),C=Zt(e?l:i);return`
${Ai(a,o,u===4,4)}
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${k} {
${e?A:b}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${C} {
${e?b:A}
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueIn : ${w}) {
let col = colIn * ${u};
if (row < uniforms.dimAOuter && col < uniforms.dimBOuter)
{
var value = valueIn;
let outWidth = ${e?"uniforms.outShape[2]":"uniforms.outShape[3]"};
${h}
${xd(r,a)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}`}var xge=class{constructor(e,t,n,s,r=!1,a=null,o=!1){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pad : vec2<i32>, stride : vec2<i32>, dilation : vec2<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.outShape,this.isChannelsLast=e.dataFormat==="channelsLast",this.isVec4=((e.inChannels%4===0||e.inChannels%3===0)&&this.isChannelsLast||e.outWidth%4===0&&!this.isChannelsLast)&&e.outChannels%4===0,this.dispatchLayout=this.isChannelsLast?{x:[3],y:[1,2],z:[0]}:{x:[2,3],y:[1],z:[0]},this.workGroupSize=gb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4?(this.isChannelsLast&&e.inChannels%4!==0?(this.innerElementSize=3,this.variableTypes=["f32","vec4<f32>"]):(this.innerElementSize=4,this.variableTypes=["vec4<f32>","vec4<f32>"]),r&&(this.variableNames.push("bias"),this.variableTypes.push("vec4<f32>")),o&&(this.variableNames.push("preluActivationWeights"),this.variableTypes.push("vec4<f32>"))):(this.innerElementSize=this.elementsPerThread[0],r&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights")),this.addBias=r,this.activation=a,this.hasPreluActivationWeights=o,this.tileAOuter=this.workGroupSize[1]*this.elementsPerThread[1],this.tileBOuter=this.workGroupSize[0]*this.elementsPerThread[0],this.tileInner=Math.max(this.workGroupSize[0]*this.innerElementSize,this.workGroupSize[1]),this.fitAOuter=t%this.tileAOuter===0,this.fitBOuter=n%this.tileBOuter===0,this.fitInner=s%this.tileInner===0,this.shaderKey=`conv2DMM_${this.elementsPerThread}_${this.activation}}_${this.fitAOuter}_${this.fitBOuter}_${this.fitInner}_${this.isVec4}_${this.innerElementSize}_${this.isChannelsLast}`}getUserCode(){let e=this.isVec4?B2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner):W2(this.elementsPerThread,this.workGroupSize,!this.isChannelsLast,this.tileInner),t=this.isVec4?[this.innerElementSize,4,4]:[1,1,1];return`
${Age(this.isChannelsLast,this.fitAOuter,this.fitBOuter,this.fitInner,this.addBias,this.activation,this.hasPreluActivationWeights,t[0],t[1],t[2])}
${e}
`}};function u6(e,t){let n=e.length;return n>=3?t?[...e.slice(0,-3),e[n-3]*e[n-2],e[n-1]]:[...e.slice(0,-3),e[n-3],e[n-2]*e[n-1]]:!t&&n===1&&e[0]>1?[e[0],1]:null}function bge({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=n.dataFormat==="channelsLast",u=!l,c=!1,p=l&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID",d=[],h,f;if(p){let y=n.inHeight*n.inWidth*n.inChannels;h=Ue({inputs:{x:e},backend:s,attrs:{shape:[1,n.batchSize,y]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,y,n.outChannels]}})}else h=Ue({inputs:{x:e},backend:s,attrs:{shape:l?[n.batchSize,n.inHeight*n.inWidth,n.inChannels]:[n.batchSize,n.inChannels,n.inHeight*n.inWidth]}}),f=Ue({inputs:{x:t},backend:s,attrs:{shape:[1,n.inChannels,n.outChannels]}});if(d.push(h),d.push(f),a!=null){let y=u6(a.shape,l);y!=null&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:y}}),d.push(a))}if(r!=null){let y=u6(r.shape,l);y!=null&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:y}}),d.push(r))}let m=bb({a:l?h:f,b:l?f:h,transposeA:u,transposeB:c,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o}),g=Ue({inputs:{x:m},backend:s,attrs:{shape:n.outShape}});d.push(m);for(let y of d)s.disposeData(y.dataId);return g}function ST({x:e,filter:t,convInfo:n,backend:s,bias:r=null,preluActivationWeights:a=null,leakyreluAlpha:o=0,activation:i=null}){let l=r!=null,u=a!=null,c=n.dataFormat==="channelsLast";if(c&&n.filterHeight===n.inHeight&&n.filterWidth===n.inWidth&&n.padInfo.type==="VALID"||n.filterHeight===1&&n.filterWidth===1&&n.dilationHeight===1&&n.dilationWidth===1&&n.strideHeight===1&&n.strideWidth===1&&(n.padInfo.type==="SAME"||n.padInfo.type==="VALID"))return bge({x:e,filter:t,convInfo:n,backend:s,bias:r,activation:i,preluActivationWeights:a,leakyreluAlpha:o});let d=c?n.outHeight*n.outWidth:n.outChannels,h=c?n.outChannels:n.outHeight*n.outWidth,f=n.filterHeight*n.filterWidth*n.inChannels,m=[n.padInfo.top,n.padInfo.left],g=[{type:"int32",data:[n.filterHeight,n.filterWidth]},{type:"int32",data:[...m]},{type:"int32",data:[n.strideHeight,n.strideWidth]},{type:"int32",data:[n.dilationHeight,n.dilationWidth]},{type:"int32",data:[d]},{type:"int32",data:[h]},{type:"int32",data:[f]}],y=new xge(n,d,h,f,l,i,u),x=[],A=[e,t];l&&(!c&&r.shape.length===1&&(r=Ue({inputs:{x:r},backend:s,attrs:{shape:[r.shape[0],1,1]}}),x.push(r)),A.push(r)),u&&(!c&&a.shape.length===1&&(a=Ue({inputs:{x:a},backend:s,attrs:{shape:[a.shape[0],1,1]}}),x.push(a)),A.push(a)),i==="leakyrelu"&&(g.push({type:"float32",data:[o]}),y.uniforms+=" alpha : f32,");let b=s.runWebGPUProgram(y,A,e.dtype,g);for(let w of x)s.disposeData(w.dataId);return b}function vge(e){let{inputs:t,attrs:n,backend:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=n,p=T.convertConv2DDataFormat(l),d=T.computeConv2DInfo(r.shape,a.shape,o,u,i,c,!1,p);return ST({x:r,filter:a,convInfo:d,backend:s})}var wge={kernelName:vo,backendName:"webgpu",kernelFunc:vge};function kge(e=4){let t=a=>{switch(a){case 1:return"return W[getIndexFromCoords4D(coord, uniforms.wShape)];";case 4:return`
let coord1 = vec4<i32>(coordX, coordY, col + 1, rowInner);
let coord2 = vec4<i32>(coordX, coordY, col + 2, rowInner);
let coord3 = vec4<i32>(coordX, coordY, col + 3, rowInner);
let v0 = W[getIndexFromCoords4D(coord, uniforms.wShape)];
let v1 = W[getIndexFromCoords4D(coord1, uniforms.wShape)];
let v2 = W[getIndexFromCoords4D(coord2, uniforms.wShape)];
let v3 = W[getIndexFromCoords4D(coord3, uniforms.wShape)];
return vec4<f32>(v0, v1, v2, v3);
`;default:throw new Error(`innerElementSize ${a} is not supported.`)}},s=`if (row < uniforms.dimAOuter && col < uniforms.dimInner) {
${`
let outRow = row / uniforms.outShape[2];
let outCol = row % uniforms.outShape[2];
let WRow = col / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let WCol = col / uniforms.outBackprop[3] % uniforms.filterDims[1];
let xR = f32(outRow - uniforms.pads[0] + WRow) / f32(uniforms.stride[0]);
let xC = f32(outCol - uniforms.pads[1] + WCol) / f32(uniforms.stride[1]);
if (xR < 0.0 || xR >= f32(uniforms.outBackprop[1]) || fract(xR) > 0.0) {
return ${Zt(e)}(0.0);
}
if (xC < 0.0 || xC >= f32(uniforms.outBackprop[2]) || fract(xC) > 0.0) {
return ${Zt(e)}(0.0);
}
let coord = vec4<i32>(
batch,
i32(xR),
i32(xC),
col % uniforms.outBackprop[3]);
return x[getIndexFromCoords4D(coord, uniforms.xShape)/${e}];`}
}
return ${Zt(e)}(0.0);`;return`
fn mm_readA(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} {
let col = colIn * ${e};
${s}
}
fn mm_readB(batch: i32, row : i32, colIn : i32) -> ${Zt(e)} {
let col = colIn * ${e};
let coordX = uniforms.filterDims.x - 1 -
row / (uniforms.filterDims[1] * uniforms.outBackprop[3]);
let coordY = uniforms.filterDims.y - 1 -
(row / uniforms.outBackprop[3]) % uniforms.filterDims[1];
if (row < uniforms.dimInner && col < uniforms.dimBOuter &&
coordX >= 0 && coordY >= 0) {
let rowInner = row % uniforms.outBackprop[3];
let coord = vec4<i32>(coordX, coordY, col, rowInner);
${t(e)}
}
return ${Zt(e)}(0.0);
}
fn mm_write(batch: i32, row : i32, colIn : i32, valueInput : ${Zt(e)}) {
let col = colIn * ${e};
if (row < uniforms.dimAOuter && (col + ${e-1}) < uniforms.dimBOuter) {
var value = valueInput;
let outCoord = vec4<i32>(
batch,
row / uniforms.outShape[2],
row % uniforms.outShape[2],
col);
result[getIndexFromCoords4D(outCoord, uniforms.outShape)/${e}] = value;
}
}`}var Sge=class{constructor(e){this.variableNames=["x","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>, dimAOuter : i32, dimBOuter : i32, dimInner : i32,",this.outputShape=e.inShape,v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),this.isVec4=e.inChannels%4===0&&e.outChannels%4===0,this.dispatchLayout={x:[3],y:[1,2],z:[0]},this.workGroupSize=gb(this.dispatchLayout,this.outputShape,this.isVec4),this.elementsPerThread=yb(this.dispatchLayout,this.outputShape,this.isVec4),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,this.elementsPerThread),this.isVec4&&(this.variableTypes=["vec4<f32>","f32"]),this.shaderKey=`conv2DDerInputMM_${this.isVec4}_${this.elementsPerThread}`}getUserCode(){let e=this.isVec4?B2(this.elementsPerThread,this.workGroupSize):W2(this.elementsPerThread,this.workGroupSize);return`
${kge(this.isVec4?4:1)}
${e}
`}},Ige=class{constructor(e){this.variableNames=["dy","W"],this.uniforms="filterDims : vec2<i32>, pads : vec2<i32>, stride : vec2<i32>, outBackprop : vec4<i32>,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.inShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",this.shaderKey=`conv2DDerInput_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?1:2,t=this.isChannelsLast?2:3,n=this.isChannelsLast?3:1;return`
${Ye("index")} {
if(index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let batch = coords[0];
let d1 = coords[${n}];
let dyCorner = vec2<i32>(coords[${e}]), coords[${t}]) - uniforms.pads;
let dyRCorner = dyCorner.x;
let dyCCorner = dyCorner.y;
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
// ? = to be determined. : = across all values in that axis.
var dotProd = 0.0;
for (var wR = 0; wR < uniforms.filterDims.x; wR = wR + 1) {
let dyR = (f32(dyRCorner) + f32(wR)) / f32(uniforms.stride.x);
let wRPerm = uniforms.filterDims.x - 1 - wR;
if (dyR < 0.0 || dyR >= f32(uniforms.outBackprop[1]) || fract(dyR) > 0.0 ||
wRPerm < 0) {
continue;
}
let idyR = dyR;
for (var wC = 0; wC < uniforms.filterDims.y; wC = wC + 1) {
let dyC = (f32(dyCCorner) + f32(wC)) / f32(uniforms.stride.y);
let wCPerm = uniforms.filterDims.y - 1 - wC;
if (dyC < 0.0 || dyC >= f32(uniforms.outBackprop[2]) ||
fract(dyC) > 0.0 || wCPerm < 0) {
continue;
}
let idyC = dyC;
for (var d2 = 0; d2 < uniforms.outBackprop[3]; d2 = d2 + 1) {
if (${this.isChannelsLast}) {
let xValue = getDy(batch, idyR, idyC, d2);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
} else {
let xValue = getDy(batch, d2, idyR, idyC);
let wValue = getW(wRPerm, wCPerm, d1, d2);
dotProd = dotProd + xValue * wValue;
}
}
}
}
setOutputAtIndex(index, dotProd);
}
}
`}};function Cge(e){let{inputs:t,backend:n,attrs:s}=e,{dy:r,filter:a}=t,{inputShape:o,strides:i,pad:l,dataFormat:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(u),d=T.computeConv2DInfo(o,a.shape,i,1,l,c,!1,p),h=[{type:"int32",data:[d.filterHeight,d.filterWidth]},{type:"int32",data:[d.filterHeight-1-d.padInfo.top,d.filterWidth-1-d.padInfo.left]},{type:"int32",data:[d.strideHeight,d.strideWidth]},{type:"int32",data:[d.batchSize,d.outHeight,d.outWidth,d.outChannels]}],f;if(H().getBool("WEBGPU_USE_NAIVE_CONV2D_TRANSPOSE"))f=new Ige(d);else{f=new Sge(d);let m=d.inShape[1]*d.inShape[2],g=d.inShape[3],y=d.filterHeight*d.filterWidth*d.outChannels;h.push({type:"uint32",data:[m]},{type:"uint32",data:[g]},{type:"uint32",data:[y]})}return n.runWebGPUProgram(f,[r,a],"float32",h)}var Tge={kernelName:wo,backendName:"webgpu",kernelFunc:Cge},Nge=bn({opType:Fe.COS}),Ege={kernelName:ko,backendName:"webgpu",kernelFunc:Nge},Rge=bn({opType:Fe.COSH}),_ge={kernelName:So,backendName:"webgpu",kernelFunc:Rge},Dge=class{constructor(e,t,n,s){this.variableNames=["Image","Boxes","BoxInd"],this.uniforms="extrapolationValue : f32,",this.workGroupSize=[64,1,1],this.size=!0;let[r]=t;this.outputShape=[r,n[0],n[1],e],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.methodId=s==="bilinear"?1:0,this.cropHeightBiggerThan1=this.outputShape[1]>1,this.cropWidthBiggerThan1=this.outputShape[2]>1,this.shaderKey=`cropAndResize_${this.methodId}_${this.cropHeightBiggerThan1}_${this.cropWidthBiggerThan1}`}getUserCode(){let[e,t]=["f32(uniforms.imageShape[1] - 1)","f32(uniforms.imageShape[2] - 1)"],[n,s,r]=this.cropHeightBiggerThan1?[`(${e} / f32(uniforms.outShape[1] - 1))`,"(y2-y1) * height_ratio",`y1*${e} + f32(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${e}`],[a,o,i]=this.cropWidthBiggerThan1?[`(${t} / f32(uniforms.outShape[2] - 1))`,"(x2-x1) * width_ratio",`x1*${t} + f32(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${t}`];return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let height_ratio = f32(${n});
let width_ratio = f32(${a});
let b = coords[0];
let y = coords[1];
let x = coords[2];
let d = coords[3];
// get box vals
let y1 = getBoxes(b, 0);
let x1 = getBoxes(b, 1);
let y2 = getBoxes(b, 2);
let x2 = getBoxes(b, 3);
// get image in batch index
let bInd = i32(round(getBoxInd(b)));
if(bInd < 0 || bInd >= uniforms.outShape[0]) {
return;
}
let height_scale = ${s};
let width_scale = ${o};
let in_y = ${r};
if( in_y < 0.0 || in_y > ${e} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let in_x = ${i};
if( in_x < 0.0 || in_x > ${t} ) {
setOutputAtIndex(index, uniforms.extrapolationValue);
return;
}
let sourceFracIndexCR = vec2<f32>(in_x,in_y);
if(${this.methodId} == 1) {
// Compute the four integer indices.
let sourceFloorCR = vec2<i32>(sourceFracIndexCR);
let sourceCeilCR = vec2<i32>(ceil(sourceFracIndexCR));
let topLeft = getImage(bInd, sourceFloorCR.y, sourceFloorCR.x, d);
let bottomLeft = getImage(bInd, sourceCeilCR.y, sourceFloorCR.x, d);
let topRight = getImage(bInd, sourceFloorCR.y, sourceCeilCR.x, d);
let bottomRight = getImage(bInd, sourceCeilCR.y, sourceCeilCR.x, d);
let fracCR = sourceFracIndexCR - vec2<f32>(sourceFloorCR);
let top = topLeft + (topRight - topLeft) * fracCR.x;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
let newValue = top + (bottom - top) * fracCR.y;
setOutputAtIndex(index, newValue);
} else {
// Compute the coordinators of nearest neighbor point.
let sourceNearestCR = vec2<i32>(floor(
sourceFracIndexCR + vec2<f32>(0.5,0.5)));
let newValue = getImage(
bInd, sourceNearestCR.y, sourceNearestCR.x, d);
setOutputAtIndex(index, newValue);
}
}
}
`}},$ge=e=>{let{inputs:t,backend:n,attrs:s}=e,{image:r,boxes:a,boxInd:o}=t,{cropSize:i,method:l,extrapolationValue:u}=s,c=new Dge(r.shape[3],a.shape,i,l),p=[{type:"float32",data:[u]}];return n.runWebGPUProgram(c,[r,a,o],"float32",p)},Pge={kernelName:bl,backendName:"webgpu",kernelFunc:$ge},Vp;(function(e){e.Prod="*",e.Sum="+"})(Vp||(Vp={}));var c6=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="index : f32,",this.size=!0;let r=128;this.workGroupSize=[r,1,1],this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.exclusive=n,this.reverse=s,this.op=e,this.shaderKey=`cum_${this.op}_${this.exclusive}_${this.reverse}`}getUserCode(){let e=this.outputShape.length,t=this.op===Vp.Prod?"1.0":"0.0",n=this.exclusive?t:`getX(${d6(e,"coords",this.op)})`,s=this.outputShape[this.outputShape.length-1],r="",a="";return this.exclusive?(r=this.reverse?`end != ${s-1}`:"end != 0",a=this.reverse?"end + 1":"end - 1"):(r=this.reverse?`end + pow2 < ${s}`:"end >= pow2",a=this.reverse?"end + pow2":"end - pow2"),`
${Ye("index")} {
if (index < uniforms.size) {
var coords = getCoordsFromIndex(index);
let end = ${p6(e,"coords",this.op)};
var val = ${n};
let pow2 = i32(pow(2.0, uniforms.index));
if (${r}) {
let idx = ${a};
${p6(e,"coords",this.op)} = idx;
val ${this.op}= getX(${d6(e,"coords",this.op)});
}
setOutputAtIndex(index, val);
}
}
`}};function d6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function p6(e,t,n){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative ${n} for rank ${e} is not yet supported`)}function IT(e,t,n,s,r,a){let o=t.shape.length,i=T.getAxesPermutation([s],o),l=t;i!=null&&(l=Ta({inputs:{x:t},backend:n,attrs:{perm:i}}));let u=T.getInnerMostAxes(1,o)[0];if(u!==o-1)throw new Error(`WebGPU cumprod shader expects an inner-most axis=${t.shape.length-1} but got axis=${s}`);let c=l.shape[u],p=er({inputs:{x:l},backend:n});for(let d=0;d<=Math.ceil(Math.log2(c))-1;d++){let h=new c6(e,l.shape,!1,a),f=p,m=[{type:"float32",data:[d]}];p=n.runWebGPUProgram(h,[p],p.dtype,m),n.disposeData(f.dataId)}if(r){let d=new c6(e,l.shape,r,a),h=p,f=[{type:"float32",data:[0]}];p=n.runWebGPUProgram(d,[p],p.dtype,f),n.disposeData(h.dataId)}if(i!=null){let d=T.getUndoAxesPermutation(i),h=Ta({inputs:{x:p},backend:n,attrs:{perm:d}});return n.disposeData(p.dataId),n.disposeData(l.dataId),h}return p}function Fge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return IT(Vp.Prod,r,n,a,o,i)}var Oge={kernelName:xl,backendName:"webgpu",kernelFunc:Fge};function Mge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,exclusive:o,reverse:i}=s;return IT(Vp.Sum,r,n,a,o,i)}var zge={kernelName:Io,backendName:"webgpu",kernelFunc:Mge},Lge=class{constructor(e,t){this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.uniforms="blockSize : i32,",this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`depthToSpace_${t}`,this.dataFormat=t}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let h = ${this.getHeightCoordString()};
let w = ${this.getWidthCoordString()};
let d = ${this.getDepthCoordString()};
let in_h = h / uniforms.blockSize;
let offset_h = h % uniforms.blockSize;
let in_w = w / uniforms.blockSize;
let offset_w = w % uniforms.blockSize;
let offset_d = (offset_h * uniforms.blockSize + offset_w) *
${this.getOutputDepthSize()};
let in_d = d + offset_d;
let rlt = ${this.getInputSamplingString()};
setOutputAtIndex(index, rlt);
}
}`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?"uniforms.outShape[3]":"uniforms.outShape[1]"}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function Bge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockSize:a,dataFormat:o}=s,i=r.shape[0],l=o==="NHWC"?r.shape[1]:r.shape[2],u=o==="NHWC"?r.shape[2]:r.shape[3],c=o==="NHWC"?r.shape[3]:r.shape[1],p=l*a,d=u*a,h=c/(a*a),f=o==="NHWC"?[i,p,d,h]:[i,h,p,d],m=[{type:"int32",data:[a]}],g=new Lge(f,o);return n.runWebGPUProgram(g,[r],r.dtype,m)}var Wge={kernelName:vl,backendName:"webgpu",kernelFunc:Bge},Vge=class{constructor(e,t,n,s=!1,r=null,a=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[16,16,1],this.outputShape=e,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),this.addBias=s,this.activation=r,this.hasPreluActivation=a,this.filterHeight=t,this.filterWidth=n,this.shaderKey=`depthwiseNCHW_${this.activation}_${this.filterHeight}_${this.filterWidth}`}getUserCode(){let e=this.filterWidth*this.filterHeight,t=this.workGroupSize[0]*this.workGroupSize[1]*this.workGroupSize[2],n=this.workGroupSize[1]+this.filterHeight-1,s=this.workGroupSize[0]+this.filterWidth-1;return`
${Ai(this.activation,this.hasPreluActivation,!1,4)}
var<workgroup> mm_Asub : array<array<f32, ${s}>, ${n}>;
var<workgroup> mm_Bsub : array<array<f32, ${this.filterWidth}>, ${this.filterHeight}>;
fn readX(batch : i32, channel : i32, row : i32, col : i32) -> f32 {
var value = 0.0;
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, channel, row, col);
}
return value;
}
${Wp()}
fn _start(@builtin(local_invocation_id) LocalId : vec3<u32>,
@builtin(global_invocation_id) GlobalId : vec3<u32>,
@builtin(local_invocation_index) LocalIndex: u32,
@builtin(num_workgroups) NumWorkgroups: vec3<u32>) {
localId = LocalId;
globalId = GlobalId;
let localIndex = i32(LocalIndex);
numWorkgroups = NumWorkgroups;
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.zw) - uniforms.pad;
let channelMul = uniforms.wShape[3];
let d1 = coords[1] / channelMul;
let q = coords[1] % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let localRow = i32(localId.y);
let localCol = i32(localId.x);
// Load one tile of X into local memory.
for (var inputRow = localRow; inputRow < ${n}; inputRow = inputRow + ${this.workGroupSize[1]}) {
for (var inputCol = localCol; inputCol < ${s}; inputCol = inputCol + ${this.workGroupSize[0]}) {
let rowOffset = inputRow - localRow;
let colOffset = inputCol - localCol;
mm_Asub[inputRow][inputCol] = readX(batch, d1, inputRowStart + rowOffset, inputColStart + colOffset);
}
}
// Load one tile of W into local memory.
var wIndex = localIndex;
${e<t?`if (wIndex < ${e})`:`for(; wIndex < ${e}; wIndex = wIndex + ${t})`}
{
let wRow = wIndex / ${this.filterWidth};
let wCol = wIndex % ${this.filterWidth};
mm_Bsub[wRow][wCol] = getW(wRow, wCol, d1, q);
}
workgroupBarrier();
var value = 0.0;
for (var wR = 0; wR < ${this.filterHeight}; wR = wR + 1) {
for (var wC = 0; wC < ${this.filterWidth}; wC = wC + 1) {
let xVal = mm_Asub[localRow + wR][localCol + wC];
let wVal = mm_Bsub[wR][wC];
value = fma(xVal, wVal, value);
}
}
${xd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}},CT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms="pad : vec2<i32>, inDims : vec2<i32>,",this.workGroupSize=[4,4,4],this.isVec4=!0,this.outputShape=e.outShape,this.dispatchLayout={x:[3],y:[2],z:[0,1]},this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[4,4,1]),v.assert(e.dataFormat==="channelsLast",()=>"TODO: NCHW is unimplemented"),t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwiseVec4_${n}_${this.convInfo.filterHeight}_${this.convInfo.filterWidth}`}getUserCode(){let e=4+this.convInfo.filterWidth-1;return`
${Ai(this.activation,this.hasPreluActivation,!0,4)}
fn readX(batch : i32, row : i32, col : i32, channel : i32) -> vec4<f32> {
var value = vec4<f32>(0.0);
if (row >=0 && row < uniforms.inDims[0] && col >=0 && col < uniforms.inDims[1])
{
value = getX(batch, row, col, channel);
}
return value;
}
${Wp()}
fn _start(@builtin(global_invocation_id) globalId: vec3<u32>) {
let batch = i32(globalId.z) / uniforms.outShape[1];
let r = i32(globalId.z) % uniforms.outShape[1];
let c = i32(globalId.y) * 4;
let d1 = i32(globalId.x) * 4;
let xRCCorner = vec2<i32>(r, c) - uniforms.pad;
let xRCorner = xRCCorner.x;
let xCCorner = xRCCorner.y;
var xVals : array<vec4<f32>, ${e}>;
var dotProd : array<vec4<f32>, 4>;
dotProd[0] = vec4<f32>(0.0);
dotProd[1] = vec4<f32>(0.0);
dotProd[2] = vec4<f32>(0.0);
dotProd[3] = vec4<f32>(0.0);
// Use constant instead of uniform can give better performance.
for (var wR = 0; wR < ${this.convInfo.filterHeight}; wR = wR + 1) {
let xR = xRCorner + wR;
for (var i = 0; i < ${e}; i++)
{
xVals[i] = readX(batch, xR, xCCorner + i, d1);
}
for (var wC = 0; wC < ${this.convInfo.filterWidth}; wC = wC + 1) {
let wValue = getW(wR, wC, d1, 0);
dotProd[0] = dotProd[0] + xVals[0 + wC] * wValue;
dotProd[1] = dotProd[1] + xVals[1 + wC] * wValue;
dotProd[2] = dotProd[2] + xVals[2 + wC] * wValue;
dotProd[3] = dotProd[3] + xVals[3 + wC] * wValue;
}
}
for (var i = 0; i < 4; i = i + 1) {
let coords = vec4<i32>(batch, r, c + i, d1);
if (coordsInBounds4D(coords, uniforms.outShape)) {
var value = dotProd[i];
${xd(this.addBias,this.activation)}
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
}
`}},TT=class{constructor(e,t=!1,n=null,s=!1){this.variableNames=["x","W"],this.uniforms=`pad : vec2<i32>, inDims : vec2<i32>, filterHeight : i32,
filterWidth : i32, stride : vec2<i32>, dilation : vec2<i32>,`,this.workGroupSize=[256,1,1],this.outputShape=e.outShape,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.isChannelsLast=e.dataFormat==="channelsLast",t&&this.variableNames.push("bias"),s&&this.variableNames.push("preluActivationWeights"),this.convInfo=e,this.addBias=t,this.activation=n,this.hasPreluActivation=s,this.shaderKey=`depthwise_${this.activation}_${this.isChannelsLast}`}getUserCode(){let e=this.isChannelsLast?"getX(batch, xR, xC, d1);":"getX(batch, d1, xR, xC);";return`
${Ai(this.activation,this.hasPreluActivation,!1,4)}
${Ye()} {
let coords = getOutputCoords();
let batch = coords[0];
let xRCCorner = vec2<i32>(coords.${this.isChannelsLast?"yz":"zw"}) * uniforms.stride - uniforms.pad;
let d2 = coords[${this.isChannelsLast?3:1}];
let channelMul = uniforms.wShape[3];
let d1 = d2 / channelMul;
let q = d2 % channelMul;
let inputRowStart = xRCCorner.x;
let inputColStart = xRCCorner.y;
let inputRowEnd = inputRowStart + uniforms.filterHeight *
uniforms.dilation[0];
let inputColEnd = inputColStart + uniforms.filterWidth *
uniforms.dilation[1];
// Convolve x(?, ?, d1)|x(d1, ?, ?) with w(:, :, d1, q) to get
// y(yR, yC, d2)|y(d2, yR, yC). ? = to be determined. : = across all
// values in that axis. x(?, ?, d1) and y(yR, yC, d2) is for NHWC.
// x(d1, ?, ?) and y(d2, yR, yC) is for NCHW.
var value = 0.0;
// Extract if checking out of for loop for performance.
if (inputRowStart >= 0 && inputColStart >= 0 &&
inputRowEnd < uniforms.inDims[0] &&
inputColEnd < uniforms.inDims[1]) {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
} else {
for (var wR = 0; wR < uniforms.filterHeight; wR = wR + 1) {
let xR = inputRowStart + wR * uniforms.dilation[0];
if (xR < 0 || xR >= uniforms.inDims[0]) {
continue;
}
for (var wC = 0; wC < uniforms.filterWidth; wC = wC + 1) {
let xC = inputColStart + wC * uniforms.dilation[1];
if (xC < 0 || xC >= uniforms.inDims[1]) {
continue;
}
let xVal = ${e};
let wVal = getW(wR, wC, d1, q);
value = value + xVal * wVal;
}
}
}
${xd(this.addBias,this.activation)}
if (coordsInBounds4D(coords, uniforms.outShape)) {
setOutputAtCoords(coords[0], coords[1], coords[2], coords[3], value);
}
}
`}};function Uge(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a}=t,{strides:o,pad:i,dataFormat:l,dilations:u,dimRoundingMode:c}=s,p=T.convertConv2DDataFormat(l),d=u;d==null&&(d=[1,1]);let h=T.computeConv2DInfo(r.shape,a.shape,o,d,i,c,!0,p),f=[{type:"int32",data:[h.padInfo.top,h.padInfo.left]},{type:"int32",data:[h.inHeight,h.inWidth]}],m=h.dataFormat==="channelsLast",g;return!m&&h.inHeight>16&&h.inWidth>16&&h.strideHeight===1&&h.strideWidth===1&&h.dilationWidth===1&&h.dilationHeight===1&&h.inChannels===h.outChannels?g=new Vge(h.outShape,h.filterHeight,h.filterWidth):m&&h.inHeight>4&&h.inWidth>4&&h.strideHeight===1&&h.strideWidth===1&&h.inChannels===h.outChannels&&h.dilationHeight===1&&h.dilationWidth===1&&h.inChannels%4===0?g=new CT(h):(g=new TT(h),f.push({type:"int32",data:[h.filterHeight]},{type:"int32",data:[h.filterWidth]},{type:"int32",data:[h.strideHeight,h.strideWidth]},{type:"int32",data:[h.dilationHeight,h.dilationWidth]})),n.runWebGPUProgram(g,[r,a],r.dtype,f)}var Gge={kernelName:Co,backendName:"webgpu",kernelFunc:Uge},NT=Hn({opType:qe.MUL,cpuKernelImpl:h1e,supportsComplex:!0}),Hge={kernelName:Go,backendName:"webgpu",kernelFunc:NT};function wb(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Kh(r,a,o,"sum",n)}var jge={kernelName:si,backendName:"webgpu",kernelFunc:wb};function qge(e){let{inputs:t,backend:n,attrs:s}=e,{equation:r}=s,a=t,{allDims:o,summedDims:i,idDims:l}=T.decodeEinsumEquation(r,a.length);T.checkEinsumDimSizes(o.length,l,a);let{path:u,steps:c}=T.getEinsumComputePath(i,l),p=c.length,d=null,h=o.length,f=[];for(let m=0;m<p;++m){for(let g of c[m]){let{permutationIndices:y,expandDims:x}=T.getEinsumPermutation(h,l[g]),A;T.isIdentityPermutation(y)?A=a[g]:(A=Ta({inputs:{x:a[g]},backend:n,attrs:{perm:y}}),f.push(A));let b=A.shape.slice();for(let w=0;w<x.length;++w)b.splice(x[w],0,1);v.arraysEqual(A.shape,b)||(A=Ue({inputs:{x:A},backend:n,attrs:{shape:b}}),f.push(A)),d===null?d=A:(d=NT({inputs:{a:A,b:d},backend:n}),f.push(d))}m<p-1&&(u[m]>=0&&(d=wb({inputs:{x:d},backend:n,attrs:{axis:u[m]-(o.length-h),keepDims:!1}}),f.push(d)),h--)}for(let m of f)m!==d&&n.disposeData(m.dataId);return d}var Xge={kernelName:Kp,backendName:"webgpu",kernelFunc:qge},Kge=bn({opType:Fe.ELU}),Zge={kernelName:No,backendName:"webgpu",kernelFunc:Kge},Yge=Hn({opType:qe.EQUAL,dtype:"bool",cpuKernelImpl:Q2e}),Jge={kernelName:wl,backendName:"webgpu",kernelFunc:Yge},ET=bn({opType:Fe.EXP,cpuKernelImpl:e1e,dtype:"float32"}),Qge={kernelName:Eo,backendName:"webgpu",kernelFunc:ET};function _y(e){let{inputs:t,attrs:n,backend:s}=e,{dim:r}=n,{input:a}=t,o=a.shape.length,i=a.shape.slice(),l=r;return r<0&&(v.assert(-(o+1)<=r,()=>`Axis must be in the interval [${-(o+1)}, ${o}]`),l=o+r+1),i.splice(l,0,1),Ue({inputs:{x:a},backend:s,attrs:{shape:i}})}var e3e={kernelName:kl,backendName:"webgpu",kernelFunc:_y},t3e=bn({opType:Fe.EXPM1,cpuKernelImpl:t1e}),n3e={kernelName:Sl,backendName:"webgpu",kernelFunc:t3e},s3e=class{constructor(e){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="flipLeftRight"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordX = uniforms.xShape[2] - coords[2] - 1;
let outputValue = getX(coords[0], coords[1], coordX, coords[3]);
setOutputAtIndex(index, outputValue);
}
}
`}},r3e={kernelName:Il,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,s=t,r=new s3e(n.shape);return s.runWebGPUProgram(r,[n],n.dtype)}},a3e=bn({opType:Fe.FLOOR,cpuKernelImpl:n1e}),o3e={kernelName:Ro,backendName:"webgpu",kernelFunc:a3e},i3e=Hn({opType:qe.INT_DIV,dtype:"int32"}),l3e={kernelName:_o,backendName:"webgpu",kernelFunc:i3e},u3e=class{constructor(e,t,n=!1){this.isFromPixels=!0,this.outputShape=[0],this.variableNames=[],this.workGroupSize=[256,1,1],this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[t,1,1]),this.importVideo=n,this.shaderKey=`fromPixels_${this.importVideo}`}getUserCode(){let e=this.importVideo?"textureLoad(src, vec2<i32>(coords.yx));":"textureLoad(src, vec2<i32>(coords.yx), 0)";return`
@binding(1) @group(0) var src: ${this.importVideo?"texture_external":"texture_2d<f32>"};
${Ye("index")} {
let flatIndex = index * uniforms.numChannels;
if (flatIndex < uniforms.size) {
let coords = getCoordsFromIndex(flatIndex);
let values = ${e};
for (var i = 0; i < uniforms.numChannels; i = i + 1) {
result[flatIndex + i] = i32(floor(255.0 * values[i]));
}
}
}
`}},c3e={kernelName:Sp,backendName:"webgpu",kernelFunc:d3e},Ku,T3=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU"),um=new Map;function d3e(e){let{inputs:t,backend:n,attrs:s}=e,{pixels:r}=t,{numChannels:a}=s;if(r==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let o=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,i=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,l=typeof HTMLCanvasElement!="undefined"&&r instanceof HTMLCanvasElement||typeof OffscreenCanvas!="undefined"&&r instanceof OffscreenCanvas,u=typeof ImageBitmap!="undefined"&&r instanceof ImageBitmap,[c,p]=o?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[p,c,a],h=H().getBool("WEBGPU_IMPORT_EXTERNAL_TEXTURE")&&o,f=o||i;if(u||l||f){let x;if(h){let $=r;if(!um.has($)||um.get($).expired){let R={source:$};um.set($,n.device.importExternalTexture(R))}x={width:c,height:p,format:null,usage:null,texture:um.get($)}}else{if(f){let S=H().getBool("CANVAS2D_WILL_READ_FREQUENTLY_FOR_GPU");(Ku==null||S!==T3)&&(T3=S,Ku=document.createElement("canvas").getContext("2d",{willReadFrequently:T3})),Ku.canvas.width=c,Ku.canvas.height=p,Ku.drawImage(r,0,0,c,p),r=Ku.canvas}let $=GPUTextureUsage.COPY_DST|GPUTextureUsage.RENDER_ATTACHMENT|GPUTextureUsage.TEXTURE_BINDING,R="rgba8unorm",P=n.textureManager.acquireTexture(d[1],d[0],R,$);n.queue.copyExternalImageToTexture({source:r},{texture:P},[d[1],d[0]]),x={width:c,height:p,format:R,usage:$,texture:P}}let A=v.sizeFromShape(d),b=v.computeStrides(d),w=new u3e(d,a,h),k=[{type:"uint32",data:[A]},{type:"uint32",data:[a]},{type:"uint32",data:[...b]}],C=n.makeTensorInfo([p,c],"int32"),E=n.tensorMap.get(C.dataId);E.resourceInfo=x;let _=n.runWebGPUProgram(w,[C],"int32",k);return n.disposeData(C.dataId),_}let m=r.data,g=m;if(a!=null&&a!==4){g=new Uint8Array(r.width*r.height*a);let x=m.length,A=0;for(let b=0;b<x;b++)b%4<a&&(g[A++]=m[b])}let y=n.makeTensorInfo(d,"int32",new Int32Array(g));return n.uploadToGPU(y.dataId),y}var p3e=class{constructor(e,t,n,s,r){this.uniforms="varianceEpsilon : f32,",this.workGroupSize=[128,1,1],this.size=!0,this.variableNames=["x","mean","variance"],T.assertAndGetBroadcastShape(e,t),T.assertAndGetBroadcastShape(e,n),this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),s!=null&&(T.assertAndGetBroadcastShape(e,s),this.variableNames.push("offset")),r!=null&&(T.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale")),this.offsetShape=s,this.scaleShape=r,this.shaderKey="batchNorm"}getUserCode(){let e="0.0";this.offsetShape!=null&&(e="getOffsetByOutputIndex(index)");let t="1.0";return this.scaleShape!=null&&(t="getScaleByOutputIndex(index)"),`
${Ye("index")} {
if (index < uniforms.size)
{
let xValue = getXByOutputIndex(index);
let meanValue = getMeanByOutputIndex(index);
let varianValue = getVarianceByOutputIndex(index);
let offsetValue = ${e};
let scaleValue = ${t};
let inv = scaleValue * inverseSqrt(varianValue + f32(uniforms.varianceEpsilon));
setOutputAtIndex(index,dot(vec3<f32>(xValue, -meanValue, offsetValue), vec3<f32>(inv, inv, 1.0)));
}
}
`}},h3e={kernelName:Do,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s,scale:r,offset:a,mean:o,variance:i}=e,{varianceEpsilon:l}=t,u=n,c=[s,o,i],p=null;a!=null&&(p=a.shape,c.push(a));let d=null;r!=null&&(d=r.shape,c.push(r));let h=new p3e(s.shape,o.shape,i.shape,p,d),f=[{type:"float32",data:[l]}];return u.runWebGPUProgram(h,c,s.dtype,f)}};function f3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dataFormat:c,dilations:p,dimRoundingMode:d,activation:h,leakyreluAlpha:f}=s,m=T.convertConv2DDataFormat(c),g=T.computeConv2DInfo(r.shape,a.shape,l,p,u,d,!1,m);return ST({x:r,filter:a,convInfo:g,backend:n,bias:o,preluActivationWeights:i,leakyreluAlpha:f,activation:h})}var m3e={kernelName:no,backendName:"webgpu",kernelFunc:f3e};function g3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,filter:a,bias:o,preluActivationWeights:i}=t,{strides:l,pad:u,dilations:c,dimRoundingMode:p,activation:d,leakyreluAlpha:h}=s,f=c;f==null&&(f=[1,1]),v.assert(T.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let m=T.computeConv2DInfo(r.shape,a.shape,l,f,u,p,!0),g=[r,a],y=o!=null,x=i!=null;y&&g.push(o),x&&g.push(i);let A=[{type:"int32",data:[m.padInfo.top,m.padInfo.left]},{type:"int32",data:[m.inHeight,m.inWidth]}],b;return m.inHeight>4&&m.inWidth>4&&m.strideHeight===1&&m.strideWidth===1&&m.inChannels===m.outChannels&&m.dilationHeight===1&&m.dilationWidth===1&&m.inChannels%4===0?b=new CT(m,y,d,x):(b=new TT(m,y,d,x),A.push({type:"int32",data:[m.filterHeight]},{type:"int32",data:[m.filterWidth]},{type:"int32",data:[m.strideHeight,m.strideWidth]},{type:"int32",data:[m.dilationHeight,m.dilationWidth]})),d==="leakyrelu"&&(A.push({type:"float32",data:[h]}),b.uniforms+=" alpha : f32,"),n.runWebGPUProgram(b,g,"float32",A)}var y3e={kernelName:so,backendName:"webgpu",kernelFunc:g3e},A3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey=`gathernd_${e}`,this.sliceDim=e,this.uniforms=`sliceDim : i32, strides : ${Pn(e)},`}getUserCode(){let e;return this.sliceDim>1?e="uniforms.strides[j]":e="uniforms.strides",`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var flattenIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexTemp = i32(round(getIndices(coords[0], j)));
let strideNum = ${e};
flattenIndex = flattenIndex + indexTemp * strideNum;
}
setOutputAtIndex(index, getA(flattenIndex, coords[1]));
}
}
`}};function x3e(e){let{inputs:t,backend:n}=e,{params:s,indices:r}=t,a=r.shape,o=a[a.length-1],i=v.sizeFromShape(s.shape),[l,u,c,p]=T.prepareAndValidate(s,r),d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,o]}}),h=Ue({inputs:{x:s},backend:n,attrs:{shape:[v.sizeFromShape(s.shape)/c,c]}});if(n.shouldExecuteOnCPU([s,r])||s.dtype==="string"){let x=n.readSync(r.dataId),A=n.bufferSync(s),b=s1e(x,A,s.dtype,u,o,c,p,s.shape,i);return n.makeTensorInfo(l,s.dtype,b.values)}let f=new A3e(o,[u,c]),m=[{type:"int32",data:[o]},{type:"int32",data:p}],g=n.runWebGPUProgram(f,[h,d],h.dtype,m),y=Ue({inputs:{x:g},backend:n,attrs:{shape:l}});return n.disposeData(d.dataId),n.disposeData(h.dataId),n.disposeData(g.dataId),y}var b3e={kernelName:Tl,backendName:"webgpu",kernelFunc:x3e},v3e=class{constructor(e,t){this.variableNames=["A","indices"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e.slice(),this.aShape=e,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="gather"}getUserCode(){let e=w3e(this.aShape);return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let indexZ = i32(getIndices(resRC.x, resRC.z));
let inBounds = select(0.0, 1.0, indexZ >= 0 && indexZ < uniforms.aShape[2]);
setOutputAtIndex(index, inBounds * getA(${e}));
}
}
`}};function w3e(e){let t=["resRC.x","resRC.y","resRC.z","resRC.w"],n=[];for(let s=0;s<e.length;s++)s===2?n.push("indexZ"):n.push(`${t[s]}`);return n.join()}function RT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r,indices:a}=t,{axis:o,batchDims:i}=s,l=v.parseAxisParam(o,r.shape)[0],u=T.segment_util.collectGatherOpShapeInfo(r,a,l,i),c=v.sizeFromShape(a.shape),p=[],d=Ue({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ue({inputs:{x:a},backend:n,attrs:{shape:[u.batchSize,c/u.batchSize]}});p.push(d),p.push(h);let f=[u.batchSize,u.outerSize,c/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,a])){let A=n.tensorMap.get(h.dataId).values,b=We(h.shape,h.dtype,A),k=n.tensorMap.get(d.dataId).values,C=We(d.shape,d.dtype,k),E=r1e(C,b,f);return p.forEach(_=>n.disposeData(_.dataId)),n.makeTensorInfo(u.outputShape,E.dtype,E.values)}let m=new v3e(d.shape,f),g=n.runWebGPUProgram(m,[d,h],d.dtype);p.push(g);let y=Ue({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(x=>n.disposeData(x.dataId)),y}var k3e={kernelName:Cl,backendName:"webgpu",kernelFunc:RT},S3e=Hn({opType:qe.GREATER,cpuKernelImpl:o1e,dtype:"bool"}),I3e={kernelName:Nl,backendName:"webgpu",kernelFunc:S3e},C3e=Hn({opType:qe.GREATER_EQUAL,dtype:"bool",cpuKernelImpl:a1e}),T3e={kernelName:$o,backendName:"webgpu",kernelFunc:C3e},N3e=bn({opType:Fe.IS_NAN,dtype:"bool"}),E3e={kernelName:El,backendName:"webgpu",kernelFunc:N3e};function R3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{alpha:a}=s,o=[{type:"float32",data:[a]}],i=new Xh(r.shape,Fe.LEAKYRELU);return i.uniforms="alpha : f32,",n.runWebGPUProgram(i,[r],"float32",o)}var _3e={kernelName:Fo,backendName:"webgpu",kernelFunc:R3e},D3e=Hn({opType:qe.LESS,dtype:"bool",cpuKernelImpl:l1e}),$3e={kernelName:Rl,backendName:"webgpu",kernelFunc:D3e},P3e=Hn({opType:qe.LESS_EQUAL,dtype:"bool",cpuKernelImpl:i1e}),F3e={kernelName:_l,backendName:"webgpu",kernelFunc:P3e},O3e=bn({opType:Fe.LOG,cpuKernelImpl:u1e}),M3e={kernelName:Oo,backendName:"webgpu",kernelFunc:O3e},z3e=Hn({opType:qe.LOGICAL_AND,dtype:"bool"}),L3e={kernelName:Dl,backendName:"webgpu",kernelFunc:z3e},B3e=bn({opType:Fe.LOGICAL_NOT}),W3e={kernelName:$l,backendName:"webgpu",kernelFunc:B3e},V3e=Hn({opType:qe.MAX,cpuKernelImpl:d1e}),U3e={kernelName:zo,backendName:"webgpu",kernelFunc:V3e};function G3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{filterSize:a,strides:o,pad:i,dimRoundingMode:l}=s,u=1,c=T.computePool2DInfo(r.shape,a,o,u,i,l);return vT(r,c,"max",n)}var H3e={kernelName:Lo,backendName:"webgpu",kernelFunc:G3e};function j3e(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Kh(r,a,o,"min",n)}var q3e={kernelName:Wo,backendName:"webgpu",kernelFunc:j3e},X3e=Hn({opType:qe.MIN,cpuKernelImpl:p1e}),K3e={kernelName:Vo,backendName:"webgpu",kernelFunc:X3e},Z3e=class{constructor(e,t,n){this.uniforms="",this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((s,r)=>s[0]+e[r]+s[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.xShape=e,t.map((s,r)=>{this.uniforms+=` pad${r} : vec2<i32>,`}),this.offset=n==="reflect"?0:1,this.shaderKey=`mirrorPad_${n}`}getUserCode(){let e=this.xShape.length,t=this.xShape.map((l,u)=>`uniforms.pad${u}[0]`).join(","),n=this.xShape.map((l,u)=>`uniforms.pad${u}[0] + uniforms.xShape${e>1?`[${u}]`:""}`).join(","),s=e===1?"start":"start[i]",r=e===1?"end":"end[i]",a=e===1?"outC":"outC[i]",o=Pn(e),i=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ye("index")} {
if (index < uniforms.size) {
let start = ${o}(${t});
let end = ${o}(${n});
var outC = getCoordsFromIndex(index);
for (var i = 0; i < ${e}; i = i + 1) {
if (${a} < ${s}) {
${a} = ${s} * 2 - ${a} - ${this.offset};
} else if(${a} >= ${r}) {
${a} = (${r} - 1) * 2 - ${a} + ${this.offset};
}
}
let coords = outC - start;
setOutputAtIndex(index, getX(${i}));
}
}
`}},Y3e={kernelName:Uo,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:s}=e,{paddings:r,mode:a}=t,o=n,i=r.map(c=>({type:"int32",data:[c[0],c[1]]})),l=new Z3e(s.shape,r,a);return o.runWebGPUProgram(l,[s],s.dtype,i)}};function J3e(e){let{inputs:t,backend:n}=e,{x:s}=t;if(n.shouldExecuteOnCPU([s])){let a=n.tensorMap.get(s.dataId),[o,i]=f1e(a.values,s.shape,s.dtype);return n.makeTensorInfo(i,s.dtype,o)}let r=new Xh(s.shape,Fe.NEG);return n.runWebGPUProgram(r,[s],s.dtype)}var Q3e={kernelName:Pl,backendName:"webgpu",kernelFunc:J3e};function eye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l}=s,u=n.readSync(r.dataId),c=n.readSync(a.dataId),{selectedIndices:p}=yr.nonMaxSuppressionV3Impl(u,c,o,i,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var tye={kernelName:Ol,backendName:"webgpu",kernelFunc:eye};function nye(e){console.warn("tf.nonMaxSuppression() in webgpu locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:s}=e,{boxes:r,scores:a}=t,{maxOutputSize:o,iouThreshold:i,scoreThreshold:l,softNmsSigma:u}=s,c=n.readSync(r.dataId),p=n.readSync(a.dataId),d=o,h=i,f=l,m=u,{selectedIndices:g,selectedScores:y}=yr.nonMaxSuppressionV5Impl(c,p,d,h,f,m);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var sye={kernelName:Ml,backendName:"webgpu",kernelFunc:nye};function Ym(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="complex64"){let r=Zh({inputs:{input:s},backend:n}),a=Ym({inputs:{x:r},backend:n}),o=V2({inputs:{input:s},backend:n}),i=Ym({inputs:{x:o},backend:n}),l=bd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yu({attrs:{shape:s.shape,dtype:s.dtype,value:s.dtype==="string"?"":0},backend:n})}var rye={kernelName:nu,backendName:"webgpu",kernelFunc:Ym};function _T(e){let{inputs:t,backend:n}=e,{x:s}=t;if(s.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(s.dtype==="complex64"){let r=Zh({inputs:{input:s},backend:n}),a=_T({inputs:{x:r},backend:n}),o=V2({inputs:{input:s},backend:n}),i=Ym({inputs:{x:o},backend:n}),l=bd({inputs:{real:a,imag:i},backend:n});return n.disposeData(r.dataId),n.disposeData(a.dataId),n.disposeData(o.dataId),n.disposeData(i.dataId),l}else return yu({attrs:{shape:s.shape,dtype:s.dtype,value:1},backend:n})}var aye={kernelName:zl,backendName:"webgpu",kernelFunc:_T};function oye(e){let{inputs:t,backend:n,attrs:s}=e,{axis:r}=s;if(t.length===1)return _y({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let a=t[0].shape,o=t[0].dtype;t.forEach(c=>{v.assertShapesMatch(a,c.shape,"All tensors passed to stack must have matching shapes"),v.assert(o===c.dtype,()=>"All tensors passed to stack must have matching dtypes")});let i=[],l=t.map(c=>{let p=_y({inputs:{input:c},backend:n,attrs:{dim:r}});return i.push(p),p}),u=kT({inputs:l,backend:n,attrs:{axis:r}});return i.forEach(c=>n.disposeData(c.dataId)),u}var iye={kernelName:Bl,backendName:"webgpu",kernelFunc:oye},lye=class{constructor(e,t){this.variableNames=["x"],this.uniforms="constantValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t.map((n,s)=>n[0]+e[s]+n[1]),this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),t.map((n,s)=>{this.uniforms+=` pad${s} : vec2<i32>,`}),this.xShape=e,this.shaderKey="pad"}getUserCode(){let e=this.xShape.length,t=Pn(e),n=this.xShape.map((c,p)=>`uniforms.pad${p}[0]`).join(","),s=this.xShape.map((c,p)=>`uniforms.pad${p}[0] + uniforms.xShape${e>1?`[${p}]`:""}`).join(","),r=e>1?`${t}(${n})`:`${n}`,a=e>1?`${t}(${s})`:`${s}`,o=e>1?"any(outC < start)":"outC < start",i=e>1?"any(outC >= end)":"outC >= end",l=e>1?["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,e):"coords";return`
${Ye("index")} {
if (index < uniforms.size) {
let start = ${r};
let end = ${a};
let outC = getCoordsFromIndex(index);
if (${o} || ${i}) {
setOutputAtIndex(index, uniforms.constantValue);
} else {
let coords = outC - start;
setOutputAtIndex(index, getX(${l}));
}
}
}
`}},DT=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{paddings:a,constantValue:o}=s;if(a.every(u=>v.arraysEqual(u,[0,0])))return er({inputs:{x:r},backend:n});if(v.sizeFromShape(r.shape)===0){let u=a.map((c,p)=>c[0]+r.shape[p]+c[1]);return yu({backend:n,attrs:{shape:u,value:o,dtype:r.dtype}})}let i=[{type:"float32",data:[o]}];a.map(u=>i.push({type:"int32",data:[u[0],u[1]]}));let l=new lye(r.shape,a);return n.runWebGPUProgram(l,[r],r.dtype,i)},uye={kernelName:Ho,backendName:"webgpu",kernelFunc:DT},cye=Hn({opType:qe.POW}),dye={kernelName:jo,backendName:"webgpu",kernelFunc:cye};function pye(e){let{inputs:t,backend:n}=e,{x:s,alpha:r}=t,a=new Ny(qe.PRELU,s.shape,r.shape);return n.runWebGPUProgram(a,[s,r],"float32")}var hye={kernelName:qo,backendName:"webgpu",kernelFunc:pye};function fye(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{axis:a,keepDims:o}=s;return Kh(r,a,o,"prod",n)}var mye={kernelName:Xo,backendName:"webgpu",kernelFunc:fye},gye=e=>{let{backend:t,attrs:n}=e,{start:s,stop:r,step:a,dtype:o}=n,i=y1e(s,r,a,o);return t.makeTensorInfo([i.length],o,i)},yye={kernelName:Wc,backendName:"webgpu",kernelFunc:gye},$T=Hn({opType:qe.DIV}),Aye={kernelName:To,backendName:"webgpu",kernelFunc:$T},xye=bn({opType:Fe.RECIPROCAL}),bye={kernelName:Wl,backendName:"webgpu",kernelFunc:xye},vye=bn({opType:Fe.RELU}),wye={kernelName:Ko,backendName:"webgpu",kernelFunc:vye},kye=bn({opType:Fe.RELU6}),Sye={kernelName:Jo,backendName:"webgpu",kernelFunc:kye},Iye=class{constructor(e,t,n){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, halfPixelCenters : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="resizeBilinear"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC =
(vec2<f32>(rc) + vec2<f32>(uniforms.halfPixelCenters)) *
effectiveInputOverOutputRatioRC - vec2<f32>(uniforms.halfPixelCenters);
// Compute the four integer indices.
let sourceFloorRC = vec2<i32>(sourceFracIndexRC);
let sourceCeilRC = vec2<i32>(
min(vec2<f32>(uniforms.xShape.yz) - vec2<f32>(1.0), ceil(sourceFracIndexRC)));
let topLeft = getX(b, sourceFloorRC.x, sourceFloorRC.y, d);
let bottomLeft = getX(b, sourceCeilRC.x, sourceFloorRC.y, d);
let topRight = getX(b, sourceFloorRC.x, sourceCeilRC.y, d);
let bottomRight = getX(b, sourceCeilRC.x, sourceCeilRC.y, d);
let fracRC = sourceFracIndexRC - vec2<f32>(sourceFloorRC);
let top = topLeft + (topRight - topLeft) * fracRC.y;
let bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
let newValue = top + (bottom - top) * fracRC.x;
setOutputAtIndex(index, newValue);
}
}
`}};function Cye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,size:o,halfPixelCenters:i}=s,[l,u]=o,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[i?.5:0]}],f=new Iye(r.shape,l,u);return n.runWebGPUProgram(f,[r],"float32",h)}var Tye={kernelName:Yo,backendName:"webgpu",kernelFunc:Cye},Nye=class{constructor(e,t,n,s){this.variableNames=["x"],this.uniforms="adjustHeightWidth : vec2<f32>, roundBase : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=[e[0],t,n,e[3]],this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.halfPixelCenters=s,this.shaderKey=`resizeNearest_${s}`}getUserCode(){let e;return this.halfPixelCenters?e="max((vec2<f32>(rc) + vec2<f32>(0.5)) * effectiveInputOverOutputRatioRC, vec2<f32>(0.0))":e="vec2<f32>(rc) * effectiveInputOverOutputRatioRC",`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let b = coords[0];
let d = coords[3];
let rc = coords.yz;
let effectiveInSize = vec2<f32>(
f32(uniforms.xShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.xShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveOutSize = vec2<f32>(
f32(uniforms.outShape.y) - uniforms.adjustHeightWidth[0],
f32(uniforms.outShape.z) - uniforms.adjustHeightWidth[1]);
let effectiveInputOverOutputRatioRC =
effectiveInSize / effectiveOutSize;
// Fractional source index
let sourceFracIndexRC = ${e};
// Compute the coordinators of nearest neighbor point.
let inputShapeRC = vec2<f32>(f32(uniforms.xShape.y), f32(uniforms.xShape.z));
let sourceNearestRC = vec2<i32>(
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + uniforms.roundBase)));
let newValue = getX(b, sourceNearestRC.x, sourceNearestRC.y, d);
setOutputAtIndex(index, newValue);
}
}
`}};function Eye(e){let{inputs:t,backend:n,attrs:s}=e,{images:r}=t,{alignCorners:a,halfPixelCenters:o,size:i}=s,[l,u]=i,c=a&&l>1?1:0,p=a&&u>1?1:0,h=[{type:"float32",data:[c,p]},{type:"float32",data:[a?.5:0]}],f=new Nye(r.shape,l,u,o);return n.runWebGPUProgram(f,[r],r.dtype,h)}var Rye={kernelName:Zo,backendName:"webgpu",kernelFunc:Eye},_ye=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`centerX : f32, centerY : f32, sinRadians : f32,
cosRadians : f32,`,this.shaderKey="rotate",this.outputShape=e,typeof t=="number"?(this.uniforms+=" fillValue : f32,",this.fillSnippet="var outputValue = uniforms.fillValue;",this.shaderKey+="_float"):(this.uniforms+=" fillValue : vec3<f32>,",this.fillSnippet="var outputValue = uniforms.fillValue[coords[3]];",this.shaderKey+="_vec3")}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
let coordXFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.cosRadians - (f32(coords[1]) - uniforms.centerY) *
uniforms.sinRadians;
let coordYFloat = (f32(coords[2]) - uniforms.centerX) *
uniforms.sinRadians + (f32(coords[1]) - uniforms.centerY) *
uniforms.cosRadians;
let coordX = i32(round(coordXFloat + uniforms.centerX));
let coordY = i32(round(coordYFloat + uniforms.centerY));
${this.fillSnippet}
if(coordX >= 0 && coordX < uniforms.xShape[2] && coordY >= 0 &&
coordY < uniforms.xShape[1]) {
outputValue = getX(coords[0], coordY, coordX, coords[3]);
}
setOutputAtIndex(index, outputValue);
}
}
`}},Dye={kernelName:su,backendName:"webgpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:s}=e,{radians:r,fillValue:a,center:o}=t,i=n,l=new _ye(s.shape,a),[u,c]=T.getImageCenter(o,s.shape[1],s.shape[2]),p=[{type:"float32",data:[u]},{type:"float32",data:[c]},{type:"float32",data:[Math.sin(r)]},{type:"float32",data:[Math.cos(r)]}];return typeof a=="number"?p.push({type:"float32",data:[Number.parseFloat(a.toFixed(2))]}):p.push({type:"float32",data:a}),i.runWebGPUProgram(l,[s],s.dtype,p)}},$ye=bn({opType:Fe.RSQRT,cpuKernelImpl:A1e}),Pye={kernelName:Qo,backendName:"webgpu",kernelFunc:$ye},xm=class{constructor(e,t,n,s,r,a,o,i=!0){this.variableNames=["updates","indices"],this.workGroupSize=[64,1,1],this.atomic=!0,this.outputShape=a,this.type=o,this.sumDupeIndices=i,this.dispatchLayout=ot(e),this.dispatch=Ge(this.dispatchLayout,e,this.workGroupSize),this.sliceDimGreaterThanOne=t>1,this.shaderKey=`scatter_${n}_${s}_${this.sliceDimGreaterThanOne}_${o}_${i}`;let l=Pn(r.length);this.uniforms=`sliceDim : i32, strides: ${l}, size: i32,`,this.updatesRank=s,this.indicesRank=n}getUserCode(){let e="";this.indicesRank===1?e="coords[0]":this.indicesRank===2&&(e="coords[0], j");let t=`getIndices(${e})`,n=this.sliceDimGreaterThanOne?"uniforms.strides[j]":"uniforms.strides",s="",r="";this.dispatchLayout.x.length===1?(s="flattenedIndex",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> i32 {
return index;
}
`):this.dispatchLayout.x.length===2&&(s="vec2<i32>(flattenedIndex, coords[1])",r=`
fn getUpdatesCoordsFromFlatIndex(index : i32) -> vec2<i32> {
// N.B. |updates| could be a scalar tensor, conceptually representing a
// 2D tensor with all values equal to that. By design, its size must be
// the same as |outShape[1]| in one dimension, and |indicesShape[0]|
// gives the other.
let sliceSize = uniforms.outShape[1];
let d0 = index / sliceSize;
let d1 = index - d0 * sliceSize;
return vec2<i32>(d0, d1);
}
`);let o=`getUpdates(${Array.from({length:this.updatesRank},(u,c)=>`coords[${c}]`).join(", ")})`,i=(u,c)=>{let p=`atomicAdd(${u}, bitcast<i32>(${c}))`;this.type==="float32"&&(p=`
{
var oldBits = 0;
var newBits = bitcast<i32>(${c});
loop {
let info = atomicCompareExchangeWeak(${u}, oldBits, newBits);
if (info.exchanged) {
break;
}
oldBits = info.old_value;
let oldValue = bitcast<f32>(oldBits);
let newValue = oldValue + (${c});
newBits = bitcast<i32>(newValue);
}
}
`);let d=`atomicStore(${u}, bitcast<i32>(${c}));`;return this.sumDupeIndices?p:d};return`
${r}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getUpdatesCoordsFromFlatIndex(index);
var flattenedIndex = 0;
for (var j = 0; j < uniforms.sliceDim; j = j + 1) {
let indexInside = i32(round(${t}));
flattenedIndex = flattenedIndex + indexInside * ${n};
}
let updateValue =
${wp(this.type,!1)}(${o});
let flatIndex = getOutputIndexFromCoords(${s});
${i("&result[flatIndex]","updateValue")};
}
}`}};function Fye(e){let{inputs:t,backend:n,attrs:s}=e,{indices:r,updates:a}=t,{shape:o}=s,{sliceRank:i,numUpdates:l,sliceSize:u,strides:c,outputSize:p}=T.calculateShapes(a,r,o),d=[p/u,u];if(p===0)return n.makeTensorInfo(o,r.dtype);let h=Ue({inputs:{x:r},backend:n,attrs:{shape:[l,i]}}),f=Ue({inputs:{x:a},backend:n,attrs:{shape:[l,u]}}),m=f.dtype,g=yu({backend:n,attrs:{shape:d,value:0,dtype:m}}),y=v.sizeFromShape(f.shape),x=[{type:"int32",data:[i]},{type:"int32",data:c},{type:"int32",data:[y]}],A=new xm(f.shape,i,h.shape.length,f.shape.length,c,d,m),b=n.runWebGPUProgram(A,[f,h],m,x,g),w=Ue({inputs:{x:b},backend:n,attrs:{shape:o}});return n.disposeData(h.dataId),n.disposeData(f.dataId),n.disposeData(b.dataId),w}var Oye={kernelName:Hl,backendName:"webgpu",kernelFunc:Fye},Mye=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=t,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.cRank=e,this.rank=n,this.shaderKey="select"}getUserCode(){let e,t;if(this.rank>4)throw Error(`Where for rank ${this.rank} is not yet supported`);if(this.rank===1)t="resRC",e="resRC";else{let s=["resRC.x","resRC.y","resRC.z","resRC.w"],r=[],a=[];for(let o=0;o<this.outputShape.length;o++)a.push(`${s[o]}`),o<this.cRank&&r.push(`${s[o]}`);e=r.join(),t=a.join()}return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
let cVal = getC(${e});
if (cVal >= 1.0) {
setOutputAtIndex(index, getA(${t}));
} else {
setOutputAtIndex(index, getB(${t}));
}
}
}
`}};function zye(e){let{inputs:t,backend:n}=e,{condition:s,t:r,e:a}=t,o=new Mye(s.shape.length,r.shape,r.shape.length);return n.runWebGPUProgram(o,[s,r,a],Un(r.dtype,a.dtype))}var Lye={kernelName:jl,backendName:"webgpu",kernelFunc:zye},Bye=bn({opType:Fe.SIGMOID}),Wye={kernelName:ti,backendName:"webgpu",kernelFunc:Bye},Vye=bn({opType:Fe.SIN}),Uye={kernelName:ei,backendName:"webgpu",kernelFunc:Vye},Gye=bn({opType:Fe.SINH}),Hye={kernelName:Xl,backendName:"webgpu",kernelFunc:Gye},PT=Hn({opType:qe.SUB,cpuKernelImpl:S1e,supportsComplex:!0}),jye={kernelName:oi,backendName:"webgpu",kernelFunc:PT};function qye(e){let{inputs:t,backend:n,attrs:s}=e,{logits:r}=t,{dim:a}=s,o=v.parseAxisParam([a],r.shape),i=vb({inputs:{x:r},backend:n,attrs:{reductionIndices:o,keepDims:!1}}),l=T.expandShapeToKeepDim(i.shape,o),u=Ue({inputs:{x:i},backend:n,attrs:{shape:l}}),c=PT({inputs:{a:r,b:u},backend:n}),p=ET({inputs:{x:c},backend:n}),d=wb({inputs:{x:p},backend:n,attrs:{axis:o,keepDims:!1}}),h=Ue({inputs:{x:d},backend:n,attrs:{shape:l}}),f=$T({inputs:{a:p,b:h},backend:n});return n.disposeData(i.dataId),n.disposeData(u.dataId),n.disposeData(c.dataId),n.disposeData(p.dataId),n.disposeData(d.dataId),n.disposeData(h.dataId),f}var Xye={kernelName:ri,backendName:"webgpu",kernelFunc:qye},Kye=e=>{let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{blockShape:a,paddings:o}=s;v.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGPU backend not implemented yet");let i=a.reduce((y,x)=>y*x),l=[[0,0]];l.push(...o);for(let y=1+a.length;y<r.shape.length;++y)l.push([0,0]);let u=[],c=DT({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=T.getReshaped(c.shape,a,i,!1),d=T.getPermuted(p.length,a.length,!1),h=T.getReshapedPermuted(c.shape,a,i,!1),f=Ue({inputs:{x:c},backend:n,attrs:{shape:p}}),m=Ta({inputs:{x:f},backend:n,attrs:{perm:d}}),g=Ue({inputs:{x:m},backend:n,attrs:{shape:h}});return u.push(c),u.push(f),u.push(m),u.forEach(y=>n.disposeData(y.dataId)),g},Zye={kernelName:Kl,backendName:"webgpu",kernelFunc:Kye},Yye=class{constructor(e,t){this.variableNames=["A"],this.workGroupSize=[64,1,1],this.size=!0;let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.rank=this.outputShape.length,this.shaderKey="tile"}getUserCode(){let e=Jye(this.rank,"uniforms.");return`
${Ye("index")} {
if (index < uniforms.size) {
let resRC = getCoordsFromIndex(index);
setOutputAtIndex(index, getA(${e}));
}
}
`}};function Jye(e,t=""){if(e>=5)throw Error(`Tile for rank ${e} is not yet supported`);if(e===1)return`(resRC % ${t}aShape)`;let n=["resRC.x","resRC.y","resRC.z","resRC.w"],s=[];for(let r=0;r<e;r++)s.push(`(${n[r]} % ${t}aShape[${r}])`);return s.join()}function FT(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{reps:a}=s;if(n.shouldExecuteOnCPU([r])||r.dtype==="string"||r.shape.length>=5){let l=n.readSync(r.dataId),u=r.dtype==="string"?l.map(d=>v.decodeString(d)):l,c=We(r.shape,r.dtype,u),p=I1e(c,a);return n.makeTensorInfo(p.shape,p.dtype,p.values)}let o=new Yye(r.shape,a);return n.runWebGPUProgram(o,[r],r.dtype)}var Qye={kernelName:Ra,backendName:"webgpu",kernelFunc:FT};function eAe(e){let{inputs:t,backend:n,attrs:s}=e,{sparseIndices:r,sparseValues:a,defaultValue:o}=t,{outputShape:i}=s,{sliceRank:l,numUpdates:u,sliceSize:c,strides:p,outputSize:d}=T.calculateShapes(a,r,i),h=!1;if(a.dtype==="string"){let E=n.bufferSync(r),_=n.bufferSync(a),$=v.decodeString(n.readSync(o.dataId)[0]),R=x1e(E,_,i,d,c,u,l,p,$,h);return n.makeTensorInfo(i,R.dtype,R.values)}let f=[d/c,c],m=Ue({inputs:{x:r},backend:n,attrs:{shape:[u,l]}}),g=a.shape.length?Ue({inputs:{x:a},backend:n,attrs:{shape:[u,c]}}):er({inputs:{x:a},backend:n}),y=g.dtype,x=n.makeTensorInfo([],y,v.makeZerosTypedArray(1,y)),A=Ue({inputs:{x:o},backend:n,attrs:{shape:Array(f.length).fill(1)}}),b=FT({inputs:{x:A},backend:n,attrs:{reps:f}}),w=v.sizeFromShape([u,c]),k=[{type:"int32",data:[l]},{type:"int32",data:p},{type:"int32",data:[w]}];switch(u){case 0:break;case 1:{let E=new xm([u,c],l,m.shape.length,g.shape.length,p,f,y,h);n.runWebGPUProgram(E,[g,m],y,k,b)}break;default:{let E=new xm([u,c],l,m.shape.length,x.shape.length,p,f,y,h);n.runWebGPUProgram(E,[x,m],y,k,b)}{let E=new xm([u,c],l,m.shape.length,g.shape.length,p,f,y);n.runWebGPUProgram(E,[g,m],y,k,b)}}let C=Ue({inputs:{x:b},backend:n,attrs:{shape:i}});return n.disposeData(m.dataId),n.disposeData(g.dataId),n.disposeData(A.dataId),n.disposeData(x.dataId),n.disposeData(b.dataId),C}var tAe={kernelName:sh,backendName:"webgpu",kernelFunc:eAe};function nAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{numOrSizeSplits:a,axis:o}=s,i=v.parseAxisParam(o,r.shape)[0],l=T.prepareSplitSize(r,a,i),u=r.shape.length,c=new Array(u).fill(0),p=r.shape.slice();return l.map(d=>{let h=[...p];h[i]=d;let f=vd({inputs:{x:r},backend:n,attrs:{begin:c,size:h}});return c[i]+=d,f})}var sAe={kernelName:Zl,backendName:"webgpu",kernelFunc:nAe},rAe=bn({opType:Fe.SQRT}),aAe={kernelName:ni,backendName:"webgpu",kernelFunc:rAe},oAe={kernelName:jc,backendName:"webgpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,s=t,r=new Xh(n.shape,Fe.SQUARE);return s.runWebGPUProgram(r,[n],n.dtype)}},iAe=Hn({opType:qe.SQUARED_DIFFERENCE}),lAe={kernelName:ai,backendName:"webgpu",kernelFunc:iAe},uAe=class{constructor(e){this.variableNames=["x"],this.workPerThread=1,this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize,[this.workPerThread,1,1]);let t=Pn(this.outputShape.length);this.uniforms=`begin : ${t}, strides : ${t}, `,this.shaderKey="stridedSlice"}getUserCode(){let e=this.outputShape.length,t="";if(e===1)t="coords * uniforms.strides + uniforms.begin";else{let s=0;t=this.outputShape.map((r,a)=>(s++,this.outputShape.length===1?`coords * uniforms.strides[${a}] + uniforms.begin[${a}]`:`coords[${s-1}] * uniforms.strides[${a}] + uniforms.begin[${a}]`)).join(",")}return`
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
setOutputAtIndex(index, getX(${t}));
}
}
`}};function cAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{begin:a,end:o,strides:i,beginMask:l,endMask:u,ellipsisMask:c,newAxisMask:p,shrinkAxisMask:d}=s,{finalShapeSparse:h,finalShape:f,isIdentity:m,sliceDim0:g,isSimpleSlice:y,begin:x,end:A,strides:b}=Gt.sliceInfo(r.shape,a,o,i,l,u,c,p,d),w;if(m)w=Ue({inputs:{x:r},backend:n,attrs:{shape:f}});else if(g||y){v.assert(r.shape.length>=1,()=>`Input must have rank at least 1, got: ${r.shape.length}`);let k=Gt.computeOutShape(x,A,b),C=vd({inputs:{x:r},backend:n,attrs:{begin:x,size:k}});w=Ue({inputs:{x:C},backend:n,attrs:{shape:f}}),n.disposeData(C.dataId)}else if(n.shouldExecuteOnCPU([r])){let C=n.readSync(r.dataId),E=We(r.shape,r.dtype,C),_=w1e(h,E,b,x);w=n.makeTensorInfo(f,r.dtype,_.values)}else{let C=new uAe(h),E=[{type:"int32",data:x},{type:"int32",data:b}],_=n.runWebGPUProgram(C,[r],r.dtype,E);w=Ue({inputs:{x:_},backend:n,attrs:{shape:f}}),n.disposeData(_.dataId)}return w}var dAe={kernelName:Yl,backendName:"webgpu",kernelFunc:cAe};function pAe(e){let{inputs:t,backend:n,attrs:s}=e,{separator:r,nGramWidths:a,leftPad:o,rightPad:i,padWidth:l,preserveShortSequences:u}=s,{data:c,dataSplits:p}=t,d=n.readSync(c.dataId),h=n.readSync(p.dataId),[f,m]=k1e(d,h,r,a,o,i,l,u);return[n.makeTensorInfo([f.length],"string",f),n.makeTensorInfo(p.shape,"int32",m)]}var hAe={kernelName:qc,backendName:"webgpu",kernelFunc:pAe},fAe=bn({opType:Fe.TANH}),mAe={kernelName:ii,backendName:"webgpu",kernelFunc:fAe},gAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms=`inputSize : i32, firstPass : i32, negativeInf : f32,
dir : i32, inc : i32,`,this.shaderKey="swap"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// We compare elements pair-wise within a group of size 2 * inc.
// The comparing rule for each group alternates between ascending
// and descending. Within each group, we compare each pair at
// positions i and i+inc. To decide whether an element at position i
// is x0 or x1, we mod it by 2 * inc, if the result is smaller than
// inc, it is in the first half of the group, we denote it as x0,
// otherwise we denote it as x1.
// For example, as shown in the Bitonic top K paper referenced
// above, Figure5(a) shows that element[1] is in the second half of
// the group when group size is 2, but it is in the first half of
// the group when group size is 4.
let isFirstInPair = elemIdx % (2 * uniforms.inc) < uniforms.inc;
var i = 0;
if (isFirstInPair) {
i = elemIdx;
} else {
i = elemIdx - uniforms.inc;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.inc;
} else {
i1 = i32(getIndices(batch, i + uniforms.inc));
}
var x0 = f32(0.0);
var x1 = f32(0.0);
if (i0 < uniforms.inputSize) {
x0 = getX(batch, i0);
} else {
x0 = uniforms.negativeInf;
}
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = uniforms.negativeInf;
}
let reverse = elemIdx % (2 * uniforms.dir) >= uniforms.dir;
let isGreater = x0 > x1 || (x0 == x1 && i1 > i0);
if (reverse == isGreater) {
// Elements in opposite order of direction
let iTemp = i0;
i0 = i1;
i1 = iTemp;
}
if (isFirstInPair) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}},yAe=class{constructor(e){this.variableNames=["x","indices"],this.workGroupSize=[256,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.uniforms="inputSize : i32, firstPass : i32, k : i32,",this.shaderKey="merge"}getUserCode(){return`
${Ye("index")} {
if (index < uniforms.size) {
let outC = getCoordsFromIndex(index);
let batch = outC[0];
let elemIdx = outC[1];
// The output size is half of the previous size.
// If the previous sequence is | | | | _ _ _ _ | | | | _ _ _ _
// (k=4), we only need to output the indices at positions |, the
// indices at positions _ can be thrown away, see Figure5(b) After
// Phase 2 (Merge phase) in the Bitonic Top K paper referenced
// above.
// For example, the paper shows we only need to output the orange
// bars. The output sequence should look like this | | | | | | | |.
// Because the sequence is halved, to map the output index back to
// the previous sequence to find the corresponding value, we need
// to double the index. When we double the index, we basically
// interpolate a position, so 2i looks like
// | _ | _ | _ | _ | _ | _ | _. We move the | to the first k
// position of each 2k positions by - elemIdx % k. E.g. for output
// at index 4,5,6,7, we want to get the corresponding element at
// original index 8,9,10,11, for output at index 8,9,10,11,
// we want to get the corresponding element at original index
// 16,17,18,19, so on and so forth.
var i = 0;
if (elemIdx < uniforms.k) {
i = elemIdx;
} else {
i = elemIdx * 2 - elemIdx % uniforms.k;
}
var i0 = 0;
if (uniforms.firstPass == 1) {
i0 = i;
} else {
i0 = i32(getIndices(batch, i));
}
var i1 = 0;
if (uniforms.firstPass == 1) {
i1 = i + uniforms.k;
} else {
i1 = i32(getIndices(batch, i + uniforms.k));
}
let x0 = getX(batch, i0);
var x1 = f32(0.0);
if (i1 < uniforms.inputSize) {
x1 = getX(batch, i1);
} else {
x1 = x0;
}
if (x0 >= x1) {
setOutputAtIndex(index, f32(i0));
} else {
setOutputAtIndex(index, f32(i1));
}
}
}
`}};function Zu(e,t){t!==null&&e.disposeData(t.dataId)}function h6(e){let t=1;for(;t<e;)t*=2;return t}function AAe(e){let{inputs:t,backend:n,attrs:s}=e,{x:r}=t,{k:a,sorted:o}=s,i=r.shape,l=i[i.length-1];if(n.shouldExecuteOnCPU([r])){let w=n.readSync(r.dataId),[k,C]=C1e(w,i,r.dtype,a,o);return[n.makeTensorInfo(k.shape,k.dtype,k.values),n.makeTensorInfo(C.shape,C.dtype,C.values)]}if(a===0)return i[i.length-1]=0,[n.makeTensorInfo(i,r.dtype,[]),n.makeTensorInfo(i,"int32",[])];if(l===1)return[r,yu({attrs:{shape:i,dtype:"int32",value:0},backend:n})];let c=v.sizeFromShape(i)/l,p=Ue({inputs:{x:r},attrs:{shape:[c,l]},backend:n}),d=h6(a),h=h6(l),f=null,m=()=>f===null?[p,p]:[p,f],g=(w,k,C)=>{let E=m(),_=new gAe(C),R=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"float32",data:[Number.NEGATIVE_INFINITY]},{type:"int32",data:[w]},{type:"int32",data:[k]}],P=f;f=n.runWebGPUProgram(_,E,"int32",R),Zu(n,P)};for(let w=1;w<d;w*=2){let k=w*2;for(let C=w;C>=1;C/=2)g(k,C,[c,h])}for(let w=h;w>d;w/=2){let k=m(),C=new yAe([c,w/2]),_=[{type:"int32",data:[l]},{type:"int32",data:[f===null?1:0]},{type:"int32",data:[d]}],$=f;f=n.runWebGPUProgram(C,k,"int32",_),Zu(n,$);let R=d/2,P=R*2;for(let S=R;S>=1;S/=2)g(P,S,f.shape)}let y=f;f=vd({inputs:{x:f},backend:n,attrs:{begin:0,size:[c,a]}}),Zu(n,y);let x=RT({inputs:{x:p,indices:f},backend:n,attrs:{axis:1,batchDims:1}});Zu(n,p);let A=i.slice(0,-1);A.push(a),y=f,f=Ue({inputs:{x:f},attrs:{shape:A},backend:n}),Zu(n,y);let b=x;return x=Ue({inputs:{x},attrs:{shape:A},backend:n}),Zu(n,b),[x,f]}var xAe={kernelName:Ql,backendName:"webgpu",kernelFunc:AAe},bAe=class{constructor(e){this.variableNames=["Image","Transforms"],this.uniforms="interpolationModeId : i32, fillModeId : i32, fillValue : f32,",this.workGroupSize=[64,1,1],this.size=!0,this.outputShape=e,this.dispatchLayout=ot(this.outputShape),this.dispatch=Ge(this.dispatchLayout,this.outputShape,this.workGroupSize),this.shaderKey="transform"}getUserCode(){return`
fn mapCoord(outCoord : f32, len : f32) -> f32{
var inCoord = outCoord;
if(uniforms.fillModeId == 2) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
if (inCoord < sz2) {
inCoord = sz2 * f32(i32(f32(-inCoord / sz2))) +
inCoord;
}
if (inCoord < -len) {
inCoord = inCoord + sz2;
} else {
inCoord = -inCoord - 1.0;
}
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz2 = 2.0 * len;
inCoord = inCoord - sz2 * f32(i32(f32(inCoord / sz2)));
if (inCoord >= len) {
inCoord = sz2 - inCoord - 1.0;
}
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 3) {
if (inCoord < 0.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord + len * (f32(i32(f32(-inCoord / sz))) + 1.0);
}
} else if (inCoord > len - 1.0) {
if (len <= 1.0) {
inCoord = 0.0;
} else {
let sz = len - 1.0;
inCoord = inCoord - len * f32(i32(f32(inCoord / sz)));
}
}
return clamp(inCoord, 0.0, len - 1.0);
} else if (uniforms.fillModeId == 4) {
return clamp(outCoord, 0.0, len - 1.0);
}
return outCoord;
}
fn readWithFillValue(batch : i32, coordY : i32, coordX : i32,
channel : i32) -> f32 {
var outputValue : f32;
if (0 <= coordY && coordY < uniforms.imageShape[1] && 0 <= coordX && coordX < uniforms.imageShape[2]) {
outputValue = getImage(batch, coordY, coordX, channel);
} else {
outputValue = uniforms.fillValue;
}
return outputValue;
}
${Ye("index")} {
if (index < uniforms.size) {
let coords = getCoordsFromIndex(index);
var outputValue : f32;
let batch = coords[0];
let x = coords[2];
let y = coords[1];
let channel = coords[3];
let xf = f32(x);
let yf = f32(y);
let a1 = getTransforms(batch, 0);
let a2 = getTransforms(batch, 1);
let a3 = getTransforms(batch, 2);
let b1 = getTransforms(batch, 3);
let b2 = getTransforms(batch, 4);
let b3 = getTransforms(batch, 5);
let c1 = getTransforms(batch, 6);
let c2 = getTransforms(batch, 7);
let projection = c1 * xf + c2 * yf + 1.0;
if (projection == 0.0) {
outputValue = uniforms.fillValue;
} else {
let inX = (a1 * xf + a2 * yf + a3) / projection;
let inY = (b1 * xf + b2 * yf + b3) / projection;
let mapX = mapCoord(inX, f32(uniforms.imageShape[2]));
let mapY = mapCoord(inY, f32(uniforms.imageShape[1]));
if (uniforms.interpolationModeId == 1) {
let coordY = i32(round(mapY));
let coordX = i32(round(mapX));
outputValue = readWithFillValue(batch, coordY, coordX,
channel);
} else {
let yFloor = floor(mapY);
let xFloor = floor(mapX);
let yCeil = yFloor + 1.0;
let xCeil = xFloor + 1.0;
let valueYFloor = (xCeil - mapX) *
readWithFillValue(batch, i32(yFloor), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yFloor), i32(xCeil), channel);
let valueYCeil = (xCeil - mapX) *
readWithFillValue(batch, i32(yCeil), i32(xFloor), channel) +
(mapX - xFloor) *
readWithFillValue(batch, i32(yCeil), i32(xCeil), channel);
outputValue = (yCeil - mapY) * valueYFloor +
(mapY - yFloor) * valueYCeil;
}
}
setOutputAtIndex(index, outputValue);
}
}
`}};function vAe(e){let{inputs:t,backend:n,attrs:s}=e,{image:r,transforms:a}=t,{interpolation:o,fillMode:i,fillValue:l,outputShape:u}=s,[c,p,d,h]=r.shape,[f,m]=u!=null?u:[p,d],g=[c,f,m,h],y=new bAe(g),x=o==="nearest"?1:2,A;switch(i){case"constant":A=1;break;case"reflect":A=2;break;case"wrap":A=3;break;case"nearest":A=4;break;default:A=1;break}let b=[{type:"int32",data:[x]},{type:"int32",data:[A]},{type:"float32",data:[l]}];return n.runWebGPUProgram(y,[r,a],"float32",b)}var wAe={kernelName:eu,backendName:"webgpu",kernelFunc:vAe};function kAe(e){let{inputs:t,backend:n,attrs:s}=e,{value:r}=t,{axis:a}=s;a<0&&(a+=r.shape.length);let o=r,i=o.shape.length,l=r.shape[a],u=new Array(i-1),c=0;for(let m=0;m<i;m++)m!==a&&(u[c++]=o.shape[m]);let p=[],d=new Array(i).fill(0),h=o.shape.slice();h[a]=1;let f=new Array(l);for(let m=0;m<f.length;m++){d[a]=m;let g=vd({inputs:{x:o},backend:n,attrs:{begin:d,size:h}}),y=Ue({inputs:{x:g},backend:n,attrs:{shape:u}});f[m]=y,p.push(g)}return p.forEach(m=>n.disposeData(m.dataId)),f}var SAe={kernelName:tu,backendName:"webgpu",kernelFunc:kAe},IAe=[j2e,E1e,_1e,P1e,B1e,V1e,G1e,Z1e,J1e,sge,ige,uge,hge,X2e,yge,wge,Tge,Ege,_ge,Pge,Oge,zge,Wge,Gge,Xge,Zge,Jge,Qge,e3e,n3e,U2e,r3e,c3e,o3e,l3e,h3e,m3e,y3e,b3e,k3e,I3e,T3e,q2e,mge,E3e,_3e,$3e,F3e,M3e,L3e,W3e,q1e,U3e,H3e,X1e,q3e,K3e,Y3e,Hge,Q3e,tye,sye,rge,aye,iye,uye,dye,hye,mye,yye,age,Aye,bye,wye,Sye,G2e,Tye,Rye,Dye,Pye,Oye,Lye,Wye,Uye,Hye,tge,dAe,hAe,Xye,Zye,tAe,sAe,aAe,oAe,lAe,jye,jge,mAe,Qye,xAe,wAe,z1e,SAe,rye];for(let e of IAe)tr(e);var CAe="3.20.0",TAe="3.20.0",NAe="3.20.0",EAe="3.20.0",RAe="3.20.0",_Ae="3.20.0",DAe="3.20.0",Yh={tfjs:CAe,"tfjs-core":TAe,"tfjs-data":NAe,"tfjs-layers":EAe,"tfjs-converter":RAe,"tfjs-backend-webgl":_Ae,"tfjs-backend-wasm":DAe};var OT=`
precision highp float;
attribute vec2 pos;
attribute vec2 uv;
varying vec2 vUv;
uniform float flipY;
void main(void) {
vUv = uv;
gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);
}
`;var MT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];
gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];
}
`,zT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform float m[20];
void main(void) {
vec4 c = texture2D(texture, vUv);
gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];
gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];
gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];
gl_FragColor.a = c.a;
}
`,LT=`
precision highp float;
varying vec2 vUv;
uniform vec2 size;
uniform sampler2D texture;
vec2 pixelate(vec2 coord, vec2 size) {
return floor( coord / size ) * size;
}
void main(void) {
gl_FragColor = vec4(0.0);
vec2 coord = pixelate(vUv, size);
gl_FragColor += texture2D(texture, coord);
}
`,BT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
void main(void) {
gl_FragColor = vec4(0.0);
gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;
gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv )*0.159576912161;
gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;
gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;
gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;
gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;
gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;
gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;
gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;
}
`,WT=`
precision highp float;
varying vec2 vUv;
uniform sampler2D texture;
uniform vec2 px;
uniform float m[9];
void main(void) {
vec4 c11 = texture2D(texture, vUv - px); // top left
vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y)); // top center
vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y)); // top right
vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) ); // mid left
vec4 c22 = texture2D(texture, vUv); // mid center
vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) ); // mid right
vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) ); // bottom left
vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) ); // bottom center
vec4 c33 = texture2D(texture, vUv + px ); // bottom right
gl_FragColor =
c11 * m[0] + c12 * m[1] + c22 * m[2] +
c21 * m[3] + c22 * m[4] + c23 * m[5] +
c31 * m[6] + c32 * m[7] + c33 * m[8];
gl_FragColor.a = c22.a;
}
`;var kb=(e,t,n)=>{let s=new RegExp("\\b"+t+" \\w+ (\\w+)","ig");e.replace(s,(r,a)=>(n[a]=0,r))},Sb=class{constructor(t,n,s){he(this,"uniform",{});he(this,"attribute",{});he(this,"gl");he(this,"id");he(this,"compile",(t,n)=>{let s=this.gl.createShader(n);return s?(this.gl.shaderSource(s,t),this.gl.compileShader(s),this.gl.getShaderParameter(s,this.gl.COMPILE_STATUS)?s:(ne(`filter: gl compile failed: ${this.gl.getShaderInfoLog(s)||"unknown"}`),null)):(ne("filter: could not create shader"),null)});this.gl=t;let r=this.compile(n,this.gl.VERTEX_SHADER),a=this.compile(s,this.gl.FRAGMENT_SHADER);if(this.id=this.gl.createProgram(),!(!r||!a)){if(!this.id){ne("filter: could not create webgl program");return}if(this.gl.attachShader(this.id,r),this.gl.attachShader(this.id,a),this.gl.linkProgram(this.id),!this.gl.getProgramParameter(this.id,this.gl.LINK_STATUS)){ne(`filter: gl link failed: ${this.gl.getProgramInfoLog(this.id)||"unknown"}`);return}this.gl.useProgram(this.id),kb(n,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=this.gl.getAttribLocation(this.id,o);kb(n,"uniform",this.uniform),kb(s,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=this.gl.getUniformLocation(this.id,o)}}};function VT(){let e=0,t=null,n=!1,s=-1,r=[null,null],a=[],o=null,i=null,l=ds(100,100),u={},c={INTERMEDIATE:1},p=l.getContext("webgl");if(!p){ne("filter: cannot get webgl context");return}this.gl=p;function d(x,A){if(!(x===l.width&&A===l.height)){if(l.width=x,l.height=A,!o){let b=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);o=p.createBuffer(),p.bindBuffer(p.ARRAY_BUFFER,o),p.bufferData(p.ARRAY_BUFFER,b,p.STATIC_DRAW),p.pixelStorei(p.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}p.viewport(0,0,l.width,l.height),r=[null,null]}}function h(x,A){let b=p.createFramebuffer();p.bindFramebuffer(p.FRAMEBUFFER,b);let w=p.createRenderbuffer();p.bindRenderbuffer(p.RENDERBUFFER,w);let k=p.createTexture();return p.bindTexture(p.TEXTURE_2D,k),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,x,A,0,p.RGBA,p.UNSIGNED_BYTE,null),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.LINEAR),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.framebufferTexture2D(p.FRAMEBUFFER,p.COLOR_ATTACHMENT0,p.TEXTURE_2D,k,0),p.bindTexture(p.TEXTURE_2D,null),p.bindFramebuffer(p.FRAMEBUFFER,null),{fbo:b,texture:k}}function f(x){return r[x]=r[x]||h(l.width,l.height),r[x]}function m(x=0){if(!i)return;let A=null,b=null,w=!1;e===0?A=t:A=f(s).texture||null,e++,n&&!(x&c.INTERMEDIATE)?(b=null,w=e%2===0):(s=(s+1)%2,b=f(s).fbo||null),p.bindTexture(p.TEXTURE_2D,A),p.bindFramebuffer(p.FRAMEBUFFER,b),p.uniform1f(i.uniform.flipY,w?-1:1),p.drawArrays(p.TRIANGLES,0,6)}function g(x){if(u[x])return i=u[x],p.useProgram((i?i.id:null)||null),i;if(i=new Sb(p,OT,x),!i)return ne("filter: could not get webgl program"),null;let A=Float32Array.BYTES_PER_ELEMENT,b=4*A;return p.enableVertexAttribArray(i.attribute.pos),p.vertexAttribPointer(i.attribute.pos,2,p.FLOAT,!1,b,0*A),p.enableVertexAttribArray(i.attribute.uv),p.vertexAttribPointer(i.attribute.uv,2,p.FLOAT,!1,b,2*A),u[x]=i,i}let y={colorMatrix:x=>{let A=new Float32Array(x);A[4]/=255,A[9]/=255,A[14]/=255,A[19]/=255;let b=A[18]===1&&A[3]===0&&A[8]===0&&A[13]===0&&A[15]===0&&A[16]===0&&A[17]===0&&A[19]===0?zT:MT,w=g(b);!w||(p.uniform1fv(w.uniform.m,A),m())},brightness:x=>{let A=(x||0)+1;y.colorMatrix([A,0,0,0,0,0,A,0,0,0,0,0,A,0,0,0,0,0,1,0])},saturation:x=>{let A=(x||0)*2/3+1,b=(A-1)*-.5;y.colorMatrix([A,b,b,0,0,b,A,b,0,0,b,b,A,0,0,0,0,0,1,0])},desaturate:()=>{y.saturation(-1)},contrast:x=>{let A=(x||0)+1,b=-128*(A-1);y.colorMatrix([A,0,0,0,b,0,A,0,0,b,0,0,A,0,b,0,0,0,1,0])},negative:()=>{y.contrast(-2)},hue:x=>{x=(x||0)/180*Math.PI;let A=Math.cos(x),b=Math.sin(x),w=.213,k=.715,C=.072;y.colorMatrix([w+A*(1-w)+b*-w,k+A*-k+b*-k,C+A*-C+b*(1-C),0,0,w+A*-w+b*.143,k+A*(1-k)+b*.14,C+A*-C+b*-.283,0,0,w+A*-w+b*-(1-w),k+A*-k+b*k,C+A*(1-C)+b*C,0,0,0,0,0,1,0])},desaturateLuminance:()=>{y.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},sepia:()=>{y.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},brownie:()=>{y.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},vintagePinhole:()=>{y.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},kodachrome:()=>{y.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},technicolor:()=>{y.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},polaroid:()=>{y.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},shiftToBGR:()=>{y.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},convolution:x=>{let A=new Float32Array(x),b=1/l.width,w=1/l.height,k=g(WT);!k||(p.uniform1fv(k.uniform.m,A),p.uniform2f(k.uniform.px,b,w),m())},detectEdges:()=>{y.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},sobelX:()=>{y.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},sobelY:()=>{y.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},sharpen:x=>{let A=x||1;y.convolution.call(this,[0,-1*A,0,-1*A,1+4*A,-1*A,0,-1*A,0])},emboss:x=>{let A=x||1;y.convolution.call(this,[-2*A,-1*A,0,-1*A,1,1*A,0,1*A,2*A])},blur:x=>{let A=x/7/l.width,b=x/7/l.height,w=g(BT);!w||(p.uniform2f(w.uniform.px,0,b),m(c.INTERMEDIATE),p.uniform2f(w.uniform.px,A,0),m())},pixelate:x=>{let A=x/l.width,b=x/l.height,w=g(LT);!w||(p.uniform2f(w.uniform.size,A,b),m())}};this.add=function(x){let A=Array.prototype.slice.call(arguments,1),b=y[x];a.push({func:b,args:A})},this.reset=function(){a=[]},this.get=function(){return a},this.apply=function(x){d(x.width,x.height),e=0,t||(t=p.createTexture()),p.bindTexture(p.TEXTURE_2D,t),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_S,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_WRAP_T,p.CLAMP_TO_EDGE),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MIN_FILTER,p.NEAREST),p.texParameteri(p.TEXTURE_2D,p.TEXTURE_MAG_FILTER,p.NEAREST),p.texImage2D(p.TEXTURE_2D,0,p.RGBA,p.RGBA,p.UNSIGNED_BYTE,x);for(let A=0;A<a.length;A++){n=A===a.length-1;let b=a[A];b.func.apply(this,b.args||[])}return l},this.draw=function(x){return this.add("brightness",0),this.apply(x)}}async function U2(e){let t=e.shape.length===4?rt(e):e,n=Jt(t,3,2),s=[Ia(n[0]),Ia(n[1]),Ia(n[2])],r=[yn(n[0]),yn(n[1]),yn(n[2])],a=await Promise.all(r.map(h=>h.data())),o=.99*Math.max(a[0][0],a[1][0],a[2][0]),i=[ge(n[0],s[0]),ge(n[1],s[1]),ge(n[2],s[2])],l=[ge(r[0],s[0]),ge(r[1],s[1]),ge(r[2],s[2])],u=[me(o,l[0]),me(o,l[1]),me(o,l[2])],c=[z(i[0],u[0]),z(i[1],u[1]),z(i[2],u[2])],p=ln([c[0],c[1],c[2]],2),d=V(p,[1,t.shape[0],t.shape[1],3]);return ee([...n,...s,...r,...i,...l,...u,...c,p,t]),d}var G2=3840,En=null,Rn=null,wd=null,Rt,ar={inputSum:0,cacheDiff:1,sumMethod:0,inputTensor:void 0};function Ib(){ar.inputSum=0,ar.cacheDiff=1,ar.sumMethod=0,ar.inputTensor=void 0}function ds(e,t){let n;if(fe.browser)if(fe.worker){if(typeof OffscreenCanvas=="undefined")throw new Error("canvas error: attempted to run in web worker but OffscreenCanvas is not supported");n=new OffscreenCanvas(e,t)}else{if(typeof document=="undefined")throw new Error("canvas error: attempted to run in browser but DOM is not defined");n=document.createElement("canvas"),n.width=e,n.height=t}else typeof fe.Canvas!="undefined"?n=new fe.Canvas(e,t):typeof globalThis.Canvas!="undefined"&&(n=new globalThis.Canvas(e,t));return n}function H2(e,t){let n=t||ds(e.width,e.height);return n.getContext("2d").drawImage(e,0,0),n}async function kd(e,t,n=!0){var d,h;if(!e)return t.debug&&ne("input error: input is missing"),{tensor:null,canvas:null};if(!(e instanceof st)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof fe.Canvas!="undefined"&&e instanceof fe.Canvas)&&!(typeof globalThis.Canvas!="undefined"&&e instanceof globalThis.Canvas)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("input error: type is not recognized");if(e instanceof st){let f=null;if(e.isDisposedInternal)throw new Error("input error: attempted to use tensor but it is disposed");if(!e.shape)throw new Error("input error: attempted to use tensor without a shape");if(e.shape.length===3){if(e.shape[2]===3)f=Bt(e,0);else if(e.shape[2]===4){let m=hi(e,[0,0,0],[-1,-1,3]);f=Bt(m,0),ee(m)}}else e.shape.length===4&&(e.shape[3]===3?f=Vn(e):e.shape[3]===4&&(f=ao(e,[0,0,0,0],[-1,-1,-1,3])));if(f==null||f.shape.length!==4||f.shape[0]!==1||f.shape[3]!==3)throw new Error(`input error: attempted to use tensor with unrecognized shape: ${e.shape.toString()}`);if(f.dtype==="int32"){let m=ye(f,"float32");ee(f),f=m}return{tensor:f,canvas:t.filter.return?Rn:null}}if(typeof e.readyState!="undefined"&&e.readyState<=2)return t.debug&&ne("input stream is not ready"),{tensor:null,canvas:En};let s=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,r=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!s||!r)return t.debug&&ne("cannot determine input dimensions"),{tensor:null,canvas:En};let a=s,o=r;if(a>G2&&(a=G2,o=Math.trunc(a*r/s)),o>G2&&(o=G2,a=Math.trunc(o*s/r)),(((d=t.filter)==null?void 0:d.width)||0)>0?a=t.filter.width:(((h=t.filter)==null?void 0:h.height)||0)>0&&(a=s*((t.filter.height||0)/r)),(t.filter.height||0)>0?o=t.filter.height:(t.filter.width||0)>0&&(o=r*((t.filter.width||0)/s)),!a||!o)throw new Error("input error: cannot determine dimension");(!En||En.width!==a||En.height!==o)&&(En=ds(a,o));let i=En.getContext("2d");if(typeof ImageData!="undefined"&&e instanceof ImageData?i.putImageData(e,0,0):t.filter.flip&&typeof i.translate!="undefined"?(i.translate(s,0),i.scale(-1,1),i.drawImage(e,0,0,s,r,0,0,En.width,En.height),i.setTransform(1,0,0,1,0,0)):i.drawImage(e,0,0,s,r,0,0,En.width,En.height),(!Rn||En.width!==Rn.width||En.height!==Rn.height)&&(Rn=ds(En.width,En.height)),t.filter.enabled&&fe.webgl.supported?(Rt||(Rt=fe.browser?new VT:null),fe.filter=!!Rt,Rt!=null&&Rt.add?(Rt.reset(),t.filter.brightness!==0&&Rt.add("brightness",t.filter.brightness),t.filter.contrast!==0&&Rt.add("contrast",t.filter.contrast),t.filter.sharpness!==0&&Rt.add("sharpen",t.filter.sharpness),t.filter.blur!==0&&Rt.add("blur",t.filter.blur),t.filter.saturation!==0&&Rt.add("saturation",t.filter.saturation),t.filter.hue!==0&&Rt.add("hue",t.filter.hue),t.filter.negative&&Rt.add("negative"),t.filter.sepia&&Rt.add("sepia"),t.filter.vintage&&Rt.add("brownie"),t.filter.sepia&&Rt.add("sepia"),t.filter.kodachrome&&Rt.add("kodachrome"),t.filter.technicolor&&Rt.add("technicolor"),t.filter.polaroid&&Rt.add("polaroid"),t.filter.pixelate!==0&&Rt.add("pixelate",t.filter.pixelate),Rt.get()>0?Rn=Rt.apply(En):Rn=Rt.draw(En)):(t.debug&&ne("input process error: cannot initialize filters"),fe.webgl.supported=!1,t.filter.enabled=!1,H2(En,Rn))):(H2(En,Rn),Rt&&(Rt=null),fe.filter=!!Rt),!n)return{tensor:null,canvas:Rn};if(!Rn)throw new Error("canvas error: cannot create output");let l,u=3;if(typeof ImageData!="undefined"&&e instanceof ImageData||e.data&&e.width&&e.height)if(fe.browser&&nr)l=nr?nr.fromPixels(e):null;else{u=e.data.length/e.height/e.width;let f=new Uint8Array(e.data.buffer);l=ct(f,[e.height,e.width,u],"int32")}else if((!wd||Rn.width!==wd.width||Rn.height!==wd.height)&&(wd=ds(Rn.width,Rn.height)),nr&&fe.browser)t.backend==="webgl"||t.backend==="humangl"||t.backend==="webgpu"?l=nr.fromPixels(Rn):(wd=H2(Rn),l=nr.fromPixels(wd));else{let g=H2(Rn).getContext("2d").getImageData(0,0,a,o);u=g.data.length/a/o;let y=new Uint8Array(g.data.buffer);l=ct(y,[a,o,u])}if(u===4){let f=hi(l,[0,0,0],[-1,-1,3]);ee(l),l=f}if(!l)throw new Error("input error: cannot create tensor");let c=ye(l,"float32"),p=t.filter.equalization?await U2(c):Bt(c,0);return ee([l,c]),{tensor:p,canvas:t.filter.return?Rn:null}}async function UT(e,t){let n=!1;if(e.cacheSensitivity===0||!t.shape||t.shape.length!==4||t.shape[1]>2048||t.shape[2]>2048)return n;if(!ar.inputTensor)ar.inputTensor=Vn(t);else if(ar.inputTensor.shape[1]!==t.shape[1]||ar.inputTensor.shape[2]!==t.shape[2])ee(ar.inputTensor),ar.inputTensor=Vn(t);else{let s={};s.diff=ge(t,ar.inputTensor),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;ee([ar.inputTensor,s.diff,s.squared,s.sum]),ar.inputTensor=Vn(t),n=a<=(e.cacheSensitivity||0)}return n}async function GT(e,t,n){let s={};if(!t||!n||t.shape.length!==4||t.shape.length!==n.shape.length)return e.debug||ne("invalid input tensor or tensor shapes do not match:",t.shape,n.shape),0;if(t.shape[0]!==1||n.shape[0]!==1||t.shape[3]!==3||n.shape[3]!==3)return e.debug||ne("input tensors must be of shape [1, height, width, 3]:",t.shape,n.shape),0;s.input1=Vn(t),s.input2=t.shape[1]!==n.shape[1]||t.shape[2]!==n.shape[2]?Ie.resizeBilinear(n,[t.shape[1],t.shape[2]]):Vn(n),s.diff=ge(s.input1,s.input2),s.squared=z(s.diff,s.diff),s.sum=ke(s.squared);let a=(await s.sum.data())[0]/(t.shape[1]||1)/(t.shape[2]||1)/255/3;return ee([s.input1,s.input2,s.diff,s.squared,s.sum]),a}var Cb=class{constructor(){he(this,"browser");he(this,"node");he(this,"worker");he(this,"platform","");he(this,"agent","");he(this,"backends",[]);he(this,"initial");he(this,"filter");he(this,"tfjs");he(this,"offscreen");he(this,"perfadd",!1);he(this,"tensorflow",{version:void 0,gpu:void 0});he(this,"wasm",{supported:void 0,backend:void 0,simd:void 0,multithread:void 0});he(this,"webgl",{supported:void 0,backend:void 0,version:void 0,renderer:void 0});he(this,"webgpu",{supported:void 0,backend:void 0,adapter:void 0});he(this,"cpu",{model:void 0,flags:[]});he(this,"kernels",[]);he(this,"Canvas");he(this,"Image");he(this,"ImageData");if(this.browser=typeof navigator!="undefined",this.node=typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined",this.tfjs={version:Yh["tfjs-core"]},this.offscreen=typeof OffscreenCanvas!="undefined",this.initial=!0,this.worker=this.browser&&this.offscreen?typeof WorkerGlobalScope!="undefined":void 0,typeof navigator!="undefined"){let t=navigator.userAgent.match(/\(([^()]+)\)/g);if(t!=null&&t[0]){let n=t[0].match(/\(([^()]+)\)/g);this.platform=n!=null&&n[0]?n[0].replace(/\(|\)/g,""):"",this.agent=navigator.userAgent.replace(t[0],""),this.platform[1]&&(this.agent=this.agent.replace(t[1],"")),this.agent=this.agent.replace(/ /g," ")}}else typeof process!="undefined"&&(this.platform=`${process.platform} ${process.arch}`,this.agent=`NodeJS ${process.version}`)}async updateBackend(){this.backends=Object.keys(Yt().registryFactory),this.tensorflow={version:Ls().binding?Ls().binding.TF_Version:void 0,gpu:Ls().binding?Ls().binding.isUsingGpuDevice():void 0},this.wasm.supported=typeof WebAssembly!="undefined",this.wasm.backend=this.backends.includes("wasm"),this.wasm.supported&&this.wasm.backend&&cn()==="wasm"&&(this.wasm.simd=H().get("WASM_HAS_SIMD_SUPPORT"),this.wasm.multithread=H().get("WASM_HAS_MULTITHREAD_SUPPORT"));let t=ds(100,100),n=t?t.getContext("webgl2"):void 0;if(this.webgl.supported=typeof n!="undefined",this.webgl.backend=this.backends.includes("webgl"),this.webgl.supported&&this.webgl.backend&&(cn()==="webgl"||cn()==="humangl")){let s=Ls().gpgpu!=="undefined"?await Ls().getGPGPUContext().gl:null;s&&(this.webgl.version=s.getParameter(s.VERSION),this.webgl.renderer=s.getParameter(s.RENDERER))}this.webgpu.supported=this.browser&&typeof navigator.gpu!="undefined",this.webgpu.backend=this.backends.includes("webgpu");try{if(this.webgpu.supported){let s=await navigator.gpu.requestAdapter();this.webgpu.adapter=s?s.name:void 0}}catch(s){this.webgpu.supported=!1}try{this.kernels=na(cn()).map(s=>s.kernelName.toLowerCase())}catch(s){}}updateCPU(){let t={model:"",flags:[]};this.node&&this.platform.startsWith("linux"),this.cpu?this.cpu=t:Object.defineProperty(this,"cpu",{value:t})}},fe=new Cb;var Tb={};ma(Tb,{age:()=>KAe,"anti-spoofing":()=>C5e,antispoof:()=>OAe,blazeface:()=>MAe,"blazeface-back":()=>ZAe,"blazeface-front":()=>YAe,"blazepose-detect":()=>I5e,"blazepose-detector2d":()=>JAe,"blazepose-detector3d":()=>QAe,"blazepose-full":()=>e5e,"blazepose-heavy":()=>t5e,"blazepose-lite":()=>n5e,default:()=>L5e,efficientpose:()=>s5e,"efficientpose-i-lite":()=>T5e,"efficientpose-ii-lite":()=>N5e,"efficientpose-iv":()=>E5e,emotion:()=>zAe,faceboxes:()=>r5e,facemesh:()=>LAe,"facemesh-attention":()=>o5e,"facemesh-attention-alt":()=>a5e,"facemesh-detection-full":()=>i5e,"facemesh-detection-short":()=>l5e,"facemesh-orig":()=>u5e,faceres:()=>BAe,"faceres-deep":()=>c5e,gear:()=>d5e,gender:()=>h5e,"gender-ssrnet-imdb":()=>p5e,handdetect:()=>f5e,"handlandmark-full":()=>WAe,"handlandmark-lite":()=>m5e,"handlandmark-sparse":()=>g5e,handskeleton:()=>y5e,handtrack:()=>VAe,"insightface-efficientnet-b0":()=>R5e,"insightface-ghostnet-strides1":()=>_5e,"insightface-ghostnet-strides2":()=>D5e,"insightface-mobilenet-emore":()=>$5e,"insightface-mobilenet-swish":()=>P5e,iris:()=>UAe,liveness:()=>GAe,"mb3-centernet":()=>HAe,meet:()=>A5e,mobileface:()=>x5e,mobilefacenet:()=>b5e,models:()=>jAe,"movenet-lightning":()=>qAe,"movenet-multipose":()=>v5e,"movenet-thunder":()=>w5e,nanodet:()=>k5e,"nanodet-e":()=>F5e,"nanodet-g":()=>O5e,"nanodet-m":()=>M5e,"nanodet-t":()=>z5e,posenet:()=>S5e,selfie:()=>XAe});var OAe=853098,MAe=538928,zAe=820516,LAe=1477958,BAe=6978814,WAe=5431368,VAe=2964837,UAe=2599092,GAe=592976,HAe=4030290,jAe=0,qAe=4650216,XAe=212886,KAe=161240,ZAe=538928,YAe=402048,JAe=7499400,QAe=5928856,e5e=6338290,t5e=27501554,n5e=2725490,s5e=5651240,r5e=2013002,a5e=2387598,o5e=2382414,i5e=1026192,l5e=201268,u5e=2955780,c5e=13957620,d5e=1498916,p5e=161236,h5e=201808,f5e=3515612,m5e=2023432,g5e=5286322,y5e=5502280,A5e=372228,x5e=2183192,b5e=5171976,v5e=9448838,w5e=12477112,k5e=7574558,S5e=5032780,I5e=5928804,C5e=853098,T5e=2269064,N5e=5651240,E5e=25643252,R5e=13013224,_5e=8093408,D5e=8049584,$5e=6938536,P5e=12168584,F5e=12319156,O5e=7574558,M5e=1887474,z5e=5294216,L5e={antispoof:OAe,blazeface:MAe,emotion:zAe,facemesh:LAe,faceres:BAe,"handlandmark-full":WAe,handtrack:VAe,iris:UAe,liveness:GAe,"mb3-centernet":HAe,models:jAe,"movenet-lightning":qAe,selfie:XAe,age:KAe,"blazeface-back":ZAe,"blazeface-front":YAe,"blazepose-detector2d":JAe,"blazepose-detector3d":QAe,"blazepose-full":e5e,"blazepose-heavy":t5e,"blazepose-lite":n5e,efficientpose:s5e,faceboxes:r5e,"facemesh-attention-alt":a5e,"facemesh-attention":o5e,"facemesh-detection-full":i5e,"facemesh-detection-short":l5e,"facemesh-orig":u5e,"faceres-deep":c5e,gear:d5e,"gender-ssrnet-imdb":p5e,gender:h5e,handdetect:f5e,"handlandmark-lite":m5e,"handlandmark-sparse":g5e,handskeleton:y5e,meet:A5e,mobileface:x5e,mobilefacenet:b5e,"movenet-multipose":v5e,"movenet-thunder":w5e,nanodet:k5e,posenet:S5e,"blazepose-detect":I5e,"anti-spoofing":C5e,"efficientpose-i-lite":T5e,"efficientpose-ii-lite":N5e,"efficientpose-iv":E5e,"insightface-efficientnet-b0":R5e,"insightface-ghostnet-strides1":_5e,"insightface-ghostnet-strides2":D5e,"insightface-mobilenet-emore":$5e,"insightface-mobilenet-swish":P5e,"nanodet-e":F5e,"nanodet-g":O5e,"nanodet-m":M5e,"nanodet-t":z5e};var $d={};ma($d,{Models:()=>cf,getModelStats:()=>B4,load:()=>W4,reset:()=>f1,validate:()=>C1,validateModel:()=>Fd});var br,Nb=[],B5e=["white","black","asian","indian","other"],W5e=[15,23,28,35.5,45.5,55.5,65],HT=0,jT=0,Eb=Number.MAX_SAFE_INTEGER;async function qT(e){var t;return fe.initial&&(br=null),br?e.debug&&ne("cached model:",br.modelUrl):br=await je((t=e.face.gear)==null?void 0:t.modelPath),br}async function Rb(e,t,n,s){var o,i;if(!br)return{age:0,gender:"unknown",genderScore:0,race:[]};let r=Eb<(((o=t.face.gear)==null?void 0:o.skipFrames)||0),a=(((i=t.face.gear)==null?void 0:i.skipTime)||0)>le()-jT;return t.skipAllowed&&a&&r&&HT===s&&Nb[n]?(Eb++,Nb[n]):(Eb=0,new Promise(async l=>{var y,x;if(!(br!=null&&br.inputs[0].shape))return;let u={},c=[[0,.1,.9,.9]];u.resize=Ie.cropAndResize(e,c,[0],[br.inputs[0].shape[2],br.inputs[0].shape[1]]);let p={age:0,gender:"unknown",genderScore:0,race:[]};(y=t.face.gear)!=null&&y.enabled&&([u.age,u.gender,u.race]=br.execute(u.resize,["age_output","gender_output","race_output"]));let d=await u.gender.data();p.gender=d[0]>d[1]?"male":"female",p.genderScore=Math.round(100*(d[0]>d[1]?d[0]:d[1]))/100;let h=await u.race.data();for(let A=0;A<h.length;A++)h[A]>(((x=t.face.gear)==null?void 0:x.minConfidence)||.2)&&p.race.push({score:Math.round(100*h[A])/100,race:B5e[A]});p.race.sort((A,b)=>b.score-A.score);let m=Array.from(await u.age.data()).map((A,b)=>[W5e[b],A]).sort((A,b)=>b[1]-A[1]),g=m[0][0];for(let A=1;A<m.length;A++)g+=m[A][1]*(m[A][0]-g);p.age=Math.round(10*g)/10,Object.keys(u).forEach(A=>ee(u[A])),Nb[n]=p,HT=s,jT=le(),l(p)}))}var at={tf255:255,tf1:1,tf2:2,tf05:.5,tf127:127.5,rgb:[.2989,.587,.114]};function KT(){at.tf255=Ce(255,"float32"),at.tf1=Ce(1,"float32"),at.tf2=Ce(2,"float32"),at.tf05=Ce(.5,"float32"),at.tf127=Ce(127.5,"float32"),at.rgb=Pt([.2989,.587,.114],"float32")}var Bs,j2=[],ZT=0,YT=0,_b=Number.MAX_SAFE_INTEGER;async function JT(e){return fe.initial&&(Bs=null),Bs?e.debug&&ne("cached model:",Bs.modelUrl):Bs=await je(e.face.ssrnet.modelPathAge),Bs}async function Db(e,t,n,s){var o,i,l,u;if(!Bs)return{age:0};let r=_b<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-YT;return t.skipAllowed&&r&&a&&ZT===s&&((l=j2[n])==null?void 0:l.age)&&((u=j2[n])==null?void 0:u.age)>0?(_b++,j2[n]):(_b=0,new Promise(async c=>{var h;if(!(Bs!=null&&Bs.inputs)||!Bs.inputs[0]||!Bs.inputs[0].shape)return;let p={};p.resize=Ie.resizeBilinear(e,[Bs.inputs[0].shape[2],Bs.inputs[0].shape[1]],!1),p.enhance=z(p.resize,at.tf255);let d={age:0};if((h=t.face.ssrnet)!=null&&h.enabled&&(p.age=Bs.execute(p.enhance)),p.age){let f=await p.age.data();d.age=Math.trunc(10*f[0])/10}Object.keys(p).forEach(f=>ee(p[f])),j2[n]=d,ZT=s,YT=le(),c(d)}))}var vr,q2=[],eN=0,tN=0,$b=Number.MAX_SAFE_INTEGER,Pb=[.2989,.587,.114];async function nN(e){var t;return fe.initial&&(vr=null),vr?e.debug&&ne("cached model:",vr.modelUrl):vr=await je((t=e.face.ssrnet)==null?void 0:t.modelPathGender),vr}async function Fb(e,t,n,s){var o,i,l,u;if(!vr)return{gender:"unknown",genderScore:0};let r=$b<(((o=t.face.ssrnet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.ssrnet)==null?void 0:i.skipTime)||0)>le()-tN;return t.skipAllowed&&r&&a&&eN===s&&((l=q2[n])==null?void 0:l.gender)&&((u=q2[n])==null?void 0:u.genderScore)>0?($b++,q2[n]):($b=0,new Promise(async c=>{var f;if(!(vr!=null&&vr.inputs[0].shape))return;let p={};p.resize=Ie.resizeBilinear(e,[vr.inputs[0].shape[2],vr.inputs[0].shape[1]],!1),p.enhance=Y(()=>{let[m,g,y]=Jt(p.resize,3,3),x=z(m,Pb[0]),A=z(g,Pb[1]),b=z(y,Pb[2]),w=T0([x,A,b]);return z(ge(w,at.tf05),2)});let d={gender:"unknown",genderScore:0};(f=t.face.ssrnet)!=null&&f.enabled&&(p.gender=vr.execute(p.enhance));let h=await p.gender.data();d.gender=h[0]>h[1]?"female":"male",d.genderScore=h[0]>h[1]?Math.trunc(100*h[0])/100:Math.trunc(100*h[1])/100,Object.keys(p).forEach(m=>ee(p[m])),q2[n]=d,eN=s,tN=le(),c(d)}))}var vn,X2=[],Ob=Number.MAX_SAFE_INTEGER,rN=0,aN=0;async function oN(e){var t;return fe.initial&&(vn=null),vn?e.debug&&ne("cached model:",vn.modelUrl):vn=await je((t=e.face.antispoof)==null?void 0:t.modelPath),vn}async function Mb(e,t,n,s){var o,i;if(!vn||!(vn!=null&&vn.executor))return 0;let r=(((o=t.face.antispoof)==null?void 0:o.skipTime)||0)>le()-aN,a=Ob<(((i=t.face.antispoof)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&rN===s&&X2[n]?(Ob++,X2[n]):(Ob=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[vn!=null&&vn.inputs[0].shape?vn.inputs[0].shape[2]:0,vn!=null&&vn.inputs[0].shape?vn.inputs[0].shape[1]:0],!1),c=vn==null?void 0:vn.execute(u),p=(await c.data())[0];X2[n]=Math.round(100*p)/100,rN=s,aN=le(),ee([u,c]),l(X2[n])}))}var wr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[185,40,39,37,0,267,269,270,409],lipsLowerOuter:[61,146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[191,80,81,82,13,312,311,310,415],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],lipsLowerSemiOuter:[76,77,90,180,85,16,315,404,320,307,306],lipsUpperSemiOuter:[184,74,73,72,11,302,303,304,408],lipsLowerSemiInner:[62,96,89,179,86,15,316,403,319,325,292],lipsUpperSemiInner:[183,42,41,38,12,268,271,272,407],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},zb={count:468,mouth:13,symmetryLine:[13,wr.midwayBetweenEyes[0]]},Au={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},Lb=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]},{key:"EyebrowUpper",indices:[63,64,65,66,67,68,69,70]},{key:"EyebrowLower",indices:[48,49,50,51,52,53]}],Qh=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],xu=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var U5e=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],G5e=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],H5e=[33,133,362,263,1,78,308],Y8e=U5e.map(e=>Qh[e]),J8e=G5e.map(e=>Qh[e]),Q8e=H5e.map(e=>Qh[e]);function xi(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var j5e=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],q5e=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],X5e=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],K5e=[[474,475],[475,476],[476,477],[477,474]],Z5e=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Y5e=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],J5e=[[469,470],[470,471],[471,472],[472,469]],Q5e=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]],eSe={lips:xi(j5e),leftEye:xi(q5e),leftEyebrow:xi(X5e),leftIris:xi(K5e),rightEye:xi(Z5e),rightEyebrow:xi(Y5e),rightIris:xi(J5e),faceOval:xi(Q5e)};var Sd=e=>[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])],K2=e=>[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2,1],Z2=(e,t)=>e?[Math.trunc(Math.max(0,e.startPoint[0])),Math.trunc(Math.max(0,e.startPoint[1])),Math.trunc(Math.min(t.shape[2]||0,e.endPoint[0])-Math.max(0,e.startPoint[0])),Math.trunc(Math.min(t.shape[1]||0,e.endPoint[1])-Math.max(0,e.startPoint[1]))]:[0,0,0,0],Y2=(e,t)=>e?[e.startPoint[0]/(t.shape[2]||0),e.startPoint[1]/(t.shape[1]||0),(e.endPoint[0]-e.startPoint[0])/(t.shape[2]||0),(e.endPoint[1]-e.startPoint[1])/(t.shape[1]||0)]:[0,0,0,0],cN=(e,t)=>{let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:s,landmarks:e.landmarks,confidence:e.confidence}},Wb=(e,t,n)=>{let s=t.shape[1],r=t.shape[2],a=[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r],o=Ie.cropAndResize(t,[a],[0],n),i=me(o,at.tf255);return ee(o),i},J2=(e,t)=>{let n=K2(e),s=Sd(e),r=[t*s[0]/2,t*s[1]/2];return{startPoint:[n[0]-r[0],n[1]-r[1]],endPoint:[n[0]+r[0],n[1]+r[1]],landmarks:e.landmarks,confidence:e.confidence}},Q2=e=>{let t=K2(e),n=Sd(e),s=Math.max(...n)/2;return{startPoint:[Math.round(t[0]-s),Math.round(t[1]-s)],endPoint:[Math.round(t[0]+s),Math.round(t[1]+s)],landmarks:e.landmarks,confidence:e.confidence}},dN=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return{startPoint:[Math.min(...t),Math.min(...n)],endPoint:[Math.max(...t),Math.max(...n)],landmarks:e}},Vb=[[1,0,0],[0,1,0],[0,0,1]],exe=e=>e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI)),txe=(e,t)=>exe(Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]));var lN=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]],bu=(e,t)=>{let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n},nxe=(e,t)=>{let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n},uN=(e,t)=>{let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(bu(e[r],nxe(t,a)))}return n},pN=(e,t)=>{let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=lN(t[0],t[1]),o=uN(a,r),i=lN(-t[0],-t[1]);return uN(o,i)},sxe=e=>{let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-bu(t[0],n),-bu(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]},rxe=(e,t)=>[bu(e,t[0]),bu(e,t[1])];function hN(e){let t=e===192?{strides:[4],anchors:[1]}:{strides:[e/16,e/8],anchors:[2,6]},n=[];for(let s=0;s<t.strides.length;s++){let r=t.strides[s],a=Math.floor((e+r-1)/r),o=Math.floor((e+r-1)/r),i=t.anchors[s];for(let l=0;l<a;l++){let u=r*(l+.5);for(let c=0;c<o;c++){let p=r*(c+.5);for(let d=0;d<i;d++)n.push([p,u])}}}return n}function fN(e,t,n,s,r){let a=Sd(t),o=e.map(h=>[a[0]/r*(h[0]-r/2),a[1]/r*(h[1]-r/2),h[2]||0]),i=n&&n!==0&&Math.abs(n)>.2,l=i?pN(n,[0,0]):Vb,u=i?o.map(h=>[...rxe(h,l),h[2]]):o,c=i?sxe(s):Vb,p=K2(t),d=[bu(p,c[0]),bu(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2]||0)])}function mN(e,t,n,s){let r=t.landmarks.length>=zb.count?zb.symmetryLine:Au.symmetryLine,a=0,o=Vb,i;if(e&&fe.kernels.includes("rotatewithoffset"))if(a=txe(t.landmarks[r[0]],t.landmarks[r[1]]),a&&a!==0&&Math.abs(a)>.2){let u=K2(t),c=[u[0]/n.shape[2],u[1]/n.shape[1]],p=Ie.rotateWithOffset(n,a,0,c);o=pN(-a,u),i=Wb(t,p,[s,s]),ee(p)}else i=Wb(t,n,[s,s]);else i=Wb(t,n,[s,s]);return[a,o,i]}var axe=e=>{let t=e.map(s=>s[0]),n=e.map(s=>s[1]);return[Math.min(...t)+(Math.max(...t)-Math.min(...t))/2,Math.min(...n)+(Math.max(...n)-Math.min(...n))/2]},gN=(e,t)=>{let n=axe(e),s=Sd(t);return{startPoint:[n[0]-s[0]/2,n[1]-s[1]/2],endPoint:[n[0]+s[0]/2,n[1]+s[1]/2]}};var yN=6,oxe=1.4,Gr,AN=null,bi=0,ef=null,Id=()=>bi;async function xN(e){var t;return fe.initial&&(Gr=null),Gr?e.debug&&ne("cached model:",Gr.modelUrl):Gr=await je((t=e.face.detector)==null?void 0:t.modelPath),bi=Gr.executor&&Gr.inputs[0].shape?Gr.inputs[0].shape[2]:256,ef=Ce(bi,"int32"),AN=fr(hN(bi)),Gr}function ixe(e){let t={};t.boxStarts=ze(e,[0,1],[-1,2]),t.centers=ce(t.boxStarts,AN),t.boxSizes=ze(e,[0,3],[-1,2]),t.boxSizesNormalized=me(t.boxSizes,ef),t.centersNormalized=me(t.centers,ef),t.halfBoxSize=me(t.boxSizesNormalized,at.tf2),t.starts=ge(t.centersNormalized,t.halfBoxSize),t.ends=ce(t.centersNormalized,t.halfBoxSize),t.startNormalized=z(t.starts,ef),t.endNormalized=z(t.ends,ef);let n=ou([t.startNormalized,t.endNormalized],1);return Object.keys(t).forEach(s=>ee(t[s])),n}async function bN(e,t){var i,l,u,c;if(!e||e.isDisposedInternal||e.shape.length!==4||e.shape[1]<1||e.shape[2]<1)return[];let n={};n.resized=Ie.resizeBilinear(e,[bi,bi]),n.div=me(n.resized,at.tf127),n.normalized=ge(n.div,at.tf05);let s=Gr==null?void 0:Gr.execute(n.normalized);if(Array.isArray(s)&&s.length>2){let p=s.sort((d,h)=>d.size-h.size);n.concat384=It([p[0],p[2]],2),n.concat512=It([p[1],p[3]],2),n.concat=It([n.concat512,n.concat384],1),n.batch=rt(n.concat,0)}else Array.isArray(s)?n.batch=rt(s[0]):n.batch=rt(s);ee(s),n.boxes=ixe(n.batch),n.logits=ze(n.batch,[0,0],[-1,1]),n.sigmoid=$n(n.logits),n.scores=rt(n.sigmoid),n.nms=await Ie.nonMaxSuppressionAsync(n.boxes,n.scores,((i=t.face.detector)==null?void 0:i.maxDetected)||0,((l=t.face.detector)==null?void 0:l.iouThreshold)||0,((u=t.face.detector)==null?void 0:u.minConfidence)||0);let r=await n.nms.array(),a=[],o=await n.scores.data();for(let p=0;p<r.length;p++){let d=o[r[p]];if(d>(((c=t.face.detector)==null?void 0:c.minConfidence)||0)){let h={};h.bbox=ze(n.boxes,[r[p],0],[1,-1]),h.slice=ze(n.batch,[r[p],yN-1],[1,-1]),h.squeeze=rt(h.slice),h.landmarks=V(h.squeeze,[yN,-1]);let f=await h.bbox.data(),m={startPoint:[f[0],f[1]],endPoint:[f[2],f[3]],landmarks:await h.landmarks.array(),confidence:d},g=cN(m,[(e.shape[2]||0)/bi,(e.shape[1]||0)/bi]),y=J2(g,t.face.scale||oxe),x=Q2(y);a.push(x),Object.keys(h).forEach(A=>ee(h[A]))}}return Object.keys(n).forEach(p=>ee(n[p])),a}var e1={};ma(e1,{connected:()=>Hb,kpt:()=>Gb});var Gb=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPinky","rightPinky","leftIndex","rightIndex","leftThumb","rightThumb","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","bodyCenter","bodyTop","leftPalm","leftHand","rightPalm","rightHand"],Hb={shoulders:["leftShoulder","rightShoulder"],hips:["rightHip","leftHip"],mouth:["leftMouth","rightMouth"],leftLegUpper:["leftHip","leftKnee"],leftLegLower:["leftKnee","leftAnkle"],leftFoot:["leftAnkle","leftHeel","leftFoot"],leftTorso:["leftShoulder","leftHip"],leftArmUpper:["leftShoulder","leftElbow"],leftArmLower:["leftElbow","leftWrist"],leftHand:["leftWrist","leftPalm"],leftHandPinky:["leftPalm","leftPinky"],leftHandIndex:["leftPalm","leftIndex"],leftHandThumb:["leftPalm","leftThumb"],leftEyeOutline:["leftEyeInside","leftEyeOutside"],rightLegUpper:["rightHip","rightKnee"],rightLegLower:["rightKnee","rightAnkle"],rightFoot:["rightAnkle","rightHeel","rightFoot"],rightTorso:["rightShoulder","rightHip"],rightArmUpper:["rightShoulder","rightElbow"],rightArmLower:["rightElbow","rightWrist"],rightHand:["rightWrist","rightPalm"],rightHandPinky:["rightPalm","rightPinky"],rightHandIndex:["rightPalm","rightIndex"],rightHandThumb:["rightPalm","rightThumb"],rightEyeOutline:["rightEyeInside","rightEyeOutside"]};var wN=224,lxe,uxe=5,t1=[8,16,32,32,32];function kN(){let e=[],t=0;for(;t<uxe;){let n=0,s=t;for(;s<t1.length&&t1[s]===t1[t];)n+=2,s++;let r=t1[t],a=Math.ceil(wN/r),o=Math.ceil(wN/r);for(let i=0;i<a;++i)for(let l=0;l<o;++l)for(let u=0;u<n;++u)e.push({x:(l+.5)/o,y:(i+.5)/a});t=s}lxe={x:Pt(e.map(n=>n.x)),y:Pt(e.map(n=>n.y))}}function Pa(e,t=[1,1]){let n=[e.map(i=>i[0]),e.map(i=>i[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[s[0],s[1],r[0]-s[0],r[1]-s[1]],o=[a[0]/t[0],a[1]/t[1],a[2]/t[0],a[3]/t[1]];return{box:a,boxRaw:o}}function SN(e,t=[1,1]){let n=[e.map(u=>u[0]),e.map(u=>u[1])],s=[Math.min(...n[0]),Math.min(...n[1])],r=[Math.max(...n[0]),Math.max(...n[1])],a=[(s[0]+r[0])/2,(s[1]+r[1])/2],o=Math.max(a[0]-s[0],a[1]-s[1],-a[0]+r[0],-a[1]+r[1]),i=[Math.trunc(a[0]-o),Math.trunc(a[1]-o),Math.trunc(2*o),Math.trunc(2*o)],l=[i[0]/t[0],i[1]/t[1],i[2]/t[0],i[3]/t[1]];return{box:i,boxRaw:l}}function n1(e,t){let n=[e[2]*t,e[3]*t];return[e[0]-(n[0]-e[2])/2,e[1]-(n[1]-e[3])/2,n[0],n[1]]}var TN={initial:!0},jn={detector:null,landmarks:null},Cd={detector:[224,224],landmarks:[256,256]},jb=Number.MAX_SAFE_INTEGER,dxe={landmarks:["ld_3d","activation_segmentation","activation_heatmap","world_3d","output_poseflag"],detector:[]},r1=null,tf,vi=[[0,0],[0,0],[0,0],[0,0]],IN=0,CN=e=>1-1/(1+Math.exp(e));async function NN(e){var t;if(TN.initial&&(jn.detector=null),!jn.detector&&e.body.detector&&e.body.detector.modelPath){jn.detector=await je(e.body.detector.modelPath);let n=(t=jn.detector)!=null&&t.executor?Object.values(jn.detector.modelSignature.inputs):void 0;Cd.detector[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Cd.detector[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}else e.debug&&jn.detector&&ne("cached model:",jn.detector.modelUrl);return kN(),jn.detector}async function EN(e){var t;if(TN.initial&&(jn.landmarks=null),jn.landmarks)e.debug&&ne("cached model:",jn.landmarks.modelUrl);else{jn.landmarks=await je(e.body.modelPath);let n=(t=jn.landmarks)!=null&&t.executor?Object.values(jn.landmarks.modelSignature.inputs):void 0;Cd.landmarks[0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,Cd.landmarks[1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return jn.landmarks}function pxe(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;let s;if(tf&&(n.cropped=Ie.cropAndResize(e,[tf],[0],[e.shape[1],e.shape[2]])),e.shape[1]!==e.shape[2]){let o=[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],i=[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0];vi=[[0,0],o,i,[0,0]],n.pad=sr(n.cropped||e,vi),n.resize=Ie.resizeBilinear(n.pad,[t,t]),s=me(n.resize,at.tf255)}else e.shape[1]!==t?(n.resize=Ie.resizeBilinear(n.cropped||e,[t,t]),s=me(n.resize,at.tf255)):s=me(n.cropped||e,at.tf255);return Object.keys(n).forEach(o=>ee(n[o])),s}function hxe(e,t){for(let n of e)n.position=[Math.trunc(n.position[0]*(t[0]+vi[2][0]+vi[2][1])/t[0]-vi[2][0]),Math.trunc(n.position[1]*(t[1]+vi[1][0]+vi[1][1])/t[1]-vi[1][0]),n.position[2]],n.positionRaw=[n.position[0]/t[0],n.position[1]/t[1],2*n.position[2]/(t[0]+t[1])];if(tf)for(let n of e)n.positionRaw=[n.positionRaw[0]+tf[1],n.positionRaw[1]+tf[0],n.positionRaw[2]],n.position=[Math.trunc(n.positionRaw[0]*t[0]),Math.trunc(n.positionRaw[1]*t[1]),n.positionRaw[2]];return e}function fxe(e){let t=e.find(i=>i.part==="leftPalm"),n=e.find(i=>i.part==="leftWrist"),s=e.find(i=>i.part==="leftIndex");t.position[2]=((n.position[2]||0)+(s.position[2]||0))/2;let r=e.find(i=>i.part==="rightPalm"),a=e.find(i=>i.part==="rightWrist"),o=e.find(i=>i.part==="rightIndex");r.position[2]=((a.position[2]||0)+(o.position[2]||0))/2}async function mxe(e,t,n){var f,m;if(!((f=jn.landmarks)!=null&&f.executor))return null;let s={};[s.ld,s.segmentation,s.heatmap,s.world,s.poseflag]=(m=jn.landmarks)==null?void 0:m.execute(e,dxe.landmarks);let r=(await s.poseflag.data())[0],a=await s.ld.data(),o=await s.world.data();Object.keys(s).forEach(g=>ee(s[g]));let i=[],l=5;for(let g=0;g<a.length/l;g++){let y=CN(a[l*g+3]),x=CN(a[l*g+4]),A=Math.trunc(100*y*x*r)/100,b=[a[l*g+0]/Cd.landmarks[0],a[l*g+1]/Cd.landmarks[1],a[l*g+2]+0],w=[Math.trunc(n[0]*b[0]),Math.trunc(n[1]*b[1]),b[2]],k=[o[l*g+0],o[l*g+1],o[l*g+2]+0];i.push({part:Gb[g],positionRaw:b,position:w,distance:k,score:A})}if(r<(t.body.minConfidence||0))return null;fxe(i);let u=hxe(i,n),c=u.map(g=>g.position),p=Pa(c,[n[0],n[1]]),d={};for(let[g,y]of Object.entries(Hb)){let x=[];for(let A=0;A<y.length-1;A++){let b=u.find(k=>k.part===y[A]),w=u.find(k=>k.part===y[A+1]);b&&w&&x.push([b.position,w.position])}d[g]=x}return{id:0,score:Math.trunc(100*r)/100,box:p.box,boxRaw:p.boxRaw,keypoints:u,annotations:d}}async function qb(e,t){let n=[e.shape[2]||0,e.shape[1]||0],s=(t.body.skipTime||0)>le()-IN,r=jb<(t.body.skipFrames||0);if(t.skipAllowed&&s&&r&&r1!==null)jb++;else{let a={};a.landmarks=pxe(e,256),r1=await mxe(a.landmarks,t,n),Object.keys(a).forEach(o=>ee(a[o])),IN=le(),jb=0}return r1?[r1]:[]}var Td=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var ks,vu=0,Xb=[],_N=0,Kb=Number.MAX_SAFE_INTEGER;async function DN(e){if(fe.initial&&(ks=null),ks)e.debug&&ne("cached model:",ks.modelUrl);else{ks=await je(e.object.modelPath);let t=ks!=null&&ks.executor?Object.values(ks.modelSignature.inputs):void 0;vu=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):0}return ks}async function gxe(e,t,n){if(!e)return[];let s={},r=[],a=await e.array();s.squeeze=rt(e);let o=Jt(s.squeeze,6,1);s.stack=ln([o[1],o[0],o[3],o[2]],1),s.boxes=rt(s.stack),s.scores=rt(o[4]),s.classes=rt(o[5]),ee([e,...o]),s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.scores,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence||0);let i=await s.nms.data(),l=0;for(let u of Array.from(i)){let c=Math.trunc(100*a[0][u][4])/100,p=a[0][u][5];if(Number.isNaN(p))continue;let d=Td[p].label,[h,f]=[a[0][u][0]/vu,a[0][u][1]/vu],m=[h,f,a[0][u][2]/vu-h,a[0][u][3]/vu-f],g=[Math.trunc(m[0]*t[0]),Math.trunc(m[1]*t[1]),Math.trunc(m[2]*t[0]),Math.trunc(m[3]*t[1])];r.push({id:l++,score:c,class:p,label:d,box:g,boxRaw:m})}return Object.keys(s).forEach(u=>ee(s[u])),r}async function Zb(e,t){if(!(ks!=null&&ks.executor))return[];let n=(t.object.skipTime||0)>le()-_N,s=Kb<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&Xb.length>0?(Kb++,Xb):(Kb=0,new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[vu,vu]),i=t.object.enabled?ks==null?void 0:ks.execute(o,["tower_0/detections"]):null;_N=le(),ee(o);let l=await gxe(i,a,t);Xb=l,r(l)}))}var a1={};ma(a1,{connected:()=>Jb,kpt:()=>Yb});var Yb=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","bodyCenter","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"],Jb={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var wn,PN=0,ps={id:0,keypoints:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,annotations:{}},Qb=Number.MAX_SAFE_INTEGER;async function FN(e){return fe.initial&&(wn=null),wn?e.debug&&ne("cached model:",wn.modelUrl):wn=await je(e.body.modelPath),wn}async function yxe(e,t){let[n,s]=e.shape,r=V(e,[s*n]),a=yn(r,0),o=(await a.data())[0];if(o>t){let i=$s(r,0),l=lu(i,n),u=(await l.data())[0],c=me(i,n),p=(await c.data())[0];return ee([r,a,i,l,c]),[u,p,o]}return ee([r,a]),[0,0,o]}async function e4(e,t){if(!(wn!=null&&wn.executor))return[];let n=(t.body.skipTime||0)>le()-PN,s=Qb<(t.body.skipFrames||0);return t.skipAllowed&&n&&s&&Object.keys(ps.keypoints).length>0?(Qb++,[ps]):(Qb=0,new Promise(async r=>{let a=Y(()=>{if(!(wn!=null&&wn.inputs[0].shape))return null;let p=Ie.resizeBilinear(e,[wn.inputs[0].shape[2],wn.inputs[0].shape[1]],!1),d=z(p,at.tf2);return ge(d,at.tf1)}),o;if(t.body.enabled&&(o=wn==null?void 0:wn.execute(a)),PN=le(),ee(a),o){ps.keypoints.length=0;let p=rt(o);ee(o);let d=On(p,2);ee(p);for(let h=0;h<d.length;h++){let[f,m,g]=await yxe(d[h],t.body.minConfidence);g>(t.body.minConfidence||0)&&ps.keypoints.push({score:Math.round(100*g)/100,part:Yb[h],positionRaw:[f/wn.inputs[0].shape[2],m/wn.inputs[0].shape[1]],position:[Math.round(e.shape[2]*f/wn.inputs[0].shape[2]),Math.round(e.shape[1]*m/wn.inputs[0].shape[1])]})}d.forEach(h=>ee(h))}ps.score=ps.keypoints.reduce((p,d)=>d.score>p?d.score:p,0);let i=ps.keypoints.map(p=>p.position[0]),l=ps.keypoints.map(p=>p.position[1]);ps.box=[Math.min(...i),Math.min(...l),Math.max(...i)-Math.min(...i),Math.max(...l)-Math.min(...l)];let u=ps.keypoints.map(p=>p.positionRaw[0]),c=ps.keypoints.map(p=>p.positionRaw[1]);ps.boxRaw=[Math.min(...u),Math.min(...c),Math.max(...u)-Math.min(...u),Math.max(...c)-Math.min(...c)];for(let[p,d]of Object.entries(Jb)){let h=[];for(let f=0;f<d.length-1;f++){let m=ps.keypoints.find(y=>y.part===d[f]),g=ps.keypoints.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}ps.annotations[p]=h}r([ps])}))}var Axe=["angry","disgust","fear","happy","sad","surprise","neutral"],or,o1=[],MN=0,zN=0,t4=Number.MAX_SAFE_INTEGER;async function LN(e){var t;return fe.initial&&(or=null),or?e.debug&&ne("cached model:",or.modelUrl):or=await je((t=e.face.emotion)==null?void 0:t.modelPath),or}async function n4(e,t,n,s){var o,i;if(!or)return[];let r=t4<(((o=t.face.emotion)==null?void 0:o.skipFrames)||0),a=(((i=t.face.emotion)==null?void 0:i.skipTime)||0)>le()-zN;return t.skipAllowed&&a&&r&&MN===s&&o1[n]&&o1[n].length>0?(t4++,o1[n]):(t4=0,new Promise(async l=>{var c;let u=[];if((c=t.face.emotion)!=null&&c.enabled){let p={},d=or!=null&&or.inputs[0].shape?or.inputs[0].shape[2]:0;p.resize=Ie.resizeBilinear(e,[d,d],!1),p.channels=z(p.resize,at.rgb),p.grayscale=ke(p.channels,3,!0),p.grayscaleSub=ge(p.grayscale,at.tf05),p.grayscaleMul=z(p.grayscaleSub,at.tf2),p.emotion=or==null?void 0:or.execute(p.grayscaleMul),zN=le();let h=await p.emotion.data();for(let f=0;f<h.length;f++)h[f]>(t.face.emotion.minConfidence||0)&&u.push({score:Math.min(.99,Math.trunc(100*h[f])/100),emotion:Axe[f]});u.sort((f,m)=>m.score-f.score),Object.keys(p).forEach(f=>ee(p[f]))}o1[n]=u,MN=s,l(u)}))}var Ws,s4=[],WN=0,VN=0,UN=Number.MAX_SAFE_INTEGER;async function GN(e){var t;return fe.initial&&(Ws=null),Ws?e.debug&&ne("cached model:",Ws.modelUrl):Ws=await je((t=e.face.mobilefacenet)==null?void 0:t.modelPath),Ws}async function r4(e,t,n,s){var o,i;if(!(Ws!=null&&Ws.executor))return[];let r=UN<(((o=t.face.mobilefacenet)==null?void 0:o.skipFrames)||0),a=(((i=t.face.mobilefacenet)==null?void 0:i.skipTime)||0)>le()-VN;return t.skipAllowed&&a&&r&&WN===s&&s4[n]?(UN++,s4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.mobilefacenet)==null?void 0:c.enabled)&&(Ws==null?void 0:Ws.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Ws.inputs[0].shape[2],Ws.inputs[0].shape[1]],!1),p.data=Ws.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>ee(p[h]))}s4[n]=u,WN=s,VN=le(),l(u)})}var Vs,a4=[],jN=0,qN=0,XN=Number.MAX_SAFE_INTEGER;async function KN(e){return fe.initial&&(Vs=null),Vs?e.debug&&ne("cached model:",Vs.modelUrl):Vs=await je(e.face.insightface.modelPath),Vs}async function o4(e,t,n,s){var o,i;if(!(Vs!=null&&Vs.executor))return[];let r=XN<(((o=t.face.insightface)==null?void 0:o.skipFrames)||0),a=(((i=t.face.insightface)==null?void 0:i.skipTime)||0)>le()-qN;return t.skipAllowed&&a&&r&&jN===s&&a4[n]?(XN++,a4[n]):new Promise(async l=>{var c;let u=[];if(((c=t.face.insightface)==null?void 0:c.enabled)&&(Vs==null?void 0:Vs.inputs[0].shape)){let p={};p.crop=Ie.resizeBilinear(e,[Vs.inputs[0].shape[2],Vs.inputs[0].shape[1]],!1),p.data=Vs.execute(p.crop);let d=await p.data.data();u=Array.from(d),Object.keys(p).forEach(h=>ee(p[h]))}a4[n]=u,jN=s,qN=le(),l(u)})}var Us,wi=0,xxe=2.3,i4=wr.leftEyeLower0,l4=wr.rightEyeLower0,Nd={leftBounds:[i4[0],i4[i4.length-1]],rightBounds:[l4[0],l4[l4.length-1]]},Ed={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};async function eE(e){var t,n;return fe.initial&&(Us=null),Us?e.debug&&ne("cached model:",Us.modelUrl):Us=await je((t=e.face.iris)==null?void 0:t.modelPath),wi=(Us==null?void 0:Us.executor)&&((n=Us.inputs)==null?void 0:n[0].shape)?Us.inputs[0].shape[2]:0,wi===-1&&(wi=64),Us}function i1(e,t,n,s){for(let r=0;r<Lb.length;r++){let{key:a,indices:o}=Lb[r],i=wr[`${n}${a}`];if(!s||s.includes(a))for(let l=0;l<o.length;l++){let u=o[l];e[i[l]]=[t[u][0],t[u][1],(t[u][2]+e[i[l]][2])/2]}}}var bxe=e=>{let t=e[Nd.leftBounds[0]][2],n=e[Nd.rightBounds[0]][2];return t-n},YN=(e,t,n,s,r,a=!1)=>{let o=Q2(J2(dN([e[n],e[s]]),xxe)),i=Sd(o),l=Ie.cropAndResize(t,[[o.startPoint[1]/r,o.startPoint[0]/r,o.endPoint[1]/r,o.endPoint[0]/r]],[0],[wi,wi]);if(a&&fe.kernels.includes("flipleftright")){let u=Ie.flipLeftRight(l);ee(l),l=u}return{box:o,boxSize:i,crop:l}},JN=(e,t,n,s=!1)=>{let r=[];for(let a=0;a<Ed.numCoordinates;a++){let o=e[a*3],i=e[a*3+1],l=e[a*3+2];r.push([(s?1-o/wi:o/wi)*n[0]+t.startPoint[0],i/wi*n[1]+t.startPoint[1],l])}return{rawCoords:r,iris:r.slice(Ed.index)}},QN=(e,t,n)=>{let s=e[wr[`${n}EyeUpper0`][Ed.upperCenter]][2],r=e[wr[`${n}EyeLower0`][Ed.lowerCenter]][2],a=(s+r)/2;return t.map((o,i)=>{let l=a;return i===2?l=s:i===4&&(l=r),[o[0],o[1],l]})};async function tE(e,t,n){if(!(Us!=null&&Us.executor))return e;let{box:s,boxSize:r,crop:a}=YN(e,t,Nd.leftBounds[0],Nd.leftBounds[1],n,!0),{box:o,boxSize:i,crop:l}=YN(e,t,Nd.rightBounds[0],Nd.rightBounds[1],n,!0),u=It([a,l]);ee(a),ee(l);let c=Us.execute(u);ee(u);let p=await c.data();ee(c);let d=p.slice(0,Ed.numCoordinates*3),{rawCoords:h,iris:f}=JN(d,s,r,!0),m=p.slice(Ed.numCoordinates*3),{rawCoords:g,iris:y}=JN(m,o,i,!1),x=bxe(e);Math.abs(x)<30?(i1(e,h,"left",null),i1(e,g,"right",null)):x<1?i1(e,h,"left",["EyeUpper0","EyeLower0"]):i1(e,g,"right",["EyeUpper0","EyeLower0"]);let A=QN(e,f,"left"),b=QN(e,y,"right");return e.concat(A).concat(b)}var vxe=[[61,146],[146,91],[91,181],[181,84],[84,17],[17,314],[314,405],[405,321],[321,375],[375,291],[61,185],[185,40],[40,39],[39,37],[37,0],[0,267],[267,269],[269,270],[270,409],[409,291],[78,95],[95,88],[88,178],[178,87],[87,14],[14,317],[317,402],[402,318],[318,324],[324,308],[78,191],[191,80],[80,81],[81,82],[82,13],[13,312],[312,311],[311,310],[310,415],[415,308]],wxe=[[263,249],[249,390],[390,373],[373,374],[374,380],[380,381],[381,382],[382,362],[263,466],[466,388],[388,387],[387,386],[386,385],[385,384],[384,398],[398,362]],kxe=[[276,283],[283,282],[282,295],[295,285],[300,293],[293,334],[334,296],[296,336]],Sxe=[[474,475],[475,476],[476,477],[477,474]],Ixe=[[33,7],[7,163],[163,144],[144,145],[145,153],[153,154],[154,155],[155,133],[33,246],[246,161],[161,160],[160,159],[159,158],[158,157],[157,173],[173,133]],Cxe=[[46,53],[53,52],[52,65],[65,55],[70,63],[63,105],[105,66],[66,107]],Txe=[[469,470],[470,471],[471,472],[472,469]],Nxe=[[10,338],[338,297],[297,332],[332,284],[284,251],[251,389],[389,356],[356,454],[454,323],[323,361],[361,288],[288,397],[397,365],[365,379],[379,378],[378,400],[400,377],[377,152],[152,148],[148,176],[176,149],[149,150],[150,136],[136,172],[172,58],[58,132],[132,93],[93,234],[234,127],[127,162],[162,21],[21,54],[54,103],[103,67],[67,109],[109,10]];function ki(e){let t=e.map(n=>n[0]);return t.push(e[e.length-1][1]),t}var Exe={lips:ki(vxe),leftEye:ki(wxe),leftEyebrow:ki(kxe),leftIris:ki(Sxe),rightEye:ki(Ixe),rightEyebrow:ki(Cxe),rightIris:ki(Txe),faceOval:ki(Nxe)},Rxe=Object.entries(Exe).map(([e,t])=>t.map(n=>[n,e])).flat(),DSe=new Map(Rxe),nf=[61,146,91,181,84,17,314,405,321,375,291,185,40,39,37,0,267,269,270,409,78,95,88,178,87,14,317,402,318,324,308,191,80,81,82,13,312,311,310,415,76,77,90,180,85,16,315,404,320,307,306,184,74,73,72,11,302,303,304,408,62,96,89,179,86,15,316,403,319,325,292,183,42,41,38,12,268,271,272,407],wu=[33,7,163,144,145,153,154,155,133,246,161,160,159,158,157,173,130,25,110,24,23,22,26,112,243,247,30,29,27,28,56,190,226,31,228,229,230,231,232,233,244,113,225,224,223,222,221,189,35,124,46,53,52,65,143,111,117,118,119,120,121,128,245,156,70,63,105,66,107,55,193],ku=[263,249,390,373,374,380,381,382,362,466,388,387,386,385,384,398,359,255,339,254,253,252,256,341,463,467,260,259,257,258,286,414,446,261,448,449,450,451,452,453,464,342,445,444,443,442,441,413,265,353,276,283,282,295,372,340,346,347,348,349,350,357,465,383,300,293,334,296,336,285,417];async function rE(e,t){var a,o,i,l,u,c,p,d,h,f;let n={lips:await((o=(a=t.filter(m=>m.size===160))==null?void 0:a[0])==null?void 0:o.data()),irisL:await((l=(i=t.filter(m=>m.size===10))==null?void 0:i[0])==null?void 0:l.data()),eyeL:await((c=(u=t.filter(m=>m.size===142))==null?void 0:u[0])==null?void 0:c.data()),irisR:await((d=(p=t.filter(m=>m.size===10))==null?void 0:p[1])==null?void 0:d.data()),eyeR:await((f=(h=t.filter(m=>m.size===142))==null?void 0:h[1])==null?void 0:f.data())};for(let m of Object.values(n))if(!m)return e;let s=wu.reduce((m,g)=>m+=e[g][2],0)/wu.length;for(let m=0;m<n.irisL.length/2;m++)e.push([n.irisL[2*m+0],n.irisL[2*m+1],s]);let r=ku.reduce((m,g)=>m+=e[g][2],0)/ku.length;for(let m=0;m<n.irisR.length/2;m++)e.push([n.irisR[2*m+0],n.irisR[2*m+1],r]);for(let m=0;m<n.eyeL.length/2;m++)e[wu[m]]=[n.eyeL[2*m+0],n.eyeL[2*m+1],e[wu[m]][2]];for(let m=0;m<n.eyeR.length/2;m++)e[ku[m]]=[n.eyeR[2*m+0],n.eyeR[2*m+1],e[ku[m]][2]];for(let m=0;m<n.lips.length/2;m++)e[nf[m]]=[n.lips[2*m+0],n.lips[2*m+1],e[nf[m]][2]];return e}var ua={boxes:[],skipped:Number.MAX_SAFE_INTEGER,timestamp:0},Mt=null,sf=0;async function aE(e,t){var l,u,c,p,d,h,f,m,g,y;if(!(Mt!=null&&Mt.executor))return[];let n=(((l=t.face.detector)==null?void 0:l.skipTime)||0)>le()-ua.timestamp,s=ua.skipped<(((u=t.face.detector)==null?void 0:u.skipFrames)||0);!t.skipAllowed||!n||!s||ua.boxes.length===0?(ua.boxes=await bN(e,t),ua.timestamp=le(),ua.skipped=0):ua.skipped++;let r=[],a=[],o=0,i=sf;for(let x=0;x<ua.boxes.length;x++){let A=ua.boxes[x],b=0,w,k={id:o++,mesh:[],meshRaw:[],box:[0,0,0,0],boxRaw:[0,0,0,0],score:0,boxScore:0,faceScore:0,annotations:{}};if([b,w,k.tensor]=mN((c=t.face.detector)==null?void 0:c.rotation,A,e,(p=t.face.mesh)!=null&&p.enabled?sf:Id()),t.filter.equalization){let C=k.tensor?await U2(k.tensor):void 0;ee(k.tensor),C&&(k.tensor=C)}if(k.boxScore=Math.round(100*A.confidence)/100,(d=t.face.mesh)!=null&&d.enabled)if(!Mt)t.debug&&ne("face mesh detection requested, but model is not loaded");else{if(((h=t.face.attention)==null?void 0:h.enabled)&&!fe.kernels.includes("atan2"))return t.face.attention.enabled=!1,ee(k.tensor),r;let C=Mt.execute(k.tensor),_=await C.find($=>$.shape[$.shape.length-1]===1).data();if(k.faceScore=Math.round(100*_[0])/100,k.faceScore<(((f=t.face.detector)==null?void 0:f.minConfidence)||1)){if(A.confidence=k.faceScore,t.face.mesh.keepInvalid){k.box=Z2(A,e),k.boxRaw=Y2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map($=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*$[0]/Id(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*$[1]/Id()]),k.meshRaw=k.mesh.map($=>[$[0]/(e.shape[2]||1),$[1]/(e.shape[1]||1),($[2]||0)/i]);for(let $ of Object.keys(Au))k.annotations[$]=[k.mesh[Au[$]]]}}else{let $=C.find(M=>M.shape[M.shape.length-1]===1404),R=V($,[-1,3]),P=await R.array();ee(R),(m=t.face.attention)!=null&&m.enabled?P=await rE(P,C):(g=t.face.iris)!=null&&g.enabled&&(P=await tE(P,k.tensor,sf)),k.mesh=fN(P,A,b,w,sf),k.meshRaw=k.mesh.map(M=>[M[0]/(e.shape[2]||0),M[1]/(e.shape[1]||0),(M[2]||0)/i]);for(let M of Object.keys(wr))k.annotations[M]=wr[M].map(L=>k.mesh[L]);k.score=k.faceScore;let S={...gN(k.mesh,A),confidence:A.confidence,landmarks:A.landmarks};k.box=Z2(S,e),k.boxRaw=Y2(S,e),a.push(S)}ee(C)}else{k.box=Z2(A,e),k.boxRaw=Y2(A,e),k.score=k.boxScore,k.mesh=A.landmarks.map(C=>[(A.startPoint[0]+A.endPoint[0])/2+(A.endPoint[0]+A.startPoint[0])*C[0]/Id(),(A.startPoint[1]+A.endPoint[1])/2+(A.endPoint[1]+A.startPoint[1])*C[1]/Id()]),k.meshRaw=k.mesh.map(C=>[C[0]/(e.shape[2]||0),C[1]/(e.shape[1]||0),(C[2]||0)/i]);for(let C of Object.keys(Au))k.annotations[C]=[k.mesh[Au[C]]]}k.score>(((y=t.face.detector)==null?void 0:y.minConfidence)||1)?r.push(k):ee(k.tensor)}return ua.boxes=a,r}async function oE(e){var t,n,s,r,a,o;return fe.initial&&(Mt=null),((t=e.face.attention)==null?void 0:t.enabled)&&(Mt==null?void 0:Mt.signature)&&Object.keys(((n=Mt==null?void 0:Mt.signature)==null?void 0:n.outputs)||{}).length<6&&(Mt=null),Mt?e.debug&&ne("cached model:",Mt.modelUrl):(s=e.face.attention)!=null&&s.enabled?Mt=await je(e.face.attention.modelPath):Mt=await je((r=e.face.mesh)==null?void 0:r.modelPath),sf=Mt.executor&&((a=Mt==null?void 0:Mt.inputs)==null?void 0:a[0].shape)?(o=Mt==null?void 0:Mt.inputs)==null?void 0:o[0].shape[2]:256,Mt}var iE=xu,lE=Qh;var qn,Si=[],uE=0,cE=0,c4=Number.MAX_SAFE_INTEGER;async function dE(e){var t;return fe.initial&&(qn=null),qn?e.debug&&ne("cached model:",qn.modelUrl):qn=await je((t=e.face.description)==null?void 0:t.modelPath),qn}function d4(e){let t=e.image||e.tensor||e;if(!(qn!=null&&qn.inputs[0].shape))return t;let n=Ie.resizeBilinear(t,[qn.inputs[0].shape[2],qn.inputs[0].shape[1]],!1),s=z(n,at.tf255);return ee(n),s}async function p4(e,t,n,s){var i,l,u,c;let r={age:0,gender:"unknown",genderScore:0,descriptor:[]};if(!(qn!=null&&qn.executor))return r;let a=c4<(((i=t.face.description)==null?void 0:i.skipFrames)||0),o=(((l=t.face.description)==null?void 0:l.skipTime)||0)>le()-uE;return t.skipAllowed&&a&&o&&cE===s&&((u=Si==null?void 0:Si[n])==null?void 0:u.age)>0&&((c=Si==null?void 0:Si[n])==null?void 0:c.genderScore)>0?(c4++,Si[n]):(c4=0,new Promise(async p=>{var d;if((d=t.face.description)!=null&&d.enabled){let h=d4(e),f=qn==null?void 0:qn.execute(h);uE=le(),ee(h);let g=await f.find(E=>E.shape[1]===1).data(),y=Math.trunc(200*Math.abs(g[0]-.5))/100;y>(t.face.description.minConfidence||0)&&(r.gender=g[0]<=.5?"female":"male",r.genderScore=Math.min(.99,y));let x=$s(f.find(E=>E.shape[1]===100),1),A=(await x.data())[0];ee(x);let w=await f.find(E=>E.shape[1]===100).data();r.age=Math.round(w[A-1]>w[A+1]?10*A-100*w[A-1]:10*A+100*w[A+1])/10,(Number.isNaN(g[0])||Number.isNaN(w[0]))&&ne("faceres error:",{model:qn,result:f});let k=f.find(E=>E.shape[1]===1024),C=k?await k.data():[];r.descriptor=Array.from(C),f.forEach(E=>ee(E))}Si[n]=r,cE=s,p(r)}))}function l1(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function rf(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function fE(e,t,n){let s=t.shape[1],r=t.shape[2],a=[[e.startPoint[1]/s,e.startPoint[0]/r,e.endPoint[1]/s,e.endPoint[0]/r]];return Ie.cropAndResize(t,a,[0],n)}function mE(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],s=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(a=>[a[0]*t[0],a[1]*t[1]]);return{startPoint:n,endPoint:s,palmLandmarks:r,confidence:e.confidence}}function u1(e,t=1.5){let n=rf(e),s=l1(e),r=[t*s[0]/2,t*s[1]/2],a=[n[0]-r[0],n[1]-r[1]],o=[n[0]+r[0],n[1]+r[1]];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function c1(e){let t=rf(e),n=l1(e),r=Math.max(...n)/2,a=[t[0]-r,t[1]-r],o=[t[0]+r,t[1]+r];return{startPoint:a,endPoint:o,palmLandmarks:e.palmLandmarks}}function Dxe(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function gE(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Dxe(n)}var pE=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function Ii(e,t){let n=0;for(let s=0;s<e.length;s++)n+=e[s]*t[s];return n}function $xe(e,t){let n=[];for(let s=0;s<e.length;s++)n.push(e[s][t]);return n}function hE(e,t){let n=[],s=e.length;for(let r=0;r<s;r++){n.push([]);for(let a=0;a<s;a++)n[r].push(Ii(e[r],$xe(t,a)))}return n}function f4(e,t){let n=Math.cos(e),s=Math.sin(e),r=[[n,-s,0],[s,n,0],[0,0,1]],a=pE(t[0],t[1]),o=hE(a,r),i=pE(-t[0],-t[1]);return hE(o,i)}function yE(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],s=[-Ii(t[0],n),-Ii(t[1],n)];return[t[0].concat(s[0]),t[1].concat(s[1]),[0,0,1]]}function m4(e,t){return[Ii(e,t[0]),Ii(e,t[1])]}var xE=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var d1=class{constructor(t){he(this,"model");he(this,"anchors");he(this,"anchorsTensor");he(this,"inputSize");he(this,"inputSizeTensor");he(this,"doubleInputSizeTensor");var n,s,r,a;this.model=t,this.anchors=xE.map(o=>[o.x,o.y]),this.anchorsTensor=fr(this.anchors),this.inputSize=((a=(r=(s=(n=this==null?void 0:this.model)==null?void 0:n.inputs)==null?void 0:s[0])==null?void 0:r.shape)==null?void 0:a[2])||0,this.inputSizeTensor=Pt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Pt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){let n={};n.boxOffsets=ze(t,[0,0],[-1,2]),n.boxSizes=ze(t,[0,2],[-1,2]),n.div=me(n.boxOffsets,this.inputSizeTensor),n.boxCenterPoints=ce(n.div,this.anchorsTensor),n.halfBoxSizes=me(n.boxSizes,this.doubleInputSizeTensor),n.sub=ge(n.boxCenterPoints,n.halfBoxSizes),n.startPoints=z(n.sub,this.inputSizeTensor),n.add=ce(n.boxCenterPoints,n.halfBoxSizes),n.endPoints=z(n.add,this.inputSizeTensor);let s=ou([n.startPoints,n.endPoints],1);return Object.keys(n).forEach(r=>ee(n[r])),s}normalizeLandmarks(t,n){let s={};s.reshape=V(t,[-1,7,2]),s.div=me(s.reshape,this.inputSizeTensor),s.landmarks=ce(s.div,this.anchors[n]?this.anchors[n]:0);let r=z(s.landmarks,this.inputSizeTensor);return Object.keys(s).forEach(a=>ee(s[a])),r}async predict(t,n){var i;let s={};s.resize=Ie.resizeBilinear(t,[this.inputSize,this.inputSize]),s.div=me(s.resize,at.tf127),s.image=ge(s.div,at.tf1),s.batched=this.model.execute(s.image),s.predictions=rt(s.batched),s.slice=ze(s.predictions,[0,0],[-1,1]),s.sigmoid=$n(s.slice),s.scores=rt(s.sigmoid);let r=await s.scores.data();s.boxes=ze(s.predictions,[0,1],[-1,4]),s.norm=this.normalizeBoxes(s.boxes),s.nms=await Ie.nonMaxSuppressionAsync(s.norm,s.scores,3*(((i=n.hand)==null?void 0:i.maxDetected)||1),n.hand.iouThreshold,n.hand.minConfidence);let a=await s.nms.array(),o=[];for(let l of a){let u={};u.box=ze(s.norm,[l,0],[1,-1]),u.slice=ze(s.predictions,[l,5],[1,14]),u.norm=this.normalizeLandmarks(u.slice,l),u.palmLandmarks=V(u.norm,[-1,2]);let c=await u.box.data(),p=c.slice(0,2),d=c.slice(2,4),h=await u.palmLandmarks.array(),f={startPoint:p,endPoint:d,palmLandmarks:h,confidence:r[l]},m=mE(f,[(t.shape[2]||1)/this.inputSize,(t.shape[1]||0)/this.inputSize]);o.push(m),Object.keys(u).forEach(g=>ee(u[g]))}return Object.keys(s).forEach(l=>ee(s[l])),o}};var Oxe=5,bE=1.65,vE=[0,5,9,13,17,1,2],Mxe=0,zxe=2,wE=0,p1=class{constructor(t,n){he(this,"handDetector");he(this,"handPoseModel");he(this,"inputSize");he(this,"storedBoxes");he(this,"skipped");he(this,"detectedHands");var s,r,a;this.handDetector=t,this.handPoseModel=n,this.inputSize=((a=(r=(s=this.handPoseModel)==null?void 0:s.inputs)==null?void 0:r[0].shape)==null?void 0:a[2])||0,this.storedBoxes=[],this.skipped=Number.MAX_SAFE_INTEGER,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(o=>o[0]),s=t.map(o=>o[1]),r=[Math.min(...n),Math.min(...s)],a=[Math.max(...n),Math.max(...s)];return{startPoint:r,endPoint:a}}getBoxForPalmLandmarks(t,n){let s=t.map(a=>m4([...a,1],n)),r=this.calculateLandmarksBoundingBox(s);return u1(c1(r),Oxe)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),s=u1(c1(n),bE);s.palmLandmarks=[];for(let r=0;r<vE.length;r++)s.palmLandmarks.push(t[vE[r]].slice(0,2));return s}transformRawCoords(t,n,s,r){let a=l1(n),o=[a[0]/this.inputSize,a[1]/this.inputSize,(a[0]+a[1])/this.inputSize/2],i=t.map(h=>[o[0]*(h[0]-this.inputSize/2),o[1]*(h[1]-this.inputSize/2),o[2]*h[2]]),l=f4(s,[0,0]),u=i.map(h=>[...m4(h,l),h[2]]),c=yE(r),p=[...rf(n),1],d=[Ii(p,c[0]),Ii(p,c[1])];return u.map(h=>[Math.trunc(h[0]+d[0]),Math.trunc(h[1]+d[1]),Math.trunc(h[2])])}async estimateHands(t,n){let s=!1,r,a=(n.hand.skipTime||0)>le()-wE,o=this.skipped<(n.hand.skipFrames||0);n.skipAllowed&&a&&o&&(r=await this.handDetector.predict(t,n),this.skipped=0),n.skipAllowed&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(s=!0));let i=[];for(let l=0;l<this.storedBoxes.length;l++){let u=this.storedBoxes[l];if(!!u)if(n.hand.landmarks){let c=n.hand.rotation?gE(u.palmLandmarks[Mxe],u.palmLandmarks[zxe]):0,p=rf(u),d=[p[0]/t.shape[2],p[1]/t.shape[1]],h=n.hand.rotation&&fe.kernels.includes("rotatewithoffset")?Ie.rotateWithOffset(t,c,0,d):t.clone(),f=f4(-c,p),m=s?this.getBoxForPalmLandmarks(u.palmLandmarks,f):u,g=fE(m,h,[this.inputSize,this.inputSize]),y=me(g,at.tf255);ee(g),ee(h);let[x,A]=this.handPoseModel.execute(y);wE=le(),ee(y);let b=(await x.data())[0];if(ee(x),b>=n.hand.minConfidence/4){let w=V(A,[-1,3]),k=await w.array();ee(A),ee(w);let C=this.transformRawCoords(k,m,c,f),E=this.getBoxForHandLandmarks(C);this.storedBoxes[l]={...E,confidence:b};let _={landmarks:C,confidence:b,boxConfidence:u.confidence,fingerConfidence:b,box:{topLeft:E.startPoint,bottomRight:E.endPoint}};i.push(_)}else this.storedBoxes[l]=null;ee(A)}else{let c=u1(c1(u),bE),p={confidence:u.confidence,boxConfidence:u.confidence,fingerConfidence:0,box:{topLeft:c.startPoint,bottomRight:c.endPoint},landmarks:[]};i.push(p)}}return this.storedBoxes=this.storedBoxes.filter(l=>l!==null),this.detectedHands=i.length,i.length>n.hand.maxDetected&&(i.length=n.hand.maxDetected),i}};var hs={thumb:0,index:1,middle:2,ring:3,pinky:4,all:[0,1,2,3,4],nameMapping:{0:"thumb",1:"index",2:"middle",3:"ring",4:"pinky"},pointsMapping:{0:[[0,1],[1,2],[2,3],[3,4]],1:[[0,5],[5,6],[6,7],[7,8]],2:[[0,9],[9,10],[10,11],[11,12]],3:[[0,13],[13,14],[14,15],[15,16]],4:[[0,17],[17,18],[18,19],[19,20]]},getName:e=>hs.nameMapping[e],getPoints:e=>hs.pointsMapping[e]},Ti={none:0,half:1,full:2,nameMapping:{0:"none",1:"half",2:"full"},getName:e=>Ti.nameMapping[e]},qt={verticalUp:0,verticalDown:1,horizontalLeft:2,horizontalRight:3,diagonalUpRight:4,diagonalUpLeft:5,diagonalDownRight:6,diagonalDownLeft:7,nameMapping:{0:"verticalUp",1:"verticalDown",2:"horizontalLeft",3:"horizontalRight",4:"diagonalUpRight",5:"diagonalUpLeft",6:"diagonalDownRight",7:"diagonalDownLeft"},getName:e=>qt.nameMapping[e]},Ci=class{constructor(t){he(this,"name");he(this,"curls");he(this,"directions");he(this,"weights");he(this,"weightsRelative");this.name=t,this.curls={},this.directions={},this.weights=[1,1,1,1,1],this.weightsRelative=[1,1,1,1,1]}curl(t,n,s){typeof this.curls[t]=="undefined"&&(this.curls[t]=[]),this.curls[t].push([n,s])}direction(t,n,s){this.directions[t]||(this.directions[t]=[]),this.directions[t].push([n,s])}weight(t,n){this.weights[t]=n;let s=this.weights.reduce((r,a)=>r+a,0);this.weightsRelative=this.weights.map(r=>r*5/s)}matchAgainst(t,n){let s=0;for(let r in t){let a=t[r],o=this.curls[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}for(let r in n){let a=n[r],o=this.directions[r];if(typeof o=="undefined"){s+=this.weightsRelative[r];continue}for(let[i,l]of o)if(a===i){s+=l*this.weightsRelative[r];break}}return s/10}};var{thumb:Hr,index:Fa,middle:Oa,ring:Su,pinky:Iu}=hs,{none:jr,half:Bxe,full:qr}=Ti,{verticalUp:Rd,verticalDown:ZSe,horizontalLeft:g4,horizontalRight:Wxe,diagonalUpRight:Vxe,diagonalUpLeft:_d,diagonalDownRight:YSe,diagonalDownLeft:JSe}=qt,Ni=new Ci("thumbs up");Ni.curl(Hr,jr,1);Ni.direction(Hr,Rd,1);Ni.direction(Hr,_d,.25);Ni.direction(Hr,Vxe,.25);for(let e of[hs.index,hs.middle,hs.ring,hs.pinky])Ni.curl(e,qr,1),Ni.direction(e,g4,1),Ni.direction(e,Wxe,1);var pn=new Ci("victory");pn.curl(Hr,Bxe,.5);pn.curl(Hr,jr,.5);pn.direction(Hr,Rd,1);pn.direction(Hr,_d,1);pn.curl(Fa,jr,1);pn.direction(Fa,Rd,.75);pn.direction(Fa,_d,1);pn.curl(Oa,jr,1);pn.direction(Oa,Rd,1);pn.direction(Oa,_d,.75);pn.curl(Su,qr,1);pn.direction(Su,Rd,.2);pn.direction(Su,_d,1);pn.direction(Su,g4,.2);pn.curl(Iu,qr,1);pn.direction(Iu,Rd,.2);pn.direction(Iu,_d,1);pn.direction(Iu,g4,.2);pn.weight(Fa,2);pn.weight(Oa,2);var Ei=new Ci("point");Ei.curl(Hr,qr,1);Ei.curl(Fa,jr,.5);Ei.curl(Oa,qr,.5);Ei.curl(Su,qr,.5);Ei.curl(Iu,qr,.5);Ei.weight(Fa,2);Ei.weight(Oa,2);var Ri=new Ci("middle finger");Ri.curl(Hr,jr,1);Ri.curl(Fa,qr,.5);Ri.curl(Oa,qr,.5);Ri.curl(Su,qr,.5);Ri.curl(Iu,qr,.5);Ri.weight(Fa,2);Ri.weight(Oa,2);var Dd=new Ci("open palm");Dd.curl(Hr,jr,.75);Dd.curl(Fa,jr,.75);Dd.curl(Oa,jr,.75);Dd.curl(Su,jr,.75);Dd.curl(Iu,jr,.75);var kE=[Ni,pn,Ei,Ri,Dd];var Uxe=.7,Cu={HALF_CURL_START_LIMIT:60,NO_CURL_START_LIMIT:130,DISTANCE_VOTE_POWER:1.1,SINGLE_ANGLE_VOTE_POWER:.9,TOTAL_ANGLE_VOTE_POWER:1.6};function SE(e,t,n,s){let r=(t-s)/(e-n),a=Math.atan(r)*180/Math.PI;return a<=0?a=-a:a>0&&(a=180-a),a}function CE(e,t){if(!e||!t)return[0,0];let n=SE(e[0],e[1],t[0],t[1]);if(e.length===2)return n;let s=SE(e[1],e[2],t[1],t[2]);return[n,s]}function IE(e,t=1){let n=0,s=0,r=0;return e>=75&&e<=105?n=1*t:e>=25&&e<=155?s=1*t:r=1*t,[n,s,r]}function Gxe(e,t,n){let s=e[0]-t[0],r=e[0]-n[0],a=t[0]-n[0],o=e[1]-t[1],i=e[1]-n[1],l=t[1]-n[1],u=e[2]-t[2],c=e[2]-n[2],p=t[2]-n[2],d=Math.sqrt(s*s+o*o+u*u),h=Math.sqrt(r*r+i*i+c*c),f=Math.sqrt(a*a+l*l+p*p),m=(f*f+d*d-h*h)/(2*f*d);m>1?m=1:m<-1&&(m=-1);let g=Math.acos(m);g=57.2958*g%180;let y;return g>Cu.NO_CURL_START_LIMIT?y=Ti.none:g>Cu.HALF_CURL_START_LIMIT?y=Ti.half:y=Ti.full,y}function TE(e,t,n,s){let r;return s===Math.abs(e)?e>0?r=qt.horizontalLeft:r=qt.horizontalRight:s===Math.abs(t)?t>0?r=qt.horizontalLeft:r=qt.horizontalRight:n>0?r=qt.horizontalLeft:r=qt.horizontalRight,r}function NE(e,t,n,s){let r;return s===Math.abs(e)?e<0?r=qt.verticalDown:r=qt.verticalUp:s===Math.abs(t)?t<0?r=qt.verticalDown:r=qt.verticalUp:n<0?r=qt.verticalDown:r=qt.verticalUp,r}function Hxe(e,t,n,s,r,a,o,i){let l,u=NE(e,t,n,s),c=TE(r,a,o,i);return u===qt.verticalUp?c===qt.horizontalLeft?l=qt.diagonalUpLeft:l=qt.diagonalUpRight:c===qt.horizontalLeft?l=qt.diagonalDownLeft:l=qt.diagonalDownRight,l}function jxe(e,t,n,s){let r=e[0]-t[0],a=e[0]-n[0],o=t[0]-n[0],i=e[1]-t[1],l=e[1]-n[1],u=t[1]-n[1],c=Math.max(Math.abs(r),Math.abs(a),Math.abs(o)),p=Math.max(Math.abs(i),Math.abs(l),Math.abs(u)),d=0,h=0,f=0,m=p/(c+1e-5);m>1.5?d+=Cu.DISTANCE_VOTE_POWER:m>.66?h+=Cu.DISTANCE_VOTE_POWER:f+=Cu.DISTANCE_VOTE_POWER;let g=Math.sqrt(r*r+i*i),y=Math.sqrt(a*a+l*l),x=Math.sqrt(o*o+u*u),A=Math.max(g,y,x),b=e[0],w=e[1],k=n[0],C=n[1];A===g?(k=n[0],C=n[1]):A===x&&(b=t[0],w=t[1]);let $=CE([b,w],[k,C]),R=IE($,Cu.TOTAL_ANGLE_VOTE_POWER);d+=R[0],h+=R[1],f+=R[2];for(let S of s){let M=IE(S,Cu.SINGLE_ANGLE_VOTE_POWER);d+=M[0],h+=M[1],f+=M[2]}let P;return d===Math.max(d,h,f)?P=NE(l,i,u,p):f===Math.max(h,f)?P=TE(a,r,o,c):P=Hxe(l,i,u,p,a,r,o,c),P}function EE(e){let t=[],n=[],s=[],r=[];if(!e)return{curls:s,directions:r};for(let a of hs.all){let o=hs.getPoints(a),i=[],l=[];for(let u of o){let c=e[u[0]],p=e[u[1]],d=CE(c,p),h=d[0],f=d[1];i.push(h),l.push(f)}t.push(i),n.push(l)}for(let a of hs.all){let o=a===hs.thumb?1:0,i=hs.getPoints(a),l=e[i[o][0]],u=e[i[o+1][1]],c=e[i[3][1]],p=Gxe(l,u,c),d=jxe(l,u,c,t[a].slice(o));s[a]=p,r[a]=d}return{curls:s,directions:r}}function h1(e){if(!e||e.length===0)return null;let t=EE(e),n={};for(let s of hs.all)n[hs.getName(s)]={curl:Ti.getName(t.curls[s]),direction:qt.getName(t.directions[s])};return n}function RE(e){let t=[];if(!e||e.length===0)return t;let n=EE(e);for(let s of kE){let r=s.matchAgainst(n.curls,n.directions);r>=Uxe&&t.push({name:s.name,confidence:r})}return t}var _E={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],palm:[0]},Tu,Nu,DE;async function A4(e,t){let n=await DE.estimateHands(e,t);if(!n)return[];let s=[];for(let r=0;r<n.length;r++){let a={};if(n[r].landmarks)for(let c of Object.keys(_E))a[c]=_E[c].map(p=>n[r].landmarks[p]);let o=n[r].landmarks,i=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(o&&o.length>0){for(let c of o)c[0]<i[0]&&(i[0]=c[0]),c[1]<i[1]&&(i[1]=c[1]),c[0]>i[2]&&(i[2]=c[0]),c[1]>i[3]&&(i[3]=c[1]);i[2]-=i[0],i[3]-=i[1],l=[i[0]/(e.shape[2]||0),i[1]/(e.shape[1]||0),i[2]/(e.shape[2]||0),i[3]/(e.shape[1]||0)]}else i=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];let u=h1(o);s.push({id:r,score:Math.round(100*n[r].confidence)/100,boxScore:Math.round(100*n[r].boxConfidence)/100,fingerScore:Math.round(100*n[r].fingerConfidence)/100,label:"hand",box:i,boxRaw:l,keypoints:o,annotations:a,landmarks:u})}return s}async function x4(e){var n,s;fe.initial&&(Tu=null,Nu=null),!Tu||!Nu?[Tu,Nu]=await Promise.all([e.hand.enabled?je((n=e.hand.detector)==null?void 0:n.modelPath):null,e.hand.landmarks?je((s=e.hand.skeleton)==null?void 0:s.modelPath):null]):(e.debug&&ne("cached model:",Tu.modelUrl),e.debug&&ne("cached model:",Nu.modelUrl));let t=Tu?new d1(Tu):void 0;return t&&Nu&&(DE=new p1(t,Nu)),[Tu,Nu]}var _t={name:"humangl",priority:999,canvas:null,gl:null,extensions:[],webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function qxe(){let e=_t.gl;!e||(_t.extensions=e.getSupportedExtensions())}function PE(e){var t;if(e.config.backend==="humangl"&&(_t.name in Yt().registry&&!((t=_t==null?void 0:_t.gl)!=null&&t.getParameter(_t.gl.VERSION))&&(ne("humangl error: backend invalid context"),f1(e)),!Zy(_t.name))){try{_t.canvas=ds(100,100)}catch(s){ne("humangl error: cannot create canvas:",s);return}try{if(_t.gl=_t.canvas.getContext("webgl2",_t.webGLattr),!_t.gl){ne("humangl error: cannot get webgl context");return}if(!_t.gl.getParameter(_t.gl.VERSION).includes("2.0")){ne("backend override: using fallback webgl backend as webgl 2.0 is not detected"),e.config.backend="webgl";return}_t.canvas&&(_t.canvas.addEventListener("webglcontextlost",r=>{throw ne("humangl error:",r.type),ne("possible browser memory leak using webgl or conflict with multiple backend registrations"),e.emit("error"),new Error("backend error: webgl context lost")}),_t.canvas.addEventListener("webglcontextrestored",r=>{ne("humangl error: context restored:",r)}),_t.canvas.addEventListener("webglcontextcreationerror",r=>{ne("humangl error: context create:",r)}))}catch(s){ne("humangl error: cannot get webgl context:",s);return}try{_2(2,_t.gl)}catch(s){ne("humangl error: cannot set webgl context:",s);return}try{let s=new rc(_t.gl);ru(_t.name,()=>new md(s),_t.priority)}catch(s){ne("humangl error: cannot register webgl backend:",s);return}try{na("webgl").forEach(r=>{let a={...r,backendName:_t.name};tr(a)})}catch(s){ne("humangl error: cannot update webgl backend registration:",s);return}try{H().flagRegistry.WEBGL_VERSION&&H().set("WEBGL_VERSION",2)}catch(s){ne("humangl error: cannot set WebGL backend flags:",s);return}qxe();let n=Ls().getGPGPUContext?Ls().getGPGPUContext().gl:null;n?e.config.debug&&ne("humangl backend registered:",{webgl:n.getParameter(n.VERSION),renderer:n.getParameter(n.RENDERER)}):ne("humangl error: no current gl context:",n,_t.gl)}}function Xxe(e){let t=[];if(!fe.kernels.includes("mod")){let n={kernelName:"Mod",backendName:cn(),kernelFunc:s=>Y(()=>ge(s.inputs.a,z(me(s.inputs.a,s.inputs.b),s.inputs.b)))};tr(n),fe.kernels.push("mod"),t.push("mod")}if(!fe.kernels.includes("floormod")){let n={kernelName:"FloorMod",backendName:cn(),kernelFunc:s=>Y(()=>ce(z(Xc(s.inputs.a/s.inputs.b),s.inputs.b),lu(s.inputs.a,s.inputs.b)))};tr(n),fe.kernels.push("floormod"),t.push("floormod")}if(!fe.kernels.includes("rotatewithoffset")&&e.softwareKernels){let n={kernelName:"RotateWithOffset",backendName:cn(),kernelFunc:s=>Y(()=>{let r=cn();ph("cpu");let a=Ie.rotateWithOffset(s.inputs.image,s.attrs.radians,s.attrs.fillValue,s.attrs.center);return ph(r),a})};tr(n),fe.kernels.push("rotatewithoffset"),t.push("rotatewithoffset")}t.length>0&&e.debug&&ne("registered kernels:",t)}var OE={};async function af(e,t=!1){if(e.state="backend",t||fe.initial||e.config.backend&&e.config.backend.length>0&&cn()!==e.config.backend){let n=le();if(e.config.backend&&e.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&e.config.debug&&e.config.debug&&ne("running inside web worker"),fe.browser&&e.config.backend==="tensorflow"&&(e.config.debug&&ne("override: backend set to tensorflow while running in browser"),e.config.backend="webgl"),fe.node&&(e.config.backend==="webgl"||e.config.backend==="humangl")&&(e.config.debug&&ne(`override: backend set to ${e.config.backend} while running in nodejs`),e.config.backend="tensorflow"),fe.browser&&e.config.backend==="webgpu")if(typeof navigator=="undefined"||typeof navigator.gpu=="undefined")ne("override: backend set to webgpu but browser does not support webgpu"),e.config.backend="webgl";else{let r=await navigator.gpu.requestAdapter();if(e.config.debug&&ne("enumerated webgpu adapter:",r),!r)ne("override: backend set to webgpu but browser reports no available gpu"),e.config.backend="webgl";else{let a="requestAdapterInfo"in r?await r.requestAdapterInfo():void 0;ne("webgpu adapter info:",a)}}let s=Object.keys(Yt().registryFactory);if(e.config.backend==="humangl"&&!s.includes("humangl")&&(PE(e),s=Object.keys(Yt().registryFactory)),e.config.debug&&ne("available backends:",s),s.includes(e.config.backend)||(ne(`error: backend ${e.config.backend} not found in registry`),e.config.backend=fe.node?"tensorflow":"webgl",e.config.debug&&ne(`override: setting backend ${e.config.backend}`)),e.config.debug&&ne("setting backend:",[e.config.backend]),e.config.backend==="wasm"){if(H().flagRegistry.CANVAS2D_WILL_READ_FREQUENTLY&&H().set("CANVAS2D_WILL_READ_FREQUENTLY",!0),e.config.debug&&ne("wasm path:",e.config.wasmPath),typeof z2!="undefined")z2(e.config.wasmPath,e.config.wasmPlatformFetch);else throw new Error("backend error: attempting to use wasm backend but wasm path is not set");let r=!1,a=!1;try{r=await H().getAsync("WASM_HAS_MULTITHREAD_SUPPORT"),a=await H().getAsync("WASM_HAS_SIMD_SUPPORT"),e.config.debug&&ne(`wasm execution: ${a?"simd":"no simd"} ${r?"multithreaded":"singlethreaded"}`),e.config.debug&&!a&&ne("warning: wasm simd support is not enabled")}catch(o){ne("wasm detection failed")}}try{await ph(e.config.backend),await hh()}catch(r){return ne("error: cannot set backend:",e.config.backend,r),!1}e.config.debug&&(OE=JSON.parse(JSON.stringify(H().flags)))}if((cn()==="humangl"||cn()==="webgl")&&(H().flagRegistry.WEBGL_USE_SHAPES_UNIFORMS&&H().set("WEBGL_USE_SHAPES_UNIFORMS",!0),H().flagRegistry.WEBGL_EXP_CONV&&H().set("WEBGL_EXP_CONV",!0),e.config.debug&&typeof e.config.deallocate!="undefined"&&e.config.deallocate&&(ne("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),H().set("WEBGL_DELETE_TEXTURE_THRESHOLD",0))),cn(),e.config.debug){let s=H().flags,r={};for(let a of Object.keys(s))OE[a]!==s[a]&&(r[a]=s[a]);e.config.debug&&Object.keys(r).length>0&&ne("backend:",cn(),"flags:",r)}if(e.config.flags&&Object.keys(e.config.flags).length>0){e.config.debug&&ne("flags:",e.config.flags);for(let[s,r]of Object.entries(e.config.flags))H().set(s,r)}Xy(),KT(),e.performance.initBackend=Math.trunc(le()-n),e.config.backend=cn(),await fe.updateBackend(),Xxe(e.config),fe.initial=!1}return!0}function m1(e,t){for(let n of e){let s={kernelName:n,backendName:t.backend,kernelFunc:()=>{t.debug&&ne("kernelFunc",n,t.backend)}};tr(s)}fe.kernels=na(cn()).map(n=>n.kernelName.toLowerCase())}var tn=[null,null],Kxe=["StatefulPartitionedCall/Postprocessor/Slice","StatefulPartitionedCall/Postprocessor/ExpandDims_1"],_i=[[0,0],[0,0]],Zxe=["hand","fist","pinch","point","face","tip","pinchtip"],zE=4,LE=1.6,Yxe=512,Jxe=1.4,g1=Number.MAX_SAFE_INTEGER,b4=0,Ma=[0,0],en={boxes:[],hands:[]},BE={thumb:[1,2,3,4],index:[5,6,7,8],middle:[9,10,11,12],ring:[13,14,15,16],pinky:[17,18,19,20],base:[0],palm:[0,17,13,9,5,1,0]};async function WE(e){var t;if(fe.initial&&(tn[0]=null),tn[0])e.debug&&ne("cached model:",tn[0].modelUrl);else{m1(["tensorlistreserve","enter","tensorlistfromtensor","merge","loopcond","switch","exit","tensorliststack","nextiteration","tensorlistsetitem","tensorlistgetitem","reciprocal","shape","split","where"],e),tn[0]=await je((t=e.hand.detector)==null?void 0:t.modelPath);let n=tn[0].executor?Object.values(tn[0].modelSignature.inputs):void 0;_i[0][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,_i[0][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return tn[0]}async function VE(e){var t;if(fe.initial&&(tn[1]=null),tn[1])e.debug&&ne("cached model:",tn[1].modelUrl);else{tn[1]=await je((t=e.hand.skeleton)==null?void 0:t.modelPath);let n=tn[1].executor?Object.values(tn[1].modelSignature.inputs):void 0;_i[1][0]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[1].size):0,_i[1][1]=Array.isArray(n)?parseInt(n[0].tensorShape.dim[2].size):0}return tn[1]}async function Qxe(e,t){let n=[];if(!e||!tn[0])return n;let s={},r=(e.shape[2]||1)/(e.shape[1]||1),a=Math.min(Math.round((e.shape[1]||0)/8)*8,Yxe),o=Math.round(a*r/8)*8;s.resize=Ie.resizeBilinear(e,[a,o]),s.cast=ye(s.resize,"int32"),[s.rawScores,s.rawBoxes]=await tn[0].executeAsync(s.cast,Kxe),s.boxes=rt(s.rawBoxes,[0,2]),s.scores=rt(s.rawScores,[0]);let i=On(s.scores,1);ee(i[zE]),i.splice(zE,1),s.filtered=ln(i,1),ee(i),s.max=yn(s.filtered,1),s.argmax=$s(s.filtered,1);let l=0;s.nms=await Ie.nonMaxSuppressionAsync(s.boxes,s.max,(t.hand.maxDetected||0)+1,t.hand.iouThreshold||0,t.hand.minConfidence||1);let u=await s.nms.data(),c=await s.max.data(),p=await s.argmax.data();for(let d of Array.from(u)){let h=ze(s.boxes,d,1),f=await h.data();ee(h);let m=[f[1],f[0],f[3]-f[1],f[2]-f[0]],g=n1(m,Jxe),y=[Math.trunc(m[0]*Ma[0]),Math.trunc(m[1]*Ma[1]),Math.trunc(m[2]*Ma[0]),Math.trunc(m[3]*Ma[1])],x=c[d],A=Zxe[p[d]],b={id:l++,score:x,box:y,boxRaw:g,label:A};n.push(b)}return Object.keys(s).forEach(d=>ee(s[d])),n.sort((d,h)=>h.score-d.score),n.length>(t.hand.maxDetected||1)&&(n.length=t.hand.maxDetected||1),n}async function v4(e,t,n){let s={id:t.id,score:Math.round(100*t.score)/100,boxScore:Math.round(100*t.score)/100,fingerScore:0,box:t.box,boxRaw:t.boxRaw,label:t.label,keypoints:[],landmarks:{},annotations:{}};if(e&&tn[1]&&n.hand.landmarks&&t.score>(n.hand.minConfidence||0)){let r={},a=[t.boxRaw[1],t.boxRaw[0],t.boxRaw[3]+t.boxRaw[1],t.boxRaw[2]+t.boxRaw[0]];r.crop=Ie.cropAndResize(e,[a],[0],[_i[1][0],_i[1][1]],"bilinear"),r.div=me(r.crop,at.tf255),[r.score,r.keypoints]=tn[1].execute(r.div,["Identity_1","Identity"]);let o=(await r.score.data())[0],i=(100-Math.trunc(100/(1+Math.exp(o))))/100;if(i>=(n.hand.minConfidence||0)){s.fingerScore=i,r.reshaped=V(r.keypoints,[-1,3]);let c=(await r.reshaped.array()).map(p=>[p[0]/_i[1][1],p[1]/_i[1][0],p[2]||0]).map(p=>[p[0]*t.boxRaw[2],p[1]*t.boxRaw[3],p[2]||0]);s.keypoints=c.map(p=>[Ma[0]*(p[0]+t.boxRaw[0]),Ma[1]*(p[1]+t.boxRaw[1]),p[2]||0]),s.landmarks=h1(s.keypoints);for(let p of Object.keys(BE))s.annotations[p]=BE[p].map(d=>s.landmarks&&s.keypoints[d]?s.keypoints[d]:null)}Object.keys(r).forEach(l=>ee(r[l]))}return s}async function w4(e,t){var r,a;if(!((r=tn[0])!=null&&r.executor)||!((a=tn[1])!=null&&a.executor)||!tn[0].inputs[0].shape||!tn[1].inputs[0].shape)return[];Ma=[e.shape[2]||0,e.shape[1]||0],g1++;let n=(t.hand.skipTime||0)>le()-b4,s=g1<(t.hand.skipFrames||0);return t.skipAllowed&&n&&s?en.hands:new Promise(async o=>{let i=3*(t.hand.skipTime||0)>le()-b4,l=g1<3*(t.hand.skipFrames||0);t.skipAllowed&&en.hands.length===t.hand.maxDetected?en.hands=await Promise.all(en.boxes.map(c=>v4(e,c,t))):t.skipAllowed&&i&&l&&en.hands.length>0?en.hands=await Promise.all(en.boxes.map(c=>v4(e,c,t))):(en.boxes=await Qxe(e,t),b4=le(),en.hands=await Promise.all(en.boxes.map(c=>v4(e,c,t))),g1=0);let u=[...en.boxes];if(en.boxes.length=0,t.cacheSensitivity>0)for(let c=0;c<en.hands.length;c++){let p=SN(en.hands[c].keypoints,Ma);if(p.box[2]/(e.shape[2]||1)>.05&&p.box[3]/(e.shape[1]||1)>.05&&en.hands[c].fingerScore&&en.hands[c].fingerScore>(t.hand.minConfidence||0)){let d=n1(p.box,LE),h=n1(p.boxRaw,LE);en.boxes.push({...u[c],box:d,boxRaw:h})}}for(let c=0;c<en.hands.length;c++){let p=Pa(en.hands[c].keypoints,Ma);en.hands[c].box=p.box,en.hands[c].boxRaw=p.boxRaw}o(en.hands)})}var _n,y1=[],k4=Number.MAX_SAFE_INTEGER,GE=0,HE=0;async function jE(e){var t;return fe.initial&&(_n=null),_n?e.debug&&ne("cached model:",_n.modelUrl):_n=await je((t=e.face.liveness)==null?void 0:t.modelPath),_n}async function S4(e,t,n,s){var o,i;if(!(_n!=null&&_n.executor))return 0;let r=(((o=t.face.liveness)==null?void 0:o.skipTime)||0)>le()-HE,a=k4<(((i=t.face.liveness)==null?void 0:i.skipFrames)||0);return t.skipAllowed&&r&&a&&GE===s&&y1[n]?(k4++,y1[n]):(k4=0,new Promise(async l=>{let u=Ie.resizeBilinear(e,[_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[2]:0,_n!=null&&_n.inputs[0].shape?_n.inputs[0].shape[1]:0],!1),c=_n==null?void 0:_n.execute(u),p=(await c.data())[0];y1[n]=Math.round(100*p)/100,GE=s,HE=le(),ee([u,c]),l(y1[n])}))}var of={};ma(of,{connected:()=>x1,horizontal:()=>I4,kpt:()=>A1,relative:()=>T4,vertical:()=>C4});var A1=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],I4=[["leftEye","rightEye"],["leftEar","rightEar"],["leftShoulder","rightShoulder"],["leftElbow","rightElbow"],["leftWrist","rightWrist"],["leftHip","rightHip"],["leftKnee","rightKnee"],["leftAnkle","rightAnkle"]],C4=[["leftKnee","leftShoulder"],["rightKnee","rightShoulder"],["leftAnkle","leftKnee"],["rightAnkle","rightKnee"]],T4=[[["leftHip","rightHip"],["leftShoulder","rightShoulder"]],[["leftElbow","rightElbow"],["leftShoulder","rightShoulder"]]],x1={leftLeg:["leftHip","leftKnee","leftAnkle"],rightLeg:["rightHip","rightKnee","rightAnkle"],torso:["leftShoulder","rightShoulder","rightHip","leftHip","leftShoulder"],leftArm:["leftShoulder","leftElbow","leftWrist"],rightArm:["rightShoulder","rightElbow","rightWrist"],head:[]};var XE=.005,Gs={keypoints:[],padding:[[0,0],[0,0],[0,0],[0,0]]};function N4(e){for(let t of I4){let n=e.keypoints.findIndex(r=>r.part===t[0]),s=e.keypoints.findIndex(r=>r.part===t[1]);if(e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[0]<e.keypoints[s].position[0]){let r=e.keypoints[n];e.keypoints[n]=e.keypoints[s],e.keypoints[s]=r}}for(let t of C4){let n=e.keypoints.findIndex(r=>r&&r.part===t[0]),s=e.keypoints.findIndex(r=>r&&r.part===t[1]);e.keypoints[n]&&e.keypoints[s]&&e.keypoints[n].position[1]<e.keypoints[s].position[1]&&e.keypoints.splice(n,1)}for(let[t,n]of T4){let s=e.keypoints.findIndex(u=>u&&u.part===t[0]),r=e.keypoints.findIndex(u=>u&&u.part===t[1]),a=e.keypoints.findIndex(u=>u&&u.part===n[0]),o=e.keypoints.findIndex(u=>u&&u.part===n[1]);if(!e.keypoints[a]||!e.keypoints[o])continue;let i=e.keypoints[s]?[Math.abs(e.keypoints[a].position[0]-e.keypoints[s].position[0]),Math.abs(e.keypoints[o].position[0]-e.keypoints[s].position[0])]:[0,0],l=e.keypoints[r]?[Math.abs(e.keypoints[o].position[0]-e.keypoints[r].position[0]),Math.abs(e.keypoints[a].position[0]-e.keypoints[r].position[0])]:[0,0];if(i[0]>i[1]||l[0]>l[1]){let u=e.keypoints[s];e.keypoints[s]=e.keypoints[r],e.keypoints[r]=u}}}function KE(e){for(let t=0;t<e.length;t++)if(e[t]&&Gs.keypoints[t]){let n=[Math.abs(e[t].positionRaw[0]-Gs.keypoints[t].positionRaw[0]),Math.abs(e[t].positionRaw[1]-Gs.keypoints[t].positionRaw[1])];n[0]<XE&&n[1]<XE?e[t]=Gs.keypoints[t]:Gs.keypoints[t]=e[t]}else Gs.keypoints[t]=e[t];return e}function ZE(e,t){var r,a;let n={};if(!((r=e==null?void 0:e.shape)!=null&&r[1])||!((a=e==null?void 0:e.shape)!=null&&a[2]))return e;Gs.padding=[[0,0],[e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0,e.shape[2]>e.shape[1]?Math.trunc((e.shape[2]-e.shape[1])/2):0],[e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0,e.shape[1]>e.shape[2]?Math.trunc((e.shape[1]-e.shape[2])/2):0],[0,0]],n.pad=sr(e,Gs.padding),n.resize=Ie.resizeBilinear(n.pad,[t,t]);let s=ye(n.resize,"int32");return Object.keys(n).forEach(o=>ee(n[o])),s}function YE(e,t){e.keypoints=e.keypoints.filter(s=>s==null?void 0:s.position);for(let s of e.keypoints)s.position=[s.position[0]*(t[0]+Gs.padding[2][0]+Gs.padding[2][1])/t[0]-Gs.padding[2][0],s.position[1]*(t[1]+Gs.padding[1][0]+Gs.padding[1][1])/t[1]-Gs.padding[1][0]],s.positionRaw=[s.position[0]/t[0],s.position[1]/t[1]];let n=Pa(e.keypoints.map(s=>s.position),t);return e.box=n.box,e.boxRaw=n.boxRaw,e}var hn,b1=0,E4=Number.MAX_SAFE_INTEGER,Eu={boxes:[],bodies:[],last:0};async function JE(e){var t;return fe.initial&&(hn=null),hn?e.debug&&ne("cached model:",hn.modelUrl):(m1(["size"],e),hn=await je(e.body.modelPath)),b1=(hn==null?void 0:hn.executor)&&((t=hn==null?void 0:hn.inputs)==null?void 0:t[0].shape)?hn.inputs[0].shape[2]:0,b1<64&&(b1=256),hn}function tbe(e,t,n){let s=e[0][0],r=[],a=0;for(let c=0;c<s.length;c++)if(a=s[c][2],a>t.body.minConfidence){let p=[s[c][1],s[c][0]];r.push({score:Math.round(100*a)/100,part:A1[c],positionRaw:p,position:[Math.round((n.shape[2]||0)*p[0]),Math.round((n.shape[1]||0)*p[1])]})}a=r.reduce((c,p)=>p.score>c?p.score:c,0);let o=[],i=Pa(r.map(c=>c.position),[n.shape[2],n.shape[1]]),l={};for(let[c,p]of Object.entries(x1)){let d=[];for(let h=0;h<p.length-1;h++){let f=r.find(g=>g.part===p[h]),m=r.find(g=>g.part===p[h+1]);f&&m&&f.score>(t.body.minConfidence||0)&&m.score>(t.body.minConfidence||0)&&d.push([f.position,m.position])}l[c]=d}let u={id:0,score:a,box:i.box,boxRaw:i.boxRaw,keypoints:r,annotations:l};return N4(u),o.push(u),o}function nbe(e,t,n){let s=[];for(let r=0;r<e[0].length;r++){let a=e[0][r],o=Math.round(100*a[51+4])/100;if(o>t.body.minConfidence){let i=[];for(let p=0;p<17;p++){let d=a[3*p+2];if(d>t.body.minConfidence){let h=[a[3*p+1],a[3*p+0]];i.push({part:A1[p],score:Math.round(100*d)/100,positionRaw:h,position:[Math.round((n.shape[2]||0)*h[0]),Math.round((n.shape[1]||0)*h[1])]})}}let l=Pa(i.map(p=>p.position),[n.shape[2],n.shape[1]]),u={};for(let[p,d]of Object.entries(x1)){let h=[];for(let f=0;f<d.length-1;f++){let m=i.find(y=>y.part===d[f]),g=i.find(y=>y.part===d[f+1]);m&&g&&m.score>(t.body.minConfidence||0)&&g.score>(t.body.minConfidence||0)&&h.push([m.position,g.position])}u[p]=h}let c={id:r,score:o,box:l.box,boxRaw:l.boxRaw,keypoints:[...i],annotations:u};N4(c),s.push(c)}}return s.sort((r,a)=>a.score-r.score),s.length>t.body.maxDetected&&(s.length=t.body.maxDetected),s}async function R4(e,t){var r;if(!(hn!=null&&hn.executor)||!((r=hn==null?void 0:hn.inputs)!=null&&r[0].shape))return[];t.skipAllowed||(Eu.boxes.length=0),E4++;let n=(t.body.skipTime||0)>le()-Eu.last,s=E4<(t.body.skipFrames||0);return t.skipAllowed&&n&&s?Eu.bodies:new Promise(async a=>{let o={};E4=0,o.input=ZE(e,b1),o.res=hn==null?void 0:hn.execute(o.input),Eu.last=le();let i=await o.res.array();Eu.bodies=o.res.shape[2]===17?tbe(i,t,e):nbe(i,t,e);for(let l of Eu.bodies)YE(l,[e.shape[2]||1,e.shape[1]||1]),KE(l.keypoints);Object.keys(o).forEach(l=>ee(o[l])),a(Eu.bodies)})}var kr,v1=[],eR=0,_4=Number.MAX_SAFE_INTEGER,k1=0,w1=2.5;async function tR(e){if(!kr||fe.initial){kr=await je(e.object.modelPath);let t=kr!=null&&kr.executor?Object.values(kr.modelSignature.inputs):void 0;k1=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):416}else e.debug&&ne("cached model:",kr.modelUrl);return kr}async function sbe(e,t,n){let s=0,r=[],a=k1;for(let u of[1,2,4]){let c=u*13,p=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)===Td.length)),d=await p.array(),h=rt(e.find(y=>y.shape[1]===c**2&&(y.shape[2]||0)<Td.length)),f=h.reshape([-1,4,h.shape[1]/4]),m=f.argMax(2),g=await m.array();for(let y=0;y<p.shape[0];y++)for(let x=0;x<p.shape[1];x++){let A=d[y][x];if(A>(n.object.minConfidence||0)&&x!==61){let b=(.5+Math.trunc(y%c))/c,w=(.5+Math.trunc(y/c))/c,k=g[y].map(M=>M*(c/u/a)),[C,E]=[b-w1/u*k[0],w-w1/u*k[1]],[_,$]=[b+w1/u*k[2]-C,w+w1/u*k[3]-E],R=[C,E,_,$];R=R.map(M=>Math.max(0,Math.min(M,1)));let P=[R[0]*t[0],R[1]*t[1],R[2]*t[0],R[3]*t[1]],S={id:s++,score:Math.round(100*A)/100,class:x+1,label:Td[x].label,box:P.map(M=>Math.trunc(M)),boxRaw:R};r.push(S)}}ee([p,h,f,m])}let o=r.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),i=r.map(u=>u.score),l=[];if(o&&o.length>0){let u=await Ie.nonMaxSuppressionAsync(o,i,n.object.maxDetected,n.object.iouThreshold,n.object.minConfidence);l=await u.data(),ee(u)}return r=r.filter((u,c)=>l.includes(c)).sort((u,c)=>c.score-u.score),r}async function D4(e,t){if(!(kr!=null&&kr.executor))return[];let n=(t.object.skipTime||0)>le()-eR,s=_4<(t.object.skipFrames||0);return t.skipAllowed&&n&&s&&v1.length>0?(_4++,v1):(_4=0,!fe.kernels.includes("mod")||!fe.kernels.includes("sparsetodense")?v1:new Promise(async r=>{let a=[e.shape[2]||0,e.shape[1]||0],o=Ie.resizeBilinear(e,[k1,k1],!1),i=me(o,at.tf255),l=tt(i,[0,3,1,2]),u;t.object.enabled&&(u=kr.execute(l)),eR=le();let c=await sbe(u,a,t);v1=c,ee([o,i,l,...u]),r(c)}))}var uf=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],rbe=uf.length,lf=uf.reduce((e,t,n)=>(e[t]=n,e),{}),abe=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],IIe=abe.map(([e,t])=>[lf[e],lf[t]]),sR=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function rR(e){let t=e.reduce(({maxX:n,maxY:s,minX:r,minY:a},{position:{x:o,y:i}})=>({maxX:Math.max(n,o),maxY:Math.max(s,i),minX:Math.min(r,o),minY:Math.min(a,i)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function aR(e,[t,n],[s,r]){let a=t/s,o=n/r,i=(u,c)=>({id:c,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/s,u.box[2]/r,u.box[3]/s],box:[Math.trunc(u.box[0]*o),Math.trunc(u.box[1]*a),Math.trunc(u.box[2]*o),Math.trunc(u.box[3]*a)],keypoints:u.keypoints.map(({score:p,part:d,position:h})=>({score:p,part:d,position:[Math.trunc(h.x*o),Math.trunc(h.y*a)],positionRaw:[h.x/s,h.y/s]})),annotations:{}});return e.map((u,c)=>i(u,c))}var S1=class{constructor(t,n){he(this,"priorityQueue");he(this,"numberOfElements");he(this,"getElementValue");this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let s=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=s}};function $4(e,t,n,s){return{y:s.get(e,t,n),x:s.get(e,t,n+rbe)}}function P4(e,t,n){let{heatmapY:s,heatmapX:r,id:a}=e,{y:o,x:i}=$4(s,r,a,n);return{x:e.heatmapX*t+i,y:e.heatmapY*t+o}}function F4(e,t,n){return e<t?t:e>n?n:e}function oR(e,t,n,s){let r=n-e,a=s-t;return r*r+a*a}function O4(e,t){return{x:e.x+t.x,y:e.y+t.y}}var Hs,ibe=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"],I1=1,Pd=16,lbe=50**2;function iR(e,t,n,s,r,a,o=2){let i=y=>({y:a.get(y.y,y.x,e),x:a.get(y.y,y.x,a.shape[2]/2+e)}),l=(y,x,A)=>({y:F4(Math.round(y.y/Pd),0,x-1),x:F4(Math.round(y.x/Pd),0,A-1)}),[u,c]=s.shape,p=l(t.position,u,c),d=i(p),f=O4(t.position,d);for(let y=0;y<o;y++){let x=l(f,u,c),A=$4(x.y,x.x,n,r);f=O4({x:x.x*Pd,y:x.y*Pd},{x:A.x,y:A.y})}let m=l(f,u,c),g=s.get(m.y,m.x,n);return{position:f,part:uf[n],score:g}}function ube(e,t,n,s,r){let a=sR.map(([d,h])=>[lf[d],lf[h]]),o=a.map(([,d])=>d),i=a.map(([d])=>d),l=t.shape[2],u=o.length,c=new Array(l),p=P4(e.part,Pd,n);c[e.part.id]={score:e.score,part:uf[e.part.id],position:p};for(let d=u-1;d>=0;--d){let h=o[d],f=i[d];c[h]&&!c[f]&&(c[f]=iR(d,c[h],f,t,n,r))}for(let d=0;d<u;++d){let h=i[d],f=o[d];c[h]&&!c[f]&&(c[f]=iR(d,c[h],f,t,n,s))}return c}function cbe(e,t,n,s,r){let[a,o]=r.shape,i=!0,l=Math.max(n-I1,0),u=Math.min(n+I1+1,a);for(let c=l;c<u;++c){let p=Math.max(s-I1,0),d=Math.min(s+I1+1,o);for(let h=p;h<d;++h)if(r.get(c,h,e)>t){i=!1;break}if(!i)break}return i}function dbe(e,t){let[n,s,r]=t.shape,a=new S1(n*s*r,({score:o})=>o);for(let o=0;o<n;++o)for(let i=0;i<s;++i)for(let l=0;l<r;++l){let u=t.get(o,i,l);u<e||cbe(l,u,o,i,t)&&a.enqueue({score:u,part:{heatmapY:o,heatmapX:i,id:l}})}return a}function lR(e,{x:t,y:n},s){return e.some(({keypoints:r})=>{var o;let a=(o=r[s])==null?void 0:o.position;return a?oR(n,t,a.y,a.x)<=lbe:!1})}function pbe(e,t){return t.reduce((s,{position:r,score:a},o)=>(lR(e,r,o)||(s+=a),s),0)/t.length}function hbe(e,t,n,s,r,a){let o=[],i=dbe(a,t);for(;o.length<r&&!i.empty();){let l=i.dequeue(),u=P4(l.part,Pd,e);if(lR(o,u,l.part.id))continue;let c=ube(l,t,e,n,s);c=c.filter(h=>h.score>a);let p=pbe(o,c),d=rR(c);p>a&&o.push({keypoints:c,box:d,score:Math.round(100*p)/100})}return o}async function M4(e,t){if(!(Hs!=null&&Hs.executor))return[];let n=Y(()=>{if(!Hs.inputs[0].shape)return[];let o=Ie.resizeBilinear(e,[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]),i=ge(me(ye(o,"float32"),127.5),1),u=Hs.execute(i,ibe).map(c=>rt(c,[0]));return u[1]=$n(u[1]),u}),s=await Promise.all(n.map(o=>o.buffer()));for(let o of n)ee(o);let r=hbe(s[0],s[1],s[2],s[3],t.body.maxDetected,t.body.minConfidence);return Hs.inputs[0].shape?aR(r,[e.shape[1],e.shape[2]],[Hs.inputs[0].shape[2],Hs.inputs[0].shape[1]]):[]}async function uR(e){return!Hs||fe.initial?Hs=await je(e.body.modelPath):e.debug&&ne("cached model:",Hs.modelUrl),Hs}var ca,z4=!1;async function L4(e){return!ca||fe.initial?ca=await je(e.segmentation.modelPath):e.debug&&ne("cached model:",ca.modelUrl),ca}async function dR(e,t,n){var m,g;if(z4)return{data:[],canvas:null,alpha:null};z4=!0,ca||await L4(n);let s=await kd(e,n),r=((m=s.tensor)==null?void 0:m.shape[2])||0,a=((g=s.tensor)==null?void 0:g.shape[1])||0;if(!s.tensor)return{data:[],canvas:null,alpha:null};let o={};o.resize=Ie.resizeBilinear(s.tensor,[ca.inputs[0].shape?ca.inputs[0].shape[1]:0,ca.inputs[0].shape?ca.inputs[0].shape[2]:0],!1),ee(s.tensor),o.norm=me(o.resize,at.tf255),o.res=ca.execute(o.norm),o.squeeze=rt(o.res,0),o.squeeze.shape[2]===2?(o.softmax=uu(o.squeeze),[o.bg,o.fg]=On(o.softmax,2),o.expand=Bt(o.fg,2),o.pad=Bt(o.expand,0),o.crop=Ie.cropAndResize(o.pad,[[0,0,.5,.5]],[0],[r,a]),o.data=rt(o.crop,0)):o.data=Ie.resizeBilinear(o.squeeze,[a,r]);let i=Array.from(await o.data.data());if(fe.node&&!fe.Canvas&&typeof ImageData=="undefined")return n.debug&&ne("canvas support missing"),Object.keys(o).forEach(y=>ee(o[y])),{data:i,canvas:null,alpha:null};let l=ds(r,a);nr&&await nr.toPixels(o.data,l);let u=l.getContext("2d");n.segmentation.blur&&n.segmentation.blur>0&&(u.filter=`blur(${n.segmentation.blur}px)`);let c=u.getImageData(0,0,r,a),p=ds(r,a),d=p.getContext("2d");s.canvas&&d.drawImage(s.canvas,0,0),d.globalCompositeOperation="darken",n.segmentation.blur&&n.segmentation.blur>0&&(d.filter=`blur(${n.segmentation.blur}px)`),d.drawImage(l,0,0),d.globalCompositeOperation="source-over",d.filter="none";let h=d.getImageData(0,0,r,a);for(let y=0;y<r*a;y++)h.data[4*y+3]=c.data[4*y+0];d.putImageData(h,0,0);let f=null;if(t&&p){f=ds(r,a);let y=await kd(t,n);ee(y.tensor);let x=f.getContext("2d");x.drawImage(y.canvas,0,0,f.width,f.height),x.drawImage(p,0,0)}return Object.keys(o).forEach(y=>ee(o[y])),z4=!1,{data:i,canvas:p,alpha:l}}var cf=class{constructor(){he(this,"ssrnetage",null);he(this,"gear",null);he(this,"blazeposedetect",null);he(this,"blazepose",null);he(this,"centernet",null);he(this,"efficientpose",null);he(this,"mobilefacenet",null);he(this,"insightface",null);he(this,"emotion",null);he(this,"facedetect",null);he(this,"faceiris",null);he(this,"facemesh",null);he(this,"faceres",null);he(this,"ssrnetgender",null);he(this,"handpose",null);he(this,"handskeleton",null);he(this,"handtrack",null);he(this,"liveness",null);he(this,"movenet",null);he(this,"nanodet",null);he(this,"posenet",null);he(this,"segmentation",null);he(this,"antispoof",null)}},B4=e=>{let t=0,n=0,s=0;for(let a of Object.values(Sr))t+=a.sizeFromManifest,n+=a.sizeLoadedWeights,s+=a.sizeDesired;let r=s>0?n/s:0;return{numLoadedModels:Object.values(Sr).length,numEnabledModels:void 0,numDefinedModels:Object.keys(e.models).length,percentageLoaded:r,totalSizeFromManifest:t,totalSizeWeights:n,totalSizeLoading:s,totalSizeEnabled:void 0,modelStats:Object.values(Sr)}};function f1(e){for(let t of Object.keys(e.models))e.models[t]=null}async function W4(e){var t,n,s,r,a,o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,C,E,_,$;fe.initial&&f1(e),e.config.hand.enabled&&(!e.models.handpose&&((n=(t=e.config.hand.detector)==null?void 0:t.modelPath)==null?void 0:n.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await x4(e.config)),!e.models.handskeleton&&e.config.hand.landmarks&&((r=(s=e.config.hand.detector)==null?void 0:s.modelPath)==null?void 0:r.includes("handdetect"))&&([e.models.handpose,e.models.handskeleton]=await x4(e.config))),e.config.body.enabled&&!e.models.blazepose&&((a=e.config.body.modelPath)==null?void 0:a.includes("blazepose"))&&(e.models.blazepose=EN(e.config)),e.config.body.enabled&&!e.models.blazeposedetect&&e.config.body.detector&&e.config.body.detector.modelPath&&(e.models.blazeposedetect=NN(e.config)),e.config.body.enabled&&!e.models.efficientpose&&((o=e.config.body.modelPath)==null?void 0:o.includes("efficientpose"))&&(e.models.efficientpose=FN(e.config)),e.config.body.enabled&&!e.models.movenet&&((i=e.config.body.modelPath)==null?void 0:i.includes("movenet"))&&(e.models.movenet=JE(e.config)),e.config.body.enabled&&!e.models.posenet&&((l=e.config.body.modelPath)==null?void 0:l.includes("posenet"))&&(e.models.posenet=uR(e.config)),e.config.face.enabled&&!e.models.facedetect&&(e.models.facedetect=xN(e.config)),e.config.face.enabled&&((u=e.config.face.antispoof)==null?void 0:u.enabled)&&!e.models.antispoof&&(e.models.antispoof=oN(e.config)),e.config.face.enabled&&((c=e.config.face.liveness)==null?void 0:c.enabled)&&!e.models.liveness&&(e.models.liveness=jE(e.config)),e.config.face.enabled&&((p=e.config.face.description)==null?void 0:p.enabled)&&!e.models.faceres&&(e.models.faceres=dE(e.config)),e.config.face.enabled&&((d=e.config.face.emotion)==null?void 0:d.enabled)&&!e.models.emotion&&(e.models.emotion=LN(e.config)),e.config.face.enabled&&((h=e.config.face.iris)==null?void 0:h.enabled)&&!((f=e.config.face.attention)!=null&&f.enabled)&&!e.models.faceiris&&(e.models.faceiris=eE(e.config)),e.config.face.enabled&&((m=e.config.face.mesh)==null?void 0:m.enabled)&&!e.models.facemesh&&(e.models.facemesh=oE(e.config)),e.config.face.enabled&&((g=e.config.face.gear)==null?void 0:g.enabled)&&!e.models.gear&&(e.models.gear=qT(e.config)),e.config.face.enabled&&((y=e.config.face.ssrnet)==null?void 0:y.enabled)&&!e.models.ssrnetage&&(e.models.ssrnetage=JT(e.config)),e.config.face.enabled&&((x=e.config.face.ssrnet)==null?void 0:x.enabled)&&!e.models.ssrnetgender&&(e.models.ssrnetgender=nN(e.config)),e.config.face.enabled&&((A=e.config.face.mobilefacenet)==null?void 0:A.enabled)&&!e.models.mobilefacenet&&(e.models.mobilefacenet=GN(e.config)),e.config.face.enabled&&((b=e.config.face.insightface)==null?void 0:b.enabled)&&!e.models.insightface&&(e.models.insightface=KN(e.config)),e.config.hand.enabled&&!e.models.handtrack&&((k=(w=e.config.hand.detector)==null?void 0:w.modelPath)==null?void 0:k.includes("handtrack"))&&(e.models.handtrack=WE(e.config)),e.config.hand.enabled&&e.config.hand.landmarks&&!e.models.handskeleton&&((E=(C=e.config.hand.detector)==null?void 0:C.modelPath)==null?void 0:E.includes("handtrack"))&&(e.models.handskeleton=VE(e.config)),e.config.object.enabled&&!e.models.centernet&&((_=e.config.object.modelPath)==null?void 0:_.includes("centernet"))&&(e.models.centernet=DN(e.config)),e.config.object.enabled&&!e.models.nanodet&&(($=e.config.object.modelPath)==null?void 0:$.includes("nanodet"))&&(e.models.nanodet=tR(e.config)),e.config.segmentation.enabled&&!e.models.segmentation&&(e.models.segmentation=L4(e.config));for await(let R of Object.keys(e.models))e.models[R]&&typeof e.models[R]!="undefined"&&(e.models[R]=await e.models[R])}var ir;function Fd(e,t,n){var u;if(e&&(ir=e),!t||(ir||ne("instance not registred"),!ir.config.validateModels))return null;let s=["const","placeholder","noop","pad","squeeze","add","sub","mul","div"],r=["biasadd","fusedbatchnormv3","matmul"],a=[],o=[],i=t.modelUrl,l=t.executor;if((u=l==null?void 0:l.graph)!=null&&u.nodes)for(let c of Object.values(l.graph.nodes)){let p=c.op.toLowerCase();a.includes(p)||a.push(p)}else!l&&ir.config.debug&&ne("model not loaded",n);for(let c of a)!s.includes(c)&&!r.includes(c)&&!ir.env.kernels.includes(c)&&!ir.env.kernels.includes(c.replace("_",""))&&!ir.env.kernels.includes(c.replace("native",""))&&!ir.env.kernels.includes(c.replace("v2",""))&&o.push(c);return ir.config.debug&&o.length>0&&ne("model validation failed:",n,o),o.length>0?{name:n,missing:o,ops:a,url:i}:null}function C1(e){ir=e;let t=[];for(let n of Object.keys(ir.models)){let s=ir.models[n];if(!s)continue;let r=Fd(ir,s,n);r&&t.push(r)}return t}var fs={cacheModels:!0,cacheSupported:!0,verbose:!0,debug:!1,modelBasePath:""},Sr={};async function fbe(e,t){return fs.debug&&ne("load model fetch:",e,t),fetch(e,t)}function hR(e){fs.cacheModels=e.cacheModels,fs.verbose=e.debug,fs.modelBasePath=e.modelBasePath}async function je(e){var u,c,p,d;let t=Iv(fs.modelBasePath,e||"");t.toLowerCase().endsWith(".json")||(t+=".json");let n=t.includes("/")?t.split("/"):t.split("\\"),s=n[n.length-1].replace(".json",""),r="indexeddb://"+s;Sr[s]={name:s,sizeFromManifest:0,sizeLoadedWeights:0,sizeDesired:Tb[s],inCache:!1},fs.cacheSupported=typeof indexedDB!="undefined";let a={};try{a=fs.cacheSupported&&fs.cacheModels?await _s.listModels():{}}catch(h){fs.cacheSupported=!1}Sr[s].inCache=fs.cacheSupported&&fs.cacheModels&&Object.keys(a).includes(r);let o=typeof fetch=="undefined"?{}:{fetchFunc:(h,f)=>fbe(h,f)},i=new Wh(Sr[s].inCache?r:t,o),l=!1;try{i.findIOHandler(),fs.debug&&ne("model load handler:",i.handler)}catch(h){ne("error finding model i/o handler:",t,h)}try{let h=await((u=i.handler)==null?void 0:u.load())||null;Sr[s].sizeFromManifest=((c=h==null?void 0:h.weightData)==null?void 0:c.byteLength)||0,h?i.loadSync(h):i=await Fx(Sr[s].inCache?r:t,o),Sr[s].sizeLoadedWeights=((d=(p=i.artifacts)==null?void 0:p.weightData)==null?void 0:d.byteLength)||0,fs.verbose&&ne("load:",{model:s,url:i.modelUrl,bytes:Sr[s].sizeLoadedWeights}),l=!0}catch(h){ne("error loading model:",t,h)}if(l&&fs.cacheModels&&fs.cacheSupported&&!Sr[s].inCache)try{let h=await i.save(r);fs.debug&&ne("model saved:",r,h)}catch(h){ne("error saving model:",t,h)}return Fd(null,i,`${e||""}`),i}var V4="2.11.0";var K4={};ma(K4,{all:()=>X4,body:()=>Md,canvas:()=>q4,face:()=>Od,gesture:()=>Bd,hand:()=>zd,object:()=>Ld,options:()=>Xn,person:()=>j4});var lr=e=>{if(!e)ne("draw error: invalid canvas");else if(!e.getContext)ne("draw error: canvas context not defined");else{let t=e.getContext("2d");if(!t)ne("draw error: cannot get canvas context");else return t}return null},Ru=e=>Math.round(e*180/Math.PI),za=(e,t)=>{if(!t.useDepth||typeof e=="undefined")return t.color;let n=Uint8ClampedArray.from([127+2*e,127-2*e,255]);return`rgba(${n[0]}, ${n[1]}, ${n[2]}, ${t.alpha})`};function La(e,t,n,s,r){e.fillStyle=za(s,r),e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function da(e,t,n,s,r,a){if(e.beginPath(),e.lineWidth=a.lineWidth,a.useCurves){let o=(t+t+s)/2,i=(n+n+r)/2;e.ellipse(o,i,s/2,r/2,0,0,2*Math.PI)}else e.moveTo(t+a.roundRect,n),e.lineTo(t+s-a.roundRect,n),e.quadraticCurveTo(t+s,n,t+s,n+a.roundRect),e.lineTo(t+s,n+r-a.roundRect),e.quadraticCurveTo(t+s,n+r,t+s-a.roundRect,n+r),e.lineTo(t+a.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-a.roundRect),e.lineTo(t,n+a.roundRect),e.quadraticCurveTo(t,n,t+a.roundRect,n),e.closePath();e.stroke()}function U4(e,t,n){if(!(t.length<2)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let s of t)e.strokeStyle=za(s[2]||0,n),e.lineTo(Math.trunc(s[0]),Math.trunc(s[1]));e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function fR(e,t,n){if(!(t.length<2)){if(e.lineWidth=n.lineWidth,!n.useCurves||t.length<=2){U4(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let s=0;s<t.length-2;s++){let r=(t[s][0]+t[s+1][0])/2,a=(t[s][1]+t[s+1][1])/2;e.quadraticCurveTo(t[s][0],t[s][1],r,a)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function G4(e,t,n,s=5){let r,a,o;e.beginPath(),e.moveTo(t[0],t[1]),e.lineTo(n[0],n[1]),r=Math.atan2(n[1]-t[1],n[0]-t[0]),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.moveTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),r+=1/3*(2*Math.PI),a=s*Math.cos(r)+n[0],o=s*Math.sin(r)+n[1],e.lineTo(a,o),e.closePath(),e.stroke(),e.fill()}var Xn={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",alpha:.5,font:'small-caps 16px "Segoe UI"',lineHeight:18,lineWidth:4,pointSize:2,roundRect:8,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawAttention:!0,drawGestures:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1};var ft;function ybe(e,t){var n,s;if(ft.drawLabels){let r=[];if(r.push(`face: ${Math.trunc(100*e.score)}%`),e.genderScore&&r.push(`${e.gender||""} ${Math.trunc(100*e.genderScore)}%`),e.age&&r.push(`age: ${e.age||""}`),e.iris&&r.push(`distance: ${e.iris}`),e.real&&r.push(`real: ${Math.trunc(100*e.real)}%`),e.live&&r.push(`live: ${Math.trunc(100*e.live)}%`),e.emotion&&e.emotion.length>0){let a=e.emotion.map(o=>`${Math.trunc(100*o.score)}% ${o.emotion}`);a.length>3&&(a.length=3),r.push(a.join(" "))}((n=e.rotation)==null?void 0:n.angle)&&((s=e.rotation)==null?void 0:s.gaze)&&(e.rotation.angle.roll&&r.push(`roll: ${Ru(e.rotation.angle.roll)}\xB0 yaw:${Ru(e.rotation.angle.yaw)}\xB0 pitch:${Ru(e.rotation.angle.pitch)}\xB0`),e.rotation.gaze.bearing&&r.push(`gaze: ${Ru(e.rotation.gaze.bearing)}\xB0`)),r.length===0&&r.push("face"),t.fillStyle=ft.color;for(let a=r.length-1;a>=0;a--){let o=Math.max(e.box[0],0),i=a*ft.lineHeight+e.box[1];ft.shadowColor&&ft.shadowColor!==""&&(t.fillStyle=ft.shadowColor,t.fillText(r[a],o+5,i+16)),t.fillStyle=ft.labelColor,t.fillText(r[a],o+4,i+15)}}}function Abe(e,t){var n,s,r,a;if(((n=e.annotations)==null?void 0:n.leftEyeIris)&&((s=e.annotations)==null?void 0:s.leftEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.leftEyeIris[3][0]-e.annotations.leftEyeIris[1][0])/2,i=Math.abs(e.annotations.leftEyeIris[4][1]-e.annotations.leftEyeIris[2][1])/2;t.ellipse(e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}if(((r=e.annotations)==null?void 0:r.rightEyeIris)&&((a=e.annotations)==null?void 0:a.rightEyeIris[0])){t.strokeStyle=ft.useDepth?"rgba(255, 200, 255, 0.3)":ft.color,t.beginPath();let o=Math.abs(e.annotations.rightEyeIris[3][0]-e.annotations.rightEyeIris[1][0])/2,i=Math.abs(e.annotations.rightEyeIris[4][1]-e.annotations.rightEyeIris[2][1])/2;t.ellipse(e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1],o,i,0,0,2*Math.PI),t.stroke(),ft.fillPolygons&&(t.fillStyle=ft.useDepth?"rgba(255, 255, 200, 0.3)":ft.color,t.fill())}}function xbe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.angle)&&typeof Path2D!="undefined"){t.strokeStyle="pink";let s=e.box[0]+e.box[2]/2-e.box[3]*Ru(e.rotation.angle.yaw)/90,r=e.box[1]+e.box[3]/2+e.box[2]*Ru(e.rotation.angle.pitch)/90,a=new Path2D(`
M ${e.box[0]+e.box[2]/2} ${e.box[1]}
C
${s} ${e.box[1]},
${s} ${e.box[1]+e.box[3]},
${e.box[0]+e.box[2]/2} ${e.box[1]+e.box[3]}
`),o=new Path2D(`
M ${e.box[0]} ${e.box[1]+e.box[3]/2}
C
${e.box[0]} ${r},
${e.box[0]+e.box[2]} ${r},
${e.box[0]+e.box[2]} ${e.box[1]+e.box[3]/2}
`);t.stroke(o),t.stroke(a)}}function bbe(e,t){var n;if(ft.drawGaze&&((n=e.rotation)==null?void 0:n.gaze.strength)&&e.rotation.gaze.bearing&&e.annotations.leftEyeIris&&e.annotations.rightEyeIris&&e.annotations.leftEyeIris[0]&&e.annotations.rightEyeIris[0]){t.strokeStyle="pink",t.fillStyle="pink";let s=[e.annotations.leftEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.leftEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];G4(t,[e.annotations.leftEyeIris[0][0],e.annotations.leftEyeIris[0][1]],[s[0],s[1]],4);let r=[e.annotations.rightEyeIris[0][0]+Math.sin(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[3],e.annotations.rightEyeIris[0][1]+Math.cos(e.rotation.gaze.bearing)*e.rotation.gaze.strength*e.box[2]];G4(t,[e.annotations.rightEyeIris[0][0],e.annotations.rightEyeIris[0][1]],[r[0],r[1]],4)}}function vbe(e,t){if(ft.drawPolygons&&e.mesh.length>=468){t.lineWidth=1;for(let n=0;n<xu.length/3;n++){let s=[xu[n*3+0],xu[n*3+1],xu[n*3+2]].map(r=>e.mesh[r]);U4(t,s,ft)}Abe(e,t)}}function wbe(e,t){if(ft.drawPoints&&e.mesh.length>=468)for(let n=0;n<e.mesh.length;n++)La(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2],ft),ft.drawAttention&&(nf.includes(n)&&La(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]+127,ft),wu.includes(n)&&La(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft),ku.includes(n)&&La(t,e.mesh[n][0],e.mesh[n][1],e.mesh[n][2]-127,ft))}function kbe(e,t){ft.drawBoxes&&da(t,e.box[0],e.box[1],e.box[2],e.box[3],ft)}function Od(e,t,n){if(ft=Xt(Xn,n),!t||!e)return;let s=lr(e);if(!!s){s.font=ft.font,s.strokeStyle=ft.color,s.fillStyle=ft.color;for(let r of t)kbe(r,s),ybe(r,s),r.mesh&&r.mesh.length>0&&(wbe(r,s),vbe(r,s),xbe(r,s),bbe(r,s))}}function Md(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round";for(let a=0;a<t.length;a++){if(r.strokeStyle=s.color,r.fillStyle=s.color,r.lineWidth=s.lineWidth,r.font=s.font,s.drawBoxes&&t[a].box&&t[a].box.length===4&&(da(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(`body ${100*t[a].score}%`,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2]))),s.drawPoints&&t[a].keypoints)for(let o=0;o<t[a].keypoints.length;o++)!t[a].keypoints[o].score||t[a].keypoints[o].score===0||(r.fillStyle=za(t[a].keypoints[o].position[2],s),La(r,t[a].keypoints[o].position[0],t[a].keypoints[o].position[1],0,s));if(s.drawLabels&&t[a].keypoints){r.font=s.font;for(let o of t[a].keypoints)!o.score||o.score===0||(r.fillStyle=za(o.position[2],s),r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4))}if(s.drawPolygons&&t[a].keypoints&&t[a].annotations)for(let o of Object.values(t[a].annotations))for(let i of o)fR(r,i,s)}}}function zd(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t){if(s.drawBoxes&&(r.strokeStyle=s.color,r.fillStyle=s.color,da(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels&&(s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(`hand:${Math.trunc(100*a.score)}%`,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])),r.stroke()),s.drawPoints&&a.keypoints&&a.keypoints.length>0)for(let o of a.keypoints)r.fillStyle=za(o[2],s),La(r,o[0],o[1],0,s);if(s.drawLabels&&a.annotations){let o=(i,l)=>{if(!i||i.length===0||!i[0])return;let u=i[i.length-1][2]||-256;r.fillStyle=za(u,s),r.fillText(l,i[i.length-1][0]+4,i[i.length-1][1]+4)};r.font=s.font,o(a.annotations.index,"index"),o(a.annotations.middle,"middle"),o(a.annotations.ring,"ring"),o(a.annotations.pinky,"pinky"),o(a.annotations.thumb,"thumb"),o(a.annotations.palm,"palm")}if(s.drawPolygons&&a.annotations){let o=i=>{if(!(!i||i.length===0||!i[0]))for(let l=0;l<i.length;l++){r.beginPath();let u=i[l][2]||0;r.strokeStyle=za(l*u,s),r.moveTo(i[l>0?l-1:0][0],i[l>0?l-1:0][1]),r.lineTo(i[l][0],i[l][1]),r.stroke()}};r.lineWidth=s.lineWidth,o(a.annotations.index),o(a.annotations.middle),o(a.annotations.ring),o(a.annotations.pinky),o(a.annotations.thumb)}}}}function Ld(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a of t)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,da(r,a.box[0],a.box[1],a.box[2],a.box[3],s),s.drawLabels){let o=`${a.label} ${Math.round(100*a.score)}%`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,a.box[0]+3,1+a.box[1]+s.lineHeight,a.box[2])),r.fillStyle=s.labelColor,r.fillText(o,a.box[0]+2,0+a.box[1]+s.lineHeight,a.box[2])}r.stroke()}}}function Bd(e,t,n){let s=Xt(Xn,n);if(!(!t||!e)&&s.drawGestures){let r=lr(e);if(!r)return;r.font=s.font,r.fillStyle=s.color;let a=1;for(let o=0;o<t.length;o++){let i=[],l=[];if([i,l]=Object.entries(t[o]),l.length>1&&l[1].length>0){let u=i[1]>0?`#${i[1]}`:"",c=`${i[0]} ${u}: ${l[1]}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(c,8,2+a*s.lineHeight)),r.fillStyle=s.labelColor,r.fillText(c,6,0+a*s.lineHeight),a+=1}}}}var H4=0;function j4(e,t,n){let s=Xt(Xn,n);if(!t||!e)return;let r=lr(e);if(!!r){r.lineJoin="round",r.font=s.font;for(let a=0;a<t.length;a++)if(s.drawBoxes){if(r.strokeStyle=s.color,r.fillStyle=s.color,da(r,t[a].box[0],t[a].box[1],t[a].box[2],t[a].box[3],s),s.drawLabels){let o=`person #${a}`;s.shadowColor&&s.shadowColor!==""&&(r.fillStyle=s.shadowColor,r.fillText(o,t[a].box[0]+3,1+t[a].box[1]+s.lineHeight,t[a].box[2])),r.fillStyle=s.labelColor,r.fillText(o,t[a].box[0]+2,0+t[a].box[1]+s.lineHeight,t[a].box[2])}r.stroke()}}}function q4(e,t){if(!e||!t)return;let n=lr(t);!n||n.drawImage(e,0,0)}async function X4(e,t,n){if(!(t!=null&&t.performance)||!e)return null;let s=le(),r=Xt(Xn,n),a=Promise.all([Od(e,t.face,r),Md(e,t.body,r),zd(e,t.hand,r),Ld(e,t.object,r),Bd(e,t.gesture,r)]);return H4=fe.perfadd?H4+Math.round(le()-s):Math.round(le()-s),t.performance.draw=H4,a}var Wd=.1,Z4=.5;function Sbe(e,t,n){let s=!1,r=n.length-1;for(let a=0;a<n.length;r=a++)n[a].y>t!=n[r].y>t&&e<(n[r].x-n[a].x)*(t-n[a].y)/(n[r].y-n[a].y)+n[a].x&&(s=!s);return s}async function mR(e){if(!e.tensor||!e.mesh||e.mesh.length<100)return e.tensor;let t=e.tensor.shape[2]||0,n=e.tensor.shape[1]||0,s=await e.tensor.buffer(),r=[];for(let o of wr.silhouette)r.push({x:(e.mesh[o][0]-e.box[0])/e.box[2],y:(e.mesh[o][1]-e.box[1])/e.box[3]});Wd&&Wd>0&&(r=r.map(o=>({x:o.x>.5?o.x+Wd:o.x-Wd,y:o.y>.5?o.y+Wd:o.y-Wd})));for(let o=0;o<t;o++)for(let i=0;i<n;i++)Sbe(o/t,i/t,r)||(s.set(Z4*s.get(0,i,o,0),0,i,o,0),s.set(Z4*s.get(0,i,o,1),0,i,o,1),s.set(Z4*s.get(0,i,o,2),0,i,o,2));let a=s.toTensor();return ee(s),a}var Cbe=e=>{let t=(p,d)=>Math.atan2(p[1]-d[1],p[0]-d[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],s=1,r=(e.mesh[33][2]||0)>(e.mesh[263][2]||0),a=r?e.mesh[473]:e.mesh[468],o=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],i=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(o[0]-a[0])/i[0]-n[0],s*(a[1]-o[1])/i[1]-n[1]],u=Math.sqrt(l[0]*l[0]+l[1]*l[1]);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},gR=(e,t)=>{let n=m=>{let g=Math.sqrt(m[0]*m[0]+m[1]*m[1]+m[2]*m[2]);return m[0]/=g,m[1]/=g,m[2]/=g,m},s=(m,g)=>{let y=m[0]-g[0],x=m[1]-g[1],A=m[2]-g[2];return[y,x,A]},r=(m,g)=>{let y=m[1]*g[2]-m[2]*g[1],x=m[2]*g[0]-m[0]*g[2],A=m[0]*g[1]-m[1]*g[0];return[y,x,A]},a=m=>{let[g,y,x,A,b,w,k,C,E]=m,_,$,R;return A<1?A>-1?(R=Math.asin(A),$=Math.atan2(-k,g),_=Math.atan2(-w,b)):(R=-Math.PI/2,$=-Math.atan2(C,E),_=0):(R=Math.PI/2,$=Math.atan2(C,E),_=0),Number.isNaN(_)&&(_=0),Number.isNaN($)&&($=0),Number.isNaN(R)&&(R=0),{pitch:2*-_,yaw:2*-$,roll:2*-R}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let i=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,l=[o[10],o[152],o[234],o[454]].map(m=>[m[0]*t[0]/i,m[1]*t[1]/i,m[2]]),u=n(s(l[1],l[0])),c=n(s(l[3],l[2])),p=n(r(c,u));c=r(u,p);let d=[c[0],c[1],c[2],u[0],u[1],u[2],p[0],p[1],p[2]],h=a(d),f=o.length===478?Cbe(e):{bearing:0,strength:0};return{angle:h,matrix:d,gaze:f}};var Y4=async(e,t)=>{var f,m,g,y,x,A,b,w,k,C,E,_,$,R,P,S,M,L,U,K,q,Z,J,Q,ie,re,de,ue,Ae;let n=le(),s,r,a,o,i,l,u,c,p,d=[];e.state="run:face";let h=await aE(t,e.config);if(e.performance.face=fe.perfadd?(e.performance.face||0)+Math.trunc(le()-n):Math.trunc(le()-n),!t.shape||t.shape.length!==4)return[];if(!h)return[];for(let oe=0;oe<h.length;oe++){if(e.analyze("Get Face"),!h[oe].tensor||h[oe].tensor.isDisposedInternal){ne("Face object is disposed:",h[oe].tensor);continue}if((f=e.config.face.detector)!=null&&f.mask){let it=await mR(h[oe]);ee(h[oe].tensor),it&&(h[oe].tensor=it)}let Re=h[oe].mesh&&h[oe].mesh.length>200?gR(h[oe],[t.shape[2],t.shape[1]]):null;e.analyze("Start Emotion:"),e.config.async?o=(m=e.config.face.emotion)!=null&&m.enabled?n4(h[oe].tensor||ct([]),e.config,oe,h.length):[]:(e.state="run:emotion",n=le(),o=(g=e.config.face.emotion)!=null&&g.enabled?await n4(h[oe].tensor||ct([]),e.config,oe,h.length):[],e.performance.emotion=fe.perfadd?(e.performance.emotion||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Emotion:"),e.analyze("Start AntiSpoof:"),e.config.async?u=(y=e.config.face.antispoof)!=null&&y.enabled?Mb(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:antispoof",n=le(),u=(x=e.config.face.antispoof)!=null&&x.enabled?await Mb(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.antispoof=fe.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End AntiSpoof:"),e.analyze("Start Liveness:"),e.config.async?c=(A=e.config.face.liveness)!=null&&A.enabled?S4(h[oe].tensor||ct([]),e.config,oe,h.length):0:(e.state="run:liveness",n=le(),c=(b=e.config.face.liveness)!=null&&b.enabled?await S4(h[oe].tensor||ct([]),e.config,oe,h.length):0,e.performance.liveness=fe.perfadd?(e.performance.antispoof||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Liveness:"),e.analyze("Start GEAR:"),e.config.async?r=(w=e.config.face.gear)!=null&&w.enabled?Rb(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:gear",n=le(),r=(k=e.config.face.gear)!=null&&k.enabled?await Rb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.gear=Math.trunc(le()-n)),e.analyze("End GEAR:"),e.analyze("Start SSRNet:"),e.config.async?(s=(C=e.config.face.ssrnet)!=null&&C.enabled?Db(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=(E=e.config.face.ssrnet)!=null&&E.enabled?Fb(h[oe].tensor||ct([]),e.config,oe,h.length):null):(e.state="run:ssrnet",n=le(),s=(_=e.config.face.ssrnet)!=null&&_.enabled?await Db(h[oe].tensor||ct([]),e.config,oe,h.length):null,a=($=e.config.face.ssrnet)!=null&&$.enabled?await Fb(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.ssrnet=Math.trunc(le()-n)),e.analyze("End SSRNet:"),e.analyze("Start MobileFaceNet:"),e.config.async?i=(R=e.config.face.mobilefacenet)!=null&&R.enabled?r4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),i=(P=e.config.face.mobilefacenet)!=null&&P.enabled?await r4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End MobileFaceNet:"),e.analyze("Start InsightFace:"),e.config.async?l=(S=e.config.face.insightface)!=null&&S.enabled?o4(h[oe].tensor||ct([]),e.config,oe,h.length):null:(e.state="run:mobilefacenet",n=le(),l=(M=e.config.face.insightface)!=null&&M.enabled?await o4(h[oe].tensor||ct([]),e.config,oe,h.length):null,e.performance.mobilefacenet=Math.trunc(le()-n)),e.analyze("End InsightFace:"),e.analyze("Start Description:"),e.config.async?p=p4(h[oe].tensor||ct([]),e.config,oe,h.length):(e.state="run:description",n=le(),p=await p4(h[oe].tensor||ct([]),e.config,oe,h.length),e.performance.description=fe.perfadd?(e.performance.description||0)+Math.trunc(le()-n):Math.trunc(le()-n)),e.analyze("End Description:"),e.config.async&&([s,a,o,i,l,p,r,u,c]=await Promise.all([s,a,o,i,l,p,r,u,c])),e.analyze("Finish Face:"),((L=e.config.face.ssrnet)==null?void 0:L.enabled)&&s&&a&&(p={...p,age:s.age,gender:a.gender,genderScore:a.genderScore}),((U=e.config.face.gear)==null?void 0:U.enabled)&&r&&(p={...p,age:r.age,gender:r.gender,genderScore:r.genderScore,race:r.race}),((K=e.config.face.mobilefacenet)==null?void 0:K.enabled)&&i&&(p.descriptor=i),((q=e.config.face.insightface)==null?void 0:q.enabled)&&l&&(p.descriptor=l),(Z=e.config.face.iris)!=null&&Z.enabled;let _e=((ie=(Q=(J=h[oe])==null?void 0:J.annotations)==null?void 0:Q.leftEyeIris)==null?void 0:ie[0])&&((ue=(de=(re=h[oe])==null?void 0:re.annotations)==null?void 0:de.rightEyeIris)==null?void 0:ue[0])&&h[oe].annotations.leftEyeIris.length>0&&h[oe].annotations.rightEyeIris.length>0&&h[oe].annotations.leftEyeIris[0]!==null&&h[oe].annotations.rightEyeIris[0]!==null?Math.max(Math.abs(h[oe].annotations.leftEyeIris[3][0]-h[oe].annotations.leftEyeIris[1][0]),Math.abs(h[oe].annotations.rightEyeIris[4][1]-h[oe].annotations.rightEyeIris[2][1]))/t.shape[2]:0,Ve=(Ae=e.config.face.detector)!=null&&Ae.return?rt(h[oe].tensor):null;ee(h[oe].tensor),h[oe].tensor&&delete h[oe].tensor;let Me={...h[oe],id:oe};p.age&&(Me.age=p.age),p.gender&&(Me.gender=p.gender),p.genderScore&&(Me.genderScore=p.genderScore),p.descriptor&&(Me.embedding=p.descriptor),p.race&&(Me.race=p.race),o&&(Me.emotion=o),u&&(Me.real=u),c&&(Me.live=c),_e&&_e!==0&&(Me.iris=Math.trunc(500/_e/11.7)/100),Re&&(Me.rotation=Re),Ve&&(Me.tensor=Ve),d.push(Me),e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),d};var yR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),a=e[n].keypoints.find(l=>l.part==="nose");a&&s&&r&&s.position[1]<a.position[1]&&r.position[1]<a.position[1]?t.push({body:n,gesture:"i give up"}):a&&s&&s.position[1]<a.position[1]?t.push({body:n,gesture:"raise left hand"}):a&&r&&r.position[1]<a.position[1]&&t.push({body:n,gesture:"raise right hand"});let o=e[n].keypoints.find(l=>l.part==="leftShoulder"),i=e[n].keypoints.find(l=>l.part==="rightShoulder");o&&i&&Math.abs(o.positionRaw[1]-i.positionRaw[1])>.1&&t.push({body:n,gesture:`leaning ${o.position[1]>i.position[1]?"left":"right"}`})}return t},AR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>450){let s=(e[n].mesh[33][2]||0)-(e[n].mesh[263][2]||0),r=e[n].mesh[33][0]-e[n].mesh[263][0];Math.abs(s/r)<=.15?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${s<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let l=e[n].mesh[152][2]||0;Math.abs(l)>10&&t.push({face:n,gesture:`head ${l<0?"up":"down"}`})}return t},xR=e=>{var n,s,r,a;if(!e)return[];let t=[];for(let o=0;o<e.length;o++){if(!((s=(n=e[o].annotations)==null?void 0:n.leftEyeIris)!=null&&s[0])||!((a=(r=e[o].annotations)==null?void 0:r.rightEyeIris)!=null&&a[0]))continue;let i=e[o].annotations.leftEyeIris[3][0]-e[o].annotations.leftEyeIris[1][0],l=e[o].annotations.leftEyeIris[4][1]-e[o].annotations.leftEyeIris[2][1],u=Math.abs(i*l),c=e[o].annotations.rightEyeIris[3][0]-e[o].annotations.rightEyeIris[1][0],p=e[o].annotations.rightEyeIris[4][1]-e[o].annotations.rightEyeIris[2][1],d=Math.abs(c*p),h=!1;Math.abs(u-d)/Math.max(u,d)<.25&&(h=!0,t.push({iris:o,gesture:"facing center"}));let m=Math.abs(e[o].mesh[263][0]-e[o].annotations.leftEyeIris[0][0])/e[o].box[2],g=Math.abs(e[o].mesh[33][0]-e[o].annotations.rightEyeIris[0][0])/e[o].box[2];(m>.06||g>.06)&&(h=!1),m>g?m>.05&&t.push({iris:o,gesture:"looking right"}):g>.05&&t.push({iris:o,gesture:"looking left"});let y=Math.abs(e[o].mesh[145][1]-e[o].annotations.rightEyeIris[0][1])/e[o].box[3],x=Math.abs(e[o].mesh[374][1]-e[o].annotations.leftEyeIris[0][1])/e[o].box[3];(x<.01||y<.01||x>.022||y>.022)&&(h=!1),(x<.01||y<.01)&&t.push({iris:o,gesture:"looking down"}),(x>.022||y>.022)&&t.push({iris:o,gesture:"looking up"}),h&&t.push({iris:o,gesture:"looking center"})}return t},bR=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let s=[];if(e[n].annotations)for(let[r,a]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(a)&&a[0]&&s.push({name:r.toLowerCase(),position:a[0]});if(s&&s.length>0){let r=s.reduce((o,i)=>(o.position[2]||0)<(i.position[2]||0)?o:i);t.push({hand:n,gesture:`${r.name} forward`});let a=s.reduce((o,i)=>o.position[1]<i.position[1]?o:i);t.push({hand:n,gesture:`${a.name} up`})}if(e[n].keypoints){let r=RE(e[n].keypoints);for(let a of r)t.push({hand:n,gesture:a.name})}}return t};var Ee={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null},J4=0;function vR(e,t){var o,i,l,u,c,p,d,h,f,m,g,y,x,A,b,w,k,C,E,_,$,R,P;let n=le();if(!e)return{face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0,error:null};let s=Date.now()-e.timestamp,r=s<1e3?8-Math.log(s+1):1;if(e.canvas&&(Ee.canvas=e.canvas),e.error&&(Ee.error=e.error),!Ee.body||e.body.length!==Ee.body.length)Ee.body=JSON.parse(JSON.stringify(e.body));else for(let S=0;S<e.body.length;S++){let M=e.body[S].box.map((Z,J)=>((r-1)*Ee.body[S].box[J]+Z)/r),L=e.body[S].boxRaw.map((Z,J)=>((r-1)*Ee.body[S].boxRaw[J]+Z)/r),U=e.body[S].keypoints.map((Z,J)=>{var Q,ie,re,de,ue,Ae,oe,Re,_e;return{score:Z.score,part:Z.part,position:[Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].position[0]||0)+(Z.position[0]||0))/r:Z.position[0],Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].position[1]||0)+(Z.position[1]||0))/r:Z.position[1],Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].position[2]||0)+(Z.position[2]||0))/r:Z.position[2]],positionRaw:[Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].positionRaw[0]||0)+(Z.positionRaw[0]||0))/r:Z.positionRaw[0],Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].positionRaw[1]||0)+(Z.positionRaw[1]||0))/r:Z.positionRaw[1],Ee.body[S].keypoints[J]?((r-1)*(Ee.body[S].keypoints[J].positionRaw[2]||0)+(Z.positionRaw[2]||0))/r:Z.positionRaw[2]],distance:[Ee.body[S].keypoints[J]?((r-1)*(((Q=Ee.body[S].keypoints[J].distance)==null?void 0:Q[0])||0)+(((ie=Z.distance)==null?void 0:ie[0])||0))/r:(re=Z.distance)==null?void 0:re[0],Ee.body[S].keypoints[J]?((r-1)*(((de=Ee.body[S].keypoints[J].distance)==null?void 0:de[1])||0)+(((ue=Z.distance)==null?void 0:ue[1])||0))/r:(Ae=Z.distance)==null?void 0:Ae[1],Ee.body[S].keypoints[J]?((r-1)*(((oe=Ee.body[S].keypoints[J].distance)==null?void 0:oe[2])||0)+(((Re=Z.distance)==null?void 0:Re[2])||0))/r:(_e=Z.distance)==null?void 0:_e[2]]}}),K={},q={connected:{}};(o=t.body.modelPath)!=null&&o.includes("efficientpose")?q=a1:(i=t.body.modelPath)!=null&&i.includes("blazepose")?q=e1:(l=t.body.modelPath)!=null&&l.includes("movenet")&&(q=of);for(let[Z,J]of Object.entries(q.connected)){let Q=[];for(let ie=0;ie<J.length-1;ie++){let re=U.find(ue=>ue.part===J[ie]),de=U.find(ue=>ue.part===J[ie+1]);re&&de&&Q.push([re.position,de.position])}K[Z]=Q}Ee.body[S]={...e.body[S],box:M,boxRaw:L,keypoints:U,annotations:K}}if(!Ee.hand||e.hand.length!==Ee.hand.length)Ee.hand=JSON.parse(JSON.stringify(e.hand));else for(let S=0;S<e.hand.length;S++){let M=e.hand[S].box.map((q,Z)=>((r-1)*Ee.hand[S].box[Z]+q)/r),L=e.hand[S].boxRaw.map((q,Z)=>((r-1)*Ee.hand[S].boxRaw[Z]+q)/r);Ee.hand[S].keypoints.length!==e.hand[S].keypoints.length&&(Ee.hand[S].keypoints=e.hand[S].keypoints);let U=e.hand[S].keypoints&&e.hand[S].keypoints.length>0?e.hand[S].keypoints.map((q,Z)=>q.map((J,Q)=>((r-1)*(Ee.hand[S].keypoints[Z][Q]||1)+(J||0))/r)):[],K={};if(Object.keys(Ee.hand[S].annotations).length!==Object.keys(e.hand[S].annotations).length)Ee.hand[S].annotations=e.hand[S].annotations,K=Ee.hand[S].annotations;else if(e.hand[S].annotations)for(let q of Object.keys(e.hand[S].annotations))K[q]=(p=(c=(u=e.hand[S])==null?void 0:u.annotations)==null?void 0:c[q])!=null&&p[0]?e.hand[S].annotations[q].map((Z,J)=>Z.map((Q,ie)=>((r-1)*Ee.hand[S].annotations[q][J][ie]+Q)/r)):null;Ee.hand[S]={...e.hand[S],box:M,boxRaw:L,keypoints:U,annotations:K}}if(!Ee.face||e.face.length!==Ee.face.length)Ee.face=JSON.parse(JSON.stringify(e.face));else for(let S=0;S<e.face.length;S++){let M=e.face[S].box.map((U,K)=>((r-1)*Ee.face[S].box[K]+U)/r),L=e.face[S].boxRaw.map((U,K)=>((r-1)*Ee.face[S].boxRaw[K]+U)/r);if(e.face[S].rotation){let U={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};U.matrix=(d=e.face[S].rotation)==null?void 0:d.matrix,U.angle={roll:((r-1)*(((f=(h=Ee.face[S].rotation)==null?void 0:h.angle)==null?void 0:f.roll)||0)+(((g=(m=e.face[S].rotation)==null?void 0:m.angle)==null?void 0:g.roll)||0))/r,yaw:((r-1)*(((x=(y=Ee.face[S].rotation)==null?void 0:y.angle)==null?void 0:x.yaw)||0)+(((b=(A=e.face[S].rotation)==null?void 0:A.angle)==null?void 0:b.yaw)||0))/r,pitch:((r-1)*(((k=(w=Ee.face[S].rotation)==null?void 0:w.angle)==null?void 0:k.pitch)||0)+(((E=(C=e.face[S].rotation)==null?void 0:C.angle)==null?void 0:E.pitch)||0))/r},U.gaze={bearing:((r-1)*(((_=Ee.face[S].rotation)==null?void 0:_.gaze.bearing)||0)+((($=e.face[S].rotation)==null?void 0:$.gaze.bearing)||0))/r,strength:((r-1)*(((R=Ee.face[S].rotation)==null?void 0:R.gaze.strength)||0)+(((P=e.face[S].rotation)==null?void 0:P.gaze.strength)||0))/r},Ee.face[S]={...e.face[S],rotation:U,box:M,boxRaw:L}}else Ee.face[S]={...e.face[S],box:M,boxRaw:L}}if(!Ee.object||e.object.length!==Ee.object.length)Ee.object=JSON.parse(JSON.stringify(e.object));else for(let S=0;S<e.object.length;S++){let M=e.object[S].box.map((U,K)=>((r-1)*Ee.object[S].box[K]+U)/r),L=e.object[S].boxRaw.map((U,K)=>((r-1)*Ee.object[S].boxRaw[K]+U)/r);Ee.object[S]={...e.object[S],box:M,boxRaw:L}}if(e.persons){let S=e.persons;if(!Ee.persons||S.length!==Ee.persons.length)Ee.persons=JSON.parse(JSON.stringify(S));else for(let M=0;M<S.length;M++)Ee.persons[M].box=S[M].box.map((L,U)=>((r-1)*Ee.persons[M].box[U]+L)/r)}e.gesture&&(Ee.gesture=e.gesture);let a=le();return J4=fe.perfadd?J4+Math.round(a-n):Math.round(a-n),e.performance&&(Ee.performance={...e.performance,interpolate:J4}),Ee}var tv={};ma(tv,{distance:()=>df,match:()=>ev,similarity:()=>Q4});function df(e,t,n={order:2,multiplier:25}){if(!e||!e)return Number.MAX_SAFE_INTEGER;let s=0;for(let r=0;r<e.length;r++){let a=!n.order||n.order===2?e[r]-t[r]:Math.abs(e[r]-t[r]);s+=!n.order||n.order===2?a*a:a**n.order}return(n.multiplier||20)*s}var wR=(e,t,n,s)=>{if(e===0)return 1;let r=t===2?Math.sqrt(e):e**(1/t),a=(1-r/100-n)/(s-n);return Math.max(Math.min(a,1),0)};function Q4(e,t,n={order:2,multiplier:25,min:.2,max:.8}){let s=df(e,t,n);return wR(s,n.order||2,n.min||0,n.max||1)}function ev(e,t,n={order:2,multiplier:25,threshold:0,min:.2,max:.8}){if(!Array.isArray(e)||!Array.isArray(t)||e.length<64||t.length===0)return{index:-1,distance:Number.POSITIVE_INFINITY,similarity:0};let s=Number.MAX_SAFE_INTEGER,r=-1;for(let o=0;o<t.length;o++){let i=t[o].length===e.length?df(e,t[o],n):Number.MAX_SAFE_INTEGER;if(i<s&&(s=i,r=o),s<(n.threshold||0))break}let a=wR(s,n.order||2,n.min||0,n.max||1);return{index:r,distance:s,similarity:a}}function kR(e,t,n,s,r){var i,l,u,c,p,d;let a=0,o=[];for(let h of e){let f={id:a++,face:h,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let b of t)h.box[0]>b.box[0]&&h.box[0]<b.box[0]+b.box[2]&&h.box[1]+h.box[3]>b.box[1]&&h.box[1]+h.box[3]<b.box[1]+b.box[3]&&(f.body=b);if(f.body)for(let b of n)b.box[0]+b.box[2]>f.body.box[0]&&b.box[0]+b.box[2]<f.body.box[0]+f.body.box[2]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.left=b),b.box[0]<f.body.box[0]+f.body.box[2]&&b.box[0]>f.body.box[0]&&b.box[1]+b.box[3]>f.body.box[1]&&b.box[1]+b.box[3]<f.body.box[1]+f.body.box[3]&&f.hands&&(f.hands.right=b);for(let b of s)(b.face!==void 0&&b.face===h.id||b.iris!==void 0&&b.iris===h.id||b.body!==void 0&&b.body===((i=f.body)==null?void 0:i.id)||b.hand!==void 0&&b.hand===((l=f.hands.left)==null?void 0:l.id)||b.hand!==void 0&&b.hand===((u=f.hands.right)==null?void 0:u.id))&&f.gestures.push(b);let m=[],g=[],y=b=>{b&&b.length===4&&(m.push(b[0],b[0]+b[2]),g.push(b[1],b[1]+b[3]))};y(f.face.box),y((c=f.body)==null?void 0:c.box),y((p=f.hands.left)==null?void 0:p.box),y((d=f.hands.right)==null?void 0:d.box);let x=Math.min(...m),A=Math.min(...g);f.box=[x,A,Math.max(...m)-x,Math.max(...g)-A],(r==null?void 0:r[1])&&(r==null?void 0:r[2])&&(f.boxRaw=[f.box[0]/r[2],f.box[1]/r[1],f.box[2]/r[2],f.box[3]/r[1]]),o.push(f)}return o}var T1=`
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,N1=`
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
2Q==`;async function Dbe(e){let t=(r,a="application/octet-stream")=>fetch(`data:${a};base64,${r}`).then(o=>o.blob()),n,s;switch(e.config.warmup){case"face":n=await t(T1);break;case"body":case"full":n=await t(N1);break;default:n=null}if(n){let r=await createImageBitmap(n);s=await e.detect(r,e.config),r.close()}return s}async function $be(e){return new Promise(t=>{let n;switch(e.config.warmup){case"face":n="data:image/jpeg;base64,"+T1;break;case"full":case"body":n="data:image/jpeg;base64,"+N1;break;default:n=""}let s;if(typeof Image!="undefined")s=new Image;else if(fe.Image)s=new fe.Image;else return;s.onload=async()=>{let r=ds(s.naturalWidth,s.naturalHeight);if(!r)ne("Warmup: Canvas not found"),t(void 0);else{let a=r.getContext("2d");a&&a.drawImage(s,0,0);let o=await e.image(r),i=o.tensor?await e.detect(o.tensor,e.config):void 0;t(i)}},n?s.src=n:t(void 0)})}async function Pbe(e){let t=r=>Buffer.from(r,"base64"),n;e.config.warmup==="face"?n=t(T1):n=t(N1);let s;if("node"in Je&&cn()==="tensorflow"){let r=(void 0).decodeJpeg(n),a=Bt(r,0);e.tf.dispose(r),s=await e.detect(a,e.config),e.tf.dispose(a)}else e.config.debug&&ne("Warmup tfjs-node not loaded");return s}async function Fbe(e){let t;return typeof createImageBitmap=="function"?t=await Dbe(e):typeof Image!="undefined"||fe.Canvas!==void 0?t=await $be(e):t=await Pbe(e),t}async function Obe(e){var i,l,u,c;if(!H().flagRegistry.ENGINE_COMPILE_ONLY)return;let t=cn(),n=Ls();if(t!=="webgl"&&t!=="humangl"||!(n!=null&&n.checkCompileCompletion))return;H().set("ENGINE_COMPILE_ONLY",!0);let s=Yt().state.numTensors,r=[];for(let[p,d]of Object.entries(e.models).filter(([h,f])=>h!==null&&f!==null)){let h=(l=(i=d.inputs)==null?void 0:i[0])!=null&&l.shape?[...d.inputs[0].shape]:[1,64,64,3],f=(c=(u=d.inputs)==null?void 0:u[0])!=null&&c.dtype?d.inputs[0].dtype:"float32";for(let g=0;g<h.length;g++)h[g]===-1&&(h[g]=g===0?1:64);let m=Vt(h,f);try{let g=d.execute(m);r.push(p),Array.isArray(g)?g.forEach(y=>ee(y)):ee(g)}catch(g){ne("compile fail model:",p)}ee(m)}let a=await n.checkCompileCompletionAsync();n.getUniformLocations(),e.config.debug&&ne("compile pass:",{models:r,kernels:a.length}),H().set("ENGINE_COMPILE_ONLY",!1);let o=Yt().state.numTensors;o-s>0&&ne("tensor leak:",o-s)}async function SR(e,t){await af(e,!1);let n=le();return e.state="warmup",t&&(e.config=Xt(e.config,t)),!e.config.warmup||e.config.warmup.length===0||e.config.warmup==="none"?{face:[],body:[],hand:[],gesture:[],object:[],performance:e.performance,timestamp:le(),persons:[],error:null}:new Promise(async s=>{await $d.load(e),await Obe(e);let r=await Fbe(e),a=le();e.config.debug&&ne("warmup",e.config.warmup,Math.round(a-n),"ms"),e.emit("warmup"),s(r)})}var E1=class{constructor(){he(this,"config");he(this,"element");he(this,"stream");he(this,"start",async t=>{if(t!=null&&t.debug&&(this.config.debug=t==null?void 0:t.debug),t!=null&&t.crop&&(this.config.crop=t==null?void 0:t.crop),t!=null&&t.mode&&(this.config.mode=t==null?void 0:t.mode),t!=null&&t.width&&(this.config.width=t==null?void 0:t.width),t!=null&&t.height&&(this.config.height=t==null?void 0:t.height),t!=null&&t.element)if(typeof t.element=="string"){let r=document.getElementById(t.element);if(r&&r instanceof HTMLVideoElement)this.element=r;else{this.config.debug&&ne("webcam","cannot get dom element",t.element);return}}else if(t.element instanceof HTMLVideoElement)this.element=t.element;else{this.config.debug&&ne("webcam","unknown dom element",t.element);return}else this.element=document.createElement("video");let n={audio:!1,video:{facingMode:this.config.mode==="front"?"user":"environment",resizeMode:this.config.crop?"crop-and-scale":"none",width:{ideal:this.config.width>0?this.config.width:window.innerWidth},height:{ideal:this.config.height>0?this.config.height:window.innerHeight}}};if(this.element.addEventListener("play",()=>{this.config.debug&&ne("webcam","play")}),this.element.addEventListener("pause",()=>{this.config.debug&&ne("webcam","pause")}),this.element.addEventListener("click",async()=>{!this.element||!this.stream||(this.element.paused?await this.element.play():this.element.pause())}),!(navigator!=null&&navigator.mediaDevices)){this.config.debug&&ne("webcam","no devices");return}try{this.stream=await navigator.mediaDevices.getUserMedia(n)}catch(r){ne("webcam",r);return}if(!this.stream){this.config.debug&&ne("webcam","no stream");return}this.element.srcObject=this.stream,await new Promise(r=>{this.element?this.element.onloadeddata=()=>r(!0):r(!1)}),await this.element.play(),this.config.debug&&ne("webcam",{width:this.width,height:this.height,label:this.label,stream:this.stream,track:this.track,settings:this.settings,constraints:this.constraints,capabilities:this.capabilities})});he(this,"pause",()=>{this.element&&this.element.pause()});he(this,"play",async()=>{this.element&&await this.element.play()});he(this,"stop",()=>{this.config.debug&&ne("webcam","stop"),this.track&&this.track.stop()});this.config={element:void 0,debug:!0,mode:"front",crop:!1,width:0,height:0}}get track(){if(!!this.stream)return this.stream.getVideoTracks()[0]}get capabilities(){if(!!this.track)return this.track.getCapabilities?this.track.getCapabilities():void 0}get constraints(){if(!!this.track)return this.track.getConstraints?this.track.getConstraints():void 0}get settings(){if(!this.stream)return;let t=this.stream.getVideoTracks()[0];return t.getSettings?t.getSettings():void 0}get label(){return this.track?this.track.label:""}get paused(){var t;return((t=this.element)==null?void 0:t.paused)||!1}get width(){var t;return((t=this.element)==null?void 0:t.videoWidth)||0}get height(){var t;return((t=this.element)==null?void 0:t.videoHeight)||0}};var Vd,pf,hf,R1,Di,nv=class{constructor(t){he(this,"version");he(this,"config");he(this,"result");he(this,"state");he(this,"process");he(this,"tf");he(this,"env");he(this,"draw");he(this,"models");he(this,"events");he(this,"faceTriangulation");he(this,"faceUVMap");he(this,"performance");Hu(this,Vd,void 0);Hu(this,pf,void 0);Hu(this,hf,void 0);he(this,"gl");he(this,"analyze",(...t)=>{if(!Xr(this,pf))return;let n=this.tf.engine().state.numTensors,s=Xr(this,Vd);np(this,Vd,n);let r=n-s;r!==0&&ne(...t,r)});Hu(this,R1,t=>{if(!Xr(this,hf))return null;if(!t)return"input is not defined";if(this.env.node&&!(t instanceof st))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});he(this,"similarity",Q4);he(this,"distance",df);he(this,"match",ev);he(this,"webcam",new E1);he(this,"emit",t=>{var n;(n=this.events)!=null&&n.dispatchEvent&&this.events.dispatchEvent(new Event(t))});Hu(this,Di,{});this.env=fe;let n=(Yh.tfjs||rA).replace(/-(.*)/,"");Ga.wasmPath=`https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-backend-wasm@${n}/dist/`,Ga.modelBasePath=fe.browser?"../models/":"file://models/",Ga.backend=fe.browser?"webgl":"tensorflow",this.version=V4,Object.defineProperty(this,"version",{value:V4}),this.config=JSON.parse(JSON.stringify(Ga)),Object.seal(this.config),this.config.cacheModels=typeof indexedDB!="undefined",t&&(this.config=Xt(this.config,t)),hR(this.config),this.tf=Je,this.state="idle",np(this,Vd,0),np(this,pf,!1),np(this,hf,!1),this.performance={},this.events=typeof EventTarget!="undefined"?new EventTarget:void 0,this.models=new cf,this.draw={options:Xn,canvas:(r,a)=>q4(r,a),face:(r,a,o)=>Od(r,a,o),body:(r,a,o)=>Md(r,a,o),hand:(r,a,o)=>zd(r,a,o),gesture:(r,a,o)=>Bd(r,a,o),object:(r,a,o)=>Ld(r,a,o),person:(r,a,o)=>j4(r,a,o),all:(r,a,o)=>X4(r,a,o)},this.result={face:[],body:[],hand:[],gesture:[],object:[],performance:{},timestamp:0,persons:[],error:null},this.process={tensor:null,canvas:null},this.faceTriangulation=iE,this.faceUVMap=lE,this.gl=_t,Fd(this,null,""),this.emit("create"),(this.config.debug||this.env.browser)&&ne(`version: ${this.version}`),this.config.debug&&ne(`tfjs version: ${this.tf.version["tfjs-core"]}`);let s=JSON.parse(JSON.stringify(this.env));delete s.kernels,delete s.initial,delete s.perfadd,this.config.debug&&ne("environment:",s)}reset(){let t=this.config.backend;this.config=JSON.parse(JSON.stringify(Ga)),this.config.backend=t,Ib(),fe.initial=!0}validate(t){let n=p3(Ga,t||this.config);return n.length===0&&(this.config=Xt(this.config,t)),n}check(){return C1(this)}now(){return le()}image(t,n=!0){return kd(t,this.config,n)}async segmentation(t,n){return dR(t,n,this.config)}enhance(t){return d4(t)}compare(t,n){return GT(this.config,t,n)}async init(){await af(this,!0),await this.tf.ready(),Ib()}async load(t){this.state="load";let n=le(),s=Object.values(this.models).filter(o=>o).length;t&&(this.config=Xt(this.config,t)),this.env.initial&&(await af(this,!1)||ne("error: backend check failed"),await hh(),this.env.browser&&(this.config.debug&&ne("configuration:",this.config),this.config.debug&&ne("tf flags:",this.tf.ENV.flags))),await W4(this),this.env.initial&&this.config.debug&&ne("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),this.env.initial=!1,Object.values(this.models).filter(o=>o).length!==s&&(C1(this),this.emit("load"));let a=Math.trunc(le()-n);a>(this.performance.loadModels||0)&&(this.performance.loadModels=this.env.perfadd?(this.performance.loadModels||0)+a:a)}next(t=this.result){return vR(t,this.config)}getModelStats(){return B4(this)}async warmup(t){let n=le(),s=await SR(this,t),r=le();return this.performance.warmup=Math.trunc(r-n),s}async profile(t,n){let s=await this.tf.profile(()=>this.detect(t,n)),r={},a=0;for(let i of s.kernels)r[i.name]?r[i.name]+=i.kernelTimeMs:r[i.name]=i.kernelTimeMs,a+=i.kernelTimeMs;let o=[];Object.entries(r).forEach(i=>o.push({kernel:i[0],time:i[1],perc:0}));for(let i of o)i.perc=Math.round(1e3*i.time/a)/1e3,i.time=Math.round(1e3*i.time)/1e3;return o.sort((i,l)=>l.time-i.time),o.length=20,o}async detect(t,n){return this.state="detect",new Promise(async s=>{var g,y,x,A,b,w,k,C,E,_,$,R,P,S,M,L,U,K,q,Z,J;this.state="config";let r;this.config=Xt(this.config,n),this.state="check";let a=Xr(this,R1).call(this,t);a&&(ne(a,t),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:a}));let o=le();await this.load(),r=le(),this.state="image";let i=await kd(t,this.config);if(this.process=i,this.performance.inputProcess=this.env.perfadd?(this.performance.inputProcess||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Get Image:"),!i.tensor){this.config.debug&&ne("could not convert input to tensor"),this.emit("error"),s({face:[],body:[],hand:[],gesture:[],object:[],performance:this.performance,timestamp:le(),persons:[],error:"could not convert input to tensor"});return}this.emit("image"),r=le(),this.config.skipAllowed=await UT(this.config,i.tensor),this.performance.totalFrames||(this.performance.totalFrames=0),this.performance.cachedFrames||(this.performance.cachedFrames=0),this.performance.totalFrames++,this.config.skipAllowed&&this.performance.cachedFrames++,this.performance.cacheCheck=this.env.perfadd?(this.performance.cacheCheck||0)+Math.trunc(le()-r):Math.trunc(le()-r),this.analyze("Check Changed:");let l=[],u=[],c=[],p=[];this.state="detect:face",this.config.async?(l=this.config.face.enabled?Y4(this,i.tensor):[],this.performance.face&&delete this.performance.face):(r=le(),l=this.config.face.enabled?await Y4(this,i.tensor):[],this.performance.face=this.env.perfadd?(this.performance.face||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.config.async&&(this.config.body.maxDetected===-1||this.config.hand.maxDetected===-1)&&(l=await l),this.analyze("Start Body:"),this.state="detect:body";let d=this.config.body.maxDetected===-1?Xt(this.config,{body:{maxDetected:this.config.face.enabled?1*l.length:1}}):this.config;this.config.async?((g=this.config.body.modelPath)!=null&&g.includes("posenet")?u=this.config.body.enabled?M4(i.tensor,d):[]:(y=this.config.body.modelPath)!=null&&y.includes("blazepose")?u=this.config.body.enabled?qb(i.tensor,d):[]:(x=this.config.body.modelPath)!=null&&x.includes("efficientpose")?u=this.config.body.enabled?e4(i.tensor,d):[]:(A=this.config.body.modelPath)!=null&&A.includes("movenet")&&(u=this.config.body.enabled?R4(i.tensor,d):[]),this.performance.body&&delete this.performance.body):(r=le(),(b=this.config.body.modelPath)!=null&&b.includes("posenet")?u=this.config.body.enabled?await M4(i.tensor,d):[]:(w=this.config.body.modelPath)!=null&&w.includes("blazepose")?u=this.config.body.enabled?await qb(i.tensor,d):[]:(k=this.config.body.modelPath)!=null&&k.includes("efficientpose")?u=this.config.body.enabled?await e4(i.tensor,d):[]:(C=this.config.body.modelPath)!=null&&C.includes("movenet")&&(u=this.config.body.enabled?await R4(i.tensor,d):[]),this.performance.body=this.env.perfadd?(this.performance.body||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.state="detect:hand";let h=this.config.hand.maxDetected===-1?Xt(this.config,{hand:{maxDetected:this.config.face.enabled?2*l.length:1}}):this.config;this.config.async?((_=(E=this.config.hand.detector)==null?void 0:E.modelPath)!=null&&_.includes("handdetect")?c=this.config.hand.enabled?A4(i.tensor,h):[]:(R=($=this.config.hand.detector)==null?void 0:$.modelPath)!=null&&R.includes("handtrack")&&(c=this.config.hand.enabled?w4(i.tensor,h):[]),this.performance.hand&&delete this.performance.hand):(r=le(),(S=(P=this.config.hand.detector)==null?void 0:P.modelPath)!=null&&S.includes("handdetect")?c=this.config.hand.enabled?await A4(i.tensor,h):[]:(L=(M=this.config.hand.detector)==null?void 0:M.modelPath)!=null&&L.includes("handtrack")&&(c=this.config.hand.enabled?await w4(i.tensor,h):[]),this.performance.hand=this.env.perfadd?(this.performance.hand||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.state="detect:object",this.config.async?((U=this.config.object.modelPath)!=null&&U.includes("nanodet")?p=this.config.object.enabled?D4(i.tensor,this.config):[]:(K=this.config.object.modelPath)!=null&&K.includes("centernet")&&(p=this.config.object.enabled?Zb(i.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(r=le(),(q=this.config.object.modelPath)!=null&&q.includes("nanodet")?p=this.config.object.enabled?await D4(i.tensor,this.config):[]:(Z=this.config.object.modelPath)!=null&&Z.includes("centernet")&&(p=this.config.object.enabled?await Zb(i.tensor,this.config):[]),this.performance.object=this.env.perfadd?(this.performance.object||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.analyze("End Object:"),this.state="detect:await",this.config.async&&([l,u,c,p]=await Promise.all([l,u,c,p])),this.state="detect:gesture";let f=[];this.config.gesture.enabled&&(r=le(),f=[...AR(l),...yR(u),...bR(c),...xR(l)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=this.env.perfadd?(this.performance.gesture||0)+Math.trunc(le()-r):Math.trunc(le()-r)),this.performance.total=this.env.perfadd?(this.performance.total||0)+Math.trunc(le()-o):Math.trunc(le()-o);let m=((J=this.process.tensor)==null?void 0:J.shape)||[];this.result={face:l,body:u,hand:c,gesture:f,object:p,performance:this.performance,canvas:this.process.canvas,timestamp:Date.now(),error:null,get persons(){return kR(l,u,c,f,m)}},ee(i.tensor),this.emit("detect"),this.state="idle",s(this.result)})}async sleep(t){return new Promise(n=>{setTimeout(n,t)})}async video(t,n=!0,s=0){n?(Xr(this,Di)[t.id]||(this.config.debug&&ne("video start",t.id),Xr(this,Di)[t.id]=!0),!t.paused&&Xr(this,Di)[t.id]&&t.readyState>=2&&await this.detect(t),s>0&&await this.sleep(s),Xr(this,Di)[t.id]&&requestAnimationFrame(()=>this.video(t,n,s))):(this.config.debug&&ne("video stop",t.id),Xr(this,Di)[t.id]=!1)}};Vd=new WeakMap,pf=new WeakMap,hf=new WeakMap,R1=new WeakMap,Di=new WeakMap;return k_(Lbe);})();