mirror of https://github.com/vladmandic/human
421 lines
17 KiB
JavaScript
421 lines
17 KiB
JavaScript
/* global QuickSettings */
|
|
|
|
import human from '../dist/human.esm.js';
|
|
|
|
const ui = {
|
|
baseColor: 'rgba(255, 200, 255, 0.3)',
|
|
baseLabel: 'rgba(255, 200, 255, 0.8)',
|
|
baseFont: 'small-caps 1.2rem "Segoe UI"',
|
|
baseLineWidth: 16,
|
|
busy: false,
|
|
};
|
|
|
|
const config = {
|
|
backend: 'webgl',
|
|
console: true,
|
|
face: {
|
|
enabled: true,
|
|
detector: { maxFaces: 10, skipFrames: 10, minConfidence: 0.5, iouThreshold: 0.3, scoreThreshold: 0.7 },
|
|
mesh: { enabled: true },
|
|
iris: { enabled: false },
|
|
age: { enabled: true, skipFrames: 10 },
|
|
gender: { enabled: true },
|
|
emotion: { enabled: true, minConfidence: 0.5, useGrayscale: true },
|
|
},
|
|
body: { enabled: false, maxDetections: 10, scoreThreshold: 0.7, nmsRadius: 20 },
|
|
hand: { enabled: false, skipFrames: 10, minConfidence: 0.5, iouThreshold: 0.3, scoreThreshold: 0.7 },
|
|
};
|
|
let settings;
|
|
let worker;
|
|
let timeStamp;
|
|
const fps = [];
|
|
|
|
function str(...msg) {
|
|
if (!Array.isArray(msg)) return msg;
|
|
let line = '';
|
|
for (const entry of msg) {
|
|
if (typeof entry === 'object') line += JSON.stringify(entry).replace(/{|}|"|\[|\]/g, '').replace(/,/g, ', ');
|
|
else line += entry;
|
|
}
|
|
return line;
|
|
}
|
|
|
|
const log = (...msg) => {
|
|
// eslint-disable-next-line no-console
|
|
if (config.console) console.log(...msg);
|
|
};
|
|
|
|
async function drawFace(result, canvas) {
|
|
if (!result) return;
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.strokeStyle = ui.baseColor;
|
|
ctx.font = ui.baseFont;
|
|
for (const face of result) {
|
|
ctx.fillStyle = ui.baseColor;
|
|
ctx.lineWidth = ui.baseLineWidth;
|
|
ctx.beginPath();
|
|
if (settings.getValue('Draw Boxes')) {
|
|
ctx.rect(face.box[0], face.box[1], face.box[2], face.box[3]);
|
|
}
|
|
const labelAgeGender = `${face.gender || ''} ${face.age || ''}`;
|
|
const labelIris = face.iris ? `iris: ${face.iris}` : '';
|
|
const labelEmotion = face.emotion && face.emotion[0] ? `emotion: ${Math.trunc(100 * face.emotion[0].score)}% ${face.emotion[0].emotion}` : '';
|
|
ctx.fillStyle = ui.baseLabel;
|
|
ctx.fillText(`${Math.trunc(100 * face.confidence)}% face ${labelAgeGender} ${labelIris} ${labelEmotion}`, face.box[0] + 2, face.box[1] + 22);
|
|
ctx.stroke();
|
|
ctx.lineWidth = 1;
|
|
if (face.mesh) {
|
|
if (settings.getValue('Draw Points')) {
|
|
for (const point of face.mesh) {
|
|
ctx.fillStyle = `rgba(${127.5 + (2 * point[2])}, ${127.5 - (2 * point[2])}, 255, 0.5)`;
|
|
ctx.beginPath();
|
|
ctx.arc(point[0], point[1], 2, 0, 2 * Math.PI);
|
|
ctx.fill();
|
|
}
|
|
}
|
|
if (settings.getValue('Draw Polygons')) {
|
|
for (let i = 0; i < human.facemesh.triangulation.length / 3; i++) {
|
|
const points = [
|
|
human.facemesh.triangulation[i * 3 + 0],
|
|
human.facemesh.triangulation[i * 3 + 1],
|
|
human.facemesh.triangulation[i * 3 + 2],
|
|
].map((index) => face.mesh[index]);
|
|
const path = new Path2D();
|
|
path.moveTo(points[0][0], points[0][1]);
|
|
for (const point of points) {
|
|
path.lineTo(point[0], point[1]);
|
|
}
|
|
path.closePath();
|
|
ctx.strokeStyle = `rgba(${127.5 + (2 * points[0][2])}, ${127.5 - (2 * points[0][2])}, 255, 0.3)`;
|
|
ctx.stroke(path);
|
|
if (settings.getValue('Fill Polygons')) {
|
|
ctx.fillStyle = `rgba(${127.5 + (2 * points[0][2])}, ${127.5 - (2 * points[0][2])}, 255, 0.3)`;
|
|
ctx.fill(path);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
async function drawBody(result, canvas) {
|
|
if (!result) return;
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.fillStyle = ui.baseColor;
|
|
ctx.strokeStyle = ui.baseColor;
|
|
ctx.font = ui.baseFont;
|
|
ctx.lineWidth = ui.baseLineWidth;
|
|
for (const pose of result) {
|
|
if (settings.getValue('Draw Points')) {
|
|
for (const point of pose.keypoints) {
|
|
ctx.beginPath();
|
|
ctx.arc(point.position.x, point.position.y, 2, 0, 2 * Math.PI);
|
|
ctx.fill();
|
|
}
|
|
}
|
|
if (settings.getValue('Draw Polygons')) {
|
|
const path = new Path2D();
|
|
let part;
|
|
// torso
|
|
part = pose.keypoints.find((a) => a.part === 'leftShoulder');
|
|
path.moveTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightShoulder');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightHip');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftHip');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftShoulder');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
// legs
|
|
part = pose.keypoints.find((a) => a.part === 'leftHip');
|
|
path.moveTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftKnee');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftAnkle');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightHip');
|
|
path.moveTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightKnee');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightAnkle');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
// arms
|
|
part = pose.keypoints.find((a) => a.part === 'leftShoulder');
|
|
path.moveTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftElbow');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'leftWrist');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
// arms
|
|
part = pose.keypoints.find((a) => a.part === 'rightShoulder');
|
|
path.moveTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightElbow');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
part = pose.keypoints.find((a) => a.part === 'rightWrist');
|
|
path.lineTo(part.position.x, part.position.y);
|
|
// draw all
|
|
ctx.stroke(path);
|
|
}
|
|
}
|
|
}
|
|
|
|
async function drawHand(result, canvas) {
|
|
if (!result) return;
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.font = ui.baseFont;
|
|
ctx.lineWidth = ui.baseLineWidth;
|
|
window.result = result;
|
|
for (const hand of result) {
|
|
if (settings.getValue('Draw Boxes')) {
|
|
ctx.lineWidth = ui.baseLineWidth;
|
|
ctx.beginPath();
|
|
ctx.fillStyle = ui.baseColor;
|
|
ctx.rect(hand.box[0], hand.box[1], hand.box[2], hand.box[3]);
|
|
ctx.fillStyle = ui.baseLabel;
|
|
ctx.fillText('hand', hand.box[0] + 2, hand.box[1] + 22, hand.box[2]);
|
|
ctx.stroke();
|
|
}
|
|
if (settings.getValue('Draw Points')) {
|
|
for (const point of hand.landmarks) {
|
|
ctx.fillStyle = `rgba(${127.5 + (2 * point[2])}, ${127.5 - (2 * point[2])}, 255, 0.5)`;
|
|
ctx.beginPath();
|
|
ctx.arc(point[0], point[1], 2, 0, 2 * Math.PI);
|
|
ctx.fill();
|
|
}
|
|
}
|
|
if (settings.getValue('Draw Polygons')) {
|
|
const addPart = (part) => {
|
|
for (let i = 1; i < part.length; i++) {
|
|
ctx.lineWidth = ui.baseLineWidth;
|
|
ctx.beginPath();
|
|
ctx.strokeStyle = `rgba(${127.5 + (2 * part[i][2])}, ${127.5 - (2 * part[i][2])}, 255, 0.5)`;
|
|
ctx.moveTo(part[i - 1][0], part[i - 1][1]);
|
|
ctx.lineTo(part[i][0], part[i][1]);
|
|
ctx.stroke();
|
|
}
|
|
};
|
|
addPart(hand.annotations.indexFinger);
|
|
addPart(hand.annotations.middleFinger);
|
|
addPart(hand.annotations.ringFinger);
|
|
addPart(hand.annotations.pinky);
|
|
addPart(hand.annotations.thumb);
|
|
addPart(hand.annotations.palmBase);
|
|
}
|
|
}
|
|
}
|
|
|
|
async function drawResults(input, result, canvas) {
|
|
// update fps
|
|
settings.setValue('FPS', Math.round(1000 / (performance.now() - timeStamp)));
|
|
fps.push(1000 / (performance.now() - timeStamp));
|
|
if (fps.length > 20) fps.shift();
|
|
settings.setValue('FPS', Math.round(10 * fps.reduce((a, b) => a + b) / fps.length) / 10);
|
|
|
|
// eslint-disable-next-line no-use-before-define
|
|
requestAnimationFrame(() => runHumanDetect(input, canvas)); // immediate loop
|
|
|
|
// draw image from video
|
|
const ctx = canvas.getContext('2d');
|
|
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
|
|
// draw all results
|
|
drawFace(result.face, canvas);
|
|
drawBody(result.body, canvas);
|
|
drawHand(result.hand, canvas);
|
|
// update log
|
|
const engine = await human.tf.engine();
|
|
const memory = `${engine.state.numBytes.toLocaleString()} bytes ${engine.state.numDataBuffers.toLocaleString()} buffers ${engine.state.numTensors.toLocaleString()} tensors`;
|
|
const gpu = engine.backendInstance ? `GPU: ${engine.backendInstance.numBytesInGPU.toLocaleString()} bytes` : '';
|
|
document.getElementById('log').innerText = `
|
|
TFJS Version: ${human.tf.version_core} | Backend: ${human.tf.getBackend()} | Memory: ${memory} ${gpu}
|
|
Performance: ${str(result.performance)} | Object size: ${(str(result)).length.toLocaleString()} bytes
|
|
`;
|
|
}
|
|
|
|
// simple wrapper for worker.postmessage that creates worker if one does not exist
|
|
function webWorker(input, image, canvas) {
|
|
if (!worker) {
|
|
// create new webworker and add event handler only once
|
|
log('Creating worker thread');
|
|
worker = new Worker('demo-esm-webworker.js', { type: 'module' });
|
|
// after receiving message from webworker, parse&draw results and send new frame for processing
|
|
worker.addEventListener('message', (msg) => drawResults(input, msg.data, canvas));
|
|
}
|
|
// pass image data as arraybuffer to worker by reference to avoid copy
|
|
worker.postMessage({ image: image.data.buffer, width: canvas.width, height: canvas.height, config }, [image.data.buffer]);
|
|
}
|
|
|
|
async function runHumanDetect(input, canvas) {
|
|
timeStamp = performance.now();
|
|
// perform detect if live video or not video at all
|
|
if (input.srcObject) {
|
|
// if video not ready, just redo
|
|
const live = (input.srcObject.getVideoTracks()[0].readyState === 'live') && (input.readyState > 2) && (!input.paused);
|
|
if (!live) {
|
|
if (!input.paused) log(`Video not ready: state: ${input.srcObject.getVideoTracks()[0].readyState} stream state: ${input.readyState}`);
|
|
setTimeout(() => runHumanDetect(input, canvas), 500);
|
|
return;
|
|
}
|
|
if (settings.getValue('Use Web Worker')) {
|
|
// get image data from video as we cannot send html objects to webworker
|
|
const offscreen = new OffscreenCanvas(canvas.width, canvas.height);
|
|
const ctx = offscreen.getContext('2d');
|
|
ctx.drawImage(input, 0, 0, input.width, input.height, 0, 0, canvas.width, canvas.height);
|
|
const data = ctx.getImageData(0, 0, canvas.width, canvas.height);
|
|
// perform detection in worker
|
|
webWorker(input, data, canvas);
|
|
} else {
|
|
let result = {};
|
|
try {
|
|
// perform detection
|
|
result = await human.detect(input, config);
|
|
} catch (err) {
|
|
log('Error during execution:', err.message);
|
|
}
|
|
if (result.error) log(result.error);
|
|
else drawResults(input, result, canvas);
|
|
}
|
|
}
|
|
}
|
|
|
|
function setupUI() {
|
|
// add all variables to ui control panel
|
|
settings = QuickSettings.create(10, 10, 'Settings', document.getElementById('main'));
|
|
const style = document.createElement('style');
|
|
// style.type = 'text/css';
|
|
style.innerHTML = `
|
|
.qs_main { font: 1rem "Segoe UI"; }
|
|
.qs_label { font: 0.8rem "Segoe UI"; }
|
|
.qs_title_bar { display: none; }
|
|
.qs_content { background: darkslategray; }
|
|
.qs_container { background: transparent; color: white; margin: 6px; padding: 6px; }
|
|
.qs_checkbox_label { top: 2px; }
|
|
.qs_button { width: -webkit-fill-available; font: 1rem "Segoe UI"; cursor: pointer; }
|
|
`;
|
|
document.getElementsByTagName('head')[0].appendChild(style);
|
|
settings.addButton('Play/Pause', () => {
|
|
const video = document.getElementById('video');
|
|
const canvas = document.getElementById('canvas');
|
|
if (!video.paused) {
|
|
document.getElementById('log').innerText = 'Paused ...';
|
|
video.pause();
|
|
} else {
|
|
document.getElementById('log').innerText = 'Starting Human Library ...';
|
|
video.play();
|
|
}
|
|
runHumanDetect(video, canvas);
|
|
});
|
|
settings.addDropDown('Backend', ['webgl', 'wasm', 'cpu'], async (val) => config.backend = val.value);
|
|
settings.addHTML('title', 'Enabled Models'); settings.hideTitle('title');
|
|
settings.addBoolean('Face Detect', config.face.enabled, (val) => config.face.enabled = val);
|
|
settings.addBoolean('Face Mesh', config.face.mesh.enabled, (val) => config.face.mesh.enabled = val);
|
|
settings.addBoolean('Face Iris', config.face.iris.enabled, (val) => config.face.iris.enabled = val);
|
|
settings.addBoolean('Face Age', config.face.age.enabled, (val) => config.face.age.enabled = val);
|
|
settings.addBoolean('Face Gender', config.face.gender.enabled, (val) => config.face.gender.enabled = val);
|
|
settings.addBoolean('Face Emotion', config.face.emotion.enabled, (val) => config.face.emotion.enabled = val);
|
|
settings.addBoolean('Body Pose', config.body.enabled, (val) => config.body.enabled = val);
|
|
settings.addBoolean('Hand Pose', config.hand.enabled, (val) => config.hand.enabled = val);
|
|
settings.addHTML('title', 'Model Parameters'); settings.hideTitle('title');
|
|
settings.addRange('Max Objects', 1, 20, 5, 1, (val) => {
|
|
config.face.detector.maxFaces = parseInt(val);
|
|
config.body.maxDetections = parseInt(val);
|
|
});
|
|
settings.addRange('Skip Frames', 1, 20, config.face.detector.skipFrames, 1, (val) => {
|
|
config.face.detector.skipFrames = parseInt(val);
|
|
config.face.emotion.skipFrames = parseInt(val);
|
|
config.face.age.skipFrames = parseInt(val);
|
|
config.hand.skipFrames = parseInt(val);
|
|
});
|
|
settings.addRange('Min Confidence', 0.1, 1.0, config.face.detector.minConfidence, 0.05, (val) => {
|
|
config.face.detector.minConfidence = parseFloat(val);
|
|
config.face.emotion.minConfidence = parseFloat(val);
|
|
config.hand.minConfidence = parseFloat(val);
|
|
});
|
|
settings.addRange('Score Threshold', 0.1, 1.0, config.face.detector.scoreThreshold, 0.05, (val) => {
|
|
config.face.detector.scoreThreshold = parseFloat(val);
|
|
config.hand.scoreThreshold = parseFloat(val);
|
|
config.body.scoreThreshold = parseFloat(val);
|
|
});
|
|
settings.addRange('IOU Threshold', 0.1, 1.0, config.face.detector.iouThreshold, 0.05, (val) => {
|
|
config.face.detector.iouThreshold = parseFloat(val);
|
|
config.hand.iouThreshold = parseFloat(val);
|
|
});
|
|
settings.addHTML('title', 'UI Options'); settings.hideTitle('title');
|
|
settings.addBoolean('Use Web Worker', false);
|
|
settings.addBoolean('Draw Boxes', true);
|
|
settings.addBoolean('Draw Points', true);
|
|
settings.addBoolean('Draw Polygons', true);
|
|
settings.addBoolean('Fill Polygons', true);
|
|
settings.addHTML('line1', '<hr>'); settings.hideTitle('line1');
|
|
settings.addRange('FPS', 0, 100, 0, 1);
|
|
}
|
|
|
|
// eslint-disable-next-line no-unused-vars
|
|
async function setupCamera() {
|
|
if (ui.busy) return null;
|
|
ui.busy = true;
|
|
const video = document.getElementById('video');
|
|
const canvas = document.getElementById('canvas');
|
|
const output = document.getElementById('log');
|
|
const live = video.srcObject ? ((video.srcObject.getVideoTracks()[0].readyState === 'live') && (video.readyState > 2) && (!video.paused)) : false;
|
|
log('Setting up camera: live:', live);
|
|
// setup webcam. note that navigator.mediaDevices requires that page is accessed via https
|
|
if (!navigator.mediaDevices) {
|
|
const msg = 'Camera access not supported';
|
|
output.innerText = msg;
|
|
log(msg);
|
|
return null;
|
|
}
|
|
const stream = await navigator.mediaDevices.getUserMedia({
|
|
audio: false,
|
|
video: { facingMode: 'user', width: window.innerWidth, height: window.innerHeight },
|
|
});
|
|
video.srcObject = stream;
|
|
return new Promise((resolve) => {
|
|
video.onloadeddata = async () => {
|
|
video.width = video.videoWidth;
|
|
video.height = video.videoHeight;
|
|
canvas.width = video.videoWidth;
|
|
canvas.height = video.videoHeight;
|
|
if (live) video.play();
|
|
ui.busy = false;
|
|
// do once more because onresize events can be delayed or skipped
|
|
if (video.width !== window.innerWidth) await setupCamera();
|
|
resolve(video);
|
|
};
|
|
});
|
|
}
|
|
|
|
// eslint-disable-next-line no-unused-vars
|
|
async function setupImage() {
|
|
const image = document.getElementById('image');
|
|
image.width = window.innerWidth;
|
|
image.height = window.innerHeight;
|
|
return new Promise((resolve) => {
|
|
image.onload = () => resolve(image);
|
|
image.src = 'sample.jpg';
|
|
});
|
|
}
|
|
|
|
async function main() {
|
|
log('Human demo starting ...');
|
|
|
|
// setup ui control panel
|
|
await setupUI();
|
|
// setup webcam
|
|
await setupCamera();
|
|
|
|
// or setup image
|
|
// const input = await setupImage();
|
|
|
|
const msg = `Human ready: version: ${human.version} TensorFlow/JS version: ${human.tf.version_core}`;
|
|
document.getElementById('log').innerText = msg;
|
|
log(msg);
|
|
|
|
// run actual detection. if input is video, it will run in a loop else it will run only once
|
|
// runHumanDetect(video, canvas);
|
|
}
|
|
|
|
window.onload = main;
|
|
window.onresize = setupCamera;
|