mirror of https://github.com/vladmandic/human
5186 lines
1.3 MiB
5186 lines
1.3 MiB
|
|
/*
|
|
Human library
|
|
homepage: <https://github.com/vladmandic/human>
|
|
author: <https://github.com/vladmandic>'
|
|
*/
|
|
var Human=(()=>{var jI=Object.defineProperty;var zm=e=>{if(typeof require!="undefined")return require(e);throw new Error('Dynamic require of "'+e+'" is not supported')};var _m=(e,t)=>{for(var n in t)jI(e,n,{get:t[n],enumerable:!0})};var w5=(e,t,n)=>{if(!t.has(e))throw TypeError("Cannot "+n)};var pn=(e,t,n)=>(w5(e,t,"read from private field"),n?n.call(e):t.get(e)),ra=(e,t,n)=>{if(t.has(e))throw TypeError("Cannot add the same private member more than once");t instanceof WeakSet?t.add(e):t.set(e,n)},Ia=(e,t,n,a)=>(w5(e,t,"write to private field"),a?a.call(e,n):t.set(e,n),n);var Qle={};_m(Qle,{Human:()=>eI,default:()=>eI});function ft(e,t){let n=e.endsWith("/")?"":"/",r=t.startsWith(".")||t.startsWith("/")||t.startsWith("http:")||t.startsWith("https:")||t.startsWith("file:")?`${t}`:`${e}${n}${t}`;if(!r.toLocaleLowerCase().includes(".json"))throw new Error(`Human: ModelPath Error: ${r} Expecting JSON file`);return r}function de(...e){let t=new Date,n=`${t.getHours().toString().padStart(2,"0")}:${t.getMinutes().toString().padStart(2,"0")}:${t.getSeconds().toString().padStart(2,"0")}.${t.getMilliseconds().toString().padStart(3,"0")}`;e&&console.log(n,"Human:",...e)}var Ke=()=>typeof performance!="undefined"?performance.now():parseInt((Number(process.hrtime.bigint())/1e3/1e3).toString());function Ln(...e){let t=n=>n&&typeof n=="object";return e.reduce((n,a)=>(Object.keys(a||{}).forEach(r=>{let s=n[r],i=a[r];Array.isArray(s)&&Array.isArray(i)?n[r]=s.concat(...i):t(s)&&t(i)?n[r]=Ln(s,i):n[r]=i}),n),{})}var k5={backend:"webgl",modelBasePath:"../models/",wasmPath:"../node_modules/@tensorflow/tfjs-backend-wasm/dist/",debug:!0,async:!0,warmup:"full",cacheSensitivity:.75,skipFrame:!1,filter:{enabled:!0,width:0,height:0,flip:!1,return:!0,brightness:0,contrast:0,sharpness:0,blur:0,saturation:0,hue:0,negative:!1,sepia:!1,vintage:!1,kodachrome:!1,technicolor:!1,polaroid:!1,pixelate:0},gesture:{enabled:!0},face:{enabled:!0,detector:{modelPath:"blazeface.json",rotation:!0,maxDetected:15,skipFrames:15,minConfidence:.2,iouThreshold:.1,return:!1},mesh:{enabled:!0,modelPath:"facemesh.json"},iris:{enabled:!0,modelPath:"iris.json"},description:{enabled:!0,modelPath:"faceres.json",skipFrames:11,minConfidence:.1},emotion:{enabled:!0,minConfidence:.1,skipFrames:17,modelPath:"emotion.json"}},body:{enabled:!0,modelPath:"movenet-lightning.json",maxDetected:1,minConfidence:.2,skipFrames:1},hand:{enabled:!0,rotation:!0,skipFrames:18,minConfidence:.1,iouThreshold:.1,maxDetected:2,landmarks:!0,detector:{modelPath:"handdetect.json"},skeleton:{modelPath:"handskeleton.json"}},object:{enabled:!1,modelPath:"mb3-centernet.json",minConfidence:.2,iouThreshold:.4,maxDetected:10,skipFrames:19},segmentation:{enabled:!1,modelPath:"selfie.json"}};function I5(){let e,t;if(typeof navigator!="undefined"){let n=navigator.userAgent.match(/\(([^()]+)\)/g);if(n&&n[0]){let a=n[0].match(/\(([^()]+)\)/g);e=a?a[0].replace(/\(|\)/g,""):"",t=navigator.userAgent.replace(n[0],""),e[1]&&(t=t.replace(n[1],"")),t=t.replace(/ /g," ")}}else typeof process!="undefined"&&(e=`${process.platform} ${process.arch}`,t=`NodeJS ${process.version}`);return{platform:e,agent:t}}var dp={};_m(dp,{Abs:()=>mo,Acos:()=>go,Acosh:()=>yo,AdadeltaOptimizer:()=>wh,AdagradOptimizer:()=>kh,AdamOptimizer:()=>Ih,AdamaxOptimizer:()=>Sh,Add:()=>Or,AddN:()=>xs,All:()=>Ao,Any:()=>xo,ArgMax:()=>bs,ArgMin:()=>Fu,Asin:()=>bo,Asinh:()=>vo,Atan:()=>wo,Atan2:()=>Io,Atanh:()=>ko,AvgPool:()=>vs,AvgPool3D:()=>$u,AvgPool3DGrad:()=>Kp,AvgPoolGrad:()=>Xp,BackendWasm:()=>o4,BatchMatMul:()=>ws,BatchToSpaceND:()=>Du,Bincount:()=>Zp,BroadcastTo:()=>gb,Callback:()=>J8,CallbackList:()=>U4,Cast:()=>ks,Ceil:()=>Is,ClipByValue:()=>zr,Complex:()=>Yp,ComplexAbs:()=>Ou,Concat:()=>So,Conv2D:()=>Ss,Conv2DBackpropFilter:()=>Jp,Conv2DBackpropInput:()=>Ns,Conv3D:()=>zu,Conv3DBackpropFilterV2:()=>Qp,Conv3DBackpropInputV2:()=>ec,Cos:()=>Ts,Cosh:()=>No,CropAndResize:()=>To,Cumsum:()=>Cs,CustomCallback:()=>G4,DataStorage:()=>Up,DenseBincount:()=>tc,DepthToSpace:()=>Co,DepthwiseConv2dNative:()=>Es,DepthwiseConv2dNativeBackpropFilter:()=>nc,DepthwiseConv2dNativeBackpropInput:()=>ac,Diag:()=>rc,Dilation2D:()=>_u,Dilation2DBackpropFilter:()=>ic,Dilation2DBackpropInput:()=>sc,ENV:()=>sa,EarlyStopping:()=>ek,Einsum:()=>oc,Elu:()=>Eo,EluGrad:()=>lc,Environment:()=>fb,Equal:()=>Mo,Erf:()=>Ro,Exp:()=>Ms,ExpandDims:()=>Fo,Expm1:()=>$o,FFT:()=>uc,Fill:()=>Pu,FlipLeftRight:()=>Do,Floor:()=>Fs,FloorDiv:()=>$s,FromPixels:()=>Rc,FusedBatchNorm:()=>Ds,FusedConv2D:()=>fi,FusedDepthwiseConv2D:()=>mi,GPGPUContext:()=>Vh,GatherNd:()=>zo,GatherV2:()=>Oo,GraphModel:()=>Fk,Greater:()=>_o,GreaterEqual:()=>Os,History:()=>H4,IFFT:()=>dc,Identity:()=>zs,Imag:()=>pc,InputSpec:()=>zt,IsFinite:()=>Po,IsInf:()=>Lo,IsNan:()=>Wo,KernelBackend:()=>Eu,LRN:()=>Bu,LRNGrad:()=>hc,LayerVariable:()=>L4,LayersModel:()=>kr,LeakyRelu:()=>_s,Less:()=>Bo,LessEqual:()=>Vo,LinSpace:()=>cc,Log:()=>Ps,Log1p:()=>jo,LogSoftmax:()=>yb,LogicalAnd:()=>Uo,LogicalNot:()=>Lu,LogicalOr:()=>Wu,MathBackendCPU:()=>Eh,MathBackendWebGL:()=>Kl,Max:()=>Ls,MaxPool:()=>Bs,MaxPool3D:()=>Vu,MaxPool3DGrad:()=>mc,MaxPoolGrad:()=>fc,MaxPoolWithArgmax:()=>gc,Maximum:()=>Ws,Mean:()=>Vs,Min:()=>js,Minimum:()=>Us,MirrorPad:()=>Hs,Mod:()=>Ho,MomentumOptimizer:()=>Nh,Multinomial:()=>yc,Multiply:()=>Gs,Neg:()=>Go,NonMaxSuppressionV3:()=>Xo,NonMaxSuppressionV4:()=>Ko,NonMaxSuppressionV5:()=>Zo,NotEqual:()=>qo,OP_SCOPE_SUFFIX:()=>Fb,OneHot:()=>qs,OnesLike:()=>Yo,Optimizer:()=>xr,Pack:()=>Jo,PadV2:()=>Xs,Pool:()=>HS,Pow:()=>Ks,Prelu:()=>Zs,Prod:()=>Qo,RMSPropOptimizer:()=>Th,RNN:()=>ar,Range:()=>ju,Rank:()=>Qm,Real:()=>Ac,RealDiv:()=>Rs,Reciprocal:()=>el,Reduction:()=>yn,Relu:()=>Ys,Relu6:()=>Qs,Reshape:()=>tl,ResizeBilinear:()=>Js,ResizeBilinearGrad:()=>bc,ResizeNearestNeighbor:()=>Uu,ResizeNearestNeighborGrad:()=>xc,Reverse:()=>ei,RotateWithOffset:()=>ml,Round:()=>ti,Rsqrt:()=>ni,SGDOptimizer:()=>kd,ScatterNd:()=>nl,Select:()=>al,Selu:()=>rl,Sequential:()=>ru,Sigmoid:()=>ri,Sign:()=>ol,Sin:()=>ai,Sinh:()=>il,Slice:()=>sl,Softmax:()=>oi,Softplus:()=>ll,SpaceToBatchND:()=>Hu,SparseFillEmptyRows:()=>vc,SparseReshape:()=>wc,SparseSegmentMean:()=>kc,SparseSegmentSum:()=>Ic,SparseToDense:()=>Sc,SplitV:()=>ul,Sqrt:()=>si,Square:()=>Gu,SquaredDifference:()=>li,Step:()=>Pr,StridedSlice:()=>dl,StringNGrams:()=>Nc,StringSplit:()=>Tc,StringToHashBucketFast:()=>Cc,Sub:()=>ui,Sum:()=>ii,SymbolicTensor:()=>Da,Tan:()=>di,Tanh:()=>pi,Tensor:()=>Be,TensorBuffer:()=>Lt,Tile:()=>_r,TopK:()=>pl,Transform:()=>cl,Transpose:()=>ci,Unique:()=>Ec,Unpack:()=>hl,UnsortedSegmentSum:()=>qu,Variable:()=>td,ZerosLike:()=>fl,_FusedMatMul:()=>hi,abs:()=>Wt,acos:()=>N1,acosh:()=>T1,add:()=>ie,addN:()=>jc,all:()=>Uc,any:()=>id,argMax:()=>ki,argMin:()=>C1,asin:()=>E1,asinh:()=>R1,atan:()=>M1,atan2:()=>F1,atanh:()=>$1,avgPool:()=>ld,avgPool3d:()=>z1,backend:()=>h3,backend_util:()=>F,basicLSTMCell:()=>EC,batchNorm:()=>Ni,batchNorm2d:()=>y3,batchNorm3d:()=>A3,batchNorm4d:()=>x3,batchToSpaceND:()=>ud,bincount:()=>_1,booleanMaskAsync:()=>OM,broadcastTo:()=>Nl,browser:()=>oa,buffer:()=>Ve,callbacks:()=>Eie,cast:()=>ge,ceil:()=>P1,clipByValue:()=>Mn,clone:()=>Ha,complex:()=>Wr,concat:()=>lt,concat1d:()=>b3,concat2d:()=>Tl,concat3d:()=>v3,concat4d:()=>w3,constraints:()=>A4,conv1d:()=>Gc,conv2d:()=>mr,conv2dTranspose:()=>qc,conv3d:()=>W1,conv3dTranspose:()=>I3,copyRegisteredKernels:()=>XS,cos:()=>dd,cosh:()=>Xc,cosineWindow:()=>hg,cumsum:()=>Kc,customGrad:()=>qa,data:()=>$k,denseBincount:()=>S3,deprecationWarn:()=>I1,depthToSpace:()=>B1,depthwiseConv2d:()=>Cl,deregisterOp:()=>Mie,device_util:()=>ad,diag:()=>rE,dilation2d:()=>V1,disableDeprecationWarnings:()=>VT,dispose:()=>he,disposeVariables:()=>jT,div:()=>me,divNoNan:()=>j1,dot:()=>N3,dropout:()=>q3,einsum:()=>T3,elu:()=>El,enableDebugMode:()=>BT,enableProdMode:()=>WT,enclosingPowerOfTwo:()=>X3,engine:()=>fr,env:()=>te,equal:()=>Hr,erf:()=>U1,exp:()=>la,expandDims:()=>mn,expm1:()=>H1,eye:()=>G1,fft:()=>bd,fill:()=>Rl,findBackend:()=>S1,findBackendFactory:()=>ZT,floor:()=>Ml,floorDiv:()=>Vc,forceHalfFloat:()=>Aw,fused:()=>Kr,gather:()=>Ti,gatherND:()=>G3,gather_util:()=>y1,getBackend:()=>XT,getGradient:()=>Km,getKernel:()=>Mc,getKernelsForBackend:()=>yl,gpgpu_util:()=>Bv,grad:()=>DE,grads:()=>OE,greater:()=>Wn,greaterEqual:()=>qr,ifft:()=>Ol,imag:()=>Zc,image:()=>De,inTopKAsync:()=>GM,initializers:()=>S4,input:()=>m8,io:()=>En,irfft:()=>ch,isFinite:()=>C3,isInf:()=>E3,isNaN:()=>q1,keep:()=>Kt,kernel_impls:()=>Za,layers:()=>z4,leakyRelu:()=>pd,less:()=>Yc,lessEqual:()=>Xr,linalg:()=>i7,linspace:()=>R3,loadGraphModel:()=>ct,loadLayersModel:()=>Lre,localResponseNormalization:()=>X1,log:()=>Bn,log1p:()=>Jc,logSigmoid:()=>F3,logSoftmax:()=>eh,logSumExp:()=>Y1,logicalAnd:()=>xa,logicalNot:()=>cd,logicalOr:()=>th,logicalXor:()=>z3,losses:()=>N$,matMul:()=>je,math:()=>Xb,max:()=>Vn,maxPool:()=>hd,maxPool3d:()=>J1,maxPoolWithArgmax:()=>_3,maximum:()=>Xa,mean:()=>Nt,memory:()=>Bc,meshgrid:()=>aR,metrics:()=>K8,min:()=>fd,minimum:()=>Fl,mirrorPad:()=>Q1,mod:()=>eg,model:()=>_re,models:()=>Z8,moments:()=>nh,movingAverage:()=>PM,mul:()=>B,multiRNNCell:()=>pR,multinomial:()=>P3,neg:()=>St,nextFrame:()=>Ch,norm:()=>gh,notEqual:()=>Ri,oneHot:()=>wl,ones:()=>jn,onesLike:()=>Un,op:()=>L,outerProduct:()=>gR,pad:()=>gr,pad1d:()=>xR,pad2d:()=>vR,pad3d:()=>kR,pad4d:()=>SR,pool:()=>L3,pow:()=>yr,prelu:()=>gd,print:()=>Vb,prod:()=>ah,profile:()=>UT,rand:()=>DR,randomGamma:()=>PR,randomNormal:()=>W3,randomUniform:()=>$l,range:()=>Dl,ready:()=>qT,real:()=>yd,reciprocal:()=>ag,registerBackend:()=>Il,registerCallbackConstructor:()=>Wre,registerGradient:()=>Ab,registerKernel:()=>gi,registerOp:()=>Rie,regularizers:()=>Y8,relu:()=>Ka,relu6:()=>rh,removeBackend:()=>KT,reshape:()=>q,reverse:()=>Hn,reverse1d:()=>qR,reverse2d:()=>KR,reverse3d:()=>YR,reverse4d:()=>QR,rfft:()=>vd,round:()=>sh,rsqrt:()=>ih,scalar:()=>ke,scatterND:()=>H3,scatter_util:()=>A1,selu:()=>oh,separableConv2d:()=>rg,sequential:()=>Pre,serialization:()=>re,setBackend:()=>GT,setPlatform:()=>YT,setWasmPath:()=>jee,setWasmPaths:()=>Uee,setWebGLContext:()=>Oh,setdiff1dAsync:()=>B3,shared:()=>Ag,sigmoid:()=>Rn,sign:()=>sg,signal:()=>S$,sin:()=>lh,sinh:()=>uh,slice:()=>Re,slice1d:()=>dh,slice2d:()=>ig,slice3d:()=>ph,slice4d:()=>Ad,slice_util:()=>fn,softmax:()=>xd,softplus:()=>Ci,spaceToBatchND:()=>md,sparse:()=>wd,sparseToDense:()=>cg,spectral:()=>I$,split:()=>Zt,sqrt:()=>an,square:()=>ot,squaredDifference:()=>hh,squeeze:()=>Vt,stack:()=>gn,step:()=>zl,stridedSlice:()=>og,string:()=>vh,sub:()=>ye,sum:()=>Se,sumOutType:()=>zc,tan:()=>lg,tanh:()=>Si,tensor:()=>ln,tensor1d:()=>Dt,tensor2d:()=>Ta,tensor3d:()=>Lc,tensor4d:()=>SM,tensor5d:()=>NM,tensor6d:()=>TM,tensor_util:()=>Sa,test_util:()=>d3,tidy:()=>V,tile:()=>Gr,time:()=>HT,topk:()=>ug,train:()=>Fi,transpose:()=>Qe,truncatedNormal:()=>fh,unique:()=>mh,unregisterGradient:()=>qS,unregisterKernel:()=>GS,unsortedSegmentSum:()=>dg,unstack:()=>Gn,upcastType:()=>Aa,util:()=>k,valueAndGrad:()=>zE,valueAndGrads:()=>_E,variable:()=>V3,variableGrads:()=>M3,version:()=>ble,version_converter:()=>Doe,version_core:()=>LT,version_cpu:()=>X7,version_layers:()=>Oy,version_wasm:()=>u4,version_webgl:()=>yw,webgl:()=>RV,webgl_util:()=>mv,where:()=>un,whereAsync:()=>pg,zeros:()=>$t,zerosLike:()=>Ge});var UI=Object.create,jp=Object.defineProperty,HI=Object.getOwnPropertyDescriptor,GI=Object.getOwnPropertyNames,qI=Object.getPrototypeOf,XI=Object.prototype.hasOwnProperty,KI=e=>jp(e,"__esModule",{value:!0}),co=e=>{if(typeof zm!="undefined")return zm(e);throw new Error('Dynamic require of "'+e+'" is not supported')},xt=(e,t)=>()=>(t||e((t={exports:{}}).exports,t),t.exports),Fe=(e,t)=>{for(var n in t)jp(e,n,{get:t[n],enumerable:!0})},ZI=(e,t,n)=>{if(t&&typeof t=="object"||typeof t=="function")for(let a of GI(t))!XI.call(e,a)&&a!=="default"&&jp(e,a,{get:()=>t[a],enumerable:!(n=HI(t,a))||n.enumerable});return e},gs=e=>ZI(KI(jp(e!=null?UI(qI(e)):{},"default",e&&e.__esModule&&"default"in e?{get:()=>e.default,enumerable:!0}:{value:e,enumerable:!0})),e),YI=xt((e,t)=>{t.exports=a;var n=null;try{n=new WebAssembly.Instance(new WebAssembly.Module(new Uint8Array([0,97,115,109,1,0,0,0,1,13,2,96,0,1,127,96,4,127,127,127,127,1,127,3,7,6,0,1,1,1,1,1,6,6,1,127,1,65,0,11,7,50,6,3,109,117,108,0,1,5,100,105,118,95,115,0,2,5,100,105,118,95,117,0,3,5,114,101,109,95,115,0,4,5,114,101,109,95,117,0,5,8,103,101,116,95,104,105,103,104,0,0,10,191,1,6,4,0,35,0,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,126,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,127,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,128,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,129,34,4,66,32,135,167,36,0,32,4,167,11,36,1,1,126,32,0,173,32,1,173,66,32,134,132,32,2,173,32,3,173,66,32,134,132,130,34,4,66,32,135,167,36,0,32,4,167,11])),{}).exports}catch(S){}function a(S,z,O){this.low=S|0,this.high=z|0,this.unsigned=!!O}a.prototype.__isLong__,Object.defineProperty(a.prototype,"__isLong__",{value:!0});function r(S){return(S&&S.__isLong__)===!0}a.isLong=r;var s={},i={};function o(S,z){var O,W,G;return z?(S>>>=0,(G=0<=S&&S<256)&&(W=i[S],W)?W:(O=u(S,(S|0)<0?-1:0,!0),G&&(i[S]=O),O)):(S|=0,(G=-128<=S&&S<128)&&(W=s[S],W)?W:(O=u(S,S<0?-1:0,!1),G&&(s[S]=O),O))}a.fromInt=o;function l(S,z){if(isNaN(S))return z?v:x;if(z){if(S<0)return v;if(S>=g)return E}else{if(S<=-y)return _;if(S+1>=y)return C}return S<0?l(-S,z).neg():u(S%f|0,S/f|0,z)}a.fromNumber=l;function u(S,z,O){return new a(S,z,O)}a.fromBits=u;var d=Math.pow;function p(S,z,O){if(S.length===0)throw Error("empty string");if(S==="NaN"||S==="Infinity"||S==="+Infinity"||S==="-Infinity")return x;if(typeof z=="number"?(O=z,z=!1):z=!!z,O=O||10,O<2||36<O)throw RangeError("radix");var W;if((W=S.indexOf("-"))>0)throw Error("interior hyphen");if(W===0)return p(S.substring(1),z,O).neg();for(var G=l(d(O,8)),H=x,J=0;J<S.length;J+=8){var K=Math.min(8,S.length-J),ne=parseInt(S.substring(J,J+K),O);if(K<8){var Q=l(d(O,K));H=H.mul(Q).add(l(ne))}else H=H.mul(G),H=H.add(l(ne))}return H.unsigned=z,H}a.fromString=p;function c(S,z){return typeof S=="number"?l(S,z):typeof S=="string"?p(S,z):u(S.low,S.high,typeof z=="boolean"?z:S.unsigned)}a.fromValue=c;var h=1<<16,m=1<<24,f=h*h,g=f*f,y=g/2,A=o(m),x=o(0);a.ZERO=x;var v=o(0,!0);a.UZERO=v;var b=o(1);a.ONE=b;var w=o(1,!0);a.UONE=w;var N=o(-1);a.NEG_ONE=N;var C=u(4294967295|0,2147483647|0,!1);a.MAX_VALUE=C;var E=u(4294967295|0,4294967295|0,!0);a.MAX_UNSIGNED_VALUE=E;var _=u(0,2147483648|0,!1);a.MIN_VALUE=_;var $=a.prototype;$.toInt=function(){return this.unsigned?this.low>>>0:this.low},$.toNumber=function(){return this.unsigned?(this.high>>>0)*f+(this.low>>>0):this.high*f+(this.low>>>0)},$.toString=function(S){if(S=S||10,S<2||36<S)throw RangeError("radix");if(this.isZero())return"0";if(this.isNegative())if(this.eq(_)){var z=l(S),O=this.div(z),W=O.mul(z).sub(this);return O.toString(S)+W.toInt().toString(S)}else return"-"+this.neg().toString(S);for(var G=l(d(S,6),this.unsigned),H=this,J="";;){var K=H.div(G),ne=H.sub(K.mul(G)).toInt()>>>0,Q=ne.toString(S);if(H=K,H.isZero())return Q+J;for(;Q.length<6;)Q="0"+Q;J=""+Q+J}},$.getHighBits=function(){return this.high},$.getHighBitsUnsigned=function(){return this.high>>>0},$.getLowBits=function(){return this.low},$.getLowBitsUnsigned=function(){return this.low>>>0},$.getNumBitsAbs=function(){if(this.isNegative())return this.eq(_)?64:this.neg().getNumBitsAbs();for(var S=this.high!=0?this.high:this.low,z=31;z>0&&(S&1<<z)==0;z--);return this.high!=0?z+33:z+1},$.isZero=function(){return this.high===0&&this.low===0},$.eqz=$.isZero,$.isNegative=function(){return!this.unsigned&&this.high<0},$.isPositive=function(){return this.unsigned||this.high>=0},$.isOdd=function(){return(this.low&1)==1},$.isEven=function(){return(this.low&1)==0},$.equals=function(S){return r(S)||(S=c(S)),this.unsigned!==S.unsigned&&this.high>>>31==1&&S.high>>>31==1?!1:this.high===S.high&&this.low===S.low},$.eq=$.equals,$.notEquals=function(S){return!this.eq(S)},$.neq=$.notEquals,$.ne=$.notEquals,$.lessThan=function(S){return this.comp(S)<0},$.lt=$.lessThan,$.lessThanOrEqual=function(S){return this.comp(S)<=0},$.lte=$.lessThanOrEqual,$.le=$.lessThanOrEqual,$.greaterThan=function(S){return this.comp(S)>0},$.gt=$.greaterThan,$.greaterThanOrEqual=function(S){return this.comp(S)>=0},$.gte=$.greaterThanOrEqual,$.ge=$.greaterThanOrEqual,$.compare=function(S){if(r(S)||(S=c(S)),this.eq(S))return 0;var z=this.isNegative(),O=S.isNegative();return z&&!O?-1:!z&&O?1:this.unsigned?S.high>>>0>this.high>>>0||S.high===this.high&&S.low>>>0>this.low>>>0?-1:1:this.sub(S).isNegative()?-1:1},$.comp=$.compare,$.negate=function(){return!this.unsigned&&this.eq(_)?_:this.not().add(b)},$.neg=$.negate,$.add=function(S){r(S)||(S=c(S));var z=this.high>>>16,O=this.high&65535,W=this.low>>>16,G=this.low&65535,H=S.high>>>16,J=S.high&65535,K=S.low>>>16,ne=S.low&65535,Q=0,se=0,Z=0,le=0;return le+=G+ne,Z+=le>>>16,le&=65535,Z+=W+K,se+=Z>>>16,Z&=65535,se+=O+J,Q+=se>>>16,se&=65535,Q+=z+H,Q&=65535,u(Z<<16|le,Q<<16|se,this.unsigned)},$.subtract=function(S){return r(S)||(S=c(S)),this.add(S.neg())},$.sub=$.subtract,$.multiply=function(S){if(this.isZero())return x;if(r(S)||(S=c(S)),n){var z=n.mul(this.low,this.high,S.low,S.high);return u(z,n.get_high(),this.unsigned)}if(S.isZero())return x;if(this.eq(_))return S.isOdd()?_:x;if(S.eq(_))return this.isOdd()?_:x;if(this.isNegative())return S.isNegative()?this.neg().mul(S.neg()):this.neg().mul(S).neg();if(S.isNegative())return this.mul(S.neg()).neg();if(this.lt(A)&&S.lt(A))return l(this.toNumber()*S.toNumber(),this.unsigned);var O=this.high>>>16,W=this.high&65535,G=this.low>>>16,H=this.low&65535,J=S.high>>>16,K=S.high&65535,ne=S.low>>>16,Q=S.low&65535,se=0,Z=0,le=0,oe=0;return oe+=H*Q,le+=oe>>>16,oe&=65535,le+=G*Q,Z+=le>>>16,le&=65535,le+=H*ne,Z+=le>>>16,le&=65535,Z+=W*Q,se+=Z>>>16,Z&=65535,Z+=G*ne,se+=Z>>>16,Z&=65535,Z+=H*K,se+=Z>>>16,Z&=65535,se+=O*Q+W*ne+G*K+H*J,se&=65535,u(le<<16|oe,se<<16|Z,this.unsigned)},$.mul=$.multiply,$.divide=function(S){if(r(S)||(S=c(S)),S.isZero())throw Error("division by zero");if(n){if(!this.unsigned&&this.high===-2147483648&&S.low===-1&&S.high===-1)return this;var z=(this.unsigned?n.div_u:n.div_s)(this.low,this.high,S.low,S.high);return u(z,n.get_high(),this.unsigned)}if(this.isZero())return this.unsigned?v:x;var O,W,G;if(this.unsigned){if(S.unsigned||(S=S.toUnsigned()),S.gt(this))return v;if(S.gt(this.shru(1)))return w;G=v}else{if(this.eq(_)){if(S.eq(b)||S.eq(N))return _;if(S.eq(_))return b;var H=this.shr(1);return O=H.div(S).shl(1),O.eq(x)?S.isNegative()?b:N:(W=this.sub(S.mul(O)),G=O.add(W.div(S)),G)}else if(S.eq(_))return this.unsigned?v:x;if(this.isNegative())return S.isNegative()?this.neg().div(S.neg()):this.neg().div(S).neg();if(S.isNegative())return this.div(S.neg()).neg();G=x}for(W=this;W.gte(S);){O=Math.max(1,Math.floor(W.toNumber()/S.toNumber()));for(var J=Math.ceil(Math.log(O)/Math.LN2),K=J<=48?1:d(2,J-48),ne=l(O),Q=ne.mul(S);Q.isNegative()||Q.gt(W);)O-=K,ne=l(O,this.unsigned),Q=ne.mul(S);ne.isZero()&&(ne=b),G=G.add(ne),W=W.sub(Q)}return G},$.div=$.divide,$.modulo=function(S){if(r(S)||(S=c(S)),n){var z=(this.unsigned?n.rem_u:n.rem_s)(this.low,this.high,S.low,S.high);return u(z,n.get_high(),this.unsigned)}return this.sub(this.div(S).mul(S))},$.mod=$.modulo,$.rem=$.modulo,$.not=function(){return u(~this.low,~this.high,this.unsigned)},$.and=function(S){return r(S)||(S=c(S)),u(this.low&S.low,this.high&S.high,this.unsigned)},$.or=function(S){return r(S)||(S=c(S)),u(this.low|S.low,this.high|S.high,this.unsigned)},$.xor=function(S){return r(S)||(S=c(S)),u(this.low^S.low,this.high^S.high,this.unsigned)},$.shiftLeft=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low<<S,this.high<<S|this.low>>>32-S,this.unsigned):u(0,this.low<<S-32,this.unsigned)},$.shl=$.shiftLeft,$.shiftRight=function(S){return r(S)&&(S=S.toInt()),(S&=63)===0?this:S<32?u(this.low>>>S|this.high<<32-S,this.high>>S,this.unsigned):u(this.high>>S-32,this.high>=0?0:-1,this.unsigned)},$.shr=$.shiftRight,$.shiftRightUnsigned=function(S){if(r(S)&&(S=S.toInt()),S&=63,S===0)return this;var z=this.high;if(S<32){var O=this.low;return u(O>>>S|z<<32-S,z>>>S,this.unsigned)}else return S===32?u(z,0,this.unsigned):u(z>>>S-32,0,this.unsigned)},$.shru=$.shiftRightUnsigned,$.shr_u=$.shiftRightUnsigned,$.toSigned=function(){return this.unsigned?u(this.low,this.high,!1):this},$.toUnsigned=function(){return this.unsigned?this:u(this.low,this.high,!0)},$.toBytes=function(S){return S?this.toBytesLE():this.toBytesBE()},$.toBytesLE=function(){var S=this.high,z=this.low;return[z&255,z>>>8&255,z>>>16&255,z>>>24,S&255,S>>>8&255,S>>>16&255,S>>>24]},$.toBytesBE=function(){var S=this.high,z=this.low;return[S>>>24,S>>>16&255,S>>>8&255,S&255,z>>>24,z>>>16&255,z>>>8&255,z&255]},a.fromBytes=function(S,z,O){return O?a.fromBytesLE(S,z):a.fromBytesBE(S,z)},a.fromBytesLE=function(S,z){return new a(S[0]|S[1]<<8|S[2]<<16|S[3]<<24,S[4]|S[5]<<8|S[6]<<16|S[7]<<24,z)},a.fromBytesBE=function(S,z){return new a(S[4]<<24|S[5]<<16|S[6]<<8|S[7],S[0]<<24|S[1]<<16|S[2]<<8|S[3],z)}}),JI=xt(()=>{}),QI=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=p.toString();for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),eS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),tS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),nS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),aS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,g,y,A=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(A[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],h=A[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,A[f]=m^h;p.w=y,p.X=A,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),rS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),S5=xt(()=>{}),sS=xt((e,t)=>{(function(n,a){var r=this,s=256,i=6,o=52,l="random",u=a.pow(s,i),d=a.pow(2,o),p=d*2,c=s-1,h;function m(b,w,N){var C=[];w=w==!0?{entropy:!0}:w||{};var E=A(y(w.entropy?[b,v(n)]:b==null?x():b,3),C),_=new f(C),$=function(){for(var S=_.g(i),z=u,O=0;S<d;)S=(S+O)*s,z*=s,O=_.g(1);for(;S>=p;)S/=2,z/=2,O>>>=1;return(S+O)/z};return $.int32=function(){return _.g(4)|0},$.quick=function(){return _.g(4)/4294967296},$.double=$,A(v(_.S),n),(w.pass||N||function(S,z,O,W){return W&&(W.S&&g(W,_),S.state=function(){return g(_,{})}),O?(a[l]=S,z):S})($,E,"global"in w?w.global:this==a,w.state)}a["seed"+l]=m;function f(b){var w,N=b.length,C=this,E=0,_=C.i=C.j=0,$=C.S=[];for(N||(b=[N++]);E<s;)$[E]=E++;for(E=0;E<s;E++)$[E]=$[_=c&_+b[E%N]+(w=$[E])],$[_]=w;(C.g=function(S){for(var z,O=0,W=C.i,G=C.j,H=C.S;S--;)z=H[W=c&W+1],O=O*s+H[c&(H[W]=H[G=c&G+z])+(H[G]=z)];return C.i=W,C.j=G,O})(s)}function g(b,w){return w.i=b.i,w.j=b.j,w.S=b.S.slice(),w}function y(b,w){var N=[],C=typeof b,E;if(w&&C=="object")for(E in b)try{N.push(y(b[E],w-1))}catch(_){}return N.length?N:C=="string"?b:b+"\0"}function A(b,w){for(var N=b+"",C,E=0;E<N.length;)w[c&E]=c&(C^=w[c&E]*19)+N.charCodeAt(E++);return v(w)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(r.crypto||r.msCrypto).getRandomValues(b)),v(b)}catch(C){var w=r.navigator,N=w&&w.plugins;return[+new Date,r,N,r.screen,v(n)]}}function v(b){return String.fromCharCode.apply(0,b)}if(A(a.random(),n),typeof t=="object"&&t.exports){t.exports=m;try{h=S5()}catch(b){}}else typeof define=="function"&&define.amd&&define(function(){return m})})([],Math)}),N5=xt((e,t)=>{var n=QI(),a=eS(),r=tS(),s=nS(),i=aS(),o=rS(),l=sS();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),Cu=xt(()=>{}),iS=xt(()=>{}),oS=xt(()=>{}),lS=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};function s(){return Z.buffer!=Ue&&tn(Z.buffer),In}function i(){return Z.buffer!=Ue&&tn(Z.buffer),kt}function o(){return Z.buffer!=Ue&&tn(Z.buffer),Sn}function l(){return Z.buffer!=Ue&&tn(Z.buffer),na}function u(){return Z.buffer!=Ue&&tn(Z.buffer),dn}var d=typeof r!="undefined"?r:{},p,c;d.ready=new Promise(function(T,R){p=T,c=R});var h={},m;for(m in d)d.hasOwnProperty(m)&&(h[m]=d[m]);var f=[],g="./this.program",y=function(T,R){throw R},A=!1,x=!1,v=!1,b=!1;A=typeof window=="object",x=typeof importScripts=="function",v=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",b=!A&&!v&&!x;var w=d.ENVIRONMENT_IS_PTHREAD||!1;w&&(Ue=d.buffer);var N="";function C(T){return d.locateFile?d.locateFile(T,N):N+T}var E,_,$,S,z,O;if(v){x?N=Cu().dirname(N)+"/":N=__dirname+"/",E=function(T,R){return z||(z=co("fs")),O||(O=Cu()),T=O.normalize(T),z.readFileSync(T,R?null:"utf8")},$=function(T){var R=E(T,!0);return R.buffer||(R=new Uint8Array(R)),fe(R.buffer),R},process.argv.length>1&&(g=process.argv[1].replace(/\\/g,"/")),f=process.argv.slice(2),process.on("uncaughtException",function(T){if(!(T instanceof Tu))throw T}),process.on("unhandledRejection",ur),y=function(T){process.exit(T)},d.inspect=function(){return"[Emscripten Module object]"};var W;try{W=iS()}catch(T){throw console.error('The "worker_threads" module is not supported in this node.js build - perhaps a newer version is needed?'),T}global.Worker=W.Worker}else b?(typeof read!="undefined"&&(E=function(T){return read(T)}),$=function(T){var R;return typeof readbuffer=="function"?new Uint8Array(readbuffer(T)):(R=read(T,"binary"),fe(typeof R=="object"),R)},typeof scriptArgs!="undefined"?f=scriptArgs:typeof arguments!="undefined"&&(f=arguments),typeof quit=="function"&&(y=function(T){quit(T)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(A||x)&&(x?N=self.location.href:typeof document!="undefined"&&document.currentScript&&(N=document.currentScript.src),typeof a!="undefined"&&a&&(N=a),N.indexOf("blob:")!==0?N=N.substr(0,N.lastIndexOf("/")+1):N="",v?(E=function(T,R){return z||(z=co("fs")),O||(O=Cu()),T=O.normalize(T),z.readFileSync(T,R?null:"utf8")},$=function(T){var R=E(T,!0);return R.buffer||(R=new Uint8Array(R)),fe(R.buffer),R}):(E=function(T){var R=new XMLHttpRequest;return R.open("GET",T,!1),R.send(null),R.responseText},x&&($=function(T){var R=new XMLHttpRequest;return R.open("GET",T,!1),R.responseType="arraybuffer",R.send(null),new Uint8Array(R.response)}),_=function(T,R,j){var X=new XMLHttpRequest;X.open("GET",T,!0),X.responseType="arraybuffer",X.onload=function(){if(X.status==200||X.status==0&&X.response){R(X.response);return}j()},X.onerror=j,X.send(null)}),S=function(T){document.title=T});v&&typeof performance=="undefined"&&(global.performance=oS().performance);var G=d.print||console.log.bind(console),H=d.printErr||console.warn.bind(console);for(m in h)h.hasOwnProperty(m)&&(d[m]=h[m]);h=null,d.arguments&&(f=d.arguments),d.thisProgram&&(g=d.thisProgram),d.quit&&(y=d.quit);var J=Atomics.load,K=Atomics.store,ne=Atomics.compareExchange,Q;d.wasmBinary&&(Q=d.wasmBinary);var se=d.noExitRuntime||!0;typeof WebAssembly!="object"&&ur("no native wasm support detected");var Z,le,oe=!1,xe;function fe(T,R){T||ur("Assertion failed: "+R)}function Ne(T){var R=d["_"+T];return fe(R,"Cannot call unknown function "+T+", make sure it is exported"),R}function Te(T,R,j,X,ce){var ue={string:function(Cn){var po=0;if(Cn!=null&&Cn!==0){var v5=(Cn.length<<2)+1;po=oo(v5),nt(Cn,po,v5)}return po},array:function(Cn){var po=oo(Cn.length);return Ye(Cn,po),po}};function pe(Cn){return R==="string"?ze(Cn):R==="boolean"?Boolean(Cn):Cn}var ve=Ne(T),at=[],Gt=0;if(X)for(var Pt=0;Pt<X.length;Pt++){var Fr=ue[j[Pt]];Fr?(Gt===0&&(Gt=Nu()),at[Pt]=Fr(X[Pt])):at[Pt]=X[Pt]}var uo=ve.apply(null,at);return uo=pe(uo),Gt!==0&&io(Gt),uo}function Oe(T,R,j,X){j=j||[];var ce=j.every(function(pe){return pe==="number"}),ue=R!=="string";return ue&&ce&&!X?Ne(T):function(){return Te(T,R,j,arguments,X)}}function Pe(T,R,j){for(var X=R+j,ce="";!(R>=X);){var ue=T[R++];if(!ue)return ce;if(!(ue&128)){ce+=String.fromCharCode(ue);continue}var pe=T[R++]&63;if((ue&224)==192){ce+=String.fromCharCode((ue&31)<<6|pe);continue}var ve=T[R++]&63;if((ue&240)==224?ue=(ue&15)<<12|pe<<6|ve:ue=(ue&7)<<18|pe<<12|ve<<6|T[R++]&63,ue<65536)ce+=String.fromCharCode(ue);else{var at=ue-65536;ce+=String.fromCharCode(55296|at>>10,56320|at&1023)}}return ce}function ze(T,R){return T?Pe(i(),T,R):""}function tt(T,R,j,X){if(!(X>0))return 0;for(var ce=j,ue=j+X-1,pe=0;pe<T.length;++pe){var ve=T.charCodeAt(pe);if(ve>=55296&&ve<=57343){var at=T.charCodeAt(++pe);ve=65536+((ve&1023)<<10)|at&1023}if(ve<=127){if(j>=ue)break;R[j++]=ve}else if(ve<=2047){if(j+1>=ue)break;R[j++]=192|ve>>6,R[j++]=128|ve&63}else if(ve<=65535){if(j+2>=ue)break;R[j++]=224|ve>>12,R[j++]=128|ve>>6&63,R[j++]=128|ve&63}else{if(j+3>=ue)break;R[j++]=240|ve>>18,R[j++]=128|ve>>12&63,R[j++]=128|ve>>6&63,R[j++]=128|ve&63}}return R[j]=0,j-ce}function nt(T,R,j){return tt(T,i(),R,j)}function it(T){for(var R=0,j=0;j<T.length;++j){var X=T.charCodeAt(j);X>=55296&&X<=57343&&(X=65536+((X&1023)<<10)|T.charCodeAt(++j)&1023),X<=127?++R:X<=2047?R+=2:X<=65535?R+=3:R+=4}return R}function Ye(T,R){s().set(T,R)}function ht(T,R){return T%R>0&&(T+=R-T%R),T}var Ue,In,kt,ta,en,Sn,na,Pn,dn;function tn(T){Ue=T,d.HEAP8=In=new Int8Array(T),d.HEAP16=ta=new Int16Array(T),d.HEAP32=Sn=new Int32Array(T),d.HEAPU8=kt=new Uint8Array(T),d.HEAPU16=en=new Uint16Array(T),d.HEAPU32=na=new Uint32Array(T),d.HEAPF32=Pn=new Float32Array(T),d.HEAPF64=dn=new Float64Array(T)}var Ba=d.INITIAL_MEMORY||16777216;if(w)Z=d.wasmMemory,Ue=d.buffer;else if(d.wasmMemory)Z=d.wasmMemory;else if(Z=new WebAssembly.Memory({initial:Ba/65536,maximum:2147483648/65536,shared:!0}),!(Z.buffer instanceof SharedArrayBuffer))throw H("requested a shared WebAssembly.Memory but the returned buffer is not a SharedArrayBuffer, indicating that while the browser has SharedArrayBuffer it does not have WebAssembly threads support - you may need to set a flag"),v&&console.log("(on node you may need: --experimental-wasm-threads --experimental-wasm-bulk-memory and also use a recent version)"),Error("bad memory");Z&&(Ue=Z.buffer),Ba=Ue.byteLength,tn(Ue);var fa,ma=[],Nr=[],or=[],Tr=[],eo=[],Va=!1,vp=!1;w||Nr.push({func:function(){zp()}});function cf(){if(!w){if(d.preRun)for(typeof d.preRun=="function"&&(d.preRun=[d.preRun]);d.preRun.length;)kp(d.preRun.shift());no(ma)}}function yu(){Va=!0,!w&&no(Nr)}function hf(){w||no(or)}function wp(){w||(vp=!0)}function Nn(){if(!w){if(d.postRun)for(typeof d.postRun=="function"&&(d.postRun=[d.postRun]);d.postRun.length;)ff(d.postRun.shift());no(eo)}}function kp(T){ma.unshift(T)}function ff(T){eo.unshift(T)}var lr=0,Cr=null,hs=null;function mf(T){fe(!w,"addRunDependency cannot be used in a pthread worker"),lr++,d.monitorRunDependencies&&d.monitorRunDependencies(lr)}function gf(T){if(lr--,d.monitorRunDependencies&&d.monitorRunDependencies(lr),lr==0&&(Cr!==null&&(clearInterval(Cr),Cr=null),hs)){var R=hs;hs=null,R()}}d.preloadedImages={},d.preloadedAudios={};function ur(T){d.onAbort&&d.onAbort(T),w&&console.error("Pthread aborting at "+new Error().stack),T+="",H(T),oe=!0,xe=1,T="abort("+T+"). Build with -s ASSERTIONS=1 for more info.";var R=new WebAssembly.RuntimeError(T);throw c(R),R}function Ip(T,R){return String.prototype.startsWith?T.startsWith(R):T.indexOf(R)===0}var to="data:application/octet-stream;base64,";function Sp(T){return Ip(T,to)}var yf="file://";function Np(T){return Ip(T,yf)}var Tn="tfjs-backend-wasm-threaded-simd.wasm";Sp(Tn)||(Tn=C(Tn));function Tp(T){try{if(T==Tn&&Q)return new Uint8Array(Q);if($)return $(T);throw"both async and sync fetching of the wasm failed"}catch(R){ur(R)}}function Af(){if(!Q&&(A||x)){if(typeof fetch=="function"&&!Np(Tn))return fetch(Tn,{credentials:"same-origin"}).then(function(T){if(!T.ok)throw"failed to load wasm binary file at '"+Tn+"'";return T.arrayBuffer()}).catch(function(){return Tp(Tn)});if(_)return new Promise(function(T,R){_(Tn,function(j){T(new Uint8Array(j))},R)})}return Promise.resolve().then(function(){return Tp(Tn)})}function xf(){var T={a:um};function R(pe,ve){var at=pe.exports;if(d.asm=at,fa=d.asm.F,le=ve,!w){var Gt=Ie.unusedWorkers.length;Ie.unusedWorkers.forEach(function(Pt){Ie.loadWasmModuleToWorker(Pt,function(){--Gt||gf("wasm-instantiate")})})}}w||mf("wasm-instantiate");function j(pe){R(pe.instance,pe.module)}function X(pe){return Af().then(function(ve){return WebAssembly.instantiate(ve,T)}).then(pe,function(ve){H("failed to asynchronously prepare wasm: "+ve),ur(ve)})}function ce(){return!Q&&typeof WebAssembly.instantiateStreaming=="function"&&!Sp(Tn)&&!Np(Tn)&&typeof fetch=="function"?fetch(Tn,{credentials:"same-origin"}).then(function(pe){var ve=WebAssembly.instantiateStreaming(pe,T);return ve.then(j,function(at){return H("wasm streaming compile failed: "+at),H("falling back to ArrayBuffer instantiation"),X(j)})}):X(j)}if(d.instantiateWasm)try{var ue=d.instantiateWasm(T,R);return ue}catch(pe){return H("Module.instantiateWasm callback failed with error: "+pe),!1}return ce().catch(c),{}}var bf={9816:function(){throw"Canceled!"},9834:function(T,R){setTimeout(function(){m5(T,R)},0)}};function Cp(){Ie.initRuntime()}function no(T){for(;T.length>0;){var R=T.shift();if(typeof R=="function"){R(d);continue}var j=R.func;typeof j=="number"?R.arg===void 0?fa.get(j)():fa.get(j)(R.arg):j(R.arg===void 0?null:R.arg)}}function Au(T,R){if(T<=0||T>s().length||T&!0||R<0)return-28;if(R==0)return 0;R>=2147483647&&(R=Infinity);var j=Atomics.load(o(),lo>>2),X=0;if(j==T){var ce=Atomics.compareExchange(o(),lo>>2,j,0);if(ce==j&&(--R,X=1,R<=0))return 1}var ue=Atomics.notify(o(),T>>2,R);if(ue>=0)return ue+X;throw"Atomics.notify returned an unexpected value "+ue}d._emscripten_futex_wake=Au;function vf(T){if(w)throw"Internal Error! killThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in killThread!";o()[T+12>>2]=0;var R=Ie.pthreads[T];R.worker.terminate(),Ie.freeThreadData(R),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf(R.worker),1),R.worker.pthread=void 0}function wf(T){if(w)throw"Internal Error! cancelThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cancelThread!";var R=Ie.pthreads[T];R.worker.postMessage({cmd:"cancel"})}function kf(T){if(w)throw"Internal Error! cleanupThread() can only ever be called from main application thread!";if(!T)throw"Internal Error! Null pthread_ptr in cleanupThread!";var R=Ie.pthreads[T];if(R){o()[T+12>>2]=0;var j=R.worker;Ie.returnWorkerToPool(j)}}var Ie={unusedWorkers:[],runningWorkers:[],initMainThreadBlock:function(){for(var T=Math.min(4,Math.max(1,(navigator.hardwareConcurrency||1)/2)),R=0;R<T;++R)Ie.allocateUnusedWorker()},initRuntime:function(){for(var T=ms(228),R=0;R<228/4;++R)l()[T/4+R]=0;o()[T+12>>2]=T;var j=T+152;o()[j>>2]=j;for(var X=ms(512),R=0;R<128;++R)l()[X/4+R]=0;Atomics.store(l(),T+100>>2,X),Atomics.store(l(),T+40>>2,T),Dm(T,!x,1),f5(T)},initWorker:function(){},pthreads:{},threadExitHandlers:[],setThreadStatus:function(){},runExitHandlers:function(){for(;Ie.threadExitHandlers.length>0;)Ie.threadExitHandlers.pop()();w&&so()&&h5()},runExitHandlersAndDeinitThread:function(T,R){Atomics.store(l(),T+56>>2,1),Atomics.store(l(),T+60>>2,0),Ie.runExitHandlers(),Atomics.store(l(),T+4>>2,R),Atomics.store(l(),T+0>>2,1),Au(T+0,2147483647),Dm(0,0,0)},threadExit:function(T){var R=so();R&&(Ie.runExitHandlersAndDeinitThread(R,T),w&&postMessage({cmd:"exit"}))},threadCancel:function(){Ie.runExitHandlersAndDeinitThread(so(),-1),postMessage({cmd:"cancelDone"})},terminateAllThreads:function(){for(var T in Ie.pthreads){var R=Ie.pthreads[T];R&&R.worker&&Ie.returnWorkerToPool(R.worker)}Ie.pthreads={};for(var j=0;j<Ie.unusedWorkers.length;++j){var X=Ie.unusedWorkers[j];X.terminate()}Ie.unusedWorkers=[];for(var j=0;j<Ie.runningWorkers.length;++j){var X=Ie.runningWorkers[j],R=X.pthread;Ie.freeThreadData(R),X.terminate()}Ie.runningWorkers=[]},freeThreadData:function(T){if(T){if(T.threadInfoStruct){var R=o()[T.threadInfoStruct+100>>2];o()[T.threadInfoStruct+100>>2]=0,Su(R),Su(T.threadInfoStruct)}T.threadInfoStruct=0,T.allocatedOwnStack&&T.stackBase&&Su(T.stackBase),T.stackBase=0,T.worker&&(T.worker.pthread=null)}},returnWorkerToPool:function(T){Ie.runWithoutMainThreadQueuedCalls(function(){delete Ie.pthreads[T.pthread.threadInfoStruct],Ie.unusedWorkers.push(T),Ie.runningWorkers.splice(Ie.runningWorkers.indexOf(T),1),Ie.freeThreadData(T.pthread),T.pthread=void 0})},runWithoutMainThreadQueuedCalls:function(T){o()[b5>>2]=0;try{T()}finally{o()[b5>>2]=1}},receiveObjectTransfer:function(T){},loadWasmModuleToWorker:function(T,R){T.onmessage=function(j){var X=j.data,ce=X.cmd;if(T.pthread&&(Ie.currentProxiedOperationCallerThread=T.pthread.threadInfoStruct),X.targetThread&&X.targetThread!=so()){var ue=Ie.pthreads[X.targetThread];ue?ue.worker.postMessage(j.data,X.transferList):console.error('Internal error! Worker sent a message "'+ce+'" to target pthread '+X.targetThread+", but that thread no longer exists!"),Ie.currentProxiedOperationCallerThread=void 0;return}if(ce==="processQueuedMainThreadWork")Fm();else if(ce==="spawnThread")Dp(j.data);else if(ce==="cleanupThread")kf(X.thread);else if(ce==="killThread")vf(X.thread);else if(ce==="cancelThread")wf(X.thread);else if(ce==="loaded")T.loaded=!0,R&&R(T),T.runPthread&&(T.runPthread(),delete T.runPthread);else if(ce==="print")G("Thread "+X.threadId+": "+X.text);else if(ce==="printErr")H("Thread "+X.threadId+": "+X.text);else if(ce==="alert")alert("Thread "+X.threadId+": "+X.text);else if(ce==="exit"){var pe=T.pthread&&Atomics.load(l(),T.pthread.threadInfoStruct+64>>2);pe&&Ie.returnWorkerToPool(T)}else if(ce==="exitProcess")try{VI(X.returnCode)}catch(ve){if(ve instanceof Tu)return;throw ve}else ce==="cancelDone"?Ie.returnWorkerToPool(T):ce==="objectTransfer"?Ie.receiveObjectTransfer(j.data):j.data.target==="setimmediate"?T.postMessage(j.data):H("worker sent an unknown command "+ce);Ie.currentProxiedOperationCallerThread=void 0},T.onerror=function(j){H("pthread sent an error! "+j.filename+":"+j.lineno+": "+j.message)},v&&(T.on("message",function(j){T.onmessage({data:j})}),T.on("error",function(j){T.onerror(j)}),T.on("exit",function(j){})),T.postMessage({cmd:"load",urlOrBlob:d.mainScriptUrlOrBlob||a,wasmMemory:Z,wasmModule:le})},allocateUnusedWorker:function(){var T=C("tfjs-backend-wasm-threaded-simd.worker.js");Ie.unusedWorkers.push(new Worker(T))},getNewWorker:function(){return Ie.unusedWorkers.length==0&&(Ie.allocateUnusedWorker(),Ie.loadWasmModuleToWorker(Ie.unusedWorkers[0])),Ie.unusedWorkers.length>0?Ie.unusedWorkers.pop():null},busySpinWait:function(T){for(var R=performance.now()+T;performance.now()<R;);}};function If(T,R){A5(T,R),io(T)}d.establishStackSpace=If;function Sf(){return se}d.getNoExitRuntime=Sf;function Nf(T,R){return fa.get(T)(R)}d.invokeEntryPoint=Nf;function Tf(T,R,j,X){ur("Assertion failed: "+ze(T)+", at: "+[R?ze(R):"unknown filename",j,X?ze(X):"unknown function"])}function Cf(T,R){var j=_main(T,R)}var fs;v?fs=function(){var T=process.hrtime();return T[0]*1e3+T[1]/1e6}:w?fs=function(){return performance.now()-d.__performance_now_clock_drift}:typeof dateNow!="undefined"?fs=dateNow:fs=function(){return performance.now()};function Ef(T){return o()[p5()>>2]=T,T}function Rf(T,R){if(w)return Er(1,1,T,R)}function Mf(T,R){if(T==R)postMessage({cmd:"processQueuedMainThreadWork"});else if(w)postMessage({targetThread:T,cmd:"processThreadQueue"});else{var j=Ie.pthreads[T],X=j&&j.worker;if(!X)return;X.postMessage({cmd:"processThreadQueue"})}return 1}function Ff(){ur()}function $f(T,R,j){var X=Pf(R,j);return bf[T].apply(null,X)}function Df(T,R){}function Of(T,R,j){if(T<=0||T>s().length||T&!0)return-28;if(A){if(Atomics.load(o(),T>>2)!=R)return-6;for(var X=performance.now(),ce=X+j,ue=Atomics.exchange(o(),lo>>2,T);;){if(X=performance.now(),X>ce)return ue=Atomics.exchange(o(),lo>>2,0),-73;if(ue=Atomics.exchange(o(),lo>>2,0),ue==0)break;if(Fm(),Atomics.load(o(),T>>2)!=R)return-6;ue=Atomics.exchange(o(),lo>>2,T)}return 0}else{var pe=Atomics.wait(o(),T>>2,R,j);if(pe==="timed-out")return-73;if(pe==="not-equal")return-6;if(pe==="ok")return 0;throw"Atomics.wait returned an unexpected value "+pe}}function zf(T,R,j){i().copyWithin(T,R,R+j)}function _f(){return v?co("os").cpus().length:navigator.hardwareConcurrency}function Er(T,R){for(var j=arguments.length-2,X=Nu(),ce=j,ue=oo(ce*8),pe=ue>>3,ve=0;ve<j;ve++){var at=arguments[2+ve];u()[pe+ve]=at}var Gt=y5(T,ce,ue,R);return io(X),Gt}var xu=[],bu=[];function Pf(T,R){bu.length=0;var j;for(R>>=2;j=i()[T++];){var X=j<105;X&&R&1&&R++,bu.push(X?u()[R++>>1]:o()[R]),++R}return bu}function Lf(T,R,j){xu.length=R;for(var X=j>>3,ce=0;ce<R;ce++)xu[ce]=u()[X+ce];var ue=T<0,pe=ue?bf[-T-1]:lm[T];return pe.apply(null,xu)}function Wf(){return i().length}function Bf(T){try{return Z.grow(T-Ue.byteLength+65535>>>16),tn(Z.buffer),1}catch(R){}}function Vf(T){var R=Wf();if(T<=R)return!1;var j=2147483648;if(T>j)return!1;for(var X=1;X<=4;X*=2){var ce=R*(1+.2/X);ce=Math.min(ce,T+100663296);var ue=Math.min(j,ht(Math.max(T,ce),65536)),pe=Bf(ue);if(pe)return!0}return!1}var We={inEventHandler:0,removeAllEventListeners:function(){for(var T=We.eventHandlers.length-1;T>=0;--T)We._removeHandler(T);We.eventHandlers=[],We.deferredCalls=[]},registerRemoveEventListeners:function(){We.removeEventListenersRegistered||(Tr.push(We.removeAllEventListeners),We.removeEventListenersRegistered=!0)},deferredCalls:[],deferCall:function(T,R,j){function X(pe,ve){if(pe.length!=ve.length)return!1;for(var at in pe)if(pe[at]!=ve[at])return!1;return!0}for(var ce in We.deferredCalls){var ue=We.deferredCalls[ce];if(ue.targetFunction==T&&X(ue.argsList,j))return}We.deferredCalls.push({targetFunction:T,precedence:R,argsList:j}),We.deferredCalls.sort(function(pe,ve){return pe.precedence<ve.precedence})},removeDeferredCalls:function(T){for(var R=0;R<We.deferredCalls.length;++R)We.deferredCalls[R].targetFunction==T&&(We.deferredCalls.splice(R,1),--R)},canPerformEventHandlerRequests:function(){return We.inEventHandler&&We.currentEventHandler.allowsDeferredCalls},runDeferredCalls:function(){if(We.canPerformEventHandlerRequests())for(var T=0;T<We.deferredCalls.length;++T){var R=We.deferredCalls[T];We.deferredCalls.splice(T,1),--T,R.targetFunction.apply(null,R.argsList)}},eventHandlers:[],removeAllHandlersOnTarget:function(T,R){for(var j=0;j<We.eventHandlers.length;++j)We.eventHandlers[j].target==T&&(!R||R==We.eventHandlers[j].eventTypeString)&&We._removeHandler(j--)},_removeHandler:function(T){var R=We.eventHandlers[T];R.target.removeEventListener(R.eventTypeString,R.eventListenerFunc,R.useCapture),We.eventHandlers.splice(T,1)},registerOrRemoveHandler:function(T){var R=function(X){++We.inEventHandler,We.currentEventHandler=T,We.runDeferredCalls(),T.handlerFunc(X),We.runDeferredCalls(),--We.inEventHandler};if(T.callbackfunc)T.eventListenerFunc=R,T.target.addEventListener(T.eventTypeString,R,T.useCapture),We.eventHandlers.push(T),We.registerRemoveEventListeners();else for(var j=0;j<We.eventHandlers.length;++j)We.eventHandlers[j].target==T.target&&We.eventHandlers[j].eventTypeString==T.eventTypeString&&We._removeHandler(j--)},queueEventHandlerOnThread_iiii:function(T,R,j,X,ce){var ue=Nu(),pe=oo(12);o()[pe>>2]=j,o()[pe+4>>2]=X,o()[pe+8>>2]=ce,$m(0,T,637534208,R,X,pe),io(ue)},getTargetThreadForEventCallback:function(T){switch(T){case 1:return 0;case 2:return Ie.currentProxiedOperationCallerThread;default:return T}},getNodeNameForTarget:function(T){return T?T==window?"#window":T==screen?"#screen":T&&T.nodeName?T.nodeName:"":""},fullscreenEnabled:function(){return document.fullscreenEnabled||document.webkitFullscreenEnabled}};function jf(T){var R=it(T)+1,j=ms(R);return nt(T,j,R),j}function Uf(T,R,j,X){var ce=Nu(),ue=oo(12),pe=0;R&&(pe=jf(R)),o()[ue>>2]=pe,o()[ue+4>>2]=j,o()[ue+8>>2]=X,$m(0,T,657457152,0,pe,ue),io(ce)}function Hf(T,R,j,X){R=R?ze(R):"",Uf(T,R,j,X)}function Gf(T){return T>2?ze(T):T}var qf=[0,typeof document!="undefined"?document:0,typeof window!="undefined"?window:0];function Xf(T){T=Gf(T);var R=qf[T]||(typeof document!="undefined"?document.querySelector(T):void 0);return R}function vu(T){return Xf(T)}function Ep(T,R,j){var X=vu(T);if(!X)return-4;if(X.canvasSharedPtr&&(o()[X.canvasSharedPtr>>2]=R,o()[X.canvasSharedPtr+4>>2]=j),X.offscreenCanvas||!X.controlTransferredOffscreen){X.offscreenCanvas&&(X=X.offscreenCanvas);var ce=!1;if(X.GLctxObject&&X.GLctxObject.GLctx){var ue=X.GLctxObject.GLctx.getParameter(2978);ce=ue[0]===0&&ue[1]===0&&ue[2]===X.width&&ue[3]===X.height}X.width=R,X.height=j,ce&&X.GLctxObject.GLctx.viewport(0,0,R,j)}else if(X.canvasSharedPtr){var pe=o()[X.canvasSharedPtr+8>>2];return Hf(pe,T,R,j),1}else return-4;return 0}function Rp(T,R,j){return w?Er(2,1,T,R,j):Ep(T,R,j)}function Kf(T,R,j){var X=vu(T);return X?Ep(T,R,j):Rp(T,R,j)}function Zf(T){}function Yf(T,R){}function Jf(T){var R=T.getExtension("ANGLE_instanced_arrays");if(R)return T.vertexAttribDivisor=function(j,X){R.vertexAttribDivisorANGLE(j,X)},T.drawArraysInstanced=function(j,X,ce,ue){R.drawArraysInstancedANGLE(j,X,ce,ue)},T.drawElementsInstanced=function(j,X,ce,ue,pe){R.drawElementsInstancedANGLE(j,X,ce,ue,pe)},1}function Qf(T){var R=T.getExtension("OES_vertex_array_object");if(R)return T.createVertexArray=function(){return R.createVertexArrayOES()},T.deleteVertexArray=function(j){R.deleteVertexArrayOES(j)},T.bindVertexArray=function(j){R.bindVertexArrayOES(j)},T.isVertexArray=function(j){return R.isVertexArrayOES(j)},1}function em(T){var R=T.getExtension("WEBGL_draw_buffers");if(R)return T.drawBuffers=function(j,X){R.drawBuffersWEBGL(j,X)},1}function tm(T){return!!(T.multiDrawWebgl=T.getExtension("WEBGL_multi_draw"))}var et={counter:1,buffers:[],programs:[],framebuffers:[],renderbuffers:[],textures:[],uniforms:[],shaders:[],vaos:[],contexts:{},offscreenCanvases:{},timerQueriesEXT:[],programInfos:{},stringCache:{},unpackAlignment:4,recordError:function(T){et.lastError||(et.lastError=T)},getNewId:function(T){for(var R=et.counter++,j=T.length;j<R;j++)T[j]=null;return R},getSource:function(T,R,j,X){for(var ce="",ue=0;ue<R;++ue){var pe=X?o()[X+ue*4>>2]:-1;ce+=ze(o()[j+ue*4>>2],pe<0?void 0:pe)}return ce},createContext:function(T,R){var j=T.getContext("webgl",R);if(!j)return 0;var X=et.registerContext(j,R);return X},registerContext:function(T,R){var j=ms(8);o()[j+4>>2]=so();var X={handle:j,attributes:R,version:R.majorVersion,GLctx:T};return T.canvas&&(T.canvas.GLctxObject=X),et.contexts[j]=X,(typeof R.enableExtensionsByDefault=="undefined"||R.enableExtensionsByDefault)&&et.initExtensions(X),j},makeContextCurrent:function(T){return et.currentContext=et.contexts[T],d.ctx=Rr=et.currentContext&&et.currentContext.GLctx,!(T&&!Rr)},getContext:function(T){return et.contexts[T]},deleteContext:function(T){et.currentContext===et.contexts[T]&&(et.currentContext=null),typeof We=="object"&&We.removeAllHandlersOnTarget(et.contexts[T].GLctx.canvas),et.contexts[T]&&et.contexts[T].GLctx.canvas&&(et.contexts[T].GLctx.canvas.GLctxObject=void 0),Su(et.contexts[T].handle),et.contexts[T]=null},initExtensions:function(T){if(T||(T=et.currentContext),!T.initExtensionsDone){T.initExtensionsDone=!0;var R=T.GLctx;Jf(R),Qf(R),em(R),R.disjointTimerQueryExt=R.getExtension("EXT_disjoint_timer_query"),tm(R);var j=R.getSupportedExtensions()||[];j.forEach(function(X){X.indexOf("lose_context")<0&&X.indexOf("debug")<0&&R.getExtension(X)})}},populateUniformTable:function(T){for(var R=et.programs[T],j=et.programInfos[T]={uniforms:{},maxUniformLength:0,maxAttributeLength:-1,maxUniformBlockNameLength:-1},X=j.uniforms,ce=Rr.getProgramParameter(R,35718),ue=0;ue<ce;++ue){var pe=Rr.getActiveUniform(R,ue),ve=pe.name;j.maxUniformLength=Math.max(j.maxUniformLength,ve.length+1),ve.slice(-1)=="]"&&(ve=ve.slice(0,ve.lastIndexOf("[")));var at=Rr.getUniformLocation(R,ve);if(at){var Gt=et.getNewId(et.uniforms);X[ve]=[pe.size,Gt],et.uniforms[Gt]=at;for(var Pt=1;Pt<pe.size;++Pt){var Fr=ve+"["+Pt+"]";at=Rr.getUniformLocation(R,Fr),Gt=et.getNewId(et.uniforms),et.uniforms[Gt]=at}}}}},nm=["default","low-power","high-performance"];function am(T,R){var j=R>>2,X=o()[j+(24>>2)],ce={alpha:!!o()[j+(0>>2)],depth:!!o()[j+(4>>2)],stencil:!!o()[j+(8>>2)],antialias:!!o()[j+(12>>2)],premultipliedAlpha:!!o()[j+(16>>2)],preserveDrawingBuffer:!!o()[j+(20>>2)],powerPreference:nm[X],failIfMajorPerformanceCaveat:!!o()[j+(28>>2)],majorVersion:o()[j+(32>>2)],minorVersion:o()[j+(36>>2)],enableExtensionsByDefault:o()[j+(40>>2)],explicitSwapControl:o()[j+(44>>2)],proxyContextToMainThread:o()[j+(48>>2)],renderViaOffscreenBackBuffer:o()[j+(52>>2)]},ue=vu(T);if(!ue||ce.explicitSwapControl)return 0;var pe=et.createContext(ue,ce);return pe}function rm(T,R){return am(T,R)}var ao={mappings:{},buffers:[null,[],[]],printChar:function(T,R){var j=ao.buffers[T];R===0||R===10?((T===1?G:H)(Pe(j,0)),j.length=0):j.push(R)},varargs:void 0,get:function(){ao.varargs+=4;var T=o()[ao.varargs-4>>2];return T},getStr:function(T){var R=ze(T);return R},get64:function(T,R){return T}};function Mp(T){return w?Er(3,1,T):0}function Fp(T,R,j,X,ce){if(w)return Er(4,1,T,R,j,X,ce)}function $p(T,R,j,X){if(w)return Er(5,1,T,R,j,X);for(var ce=0,ue=0;ue<j;ue++){for(var pe=o()[R+ue*8>>2],ve=o()[R+(ue*8+4)>>2],at=0;at<ve;at++)ao.printChar(T,i()[pe+at]);ce+=ve}return o()[X>>2]=ce,0}function sm(T){var R=Ie.threadExitHandlers.pop();T&&R()}function im(T,R){Ie.threadExitHandlers.push(function(){fa.get(T)(R)})}function Dp(T){if(w)throw"Internal Error! spawnThread() can only ever be called from main application thread!";var R=Ie.getNewWorker();if(R.pthread!==void 0)throw"Internal error!";if(!T.pthread_ptr)throw"Internal error, no pthread ptr!";Ie.runningWorkers.push(R);for(var j=ms(128*4),X=0;X<128;++X)o()[j+X*4>>2]=0;var ce=T.stackBase+T.stackSize,ue=Ie.pthreads[T.pthread_ptr]={worker:R,stackBase:T.stackBase,stackSize:T.stackSize,allocatedOwnStack:T.allocatedOwnStack,threadInfoStruct:T.pthread_ptr},pe=ue.threadInfoStruct>>2;Atomics.store(l(),pe+(64>>2),T.detached),Atomics.store(l(),pe+(100>>2),j),Atomics.store(l(),pe+(40>>2),ue.threadInfoStruct),Atomics.store(l(),pe+(80>>2),T.stackSize),Atomics.store(l(),pe+(76>>2),ce),Atomics.store(l(),pe+(104>>2),T.stackSize),Atomics.store(l(),pe+(104+8>>2),ce),Atomics.store(l(),pe+(104+12>>2),T.detached);var ve=c5(),at=ve+40;Atomics.store(l(),pe+(172>>2),at),R.pthread=ue;var Gt={cmd:"run",start_routine:T.startRoutine,arg:T.arg,threadInfoStruct:T.pthread_ptr,stackBase:T.stackBase,stackSize:T.stackSize};R.runPthread=function(){Gt.time=performance.now(),R.postMessage(Gt,T.transferList)},R.loaded&&(R.runPthread(),delete R.runPthread)}function om(T,R,j,X){if(typeof SharedArrayBuffer=="undefined")return H("Current environment does not support SharedArrayBuffer, pthreads are not available!"),6;if(!T)return H("pthread_create called with a null thread pointer!"),28;var ce=[],ue=0;if(w&&(ce.length===0||ue))return g5(687865856,T,R,j,X);if(ue)return ue;var pe=0,ve=0,at=0;R&&R!=-1?(pe=o()[R>>2],pe+=81920,ve=o()[R+8>>2],at=o()[R+12>>2]!==0):pe=2097152;var Gt=ve==0;Gt?ve=x5(16,pe):(ve-=pe,fe(ve>0));for(var Pt=ms(228),Fr=0;Fr<228>>2;++Fr)l()[(Pt>>2)+Fr]=0;o()[T>>2]=Pt,o()[Pt+12>>2]=Pt;var uo=Pt+152;o()[uo>>2]=uo;var Cn={stackBase:ve,stackSize:pe,allocatedOwnStack:Gt,detached:at,startRoutine:j,pthread_ptr:Pt,arg:X,transferList:ce};return w?(Cn.cmd="spawnThread",postMessage(Cn,ce)):Dp(Cn),0}function Op(T){if(w)return Er(6,1,T);switch(T){case 30:return 16384;case 85:var R=2147483648;return R/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Ef(28),-1}w||Ie.initMainThreadBlock();var Rr,lm=[null,Rf,Rp,Mp,Fp,$p,Op],um={e:Tf,r:Cf,x:Mf,b:Ff,y:$f,j:Df,c:Of,d:Au,f:fs,p:zf,z:_f,u:Lf,q:Vf,v:Kf,i:Zf,t:Yf,w:rm,m:Mp,n:Fp,g:$p,o:Cp,a:Z||d.wasmMemory,k:sm,l:im,h:om,s:Op},d5=xf(),zp=d.___wasm_call_ctors=function(){return(zp=d.___wasm_call_ctors=d.asm.A).apply(null,arguments)},dm=d._init=function(){return(dm=d._init=d.asm.B).apply(null,arguments)},pm=d._register_tensor=function(){return(pm=d._register_tensor=d.asm.C).apply(null,arguments)},cm=d._dispose_data=function(){return(cm=d._dispose_data=d.asm.D).apply(null,arguments)},hm=d._dispose=function(){return(hm=d._dispose=d.asm.E).apply(null,arguments)},fm=d._Abs=function(){return(fm=d._Abs=d.asm.G).apply(null,arguments)},mm=d._Add=function(){return(mm=d._Add=d.asm.H).apply(null,arguments)},gm=d._AddN=function(){return(gm=d._AddN=d.asm.I).apply(null,arguments)},ym=d._All=function(){return(ym=d._All=d.asm.J).apply(null,arguments)},Am=d._Any=function(){return(Am=d._Any=d.asm.K).apply(null,arguments)},xm=d._ArgMax=function(){return(xm=d._ArgMax=d.asm.L).apply(null,arguments)},bm=d._AvgPool=function(){return(bm=d._AvgPool=d.asm.M).apply(null,arguments)},vm=d._BatchMatMul=function(){return(vm=d._BatchMatMul=d.asm.N).apply(null,arguments)},wm=d._Ceil=function(){return(wm=d._Ceil=d.asm.O).apply(null,arguments)},km=d._ClipByValue=function(){return(km=d._ClipByValue=d.asm.P).apply(null,arguments)},Im=d._Conv2D=function(){return(Im=d._Conv2D=d.asm.Q).apply(null,arguments)},Sm=d._Conv2DBackpropInput=function(){return(Sm=d._Conv2DBackpropInput=d.asm.R).apply(null,arguments)},Nm=d._Cos=function(){return(Nm=d._Cos=d.asm.S).apply(null,arguments)},Tm=d._CropAndResize=function(){return(Tm=d._CropAndResize=d.asm.T).apply(null,arguments)},Cm=d._Cumsum=function(){return(Cm=d._Cumsum=d.asm.U).apply(null,arguments)},Em=d._DepthToSpace=function(){return(Em=d._DepthToSpace=d.asm.V).apply(null,arguments)},Rm=d._DepthwiseConv2dNative=function(){return(Rm=d._DepthwiseConv2dNative=d.asm.W).apply(null,arguments)},_p=d._Equal=function(){return(_p=d._Equal=d.asm.X).apply(null,arguments)},Pp=d._Exp=function(){return(Pp=d._Exp=d.asm.Y).apply(null,arguments)},Lp=d._FlipLeftRight=function(){return(Lp=d._FlipLeftRight=d.asm.Z).apply(null,arguments)},wu=d._Floor=function(){return(wu=d._Floor=d.asm._).apply(null,arguments)},ro=d._FloorDiv=function(){return(ro=d._FloorDiv=d.asm.$).apply(null,arguments)},Mm=d._FusedBatchNorm=function(){return(Mm=d._FusedBatchNorm=d.asm.aa).apply(null,arguments)},ku=d._FusedConv2D=function(){return(ku=d._FusedConv2D=d.asm.ba).apply(null,arguments)},Y=d._FusedDepthwiseConv2D=function(){return(Y=d._FusedDepthwiseConv2D=d.asm.ca).apply(null,arguments)},ae=d._Gather=function(){return(ae=d._Gather=d.asm.da).apply(null,arguments)},Ce=d._GatherNd=function(){return(Ce=d._GatherNd=d.asm.ea).apply(null,arguments)},Je=d._Greater=function(){return(Je=d._Greater=d.asm.fa).apply(null,arguments)},Ct=d._GreaterEqual=function(){return(Ct=d._GreaterEqual=d.asm.ga).apply(null,arguments)},At=d._LeakyRelu=function(){return(At=d._LeakyRelu=d.asm.ha).apply(null,arguments)},He=d._Less=function(){return(He=d._Less=d.asm.ia).apply(null,arguments)},qe=d._LessEqual=function(){return(qe=d._LessEqual=d.asm.ja).apply(null,arguments)},nn=d._Log=function(){return(nn=d._Log=d.asm.ka).apply(null,arguments)},dr=d._LogicalAnd=function(){return(dr=d._LogicalAnd=d.asm.la).apply(null,arguments)},pr=d._Max=function(){return(pr=d._Max=d.asm.ma).apply(null,arguments)},Wp=d._MaxPool=function(){return(Wp=d._MaxPool=d.asm.na).apply(null,arguments)},Iu=d._Maximum=function(){return(Iu=d._Maximum=d.asm.oa).apply(null,arguments)},aa=d._Mean=function(){return(aa=d._Mean=d.asm.pa).apply(null,arguments)},Mr=d._Min=function(){return(Mr=d._Min=d.asm.qa).apply(null,arguments)},Bp=d._Minimum=function(){return(Bp=d._Minimum=d.asm.ra).apply(null,arguments)},tI=d._MirrorPad=function(){return(tI=d._MirrorPad=d.asm.sa).apply(null,arguments)},nI=d._Multiply=function(){return(nI=d._Multiply=d.asm.ta).apply(null,arguments)},aI=d._Neg=function(){return(aI=d._Neg=d.asm.ua).apply(null,arguments)},rI=d._NonMaxSuppressionV3=function(){return(rI=d._NonMaxSuppressionV3=d.asm.va).apply(null,arguments)},sI=d._NonMaxSuppressionV4=function(){return(sI=d._NonMaxSuppressionV4=d.asm.wa).apply(null,arguments)},iI=d._NonMaxSuppressionV5=function(){return(iI=d._NonMaxSuppressionV5=d.asm.xa).apply(null,arguments)},oI=d._NotEqual=function(){return(oI=d._NotEqual=d.asm.ya).apply(null,arguments)},lI=d._OneHot=function(){return(lI=d._OneHot=d.asm.za).apply(null,arguments)},uI=d._PadV2=function(){return(uI=d._PadV2=d.asm.Aa).apply(null,arguments)},dI=d._Pow=function(){return(dI=d._Pow=d.asm.Ba).apply(null,arguments)},pI=d._Prelu=function(){return(pI=d._Prelu=d.asm.Ca).apply(null,arguments)},cI=d._Prod=function(){return(cI=d._Prod=d.asm.Da).apply(null,arguments)},hI=d._RealDiv=function(){return(hI=d._RealDiv=d.asm.Ea).apply(null,arguments)},fI=d._Relu=function(){return(fI=d._Relu=d.asm.Fa).apply(null,arguments)},mI=d._Relu6=function(){return(mI=d._Relu6=d.asm.Ga).apply(null,arguments)},gI=d._ResizeBilinear=function(){return(gI=d._ResizeBilinear=d.asm.Ha).apply(null,arguments)},yI=d._Reverse=function(){return(yI=d._Reverse=d.asm.Ia).apply(null,arguments)},AI=d._RotateWithOffset=function(){return(AI=d._RotateWithOffset=d.asm.Ja).apply(null,arguments)},xI=d._Round=function(){return(xI=d._Round=d.asm.Ka).apply(null,arguments)},bI=d._Rsqrt=function(){return(bI=d._Rsqrt=d.asm.La).apply(null,arguments)},vI=d._ScatterNd=function(){return(vI=d._ScatterNd=d.asm.Ma).apply(null,arguments)},wI=d._SelectV2=function(){return(wI=d._SelectV2=d.asm.Na).apply(null,arguments)},kI=d._Sigmoid=function(){return(kI=d._Sigmoid=d.asm.Oa).apply(null,arguments)},II=d._Sin=function(){return(II=d._Sin=d.asm.Pa).apply(null,arguments)},SI=d._Softmax=function(){return(SI=d._Softmax=d.asm.Qa).apply(null,arguments)},NI=d._Sqrt=function(){return(NI=d._Sqrt=d.asm.Ra).apply(null,arguments)},TI=d._Square=function(){return(TI=d._Square=d.asm.Sa).apply(null,arguments)},CI=d._SquaredDifference=function(){return(CI=d._SquaredDifference=d.asm.Ta).apply(null,arguments)},EI=d._Step=function(){return(EI=d._Step=d.asm.Ua).apply(null,arguments)},RI=d._StridedSlice=function(){return(RI=d._StridedSlice=d.asm.Va).apply(null,arguments)},MI=d._Sub=function(){return(MI=d._Sub=d.asm.Wa).apply(null,arguments)},FI=d._Sum=function(){return(FI=d._Sum=d.asm.Xa).apply(null,arguments)},$I=d._Tan=function(){return($I=d._Tan=d.asm.Ya).apply(null,arguments)},DI=d._Tanh=function(){return(DI=d._Tanh=d.asm.Za).apply(null,arguments)},OI=d._Tile=function(){return(OI=d._Tile=d.asm._a).apply(null,arguments)},zI=d._TopK=function(){return(zI=d._TopK=d.asm.$a).apply(null,arguments)},_I=d._Transform=function(){return(_I=d._Transform=d.asm.ab).apply(null,arguments)},PI=d._Transpose=function(){return(PI=d._Transpose=d.asm.bb).apply(null,arguments)},LI=d.__FusedMatMul=function(){return(LI=d.__FusedMatMul=d.asm.cb).apply(null,arguments)},ms=d._malloc=function(){return(ms=d._malloc=d.asm.db).apply(null,arguments)},Su=d._free=function(){return(Su=d._free=d.asm.eb).apply(null,arguments)},p5=d.___errno_location=function(){return(p5=d.___errno_location=d.asm.fb).apply(null,arguments)},c5=d._emscripten_get_global_libc=function(){return(c5=d._emscripten_get_global_libc=d.asm.gb).apply(null,arguments)},so=d._pthread_self=function(){return(so=d._pthread_self=d.asm.hb).apply(null,arguments)},h5=d.___pthread_tsd_run_dtors=function(){return(h5=d.___pthread_tsd_run_dtors=d.asm.ib).apply(null,arguments)},Fm=d._emscripten_main_thread_process_queued_calls=function(){return(Fm=d._emscripten_main_thread_process_queued_calls=d.asm.jb).apply(null,arguments)},WI=d._emscripten_current_thread_process_queued_calls=function(){return(WI=d._emscripten_current_thread_process_queued_calls=d.asm.kb).apply(null,arguments)},f5=d._emscripten_register_main_browser_thread_id=function(){return(f5=d._emscripten_register_main_browser_thread_id=d.asm.lb).apply(null,arguments)},m5=d.__emscripten_do_dispatch_to_thread=function(){return(m5=d.__emscripten_do_dispatch_to_thread=d.asm.mb).apply(null,arguments)},g5=d._emscripten_sync_run_in_main_thread_4=function(){return(g5=d._emscripten_sync_run_in_main_thread_4=d.asm.nb).apply(null,arguments)},y5=d._emscripten_run_in_main_runtime_thread_js=function(){return(y5=d._emscripten_run_in_main_runtime_thread_js=d.asm.ob).apply(null,arguments)},$m=d.__emscripten_call_on_thread=function(){return($m=d.__emscripten_call_on_thread=d.asm.pb).apply(null,arguments)},BI=d._emscripten_tls_init=function(){return(BI=d._emscripten_tls_init=d.asm.qb).apply(null,arguments)},Dm=d.__emscripten_thread_init=function(){return(Dm=d.__emscripten_thread_init=d.asm.rb).apply(null,arguments)},Nu=d.stackSave=function(){return(Nu=d.stackSave=d.asm.sb).apply(null,arguments)},io=d.stackRestore=function(){return(io=d.stackRestore=d.asm.tb).apply(null,arguments)},oo=d.stackAlloc=function(){return(oo=d.stackAlloc=d.asm.ub).apply(null,arguments)},A5=d._emscripten_stack_set_limits=function(){return(A5=d._emscripten_stack_set_limits=d.asm.vb).apply(null,arguments)},x5=d._memalign=function(){return(x5=d._memalign=d.asm.wb).apply(null,arguments)},b5=d.__emscripten_allow_main_runtime_queued_calls=9808,lo=d.__emscripten_main_thread_futex=11432;d.cwrap=Oe,d.PThread=Ie,d.PThread=Ie,d.wasmMemory=Z,d.ExitStatus=Tu;var Vp;function Tu(T){this.name="ExitStatus",this.message="Program terminated with exit("+T+")",this.status=T}hs=function T(){Vp||Om(),Vp||(hs=T)};function Om(T){if(T=T||f,lr>0)return;if(w){p(d),yu(),postMessage({cmd:"loaded"});return}if(cf(),lr>0)return;function R(){Vp||(Vp=!0,d.calledRun=!0,!oe&&(yu(),hf(),p(d),d.onRuntimeInitialized&&d.onRuntimeInitialized(),Nn()))}d.setStatus?(d.setStatus("Running..."),setTimeout(function(){setTimeout(function(){d.setStatus("")},1),R()},1)):R()}d.run=Om;function VI(T,R){if(!(R&&se&&T===0)){if(!R&&w)throw postMessage({cmd:"exitProcess",returnCode:T}),new Tu(T);se||(Ie.terminateAllThreads(),xe=T,wp(),d.onExit&&d.onExit(T),oe=!0),y(T,new Tu(T))}}if(d.preInit)for(typeof d.preInit=="function"&&(d.preInit=[d.preInit]);d.preInit.length>0;)d.preInit.pop()();return w&&(se=!1,Ie.initWorker()),Om(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModuleThreadedSimd=n)}),uS=xt((e,t)=>{var n=function(){var a=typeof document!="undefined"&&document.currentScript?document.currentScript.src:void 0;return typeof __filename!="undefined"&&(a=a||__filename),function(r){r=r||{};var s=typeof r!="undefined"?r:{},i,o;s.ready=new Promise(function(Y,ae){i=Y,o=ae});var l={},u;for(u in s)s.hasOwnProperty(u)&&(l[u]=s[u]);var d=[],p="./this.program",c=function(Y,ae){throw ae},h=!1,m=!1,f=!1,g=!1;h=typeof window=="object",m=typeof importScripts=="function",f=typeof process=="object"&&typeof process.versions=="object"&&typeof process.versions.node=="string",g=!h&&!f&&!m;var y="";function A(Y){return s.locateFile?s.locateFile(Y,y):y+Y}var x,v,b,w,N,C;f?(m?y=Cu().dirname(y)+"/":y=__dirname+"/",x=function(Y,ae){return N||(N=co("fs")),C||(C=Cu()),Y=C.normalize(Y),N.readFileSync(Y,ae?null:"utf8")},b=function(Y){var ae=x(Y,!0);return ae.buffer||(ae=new Uint8Array(ae)),G(ae.buffer),ae},process.argv.length>1&&(p=process.argv[1].replace(/\\/g,"/")),d=process.argv.slice(2),process.on("uncaughtException",function(Y){if(!(Y instanceof Mm))throw Y}),process.on("unhandledRejection",Va),c=function(Y){process.exit(Y)},s.inspect=function(){return"[Emscripten Module object]"}):g?(typeof read!="undefined"&&(x=function(Y){return read(Y)}),b=function(Y){var ae;return typeof readbuffer=="function"?new Uint8Array(readbuffer(Y)):(ae=read(Y,"binary"),G(typeof ae=="object"),ae)},typeof scriptArgs!="undefined"?d=scriptArgs:typeof arguments!="undefined"&&(d=arguments),typeof quit=="function"&&(c=function(Y){quit(Y)}),typeof print!="undefined"&&(typeof console=="undefined"&&(console={}),console.log=print,console.warn=console.error=typeof printErr!="undefined"?printErr:print)):(h||m)&&(m?y=self.location.href:typeof document!="undefined"&&document.currentScript&&(y=document.currentScript.src),a&&(y=a),y.indexOf("blob:")!==0?y=y.substr(0,y.lastIndexOf("/")+1):y="",x=function(Y){var ae=new XMLHttpRequest;return ae.open("GET",Y,!1),ae.send(null),ae.responseText},m&&(b=function(Y){var ae=new XMLHttpRequest;return ae.open("GET",Y,!1),ae.responseType="arraybuffer",ae.send(null),new Uint8Array(ae.response)}),v=function(Y,ae,Ce){var Je=new XMLHttpRequest;Je.open("GET",Y,!0),Je.responseType="arraybuffer",Je.onload=function(){if(Je.status==200||Je.status==0&&Je.response){ae(Je.response);return}Ce()},Je.onerror=Ce,Je.send(null)},w=function(Y){document.title=Y});var E=s.print||console.log.bind(console),_=s.printErr||console.warn.bind(console);for(u in l)l.hasOwnProperty(u)&&(s[u]=l[u]);l=null,s.arguments&&(d=s.arguments),s.thisProgram&&(p=s.thisProgram),s.quit&&(c=s.quit);var $;s.wasmBinary&&($=s.wasmBinary);var S=s.noExitRuntime||!0;typeof WebAssembly!="object"&&Va("no native wasm support detected");var z,O=!1,W;function G(Y,ae){Y||Va("Assertion failed: "+ae)}function H(Y){var ae=s["_"+Y];return G(ae,"Cannot call unknown function "+Y+", make sure it is exported"),ae}function J(Y,ae,Ce,Je,Ct){var At={string:function(aa){var Mr=0;if(aa!=null&&aa!==0){var Bp=(aa.length<<2)+1;Mr=wu(Bp),le(aa,Mr,Bp)}return Mr},array:function(aa){var Mr=wu(aa.length);return oe(aa,Mr),Mr}};function He(aa){return ae==="string"?se(aa):ae==="boolean"?Boolean(aa):aa}var qe=H(Y),nn=[],dr=0;if(Je)for(var pr=0;pr<Je.length;pr++){var Wp=At[Ce[pr]];Wp?(dr===0&&(dr=Pp()),nn[pr]=Wp(Je[pr])):nn[pr]=Je[pr]}var Iu=qe.apply(null,nn);return Iu=He(Iu),dr!==0&&Lp(dr),Iu}function K(Y,ae,Ce,Je){Ce=Ce||[];var Ct=Ce.every(function(He){return He==="number"}),At=ae!=="string";return At&&Ct&&!Je?H(Y):function(){return J(Y,ae,Ce,arguments,Je)}}var ne=typeof TextDecoder!="undefined"?new TextDecoder("utf8"):void 0;function Q(Y,ae,Ce){for(var Je=ae+Ce,Ct=ae;Y[Ct]&&!(Ct>=Je);)++Ct;if(Ct-ae>16&&Y.subarray&&ne)return ne.decode(Y.subarray(ae,Ct));for(var At="";ae<Ct;){var He=Y[ae++];if(!(He&128)){At+=String.fromCharCode(He);continue}var qe=Y[ae++]&63;if((He&224)==192){At+=String.fromCharCode((He&31)<<6|qe);continue}var nn=Y[ae++]&63;if((He&240)==224?He=(He&15)<<12|qe<<6|nn:He=(He&7)<<18|qe<<12|nn<<6|Y[ae++]&63,He<65536)At+=String.fromCharCode(He);else{var dr=He-65536;At+=String.fromCharCode(55296|dr>>10,56320|dr&1023)}}return At}function se(Y,ae){return Y?Q(Te,Y,ae):""}function Z(Y,ae,Ce,Je){if(!(Je>0))return 0;for(var Ct=Ce,At=Ce+Je-1,He=0;He<Y.length;++He){var qe=Y.charCodeAt(He);if(qe>=55296&&qe<=57343){var nn=Y.charCodeAt(++He);qe=65536+((qe&1023)<<10)|nn&1023}if(qe<=127){if(Ce>=At)break;ae[Ce++]=qe}else if(qe<=2047){if(Ce+1>=At)break;ae[Ce++]=192|qe>>6,ae[Ce++]=128|qe&63}else if(qe<=65535){if(Ce+2>=At)break;ae[Ce++]=224|qe>>12,ae[Ce++]=128|qe>>6&63,ae[Ce++]=128|qe&63}else{if(Ce+3>=At)break;ae[Ce++]=240|qe>>18,ae[Ce++]=128|qe>>12&63,ae[Ce++]=128|qe>>6&63,ae[Ce++]=128|qe&63}}return ae[Ce]=0,Ce-Ct}function le(Y,ae,Ce){return Z(Y,Te,ae,Ce)}function oe(Y,ae){Ne.set(Y,ae)}function xe(Y,ae){return Y%ae>0&&(Y+=ae-Y%ae),Y}var fe,Ne,Te,Oe,Pe,ze,tt,nt,it;function Ye(Y){fe=Y,s.HEAP8=Ne=new Int8Array(Y),s.HEAP16=Oe=new Int16Array(Y),s.HEAP32=ze=new Int32Array(Y),s.HEAPU8=Te=new Uint8Array(Y),s.HEAPU16=Pe=new Uint16Array(Y),s.HEAPU32=tt=new Uint32Array(Y),s.HEAPF32=nt=new Float32Array(Y),s.HEAPF64=it=new Float64Array(Y)}var ht=s.INITIAL_MEMORY||16777216,Ue,In=[],kt=[],ta=[],en=[],Sn=!1;kt.push({func:function(){Cp()}});function na(){if(s.preRun)for(typeof s.preRun=="function"&&(s.preRun=[s.preRun]);s.preRun.length;)Ba(s.preRun.shift());Cr(In)}function Pn(){Sn=!0,Cr(kt)}function dn(){Cr(ta)}function tn(){if(s.postRun)for(typeof s.postRun=="function"&&(s.postRun=[s.postRun]);s.postRun.length;)fa(s.postRun.shift());Cr(en)}function Ba(Y){In.unshift(Y)}function fa(Y){en.unshift(Y)}var ma=0,Nr=null,or=null;function Tr(Y){ma++,s.monitorRunDependencies&&s.monitorRunDependencies(ma)}function eo(Y){if(ma--,s.monitorRunDependencies&&s.monitorRunDependencies(ma),ma==0&&(Nr!==null&&(clearInterval(Nr),Nr=null),or)){var ae=or;or=null,ae()}}s.preloadedImages={},s.preloadedAudios={};function Va(Y){s.onAbort&&s.onAbort(Y),Y+="",_(Y),O=!0,W=1,Y="abort("+Y+"). Build with -s ASSERTIONS=1 for more info.";var ae=new WebAssembly.RuntimeError(Y);throw o(ae),ae}function vp(Y,ae){return String.prototype.startsWith?Y.startsWith(ae):Y.indexOf(ae)===0}var cf="data:application/octet-stream;base64,";function yu(Y){return vp(Y,cf)}var hf="file://";function wp(Y){return vp(Y,hf)}var Nn="tfjs-backend-wasm.wasm";yu(Nn)||(Nn=A(Nn));function kp(Y){try{if(Y==Nn&&$)return new Uint8Array($);if(b)return b(Y);throw"both async and sync fetching of the wasm failed"}catch(ae){Va(ae)}}function ff(){if(!$&&(h||m)){if(typeof fetch=="function"&&!wp(Nn))return fetch(Nn,{credentials:"same-origin"}).then(function(Y){if(!Y.ok)throw"failed to load wasm binary file at '"+Nn+"'";return Y.arrayBuffer()}).catch(function(){return kp(Nn)});if(v)return new Promise(function(Y,ae){v(Nn,function(Ce){Y(new Uint8Array(Ce))},ae)})}return Promise.resolve().then(function(){return kp(Nn)})}function lr(){var Y={a:xf};function ae(He,qe){var nn=He.exports;s.asm=nn,z=s.asm.i,Ye(z.buffer),Ue=s.asm.o,eo("wasm-instantiate")}Tr("wasm-instantiate");function Ce(He){ae(He.instance)}function Je(He){return ff().then(function(qe){return WebAssembly.instantiate(qe,Y)}).then(He,function(qe){_("failed to asynchronously prepare wasm: "+qe),Va(qe)})}function Ct(){return!$&&typeof WebAssembly.instantiateStreaming=="function"&&!yu(Nn)&&!wp(Nn)&&typeof fetch=="function"?fetch(Nn,{credentials:"same-origin"}).then(function(He){var qe=WebAssembly.instantiateStreaming(He,Y);return qe.then(Ce,function(nn){return _("wasm streaming compile failed: "+nn),_("falling back to ArrayBuffer instantiation"),Je(Ce)})}):Je(Ce)}if(s.instantiateWasm)try{var At=s.instantiateWasm(Y,ae);return At}catch(He){return _("Module.instantiateWasm callback failed with error: "+He),!1}return Ct().catch(o),{}}function Cr(Y){for(;Y.length>0;){var ae=Y.shift();if(typeof ae=="function"){ae(s);continue}var Ce=ae.func;typeof Ce=="number"?ae.arg===void 0?Ue.get(Ce)():Ue.get(Ce)(ae.arg):Ce(ae.arg===void 0?null:ae.arg)}}function hs(){Va()}function mf(Y,ae,Ce){Te.copyWithin(Y,ae,ae+Ce)}function gf(){return Te.length}function ur(Y){try{return z.grow(Y-fe.byteLength+65535>>>16),Ye(z.buffer),1}catch(ae){}}function Ip(Y){var ae=gf(),Ce=2147483648;if(Y>Ce)return!1;for(var Je=1;Je<=4;Je*=2){var Ct=ae*(1+.2/Je);Ct=Math.min(Ct,Y+100663296);var At=Math.min(Ce,xe(Math.max(Y,Ct),65536)),He=ur(At);if(He)return!0}return!1}var to={mappings:{},buffers:[null,[],[]],printChar:function(Y,ae){var Ce=to.buffers[Y];ae===0||ae===10?((Y===1?E:_)(Q(Ce,0)),Ce.length=0):Ce.push(ae)},varargs:void 0,get:function(){to.varargs+=4;var Y=ze[to.varargs-4>>2];return Y},getStr:function(Y){var ae=se(Y);return ae},get64:function(Y,ae){return Y}};function Sp(Y){return 0}function yf(Y,ae,Ce,Je,Ct){}function Np(Y,ae,Ce,Je){for(var Ct=0,At=0;At<Ce;At++){for(var He=ze[ae+At*8>>2],qe=ze[ae+(At*8+4)>>2],nn=0;nn<qe;nn++)to.printChar(Y,Te[He+nn]);Ct+=qe}return ze[Je>>2]=Ct,0}function Tn(){return 6}function Tp(Y){return ze[_p()>>2]=Y,Y}function Af(Y){switch(Y){case 30:return 16384;case 85:var ae=2147483648;return ae/16384;case 132:case 133:case 12:case 137:case 138:case 15:case 235:case 16:case 17:case 18:case 19:case 20:case 149:case 13:case 10:case 236:case 153:case 9:case 21:case 22:case 159:case 154:case 14:case 77:case 78:case 139:case 82:case 68:case 67:case 164:case 11:case 29:case 47:case 48:case 95:case 52:case 51:case 46:return 200809;case 27:case 246:case 127:case 128:case 23:case 24:case 160:case 161:case 181:case 182:case 242:case 183:case 184:case 243:case 244:case 245:case 165:case 178:case 179:case 49:case 50:case 168:case 169:case 175:case 170:case 171:case 172:case 97:case 76:case 32:case 173:case 35:case 80:case 81:case 79:return-1;case 176:case 177:case 7:case 155:case 8:case 157:case 125:case 126:case 92:case 93:case 129:case 130:case 131:case 94:case 91:return 1;case 74:case 60:case 69:case 70:case 4:return 1024;case 31:case 42:case 72:return 32;case 87:case 26:case 33:return 2147483647;case 34:case 1:return 47839;case 38:case 36:return 99;case 43:case 37:return 2048;case 0:return 2097152;case 3:return 65536;case 28:return 32768;case 44:return 32767;case 75:return 16384;case 39:return 1e3;case 89:return 700;case 71:return 256;case 40:return 255;case 2:return 100;case 180:return 64;case 25:return 20;case 5:return 16;case 6:return 6;case 73:return 4;case 84:return typeof navigator=="object"&&navigator.hardwareConcurrency||1}return Tp(28),-1}var xf={a:hs,d:mf,e:Ip,f:Sp,c:yf,b:Np,g:Tn,h:Af},bf=lr(),Cp=s.___wasm_call_ctors=function(){return(Cp=s.___wasm_call_ctors=s.asm.j).apply(null,arguments)},no=s._init=function(){return(no=s._init=s.asm.k).apply(null,arguments)},Au=s._register_tensor=function(){return(Au=s._register_tensor=s.asm.l).apply(null,arguments)},vf=s._dispose_data=function(){return(vf=s._dispose_data=s.asm.m).apply(null,arguments)},wf=s._dispose=function(){return(wf=s._dispose=s.asm.n).apply(null,arguments)},kf=s._Abs=function(){return(kf=s._Abs=s.asm.p).apply(null,arguments)},Ie=s._Add=function(){return(Ie=s._Add=s.asm.q).apply(null,arguments)},If=s._AddN=function(){return(If=s._AddN=s.asm.r).apply(null,arguments)},Sf=s._All=function(){return(Sf=s._All=s.asm.s).apply(null,arguments)},Nf=s._Any=function(){return(Nf=s._Any=s.asm.t).apply(null,arguments)},Tf=s._ArgMax=function(){return(Tf=s._ArgMax=s.asm.u).apply(null,arguments)},Cf=s._AvgPool=function(){return(Cf=s._AvgPool=s.asm.v).apply(null,arguments)},fs=s._BatchMatMul=function(){return(fs=s._BatchMatMul=s.asm.w).apply(null,arguments)},Ef=s._Ceil=function(){return(Ef=s._Ceil=s.asm.x).apply(null,arguments)},Rf=s._ClipByValue=function(){return(Rf=s._ClipByValue=s.asm.y).apply(null,arguments)},Mf=s._Conv2D=function(){return(Mf=s._Conv2D=s.asm.z).apply(null,arguments)},Ff=s._Conv2DBackpropInput=function(){return(Ff=s._Conv2DBackpropInput=s.asm.A).apply(null,arguments)},$f=s._Cos=function(){return($f=s._Cos=s.asm.B).apply(null,arguments)},Df=s._CropAndResize=function(){return(Df=s._CropAndResize=s.asm.C).apply(null,arguments)},Of=s._Cumsum=function(){return(Of=s._Cumsum=s.asm.D).apply(null,arguments)},zf=s._DepthToSpace=function(){return(zf=s._DepthToSpace=s.asm.E).apply(null,arguments)},_f=s._DepthwiseConv2dNative=function(){return(_f=s._DepthwiseConv2dNative=s.asm.F).apply(null,arguments)},Er=s._Equal=function(){return(Er=s._Equal=s.asm.G).apply(null,arguments)},xu=s._Exp=function(){return(xu=s._Exp=s.asm.H).apply(null,arguments)},bu=s._FlipLeftRight=function(){return(bu=s._FlipLeftRight=s.asm.I).apply(null,arguments)},Pf=s._Floor=function(){return(Pf=s._Floor=s.asm.J).apply(null,arguments)},Lf=s._FloorDiv=function(){return(Lf=s._FloorDiv=s.asm.K).apply(null,arguments)},Wf=s._FusedBatchNorm=function(){return(Wf=s._FusedBatchNorm=s.asm.L).apply(null,arguments)},Bf=s._FusedConv2D=function(){return(Bf=s._FusedConv2D=s.asm.M).apply(null,arguments)},Vf=s._FusedDepthwiseConv2D=function(){return(Vf=s._FusedDepthwiseConv2D=s.asm.N).apply(null,arguments)},We=s._Gather=function(){return(We=s._Gather=s.asm.O).apply(null,arguments)},jf=s._GatherNd=function(){return(jf=s._GatherNd=s.asm.P).apply(null,arguments)},Uf=s._Greater=function(){return(Uf=s._Greater=s.asm.Q).apply(null,arguments)},Hf=s._GreaterEqual=function(){return(Hf=s._GreaterEqual=s.asm.R).apply(null,arguments)},Gf=s._LeakyRelu=function(){return(Gf=s._LeakyRelu=s.asm.S).apply(null,arguments)},qf=s._Less=function(){return(qf=s._Less=s.asm.T).apply(null,arguments)},Xf=s._LessEqual=function(){return(Xf=s._LessEqual=s.asm.U).apply(null,arguments)},vu=s._Log=function(){return(vu=s._Log=s.asm.V).apply(null,arguments)},Ep=s._LogicalAnd=function(){return(Ep=s._LogicalAnd=s.asm.W).apply(null,arguments)},Rp=s._Max=function(){return(Rp=s._Max=s.asm.X).apply(null,arguments)},Kf=s._MaxPool=function(){return(Kf=s._MaxPool=s.asm.Y).apply(null,arguments)},Zf=s._Maximum=function(){return(Zf=s._Maximum=s.asm.Z).apply(null,arguments)},Yf=s._Mean=function(){return(Yf=s._Mean=s.asm._).apply(null,arguments)},Jf=s._Min=function(){return(Jf=s._Min=s.asm.$).apply(null,arguments)},Qf=s._Minimum=function(){return(Qf=s._Minimum=s.asm.aa).apply(null,arguments)},em=s._MirrorPad=function(){return(em=s._MirrorPad=s.asm.ba).apply(null,arguments)},tm=s._Multiply=function(){return(tm=s._Multiply=s.asm.ca).apply(null,arguments)},et=s._Neg=function(){return(et=s._Neg=s.asm.da).apply(null,arguments)},nm=s._NonMaxSuppressionV3=function(){return(nm=s._NonMaxSuppressionV3=s.asm.ea).apply(null,arguments)},am=s._NonMaxSuppressionV4=function(){return(am=s._NonMaxSuppressionV4=s.asm.fa).apply(null,arguments)},rm=s._NonMaxSuppressionV5=function(){return(rm=s._NonMaxSuppressionV5=s.asm.ga).apply(null,arguments)},ao=s._NotEqual=function(){return(ao=s._NotEqual=s.asm.ha).apply(null,arguments)},Mp=s._OneHot=function(){return(Mp=s._OneHot=s.asm.ia).apply(null,arguments)},Fp=s._PadV2=function(){return(Fp=s._PadV2=s.asm.ja).apply(null,arguments)},$p=s._Pow=function(){return($p=s._Pow=s.asm.ka).apply(null,arguments)},sm=s._Prelu=function(){return(sm=s._Prelu=s.asm.la).apply(null,arguments)},im=s._Prod=function(){return(im=s._Prod=s.asm.ma).apply(null,arguments)},Dp=s._RealDiv=function(){return(Dp=s._RealDiv=s.asm.na).apply(null,arguments)},om=s._Relu=function(){return(om=s._Relu=s.asm.oa).apply(null,arguments)},Op=s._Relu6=function(){return(Op=s._Relu6=s.asm.pa).apply(null,arguments)},Rr=s._ResizeBilinear=function(){return(Rr=s._ResizeBilinear=s.asm.qa).apply(null,arguments)},lm=s._Reverse=function(){return(lm=s._Reverse=s.asm.ra).apply(null,arguments)},um=s._RotateWithOffset=function(){return(um=s._RotateWithOffset=s.asm.sa).apply(null,arguments)},d5=s._Round=function(){return(d5=s._Round=s.asm.ta).apply(null,arguments)},zp=s._Rsqrt=function(){return(zp=s._Rsqrt=s.asm.ua).apply(null,arguments)},dm=s._ScatterNd=function(){return(dm=s._ScatterNd=s.asm.va).apply(null,arguments)},pm=s._SelectV2=function(){return(pm=s._SelectV2=s.asm.wa).apply(null,arguments)},cm=s._Sigmoid=function(){return(cm=s._Sigmoid=s.asm.xa).apply(null,arguments)},hm=s._Sin=function(){return(hm=s._Sin=s.asm.ya).apply(null,arguments)},fm=s._Softmax=function(){return(fm=s._Softmax=s.asm.za).apply(null,arguments)},mm=s._Sqrt=function(){return(mm=s._Sqrt=s.asm.Aa).apply(null,arguments)},gm=s._Square=function(){return(gm=s._Square=s.asm.Ba).apply(null,arguments)},ym=s._SquaredDifference=function(){return(ym=s._SquaredDifference=s.asm.Ca).apply(null,arguments)},Am=s._Step=function(){return(Am=s._Step=s.asm.Da).apply(null,arguments)},xm=s._StridedSlice=function(){return(xm=s._StridedSlice=s.asm.Ea).apply(null,arguments)},bm=s._Sub=function(){return(bm=s._Sub=s.asm.Fa).apply(null,arguments)},vm=s._Sum=function(){return(vm=s._Sum=s.asm.Ga).apply(null,arguments)},wm=s._Tan=function(){return(wm=s._Tan=s.asm.Ha).apply(null,arguments)},km=s._Tanh=function(){return(km=s._Tanh=s.asm.Ia).apply(null,arguments)},Im=s._Tile=function(){return(Im=s._Tile=s.asm.Ja).apply(null,arguments)},Sm=s._TopK=function(){return(Sm=s._TopK=s.asm.Ka).apply(null,arguments)},Nm=s._Transform=function(){return(Nm=s._Transform=s.asm.La).apply(null,arguments)},Tm=s._Transpose=function(){return(Tm=s._Transpose=s.asm.Ma).apply(null,arguments)},Cm=s.__FusedMatMul=function(){return(Cm=s.__FusedMatMul=s.asm.Na).apply(null,arguments)},Em=s._malloc=function(){return(Em=s._malloc=s.asm.Oa).apply(null,arguments)},Rm=s._free=function(){return(Rm=s._free=s.asm.Pa).apply(null,arguments)},_p=s.___errno_location=function(){return(_p=s.___errno_location=s.asm.Qa).apply(null,arguments)},Pp=s.stackSave=function(){return(Pp=s.stackSave=s.asm.Ra).apply(null,arguments)},Lp=s.stackRestore=function(){return(Lp=s.stackRestore=s.asm.Sa).apply(null,arguments)},wu=s.stackAlloc=function(){return(wu=s.stackAlloc=s.asm.Ta).apply(null,arguments)};s.cwrap=K;var ro;function Mm(Y){this.name="ExitStatus",this.message="Program terminated with exit("+Y+")",this.status=Y}or=function Y(){ro||ku(),ro||(or=Y)};function ku(Y){if(Y=Y||d,ma>0||(na(),ma>0))return;function ae(){ro||(ro=!0,s.calledRun=!0,!O&&(Pn(),dn(),i(s),s.onRuntimeInitialized&&s.onRuntimeInitialized(),tn()))}s.setStatus?(s.setStatus("Running..."),setTimeout(function(){setTimeout(function(){s.setStatus("")},1),ae()},1)):ae()}if(s.run=ku,s.preInit)for(typeof s.preInit=="function"&&(s.preInit=[s.preInit]);s.preInit.length>0;)s.preInit.pop()();return ku(),r.ready}}();typeof e=="object"&&typeof t=="object"?t.exports=n:typeof define=="function"&&define.amd?define([],function(){return n}):typeof e=="object"&&(e.WasmBackendModule=n)}),dS=xt((e,t)=>{(function(n,a,r){function s(u){var d=this,p=l();d.next=function(){var c=2091639*d.s0+d.c*23283064365386963e-26;return d.s0=d.s1,d.s1=d.s2,d.s2=c-(d.c=c|0)},d.c=1,d.s0=p(" "),d.s1=p(" "),d.s2=p(" "),d.s0-=p(u),d.s0<0&&(d.s0+=1),d.s1-=p(u),d.s1<0&&(d.s1+=1),d.s2-=p(u),d.s2<0&&(d.s2+=1),p=null}function i(u,d){return d.c=u.c,d.s0=u.s0,d.s1=u.s1,d.s2=u.s2,d}function o(u,d){var p=new s(u),c=d&&d.state,h=p.next;return h.int32=function(){return p.next()*4294967296|0},h.double=function(){return h()+(h()*2097152|0)*11102230246251565e-32},h.quick=h,c&&(typeof c=="object"&&i(c,p),h.state=function(){return i(p,{})}),h}function l(){var u=4022871197,d=function(p){p=String(p);for(var c=0;c<p.length;c++){u+=p.charCodeAt(c);var h=.02519603282416938*u;u=h>>>0,h-=u,h*=u,u=h>>>0,h-=u,u+=h*4294967296}return(u>>>0)*23283064365386963e-26};return d}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.alea=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),pS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.x=0,u.y=0,u.z=0,u.w=0,u.next=function(){var c=u.x^u.x<<11;return u.x=u.y,u.y=u.z,u.z=u.w,u.w^=u.w>>>19^c^c>>>8},l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor128=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),cS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.x^u.x>>>2;return u.x=u.y,u.y=u.z,u.z=u.w,u.w=u.v,(u.d=u.d+362437|0)+(u.v=u.v^u.v<<4^(c^c<<1))|0},u.x=0,u.y=0,u.z=0,u.w=0,u.v=0,l===(l|0)?u.x=l:d+=l;for(var p=0;p<d.length+64;p++)u.x^=d.charCodeAt(p)|0,p==d.length&&(u.d=u.x<<10^u.x>>>4),u.next()}function i(l,u){return u.x=l.x,u.y=l.y,u.z=l.z,u.w=l.w,u.v=l.v,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorwow=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),hS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.x,c=u.i,h,m,f;return h=p[c],h^=h>>>7,m=h^h<<24,h=p[c+1&7],m^=h^h>>>10,h=p[c+3&7],m^=h^h>>>3,h=p[c+4&7],m^=h^h<<7,h=p[c+7&7],h=h^h<<13,m^=h^h<<9,p[c]=m,u.i=c+1&7,m};function d(p,c){var h,m,f=[];if(c===(c|0))m=f[0]=c;else for(c=""+c,h=0;h<c.length;++h)f[h&7]=f[h&7]<<15^c.charCodeAt(h)+f[h+1&7]<<13;for(;f.length<8;)f.push(0);for(h=0;h<8&&f[h]===0;++h);for(h==8?m=f[7]=-1:m=f[h],p.x=f,p.i=0,h=256;h>0;--h)p.next()}d(u,l)}function i(l,u){return u.x=l.x.slice(),u.i=l.i,u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.x&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xorshift7=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),fS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this;u.next=function(){var p=u.w,c=u.X,h=u.i,m,f;return u.w=p=p+1640531527|0,f=c[h+34&127],m=c[h=h+1&127],f^=f<<13,m^=m<<17,f^=f>>>15,m^=m>>>12,f=c[h]=f^m,u.i=h,f+(p^p>>>16)|0};function d(p,c){var h,m,f,g,y,A=[],x=128;for(c===(c|0)?(m=c,c=null):(c=c+"\0",m=0,x=Math.max(x,c.length)),f=0,g=-32;g<x;++g)c&&(m^=c.charCodeAt((g+32)%c.length)),g===0&&(y=m),m^=m<<10,m^=m>>>15,m^=m<<4,m^=m>>>13,g>=0&&(y=y+1640531527|0,h=A[g&127]^=m+y,f=h==0?f+1:0);for(f>=128&&(A[(c&&c.length||0)&127]=-1),f=127,g=4*128;g>0;--g)m=A[f+34&127],h=A[f=f+1&127],m^=m<<13,h^=h<<17,m^=m>>>15,h^=h>>>12,A[f]=m^h;p.w=y,p.X=A,p.i=f}d(u,l)}function i(l,u){return u.i=l.i,u.w=l.w,u.X=l.X.slice(),u}function o(l,u){l==null&&(l=+new Date);var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(p.X&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.xor4096=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),mS=xt((e,t)=>{(function(n,a,r){function s(l){var u=this,d="";u.next=function(){var c=u.b,h=u.c,m=u.d,f=u.a;return c=c<<25^c>>>7^h,h=h-m|0,m=m<<24^m>>>8^f,f=f-c|0,u.b=c=c<<20^c>>>12^h,u.c=h=h-m|0,u.d=m<<16^h>>>16^f,u.a=f-c|0},u.a=0,u.b=0,u.c=2654435769|0,u.d=1367130551,l===Math.floor(l)?(u.a=l/4294967296|0,u.b=l|0):d+=l;for(var p=0;p<d.length+20;p++)u.b^=d.charCodeAt(p)|0,u.next()}function i(l,u){return u.a=l.a,u.b=l.b,u.c=l.c,u.d=l.d,u}function o(l,u){var d=new s(l),p=u&&u.state,c=function(){return(d.next()>>>0)/4294967296};return c.double=function(){do var h=d.next()>>>11,m=(d.next()>>>0)/4294967296,f=(h+m)/(1<<21);while(f===0);return f},c.int32=d.next,c.quick=c,p&&(typeof p=="object"&&i(p,d),c.state=function(){return i(d,{})}),c}a&&a.exports?a.exports=o:r&&r.amd?r(function(){return o}):this.tychei=o})(e,typeof t=="object"&&t,typeof define=="function"&&define)}),gS=xt((e,t)=>{(function(n,a,r){var s=256,i=6,o=52,l="random",u=r.pow(s,i),d=r.pow(2,o),p=d*2,c=s-1,h;function m(b,w,N){var C=[];w=w==!0?{entropy:!0}:w||{};var E=A(y(w.entropy?[b,v(a)]:b==null?x():b,3),C),_=new f(C),$=function(){for(var S=_.g(i),z=u,O=0;S<d;)S=(S+O)*s,z*=s,O=_.g(1);for(;S>=p;)S/=2,z/=2,O>>>=1;return(S+O)/z};return $.int32=function(){return _.g(4)|0},$.quick=function(){return _.g(4)/4294967296},$.double=$,A(v(_.S),a),(w.pass||N||function(S,z,O,W){return W&&(W.S&&g(W,_),S.state=function(){return g(_,{})}),O?(r[l]=S,z):S})($,E,"global"in w?w.global:this==r,w.state)}function f(b){var w,N=b.length,C=this,E=0,_=C.i=C.j=0,$=C.S=[];for(N||(b=[N++]);E<s;)$[E]=E++;for(E=0;E<s;E++)$[E]=$[_=c&_+b[E%N]+(w=$[E])],$[_]=w;(C.g=function(S){for(var z,O=0,W=C.i,G=C.j,H=C.S;S--;)z=H[W=c&W+1],O=O*s+H[c&(H[W]=H[G=c&G+z])+(H[G]=z)];return C.i=W,C.j=G,O})(s)}function g(b,w){return w.i=b.i,w.j=b.j,w.S=b.S.slice(),w}function y(b,w){var N=[],C=typeof b,E;if(w&&C=="object")for(E in b)try{N.push(y(b[E],w-1))}catch(_){}return N.length?N:C=="string"?b:b+"\0"}function A(b,w){for(var N=b+"",C,E=0;E<N.length;)w[c&E]=c&(C^=w[c&E]*19)+N.charCodeAt(E++);return v(w)}function x(){try{var b;return h&&(b=h.randomBytes)?b=b(s):(b=new Uint8Array(s),(n.crypto||n.msCrypto).getRandomValues(b)),v(b)}catch(C){var w=n.navigator,N=w&&w.plugins;return[+new Date,n,N,n.screen,v(a)]}}function v(b){return String.fromCharCode.apply(0,b)}if(A(r.random(),a),typeof t=="object"&&t.exports){t.exports=m;try{h=S5()}catch(b){}}else typeof define=="function"&&define.amd?define(function(){return m}):r["seed"+l]=m})(typeof self!="undefined"?self:e,[],Math)}),T5=xt((e,t)=>{var n=dS(),a=pS(),r=cS(),s=hS(),i=fS(),o=mS(),l=gS();l.alea=n,l.xor128=a,l.xorwow=r,l.xorshift7=s,l.xor4096=i,l.tychei=o,t.exports=l}),yS=xt(()=>{}),Pm={};Fe(Pm,{bin:()=>P5,browser:()=>U5,default:()=>AS,dependencies:()=>j5,description:()=>R5,devDependencies:()=>B5,jsdelivr:()=>D5,license:()=>W5,main:()=>F5,miniprogram:()=>_5,module:()=>$5,name:()=>C5,private:()=>M5,repository:()=>L5,scripts:()=>V5,types:()=>z5,unpkg:()=>O5,version:()=>E5});var C5="@tensorflow/tfjs",E5="3.7.0",R5="An open-source machine learning framework.",M5=!1,F5="dist/tf.node.js",$5="dist/index.js",D5="dist/tf.min.js",O5="dist/tf.min.js",z5="dist/index.d.ts",_5="dist/miniprogram",P5={"tfjs-custom-module":"dist/tools/custom_module/cli.js"},L5={type:"git",url:"https://github.com/tensorflow/tfjs.git"},W5="Apache-2.0",B5={"@babel/core":"^7.9.0","@babel/polyfill":"^7.10.4","@babel/preset-env":"^7.9.5","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@types/argparse":"^1.0.38","@types/jasmine":"2.8.7","@types/node":"~10.17.50","@types/shelljs":"^0.8.4","@types/yargs":"^15.0.7","clang-format":"~1.2.2",commander:"~2.14.1",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-babel":"^4.4.0","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~4.2.2",shelljs:"~0.8.1","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"1.0.0-pre.50"},V5={build:"tsc && yarn build-cli && yarn bundle","build-ci":"tsc && yarn build-cli && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-converter":"cd ../tfjs-converter && yarn && yarn build","build-converter-ci":"cd ../tfjs-converter && yarn && yarn build-ci","build-data":"cd ../tfjs-data && yarn && yarn build","build-data-ci":"cd ../tfjs-data && yarn && yarn build-ci","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-converter && yarn build-data && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-converter-ci && yarn build-data-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-cli":"tsc --project ./tools/custom_module/tsconfig.json && chmod +x ./dist/tools/custom_module/cli.js","run-custom-build":"ts-node -s ./tools/custom_module/cli.ts","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && yarn build && karma start","test-dev":"karma start","test-tools":"ts-node --project ./tools/custom_module/tsconfig.json run_tools_tests.ts","test-ci":"./scripts/test-ci.sh"},j5={"@tensorflow/tfjs-backend-cpu":"3.7.0","@tensorflow/tfjs-backend-webgl":"3.7.0","@tensorflow/tfjs-converter":"3.7.0","@tensorflow/tfjs-core":"3.7.0","@tensorflow/tfjs-data":"3.7.0","@tensorflow/tfjs-layers":"3.7.0",argparse:"^1.0.10",chalk:"^4.1.0","core-js":"3","regenerator-runtime":"^0.13.5",yargs:"^16.0.3"},U5={"node-fetch":!1,util:!1,crypto:!1},AS={name:C5,version:E5,description:R5,private:M5,main:F5,module:$5,jsdelivr:D5,unpkg:O5,types:z5,miniprogram:_5,bin:P5,repository:L5,license:W5,devDependencies:B5,scripts:V5,dependencies:j5,browser:U5},Lm={};Fe(Lm,{browser:()=>lx,default:()=>xS,dependencies:()=>ox,description:()=>q5,devDependencies:()=>sx,engines:()=>nx,jsdelivr:()=>Z5,"jsnext:main":()=>Q5,license:()=>rx,main:()=>K5,miniprogram:()=>tx,module:()=>ex,name:()=>H5,private:()=>X5,repository:()=>ax,scripts:()=>ix,sideEffects:()=>ux,types:()=>J5,unpkg:()=>Y5,version:()=>G5});var H5="@tensorflow/tfjs-core",G5="3.7.0",q5="Hardware-accelerated JavaScript library for machine intelligence",X5=!1,K5="dist/tf-core.node.js",Z5="dist/tf-core.min.js",Y5="dist/tf-core.min.js",J5="dist/index.d.ts",Q5="dist/index.js",ex="dist/index.js",tx="dist/miniprogram",nx={yarn:">= 1.3.2"},ax={type:"git",url:"https://github.com/tensorflow/tfjs-core.git"},rx="Apache-2.0",sx={"@bazel/bazelisk":"^1.3.0","@bazel/typescript":"^0.27.8","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"link:../tfjs-backend-cpu","@types/jasmine":"~3.0.0","@types/node":"~9.6.0","@types/node-fetch":"~2.1.2","clang-format":"~1.2.4",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"6.3.2","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~3.1.0","karma-jasmine":"~4.0.1","karma-typescript":"~5.5.1","npm-run-all":"~4.1.3",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~5.3.0","rollup-plugin-visualizer":"~3.3.2",shelljs:"~0.8.3","ts-node":"~8.8.2",tslint:"~5.11.0","tslint-no-circular-imports":"~0.5.0",typescript:"3.5.3",yalc:"~1.0.0-pre.21",yargs:"~13.2.2"},ix={"build-ci":"./scripts/enumerate-tests.js --ci && tsc && yarn bundle-ci && yarn build-test-snippets",build:"node ./scripts/enumerate-tests.js && tsc && yarn bundle",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-npm":"./scripts/build-npm.sh","build-deps":"yarn build && yarn build-cpu-backend","build-cpu-backend":"cd ../tfjs-backend-cpu && yarn && yarn build","build-cpu-backend-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build:bazel":"bazelisk build //...","build-test-snippets":"yarn tsc --project ./scripts/test_snippets/tsconfig.json","format-all":"clang-format -i -style=Google --glob=src/**/*.ts","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build && rollup -c && yalc push","publish-npm":"npm publish",lint:"tslint -p . -t verbose",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-webworker":"karma start --worker","run-browserstack":"karma start --browserstack","test-bundle-size":"./scripts/test-bundle-size.js","test-node":"rimraf dist/ && yarn build-deps && yarn build && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-dev":"tsc && ts-node --transpile-only --skip-ignore -P tsconfig.test.json dist/test_node.js","test-node-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_node.js","test-async-backends":"rimraf dist/ && yarn build && ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-async-backends-ci":"ts-node --transpile-only -P tsconfig.test.json dist/test_async_backends.js","test-snippets":"yarn build && yarn build-cpu-backend && ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts","test-snippets-ci":"ts-node -P tsconfig.test.json ./scripts/test_snippets/test_snippets.ts"},ox={"@types/long":"^4.0.1","@types/offscreencanvas":"~2019.3.0","@types/seedrandom":"2.4.27","@types/webgl-ext":"0.0.30",long:"4.0.0","node-fetch":"~2.6.1",seedrandom:"2.4.3"},lx={"node-fetch":!1,util:!1,crypto:!1,worker_threads:!1},ux=["./dist/index.js","./dist/engine.js","./dist/tensor.js","./dist/base_side_effects.js","./dist/flags.js","./dist/platforms/*.js","./dist/register_all_gradients.js","./dist/public/chained_ops/*.js","./dist/io/*.js"],xS={name:H5,version:G5,description:q5,private:X5,main:K5,jsdelivr:Z5,unpkg:Y5,types:J5,"jsnext:main":Q5,module:ex,miniprogram:tx,engines:nx,repository:ax,license:rx,devDependencies:sx,scripts:ix,dependencies:ox,browser:lx,sideEffects:ux},Wm={};Fe(Wm,{browser:()=>Nx,default:()=>bS,dependencies:()=>Sx,description:()=>cx,devDependencies:()=>wx,jsdelivr:()=>mx,"jsnext:main":()=>Ax,license:()=>vx,main:()=>fx,miniprogram:()=>bx,module:()=>xx,name:()=>dx,peerDependencies:()=>Ix,private:()=>hx,scripts:()=>kx,types:()=>yx,unpkg:()=>gx,version:()=>px});var dx="@tensorflow/tfjs-data",px="3.7.0",cx="TensorFlow Data API in JavaScript",hx=!1,fx="dist/tf-data.node.js",mx="dist/tf-data.min.js",gx="dist/tf-data.min.js",yx="dist/index.d.ts",Ax="dist/index.js",xx="dist/index.js",bx="dist/miniprogram",vx="Apache-2.0",wx={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.7.0","@tensorflow/tfjs-core":"3.7.0","@tensorflow/tfjs-layers":"3.7.0","@types/jasmine":"~2.5.53","@types/seedrandom":"^2.4.27","@types/utf8":"~2.1.6","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",nyc:"^15.1.0",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~7.0.0",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"^1.0.0-pre.50"},kx={build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-layers":"cd ../tfjs-layers && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-layers-ci":"cd ../tfjs-layers && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-layers && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-layers-ci && yarn build-backend-cpu-ci","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"rimraf dist/ && yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-dev":"tsc && ts-node --transpile-only --project tsconfig.test.json src/test_node.ts","test-browsers":"karma start --browsers='Chrome,Firefox'","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/test_node.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore --project tsconfig.test.json ./scripts/test_snippets.ts",coverage:"yarn nyc yarn ts-node --transpile-only -P tsconfig.test.json src/test_node.ts",lint:"tslint -p . -t verbose"},Ix={"@tensorflow/tfjs-core":"3.7.0",seedrandom:"~2.4.3"},Sx={"@types/node-fetch":"^2.1.2","node-fetch":"~2.6.1"},Nx={fs:!1,"node-fetch":!1,string_decoder:!1,crypto:!1},bS={name:dx,version:px,description:cx,private:hx,main:fx,jsdelivr:mx,unpkg:gx,types:yx,"jsnext:main":Ax,module:xx,miniprogram:bx,license:vx,devDependencies:wx,scripts:kx,peerDependencies:Ix,dependencies:Sx,browser:Nx},Bm={};Fe(Bm,{default:()=>vS,description:()=>Ex,devDependencies:()=>Lx,jsdelivr:()=>zx,"jsnext:main":()=>Dx,license:()=>Rx,main:()=>Fx,miniprogram:()=>Px,module:()=>Ox,name:()=>Tx,peerDependencies:()=>Bx,private:()=>Mx,scripts:()=>Wx,types:()=>$x,unpkg:()=>_x,version:()=>Cx});var Tx="@tensorflow/tfjs-layers",Cx="3.7.0",Ex="TensorFlow layers API in JavaScript",Rx="Apache-2.0 AND MIT",Mx=!1,Fx="dist/tf-layers.node.js",$x="dist/index.d.ts",Dx="dist/index.js",Ox="dist/index.js",zx="dist/tf-layers.min.js",_x="dist/tf-layers.min.js",Px="dist/miniprogram",Lx={"@babel/polyfill":"^7.8.7","@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.7.0","@tensorflow/tfjs-backend-webgl":"3.7.0","@tensorflow/tfjs-core":"3.7.0","@types/jasmine":"~2.5.53","clang-format":"~1.2.2","http-server":"~0.12.3",jasmine:"~3.1.0","jasmine-core":"~3.1.0",karma:"~6.3.1","karma-browserstack-launcher":"~1.6.0","karma-chrome-launcher":"~2.2.0","karma-firefox-launcher":"~1.1.0","karma-jasmine":"~1.1.1","karma-typescript":"~5.5.1","karma-typescript-es6-transform":"^5.0.2",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"^0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},Wx={prep:"yarn install && yarn build-ci",build:"tsc && yarn bundle","build-ci":"tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-backend-webgl":"cd ../tfjs-backend-webgl && yarn && yarn build","build-backend-webgl-ci":"cd ../tfjs-backend-webgl && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu && yarn build-backend-webgl","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu-ci && yarn build-backend-webgl-ci","build-npm":"./scripts/build-npm.sh",format:"./tools/clang_format_ts.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",coverage:"KARMA_COVERAGE=1 karma start --browsers='Chrome' --singleRun",test:"yarn && yarn build-deps && karma start","test-dev":"karma start","test-ci":"./scripts/test-ci.sh","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts","run-browserstack":"karma start --browsers='bs_chrome_mac' --singleRun --reporters='dots,karma-typescript'",lint:"tslint -p . -t verbose"},Bx={"@tensorflow/tfjs-core":"3.7.0"},vS={name:Tx,version:Cx,description:Ex,license:Rx,private:Mx,main:Fx,types:$x,"jsnext:main":Dx,module:Ox,jsdelivr:zx,unpkg:_x,miniprogram:Px,devDependencies:Lx,scripts:Wx,peerDependencies:Bx},Vm={};Fe(Vm,{default:()=>wS,description:()=>Ux,devDependencies:()=>tb,jsdelivr:()=>Zx,"jsnext:main":()=>Gx,license:()=>Qx,main:()=>Hx,miniprogram:()=>Yx,module:()=>qx,name:()=>Vx,peerDependencies:()=>eb,repository:()=>Jx,scripts:()=>nb,types:()=>Xx,unpkg:()=>Kx,version:()=>jx});var Vx="@tensorflow/tfjs-converter",jx="3.7.0",Ux="Tensorflow model converter for javascript",Hx="dist/tf-converter.node.js",Gx="dist/index.js",qx="dist/index.js",Xx="dist/index.d.ts",Kx="dist/tf-converter.min.js",Zx="dist/tf-converter.min.js",Yx="dist/miniprogram",Jx={type:"git",url:"https://github.com/tensorflow/tfjs-converter.git"},Qx="Apache-2.0",eb={"@tensorflow/tfjs-core":"3.7.0"},tb={"@rollup/plugin-commonjs":"^11.0.2","@rollup/plugin-node-resolve":"^7.1.1","@rollup/plugin-replace":"^2.3.3","@rollup/plugin-typescript":"^3.0.0","@tensorflow/tfjs-backend-cpu":"3.7.0","@tensorflow/tfjs-core":"3.7.0","@types/argparse":"^1.0.38","@types/deep-equal":"^1.0.1","@types/jasmine":"~2.8.6","@types/long":"~3.0.32","@types/node-fetch":"1.6.9",ajv:"~6.3.0",argparse:"^1.0.10","babel-core":"~6.26.3","babel-plugin-external-helpers":"~6.22.0","babel-preset-env":"~1.7.0","clang-format":"~1.2.2",copyfiles:"~1.2.0","deep-equal":"^1.0.1","jasmine-core":"~3.5.0","node-fetch":"~2.6.1",opn:"~5.1.0",protobufjs:"~6.8.6",rimraf:"~2.6.2",rollup:"~2.3.2","rollup-plugin-terser":"~7.0.2","rollup-plugin-visualizer":"~3.3.2","ts-morph":"^7.1.3","ts-node":"~8.8.2",tslint:"~6.1.3","tslint-no-circular-imports":"~0.7.0",typescript:"3.5.3",yalc:"~1.0.0-pre.50"},nb={build:"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle","build-ci":"yarn gen-json --test && yarn gen-kernel2ops && tsc && yarn bundle-ci",bundle:"rollup -c","bundle-ci":"rollup -c --ci","build-core":"cd ../tfjs-core && yarn && yarn build","build-backend-cpu":"cd ../tfjs-backend-cpu && yarn && yarn build","build-backend-cpu-ci":"cd ../tfjs-backend-cpu && yarn && yarn build-ci","build-core-ci":"cd ../tfjs-core && yarn && yarn build-ci","build-deps":"yarn build-core && yarn build-backend-cpu","build-deps-ci":"yarn build-core-ci && yarn build-backend-cpu","build-npm":"./scripts/build-npm.sh","link-local":"yalc link","publish-local":"yarn build-npm && yalc push","publish-npm":"npm publish",test:"yarn && yarn build-deps && yarn build && yarn gen-json --test && yarn gen-kernel2ops && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-ci":"ts-node --transpile-only --skip-ignore -P tsconfig.test.json src/run_tests.ts","test-dev":"tsc && ts-node --transpile-only -P tsconfig.test.json src/run_tests.ts","test-snippets":"yarn && yarn build-deps && yarn build && ts-node --skip-ignore -s ./scripts/test_snippets.ts","test-snippets-ci":"ts-node --skip-ignore -s ./scripts/test_snippets.ts",lint:"tslint -p . -t verbose","make-version":"sh -c ./scripts/make-version","gen-doc":"ts-node -s ./scripts/gen_doc.ts","gen-json":"ts-node -s ./scripts/gen_json.ts","model-summary":"ts-node -s ./tools/model_summary.ts",pb2json:"ts-node -s ./tools/pb2json_converter.ts","build-pip-package":"yarn gen-json --test && cd python && ./build-pip-package.sh --test /tmp/tfjs-pips","run-python-tests":"yarn gen-json --test && cd python && ./run-python-tests.sh","gen-kernel2ops":"ts-node -s scripts/kernels_to_ops.ts --out metadata/kernel2op.json"},wS={name:Vx,version:jx,description:Ux,main:Hx,"jsnext:main":Gx,module:qx,types:Xx,unpkg:Kx,jsdelivr:Zx,miniprogram:Yx,repository:Jx,license:Qx,peerDependencies:eb,devDependencies:tb,scripts:nb},kS=1e-7,IS=1e-4,Up=class{constructor(e,t){this.backend=e,this.dataMover=t,this.data=new WeakMap,this.dataIdsCount=0}get(e){return this.data.has(e)||this.dataMover.moveData(this.backend,e),this.data.get(e)}set(e,t){this.dataIdsCount++,this.data.set(e,t)}has(e){return this.data.has(e)}delete(e){return this.dataIdsCount--,this.data.delete(e)}numDataIds(){return this.dataIdsCount}},Eu=class{refCount(e){return ga("refCount")}incRef(e){return ga("incRef")}timerAvailable(){return!0}time(e){return ga("time")}read(e){return ga("read")}readSync(e){return ga("readSync")}numDataIds(){return ga("numDataIds")}disposeData(e,t){return ga("disposeData")}write(e,t,n){return ga("write")}move(e,t,n,a,r){return ga("move")}memory(){return ga("memory")}floatPrecision(){return ga("floatPrecision")}epsilon(){return this.floatPrecision()===32?kS:IS}dispose(){return ga("dispose")}};function ga(e){throw new Error(`'${e}' not yet implemented or not found in the registry. This kernel may not be supported by the tfjs backend you have chosen`)}function ab(e){let t=e.length,n=0,a=0;for(;t>0;)a=Math.random()*t|0,t--,n=e[t],e[t]=e[a],e[a]=n}function SS(e,t){if(e.length!==t.length)throw new Error(`Array sizes must match to be shuffled together First array length was ${e.length}Second array length was ${t.length}`);let n=e.length,a,r,s=0;for(;n>0;)s=Math.random()*n|0,n--,a=e[n],r=t[n],e[n]=e[s],t[n]=t[s],e[s]=a,t[s]=r}function Ru(e,t,n){return Math.max(e,Math.min(t,n))}function NS(e){return e%2==0?e:e+1}function TS(e){let t=0;for(let n=0;n<e.length;n++)t+=e[n];return t}function CS(e,t){let n=Math.random();return t*n+(1-n)*e}function ES(e,t){let n=0;for(let a=0;a<e.length;a++){let r=Number(e[a])-Number(t[a]);n+=r*r}return n}function D(e,t){if(!e)throw new Error(typeof t=="string"?t:t())}function cn(e,t,n=""){D(cr(e,t),()=>n+` Shapes ${e} and ${t} must match`)}function ys(e){D(e!=null,()=>"The input to the tensor constructor must be a non-null value.")}function As(e,t=[],n=!1){if(t==null&&(t=[]),Array.isArray(e)||on(e)&&!n)for(let a=0;a<e.length;++a)As(e[a],t,n);else t.push(e);return t}function Mt(e){if(e.length===0)return 1;let t=e[0];for(let n=1;n<e.length;n++)t*=e[n];return t}function RS(e){return e.length===0}function cr(e,t){if(e===t)return!0;if(e==null||t==null||e.length!==t.length)return!1;for(let n=0;n<e.length;n++)if(e[n]!==t[n])return!1;return!0}function qt(e){return e%1==0}function MS(e){if(Math.tanh!=null)return Math.tanh(e);if(e===Infinity)return 1;if(e===-Infinity)return-1;{let t=Math.exp(2*e);return(t-1)/(t+1)}}function FS(e){let t=Math.ceil(Math.sqrt(e));return[t,Math.ceil(e/t)]}function $S(e){let t=new Uint32Array(e);for(let n=0;n<e;++n)t[n]=n;return ab(t),t}function Mu(e,t){return t<=e.length?e:e+" ".repeat(t-e.length)}function DS(e,t=a=>0,n){return new Promise((a,r)=>{let s=0,i=()=>{if(e()){a();return}s++;let o=t(s);if(n!=null&&s>=n){r();return}setTimeout(i,o)};i()})}function OS(e,t){let n=1,a=-1;for(let s=0;s<e.length;++s)if(e[s]>=0)n*=e[s];else if(e[s]===-1){if(a!==-1)throw Error(`Shapes can only have 1 implicit size. Found -1 at dim ${a} and dim ${s}`);a=s}else if(e[s]<0)throw Error(`Shapes can not be < 0. Found ${e[s]} at dim ${s}`);if(a===-1){if(t>0&&t!==n)throw Error(`Size(${t}) must match the product of shape ${e}`);return e}if(n===0)throw Error(`Cannot infer the missing size in [${e}] when there are 0 elements`);if(t%n!=0)throw Error(`The implicit shape can't be a fractional number. Got ${t} / ${n}`);let r=e.slice();return r[a]=t/n,r}function ya(e,t){let n=t.length;return e=e==null?t.map((a,r)=>r):[].concat(e),D(e.every(a=>a>=-n&&a<n),()=>`All values in axis param must be in range [-${n}, ${n}) but got axis ${e}`),D(e.every(a=>qt(a)),()=>`All values in axis param must be integers but got axis ${e}`),e.map(a=>a<0?n+a:a)}function rb(e,t){let n=[],a=[],r=t!=null&&Array.isArray(t)&&t.length===0,s=t==null||r?null:ya(t,e).sort(),i=0;for(let o=0;o<e.length;++o){if(s!=null){if(s[i]===o&&e[o]!==1)throw new Error(`Can't squeeze axis ${o} since its dim '${e[o]}' is not 1`);(s[i]==null||s[i]>o)&&e[o]===1&&(n.push(e[o]),a.push(o)),s[i]<=o&&i++}e[o]!==1&&(n.push(e[o]),a.push(o))}return{newShape:n,keptDims:a}}function sb(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ib(e,t){let n=null;if(e==null||e==="float32")n=new Float32Array(t);else if(e==="int32")n=new Int32Array(t);else if(e==="bool")n=new Uint8Array(t);else if(e==="string")n=new Array(t);else throw new Error(`Unknown data type ${e}`);return n}function ob(e,t){for(let n=0;n<e.length;n++){let a=e[n];if(isNaN(a)||!isFinite(a))throw Error(`A tensor of type ${t} being uploaded contains ${a}.`)}}function lb(e){return e==="bool"||e==="complex64"||e==="float32"||e==="int32"||e==="string"}function zS(e,t){return!(t==="complex64"||t==="float32"&&e!=="complex64"||t==="int32"&&e!=="float32"&&e!=="complex64"||t==="bool"&&e==="bool")}function on(e){return e instanceof Float32Array||e instanceof Int32Array||e instanceof Uint8Array}function jm(e){if(e==="float32"||e==="int32")return 4;if(e==="complex64")return 8;if(e==="bool")return 1;throw new Error(`Unknown dtype ${e}`)}function ub(e){if(e==null)return 0;let t=0;return e.forEach(n=>t+=n.length),t}function $r(e){return typeof e=="string"||e instanceof String}function db(e){return typeof e=="boolean"}function pb(e){return typeof e=="number"}function Hp(e){return Array.isArray(e)?Hp(e[0]):e instanceof Float32Array?"float32":e instanceof Int32Array||e instanceof Uint8Array?"int32":pb(e)?"float32":$r(e)?"string":db(e)?"bool":"float32"}function Dr(e){return!!(e&&e.constructor&&e.call&&e.apply)}function Gp(e,t){for(let n=t;n<e;++n)if(e%n==0)return n;return e}function ho(e){let t=e.length;if(t<2)return[];let n=new Array(t-1);n[t-2]=e[t-1];for(let a=t-3;a>=0;--a)n[a]=n[a+1]*e[a+1];return n}function cb(e,t,n,a=!1){let r=new Array;if(t.length===1){let s=t[0]*(a?2:1);for(let i=0;i<s;i++)r[i]=n[e+i]}else{let s=t[0],i=t.slice(1),o=i.reduce((l,u)=>l*u)*(a?2:1);for(let l=0;l<s;l++)r[l]=cb(e+l*o,i,n,a)}return r}function fo(e,t,n=!1){if(e.length===0)return t[0];let a=e.reduce((r,s)=>r*s)*(n?2:1);if(a===0)return[];if(a!==t.length)throw new Error(`[${e}] does not match the input size ${t.length}${n?" for a complex tensor":""}.`);return cb(0,e,t,n)}function Um(e,t){let n=qp(e,t);for(let a=0;a<n.length;a++)n[a]=1;return n}function qp(e,t){if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool")return new Uint8Array(e);throw new Error(`Unknown data type ${t}`)}function _S(e,t){let n=e.reduce((a,r)=>a*r,1);if(t==null||t==="float32")return fo(e,new Float32Array(n));if(t==="int32")return fo(e,new Int32Array(n));if(t==="bool")return fo(e,new Uint8Array(n));throw new Error(`Unknown data type ${t}`)}function Hm(e){e.forEach(t=>{D(Number.isInteger(t)&&t>=0,()=>`Tensor must have a shape comprised of positive integers but got shape [${e}].`)})}function PS(e,t,n){if(t===0)return 0;if(t===1)return e[0];let a=e[e.length-1];for(let r=0;r<e.length-1;++r)a+=n[r]*e[r];return a}function LS(e,t,n){if(t===0)return[];if(t===1)return[e];let a=new Array(t);for(let r=0;r<a.length-1;++r)a[r]=Math.floor(e/n[r]),e-=a[r]*n[r];return a[a.length-1]=e,a}function Gm(e){return e&&e.then&&typeof e.then=="function"}var hb="tfjsflags",fb=class{constructor(e){this.global=e,this.flags={},this.flagRegistry={},this.urlFlags={},this.getQueryParams=WS,this.populateURLFlags()}setPlatform(e,t){this.platform!=null&&console.warn(`Platform ${this.platformName} has already been set. Overwriting the platform with ${t}.`),this.platformName=e,this.platform=t}registerFlag(e,t,n){if(this.flagRegistry[e]={evaluationFn:t,setHook:n},this.urlFlags[e]!=null){let a=this.urlFlags[e];console.warn(`Setting feature override from URL ${e}: ${a}.`),this.set(e,a)}}async getAsync(e){return e in this.flags?this.flags[e]:(this.flags[e]=await this.evaluateFlag(e),this.flags[e])}get(e){if(e in this.flags)return this.flags[e];let t=this.evaluateFlag(e);if(Gm(t))throw new Error(`Flag ${e} cannot be synchronously evaluated. Please use getAsync() instead.`);return this.flags[e]=t,this.flags[e]}getNumber(e){return this.get(e)}getBool(e){return this.get(e)}getFlags(){return this.flags}get features(){return this.flags}set(e,t){if(this.flagRegistry[e]==null)throw new Error(`Cannot set flag ${e} as it has not been registered.`);this.flags[e]=t,this.flagRegistry[e].setHook!=null&&this.flagRegistry[e].setHook(t)}evaluateFlag(e){if(this.flagRegistry[e]==null)throw new Error(`Cannot evaluate flag '${e}': no evaluation function found.`);return this.flagRegistry[e].evaluationFn()}setFlags(e){this.flags=Object.assign({},e)}reset(){this.flags={},this.urlFlags={},this.populateURLFlags()}populateURLFlags(){if(typeof this.global=="undefined"||typeof this.global.location=="undefined"||typeof this.global.location.search=="undefined")return;let e=this.getQueryParams(this.global.location.search);hb in e&&e[hb].split(",").forEach(t=>{let[n,a]=t.split(":");this.urlFlags[n]=VS(n,a)})}};function WS(e){let t={};return e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g,(n,...a)=>(BS(t,a[0],a[1]),a.join("="))),t}function BS(e,t,n){e[decodeURIComponent(t)]=decodeURIComponent(n||"")}function VS(e,t){if(t=t.toLowerCase(),t==="true"||t==="false")return t==="true";if(`${+t}`===t)return+t;throw new Error(`Could not parse value flag value ${t} for flag ${e}.`)}function te(){return sa}var sa=null;function jS(e){sa=e}var qm;function mb(){if(qm==null){let e;if(typeof window!="undefined")e=window;else if(typeof global!="undefined")e=global;else if(typeof process!="undefined")e=process;else if(typeof self!="undefined")e=self;else throw new Error("Could not find a global object");qm=e}return qm}function US(){let e=mb();return e._tfGlobals==null&&(e._tfGlobals=new Map),e._tfGlobals}function Xm(e,t){let n=US();if(n.has(e))return n.get(e);{let a=t();return n.set(e,a),n.get(e)}}var mo="Abs",go="Acos",yo="Acosh",Or="Add",xs="AddN",Ao="All",xo="Any",bs="ArgMax",Fu="ArgMin",bo="Asin",vo="Asinh",wo="Atan",ko="Atanh",Io="Atan2",vs="AvgPool",Xp="AvgPoolGrad",$u="AvgPool3D",Kp="AvgPool3DGrad",ws="BatchMatMul",Du="BatchToSpaceND",Zp="Bincount",gb="BroadcastTo",ks="Cast",Is="Ceil",zr="ClipByValue",Yp="Complex",Ou="ComplexAbs",So="Concat",Ss="Conv2D",Jp="Conv2DBackpropFilter",Ns="Conv2DBackpropInput",zu="Conv3D",Qp="Conv3DBackpropFilterV2",ec="Conv3DBackpropInputV2",Ts="Cos",No="Cosh",Cs="Cumsum",To="CropAndResize",tc="DenseBincount",Co="DepthToSpace",Es="DepthwiseConv2dNative",nc="DepthwiseConv2dNativeBackpropFilter",ac="DepthwiseConv2dNativeBackpropInput",rc="Diag",_u="Dilation2D",sc="Dilation2DBackpropInput",ic="Dilation2DBackpropFilter",Rs="RealDiv",oc="Einsum",Eo="Elu",lc="EluGrad",Ro="Erf",Mo="Equal",Ms="Exp",Fo="ExpandDims",$o="Expm1",uc="FFT",Pu="Fill",Do="FlipLeftRight",Fs="Floor",$s="FloorDiv",Ds="FusedBatchNorm",Oo="GatherV2",zo="GatherNd",_o="Greater",Os="GreaterEqual",zs="Identity",dc="IFFT",pc="Imag",Po="IsFinite",Lo="IsInf",Wo="IsNan",_s="LeakyRelu",Bo="Less",Vo="LessEqual",cc="LinSpace",Ps="Log",jo="Log1p",Uo="LogicalAnd",Lu="LogicalNot",Wu="LogicalOr",yb="LogSoftmax",Bu="LRN",hc="LRNGrad",Ls="Max",Ws="Maximum",Bs="MaxPool",fc="MaxPoolGrad",Vu="MaxPool3D",mc="MaxPool3DGrad",gc="MaxPoolWithArgmax",Vs="Mean",js="Min",Us="Minimum",Hs="MirrorPad",Ho="Mod",yc="Multinomial",Gs="Multiply",Go="Neg",qo="NotEqual",Xo="NonMaxSuppressionV3",Ko="NonMaxSuppressionV4",Zo="NonMaxSuppressionV5",Yo="OnesLike",qs="OneHot",Jo="Pack",Xs="PadV2",HS="Pool",Ks="Pow",Zs="Prelu",Qo="Prod",ju="Range",Ac="Real",el="Reciprocal",Ys="Relu",tl="Reshape",Uu="ResizeNearestNeighbor",xc="ResizeNearestNeighborGrad",Js="ResizeBilinear",bc="ResizeBilinearGrad",Qs="Relu6",ei="Reverse",ti="Round",ni="Rsqrt",nl="ScatterNd",al="Select",rl="Selu",sl="Slice",ai="Sin",il="Sinh",ol="Sign",ri="Sigmoid",ll="Softplus",si="Sqrt",ii="Sum",Hu="SpaceToBatchND",ul="SplitV",oi="Softmax",vc="SparseFillEmptyRows",wc="SparseReshape",kc="SparseSegmentMean",Ic="SparseSegmentSum",Sc="SparseToDense",li="SquaredDifference",Gu="Square",dl="StridedSlice",Nc="StringNGrams",Tc="StringSplit",Cc="StringToHashBucketFast",ui="Sub",di="Tan",pi="Tanh",_r="Tile",pl="TopK",cl="Transform",ci="Transpose",Ec="Unique",hl="Unpack",qu="UnsortedSegmentSum",fl="ZerosLike",Pr="Step",Rc="FromPixels",ml="RotateWithOffset",hi="_FusedMatMul",fi="FusedConv2D",mi="FusedDepthwiseConv2D",gl=Xm("kernelRegistry",()=>new Map),Xu=Xm("gradRegistry",()=>new Map);function Mc(e,t){let n=Zm(e,t);return gl.get(n)}function Km(e){return Xu.get(e)}function yl(e){let t=gl.entries(),n=[];for(;;){let{done:a,value:r}=t.next();if(a)break;let[s,i]=r,[o]=s.split("_");o===e&&n.push(i)}return n}function gi(e){let{kernelName:t,backendName:n}=e,a=Zm(t,n);gl.has(a)&&console.warn(`The kernel '${t}' for backend '${n}' is already registered`),gl.set(a,e)}function Ab(e){let{kernelName:t}=e;Xu.has(t)&&te().getBool("DEBUG")&&console.warn(`Overriding the gradient for '${t}'`),Xu.set(t,e)}function GS(e,t){let n=Zm(e,t);if(!gl.has(n))throw new Error(`The kernel '${e}' for backend '${t}' is not registered`);gl.delete(n)}function qS(e){if(!Xu.has(e))throw new Error(`The gradient '${e}' for backend is not registered`);Xu.delete(e)}function XS(e,t){yl(e).forEach(n=>{let a=Object.assign({},n,{backendName:t});gi(a)})}function Zm(e,t){return`${t}_${e}`}var k={};Fe(k,{arraysEqual:()=>cr,assert:()=>D,assertNonNegativeIntegerDimensions:()=>Hm,assertNonNull:()=>ys,assertShapesMatch:()=>cn,bytesFromStringArray:()=>ub,bytesPerElement:()=>jm,checkConversionForErrors:()=>ob,clamp:()=>Ru,computeStrides:()=>ho,createScalarValue:()=>eN,createShuffledIndices:()=>$S,decodeString:()=>Dc,distSquared:()=>ES,encodeString:()=>Yu,fetch:()=>nN,fingerPrint64:()=>QS,flatten:()=>As,getArrayFromDType:()=>ib,getTypedArrayFromDType:()=>sb,hasEncodingLoss:()=>zS,hexToLong:()=>Ku,indexToLoc:()=>LS,inferDtype:()=>Hp,inferFromImplicitShape:()=>OS,isBoolean:()=>db,isFunction:()=>Dr,isInt:()=>qt,isNumber:()=>pb,isPromise:()=>Gm,isScalarShape:()=>RS,isString:()=>$r,isTypedArray:()=>on,isValidDtype:()=>lb,locToIndex:()=>PS,makeOnesTypedArray:()=>Um,makeZerosNestedTypedArray:()=>_S,makeZerosTypedArray:()=>qp,nearestDivisor:()=>Gp,nearestLargerEven:()=>NS,now:()=>Zu,parseAxisParam:()=>ya,randUniform:()=>CS,repeatedTry:()=>DS,rightPad:()=>Mu,shuffle:()=>ab,shuffleCombo:()=>SS,sizeFromShape:()=>Mt,sizeToSquarishShape:()=>FS,squeezeShape:()=>rb,sum:()=>TS,tanh:()=>MS,toNestedArray:()=>fo,toTypedArray:()=>$c});var xb=gs(YI()),yi=xb.default||xb;function Ku(e){return yi.fromString(e,!0,16)}var bb=Ku("c3a5c85c97cb3127"),Ai=Ku("b492b66fbe98f273"),hn=Ku("9ae16a3b2f90404f");function Ym(e){return e.xor(e.shru(47))}function vb(e,t,n){let a=e.slice(t,t+n);return yi.fromBytes(Array.from(a),!0,!0)}function pt(e,t){return vb(e,t,8)}function wb(e,t){return vb(e,t,4)}function Xt(e,t){return t===0?e:e.shru(t).or(e.shl(64-t))}function Lr(e,t,n=Ku("9ddfea08eb382d69")){let a=e.xor(t).mul(n);a=a.xor(a.shru(47));let r=t.xor(a).mul(n);return r=r.xor(r.shru(47)),r=r.mul(n),r}function KS(e,t,n,a,r,s){r=r.add(e),s=Xt(s.add(r).add(a),21);let i=r;return r=r.add(t),r=r.add(n),s=s.add(Xt(r,44)),[r.add(a),s.add(i)]}function Fc(e,t,n,a){return KS(pt(e,t),pt(e,t+8),pt(e,t+16),pt(e,t+24),n,a)}function ZS(e,t=e.length){if(t>=8){let n=hn.add(t*2),a=pt(e,0).add(hn),r=pt(e,t-8),s=Xt(r,37).mul(n).add(a),i=Xt(a,25).add(r).mul(n);return Lr(s,i,n)}if(t>=4){let n=hn.add(t*2),a=wb(e,0);return Lr(a.shl(3).add(t),wb(e,t-4),n)}if(t>0){let n=e[0],a=e[t>>1],r=e[t-1],s=n+(a<<8),i=t+(r<<2);return Ym(hn.mul(s).xor(bb.mul(i))).mul(hn)}return hn}function YS(e,t=e.length){let n=hn.add(t*2),a=pt(e,0).mul(Ai),r=pt(e,8),s=pt(e,t-8).mul(n),i=pt(e,t-16).mul(hn);return Lr(Xt(a.add(r),43).add(Xt(s,30)).add(i),a.add(Xt(r.add(hn),18)).add(s),n)}function JS(e,t=e.length){let n=hn.add(t*2),a=pt(e,0).mul(hn),r=pt(e,8),s=pt(e,t-8).mul(n),i=pt(e,t-16).mul(hn),o=Xt(a.add(r),43).add(Xt(s,30)).add(i),l=Lr(o,a.add(Xt(r.add(hn),18)).add(s),n),u=pt(e,16).mul(n),d=pt(e,24),p=o.add(pt(e,t-32)).mul(n),c=l.add(pt(e,t-24)).mul(n);return Lr(Xt(u.add(d),43).add(Xt(p,30)).add(c),u.add(Xt(d.add(a),18)).add(p),n)}function QS(e,t=e.length){let n=yi.fromNumber(81,!0);if(t<=32)return t<=16?ZS(e,t):YS(e,t);if(t<=64)return JS(e,t);let a=n,r=n.mul(Ai).add(113),s=Ym(r.mul(hn).add(113)).mul(hn),i=[yi.UZERO,yi.UZERO],o=[yi.UZERO,yi.UZERO];a=a.mul(hn).add(pt(e,0));let l=0,u=(t-1>>6)*64,d=u+(t-1&63)-63;do a=Xt(a.add(r).add(i[0]).add(pt(e,l+8)),37).mul(Ai),r=Xt(r.add(i[1]).add(pt(e,l+48)),42).mul(Ai),a=a.xor(o[1]),r=r.add(i[0]).add(pt(e,l+40)),s=Xt(s.add(o[0]),33).mul(Ai),i=Fc(e,l,i[1].mul(Ai),a.add(o[0])),o=Fc(e,l+32,s.add(o[1]),r.add(pt(e,l+16))),[s,a]=[a,s],l+=64;while(l!==u);let p=Ai.add(s.and(255).shl(1));return l=d,o[0]=o[0].add(t-1&63),i[0]=i[0].add(o[0]),o[0]=o[0].add(i[0]),a=Xt(a.add(r).add(i[0]).add(pt(e,l+8)),37).mul(p),r=Xt(r.add(i[1]).add(pt(e,l+48)),42).mul(p),a=a.xor(o[1].mul(9)),r=r.add(i[0].mul(9).add(pt(e,l+40))),s=Xt(s.add(o[0]),33).mul(p),i=Fc(e,l,i[1].mul(p),a.add(o[0])),o=Fc(e,l+32,s.add(o[1]),r.add(pt(e,l+16))),[s,a]=[a,s],Lr(Lr(i[0],o[0],p).add(Ym(r).mul(bb)).add(s),Lr(i[1],o[1],p).add(a),p)}function eN(e,t){return t==="string"?Yu(e):$c([e],t)}function tN(e,t){return e instanceof Float32Array&&t==="float32"||e instanceof Int32Array&&t==="int32"||e instanceof Uint8Array&&t==="bool"}function $c(e,t){if(t==="string")throw new Error("Cannot convert a string[] to a TypedArray");if(Array.isArray(e)&&(e=As(e)),te().getBool("DEBUG")&&ob(e,t),tN(e,t))return e;if(t==null||t==="float32"||t==="complex64")return new Float32Array(e);if(t==="int32")return new Int32Array(e);if(t==="bool"){let n=new Uint8Array(e.length);for(let a=0;a<n.length;++a)Math.round(e[a])!==0&&(n[a]=1);return n}else throw new Error(`Unknown data type ${t}`)}function Zu(){return te().platform.now()}function nN(e,t){return te().platform.fetch(e,t)}function Yu(e,t="utf-8"){return t=t||"utf-8",te().platform.encode(e,t)}function Dc(e,t="utf-8"){return t=t||"utf-8",te().platform.decode(e,t)}var aN=class{constructor(e,t){this.backendTimer=e,this.logger=t,t==null&&(this.logger=new sN)}profileKernel(e,t,n){let a,r=()=>{a=n()},s,i=Zu();if(this.backendTimer.timerAvailable())s=this.backendTimer.time(r);else{r();for(let o of a)o.dataSync();s=Promise.resolve({kernelMs:Zu()-i})}if(te().getBool("CHECK_COMPUTATION_FOR_ERRORS"))for(let o=0;o<a.length;o++){let l=a[o];l.data().then(u=>{rN(u,l.dtype,e)})}return{kernelName:e,outputs:a,inputs:t,timeMs:s.then(o=>o.kernelMs),extraInfo:s.then(o=>o.getExtraProfileInfo!=null?o.getExtraProfileInfo():"")}}logKernelProfile(e){let{kernelName:t,outputs:n,timeMs:a,inputs:r,extraInfo:s}=e;n.forEach(i=>{Promise.all([i.data(),a,s]).then(o=>{this.logger.logKernelProfile(t,i,o[0],o[1],r,o[2])})})}};function rN(e,t,n){if(t!=="float32")return!1;for(let a=0;a<e.length;a++){let r=e[a];if(isNaN(r)||!isFinite(r))return console.warn(`Found ${r} in the result of '${n}'`),!0}return!1}var sN=class{logKernelProfile(e,t,n,a,r,s){let i=typeof a=="number"?Mu(`${a}ms`,9):a.error,o=Mu(e,25),l=t.rank,u=t.size,d=Mu(t.shape.toString(),14),p="";for(let c in r){let h=r[c];if(h!=null){let m=h.shape||t.shape,f=m.length;p+=`${c}: ${f}D ${f>0?m:""} `}}console.log(`%c${o} %c${i} %c${l}D ${d} %c${u} %c${p} %c${s}`,"font-weight:bold","color:red","color:blue","color: orange","color: green","color: steelblue")}};function iN(e,t,n){let a={},r={};for(let l=0;l<t.length;l++)a[t[l].id]=!0;for(let l=0;l<e.length;l++){let u=e[l],d=u.inputs;for(let p in d){let c=d[p],h=!1;for(let m=0;m<t.length;m++)if(a[c.id]){u.outputs.forEach(f=>a[f.id]=!0),h=!0,r[u.id]=!0;break}if(h)break}}let s={};s[n.id]=!0;let i={};for(let l=e.length-1;l>=0;l--){let u=e[l],d=u.inputs;for(let p=0;p<u.outputs.length;p++)if(s[u.outputs[p].id]){for(let c in d)s[d[c].id]=!0,i[u.id]=!0;break}}let o=[];for(let l=0;l<e.length;l++){let u=e[l];if(r[u.id]&&i[u.id]){let d={};for(let c in u.inputs){let h=u.inputs[c];a[h.id]&&(d[c]=h)}let p=Object.assign({},u);p.inputs=d,p.outputs=u.outputs,o.push(p)}}return o}function oN(e,t,n,a){for(let r=t.length-1;r>=0;r--){let s=t[r],i=[];if(s.outputs.forEach(l=>{let u=e[l.id];u!=null?i.push(u):i.push(null)}),s.gradient==null)throw new Error(`Cannot compute gradient: gradient function not found for ${s.kernelName}.`);let o=s.gradient(i);for(let l in s.inputs){if(!(l in o))throw new Error(`Cannot backprop through input ${l}. Available gradients found: ${Object.keys(o)}.`);let u=n(()=>o[l]());if(u.dtype!=="float32")throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input ${l} must have 'float32' dtype, but has '${u.dtype}'`);let d=s.inputs[l];if(!cr(u.shape,d.shape))throw new Error(`Error in gradient for op ${s.kernelName}. The gradient of input '${l}' has shape '${u.shape}', which does not match the shape of the input '${d.shape}'`);if(e[d.id]==null)e[d.id]=u;else{let p=e[d.id];e[d.id]=a(p,u),p.dispose()}}}}var kb=20,Ju=3,Jm=7;function lN(e,t,n,a){let r=ho(t),s=uN(e,t,n,r),i=t.length,o=Oc(e,t,n,r,s),l=["Tensor"];return a&&(l.push(` dtype: ${n}`),l.push(` rank: ${i}`),l.push(` shape: [${t}]`),l.push(" values:")),l.push(o.map(u=>" "+u).join(`
|
|
`)),l.join(`
|
|
`)}function uN(e,t,n,a){let r=Mt(t),s=a[a.length-1],i=new Array(s).fill(0),o=t.length,l=n==="complex64"?ed(e):e;if(o>1)for(let u=0;u<r/s;u++){let d=u*s;for(let p=0;p<s;p++)i[p]=Math.max(i[p],Qu(l[d+p],0,n).length)}return i}function Qu(e,t,n){let a;return Array.isArray(e)?a=`${parseFloat(e[0].toFixed(Jm))} + ${parseFloat(e[1].toFixed(Jm))}j`:$r(e)?a=`'${e}'`:n==="bool"?a=Ib(e):a=parseFloat(e.toFixed(Jm)).toString(),Mu(a,t)}function Ib(e){return e===0?"false":"true"}function Oc(e,t,n,a,r,s=!0){let i=n==="complex64"?2:1,o=t[0],l=t.length;if(l===0){if(n==="complex64"){let f=ed(e);return[Qu(f[0],0,n)]}return n==="bool"?[Ib(e[0])]:[e[0].toString()]}if(l===1){if(o>kb){let g=Ju*i,y=Array.from(e.slice(0,g)),A=Array.from(e.slice((o-Ju)*i,o*i));return n==="complex64"&&(y=ed(y),A=ed(A)),["["+y.map((x,v)=>Qu(x,r[v],n)).join(", ")+", ..., "+A.map((x,v)=>Qu(x,r[o-Ju+v],n)).join(", ")+"]"]}let f=n==="complex64"?ed(e):Array.from(e);return["["+f.map((g,y)=>Qu(g,r[y],n)).join(", ")+"]"]}let u=t.slice(1),d=a.slice(1),p=a[0]*i,c=[];if(o>kb){for(let f=0;f<Ju;f++){let g=f*p,y=g+p;c.push(...Oc(e.slice(g,y),u,n,d,r,!1))}c.push("...");for(let f=o-Ju;f<o;f++){let g=f*p,y=g+p;c.push(...Oc(e.slice(g,y),u,n,d,r,f===o-1))}}else for(let f=0;f<o;f++){let g=f*p,y=g+p;c.push(...Oc(e.slice(g,y),u,n,d,r,f===o-1))}let h=l===2?",":"";c[0]="["+c[0]+h;for(let f=1;f<c.length-1;f++)c[f]=" "+c[f]+h;let m=`,
|
|
`;for(let f=2;f<l;f++)m+=`
|
|
`;return c[c.length-1]=" "+c[c.length-1]+"]"+(s?"":m),c}function ed(e){let t=[];for(let n=0;n<e.length;n+=2)t.push([e[n],e[n+1]]);return t}var Lt=class{constructor(e,t,n){if(this.dtype=t,this.shape=e.slice(),this.size=Mt(e),n!=null){let a=n.length;D(a===this.size,()=>`Length of values '${a}' does not match the size inferred by the shape '${this.size}'.`)}if(t==="complex64")throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");this.values=n||ib(t,this.size),this.strides=ho(e)}set(e,...t){t.length===0&&(t=[0]),D(t.length===this.rank,()=>`The number of provided coordinates (${t.length}) must match the rank (${this.rank})`);let n=this.locToIndex(t);this.values[n]=e}get(...e){e.length===0&&(e=[0]);let t=0;for(let a of e){if(a<0||a>=this.shape[t]){let r=`Requested out of range element at ${e}. Buffer shape=${this.shape}`;throw new Error(r)}t++}let n=e[e.length-1];for(let a=0;a<e.length-1;++a)n+=this.strides[a]*e[a];return this.values[n]}locToIndex(e){if(this.rank===0)return 0;if(this.rank===1)return e[0];let t=e[e.length-1];for(let n=0;n<e.length-1;++n)t+=this.strides[n]*e[n];return t}indexToLoc(e){if(this.rank===0)return[];if(this.rank===1)return[e];let t=new Array(this.shape.length);for(let n=0;n<t.length-1;++n)t[n]=Math.floor(e/this.strides[n]),e-=t[n]*this.strides[n];return t[t.length-1]=e,t}get rank(){return this.shape.length}toTensor(){return ja().makeTensor(this.values,this.shape,this.dtype)}},ja=null,Al=null,dN=null;function pN(e){ja=e}function cN(e){Al=e}function hN(e){dN=e}var Be=class{constructor(e,t,n,a){this.kept=!1,this.isDisposedInternal=!1,this.shape=e.slice(),this.dtype=t||"float32",this.size=Mt(e),this.strides=ho(e),this.dataId=n,this.id=a,this.rankType=this.rank<5?this.rank.toString():"higher"}get rank(){return this.shape.length}async buffer(){let e=await this.data();return Al.buffer(this.shape,this.dtype,e)}bufferSync(){return Al.buffer(this.shape,this.dtype,this.dataSync())}async array(){let e=await this.data();return fo(this.shape,e,this.dtype==="complex64")}arraySync(){return fo(this.shape,this.dataSync(),this.dtype==="complex64")}async data(){this.throwIfDisposed();let e=ja().read(this.dataId);if(this.dtype==="string"){let t=await e;try{return t.map(n=>Dc(n))}catch(n){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}}return e}dataSync(){this.throwIfDisposed();let e=ja().readSync(this.dataId);if(this.dtype==="string")try{return e.map(t=>Dc(t))}catch(t){throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().")}return e}async bytes(){this.throwIfDisposed();let e=await ja().read(this.dataId);return this.dtype==="string"?e:new Uint8Array(e.buffer)}dispose(){this.isDisposed||(ja().disposeTensor(this),this.isDisposedInternal=!0)}get isDisposed(){return this.isDisposedInternal}throwIfDisposed(){if(this.isDisposed)throw new Error("Tensor is disposed.")}print(e=!1){return Al.print(this,e)}clone(){return this.throwIfDisposed(),Al.clone(this)}toString(e=!1){let t=this.dataSync();return lN(t,this.shape,this.dtype,e)}cast(e){return this.throwIfDisposed(),Al.cast(this,e)}variable(e=!0,t,n){return this.throwIfDisposed(),ja().makeVariable(this,e,t,n)}};Object.defineProperty(Be,Symbol.hasInstance,{value:e=>!!e&&e.data!=null&&e.dataSync!=null&&e.throwIfDisposed!=null});function ee(){return Xm("Tensor",()=>Be)}ee();var td=class extends Be{constructor(e,t,n,a){super(e.shape,e.dtype,e.dataId,a);this.trainable=t,this.name=n}assign(e){if(e.dtype!==this.dtype)throw new Error(`dtype of the new value (${e.dtype}) and previous value (${this.dtype}) must match`);if(!cr(e.shape,this.shape))throw new Error(`shape of the new value (${e.shape}) and previous value (${this.shape}) must match`);ja().disposeTensor(this),this.dataId=e.dataId,ja().incRef(this,null)}dispose(){ja().disposeVariable(this),this.isDisposedInternal=!0}};Object.defineProperty(td,Symbol.hasInstance,{value:e=>e instanceof Be&&e.assign!=null&&e.assign instanceof Function});var Sa={};Fe(Sa,{assertTypesMatch:()=>Sb,getTensorsInContainer:()=>r1,isTensorInList:()=>mN,makeTypesMatch:()=>It});var Qm;(function(e){e.R0="R0",e.R1="R1",e.R2="R2",e.R3="R3",e.R4="R4",e.R5="R5",e.R6="R6"})(Qm||(Qm={}));var e1;(function(e){e.float32="float32",e.int32="int32",e.bool="int32",e.complex64="complex64"})(e1||(e1={}));var t1;(function(e){e.float32="float32",e.int32="int32",e.bool="bool",e.complex64="complex64"})(t1||(t1={}));var n1;(function(e){e.float32="float32",e.int32="float32",e.bool="float32",e.complex64="complex64"})(n1||(n1={}));var a1;(function(e){e.float32="complex64",e.int32="complex64",e.bool="complex64",e.complex64="complex64"})(a1||(a1={}));var fN={float32:n1,int32:e1,bool:t1,complex64:a1};function Aa(e,t){if(e==="string"||t==="string"){if(e==="string"&&t==="string")return"string";throw new Error(`Can not upcast ${e} with ${t}`)}return fN[e][t]}function zc(e){return Aa(e,"int32")}function It(e,t){if(e.dtype===t.dtype)return[e,t];let n=Aa(e.dtype,t.dtype);return[e.cast(n),t.cast(n)]}function Sb(e,t){D(e.dtype===t.dtype,()=>`The dtypes of the first(${e.dtype}) and second(${t.dtype}) input must match`)}function mN(e,t){return t.some(n=>n.id===e.id)}function r1(e){let t=[],n=new Set;return Nb(e,t,n),t}function Nb(e,t,n){if(e==null)return;if(e instanceof Be){t.push(e);return}if(!gN(e))return;let a=e;for(let r in a){let s=a[r];n.has(s)||(n.add(s),Nb(s,t,n))}}function gN(e){return Array.isArray(e)||typeof e=="object"}function s1(e){return e.kernelName!=null}var Tb=class{constructor(){this.registeredVariables={},this.nextTapeNodeId=0,this.numBytes=0,this.numTensors=0,this.numStringTensors=0,this.numDataBuffers=0,this.gradientDepth=0,this.kernelDepth=0,this.scopeStack=[],this.numDataMovesStack=[],this.nextScopeId=0,this.tensorInfo=new WeakMap,this.profiling=!1,this.activeProfile={newBytes:0,newTensors:0,peakBytes:0,kernels:[],result:null,get kernelNames(){return Array.from(new Set(this.kernels.map(e=>e.name)))}}}dispose(){for(let e in this.registeredVariables)this.registeredVariables[e].dispose()}},nd=class{constructor(e){this.ENV=e,this.registry={},this.registryFactory={},this.pendingBackendInitId=0,this.state=new Tb}async ready(){if(this.pendingBackendInit!=null)return this.pendingBackendInit.then(()=>{});if(this.backendInstance!=null)return;let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t];if(await this.initializeBackend(n).success){await this.setBackend(n);return}}throw new Error("Could not initialize any backends, all backend initializations failed.")}get backend(){if(this.pendingBackendInit!=null)throw new Error(`Backend '${this.backendName}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);if(this.backendInstance==null){let{name:e,asyncInit:t}=this.initializeBackendsAndReturnBest();if(t)throw new Error(`The highest priority backend '${e}' has not yet been initialized. Make sure to await tf.ready() or await tf.setBackend() before calling other methods`);this.setBackend(e)}return this.backendInstance}backendNames(){return Object.keys(this.registryFactory)}findBackend(e){if(!(e in this.registry))if(e in this.registryFactory){let{asyncInit:t}=this.initializeBackend(e);if(t)return null}else return null;return this.registry[e]}findBackendFactory(e){return e in this.registryFactory?this.registryFactory[e].factory:null}registerBackend(e,t,n=1){return e in this.registryFactory?(console.warn(`${e} backend was already registered. Reusing existing backend factory.`),!1):(this.registryFactory[e]={factory:t,priority:n},!0)}async setBackend(e){if(this.registryFactory[e]==null)throw new Error(`Backend name '${e}' not found in registry`);if(this.backendName=e,this.registry[e]==null){this.backendInstance=null;let{success:t,asyncInit:n}=this.initializeBackend(e);if(!(n?await t:t))return!1}return this.backendInstance=this.registry[e],this.setupRegisteredKernels(),this.profiler=new aN(this.backendInstance),!0}setupRegisteredKernels(){yl(this.backendName).forEach(e=>{e.setupFunc!=null&&e.setupFunc(this.backendInstance)})}disposeRegisteredKernels(e){yl(e).forEach(t=>{t.disposeFunc!=null&&t.disposeFunc(this.registry[e])})}initializeBackend(e){let t=this.registryFactory[e];if(t==null)throw new Error(`Cannot initialize backend ${e}, no registration found.`);try{let n=t.factory();if(n&&!(n instanceof Eu)&&typeof n.then=="function"){let a=++this.pendingBackendInitId,r=n.then(s=>a<this.pendingBackendInitId?!1:(this.registry[e]=s,this.pendingBackendInit=null,!0)).catch(s=>(a<this.pendingBackendInitId||(this.pendingBackendInit=null,console.warn(`Initialization of backend ${e} failed`),console.warn(s.stack||s.message)),!1));return this.pendingBackendInit=r,{success:r,asyncInit:!0}}else return this.registry[e]=n,{success:!0,asyncInit:!1}}catch(n){return console.warn(`Initialization of backend ${e} failed`),console.warn(n.stack||n.message),{success:!1,asyncInit:!1}}}removeBackend(e){if(!(e in this.registryFactory))throw new Error(`${e} backend not found in registry`);this.backendName===e&&this.pendingBackendInit!=null&&this.pendingBackendInitId++,e in this.registry&&(this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e]),delete this.registryFactory[e],this.backendName===e&&(this.pendingBackendInit=null,this.backendName=null,this.backendInstance=null)}getSortedBackends(){if(Object.keys(this.registryFactory).length===0)throw new Error("No backend found in registry.");return Object.keys(this.registryFactory).sort((e,t)=>this.registryFactory[t].priority-this.registryFactory[e].priority)}initializeBackendsAndReturnBest(){let e=this.getSortedBackends();for(let t=0;t<e.length;t++){let n=e[t],{success:a,asyncInit:r}=this.initializeBackend(n);if(r||a)return{name:n,asyncInit:r}}throw new Error("Could not initialize any backends, all backend initializations failed.")}moveData(e,t){let n=this.state.tensorInfo.get(t),a=n.backend,r=this.readSync(t),s=a.refCount(t);a.disposeData(t,!0),n.backend=e,e.move(t,r,n.shape,n.dtype,s),this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack[this.state.numDataMovesStack.length-1]++}tidy(e,t){let n=null;if(t==null){if(typeof e!="function")throw new Error("Please provide a function to tidy()");t=e}else{if(typeof e!="string"&&!(e instanceof String))throw new Error("When calling with two arguments, the first argument to tidy() must be a string");if(typeof t!="function")throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");n=e}let a;return this.scopedRun(()=>this.startScope(n),()=>this.endScope(a),()=>(a=t(),a instanceof Promise&&console.error("Cannot return a Promise inside of tidy."),a))}scopedRun(e,t,n){e();try{let a=n();return t(),a}catch(a){throw t(),a}}nextTensorId(){return nd.nextTensorId++}nextVariableId(){return nd.nextVariableId++}clone(e){let t=P.runKernel(zs,{x:e}),n={x:e},a=s=>({x:()=>{let i="float32",o={x:s},l={dtype:i};return P.runKernel(ks,o,l)}}),r=[];return this.addTapeNode(this.state.activeScope.name,n,[t],a,r,{}),t}runKernel(e,t,n){if(Mc(e,this.backendName)==null)throw new Error(`Kernel '${e}' not registered for backend '${this.backendName}'`);return this.runKernelFunc({kernelName:e,inputs:t,attrs:n})}shouldCheckForMemLeaks(){return this.ENV.getBool("IS_TEST")}checkKernelForMemLeak(e,t,n){let a=this.backend.numDataIds(),r=0;n.forEach(o=>{r+=o.dtype==="complex64"?3:1});let s=this.state.numDataMovesStack[this.state.numDataMovesStack.length-1],i=a-t-r-s;if(i>0)throw new Error(`Backend '${this.backendName}' has an internal memory leak (${i} data ids) after running '${e}'`)}runKernelFunc(e){let t,n=[],a=this.isTapeOn(),r=this.state.numBytes,s=this.state.numTensors;this.shouldCheckForMemLeaks()&&this.state.numDataMovesStack.push(0);let i;this.backendName==null&&this.backend;let o,l=s1(e)?e.kernelName:this.state.activeScope!=null?this.state.activeScope.name:"";if(s1(e)){let{kernelName:h,inputs:m,attrs:f}=e;this.backendName==null&&this.backend;let g=Mc(h,this.backendName);D(g!=null,()=>`Cannot find registered kernel '${h}' for backend '${this.backendName}'`),i=()=>{let y=this.backend.numDataIds();o=g.kernelFunc({inputs:m,attrs:f,backend:this.backend});let A=Array.isArray(o)?o:[o];this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(h,y,A);let x=A.map(v=>{if(v.rank!=null)return v;let{dataId:b,shape:w,dtype:N}=v;return this.makeTensorFromDataId(b,w,N)});if(a){let v=this.getTensorsForGradient(h,m,x);n=this.saveTensorsForBackwardMode(v)}return x}}else{let{forwardFunc:h}=e,m=f=>{!a||(n=f.map(g=>this.keep(this.clone(g))))};i=()=>{let f=this.backend.numDataIds();o=this.tidy(()=>h(this.backend,m));let g=Array.isArray(o)?o:[o];return this.shouldCheckForMemLeaks()&&this.checkKernelForMemLeak(l,f,g),g}}let{inputs:u,attrs:d}=e,p=s1(e)?null:e.backwardsFunc,c;return this.scopedRun(()=>this.state.kernelDepth++,()=>this.state.kernelDepth--,()=>{!this.ENV.getBool("DEBUG")&&!this.state.profiling?t=i():(c=this.profiler.profileKernel(l,u,()=>i()),this.ENV.getBool("DEBUG")&&this.profiler.logKernelProfile(c),t=c.outputs)}),a&&this.addTapeNode(l,u,t,p,n,d),this.state.profiling&&this.state.activeProfile.kernels.push({name:l,bytesAdded:this.state.numBytes-r,totalBytesSnapshot:this.state.numBytes,tensorsAdded:this.state.numTensors-s,totalTensorsSnapshot:this.state.numTensors,inputShapes:Object.keys(u).map(h=>u[h]!=null?u[h].shape:null),outputShapes:t.map(h=>h.shape),kernelTimeMs:c.timeMs,extraInfo:c.extraInfo}),Array.isArray(o)?t:t[0]}saveTensorsForBackwardMode(e){return e.map(t=>this.keep(this.clone(t)))}getTensorsForGradient(e,t,n){let a=Km(e);if(a!=null){let r=a.inputsToSave||[],s=a.outputsToSave||[],i;a.saveAllInputs?(D(Array.isArray(t),()=>"saveAllInputs is true, expected inputs to be an array."),i=Object.keys(t).map(l=>t[l])):i=r.map(l=>t[l]);let o=n.filter((l,u)=>s[u]);return i.concat(o)}return[]}makeTensor(e,t,n,a){if(e==null)throw new Error("Values passed to engine.makeTensor() are null");n=n||"float32",a=a||this.backend;let r=e;n==="string"&&$r(e[0])&&(r=e.map(o=>Yu(o)));let s=a.write(r,t,n),i=new Be(t,n,s,this.nextTensorId());if(this.trackTensor(i,a),n==="string"){let o=this.state.tensorInfo.get(s),l=ub(r);this.state.numBytes+=l-o.bytes,o.bytes=l}return i}makeTensorFromDataId(e,t,n,a){n=n||"float32";let r=new Be(t,n,e,this.nextTensorId());return this.trackTensor(r,a),r}makeVariable(e,t=!0,n,a){n=n||this.nextVariableId().toString(),a!=null&&a!==e.dtype&&(e=e.cast(a));let r=new td(e,t,n,this.nextTensorId());if(this.state.registeredVariables[r.name]!=null)throw new Error(`Variable with name ${r.name} was already registered`);return this.state.registeredVariables[r.name]=r,this.incRef(r,this.backend),r}trackTensor(e,t){this.state.numTensors++,e.dtype==="string"&&this.state.numStringTensors++;let n=0;e.dtype!=="complex64"&&e.dtype!=="string"&&(n=e.size*jm(e.dtype)),this.state.numBytes+=n,this.state.tensorInfo.has(e.dataId)||(this.state.numDataBuffers++,this.state.tensorInfo.set(e.dataId,{backend:t||this.backend,dtype:e.dtype,shape:e.shape,bytes:n})),e instanceof td||this.track(e)}incRef(e,t){this.trackTensor(e,t),this.backend.incRef(e.dataId)}removeDataId(e,t){this.state.tensorInfo.has(e)&&this.state.tensorInfo.get(e).backend===t&&(this.state.tensorInfo.delete(e),this.state.numDataBuffers--)}disposeTensor(e){if(!this.state.tensorInfo.has(e.dataId))return;let t=this.state.tensorInfo.get(e.dataId);if(this.state.numTensors--,e.dtype==="string"&&(this.state.numStringTensors--,this.state.numBytes-=t.bytes),e.dtype!=="complex64"&&e.dtype!=="string"){let n=e.size*jm(e.dtype);this.state.numBytes-=n}t.backend.disposeData(e.dataId)&&this.removeDataId(e.dataId,t.backend)}disposeVariables(){for(let e in this.state.registeredVariables){let t=this.state.registeredVariables[e];this.disposeVariable(t)}}disposeVariable(e){this.disposeTensor(e),this.state.registeredVariables[e.name]!=null&&delete this.state.registeredVariables[e.name]}memory(){let e=this.backend.memory();return e.numTensors=this.state.numTensors,e.numDataBuffers=this.state.numDataBuffers,e.numBytes=this.state.numBytes,this.state.numStringTensors>0&&(e.unreliable=!0,e.reasons==null&&(e.reasons=[]),e.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")),e}async profile(e){this.state.profiling=!0;let t=this.state.numBytes,n=this.state.numTensors;this.state.activeProfile.kernels=[],this.state.activeProfile.result=await e(),this.state.profiling=!1,this.state.activeProfile.peakBytes=Math.max(...this.state.activeProfile.kernels.map(a=>a.totalBytesSnapshot)),this.state.activeProfile.newBytes=this.state.numBytes-t,this.state.activeProfile.newTensors=this.state.numTensors-n;for(let a of this.state.activeProfile.kernels)a.kernelTimeMs=await a.kernelTimeMs,a.extraInfo=await a.extraInfo;return this.state.activeProfile}isTapeOn(){return this.state.gradientDepth>0&&this.state.kernelDepth===0}addTapeNode(e,t,n,a,r,s){let i={id:this.state.nextTapeNodeId++,kernelName:e,inputs:t,outputs:n,saved:r},o=Km(e);o!=null&&(a=o.gradFunc),a!=null&&(i.gradient=l=>(l=l.map((u,d)=>{if(u==null){let p=n[d],c=qp(p.size,p.dtype);return this.makeTensor(c,p.shape,p.dtype)}return u}),a(l.length>1?l:l[0],r,s))),this.state.activeTape.push(i)}keep(e){return e.kept=!0,e}startTape(){this.state.gradientDepth===0&&(this.state.activeTape=[]),this.state.gradientDepth++}endTape(){this.state.gradientDepth--}startScope(e){let t={track:[],name:"unnamed scope",id:this.state.nextScopeId++};e&&(t.name=e),this.state.scopeStack.push(t),this.state.activeScope=t}endScope(e){let t=r1(e),n=new Set(t.map(r=>r.id));for(let r=0;r<this.state.activeScope.track.length;r++){let s=this.state.activeScope.track[r];!s.kept&&!n.has(s.id)&&s.dispose()}let a=this.state.scopeStack.pop();this.state.activeScope=this.state.scopeStack.length===0?null:this.state.scopeStack[this.state.scopeStack.length-1],t.forEach(r=>{!r.kept&&r.scopeId===a.id&&this.track(r)})}gradients(e,t,n,a=!1){if(D(t.length>0,()=>"gradients() received an empty list of xs."),n!=null&&n.dtype!=="float32")throw new Error(`dy must have 'float32' dtype, but has '${n.dtype}'`);let r=this.scopedRun(()=>this.startTape(),()=>this.endTape(),()=>this.tidy("forward",e));D(r instanceof Be,()=>"The result y returned by f() must be a tensor.");let s=iN(this.state.activeTape,t,r);if(!a&&s.length===0&&t.length>0)throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");return this.tidy("backward",()=>{let i={};i[r.id]=n==null?yN(r.shape):n,oN(i,s,l=>this.tidy(l),AN);let o=t.map(l=>i[l.id]);return this.state.gradientDepth===0&&(this.state.activeTape.forEach(l=>{for(let u of l.saved)u.dispose()}),this.state.activeTape=null),{value:r,grads:o}})}customGrad(e){return D(Dr(e),()=>"The f passed in customGrad(f) must be a function."),(...t)=>{D(t.every(i=>i instanceof Be),()=>"The args passed in customGrad(f)(x1, x2,...) must all be tensors");let n,a={};t.forEach((i,o)=>{a[o]=i});let r=(i,o)=>(n=e(...t,o),D(n.value instanceof Be,()=>"The function f passed in customGrad(f) must return an object where `obj.value` is a tensor"),D(Dr(n.gradFunc),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function."),n.value),s=(i,o)=>{let l=n.gradFunc(i,o),u=Array.isArray(l)?l:[l];D(u.length===t.length,()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...)."),D(u.every(p=>p instanceof Be),()=>"The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.");let d={};return u.forEach((p,c)=>{d[c]=()=>p}),d};return this.runKernelFunc({forwardFunc:r,backwardsFunc:s,inputs:a})}}readSync(e){return this.state.tensorInfo.get(e).backend.readSync(e)}read(e){return this.state.tensorInfo.get(e).backend.read(e)}async time(e){let t=Zu(),n=await this.backend.time(e);return n.wallMs=Zu()-t,n}track(e){return this.state.activeScope!=null&&(e.scopeId=this.state.activeScope.id,this.state.activeScope.track.push(e)),e}get registeredVariables(){return this.state.registeredVariables}reset(){this.pendingBackendInitId++,this.state.dispose(),this.ENV.reset(),this.state=new Tb;for(let e in this.registry)this.disposeRegisteredKernels(e),this.registry[e].dispose(),delete this.registry[e];this.backendName=null,this.backendInstance=null,this.pendingBackendInit=null}};nd.nextTensorId=0;nd.nextVariableId=0;function yN(e){let t=Um(Mt(e),"float32");return P.makeTensor(t,e,"float32")}function Cb(){let e=mb();if(e._tfengine==null){let t=new fb(e);e._tfengine=new nd(t)}return jS(e._tfengine.ENV),pN(()=>e._tfengine),e._tfengine}var P=Cb();function AN(e,t){let n={a:e,b:t};return P.runKernel(Or,n)}var ad={};Fe(ad,{isBrowser:()=>Eb,isMobile:()=>bN});function xN(){return typeof navigator!="undefined"&&navigator!=null}function bN(e){if(e||xN()){if(e||(e=navigator),e.product==="ReactNative")return!0;let t=e.userAgent||e.vendor||window.opera;return/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t)||/1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0,4))}return!1}function Eb(){return typeof window!="undefined"&&window.document!=null||typeof WorkerGlobalScope!="undefined"}var Na=te();Na.registerFlag("DEBUG",()=>!1,e=>{e&&console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.")});Na.registerFlag("IS_BROWSER",()=>Eb());Na.registerFlag("IS_NODE",()=>typeof process!="undefined"&&typeof process.versions!="undefined"&&typeof process.versions.node!="undefined");Na.registerFlag("IS_CHROME",()=>typeof navigator!="undefined"&&navigator!=null&&navigator.userAgent!=null&&/Chrome/.test(navigator.userAgent)&&/Google Inc/.test(navigator.vendor));Na.registerFlag("PROD",()=>!1);Na.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY",()=>Na.getBool("DEBUG"));Na.registerFlag("DEPRECATION_WARNINGS_ENABLED",()=>!0);Na.registerFlag("IS_TEST",()=>!1);Na.registerFlag("CHECK_COMPUTATION_FOR_ERRORS",()=>!0);Na.registerFlag("WRAP_TO_IMAGEBITMAP",()=>!1);function Ua(e,t){let n=e;if(on(e))return t==="string"?[]:[e.length];if(!Array.isArray(e))return[];let a=[];for(;Array.isArray(n)||on(n)&&t!=="string";)a.push(n.length),n=n[0];return Array.isArray(e)&&te().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY")&&Rb(e,a,[]),a}function Rb(e,t,n){if(n=n||[],!Array.isArray(e)&&!on(e)){D(t.length===0,()=>`Element arr[${n.join("][")}] is a primitive, but should be an array/TypedArray of ${t[0]} elements`);return}D(t.length>0,()=>`Element arr[${n.join("][")}] should be a primitive, but is an array of ${e.length} elements`),D(e.length===t[0],()=>`Element arr[${n.join("][")}] should have ${t[0]} elements, but has ${e.length} elements`);let a=t.slice(1);for(let r=0;r<e.length;++r)Rb(e[r],a,n.concat(r))}function Mb(e,t,n,a){if(e!=="string_or_numeric"){if(e==null)throw new Error("Expected dtype cannot be null.");if(e!=="numeric"&&e!==t||e==="numeric"&&t==="string")throw new Error(`Argument '${n}' passed to '${a}' must be ${e} tensor, but got ${t} tensor`)}}function M(e,t,n,a="numeric"){if(e instanceof Be)return Mb(a,e.dtype,t,n),e;let r=Hp(e);if(r!=="string"&&["bool","int32","float32"].indexOf(a)>=0&&(r=a),Mb(a,r,t,n),e==null||!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string"){let o=e==null?"null":e.constructor.name;throw new Error(`Argument '${t}' passed to '${n}' must be a Tensor or TensorLike, but got '${o}'`)}let s=Ua(e,r);!on(e)&&!Array.isArray(e)&&(e=[e]);let i=r!=="string"?$c(e,r):As(e,[],!0);return P.makeTensor(i,s,r)}function rd(e,t,n,a="numeric"){if(!Array.isArray(e))throw new Error(`Argument ${t} passed to ${n} must be a \`Tensor[]\` or \`TensorLike[]\``);return e.map((r,s)=>M(r,`${t}[${s}]`,n,a))}var Fb="__op";function L(e){let t=Object.keys(e);if(t.length!==1)throw new Error(`Please provide an object with a single key (operation name) mapping to a function. Got an object with ${t.length} keys.`);let n=t[0],a=e[n];n.endsWith("_")&&(n=n.substring(0,n.length-1)),n=n+Fb;let r=(...s)=>{P.startScope(n);try{let i=a(...s);return Gm(i)&&console.error("Cannot return a Promise inside of tidy."),P.endScope(i),i}catch(i){throw P.endScope(null),i}};return Object.defineProperty(r,"name",{value:n,configurable:!0}),r}function vN(e,t){let n=M(e,"real","complex"),a=M(t,"imag","complex");cn(n.shape,a.shape,`real and imag shapes, ${n.shape} and ${a.shape}, must match in call to tf.complex().`);let r={real:n,imag:a};return P.runKernel(Yp,r)}var Wr=L({complex_:vN});function Br(e,t,n,a){if(a==null&&(a=Hp(e)),a==="complex64")throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");if(!on(e)&&!Array.isArray(e)&&typeof e!="number"&&typeof e!="boolean"&&typeof e!="string")throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");if(t!=null){Hm(t);let r=Mt(t),s=Mt(n);D(r===s,()=>`Based on the provided shape, [${t}], the tensor should have ${r} values but has ${s}`);for(let i=0;i<n.length;++i){let o=n[i],l=i===n.length-1?o!==Mt(t.slice(i)):!0;D(n[i]===t[i]||!l,()=>`Error creating a new Tensor. Inferred shape (${n}) does not match the provided shape (${t}). `)}}return!on(e)&&!Array.isArray(e)&&(e=[e]),t=t||n,e=a!=="string"?$c(e,a):As(e,[],!0),P.makeTensor(e,t,a)}function ln(e,t,n){let a=Ua(e,n);return Br(e,t,a,n)}var i1={float32:4,float16:2,int32:4,uint16:2,uint8:1,bool:1,complex64:8},_c=4;async function wN(e,t){let n=[],a=[],r=Array.isArray(e)?e.map(i=>i.name):Object.keys(e);for(let i=0;i<r.length;++i){let o=r[i],l=Array.isArray(e)?e[i].tensor:e[o];if(l.dtype!=="float32"&&l.dtype!=="int32"&&l.dtype!=="bool"&&l.dtype!=="string"&&l.dtype!=="complex64")throw new Error(`Unsupported dtype in weight '${o}': ${l.dtype}`);let u={name:o,shape:l.shape,dtype:l.dtype};if(l.dtype==="string"){let d=new Promise(async p=>{let c=await l.bytes(),h=c.reduce((g,y)=>g+y.length,0)+_c*c.length,m=new Uint8Array(h),f=0;for(let g=0;g<c.length;g++){let y=c[g],A=new Uint8Array(new Uint32Array([y.length]).buffer);m.set(A,f),f+=_c,m.set(y,f),f+=y.length}p(m)});a.push(d)}else a.push(l.data());t!=null&&(u.group=t),n.push(u)}let s=await Promise.all(a);return{data:kN(s),specs:n}}function $b(e,t){let n={},a,r=0;for(let s of t){let i=s.name,o=s.dtype,l=s.shape,u=Mt(l),d;if("quantization"in s){let p=s.quantization;if(p.dtype==="uint8"||p.dtype==="uint16"){if(!("min"in p&&"scale"in p))throw new Error(`Weight ${s.name} with quantization ${p.dtype} doesn't have corresponding metadata min and scale.`)}else if(p.dtype==="float16"){if(o!=="float32")throw new Error(`Weight ${s.name} is quantized with ${p.dtype} which only supports weights of type float32 not ${o}.`)}else throw new Error(`Weight ${s.name} has unknown quantization dtype ${p.dtype}. Supported quantization dtypes are: 'uint8', 'uint16', and 'float16'.`);let c=i1[p.dtype],h=e.slice(r,r+u*c),m=p.dtype==="uint8"?new Uint8Array(h):new Uint16Array(h);if(o==="float32")if(p.dtype==="uint8"||p.dtype==="uint16"){d=new Float32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=g*p.scale+p.min}}else if(p.dtype==="float16")a===void 0&&(a=EN()),d=a(m);else throw new Error(`Unsupported quantization type ${p.dtype} for weight type float32.`);else if(o==="int32"){if(p.dtype!=="uint8"&&p.dtype!=="uint16")throw new Error(`Unsupported quantization type ${p.dtype} for weight type int32.`);d=new Int32Array(m.length);for(let f=0;f<m.length;f++){let g=m[f];d[f]=Math.round(g*p.scale+p.min)}}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*c}else if(o==="string"){let p=Mt(s.shape);d=[];for(let c=0;c<p;c++){let h=new Uint32Array(e.slice(r,r+_c))[0];r+=_c;let m=new Uint8Array(e.slice(r,r+h));d.push(m),r+=h}}else{let p=i1[o],c=e.slice(r,r+u*p);if(o==="float32")d=new Float32Array(c);else if(o==="int32")d=new Int32Array(c);else if(o==="bool")d=new Uint8Array(c);else if(o==="complex64"){d=new Float32Array(c);let h=new Float32Array(d.length/2),m=new Float32Array(d.length/2);for(let y=0;y<h.length;y++)h[y]=d[y*2],m[y]=d[y*2+1];let f=ln(h,l,"float32"),g=ln(m,l,"float32");n[i]=Wr(f,g),f.dispose(),g.dispose()}else throw new Error(`Unsupported dtype in weight '${i}': ${o}`);r+=u*p}o!=="complex64"&&(n[i]=ln(d,l,o))}return n}function kN(e){if(e===null)throw new Error(`Invalid input value: ${JSON.stringify(e)}`);let t=0,n=[];e.forEach(s=>{if(t+=s.byteLength,n.push(s.byteLength===s.buffer.byteLength?s:new s.constructor(s)),!(s instanceof Float32Array||s instanceof Int32Array||s instanceof Uint8Array))throw new Error(`Unsupported TypedArray subtype: ${s.constructor.name}`)});let a=new Uint8Array(t),r=0;return n.forEach(s=>{a.set(new Uint8Array(s.buffer),r),r+=s.byteLength}),a.buffer}var o1=typeof Buffer!="undefined"&&(typeof Blob=="undefined"||typeof atob=="undefined"||typeof btoa=="undefined");function Db(e){return o1?Buffer.byteLength(e):new Blob([e]).size}function IN(e){if(o1)return Buffer.from(e).toString("base64");let t=new Uint8Array(e),n="";for(let a=0,r=t.length;a<r;a++)n+=String.fromCharCode(t[a]);return btoa(n)}function SN(e){if(o1){let a=Buffer.from(e,"base64");return a.buffer.slice(a.byteOffset,a.byteOffset+a.byteLength)}let t=atob(e),n=new Uint8Array(t.length);for(let a=0;a<t.length;++a)n.set([t.charCodeAt(a)],a);return n.buffer}function l1(e){if(e.length===1)return e[0];let t=0;e.forEach(r=>{t+=r.byteLength});let n=new Uint8Array(t),a=0;return e.forEach(r=>{n.set(new Uint8Array(r),a),a+=r.byteLength}),n.buffer}function Ob(e){let t="/";for(e=e.trim();e.endsWith(t);)e=e.slice(0,e.length-1);let n=e.split(t);return n[n.length-1]}function sd(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("Expected JSON model topology, received ArrayBuffer.");return{dateSaved:new Date,modelTopologyType:"JSON",modelTopologyBytes:e.modelTopology==null?0:Db(JSON.stringify(e.modelTopology)),weightSpecsBytes:e.weightSpecs==null?0:Db(JSON.stringify(e.weightSpecs)),weightDataBytes:e.weightData==null?0:e.weightData.byteLength}}function NN(){let e=n=>{let a=n<<13,r=0;for(;(a&8388608)==0;)r-=8388608,a<<=1;return a&=~8388608,r+=947912704,a|r},t=new Uint32Array(2048);t[0]=0;for(let n=1;n<1024;n++)t[n]=e(n);for(let n=1024;n<2048;n++)t[n]=939524096+(n-1024<<13);return t}function TN(){let e=new Uint32Array(64);e[0]=0,e[31]=1199570944,e[32]=2147483648,e[63]=3347054592;for(let t=1;t<31;t++)e[t]=t<<23;for(let t=33;t<63;t++)e[t]=2147483648+(t-32<<23);return e}function CN(){let e=new Uint32Array(64);for(let t=0;t<64;t++)e[t]=1024;return e[0]=e[32]=0,e}function EN(){let e=NN(),t=TN(),n=CN();return a=>{let r=new ArrayBuffer(4*a.length),s=new Uint32Array(r);for(let i=0;i<a.length;i++){let o=a[i],l=e[n[o>>10]+(o&1023)]+t[o>>10];s[i]=l}return new Float32Array(r)}}var Et=class{constructor(){this.saveRouters=[],this.loadRouters=[]}static getInstance(){return Et.instance==null&&(Et.instance=new Et),Et.instance}static registerSaveRouter(e){Et.getInstance().saveRouters.push(e)}static registerLoadRouter(e){Et.getInstance().loadRouters.push(e)}static getSaveHandlers(e){return Et.getHandlers(e,"save")}static getLoadHandlers(e,t){return Et.getHandlers(e,"load",t)}static getHandlers(e,t,n){let a=[];return(t==="load"?Et.getInstance().loadRouters:Et.getInstance().saveRouters).forEach(r=>{let s=r(e,n);s!==null&&a.push(s)}),a}},RN=e=>Et.registerSaveRouter(e),MN=e=>Et.registerLoadRouter(e),FN=e=>Et.getSaveHandlers(e),$N=(e,t)=>Et.getLoadHandlers(e,t),u1="tensorflowjs",d1=1,xi="models_store",Vr="model_info_store";function zb(){if(!te().getBool("IS_BROWSER"))throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");let e=typeof window=="undefined"?self:window,t=e.indexedDB||e.mozIndexedDB||e.webkitIndexedDB||e.msIndexedDB||e.shimIndexedDB;if(t==null)throw new Error("The current browser does not appear to support IndexedDB.");return t}function p1(e){let t=e.result;t.createObjectStore(xi,{keyPath:"modelPath"}),t.createObjectStore(Vr,{keyPath:"modelPath"})}var bi=class{constructor(e){if(this.indexedDB=zb(),e==null||!e)throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");this.modelPath=e}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");return this.databaseAction(this.modelPath,e)}async load(){return this.databaseAction(this.modelPath)}databaseAction(e,t){return new Promise((n,a)=>{let r=this.indexedDB.open(u1,d1);r.onupgradeneeded=()=>p1(r),r.onsuccess=()=>{let s=r.result;if(t==null){let i=s.transaction(xi,"readonly"),o=i.objectStore(xi).get(this.modelPath);o.onsuccess=()=>{if(o.result==null)return s.close(),a(new Error(`Cannot find model with path '${this.modelPath}' in IndexedDB.`));n(o.result.modelArtifacts)},o.onerror=l=>(s.close(),a(o.error)),i.oncomplete=()=>s.close()}else{let i=sd(t),o=s.transaction(Vr,"readwrite"),l=o.objectStore(Vr),u=l.put({modelPath:this.modelPath,modelArtifactsInfo:i}),d;u.onsuccess=()=>{d=s.transaction(xi,"readwrite");let p=d.objectStore(xi).put({modelPath:this.modelPath,modelArtifacts:t,modelArtifactsInfo:i});p.onsuccess=()=>n({modelArtifactsInfo:i}),p.onerror=c=>{l=o.objectStore(Vr);let h=l.delete(this.modelPath);h.onsuccess=()=>(s.close(),a(p.error)),h.onerror=m=>(s.close(),a(p.error))}},u.onerror=p=>(s.close(),a(u.error)),o.oncomplete=()=>{d==null?s.close():d.oncomplete=()=>s.close()}}},r.onerror=s=>a(r.error)})}};bi.URL_SCHEME="indexeddb://";var _b=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(bi.URL_SCHEME)?DN(e.slice(bi.URL_SCHEME.length)):null;Et.registerSaveRouter(_b);Et.registerLoadRouter(_b);function DN(e){return new bi(e)}function ON(e){return e.startsWith(bi.URL_SCHEME)?e.slice(bi.URL_SCHEME.length):e}var zN=class{constructor(){this.indexedDB=zb()}async listModels(){return new Promise((e,t)=>{let n=this.indexedDB.open(u1,d1);n.onupgradeneeded=()=>p1(n),n.onsuccess=()=>{let a=n.result,r=a.transaction(Vr,"readonly"),s=r.objectStore(Vr).getAll();s.onsuccess=()=>{let i={};for(let o of s.result)i[o.modelPath]=o.modelArtifactsInfo;e(i)},s.onerror=i=>(a.close(),t(s.error)),r.oncomplete=()=>a.close()},n.onerror=a=>t(n.error)})}async removeModel(e){return e=ON(e),new Promise((t,n)=>{let a=this.indexedDB.open(u1,d1);a.onupgradeneeded=()=>p1(a),a.onsuccess=()=>{let r=a.result,s=r.transaction(Vr,"readwrite"),i=s.objectStore(Vr),o=i.get(e),l;o.onsuccess=()=>{if(o.result==null)return r.close(),n(new Error(`Cannot find model with path '${e}' in IndexedDB.`));{let u=i.delete(e),d=()=>{l=r.transaction(xi,"readwrite");let p=l.objectStore(xi).delete(e);p.onsuccess=()=>t(o.result.modelArtifactsInfo),p.onerror=c=>n(o.error)};u.onsuccess=d,u.onerror=p=>(d(),r.close(),n(o.error))}},o.onerror=u=>(r.close(),n(o.error)),s.oncomplete=()=>{l==null?r.close():l.oncomplete=()=>r.close()}},a.onerror=r=>n(a.error)})}},hr="/",xl="tensorflowjs_models",Pb="info",_N="model_topology",PN="weight_specs",LN="weight_data",WN="model_metadata";function Lb(e){return{info:[xl,e,Pb].join(hr),topology:[xl,e,_N].join(hr),weightSpecs:[xl,e,PN].join(hr),weightData:[xl,e,LN].join(hr),modelMetadata:[xl,e,WN].join(hr)}}function BN(e){let t=e.split(hr);if(t.length<3)throw new Error(`Invalid key format: ${e}`);return t.slice(1,t.length-1).join(hr)}function VN(e){return e.startsWith(vi.URL_SCHEME)?e.slice(vi.URL_SCHEME.length):e}var vi=class{constructor(e){if(!te().getBool("IS_BROWSER")||typeof window=="undefined"||typeof window.localStorage=="undefined")throw new Error("The current environment does not support local storage.");if(this.LS=window.localStorage,e==null||!e)throw new Error("For local storage, modelPath must not be null, undefined or empty.");this.modelPath=e,this.keys=Lb(this.modelPath)}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");{let t=JSON.stringify(e.modelTopology),n=JSON.stringify(e.weightSpecs),a=sd(e);try{this.LS.setItem(this.keys.info,JSON.stringify(a)),this.LS.setItem(this.keys.topology,t),this.LS.setItem(this.keys.weightSpecs,n),this.LS.setItem(this.keys.weightData,IN(e.weightData));let r={format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy};return e.signature!=null&&(r.signature=e.signature),e.userDefinedMetadata!=null&&(r.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(r.modelInitializer=e.modelInitializer),this.LS.setItem(this.keys.modelMetadata,JSON.stringify(r)),{modelArtifactsInfo:a}}catch(r){throw this.LS.removeItem(this.keys.info),this.LS.removeItem(this.keys.topology),this.LS.removeItem(this.keys.weightSpecs),this.LS.removeItem(this.keys.weightData),this.LS.removeItem(this.keys.modelMetadata),new Error(`Failed to save model '${this.modelPath}' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=${a.modelTopologyBytes}, weightSpecsBytes=${a.weightSpecsBytes}, weightDataBytes=${a.weightDataBytes}.`)}}}async load(){let e=JSON.parse(this.LS.getItem(this.keys.info));if(e==null)throw new Error(`In local storage, there is no model with name '${this.modelPath}'`);if(e.modelTopologyType!=="JSON")throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");let t={},n=JSON.parse(this.LS.getItem(this.keys.topology));if(n==null)throw new Error(`In local storage, the topology of model '${this.modelPath}' is missing.`);t.modelTopology=n;let a=JSON.parse(this.LS.getItem(this.keys.weightSpecs));if(a==null)throw new Error(`In local storage, the weight specs of model '${this.modelPath}' are missing.`);t.weightSpecs=a;let r=this.LS.getItem(this.keys.modelMetadata);if(r!=null){let i=JSON.parse(r);t.format=i.format,t.generatedBy=i.generatedBy,t.convertedBy=i.convertedBy,i.signature!=null&&(t.signature=i.signature),i.userDefinedMetadata!=null&&(t.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(t.modelInitializer=i.modelInitializer)}let s=this.LS.getItem(this.keys.weightData);if(s==null)throw new Error(`In local storage, the binary weight values of model '${this.modelPath}' are missing.`);return t.weightData=SN(s),t}};vi.URL_SCHEME="localstorage://";var Wb=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vi.URL_SCHEME)?jN(e.slice(vi.URL_SCHEME.length)):null;Et.registerSaveRouter(Wb);Et.registerLoadRouter(Wb);function jN(e){return new vi(e)}var UN=class{constructor(){D(te().getBool("IS_BROWSER"),()=>"Current environment is not a web browser"),D(typeof window=="undefined"||typeof window.localStorage!="undefined",()=>"Current browser does not appear to support localStorage"),this.LS=window.localStorage}async listModels(){let e={},t=xl+hr,n=hr+Pb;for(let a=0;a<this.LS.length;++a){let r=this.LS.key(a);if(r.startsWith(t)&&r.endsWith(n)){let s=BN(r);e[s]=JSON.parse(this.LS.getItem(r))}}return e}async removeModel(e){e=VN(e);let t=Lb(e);if(this.LS.getItem(t.info)==null)throw new Error(`Cannot find model at path '${e}'`);let n=JSON.parse(this.LS.getItem(t.info));return this.LS.removeItem(t.info),this.LS.removeItem(t.topology),this.LS.removeItem(t.weightSpecs),this.LS.removeItem(t.weightData),n}},bl="://",ia=class{constructor(){this.managers={}}static getInstance(){return ia.instance==null&&(ia.instance=new ia),ia.instance}static registerManager(e,t){D(e!=null,()=>"scheme must not be undefined or null."),e.endsWith(bl)&&(e=e.slice(0,e.indexOf(bl))),D(e.length>0,()=>"scheme must not be an empty string.");let n=ia.getInstance();D(n.managers[e]==null,()=>`A model store manager is already registered for scheme '${e}'.`),n.managers[e]=t}static getManager(e){let t=this.getInstance().managers[e];if(t==null)throw new Error(`Cannot find model manager for scheme '${e}'`);return t}static getSchemes(){return Object.keys(this.getInstance().managers)}};function Pc(e){if(e.indexOf(bl)===-1)throw new Error(`The url string provided does not contain a scheme. Supported schemes are: ${ia.getSchemes().join(",")}`);return{scheme:e.split(bl)[0],path:e.split(bl)[1]}}async function Bb(e,t,n=!1){D(e!==t,()=>`Old path and new path are the same: '${e}'`);let a=Et.getLoadHandlers(e);D(a.length>0,()=>`Copying failed because no load handler is found for source URL ${e}.`),D(a.length<2,()=>`Copying failed because more than one (${a.length}) load handlers for source URL ${e}.`);let r=a[0],s=Et.getSaveHandlers(t);D(s.length>0,()=>`Copying failed because no save handler is found for destination URL ${t}.`),D(s.length<2,()=>`Copying failed because more than one (${a.length}) save handlers for destination URL ${t}.`);let i=s[0],o=Pc(e).scheme,l=Pc(e).path,u=o===Pc(e).scheme,d=await r.load();n&&u&&await ia.getManager(o).removeModel(l);let p=await i.save(d);return n&&!u&&await ia.getManager(o).removeModel(l),p.modelArtifactsInfo}async function HN(){let e=ia.getSchemes(),t={};for(let n of e){let a=await ia.getManager(n).listModels();for(let r in a){let s=n+bl+r;t[s]=a[r]}}return t}async function GN(e){let t=Pc(e);return ia.getManager(t.scheme).removeModel(t.path)}async function qN(e,t){return Bb(e,t,!1)}async function XN(e,t){return Bb(e,t,!0)}var KN=class{fetch(e,t){return fetch(e,t)}now(){return performance.now()}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Browser's encoder only supports utf-8, but got ${t}`);return this.textEncoder==null&&(this.textEncoder=new TextEncoder),this.textEncoder.encode(e)}decode(e,t){return new TextDecoder(t).decode(e)}};if(te().get("IS_BROWSER")){te().setPlatform("browser",new KN);try{ia.registerManager(vi.URL_SCHEME,new UN)}catch(e){}try{ia.registerManager(bi.URL_SCHEME,new zN)}catch(e){}}var ZN={importFetch:()=>JI()},c1,YN=class{constructor(){this.util=co("util"),this.textEncoder=new this.util.TextEncoder}fetch(e,t){return te().global.fetch!=null?te().global.fetch(e,t):(c1==null&&(c1=ZN.importFetch()),c1(e,t))}now(){let e=process.hrtime();return e[0]*1e3+e[1]/1e6}encode(e,t){if(t!=="utf-8"&&t!=="utf8")throw new Error(`Node built-in encoder only supports utf-8, but got ${t}`);return this.textEncoder.encode(e)}decode(e,t){return e.length===0?"":new this.util.TextDecoder(t).decode(e)}};te().get("IS_NODE")&&te().setPlatform("node",new YN);function Ve(e,t="float32",n){return t=t||"float32",Hm(e),new Lt(e,t,n)}function JN(e,t){let n=M(e,"x","cast");if(!lb(t))throw new Error(`Failed to cast to unknown dtype ${t}`);if(t==="string"&&n.dtype!=="string"||t!=="string"&&n.dtype==="string")throw new Error("Only strings can be casted to strings");let a={x:n},r={dtype:t};return P.runKernel(ks,a,r)}var ge=L({cast_:JN});function QN(e){let t={x:M(e,"x","clone","string_or_numeric")};return P.runKernel(zs,t)}var Ha=L({clone_:QN});function Vb(e,t=!1){console.log(e.toString(t))}Cb();var eT={buffer:Ve,cast:ge,clone:Ha,print:Vb};cN(eT);var En={};Fe(En,{browserFiles:()=>oT,browserHTTPRequest:()=>cT,concatenateArrayBuffers:()=>l1,copyModel:()=>qN,decodeWeights:()=>$b,encodeWeights:()=>wN,fromMemory:()=>fT,getLoadHandlers:()=>$N,getModelArtifactsInfoForJSON:()=>sd,getSaveHandlers:()=>FN,http:()=>m1,isHTTPScheme:()=>f1,listModels:()=>HN,loadWeights:()=>lT,moveModel:()=>XN,registerLoadRouter:()=>MN,registerSaveRouter:()=>RN,removeModel:()=>GN,weightsLoaderFactory:()=>Gb,withSaveHandler:()=>mT});var tT="model",nT=".json",aT=".weights.bin";function jb(e){return new Promise(t=>setTimeout(t)).then(e)}var vl=class{constructor(e){if(!te().getBool("IS_BROWSER"))throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");e.startsWith(vl.URL_SCHEME)&&(e=e.slice(vl.URL_SCHEME.length)),(e==null||e.length===0)&&(e=tT),this.modelTopologyFileName=e+nT,this.weightDataFileName=e+aT}async save(e){if(typeof document=="undefined")throw new Error("Browser downloads are not supported in this environment since `document` is not present");let t=window.URL.createObjectURL(new Blob([e.weightData],{type:"application/octet-stream"}));if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");{let n=[{paths:["./"+this.weightDataFileName],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer);let r=window.URL.createObjectURL(new Blob([JSON.stringify(a)],{type:"application/json"})),s=this.jsonAnchor==null?document.createElement("a"):this.jsonAnchor;if(s.download=this.modelTopologyFileName,s.href=r,await jb(()=>s.dispatchEvent(new MouseEvent("click"))),e.weightData!=null){let i=this.weightDataAnchor==null?document.createElement("a"):this.weightDataAnchor;i.download=this.weightDataFileName,i.href=t,await jb(()=>i.dispatchEvent(new MouseEvent("click")))}return{modelArtifactsInfo:sd(e)}}}};vl.URL_SCHEME="downloads://";var rT=class{constructor(e){if(e==null||e.length<1)throw new Error(`When calling browserFiles, at least 1 file is required, but received ${e}`);this.files=e}async load(){let e=this.files[0],t=this.files.slice(1);return new Promise((n,a)=>{let r=new FileReader;r.onload=s=>{let i=JSON.parse(s.target.result),o=i.modelTopology;if(o==null){a(new Error(`modelTopology field is missing from file ${e.name}`));return}t.length===0&&n({modelTopology:o});let l=i.weightsManifest;if(l==null){a(new Error(`weightManifest field is missing from file ${e.name}`));return}let u;try{u=this.checkManifestAndWeightFiles(l,t)}catch(h){a(h);return}let d=[],p=[],c=[];l.forEach(h=>{h.paths.forEach(m=>{p.push(m),c.push(null)}),d.push(...h.weights)}),l.forEach(h=>{h.paths.forEach(m=>{let f=new FileReader;f.onload=g=>{let y=g.target.result,A=p.indexOf(m);if(c[A]=y,c.indexOf(null)===-1){let x={modelTopology:o,weightSpecs:d,weightData:l1(c),format:i.format,generatedBy:i.generatedBy,convertedBy:i.convertedBy};i.signature!=null&&(x.signature=i.signature),i.userDefinedMetadata!=null&&(x.userDefinedMetadata=i.userDefinedMetadata),i.modelInitializer!=null&&(x.modelInitializer=i.modelInitializer),n(x)}},f.onerror=g=>a(`Failed to weights data from file of path '${m}'.`),f.readAsArrayBuffer(u[m])})})},r.onerror=s=>a(`Failed to read model topology and weights manifest JSON from file '${e.name}'. BrowserFiles supports loading Keras-style tf.Model artifacts only.`),r.readAsText(e)})}checkManifestAndWeightFiles(e,t){let n=[],a=t.map(s=>Ob(s.name)),r={};for(let s of e)s.paths.forEach(i=>{let o=Ob(i);if(n.indexOf(o)!==-1)throw new Error(`Duplicate file basename found in weights manifest: '${o}'`);if(n.push(o),a.indexOf(o)===-1)throw new Error(`Weight file with basename '${o}' is not provided.`);r[i]=t[a.indexOf(o)]});if(n.length!==t.length)throw new Error(`Mismatch in the number of files in weights manifest (${n.length}) and the number of weight files provided (${t.length}).`);return r}},sT=e=>te().getBool("IS_BROWSER")&&!Array.isArray(e)&&e.startsWith(vl.URL_SCHEME)?iT(e.slice(vl.URL_SCHEME.length)):null;Et.registerSaveRouter(sT);function iT(e="model"){return new vl(e)}function oT(e){return new rT(e)}function Ub(e,t,n,a){i(e),n=n==null?0:n,a=a==null?1:a,o(n,a);let r=0,s=l=>(l.then(u=>{let d=n+ ++r/e.length*(a-n);return t(d),u}),l);function i(l){D(l!=null&&Array.isArray(l)&&l.length>0,()=>"promises must be a none empty array")}function o(l,u){D(l>=0&&l<=1,()=>`Progress fraction must be in range [0, 1], but got startFraction ${l}`),D(u>=0&&u<=1,()=>`Progress fraction must be in range [0, 1], but got endFraction ${u}`),D(u>=l,()=>`startFraction must be no more than endFraction, but got startFraction ${l} and endFraction ${u}`)}return Promise.all(e.map(s))}async function Hb(e,t){t==null&&(t={});let n=t.fetchFunc==null?te().platform.fetch:t.fetchFunc,a=e.map(u=>n(u,t.requestInit,{isBinary:!0})),r=0,s=.5,i=(t.onProgress==null?await Promise.all(a):await Ub(a,t.onProgress,r,s)).map(u=>u.arrayBuffer()),o=.5,l=1;return t.onProgress==null?await Promise.all(i):await Ub(i,t.onProgress,o,l)}async function lT(e,t="",n,a){return Gb(r=>Hb(r,{requestInit:a}))(e,t,n)}function Gb(e){return async(t,n="",a)=>{let r=t.map(()=>!1),s={},i=a!=null?a.map(()=>!1):[],o=[];if(t.forEach((h,m)=>{let f=0;h.weights.forEach(g=>{let y="quantization"in g?g.quantization.dtype:g.dtype,A=i1[y]*Mt(g.shape),x=()=>{r[m]=!0,s[m]==null&&(s[m]=[]),s[m].push({manifestEntry:g,groupOffset:f,sizeBytes:A})};a!=null?a.forEach((v,b)=>{v===g.name&&(x(),i[b]=!0)}):x(),o.push(g.name),f+=A})}),!i.every(h=>h)){let h=a.filter((m,f)=>!i[f]);throw new Error(`Could not find weights in manifest with names: ${h.join(", ")}.
|
|
Manifest JSON has weights with names: ${o.join(", ")}.`)}let l=r.reduce((h,m,f)=>(m&&h.push(f),h),[]),u=[];l.forEach(h=>{t[h].paths.forEach(m=>{let f=n+(n.endsWith("/")?"":"/")+m;u.push(f)})});let d=await e(u),p={},c=0;return l.forEach(h=>{let m=t[h].paths.length,f=0;for(let x=0;x<m;x++)f+=d[c+x].byteLength;let g=new ArrayBuffer(f),y=new Uint8Array(g),A=0;for(let x=0;x<m;x++){let v=new Uint8Array(d[c+x]);y.set(v,A),A+=v.byteLength}s[h].forEach(x=>{let v=g.slice(x.groupOffset,x.groupOffset+x.sizeBytes),b=$b(v,[x.manifestEntry]);for(let w in b)p[w]=b[w]}),c+=m}),p}}var uT="application/octet-stream",dT="application/json",h1=class{constructor(e,t){if(this.DEFAULT_METHOD="POST",t==null&&(t={}),this.weightPathPrefix=t.weightPathPrefix,this.onProgress=t.onProgress,this.weightUrlConverter=t.weightUrlConverter,t.fetchFunc!=null?(D(typeof t.fetchFunc=="function",()=>"Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)"),this.fetch=t.fetchFunc):this.fetch=te().platform.fetch,D(e!=null&&e.length>0,()=>"URL path for http must not be null, undefined or empty."),Array.isArray(e)&&D(e.length===2,()=>`URL paths for http must have a length of 2, (actual length is ${e.length}).`),this.path=e,t.requestInit!=null&&t.requestInit.body!=null)throw new Error("requestInit is expected to have no pre-existing body, but has one.");this.requestInit=t.requestInit||{}}async save(e){if(e.modelTopology instanceof ArrayBuffer)throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");let t=Object.assign({method:this.DEFAULT_METHOD},this.requestInit);t.body=new FormData;let n=[{paths:["./model.weights.bin"],weights:e.weightSpecs}],a={modelTopology:e.modelTopology,format:e.format,generatedBy:e.generatedBy,convertedBy:e.convertedBy,weightsManifest:n};e.signature!=null&&(a.signature=e.signature),e.userDefinedMetadata!=null&&(a.userDefinedMetadata=e.userDefinedMetadata),e.modelInitializer!=null&&(a.modelInitializer=e.modelInitializer),t.body.append("model.json",new Blob([JSON.stringify(a)],{type:dT}),"model.json"),e.weightData!=null&&t.body.append("model.weights.bin",new Blob([e.weightData],{type:uT}),"model.weights.bin");let r=await this.fetch(this.path,t);if(r.ok)return{modelArtifactsInfo:sd(e),responses:[r]};throw new Error(`BrowserHTTPRequest.save() failed due to HTTP response status ${r.status}.`)}async load(){let e=await this.fetch(this.path,this.requestInit);if(!e.ok)throw new Error(`Request to ${this.path} failed with status code ${e.status}. Please verify this URL points to the model JSON of the model to load.`);let t;try{t=await e.json()}catch(h){let m=`Failed to parse model JSON of response from ${this.path}.`;throw this.path.endsWith(".pb")?m+=" Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository.":m+=" Please make sure the server is serving valid JSON for this request.",new Error(m)}let n=t.modelTopology,a=t.weightsManifest,r=t.generatedBy,s=t.convertedBy,i=t.format,o=t.signature,l=t.userDefinedMetadata;if(n==null&&a==null)throw new Error(`The JSON from HTTP path ${this.path} contains neither model topology or manifest for weights.`);let u,d;a!=null&&([u,d]=await this.loadWeights(a));let p={modelTopology:n,weightSpecs:u,weightData:d,generatedBy:r,convertedBy:s,format:i};o!=null&&(p.signature=o),l!=null&&(p.userDefinedMetadata=l);let c=t.modelInitializer;return c&&(p.modelInitializer=c),p}async loadWeights(e){let t=Array.isArray(this.path)?this.path[1]:this.path,[n,a]=pT(t),r=this.weightPathPrefix||n,s=[];for(let u of e)s.push(...u.weights);let i=[],o=[];for(let u of e)for(let d of u.paths)this.weightUrlConverter!=null?o.push(this.weightUrlConverter(d)):i.push(r+d+a);this.weightUrlConverter&&i.push(...await Promise.all(o));let l=await Hb(i,{requestInit:this.requestInit,fetchFunc:this.fetch,onProgress:this.onProgress});return[s,l1(l)]}};h1.URL_SCHEME_REGEX=/^https?:\/\//;function pT(e){let t=e.lastIndexOf("/"),n=e.lastIndexOf("?"),a=e.substring(0,t),r=n>t?e.substring(n):"";return[a+"/",r]}function f1(e){return e.match(h1.URL_SCHEME_REGEX)!=null}var qb=(e,t)=>{if(typeof fetch=="undefined"&&(t==null||t.fetchFunc==null))return null;{let n=!0;if(Array.isArray(e)?n=e.every(a=>f1(a)):n=f1(e),n)return m1(e,t)}return null};Et.registerSaveRouter(qb);Et.registerLoadRouter(qb);function m1(e,t){return new h1(e,t)}function cT(e,t){return m1(e,t)}var g1=class{constructor(e){this.modelArtifacts=e}async load(){return this.modelArtifacts}},hT=class{constructor(e){this.saveHandler=e}async save(e){return this.saveHandler(e)}};function fT(e,t,n,a){return arguments.length===1?e.modelTopology!=null||e.weightSpecs!=null?new g1(e):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new g1({modelTopology:e})):(console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."),new g1({modelTopology:e,weightSpecs:t,weightData:n,trainingConfig:a}))}function mT(e){return new hT(e)}var Xb={};Fe(Xb,{confusionMatrix:()=>bT});function gT(e,t,n=!1,a=!1){let r=M(e,"a","matMul"),s=M(t,"b","matMul");[r,s]=It(r,s);let i={a:r,b:s},o={transposeA:n,transposeB:a};return P.runKernel(ws,i,o)}var je=L({matMul_:gT});function yT(e,t,n=1,a=0){if(t<2)throw new Error(`Error in oneHot: depth must be >=2, but it is ${t}`);let r={indices:M(e,"indices","oneHot","int32")},s={depth:t,onValue:n,offValue:a};return P.runKernel(qs,r,s)}var wl=L({oneHot_:yT});function AT(e,t){let n=M(e,"x","transpose");if(t==null&&(t=n.shape.map((s,i)=>i).reverse()),D(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of perm ${t}.`),t.forEach(s=>{D(s>=0&&s<n.rank,()=>`All entries in 'perm' must be between 0 and ${n.rank-1} but got ${t}`)}),n.rank<=1)return n.clone();let a={x:n},r={perm:t};return P.runKernel(ci,a,r)}var Qe=L({transpose_:AT});function xT(e,t,n){let a=M(e,"labels","confusionMatrix"),r=M(t,"predictions","confusionMatrix");D(n==null||n>0&&Number.isInteger(n),()=>`If provided, numClasses must be a positive integer, but got ${n}`),D(a.rank===1,()=>`Expected the rank of labels to be 1, but got ${a.rank}`),D(r.rank===1,()=>`Expected the rank of predictions to be 1, but got ${r.rank}`),D(a.shape[0]===r.shape[0],()=>`Mismatch in the number of examples: ${a.shape[0]} vs. ${r.shape[0]}. Labels and predictions should have the same number of elements.`),D(n>0&&Number.isInteger(n),()=>`numClasses is required to be a positive integer, but got ${n}`);let s=wl(ge(a,"int32"),n),i=wl(ge(r,"int32"),n),o=Qe(s),l=je(o,i);return ge(l,"int32")}var bT=L({confusionMatrix_:xT}),oa={};Fe(oa,{fromPixels:()=>TT,fromPixelsAsync:()=>ST,toPixels:()=>NT});function Lc(e,t,n){if(ys(e),t!=null&&t.length!==3)throw new Error("tensor3d() requires shape to have three numbers");let a=Ua(e,n);if(a.length!==3&&a.length!==1)throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");return Br(e,t,a,n)}var kl;function Kb(e,t=3){if(t>4)throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");if(e==null)throw new Error("pixels passed to tf.browser.fromPixels() can not be null");let n=!1,a=!1,r=!1,s=!1,i=!1,o=!1;if(e.data instanceof Uint8Array)n=!0;else if(typeof ImageData!="undefined"&&e instanceof ImageData)a=!0;else if(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)r=!0;else if(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)s=!0;else if(e.getContext!=null)i=!0;else if(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)o=!0;else throw new Error(`pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was ${e.constructor.name}`);if(r){let c=2;if(r&&e.readyState<c)throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.")}if(Mc(Rc,P.backendName)!=null){let c={pixels:e},h={numChannels:t};return P.runKernel(Rc,c,h)}let[l,u]=r?[e.videoWidth,e.videoHeight]:[e.width,e.height],d;i?d=e.getContext("2d").getImageData(0,0,l,u).data:a||n?d=e.data:(s||r||o)&&(kl==null&&(kl=document.createElement("canvas").getContext("2d")),kl.canvas.width=l,kl.canvas.height=u,kl.drawImage(e,0,0,l,u),d=kl.getImageData(0,0,l,u).data);let p;if(t===4)p=new Int32Array(d);else{let c=l*u;p=new Int32Array(c*t);for(let h=0;h<c;h++)for(let m=0;m<t;++m)p[h*t+m]=d[h*4+m]}return Lc(p,[u,l,t],"int32")}function vT(e){return e!=null&&e.data instanceof Uint8Array}function wT(){return typeof window!="undefined"&&typeof ImageBitmap!="undefined"&&window.hasOwnProperty("createImageBitmap")}function kT(e){return e!=null&&e.width!==0&&e.height!==0}function IT(e){return wT()&&!(e instanceof ImageBitmap)&&kT(e)&&!vT(e)}async function ST(e,t=3){let n=null;if(te().getBool("WRAP_TO_IMAGEBITMAP")&&IT(e)){let a;try{a=await createImageBitmap(e,{premultiplyAlpha:"none"})}catch(r){a=null}a!=null&&a.width===e.width&&a.height===e.height?n=a:n=e}else n=e;return Kb(n,t)}async function NT(e,t){let n=M(e,"img","toPixels");if(!(e instanceof Be)){let u=n;n=ge(u,"int32"),u.dispose()}if(n.rank!==2&&n.rank!==3)throw new Error(`toPixels only supports rank 2 or 3 tensors, got rank ${n.rank}.`);let[a,r]=n.shape.slice(0,2),s=n.rank===2?1:n.shape[2];if(s>4||s===2)throw new Error(`toPixels only supports depth of size 1, 3 or 4 but got ${s}`);if(n.dtype!=="float32"&&n.dtype!=="int32")throw new Error(`Unsupported type for toPixels: ${n.dtype}. Please use float32 or int32 tensors.`);let i=await n.data(),o=n.dtype==="float32"?255:1,l=new Uint8ClampedArray(r*a*4);for(let u=0;u<a*r;++u){let d=[0,0,0,255];for(let c=0;c<s;c++){let h=i[u*s+c];if(n.dtype==="float32"){if(h<0||h>1)throw new Error(`Tensor values for a float32 Tensor must be in the range [0 - 1] but encountered ${h}.`)}else if(n.dtype==="int32"&&(h<0||h>255))throw new Error(`Tensor values for a int32 Tensor must be in the range [0 - 255] but encountered ${h}.`);s===1?(d[0]=h*o,d[1]=h*o,d[2]=h*o):d[c]=h*o}let p=u*4;l[p+0]=Math.round(d[0]),l[p+1]=Math.round(d[1]),l[p+2]=Math.round(d[2]),l[p+3]=Math.round(d[3])}if(t!=null){t.width=r,t.height=a;let u=t.getContext("2d"),d=new ImageData(l,r,a);u.putImageData(d,0,0)}return n!==e&&n.dispose(),l}var TT=L({fromPixels_:Kb}),y1={};Fe(y1,{prepareAndValidate:()=>Zb});function Zb(e,t){let n=e.shape.length,a=t.shape.length;if(n<1)throw new Error(`tf.gatherND() expects the input to be rank 1 or higher, but the rank was ${n}.`);if(a<1)throw new Error(`tf.gatherND() expects the indices to be rank 1 or higher, but the rank was ${a}.`);if(t.dtype!=="int32")throw new Error(`tf.gatherND() expects the indices to be int32 type, but the dtype was ${t.dtype}.`);if(t.shape[a-1]>n)throw new Error(`index innermost dimension length must be <= tensor rank; saw: ${t.shape[a-1]} vs. ${n}`);if(Mt(e.shape)===0)throw new Error(`Requested more than 0 entries, but input is empty. Input shape: ${e.shape}.`);let r=t.shape,s=r[r.length-1],i=1;for(let p=0;p<r.length-1;++p)i*=r[p];let o=e.shape,l=r.slice();l.pop();let u=1;for(let p=s;p<n;++p)u*=o[p],l.push(o[p]);let d=[...ho(e.shape).map(p=>p/u),1].slice(0,s);return[l,i,u,d]}var A1={};Fe(A1,{calculateShapes:()=>Yb,validateInput:()=>b1,validateUpdateShape:()=>x1});function x1(e,t,n){let a=t.rank>1?t.shape[t.rank-1]:1,r=t.rank>1?t.rank-1:1,s=`Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: ${n.shape}, indices.shape: ${t.shape}, shape: ${e}, sliceDim: ${a}, and batchDim: ${r}.`;if(n.rank<r)throw new Error(s+` update.rank < ${r}. `);if(e.length<a+(n.rank-r))throw new Error(s+` Output shape length < ${a+(n.rank-r)}`);if(n.rank!==r+e.length-a)throw new Error(s+` update.rank != ${r+e.length-a}`);for(let i=0;i<r;++i)if(n.shape[i]!==t.shape[i])throw new Error(s+` updates.shape[${i}] (${n.shape[i]}) != indices.shape[${i}] (${t.shape[i]}).`);for(let i=0;i<n.rank-r;++i)if(n.shape[i+r]!==e[i+a])throw new Error(s+` updates.shape[${i+r}] (${n.shape[i+r]}) != shape[${i+r}] (${e[i+r]})`)}function b1(e,t,n){if(t.rank<1)throw new Error(`tf.scatterND() expects the indices to be rank 1 or higher, but the rank was ${t.rank}.`);if(e.rank<1)throw new Error(`tf.scatterND() expects the updates to be rank 1 or higher, but the rank was ${e.rank}.`);if(t.dtype!=="int32")throw new Error(`The dtype of 'indices' should be int32, but got dtype: ${t.dtype}`);if(n.length<1)throw new Error(`Output rank must be greater or equal to 1, but got shape: ${n}`);if(n.length===0){if(t.size===0)throw new Error(`Indices specified for empty output. indices shape: ${t.shape}`);if(e.size===0)throw new Error(`Updates specified for empty output. updates shape: ${e.shape}`)}x1(n,t,e)}function Yb(e,t,n){let a=t.shape.length,r=a>1?t.shape[a-1]:1,s=n.length,i=1;for(let p=r;p<s;++p)i*=n[p];let o=r<1?1:r,l=Mt(t.shape)/o,u=[...ho(n.slice(0,r)),1],d=Mt(n);return{sliceRank:r,numUpdates:l,sliceSize:i,strides:u,outputSize:d}}var fn={};Fe(fn,{assertParamsValid:()=>CT,computeFlatOffset:()=>RT,computeOutShape:()=>Jb,getNormalizedAxes:()=>n3,isSliceContinous:()=>ET,maskToAxes:()=>Wc,parseSliceParams:()=>l3,sliceInfo:()=>MT,startForAxis:()=>i3,startIndicesWithElidedDims:()=>a3,stopForAxis:()=>o3,stopIndicesWithElidedDims:()=>r3,stridesForAxis:()=>s3,stridesWithElidedDims:()=>Qb});function CT(e,t,n){let a=e.shape.length;D(a===t.length,()=>`Error in slice${a}D: Length of begin ${t} must match the rank of the array (${a}).`),D(a===n.length,()=>`Error in slice${a}D: Length of size ${n} must match the rank of the array (${a}).`);for(let r=0;r<a;++r)D(t[r]+n[r]<=e.shape[r],()=>`Error in slice${a}D: begin[${r}] + size[${r}] (${t[r]+n[r]}) would overflow input.shape[${r}] (${e.shape[r]})`)}function Wc(e){let t=[],n=0;for(;e>0;)e&1&&t.push(n),e/=2,n++;return t}function Jb(e,t,n){let a=[];for(let r=0;r<e.length;r++)a[r]=Math.ceil((t[r]-e[r])/n[r]);return a}function Qb(e,t,n,a){let r=[...e];for(let s=r.length;s<a.length;s++)r.push(1);for(let s=0;s<n;s++)s===0?r[t]=1:(r.splice(t,0,1),r.pop());return r}function e3(e,t,n){return n<=e?n:n-(t-1)}function t3(e,t){let n=[];for(let a=0;a<e;a++)n.push(t+a);return n}function n3(e,t,n,a,r,s,i,o,l){let u=e.length,d=new Array(u),p=new Array(u),c=new Array(u);if(t.length&&n>0){let h=t[0],m=n+1;d=a3(i,h,m,a,e),p=r3(o,h,m,r,e),c=Qb(s,h,m,e)}else for(let h=0;h<u;h++)d[h]=i3(i,a,s,e,h,l),p[h]=o3(o,r,s,e,h,l),c[h]=s3(s,h,l);return{begin:d,end:p,strides:c}}function a3(e,t,n,a,r){let s=[...r],i=t3(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=0;else{let l=e3(t,n,o),u=a[l];e&1<<l&&(u=0),s[o]=u}return s}function r3(e,t,n,a,r){let s=[...r],i=t3(n,t);for(let o=0;o<s.length;o++)if(i.indexOf(o)>-1)s[o]=Number.MAX_SAFE_INTEGER;else{let l=e3(t,n,o),u=a[l];e&1<<l&&(u=Number.MAX_SAFE_INTEGER),s[o]=u}for(let o=0;o<s.length;o++){let l=r[o];s[o]<0&&(s[o]+=l),s[o]=Ru(0,s[o],r[o])}return s}function s3(e,t,n){let a=e[t];return(n&1<<t||a==null)&&(a=1),a}function i3(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MIN_SAFE_INTEGER:i=Number.MAX_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),i=Ru(0,i,l-1),i}function o3(e,t,n,a,r,s){let i=t[r],o=n[r]||1;(e&1<<r||s&1<<r||i==null)&&(o>0?i=Number.MAX_SAFE_INTEGER:i=Number.MIN_SAFE_INTEGER);let l=a[r];return i<0&&(i+=l),o>0?i=Ru(0,i,l):i=Ru(-1,i,l-1),i}function ET(e,t,n){let a=n.length;for(let r=0;r<n.length;r++)if(n[r]>1){a=r;break}for(let r=a+1;r<n.length;r++)if(t[r]>0||n[r]!==e[r])return!1;return!0}function RT(e,t){let n=e.length>0?e[e.length-1]:1;for(let a=0;a<e.length-1;a++)n+=e[a]*t[a];return n}function l3(e,t,n){let a,r=e.shape.length;typeof t=="number"?a=[t,...new Array(r-1).fill(0)]:t.length<r?a=t.concat(new Array(r-t.length).fill(0)):a=t.slice(),a.forEach(i=>{D(i!==-1,()=>"slice() does not support negative begin indexing.")});let s;return n==null?s=new Array(r).fill(-1):typeof n=="number"?s=[n,...new Array(r-1).fill(-1)]:n.length<r?s=n.concat(new Array(r-n.length).fill(-1)):s=n,s=s.map((i,o)=>i>=0?i:(D(i===-1,()=>`Negative size values should be exactly -1 but got ${i} for the slice() size at index ${o}.`),e.shape[o]-a[o])),[a,s]}function MT(e,t,n,a,r,s,i,o,l){let u=t.slice(),d=n.slice(),p=a;a==null&&(p=new Array(u.length));let c=Wc(i);if(c.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(i!==0&&o!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(i!==0&&l!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let h=e.length-u.length,m=Wc(o),f=e.slice();m.forEach(w=>{u[w]=0,d[w]=1,f.splice(w,0,1)});let{begin:g,end:y,strides:A}=n3(f,c,h,u,d,p,r,s,i);u=g,d=y,p=A;let x=Wc(l);x.forEach(w=>{d[w]=u[w]+1,p[w]=1});let v=Jb(u,d,p),b=v.filter((w,N)=>x.indexOf(N)===-1);return{nonStrided:p.every(w=>w===1),$begin:u,$end:d,$strides:p,size:v,newShape:f,outShape:b}}var re={};Fe(re,{Serializable:()=>u3,SerializationMap:()=>wi,registerClass:()=>jr});var u3=class{getClassName(){return this.constructor.className}static fromConfig(e,t){return new e(t)}},wi=class{constructor(){this.classNameMap={}}static getMap(){return wi.instance==null&&(wi.instance=new wi),wi.instance}static register(e){wi.getMap().classNameMap[e.className]=[e,e.fromConfig]}};function jr(e){D(e.className!=null,()=>"Class being registered does not have the static className property defined."),D(typeof e.className=="string",()=>"className is required to be a string, but got type "+typeof e.className),D(e.className.length>0,()=>"Class being registered has an empty-string as its className, which is disallowed."),wi.register(e)}var d3={};Fe(d3,{TEST_EPSILON_FLOAT16:()=>p3,encodeStrings:()=>c3,expectArrayBuffersEqual:()=>PT,expectArraysClose:()=>$T,expectArraysEqual:()=>OT,expectNumbersClose:()=>zT,expectPromiseToFail:()=>DT,expectValuesInRange:()=>_T,testEpsilon:()=>v1});var FT=.001,p3=.1;function $T(e,t,n){return n==null&&(n=v1()),w1(e,t,(a,r)=>k1(a,r,n))}function v1(){return P.backend.floatPrecision()===32?FT:p3}function w1(e,t,n){let a=!0;if((on(e)||on(t))&&(a=!1),on(e)&&on(t)&&(a=!0),a){let i=e.constructor.name,o=t.constructor.name;if(i!==o)throw new Error(`Arrays are of different type. Actual: ${i}. Expected: ${o}`)}if(Array.isArray(e)&&Array.isArray(t)){let i=Ua(e),o=Ua(t);if(!cr(i,o))throw new Error(`Arrays have different shapes. Actual: [${i}]. Expected: [${o}]`)}let r=on(e)?e:As(e),s=on(t)?t:As(t);if(r.length!==s.length)throw new Error(`Arrays have different lengths actual: ${r.length} vs expected: ${s.length}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`);for(let i=0;i<s.length;++i){let o=r[i],l=s[i];if(!n(o,l))throw new Error(`Arrays differ: actual[${i}] = ${o}, expected[${i}] = ${l}.
|
|
Actual: ${r}.
|
|
Expected: ${s}.`)}}function DT(e,t){e().then(()=>t.fail(),()=>t())}function OT(e,t){let n=typeof t=="string"||typeof t=="number"||typeof t=="boolean"?[t]:t;return $r(e)||$r(e[0])||$r(t)||$r(t[0])?w1(e,n,(a,r)=>a==r):w1(e,t,(a,r)=>k1(a,r,0))}function zT(e,t,n){if(n==null&&(n=v1()),!k1(e,t,n))throw new Error(`Numbers differ: actual === ${e}, expected === ${t}`)}function k1(e,t,n){return!isFinite(e)&&!isFinite(t)?!0:!(isNaN(e)||isNaN(t)||Math.abs(e-t)>n)}function _T(e,t,n){for(let a=0;a<e.length;a++)if(e[a]<t||e[a]>n)throw new Error(`Value out of range:${e[a]} low: ${t}, high: ${n}`)}function PT(e,t){expect(new Float32Array(e)).toEqual(new Float32Array(t))}function c3(e){for(let t=0;t<e.length;t++){let n=e[t];Array.isArray(n)?c3(n):e[t]=Yu(n)}return e}var LT="3.7.0";function WT(){te().set("PROD",!0)}function BT(){te().set("DEBUG",!0)}function VT(){te().set("DEPRECATION_WARNINGS_ENABLED",!1),console.warn("TensorFlow.js deprecation warnings have been disabled.")}function I1(e){te().getBool("DEPRECATION_WARNINGS_ENABLED")&&console.warn(e+" You can disable deprecation warnings with tf.disableDeprecationWarnings().")}hN(I1);function jT(){P.disposeVariables()}function fr(){return P}function Bc(){return P.memory()}function UT(e){return P.profile(e)}function V(e,t){return P.tidy(e,t)}function he(e){r1(e).forEach(t=>t.dispose())}function Kt(e){return P.keep(e)}function HT(e){return P.time(e)}function GT(e){return P.setBackend(e)}function qT(){return P.ready()}function XT(){return P.backendName}function KT(e){P.removeBackend(e)}function S1(e){return P.findBackend(e)}function ZT(e){return P.findBackendFactory(e)}function Il(e,t,n=1){return P.registerBackend(e,t,n)}function h3(){return P.backend}function YT(e,t){te().setPlatform(e,t)}function JT(e,t){let n=M(e,"a","add"),a=M(t,"b","add");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(Or,r)}var ie=L({add_:JT});function QT(e,t){let n=M(e,"a","floorDiv"),a=M(t,"b","floorDiv");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel($s,r)}var Vc=L({floorDiv_:QT});function eC(e,t){let n=M(e,"a","div"),a=M(t,"b","div");if([n,a]=It(n,a),n.dtype==="int32"&&a.dtype==="int32")return Vc(n,a);let r={a:n,b:a},s={};return P.runKernel(Rs,r,s)}var me=L({div_:eC});function tC(e,t){let n=M(e,"a","mul"),a=M(t,"b","mul");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(Gs,r)}var B=L({mul_:tC});function nC(e){let t=M(e,"x","abs");if(t.dtype==="complex64"){let n={x:t};return P.runKernel(Ou,n)}else{let n={x:t};return P.runKernel(mo,n)}}var Wt=L({abs_:nC});function aC(e){let t={x:M(e,"x","acos")};return P.runKernel(go,t)}var N1=L({acos_:aC});function rC(e){let t={x:M(e,"x","acosh")};return P.runKernel(yo,t)}var T1=L({acosh_:rC});function sC(e){D(Array.isArray(e),()=>"The argument passed to tf.addN() must be a list of tensors"),D(e.length>=1,()=>`Must pass at least one tensor to tf.addN(), but got ${e.length}`);let t=e.map((r,s)=>M(r,`tensors${s}`,"addN")),n=t[0];t.forEach(r=>{if(r.dtype!==n.dtype)throw new Error("All tensors passed to tf.addN() must have the same dtype")}),t.forEach(r=>{if(!cr(r.shape,n.shape))throw new Error("All tensors passed to tf.addN() must have the same shape")});let a=t;return P.runKernel(xs,a)}var jc=L({addN_:sC});function iC(e,t=null,n=!1){let a={x:M(e,"x","all","bool")},r={axis:t,keepDims:n};return P.runKernel(Ao,a,r)}var Uc=L({all_:iC});function oC(e,t=null,n=!1){let a={x:M(e,"x","any","bool")},r={axis:t,keepDims:n};return P.runKernel(xo,a,r)}var id=L({any_:oC});function lC(e,t=0){let n={x:M(e,"x","argMax")},a={axis:t};return P.runKernel(bs,n,a)}var ki=L({argMax_:lC});function uC(e,t=0){let n={x:M(e,"x","argMin")},a={axis:t};return P.runKernel(Fu,n,a)}var C1=L({argMin_:uC});function dC(e){let t={x:M(e,"x","asin")};return P.runKernel(bo,t)}var E1=L({asin_:dC});function pC(e){let t={x:M(e,"x","asinh")};return P.runKernel(vo,t)}var R1=L({asinh_:pC});function cC(e){let t={x:M(e,"x","atan")};return P.runKernel(wo,t)}var M1=L({atan_:cC});function hC(e,t){let n=M(e,"a","atan2"),a=M(t,"b","atan2");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(Io,r)}var F1=L({atan2_:hC});function fC(e){let t={x:M(e,"x","atanh")};return P.runKernel(ko,t)}var $1=L({atanh_:fC});function mC(e,t,n,a,r="NHWC",s){let i=e[3],o=[...t,i],l=g3(r);return od(e,o,n,s,a,null,null,l)}function f3(e,t,n,a,r,s,i="channelsLast"){let[o,l]=Hc(t),u;if(i==="channelsLast")u=[o,l,e[3],e[3]];else if(i==="channelsFirst")u=[o,l,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return od(e,u,n,a,r,s,!1,i)}function gC(e,t,n,a,r,s,i="NDHWC"){let[o,l,u]=O1(t),d,p;if(i==="NDHWC")p="channelsLast",d=[o,l,u,e[4],e[4]];else if(i==="NCDHW")p="channelsFirst",d=[o,l,u,e[1],e[1]];else throw new Error(`Unknown dataFormat ${i}`);return m3(e,d,n,a,r,!1,p,s)}function od(e,t,n,a,r,s,i=!1,o="channelsLast"){let[l,u,d,p]=[-1,-1,-1,-1];if(o==="channelsLast")[l,u,d,p]=e;else if(o==="channelsFirst")[l,p,u,d]=e;else throw new Error(`Unknown dataFormat ${o}`);let[c,h,,m]=t,[f,g]=Hc(n),[y,A]=Hc(a),x=Sl(c,y),v=Sl(h,A),{padInfo:b,outHeight:w,outWidth:N}=xC(r,u,d,f,g,x,v,s,o),C=i?m*p:m,E;return o==="channelsFirst"?E=[l,C,w,N]:o==="channelsLast"&&(E=[l,w,N,C]),{batchSize:l,dataFormat:o,inHeight:u,inWidth:d,inChannels:p,outHeight:w,outWidth:N,outChannels:C,padInfo:b,strideHeight:f,strideWidth:g,filterHeight:c,filterWidth:h,effectiveFilterHeight:x,effectiveFilterWidth:v,dilationHeight:y,dilationWidth:A,inShape:e,outShape:E,filterShape:t}}function m3(e,t,n,a,r,s=!1,i="channelsLast",o){let[l,u,d,p,c]=[-1,-1,-1,-1,-1];if(i==="channelsLast")[l,u,d,p,c]=e;else if(i==="channelsFirst")[l,c,u,d,p]=e;else throw new Error(`Unknown dataFormat ${i}`);let[h,m,f,,g]=t,[y,A,x]=O1(n),[v,b,w]=O1(a),N=Sl(h,v),C=Sl(m,b),E=Sl(f,w),{padInfo:_,outDepth:$,outHeight:S,outWidth:z}=bC(r,u,d,p,y,A,x,N,C,E,o),O=s?g*c:g,W;return i==="channelsFirst"?W=[l,O,$,S,z]:i==="channelsLast"&&(W=[l,$,S,z,O]),{batchSize:l,dataFormat:i,inDepth:u,inHeight:d,inWidth:p,inChannels:c,outDepth:$,outHeight:S,outWidth:z,outChannels:O,padInfo:_,strideDepth:y,strideHeight:A,strideWidth:x,filterDepth:h,filterHeight:m,filterWidth:f,effectiveFilterDepth:N,effectiveFilterHeight:C,effectiveFilterWidth:E,dilationDepth:v,dilationHeight:b,dilationWidth:w,inShape:e,outShape:W,filterShape:t}}function yC(e,t,n,a,r){a==null&&(a=D1(e,t,n));let s=e[0],i=e[1],o=Ii((s-t+2*a)/n+1,r),l=Ii((i-t+2*a)/n+1,r);return[o,l]}function AC(e,t,n,a,r,s){r==null&&(r=D1(e,t,a));let i=e[0],o=e[1],l=e[2],u=Ii((i-t+2*r)/a+1,s),d=Ii((o-t+2*r)/a+1,s),p=Ii((l-t+2*r)/a+1,s);return[u,d,p,n]}function D1(e,t,n,a=1){let r=Sl(t,a);return Math.floor((e[0]*(n-1)-n+r)/2)}function Hc(e){return typeof e=="number"?[e,e,e]:e.length===2?[e[0],e[1],1]:e}function O1(e){return typeof e=="number"?[e,e,e]:e}function Sl(e,t){return t<=1?e:e+(e-1)*(t-1)}function xC(e,t,n,a,r,s,i,o,l){let u,d,p;if(typeof e=="number"){u={top:e,bottom:e,left:e,right:e,type:e===0?"VALID":"NUMBER"};let c=yC([t,n],s,a,e,o);d=c[0],p=c[1]}else if(e==="same"){d=Math.ceil(t/a),p=Math.ceil(n/r);let c=Math.max(0,(d-1)*a+s-t),h=Math.max(0,(p-1)*r+i-n),m=Math.floor(c/2),f=c-m,g=Math.floor(h/2),y=h-g;u={top:m,bottom:f,left:g,right:y,type:"SAME"}}else if(e==="valid")u={top:0,bottom:0,left:0,right:0,type:"VALID"},d=Math.ceil((t-s+1)/a),p=Math.ceil((n-i+1)/r);else if(typeof e=="object"){let c=l==="channelsLast"?e[1][0]:e[2][0],h=l==="channelsLast"?e[1][1]:e[2][1],m=l==="channelsLast"?e[2][0]:e[3][0],f=l==="channelsLast"?e[2][1]:e[3][1];u={top:c,bottom:h,left:m,right:f,type:c===0&&h===0&&m===0&&f===0?"VALID":"EXPLICIT"},d=Ii((t-s+c+h)/a+1,o),p=Ii((n-i+m+f)/r+1,o)}else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:u,outHeight:d,outWidth:p}}function bC(e,t,n,a,r,s,i,o,l,u,d){let p,c,h,m;if(typeof e=="number"){p={top:e,bottom:e,left:e,right:e,front:e,back:e,type:e===0?"VALID":"NUMBER"};let f=AC([t,n,a,1],o,1,r,e,d);c=f[0],h=f[1],m=f[2]}else if(e==="same"){c=Math.ceil(t/r),h=Math.ceil(n/s),m=Math.ceil(a/i);let f=(c-1)*r+o-t,g=(h-1)*s+l-n,y=(m-1)*i+u-a,A=Math.floor(f/2),x=f-A,v=Math.floor(g/2),b=g-v,w=Math.floor(y/2),N=y-w;p={top:v,bottom:b,left:w,right:N,front:A,back:x,type:"SAME"}}else if(e==="valid")p={top:0,bottom:0,left:0,right:0,front:0,back:0,type:"VALID"},c=Math.ceil((t-o+1)/r),h=Math.ceil((n-l+1)/s),m=Math.ceil((a-u+1)/i);else throw Error(`Unknown padding parameter: ${e}`);return{padInfo:p,outDepth:c,outHeight:h,outWidth:m}}function Ii(e,t){if(!t)return Math.trunc(e);switch(t){case"round":return Math.round(e);case"ceil":return Math.ceil(e);case"floor":return Math.floor(e);default:throw new Error(`Unknown roundingMode ${t}`)}}function Ur(e){let[t,n,a]=Hc(e);return t===1&&n===1&&a===1}function Ga(e,t){return Ur(e)||Ur(t)}function g3(e){if(e==="NHWC")return"channelsLast";if(e==="NCHW")return"channelsFirst";throw new Error(`Unknown dataFormat ${e}`)}function vC(e,t){let n={x:M(e,"x","reshape","string_or_numeric")},a={shape:t};return P.runKernel(tl,n,a)}var q=L({reshape_:vC});function wC(e,t,n,a,r){let s=M(e,"x","avgPool","float32"),i=1;D(Ga(n,i),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`);let o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),D(o.rank===4,()=>`Error in avgPool: x must be rank 4 but got rank ${o.rank}.`),r!=null&&D(qt(a),()=>`Error in avgPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(vs,u,d);return p=ge(p,s.dtype),l?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var ld=L({avgPool_:wC});function kC(e,t,n,a,r,s="NDHWC"){let i=M(e,"x","avgPool3d","float32"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),D(o.rank===5,()=>`Error in avgPool3d: x must be rank 5 but got rank ${o.rank}.`),D(s==="NDHWC",()=>`Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&D(qt(a),()=>`Error in avgPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel($u,u,d);return p=ge(p,o.dtype),l?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var z1=L({avgPool3d_:kC});function IC(e,t=0){D(e.length>=1,()=>"Pass at least one tensor to concat");let n=rd(e,"tensors","concat","string_or_numeric");if(n[0].dtype==="complex64"&&n.forEach(s=>{if(s.dtype!=="complex64")throw new Error(`Cannot concatenate complex64 tensors with a tensor
|
|
with dtype ${s.dtype}. `)}),n.length===1)return Ha(n[0]);let a=n,r={axis:t};return P.runKernel(So,a,r)}var lt=L({concat_:IC});function SC(e){let t={x:M(e,"x","sigmoid")};return P.runKernel(ri,t)}var Rn=L({sigmoid_:SC});function NC(e,t,n){let a=M(e,"x","slice","string_or_numeric");if(a.rank===0)throw new Error("Slicing scalar is not possible");let r={x:a},s={begin:t,size:n};return P.runKernel(sl,r,s)}var Re=L({slice_:NC});function TC(e){let t={x:M(e,"x","tanh")};return P.runKernel(pi,t)}var Si=L({tanh_:TC});function CC(e,t,n,a,r,s){let i=M(e,"forgetBias","basicLSTMCell"),o=M(t,"lstmKernel","basicLSTMCell"),l=M(n,"lstmBias","basicLSTMCell"),u=M(a,"data","basicLSTMCell"),d=M(r,"c","basicLSTMCell"),p=M(s,"h","basicLSTMCell"),c=lt([u,p],1),h=je(c,o),m=ie(h,l),f=m.shape[0],g=m.shape[1]/4,y=[f,g],A=Re(m,[0,0],y),x=Re(m,[0,g],y),v=Re(m,[0,g*2],y),b=Re(m,[0,g*3],y),w=ie(B(Rn(A),Si(x)),B(d,Rn(ie(i,v)))),N=B(Si(w),Rn(b));return[w,N]}var EC=L({basicLSTMCell_:CC});function RC(e,t,n){let a=M(e,"x","batchToSpaceND"),r=t.reduce((o,l)=>o*l);D(a.rank>=1+t.length,()=>`input rank is ${a.rank} but should be > than blockShape.length ${t.length}`),D(n.length===t.length,()=>`crops.length is ${n.length} but should be equal to blockShape.length ${t.length}`),D(a.shape[0]%r==0,()=>`input tensor batch is ${a.shape[0]} but is not divisible by the product of the elements of blockShape ${t.join(" * ")} === ${r}`);let s={x:a},i={blockShape:t,crops:n};return P.runKernel(Du,s,i)}var ud=L({batchToSpaceND_:RC});function MC(e){let t;return e.rank===0||e.rank===1?t=q(e,[1,1,1,e.size]):e.rank===2?t=q(e,[1,1,e.shape[0],e.shape[1]]):e.rank===3?t=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]):t=e,t}function FC(e,t,n,a,r,s){s==null&&(s=.001);let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;a!=null&&(d=M(a,"offset","batchNorm")),D(o.rank===l.rank,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),D(d==null||o.rank===d.rank,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),D(u==null||o.rank===u.rank,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let p={x:MC(i),scale:u,offset:d,mean:o,variance:l},c={varianceEpsilon:s},h=P.runKernel(Ds,p,c);return q(h,i.shape)}var Ni=L({batchNorm_:FC});function $C(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),D(i.rank===2,()=>`Error in batchNorm2D: x must be rank 2 but got rank ${i.rank}.`),D(o.rank===2||o.rank===1,()=>`Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank ${o.rank}.`),D(l.rank===2||l.rank===1,()=>`Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank ${l.rank}.`),u!=null&&D(u.rank===2||u.rank===1,()=>`Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank ${u.rank}.`),d!=null&&D(d.rank===2||d.rank===1,()=>`Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank ${d.rank}.`),Ni(i,o,l,d,u,s)}var y3=L({batchNorm2d_:$C});function DC(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),D(i.rank===3,()=>`Error in batchNorm3D: x must be rank 3 but got rank ${i.rank}.`),D(o.rank===3||o.rank===1,()=>`Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank ${o.rank}.`),D(l.rank===3||l.rank===1,()=>`Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank ${l.rank}.`),u!=null&&D(u.rank===3||u.rank===1,()=>`Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank ${u.rank}.`),d!=null&&D(d.rank===3||d.rank===1,()=>`Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank ${d.rank}.`),Ni(i,o,l,d,u,s)}var A3=L({batchNorm3d_:DC});function OC(e,t,n,a,r,s){let i=M(e,"x","batchNorm"),o=M(t,"mean","batchNorm"),l=M(n,"variance","batchNorm"),u;r!=null&&(u=M(r,"scale","batchNorm"));let d;return a!=null&&(d=M(a,"offset","batchNorm")),D(i.rank===4,()=>`Error in batchNorm4D: x must be rank 4 but got rank ${i.rank}.`),D(o.rank===4||o.rank===1,()=>`Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank ${o.rank}.`),D(l.rank===4||l.rank===1,()=>`Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank ${l.rank}.`),u!=null&&D(u.rank===4||u.rank===1,()=>`Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank ${u.rank}.`),d!=null&&D(d.rank===4||d.rank===1,()=>`Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank ${d.rank}.`),Ni(i,o,l,d,u,s)}var x3=L({batchNorm4d_:OC});function zC(e,t,n){let a=M(e,"x","bincount"),r=M(t,"weights","bincount");D(a.dtype==="int32",()=>`Error in bincount: input dtype must be int32, but got ${a.dtype}`),D(n>=0,()=>`size must be non-negative, but got ${n}.`),D(r.size===a.size||r.size===0,()=>`Error in bincount: weights must have the same size as input or0-length, but got input shape: ${a.shape}, weights shape: ${r.shape}.`);let s={x:a,weights:r},i={size:n};return P.runKernel(Zp,s,i)}var _1=L({bincount_:zC});function _C(e,t){let n=M(e,"broadcastTo","x"),a=n.shape;if(t.some(l=>!(l>0)||l%1!=0))throw new Error(`broadcastTo(): Invalid broadcast shape [${t}].`);if(t.length<n.rank)throw new Error(`broadcastTo(): shape.length=${t.length} < input.rank=${n.rank}.`);if(t.length>n.rank){let l=n.shape.slice();for(;l.length<t.length;)l.unshift(1);n=q(n,l)}let r=n.shape,s=Array.from(t);for(let l=t.length-1;l>=0;l--)if(r[l]===t[l])s[l]=1;else if(n.shape[l]!==1)throw new Error(`broadcastTo(): [${a}] cannot be broadcast to [${t}].`);if(s.map((l,u)=>l>1?u:-1).filter(l=>l>=0).length===0)return Ha(n);let i={x:n},o={reps:s};return P.runKernel(_r,i,o)}var Nl=L({broadcastTo_:_C});function PC(e){let t={x:M(e,"x","ceil")};return P.runKernel(Is,t)}var P1=L({ceil_:PC});function LC(e,t,n){let a=M(e,"x","clipByValue");D(t<=n,()=>`Error in clip: min (${t}) must be less than or equal to max (${n}).`);let r={x:a},s={clipValueMin:t,clipValueMax:n};return P.runKernel(zr,r,s)}var Mn=L({clipByValue_:LC});function WC(e){return lt(e,0)}var b3=L({concat1d_:WC});function BC(e,t){return lt(e,t)}var Tl=L({concat2d_:BC});function VC(e,t){return lt(e,t)}var v3=L({concat3d_:VC});function jC(e,t){return lt(e,t)}var w3=L({concat4d_:jC});function UC(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","conv2d"),l=M(t,"filter","conv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),D(u.rank===4,()=>`Error in conv2d: input must be rank 4, but got rank ${u.rank}.`),D(l.rank===4,()=>`Error in conv2d: filter must be rank 4, but got rank ${l.rank}.`),i!=null&&D(qt(a),()=>`Error in conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p=r==="NHWC"?u.shape[3]:u.shape[1];D(p===l.shape[2],()=>`Error in conv2d: depth of input (${p}) must match input depth for filter ${l.shape[2]}.`),D(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`);let c={x:u,filter:l},h={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},m=P.runKernel(Ss,c,h);return d?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var mr=L({conv2d_:UC});function HC(e,t,n,a,r="NWC",s=1,i){let o=M(e,"x","conv1d"),l=M(t,"filter","conv1d"),u=o,d=!1;o.rank===2&&(d=!0,u=q(o,[1,o.shape[0],o.shape[1]])),D(u.rank===3,()=>`Error in conv1d: input must be rank 3, but got rank ${u.rank}.`),D(l.rank===3,()=>`Error in conv1d: filter must be rank 3, but got rank ${l.rank}.`),i!=null&&D(qt(a),()=>`Error in conv1d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),D(u.shape[2]===l.shape[1],()=>`Error in conv1d: depth of input (${u.shape[2]}) must match input depth for filter ${l.shape[1]}.`),D(Ga(n,s),()=>`Error in conv1D: Either stride or dilation must be 1. Got stride ${n} and dilation '${s}'`),D(r==="NWC",()=>`Error in conv1d: got dataFormat of ${r} but only NWC is currently supported.`);let p=q(l,[1,l.shape[0],l.shape[1],l.shape[2]]),c=q(u,[u.shape[0],1,u.shape[1],u.shape[2]]),h=mr(c,p,[1,n],a,"NHWC",[1,s],i);return d?q(h,[h.shape[2],h.shape[3]]):q(h,[h.shape[0],h.shape[2],h.shape[3]])}var Gc=L({conv1d_:HC});function GC(e,t,n,a,r,s="NHWC",i){D(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let o=e,l=t,u=!1;t.rank===3&&(u=!0,l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]),o=[1,e[0],e[1],e[2]]),D(o.length===4,()=>`Error in conv2dDerInput: inShape must be length 4, but got length ${o.length}.`),D(l.rank===4,()=>`Error in conv2dDerInput: dy must be rank 4, but got rank ${l.rank}`),D(n.rank===4,()=>`Error in conv2dDerInput: filter must be rank 4, but got rank ${n.rank}`);let d=s==="NHWC"?o[3]:o[1],p=s==="NHWC"?l.shape[3]:l.shape[1];D(d===n.shape[2],()=>`Error in conv2dDerInput: depth of input (${d}) must match input depth for filter ${n.shape[2]}.`),D(p===n.shape[3],()=>`Error in conv2dDerInput: depth of output (${p}) must match output depth for filter ${n.shape[3]}.`),i!=null&&D(qt(r),()=>`Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let c={dy:l,filter:n},h={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,inputShape:o},m=P.runKernel(Ns,c,h);return u?q(m,[m.shape[1],m.shape[2],m.shape[3]]):m}var L1=L({conv2DBackpropInput_:GC});function qC(e,t,n,a,r,s){let i=M(e,"x","conv2dTranspose"),o=M(t,"filter","conv2dTranspose");return L1(n,i,o,a,r,"NHWC",s)}var qc=L({conv2dTranspose_:qC});function XC(e,t,n,a,r="NDHWC",s=[1,1,1]){let i=M(e,"x","conv3d"),o=M(t,"filter","conv3d"),l=i,u=!1;i.rank===4&&(u=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),D(l.rank===5,()=>`Error in conv3d: input must be rank 5, but got rank ${l.rank}.`),D(o.rank===5,()=>`Error in conv3d: filter must be rank 5, but got rank ${o.rank}.`),D(l.shape[4]===o.shape[3],()=>`Error in conv3d: depth of input (${l.shape[4]}) must match input depth for filter ${o.shape[3]}.`),D(Ga(n,s),()=>`Error in conv3D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),D(r==="NDHWC",()=>`Error in conv3d: got dataFormat of ${r} but only NDHWC is currently supported.`);let d={x:l,filter:o},p={strides:n,pad:a,dataFormat:r,dilations:s},c=P.runKernel(zu,d,p);return u?q(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var W1=L({conv3d_:XC});function KC(e,t,n,a,r){D(e.length===t.rank,()=>`Length of inShape (${e.length}) and rank of dy (${t.rank}) must match`);let s=e,i=t,o=!1;t.rank===4&&(o=!0,i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]]),s=[1,e[0],e[1],e[2],e[3]]);let l=s[4],u=i.shape[4];D(s.length===5,()=>`Error in conv3dDerInput: inShape must be length 5, but got length ${s.length}.`),D(i.rank===5,()=>`Error in conv3dDerInput: dy must be rank 5, but got rank ${i.rank}`),D(n.rank===5,()=>`Error in conv3dDerInput: filter must be rank 5, but got rank ${n.rank}`),D(l===n.shape[3],()=>`Error in conv3dDerInput: depth of input (${l}) must match input depth for filter ${n.shape[3]}.`),D(u===n.shape[4],()=>`Error in conv3dDerInput: depth of output (${u}) must match output depth for filter ${n.shape[4]}.`);let d={dy:i,filter:n},p={pad:r,strides:a,inputShape:s},c=P.runKernel(ec,d,p);return o?q(c,[c.shape[1],c.shape[2],c.shape[3],c.shape[4]]):c}var k3=L({conv3DBackpropInput_:KC});function ZC(e,t,n,a,r){let s=M(e,"x","conv3dTranspose"),i=M(t,"filter","conv3dTranspose");return k3(n,s,i,a,r)}var I3=L({conv3dTranspose_:ZC});function YC(e){let t={x:M(e,"x","cos")};return P.runKernel(Ts,t)}var dd=L({cos_:YC});function JC(e){let t={x:M(e,"x","cosh")};return P.runKernel(No,t)}var Xc=L({cosh_:JC});function QC(e,t=0,n=!1,a=!1){let r={x:M(e,"x","cumsum")},s={axis:t,exclusive:n,reverse:a};return P.runKernel(Cs,r,s)}var Kc=L({cumsum_:QC});function eE(e,t,n,a=!1){let r=M(e,"x","denseBincount"),s=M(t,"weights","denseBincount");D(r.dtype==="int32",()=>`Error in denseBincount: input dtype must be int32, but got ${r.dtype}`),D(r.rank<=2,()=>`Error in denseBincount: input must be at most rank 2, but got rank ${r.rank}.`),D(n>=0,()=>`size must be non-negative, but got ${n}.`),D(s.size===r.size||s.size===0,()=>`Error in denseBincount: weights must have the same shape as x or 0-length, but got x shape: ${r.shape}, weights shape: ${s.shape}.`);let i={x:r,weights:s},o={size:n,binaryOutput:a};return P.runKernel(tc,i,o)}var S3=L({denseBincount_:eE});function tE(e,t,n="NHWC"){let a=M(e,"x","depthToSpace"),r=n==="NHWC"?a.shape[1]:a.shape[2],s=n==="NHWC"?a.shape[2]:a.shape[3],i=n==="NHWC"?a.shape[3]:a.shape[1];D(r*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${r} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),D(s*t>=0,()=>`Negative dimension size caused by overflow when multiplying
|
|
${s} and ${t} for depthToSpace with input shape
|
|
${a.shape}`),D(i%(t*t)==0,()=>`Dimension size must be evenly divisible by ${t*t} but is ${i} for depthToSpace with input shape ${a.shape}`);let o={x:a},l={blockSize:t,dataFormat:n};return P.runKernel(Co,o,l)}var B1=L({depthToSpace_:tE});function nE(e,t,n,a,r="NHWC",s=[1,1],i){let o=M(e,"x","depthwiseConv2d"),l=M(t,"filter","depthwiseConv2d"),u=o,d=!1;o.rank===3&&(d=!0,u=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),D(u.rank===4,()=>`Error in depthwiseConv2d: input must be rank 4, but got rank ${u.rank}.`),D(l.rank===4,()=>`Error in depthwiseConv2d: filter must be rank 4, but got rank ${l.rank}.`),D(u.shape[3]===l.shape[2],()=>`Error in depthwiseConv2d: number of input channels (${u.shape[3]}) must match the inChannels dimension in filter ${l.shape[2]}.`),i!=null&&D(qt(a),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`);let p={x:u,filter:l},c={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i},h=P.runKernel(Es,p,c);return d?q(h,[h.shape[1],h.shape[2],h.shape[3]]):h}var Cl=L({depthwiseConv2d_:nE});function aE(e){let t={x:M(e,"x","diag")};return P.runKernel(rc,t)}var rE=L({diag_:aE});function sE(e,t,n,a,r=[1,1],s="NHWC"){let i=M(e,"x","dilation2d"),o=M(t,"filter","dilation2d");D(i.rank===3||i.rank===4,()=>`Error in dilation2d: input must be rank 3 or 4, but got rank ${i.rank}.`),D(o.rank===3,()=>`Error in dilation2d: filter must be rank 3, but got rank ${o.rank}.`),D(s==="NHWC",()=>`Error in dilation2d: Only NHWC is currently supported, but got dataFormat of ${s}`);let l=i,u=!1;i.rank===3&&(l=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),u=!0);let d={x:l,filter:o},p={strides:n,pad:a,dilations:r},c=P.runKernel(_u,d,p);return u?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var V1=L({dilation2d_:sE});function iE(e,t){let n=e.length,a=[];for(let r=0;r<n;r++){let s=n-1-r,i=e[s]||1;(t[t.length-1-r]||1)>1&&i===1&&a.unshift(s)}return a}function Bt(e,t){let n=[];for(let a=0;a<t.length;a++){let r=e[e.length-a-1],s=t.length-a-1,i=t[s];(r==null||r===1&&i>1)&&n.unshift(s)}return n}function mt(e,t){let n=[],a=Math.max(e.length,t.length);for(let r=0;r<a;r++){let s=e[e.length-r-1];s==null&&(s=1);let i=t[t.length-r-1];if(i==null&&(i=1),s===1)n.unshift(i);else if(i===1)n.unshift(s);else if(s!==i){let o=`Operands could not be broadcast together with shapes ${e} and ${t}.`;throw Error(o)}else n.unshift(s)}return n}function oE(e,t){let n=M(e,"a","equal","string_or_numeric"),a=M(t,"b","equal","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Mo,r)}var Hr=L({equal_:oE});function lE(e,t,n){let a=M(t,"a","where"),r=M(n,"b","where"),s=M(e,"condition","where","bool"),i=mt(mt(s.shape,a.shape),r.shape),o=Nl(s,i),l=Nl(a,i),u=Nl(r,i),d={condition:o,t:l,e:u};return P.runKernel(al,d)}var un=L({where_:lE});function uE(e){let t={x:M(e,"x","zerosLike")};return P.runKernel(fl,t)}var Ge=L({zerosLike_:uE});function dE(e,t){let n=M(e,"a","div"),a=M(t,"b","div");[n,a]=It(n,a);let r=me(n,a),s=Ge(r),i=Hr(a,s);return un(i,s,r)}var j1=L({divNoNan_:dE});function pE(e,t){let n=M(e,"t1","dot"),a=M(t,"t2","dot");D((n.rank===1||n.rank===2)&&(a.rank===1||a.rank===2),()=>`Error in dot: inputs must all be rank 1 or 2, but got ranks ${n.rank} and ${a.rank}.`);let r=n.rank===1?n.size:n.shape[1],s=a.rank===1?a.size:a.shape[0];if(D(r===s,()=>`Error in dot: inner dimensions of inputs must match, but got ${r} and ${s}.`),n.rank===1&&a.rank===1){let i=q(n,[1,-1]),o=q(a,[-1,1]),l=je(i,o);return q(l,[])}else if(n.rank===1&&a.rank===2){let i=q(n,[1,-1]),o=q(a,[a.shape[0],a.shape[1]]),l=je(i,o);return q(l,[l.size])}else if(n.rank===2&&a.rank===1){let i=q(a,[-1,1]),o=je(n,i);return q(o,[o.size])}else{let i=q(a,[a.shape[0],a.shape[1]]);return je(n,i)}}var N3=L({dot_:pE});function cE(e,...t){let n=t.map((r,s)=>M(r,`tensors${s}`,"einsum")),a={equation:e};return P.runKernel(oc,n,a)}var T3=L({einsum_:cE});function hE(e){let t={x:M(e,"x","elu")};return P.runKernel(Eo,t)}var El=L({elu_:hE});function fE(e){let t=M(e,"x","erf");D(t.dtype==="int32"||t.dtype==="float32",()=>"Input dtype must be `int32` or `float32`."),t.dtype==="int32"&&(t=ge(t,"float32"));let n={x:t};return P.runKernel(Ro,n)}var U1=L({erf_:fE});function mE(e){let t={x:M(e,"x","exp")};return P.runKernel(Ms,t)}var la=L({exp_:mE});function gE(e,t=0){let n=M(e,"x","expandDims","string_or_numeric");D(t<=n.rank,()=>"Axis must be <= rank of the tensor");let a={input:n},r={dim:t};return P.runKernel(Fo,a,r)}var mn=L({expandDims_:gE});function yE(e){let t={x:M(e,"x","expm1")};return P.runKernel($o,t)}var H1=L({expm1_:yE});function AE(e,t){let n=M(e,"x","tile","string_or_numeric");D(n.rank===t.length,()=>`Error in transpose: rank of input ${n.rank} must match length of reps ${t}.`);let a={x:n},r={reps:t};return P.runKernel(_r,a,r)}var Gr=L({tile_:AE});function xE(e,t,n,a="float32"){t==null&&(t=e);let r=Ve([e,t],a),s=e<=t?e:t;for(let o=0;o<s;++o)r.set(1,o,o);let i=q(r.toTensor(),[e,t]);if(n==null)return i;if(n.length===1)return Gr(mn(i,0),[n[0],1,1]);if(n.length===2)return Gr(mn(mn(i,0),0),[n[0],n[1],1,1]);if(n.length===3)return Gr(mn(mn(mn(i,0),0),0),[n[0],n[1],n[2],1,1]);throw new Error(`eye() currently supports only 1D and 2D batchShapes, but received ${n.length}D.`)}var G1=L({eye_:xE});function Rl(e,t,n){let a={shape:e,value:t,dtype:n};return P.runKernel(Pu,{},a)}function bE(e){let t={x:M(e,"x","floor")};return P.runKernel(Fs,t)}var Ml=L({floor_:bE});function vE(e,t,n=0,a=0){let r=M(e,"x","gather"),s=M(t,"indices","gather","int32"),i={x:r,indices:s},o={axis:n,batchDims:a};return P.runKernel(Oo,i,o)}var Ti=L({gather_:vE});function wE(e,t){let n=M(e,"a","greater","string_or_numeric"),a=M(t,"b","greater","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(_o,r)}var Wn=L({greater_:wE});function kE(e,t){let n=M(e,"a","greaterEqual","string_or_numeric"),a=M(t,"b","greaterEqual","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Os,r)}var qr=L({greaterEqual_:kE});function IE(e){let t={input:M(e,"input","imag")};return P.runKernel(pc,t)}var Zc=L({imag_:IE});function SE(e){let t={x:M(e,"x","isFinite")};return P.runKernel(Po,t)}var C3=L({isFinite_:SE});function NE(e){let t={x:M(e,"x","isInf")};return P.runKernel(Lo,t)}var E3=L({isInf_:NE});function TE(e){let t={x:M(e,"x","isNaN")};return P.runKernel(Wo,t)}var q1=L({isNaN_:TE});function CE(e,t=.2){let n={x:M(e,"x","leakyRelu")},a={alpha:t};return P.runKernel(_s,n,a)}var pd=L({leakyRelu_:CE});function EE(e,t){let n=M(e,"a","less","string_or_numeric"),a=M(t,"b","less","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Bo,r)}var Yc=L({less_:EE});function RE(e,t){let n=M(e,"a","lessEqual","string_or_numeric"),a=M(t,"b","lessEqual","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Vo,r)}var Xr=L({lessEqual_:RE});function R3(e,t,n){if(n<=0)throw new Error("The number of values should be positive.");let a={start:e,stop:t,num:n};return P.runKernel(cc,{},a)}function ME(e,t=5,n=1,a=1,r=.5){let s=M(e,"x","localResponseNormalization");D(s.rank===4||s.rank===3,()=>`Error in localResponseNormalization: x must be rank 3 or 4 but got
|
|
rank ${s.rank}.`),D(qt(t),()=>`Error in localResponseNormalization: depthRadius must be an integer but got depthRadius ${t}.`);let i=s,o=!1;s.rank===3&&(o=!0,i=q(s,[1,s.shape[0],s.shape[1],s.shape[2]]));let l={x:i},u={depthRadius:t,bias:n,alpha:a,beta:r},d=P.runKernel(Bu,l,u);return o?q(d,[d.shape[1],d.shape[2],d.shape[3]]):d}var X1=L({localResponseNormalization_:ME});function FE(e){let t={x:M(e,"x","log")};return P.runKernel(Ps,t)}var Bn=L({log_:FE});function $E(e){let t={x:M(e,"x","log1p")};return P.runKernel(jo,t)}var Jc=L({log1p_:$E});function DE(e){return D(Dr(e),()=>"The f passed in grad(f) must be a function"),(t,n)=>{let a=M(t,"x","tf.grad","string_or_numeric"),r=n!=null?M(n,"dy","tf.grad"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(a),[a],r);return r!=null&&cn(s.shape,r.shape,"The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"),Qc(i),i[0]})}}function OE(e){return D(Dr(e),()=>"The f passed in grads(f) must be a function"),(t,n)=>{D(Array.isArray(t),()=>"The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s");let a=rd(t,"args","tf.grads","string_or_numeric"),r=n!=null?M(n,"dy","tf.grads"):null;return P.tidy(()=>{let{value:s,grads:i}=P.gradients(()=>e(...a),a,r);return r!=null&&cn(s.shape,r.shape,"The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qc(i),i})}}function zE(e){return D(Dr(e),()=>"The f passed in valueAndGrad(f) must be a function"),(t,n)=>{D(t instanceof Be,()=>"The x passed in valueAndGrad(f)(x) must be a tensor"),D(n==null||n instanceof Be,()=>"The dy passed in valueAndGrad(f)(x, dy) must be a tensor");let{grads:a,value:r}=P.gradients(()=>e(t),[t],n);return Qc(a),{grad:a[0],value:r}}}function _E(e){return D(Dr(e),()=>"The f passed in valueAndGrads(f) must be a function"),(t,n)=>{D(Array.isArray(t)&&t.every(r=>r instanceof Be),()=>"The args passed in valueAndGrads(f)(args) must be array of tensors"),D(n==null||n instanceof Be,()=>"The dy passed in valueAndGrads(f)(args, dy) must be a tensor");let a=P.gradients(()=>e(...t),t,n);return n!=null&&cn(a.value.shape,n.shape,"The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"),Qc(a.grads),a}}function M3(e,t){D(Dr(e),()=>"The f passed in variableGrads(f) must be a function"),D(t==null||Array.isArray(t)&&t.every(u=>u instanceof td),()=>"The varList passed in variableGrads(f, varList) must be an array of variables");let n=t!=null;if(!n){t=[];for(let u in P.registeredVariables)t.push(P.registeredVariables[u])}let a=n?t.filter(u=>!u.trainable):null,r=t.length;t=t.filter(u=>u.trainable),D(t.length>0,()=>`variableGrads() expects at least one of the input variables to be trainable, but none of the ${r} variables is trainable.`);let s=!0,{value:i,grads:o}=P.gradients(e,t,null,s);D(o.some(u=>u!=null),()=>"Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize()."),D(i.rank===0,()=>`The f passed in variableGrads(f) must return a scalar, but it returned a rank-${i.rank} tensor`);let l={};return t.forEach((u,d)=>{o[d]!=null&&(l[u.name]=o[d])}),a!=null&&a.forEach(u=>l[u.name]=null),{value:i,grads:l}}function qa(e){return P.customGrad(e)}function Qc(e){if(e.filter(t=>t==null).length>0)throw new Error(`Cannot compute gradient of y=f(x) with respect to x. Make sure that
|
|
the f you passed encloses all operations that lead from x to y.`)}function PE(e){let t={x:M(e,"x","neg")};return P.runKernel(Go,t)}var St=L({neg_:PE});function LE(e){let t={x:M(e,"x","softplus")};return P.runKernel(ll,t)}var Ci=L({softplus_:LE});function WE(e){let t=M(e,"x","logSigmoid");return qa(n=>({value:St(Ci(St(n))),gradFunc:a=>B(a,Rn(St(n)))}))(t)}var F3=L({logSigmoid_:WE});function BE(e,t=null,n=!1){let a={x:M(e,"x","max")},r={reductionIndices:t,keepDims:n};return P.runKernel(Ls,a,r)}var Vn=L({max_:BE});function VE(e,t){let n=M(e,"a","sub"),a=M(t,"b","sub");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(ui,r)}var ye=L({sub_:VE});function jE(e,t=null,n=!1){let a=M(e,"x","sum");a.dtype==="bool"&&(a=ge(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(ii,r,s)}var Se=L({sum_:jE});function UE(e,t=-1){let n=M(e,"logits","logSoftmax");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Log Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and axis was ${t}`);return qa((a,r)=>{let s=!0,i=Vn(a,t,!0),o=ye(a,i),l=ye(ge(o,"float32"),Bn(Se(la(o),t,s)));return r([l]),{value:l,gradFunc:(u,d)=>{let[p]=d,c=!0,h=la(p);return ye(u,B(Se(u,t,c),h))}}})(n)}var eh=L({logSoftmax_:UE});function K1(e,t){for(let n=0;n<e.length;++n)if(e[e.length-n-1]!==t-1-n)return!1;return!0}function $3(e,t,n){let a=e.length+t.length,r=[],s=0,i=0;for(let o=0;o<a;o++)n.indexOf(o)===-1?r.push(e[s++]):r.push(t[i++]);return r}function D3(e,t){let n=[],a=e.length;for(let s=0;s<a;s++)t.indexOf(s)===-1&&n.push(e[s]);let r=t.map(s=>e[s]);return[n,r]}function Ei(e,t){let n=t.map(a=>1);return $3(e,n,t)}function HE(e,t,n){D(K1(t,n),()=>`${e} supports only inner-most axes for now. Got axes ${t} and rank-${n} input.`)}function O3(e,t){if(K1(e,t))return null;let n=[];for(let a=0;a<t;++a)e.indexOf(a)===-1&&n.push(a);return e.forEach(a=>n.push(a)),n}function Z1(e){return e.map((t,n)=>[n,t]).sort((t,n)=>t[1]-n[1]).map(t=>t[0])}function GE(e,t){let n=[];for(let a=t-e;a<t;++a)n.push(a);return n}function qE(e,t=null,n=!1){let a=M(e,"x","logSumExp"),r=ya(t,a.shape),s=Vn(a,r,!0),i=ye(a,s),o=la(i),l=Se(o,r),u=Bn(l),d=ie(q(s,u.shape),u);if(n){let p=Ei(d.shape,r);return q(d,p)}return d}var Y1=L({logSumExp_:qE});function XE(e,t){let n=M(e,"a","logicalAnd","bool"),a=M(t,"b","logicalAnd","bool");mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Uo,r)}var xa=L({logicalAnd_:XE});function KE(e){let t={x:M(e,"x","logicalNot","bool")};return P.runKernel(Lu,t)}var cd=L({logicalNot_:KE});function ZE(e,t){let n=M(e,"a","logicalOr","bool"),a=M(t,"b","logicalOr","bool");mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Wu,r)}var th=L({logicalOr_:ZE});function YE(e,t){let n=M(e,"a","logicalXor","bool"),a=M(t,"b","logicalXor","bool");return mt(n.shape,a.shape),xa(th(e,t),cd(xa(e,t)))}var z3=L({logicalXor_:YE});function JE(e,t,n,a,r){let s=M(e,"x","maxPool"),i=1,o=s,l=!1;s.rank===3&&(l=!0,o=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),D(o.rank===4,()=>`Error in maxPool: input must be rank 4 but got rank ${o.rank}.`),D(Ga(n,i),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${n} and dilations '${i}'`),r!=null&&D(qt(a),()=>`Error in maxPool: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r},p=P.runKernel(Bs,u,d);return l?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var hd=L({maxPool_:JE});function QE(e,t=[1,1,1],n,a,r,s="NDHWC"){let i=M(e,"x","maxPool3d"),o=i,l=!1;i.rank===4&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]])),D(o.rank===5,()=>`Error in maxPool3d: x must be rank 5 but got rank ${o.rank}.`),D(s==="NDHWC",()=>`Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of ${s}`),r!=null&&D(qt(a),()=>`Error in maxPool3d: pad must be an integer when using, dimRoundingMode ${r} but got pad ${a}.`);let u={x:o},d={filterSize:t,strides:n,pad:a,dimRoundingMode:r,dataFormat:s},p=P.runKernel(Vu,u,d);return l?q(p,[p.shape[1],p.shape[2],p.shape[3],p.shape[4]]):p}var J1=L({maxPool3d_:QE});function eR(e,t,n,a,r=!1){let s={x:M(e,"x","maxPoolWithArgmax")},i={filterSize:t,strides:n,pad:a,includeBatchInIndex:r},o=P.runKernel(gc,s,i);return{result:o[0],indexes:o[1]}}var _3=L({maxPoolWithArgmax_:eR});function tR(e,t){let n=M(e,"a","maximum"),a=M(t,"b","maximum");[n,a]=It(n,a),n.dtype==="bool"&&(n=ge(n,"int32"),a=ge(a,"int32")),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Ws,r)}var Xa=L({maximum_:tR});function nR(e,t=null,n=!1){let a={x:M(e,"x","mean")},r={axis:t,keepDims:n};return P.runKernel(Vs,a,r)}var Nt=L({mean_:nR});function $t(e,t="float32"){if(t==="complex64"){let a=$t(e,"float32"),r=$t(e,"float32");return Wr(a,r)}let n=qp(Mt(e),t);return P.makeTensor(n,e,t)}function jn(e,t="float32"){if(t==="complex64"){let a=jn(e,"float32"),r=$t(e,"float32");return Wr(a,r)}let n=Um(Mt(e),t);return P.makeTensor(n,e,t)}function aR(e,t,{indexing:n="xy"}={}){if(n!=="xy"&&n!=="ij")throw new TypeError(`${n} is not a valid third argument to meshgrid`);if(e===void 0)return[];let a=M(e,"x","meshgrid",e instanceof Be?e.dtype:"float32");if(t===void 0)return[a];let r=M(t,"y","meshgrid",t instanceof Be?t.dtype:"float32"),s=Mt(a.shape),i=Mt(r.shape);return n==="xy"?(a=q(a,[1,-1]),r=q(r,[-1,1]),[je(jn([i,1],a.dtype),a),je(r,jn([1,s],r.dtype))]):(a=q(a,[-1,1]),r=q(r,[1,-1]),[je(a,jn([1,i],a.dtype)),je(jn([s,1],r.dtype),r)])}function rR(e,t=null,n=!1){let a={x:M(e,"x","min")},r={axis:t,keepDims:n};return P.runKernel(js,a,r)}var fd=L({min_:rR});function sR(e,t){let n=M(e,"a","minimum"),a=M(t,"b","minimum");[n,a]=It(n,a),n.dtype==="bool"&&(n=ge(n,"int32"),a=ge(a,"int32")),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(Us,r)}var Fl=L({minimum_:sR});function iR(e,t,n){D(n==="reflect"||n==="symmetric",()=>`Invalid mode. Mode must be either reflect or symmetric. Got ${n}.`);let a=M(e,"x","mirrorPad");if(a.rank===0)throw new Error("mirrorPad(scalar) is not defined. Pass non-scalar to mirrorPad");D(t.length===a.rank,()=>`Padding doesn't match input. Must be ${a.rank}. Got ${t.length}.`);let r=n==="reflect"?1:0;for(let o=0;o<a.rank;o++)D(t[o].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),D(t[o][0]>=0&&t[o][0]<=a.shape[o]-r&&t[o][1]>=0&&t[o][1]<=a.shape[o]-r,()=>`Padding in dimension ${o} cannot be greater than or equal to ${a.shape[o]-r} or less than 0 for input of shape ${a.shape}`);let s={paddings:t,mode:n},i={x:a};return P.runKernel(Hs,i,s)}var Q1=L({mirrorPad_:iR});function oR(e,t){let n=M(e,"a","mod"),a=M(t,"b","mod");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(Ho,r)}var eg=L({mod_:oR});function lR(e){let t=M(e,"x","square"),n={};return P.runKernel("Square",{x:t},n)}var ot=L({square_:lR});function uR(e,t=null,n=!1){e=M(e,"x","moments");let a=ya(t,e.shape),r=Nt(e,a,n),s=r.shape;n||(s=Ei(r.shape,a));let i=ot(ye(ge(e,"float32"),q(r,s))),o=Nt(i,a,n);return{mean:r,variance:o}}var nh=L({moments_:uR});function dR(e,t,n,a){let r=M(t,"data","multiRNNCell"),s=rd(n,"c","multiRNNCell"),i=rd(a,"h","multiRNNCell"),o=r,l=[];for(let p=0;p<e.length;p++){let c=e[p](o,s[p],i[p]);l.push(c[0]),l.push(c[1]),o=c[1]}let u=[],d=[];for(let p=0;p<l.length;p+=2)u.push(l[p]),d.push(l[p+1]);return[u,d]}var pR=L({multiRNNCell_:dR});function cR(e,t,n,a=!1){let r=M(e,"logits","multinomial"),s=r.size,i=r.rank;if(s<2)throw new Error(`Error in multinomial: you need at least 2 outcomes, but got ${s}.`);if(i>2)throw new Error(`Rank of probabilities must be 1 or 2, but is ${i}`);n=n||Math.random();let o={logits:i===1?q(r,[1,-1]):r},l={numSamples:t,seed:n,normalized:a},u=P.runKernel(yc,o,l);return i===1?q(u,[u.size]):u}var P3=L({multinomial_:cR});function hR(e,t){let n=M(e,"a","notEqual","string_or_numeric"),a=M(t,"b","notEqual","string_or_numeric");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a};return P.runKernel(qo,r)}var Ri=L({notEqual_:hR});function fR(e){let t={x:M(e,"x","onesLike")};return P.runKernel(Yo,t)}var Un=L({onesLike_:fR});function mR(e,t){let n=M(e,"v1","outerProduct"),a=M(t,"v2","outerProduct");D(n.rank===1&&a.rank===1,()=>`Error in outerProduct: inputs must be rank 1, but got ranks ${n.rank} and ${a.rank}.`);let r=q(n,[-1,1]),s=q(a,[1,-1]);return je(r,s)}var gR=L({outerProduct_:mR});function yR(e,t,n=0){let a=M(e,"x","pad");if(a.rank===0)throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");let r={paddings:t,constantValue:n},s={x:a};return P.runKernel(Xs,s,r)}var gr=L({pad_:yR});function AR(e,t,n=0){return D(t.length===2,()=>"Invalid number of paddings. Must be length of 2."),gr(e,[t],n)}var xR=L({pad1d_:AR});function bR(e,t,n=0){return D(t.length===2&&t[0].length===2&&t[1].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gr(e,t,n)}var vR=L({pad2d_:bR});function wR(e,t,n=0){return D(t.length===3&&t[0].length===2&&t[1].length===2&&t[2].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gr(e,t,n)}var kR=L({pad3d_:wR});function IR(e,t,n=0){return D(t.length===4&&t[0].length===2&&t[1].length===2&&t[2].length===2&&t[3].length===2,()=>"Invalid number of paddings. Must be length of 2 each."),gr(e,t,n)}var SR=L({pad4d_:IR});function NR(e,t,n){let a=M(e,"x","spaceToBatchND");D(a.rank>=1+t.length,()=>`input rank ${a.rank} should be > than [blockShape] ${t.length}`),D(n.length===t.length,()=>`paddings.shape[0] ${n.length} must be equal to [blockShape] ${t.length}`),D(a.shape.reduce((i,o,l)=>l>0&&l<=t.length?i&&(o+n[l-1][0]+n[l-1][1])%t[l-1]==0:i,!0),()=>`input spatial dimensions ${a.shape.slice(1)} with paddings ${n.toString()} must be divisible by blockShapes ${t.toString()}`);let r={x:a},s={blockShape:t,paddings:n};return P.runKernel(Hu,r,s)}var md=L({spaceToBatchND_:NR});function TR(e,t,n,a,r,s){r==null&&(r=[1,1]),s==null&&(s=1),a===0&&(a="valid");let i=M(e,"x","maxPool"),o=i,l=!1;i.rank===3&&(l=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]])),D(Ga(s,r),()=>`Error in pool: Either strides or dilations must be 1. Got strides ${s} and dilations '${r}'`);let u=f3(o.shape,t,s,r,a),d=[u.dilationHeight,u.dilationWidth],p;a==="same"?p=ER([u.filterHeight,u.filterWidth],d):p=[[0,0],[0,0]];let c=d[0]===1&&d[1]===1,[h,m]=CR([u.inHeight,u.inWidth],d,p),f=c?a:"valid",g=c?o:md(o,d,h),y=(n==="avg"?()=>ld(g,t,s,f):()=>hd(g,t,s,f))(),A=c?y:ud(y,d,m);return l?q(A,[A.shape[1],A.shape[2],A.shape[3]]):A}function CR(e,t,n){let a=n.map(d=>d[0]),r=n.map(d=>d[1]),s=e.concat(a,r),i=t.map((d,p)=>(d-s[p]%d)%d),o=r.map((d,p)=>d+i[p]),l=t.map((d,p)=>[a[p],o[p]]),u=t.map((d,p)=>[0,i[p]]);return[l,u]}function ER(e,t){let n=e.map((s,i)=>s+(s-1)*(t[i]-1)).map(s=>s-1),a=n.map(s=>Math.floor(s/2)),r=n.map((s,i)=>s-a[i]);return n.map((s,i)=>[a[i],r[i]])}var L3=L({pool_:TR});function RR(e,t){let n=M(e,"base","pow"),a=M(t,"exp","pow");[n,a]=It(n,a);let r={a:n,b:a};return P.runKernel(Ks,r)}var yr=L({pow_:RR});function MR(e,t){let n=M(e,"x","prelu"),a=M(t,"alpha","prelu"),r={x:n,alpha:a};return P.runKernel(Zs,r)}var gd=L({prelu_:MR});function FR(e,t=null,n=!1){let a=M(e,"x","prod");a.dtype==="bool"&&(a=ge(a,"int32"));let r={x:a},s={axis:t,keepDims:n};return P.runKernel(Qo,r,s)}var ah=L({prod_:FR});function $R(e,t,n){let a=Mt(e),r=null;if(n==null||n==="float32")r=new Float32Array(a);else if(n==="int32")r=new Int32Array(a);else if(n==="bool")r=new Uint8Array(a);else throw new Error(`Unknown data type ${n}`);for(let s=0;s<a;s++)r[s]=t();return P.makeTensor(r,e,n)}var DR=L({rand_:$R}),tg=gs(N5()),ng=class{constructor(e,t,n,a,r){this.mean=e,this.stdDev=t,this.dtype=n,this.nextVal=NaN,this.truncated=a,this.truncated&&(this.upper=this.mean+this.stdDev*2,this.lower=this.mean-this.stdDev*2);let s=r||Math.random();this.random=tg.alea(s.toString())}nextValue(){if(!isNaN(this.nextVal)){let a=this.nextVal;return this.nextVal=NaN,a}let e,t,n=!1;for(;!n;){let a,r,s;do a=2*this.random()-1,r=2*this.random()-1,s=a*a+r*r;while(s>=1||s===0);let i=Math.sqrt(-2*Math.log(s)/s);e=this.mean+this.stdDev*a*i,t=this.mean+this.stdDev*r*i,(!this.truncated||this.isValidTruncated(e))&&(n=!0)}return(!this.truncated||this.isValidTruncated(t))&&(this.nextVal=this.convertValue(t)),this.convertValue(e)}convertValue(e){return this.dtype==null||this.dtype==="float32"?e:Math.round(e)}isValidTruncated(e){return e<=this.upper&&e>=this.lower}},OR=class{constructor(e,t,n,a){this.alpha=e,this.beta=1/t,this.dtype=n;let r=a||Math.random();this.randu=tg.alea(r.toString()),this.randn=new ng(0,1,n,!1,this.randu()),e<1?this.d=e+2/3:this.d=e-1/3,this.c=1/Math.sqrt(9*this.d)}nextValue(){let e,t,n,a,r,s;for(;;){do a=this.randn.nextValue(),s=1+this.c*a;while(s<=0);if(s*=s*s,e=a*a,t=1-.331*e*e,n=.5*e+this.d*(1-s+Math.log(s)),r=this.randu(),r<t||Math.log(r)<n)break}return s=1/this.beta*this.d*s,this.alpha<1&&(s*=Math.pow(this.randu(),1/this.alpha)),this.convertValue(s)}convertValue(e){return this.dtype==="float32"?e:Math.round(e)}},zR=class{constructor(e=0,t=1,n,a){if(this.canReturnFloat=()=>this.dtype==null||this.dtype==="float32",this.min=e,this.range=t-e,this.dtype=n,a==null&&(a=Math.random()),typeof a=="number"&&(a=a.toString()),!this.canReturnFloat()&&this.range<=1)throw new Error(`The difference between ${e} - ${t} <= 1 and dtype is not float`);this.random=tg.alea(a)}convertValue(e){return this.canReturnFloat()?e:Math.round(e)}nextValue(){return this.convertValue(this.min+this.range*this.random())}};function _R(e,t,n=1,a="float32",r){if(n==null&&(n=1),a==null&&(a="float32"),a!=="float32"&&a!=="int32")throw new Error(`Unsupported data type ${a}`);let s=new OR(t,n,a,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var PR=L({randomGamma_:_R});function LR(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error(`Unsupported data type ${a}`);let s=new ng(t,n,a,!1,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var W3=L({randomNormal_:LR});function WR(e,t=0,n=1,a="float32",r){let s=Ve(e,a),i=new zR(t,n,null,r);for(let o=0;o<s.values.length;o++)s.values[o]=i.nextValue();return s.toTensor()}var $l=L({randomUniform_:WR});function Dl(e,t,n=1,a="float32"){if(n===0)throw new Error("Cannot have a step of zero");let r={start:e,stop:t,step:n,dtype:a};return P.runKernel(ju,{},r)}function BR(e){let t={input:M(e,"input","real")};return P.runKernel(Ac,t)}var yd=L({real_:BR});function VR(e){let t={x:M(e,"x","reciprocal")};return P.runKernel(el,t)}var ag=L({reciprocal_:VR});function jR(e){let t={x:M(e,"x","relu")};return P.runKernel(Ys,t)}var Ka=L({relu_:jR});function UR(e){let t={x:M(e,"x","relu6")};return P.runKernel(Qs,t)}var rh=L({relu6_:UR});function HR(e,t){let n={x:M(e,"x","reverse")},a={dims:t};return P.runKernel(ei,n,a)}var Hn=L({reverse_:HR});function GR(e){let t=M(e,"x","reverse");return D(t.rank===1,()=>`Error in reverse1D: x must be rank 1 but got rank ${t.rank}.`),Hn(t,0)}var qR=L({reverse1d_:GR});function XR(e,t){let n=M(e,"x","reverse");return D(n.rank===2,()=>`Error in reverse2D: x must be rank 2 but got rank ${n.rank}.`),Hn(n,t)}var KR=L({reverse2d_:XR});function ZR(e,t){let n=M(e,"x","reverse");return D(n.rank===3,()=>`Error in reverse3D: x must be rank 3 but got rank ${n.rank}.`),Hn(n,t)}var YR=L({reverse3d_:ZR});function JR(e,t){let n=M(e,"x","reverse");return D(n.rank===4,()=>`Error in reverse4D: x must be rank 4 but got rank ${n.rank}.`),Hn(n,t)}var QR=L({reverse4d_:JR});function eM(e){let t={x:M(e,"x","round")};return P.runKernel(ti,t)}var sh=L({round_:eM});function tM(e){let t={x:M(e,"x","rsqrt")};return P.runKernel(ni,t)}var ih=L({rsqrt_:tM});function ke(e,t){if((on(e)&&t!=="string"||Array.isArray(e))&&t!=="complex64")throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");if(t==="string"&&on(e)&&!(e instanceof Uint8Array))throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");return Br(e,[],[],t)}function nM(e){let t={x:M(e,"x","selu")};return P.runKernel(rl,t)}var oh=L({selu_:nM});function aM(e,t,n,a,r,s=[1,1],i="NHWC"){let o=M(e,"x","separableConv2d"),l=M(t,"depthwiseFilter","separableConv2d"),u=M(n,"pointwiseFilter","separableConv2d"),d=o,p=!1;if(o.rank===3&&(p=!0,d=q(o,[1,o.shape[0],o.shape[1],o.shape[2]])),i==="NCHW")throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");D(d.rank===4,()=>`Error in separableConv2d: input must be rank 4, but got rank ${d.rank}.`),D(l.rank===4,()=>`Error in separableConv2d: depthwise filter must be rank 4, but got rank ${l.rank}.`),D(u.rank===4,()=>`Error in separableConv2d: pointwise filter must be rank 4, but got rank ${l.rank}.`),D(u.shape[0]===1,()=>`Error in separableConv2d: the first dimension of pointwise filter must be 1, but got ${u.shape[0]}.`),D(u.shape[1]===1,()=>`Error in separableConv2d: the second dimension of pointwise filter must be 1, but got ${u.shape[1]}.`);let c=l.shape[2],h=l.shape[3];D(u.shape[2]===c*h,()=>`Error in separableConv2d: the third dimension of pointwise filter must be ${c*h}, but got ${u.shape[2]}.`);let m=Cl(d,l,a,r,i,s),f=mr(m,u,1,"valid",i);return p?q(f,[f.shape[1],f.shape[2],f.shape[3]]):f}var rg=L({separableConv2d_:aM});async function rM(e,t){let n=M(e,"x","setdiff1d"),a=M(t,"y","setdiff1d");D(n.dtype===a.dtype,()=>`x and y should have the same dtype, but got x (${n.dtype}) and y (${a.dtype}).`),D(n.rank===1,()=>`x should be 1D tensor, but got x (${n.shape}).`),D(a.rank===1,()=>`y should be 1D tensor, but got y (${a.shape}).`);let r=await n.data(),s=await a.data(),i=new Set(s),o=0;for(let d=0;d<r.length;d++)i.has(r[d])||o++;let l=new Lt([o],n.dtype),u=new Lt([o],"int32");for(let d=0,p=0;d<r.length;d++)i.has(r[d])||(l.values[p]=r[d],u.values[p]=d,p++);return[l.toTensor(),u.toTensor()]}var B3=rM;function sM(e){let t={x:M(e,"x","sign")};return P.runKernel(ol,t)}var sg=L({sign_:sM});function iM(e){let t={x:M(e,"x","sin")};return P.runKernel(ai,t)}var lh=L({sin_:iM});function oM(e){let t={x:M(e,"x","sinh")};return P.runKernel(il,t)}var uh=L({sinh_:oM});function lM(e,t,n){let a=M(e,"x","slice1d");return D(a.rank===1,()=>`slice1d expects a rank-1 tensor, but got a rank-${a.rank} tensor`),Re(a,[t],[n])}var dh=L({slice1d_:lM});function uM(e,t,n){let a=M(e,"x","slice2d");return D(a.rank===2,()=>`slice2d expects a rank-2 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var ig=L({slice2d_:uM});function dM(e,t,n){let a=M(e,"x","slice3d");return D(a.rank===3,()=>`slice3d expects a rank-3 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var ph=L({slice3d_:dM});function pM(e,t,n){let a=M(e,"x","slice4d");return D(a.rank===4,()=>`slice4d expects a rank-4 tensor, but got a rank-${a.rank} tensor`),Re(a,t,n)}var Ad=L({slice4d_:pM});function cM(e,t=-1){let n=M(e,"logits","softmax","float32");if(t===-1&&(t=n.rank-1),t!==n.rank-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${n.rank} and dim was ${t}`);let a={logits:n},r={dim:t};return P.runKernel(oi,a,r)}var xd=L({softmax_:cM});function hM(e){D(e.dtype==="complex64",()=>`The dtype for tf.spectral.fft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(uc,t)}var bd=L({fft_:hM});function fM(e){D(e.dtype==="complex64",()=>`The dtype for tf.spectral.ifft() must be complex64 but got ${e.dtype}.`);let t={input:e};return P.runKernel(dc,t)}var Ol=L({ifft_:fM});function mM(e){let t=e.shape[e.shape.length-1],n=e.size/t,a;if(t<=2){let r=q(e,[n,t]);a=Ol(r)}else{let r=[n,2*(t-1)],s=q(yd(e),[n,t]),i=q(Zc(e),[n,t]),o=Hn(Re(s,[0,1],[n,t-2]),1),l=B(Hn(Re(i,[0,1],[n,t-2]),1),ke(-1)),u=lt([s,o],1),d=lt([i,l],1),p=q(Wr(u,d),[r[0],r[1]]);a=Ol(p)}if(a=yd(a),e.rank===3&&e.shape[0]!==0){let r=a,s=e.shape[0];a=q(a,[s,a.shape[0]/s,a.shape[1]]),r.dispose()}return a}var ch=L({irfft_:mM});function gM(e,t,n=0){let a={x:M(e,"x","split")},r={numOrSizeSplits:t,axis:n};return P.runKernel(ul,a,r)}var Zt=L({split_:gM});function yM(e,t){D(e.dtype==="float32",()=>`The dtype for rfft() must be real value but got ${e.dtype}`);let n=e.shape[e.shape.length-1],a=e.size/n,r;if(t!=null&&t<n){let m=e.shape.map(g=>0),f=e.shape.map(g=>g);f[e.shape.length-1]=t,r=Re(e,m,f),n=t}else if(t!=null&&t>n){let m=e.shape.map(f=>f);m[e.shape.length-1]=t-n,r=lt([e,$t(m)],e.shape.length-1),n=t}else r=e;let s=Ge(r),i=q(Wr(r,s),[a,n]),o=bd(i),l=Math.floor(n/2)+1,u=yd(o),d=Zc(o),p=Zt(u,[l,n-l],u.shape.length-1),c=Zt(d,[l,n-l],d.shape.length-1),h=r.shape.slice();return h[r.shape.length-1]=l,q(Wr(p[0],c[0]),h)}var vd=L({rfft_:yM});function AM(e){let t={x:M(e,"x","sqrt")};return P.runKernel(si,t)}var an=L({sqrt_:AM});function xM(e,t){let n=M(e,"a","squaredDifference"),a=M(t,"b","squaredDifference");[n,a]=It(n,a),mt(n.shape,a.shape);let r={a:n,b:a},s={};return P.runKernel(li,r,s)}var hh=L({squaredDifference_:xM});function bM(e,t){let n=M(e,"x","squeeze");return q(n,rb(n.shape,t).newShape)}var Vt=L({squeeze_:bM});function vM(e,t=0){let n=rd(e,"tensors","stack","string_or_numeric");D(n.length>=1,()=>"Pass at least one tensor to tf.stack"),n.length>0&&D(t<=n[0].rank,()=>"Axis must be <= rank of the tensor");let a=n,r={axis:t};return P.runKernel(Jo,a,r)}var gn=L({stack_:vM});function wM(e,t=0){let n={x:M(e,"x","step")},a={alpha:t};return P.runKernel(Pr,n,a)}var zl=L({step_:wM});function kM(e,t,n,a,r=0,s=0,i=0,o=0,l=0){let u={x:M(e,"x","stridedSlice","string_or_numeric")},d={begin:t,end:n,strides:a,beginMask:r,endMask:s,ellipsisMask:i,newAxisMask:o,shrinkAxisMask:l};return P.runKernel(dl,u,d)}var og=L({stridedSlice_:kM});function IM(e){let t={x:M(e,"x","tan")};return P.runKernel(di,t)}var lg=L({tan_:IM});function Dt(e,t){ys(e);let n=Ua(e,t);if(n.length!==1)throw new Error("tensor1d() requires values to be a flat/TypedArray");return Br(e,null,n,t)}function Ta(e,t,n){if(ys(e),t!=null&&t.length!==2)throw new Error("tensor2d() requires shape to have two numbers");let a=Ua(e,n);if(a.length!==2&&a.length!==1)throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");return Br(e,t,a,n)}function SM(e,t,n){if(ys(e),t!=null&&t.length!==4)throw new Error("tensor4d() requires shape to have four numbers");let a=Ua(e,n);if(a.length!==4&&a.length!==1)throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");return Br(e,t,a,n)}function NM(e,t,n){if(ys(e),t!=null&&t.length!==5)throw new Error("tensor5d() requires shape to have five numbers");let a=Ua(e,n);if(a.length!==5&&a.length!==1)throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");return Br(e,t,a,n)}function TM(e,t,n){if(ys(e),t!=null&&t.length!==6)throw new Error("tensor6d() requires shape to have six numbers");let a=Ua(e,n);if(a.length!==6&&a.length!==1)throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");if(a.length===1&&t==null)throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");return t=t||a,Br(e,t,a,n)}function CM(e,t=1,n=!0){let a=M(e,"x","topk");if(a.rank===0)throw new Error("topk() expects the input to be of rank 1 or higher");let r=a.shape[a.shape.length-1];if(t>r)throw new Error(`'k' passed to topk() must be <= the last dimension (${r}) but got ${t}`);let s={x:a},i={k:t,sorted:n},[o,l]=P.runKernel(pl,s,i);return{values:o,indices:l}}var ug=L({topk_:CM});function EM(e,t=0,n=1,a,r){if(a!=null&&a==="bool")throw new Error("Unsupported data type $ { dtype }");let s=new ng(t,n,a,!0,r),i=Ve(e,a);for(let o=0;o<i.values.length;o++)i.values[o]=s.nextValue();return i.toTensor()}var fh=L({truncatedNormal_:EM});function RM(e,t=0){let n=M(e,"x","unique","string_or_numeric");D(n.rank>0,()=>"The input tensor must be at least 1D");let a={x:n},r={axis:t},[s,i]=P.runKernel(Ec,a,r);return{values:s,indices:i}}var mh=L({unique_:RM});function MM(e,t,n){let a=M(e,"x","unsortedSegmentSum"),r=M(t,"segmentIds","unsortedSegmentSum","int32");D(qt(n),()=>"numSegments must be of dtype int");let s={x:a,segmentIds:r},i={numSegments:n};return P.runKernel(qu,s,i)}var dg=L({unsortedSegmentSum_:MM});function FM(e,t=0){let n=M(e,"x","unstack","string_or_numeric");D(t>=-n.shape.length&&t<n.shape.length,()=>`Axis = ${t} is not in [-${n.shape.length}, ${n.shape.length})`);let a={value:n},r={axis:t};return P.runKernel(hl,a,r)}var Gn=L({unstack_:FM});function V3(e,t=!0,n,a){return P.makeVariable(e,t,n,a)}function j3(e,t){let n=[];for(let s=0;s<t.length;s++)t[s]&&n.push(s);let a=Ve(e,"int32"),r=Ve([n.length,e.length],"int32");for(let s=0;s<n.length;s++){let i=a.indexToLoc(n[s]),o=s*e.length;r.values.set(i,o)}return r.toTensor()}async function $M(e){let t=M(e,"condition","whereAsync","bool"),n=await t.data(),a=j3(t.shape,n);return e!==t&&t.dispose(),a}var pg=$M;async function DM(e,t,n){let a=M(e,"tensor","boolMask"),r=M(t,"mask","boolMask","bool"),s=n==null?0:n,i=r.rank,o=a.shape;D(i>0,()=>"mask cannot be scalar"),cn(o.slice(s,s+i),r.shape,"mask's shape must match the first K dimensions of tensor's shape,");let l=1;for(let f=s;f<s+i;f++)l*=o[f];let u=o.slice(0,s).concat([l],o.slice(s+i)),d=q(a,u),p=q(r,[-1]),c=await pg(p),h=Vt(c,[1]),m=Ti(d,h,s);return e!==a&&a.dispose(),t!==r&&r.dispose(),h.dispose(),d.dispose(),p.dispose(),c.dispose(),m}var OM=DM;function zM(e,t="euclidean",n=null,a=!1){e=M(e,"x","norm");let r=U3(e,t,n),s=r.shape;if(a){let i=ya(n,e.shape);s=Ei(r.shape,i)}return q(r,s)}function U3(e,t,n=null){if(e.rank===0)return Wt(e);if(e.rank!==1&&n===null)return U3(q(e,[-1]),t,n);if(e.rank===1||typeof n=="number"||Array.isArray(n)&&n.length===1){if(t===1)return Se(Wt(e),n);if(t===Infinity)return Vn(Wt(e),n);if(t===-Infinity)return fd(Wt(e),n);if(t==="euclidean"||t===2)return an(Se(yr(Wt(e),ke(2,"int32")),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}if(Array.isArray(n)&&n.length===2){if(t===1)return Vn(Se(Wt(e),n[0]),n[1]-1);if(t===Infinity)return Vn(Se(Wt(e),n[1]),n[0]);if(t===-Infinity)return fd(Se(Wt(e),n[1]),n[0]);if(t==="fro"||t==="euclidean")return an(Se(ot(e),n));throw new Error(`Error in norm: invalid ord value: ${t}`)}throw new Error(`Error in norm: invalid axis: ${n}`)}var gh=L({norm_:zM});function _M(e,t,n,a,r=!0){let s=M(e,"v","movingAverage"),i=M(t,"x","movingAverage"),o=M(n,"decay","movingAverage");Sb(s,i),D(cr(s.shape,i.shape),()=>"Shape mismatch in v and x");let l=ke(1),u=ye(l,o),d=B(ye(i,s),u);if(r){D(a!=null,()=>"When using zeroDebias: true, step is required.");let p=M(a,"step","movingAverage");d=me(d,ye(l,yr(o,p)))}return ie(s,d)}var PM=L({movingAverage_:_M});function LM(e,t,n){let a=M(e,"indices","scatterND","int32"),r=M(t,"updates","scatterND");b1(r,a,n);let s={indices:a,updates:r},i={shape:n};return P.runKernel(nl,s,i)}var H3=L({scatterND_:LM});function WM(e,t,n,a){if(e.dtype!=="int32")throw new Error(`tf.sparseToDense() expects the indices to be int32 type, but the dtype was ${e.dtype}.`);if(e.rank>2)throw new Error(`sparseIndices should be a scalar, vector, or matrix, but got shape ${e.shape}.`);let r=e.rank>0?e.shape[0]:1,s=e.rank>1?e.shape[1]:1;if(n.length!==s)throw new Error(`outputShape has incorrect number of elements:, ${n.length}, should be: ${s}.`);let i=t.size;if(!(t.rank===0||t.rank===1&&i===r))throw new Error(`sparseValues has incorrect shape ${t.shape}, should be [] or [${r}]`);if(t.dtype!==a.dtype)throw new Error("sparseValues.dtype must match defaultValues.dtype")}function BM(e,t,n,a=0){let r=M(e,"sparseIndices","sparseToDense","int32"),s=M(t,"sparseValues","sparseToDense"),i=M(a,"defaultValue","sparseToDense",s.dtype);WM(r,s,n,i);let o={sparseIndices:r,sparseValues:s,defaultValue:i},l={outputShape:n};return P.runKernel(Sc,o,l)}var cg=L({sparseToDense_:BM});function VM(e,t){let n=M(t,"indices","gatherND","int32"),a={params:M(e,"x","gatherND","string_or_numeric"),indices:n};return P.runKernel(zo,a)}var G3=L({gatherND_:VM});function jM(e,t){if(t==null)return e.shape.slice();if(cr(e.shape,t))return t;if(e.shape.length===t.length){let n=[];for(let a=0;a<e.shape.length;a++)t[a]==null&&e.shape[a]!=null?n.push(e.shape[a]):n.push(t[a]);return n}return t}function UM(e,t,n,a){let r=M(e,"x","dropout");if(D(r.dtype==="float32",()=>`x has to be a floating point tensor since it's going to be scaled, but got a ${r.dtype} tensor instead.`),D(t>=0&&t<1,()=>`rate must be a float in the range [0, 1), but got ${t}.`),t===0)return e instanceof Be?r.clone():r;let s=jM(r,n),i=1-t,o=me(Ml(ie($l(s,0,1,"float32",a),i)),i);return B(r,o)}var q3=L({dropout_:UM});function X3(e){return Math.floor(Math.pow(2,Math.ceil(Math.log(e)/Math.log(2))))}function hg(e,t,n){let a=1-e%2,r=new Float32Array(e);for(let s=0;s<e;++s){let i=2*Math.PI*s/(e+a-1);r[s]=t-n*Math.cos(i)}return Dt(r,"float32")}async function HM(e,t,n=1){let a=M(e,"predictions","inTopK"),r=M(t,"targets","inTopK");D(a.rank>1,()=>`inTopK() expects the predictions to be of rank 2 or higher, but got ${a.rank}`),D(a.rank-1===r.rank,()=>`predictions rank should be 1 larger than targets rank, but got predictions rank ${a.rank} and targets rank ${r.rank}`),cn(a.shape.slice(0,a.shape.length-1),r.shape,"predictions's shape should be align with the targets' shape, except the last dimension.");let s=a.shape[a.shape.length-1];D(n>0&&n<=s,()=>`'k' passed to inTopK() must be > 0 && <= the predictions last dimension (${s}), but got ${n}`);let i=await a.data(),o=await r.data(),[l,u]=[i.length/s,s],d=sb("bool",l);for(let p=0;p<l;p++){let c=p*u,h=i.subarray(c,c+u),m=[];for(let f=0;f<h.length;f++)m.push({value:h[f],index:f});m.sort((f,g)=>g.value-f.value),d[p]=0;for(let f=0;f<n;f++)if(m[f].index===o[p]){d[p]=1;break}}return e!==a&&a.dispose(),t!==r&&r.dispose(),ln(d,r.shape,"bool")}var GM=HM,Kr={};Fe(Kr,{conv2d:()=>KM,depthwiseConv2d:()=>QM,matMul:()=>tF});function qM(e,t,n,a,r,s="NHWC",i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]])),D(o.rank===4,()=>`Error in conv2dDerFilter: input must be rank 4, but got shape ${o.shape}.`),D(l.rank===4,()=>`Error in conv2dDerFilter: dy must be rank 4, but got shape ${l.shape}.`),D(n.length===4,()=>`Error in conv2dDerFilter: filterShape must be length 4, but got ${n}.`);let u=s==="NHWC"?o.shape[3]:o.shape[1],d=s==="NHWC"?l.shape[3]:l.shape[1];D(u===n[2],()=>`Error in conv2dDerFilter: depth of input ${u}) must match input depth in filter (${n[2]}.`),D(d===n[3],()=>`Error in conv2dDerFilter: depth of dy (${d}) must match output depth for filter (${n[3]}).`),i!=null&&D(qt(r),()=>`Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode ${i} but got pad ${r}.`);let p={x:o,dy:l},c={strides:a,pad:r,dataFormat:s,dimRoundingMode:i,filterShape:n};return P.runKernel(Jp,p,c)}var fg=L({conv2DBackpropFilter_:qM});function yh(e,t,n){if(n==null||n==="linear")return e;if(n==="relu")return B(e,zl(t));throw new Error(`Cannot compute gradient for fused activation ${n}.`)}function Ah(e,t){let n=t,a=Bt(e.shape,t.shape);return a.length>0&&(n=Se(n,a)),q(n,e.shape)}function xh(e,t,n,a){if(t==="linear")return e;if(t==="relu")return Ka(e);if(t==="elu")return El(e);if(t==="relu6")return rh(e);if(t==="prelu")return gd(e,n);if(t==="leakyrelu")return pd(e,a);if(t==="sigmoid")return Rn(e);throw new Error(`Unknown fused activation ${t}.`)}var bh=(e,t)=>!(e>0)||t==="linear";function XM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(l=l||"linear",bh(P.state.gradientDepth,l)===!1){let b=mr(e,t,n,a,r,s,i);return o!=null&&(b=ie(b,o)),xh(b,l,u,d)}let p=M(e,"x","conv2d"),c=M(t,"filter","conv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=q(p,[1,p.shape[0],p.shape[1],p.shape[2]])),D(h.rank===4,()=>`Error in fused conv2d: input must be rank 4, but got rank ${h.rank}.`),D(c.rank===4,()=>`Error in fused conv2d: filter must be rank 4, but got rank ${c.rank}.`),i!=null&&D(qt(a),()=>`Error in fused conv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${a}.`),D(h.shape[3]===c.shape[2],()=>`Error in conv2d: depth of input (${h.shape[3]}) must match input depth for filter ${c.shape[2]}.`),D(Ga(n,s),()=>`Error in conv2D: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),D(r==="NHWC",()=>`Error in conv2d: got dataFormat of ${r} but only NHWC is currently supported.`);let f=od(h.shape,c.shape,n,s,a,i),g;o!=null&&(g=M(o,"bias","fused conv2d"),[g]=It(g,p),mt(f.outShape,g.shape));let y;u!=null&&(y=M(u,"prelu weights","fused conv2d"));let A=(b,w)=>{let[N,C,E,_]=w,$=yh(b,E,l);D(Ur(s),()=>`Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`);let S=L1(C.shape,$,N,n,a),z=fg(C,$,N.shape,n,a),O=[S,z];if(_!=null){let W=Ah(_,$);O.push(W)}return O},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?qa((b,w,N)=>{let C=P.runKernel(fi,x,v);return N([w,b,C]),m&&(C=q(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(h,c):qa((b,w,N,C)=>{let E=P.runKernel(fi,x,v);return C([w,b,E,N]),m&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(h,c,g)}var KM=L({fusedConv2d_:XM});function ZM(e,t,n,a,r,s=[1,1],i){let o=e;e.rank===3&&(o=q(e,[1,e.shape[0],e.shape[1],e.shape[2]]));let l=t;l.rank===3&&(l=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={x:o,dy:l},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,filterShape:n};return P.runKernel(nc,u,d)}var K3=L({depthwiseConv2dNativeBackpropFilter_:ZM});function YM(e,t,n,a,r,s=[1,1],i){let o=t,l=!1;t.rank===3&&(l=!0,o=q(t,[1,t.shape[0],t.shape[1],t.shape[2]]));let u={dy:o,filter:n},d={strides:a,pad:r,dimRoundingMode:i,dilations:s,inputShape:e},p=P.runKernel(ac,u,d);return l?q(p,[p.shape[1],p.shape[2],p.shape[3]]):p}var Z3=L({depthwiseConv2dNativeBackpropInput_:YM});function JM({x:e,filter:t,strides:n,pad:a,dataFormat:r="NHWC",dilations:s=[1,1],dimRoundingMode:i,bias:o,activation:l="linear",preluActivationWeights:u,leakyreluAlpha:d}){if(bh(P.state.gradientDepth,l)===!1){let b=Cl(e,t,n,a,r,s,i);return o!=null&&(b=ie(b,o)),xh(b,l,u,d)}let p=M(e,"x","depthwiseConv2d"),c=M(t,"filter","depthwiseConv2d"),h=p,m=!1;p.rank===3&&(m=!0,h=q(p,[1,p.shape[0],p.shape[1],p.shape[2]])),D(h.rank===4,()=>`Error in fused depthwiseConv2d: input must be rank 4, but got rank ${h.rank}.`),D(c.rank===4,()=>`Error in fused depthwiseConv2d: filter must be rank 4, but got rank ${c.rank}.`),D(h.shape[3]===c.shape[2],()=>`Error in fused depthwiseConv2d: number of input channels (${h.shape[3]}) must match the inChannels dimension in filter ${c.shape[2]}.`),s==null&&(s=[1,1]),D(Ga(n,s),()=>`Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides ${n} and dilations '${s}'`),i!=null&&D(qt(a),()=>`Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode ${i} but got pad ${a}.`);let f=od(h.shape,c.shape,n,s,a,i,!0),g;o!=null&&(g=M(o,"bias","fused conv2d"),[g]=It(g,p),mt(f.outShape,g.shape));let y;u!=null&&(y=M(u,"prelu weights","fused depthwiseConv2d"));let A=(b,w)=>{D(Ur(s),()=>`Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '${s}'`);let[N,C,E,_]=w,$=yh(b,E,l),S=Z3(C.shape,$,N,n,a,s,i),z=K3(C,$,N.shape,n,a,s,i);if(_!=null){let O=Ah(g,$);return[S,z,O]}return[S,z]},x={x:h,filter:c,bias:g,preluActivationWeights:y},v={strides:n,pad:a,dataFormat:r,dilations:s,dimRoundingMode:i,activation:l,leakyreluAlpha:d};return o==null?qa((b,w,N)=>{let C=P.runKernel(mi,x,v);return N([w,b,C]),m&&(C=q(C,[C.shape[1],C.shape[2],C.shape[3]])),{value:C,gradFunc:A}})(h,c):qa((b,w,N,C)=>{let E=P.runKernel(mi,x,v);return C([w,b,E,N]),m&&(E=q(E,[E.shape[1],E.shape[2],E.shape[3]])),{value:E,gradFunc:A}})(h,c,g)}var QM=L({fusedDepthwiseConv2d_:JM});function eF({a:e,b:t,transposeA:n=!1,transposeB:a=!1,bias:r,activation:s="linear",preluActivationWeights:i,leakyreluAlpha:o}){if(bh(P.state.gradientDepth,s)===!1){let _=je(e,t,n,a);return r!=null&&(_=ie(_,r)),xh(_,s,i,o)}let l=M(e,"a","fused matMul"),u=M(t,"b","fused matMul");[l,u]=It(l,u);let d=n?l.shape[l.rank-2]:l.shape[l.rank-1],p=a?u.shape[u.rank-1]:u.shape[u.rank-2],c=n?l.shape[l.rank-1]:l.shape[l.rank-2],h=a?u.shape[u.rank-2]:u.shape[u.rank-1],m=l.shape.slice(0,-2),f=u.shape.slice(0,-2),g=Mt(m),y=Mt(f);D(l.rank>=2&&u.rank>=2&&l.rank===u.rank,()=>`Error in fused matMul: inputs must have the same rank of at least 2, got ranks ${l.rank} and ${u.rank}.`),D(cr(m,f),()=>`Error in fused matMul: outer dimensions (${m}) and (${f}) of Tensors with shapes ${l.shape} and ${u.shape} must match.`),D(d===p,()=>`Error in fused matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${l.shape} and ${u.shape} and transposeA=${n} and transposeB=${a} must match.`);let A=l.shape.slice(0,-2).concat([c,h]),x=n?q(l,[g,d,c]):q(l,[g,c,d]),v=a?q(u,[y,h,p]):q(u,[y,p,h]),b;r!=null&&(b=M(r,"bias","fused matMul"),[b]=It(b,l),mt(A,b.shape));let w;i!=null&&(w=M(i,"prelu weights","fused matMul"));let N=(_,$)=>{let[S,z,O,W]=$,G=yh(q(_,O.shape),O,s),H,J;if(!n&&!a?(H=je(G,z,!1,!0),J=je(S,G,!0,!1)):!n&&a?(H=je(G,z,!1,!1),J=je(G,S,!0,!1)):n&&!a?(H=je(z,G,!1,!0),J=je(S,G,!1,!1)):(H=je(z,G,!0,!0),J=je(G,S,!0,!0)),r!=null){let K=Ah(W,G);return[H,J,K]}else return[H,J]},C={a:x,b:v,bias:b,preluActivationWeights:w},E={transposeA:n,transposeB:a,activation:s,leakyreluAlpha:o};return r==null?qa((_,$,S)=>{let z=P.runKernel(hi,C,E);return S([_,$,z]),{value:q(z,A),gradFunc:N}})(x,v):qa((_,$,S,z)=>{let O=P.runKernel(hi,C,E);return z([_,$,O,S]),{value:q(O,A),gradFunc:N}})(x,v,b)}var tF=L({fusedMatMul_:eF});function nF(e){return hg(e,.54,.46)}var aF=L({hammingWindow_:nF});function rF(e){return hg(e,.5,.5)}var Y3=L({hannWindow_:rF});function sF(e,t,n,a=!1,r=0){let s=0,i=[];for(;s+t<=e.size;)i.push(Re(e,s,t)),s+=n;if(a)for(;s<e.size;){let o=s+t-e.size,l=lt([Re(e,s,t-o),Rl([o],r)]);i.push(l),s+=n}return i.length===0?Ta([],[0,t]):q(lt(i),[i.length,t])}var J3=L({frame_:sF});function iF(e,t,n,a,r=Y3){a==null&&(a=X3(t));let s=J3(e,t,n),i=B(s,r(t));return vd(i,a)}var oF=L({stft_:iF});function lF(e,t,n,a,r="bilinear",s=0){let i=M(e,"image","cropAndResize"),o=M(t,"boxes","cropAndResize","float32"),l=M(n,"boxInd","cropAndResize","int32"),u=o.shape[0];D(i.rank===4,()=>`Error in cropAndResize: image must be rank 4,but got rank ${i.rank}.`),D(o.rank===2&&o.shape[1]===4,()=>`Error in cropAndResize: boxes must be have size [${u},4] but had shape ${o.shape}.`),D(l.rank===1&&l.shape[0]===u,()=>`Error in cropAndResize: boxInd must be have size [${u}] but had shape ${o.shape}.`),D(a.length===2,()=>`Error in cropAndResize: cropSize must be of length 2, but got length ${a.length}.`),D(a[0]>=1&&a[1]>=1,()=>`cropSize must be atleast [1,1], but was ${a}`),D(r==="bilinear"||r==="nearest",()=>`method must be bilinear or nearest, but was ${r}`);let d={image:i,boxes:o,boxInd:l},p={method:r,extrapolationValue:s,cropSize:a};return P.runKernel(To,d,p)}var uF=L({cropAndResize_:lF});function dF(e){let t=M(e,"image","flipLeftRight","float32");D(t.rank===4,()=>`Error in flipLeftRight: image must be rank 4,but got rank ${t.rank}.`);let n={image:t};return P.runKernel(Do,n,{})}var pF=L({flipLeftRight_:dF});function cF(e,t,n=0,a=.5){let r=M(e,"image","rotateWithOffset","float32");D(r.rank===4,()=>`Error in rotateWithOffset: image must be rank 4,but got rank ${r.rank}.`);let s={image:r},i={radians:t,fillValue:n,center:a};return P.runKernel(ml,s,i)}var hF=L({rotateWithOffset_:cF});function _l(e,t,n,a,r,s){a==null&&(a=.5),r==null&&(r=Number.NEGATIVE_INFINITY),s==null&&(s=0);let i=e.shape[0];return n=Math.min(n,i),D(0<=a&&a<=1,()=>`iouThreshold must be in [0, 1], but was '${a}'`),D(e.rank===2,()=>`boxes must be a 2D tensor, but was of rank '${e.rank}'`),D(e.shape[1]===4,()=>`boxes must have 4 columns, but 2nd dimension was ${e.shape[1]}`),D(t.rank===1,()=>"scores must be a 1D tensor"),D(t.shape[0]===i,()=>`scores has incompatible shape with boxes. Expected ${i}, but was ${t.shape[0]}`),D(0<=s&&s<=1,()=>`softNmsSigma must be in [0, 1], but was '${s}'`),{maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s}}function fF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppression"),i=M(t,"scores","nonMaxSuppression"),o=_l(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l={maxOutputSize:n,iouThreshold:a,scoreThreshold:r};return P.runKernel(Xo,{boxes:s,scores:i},l)}var mF=L({nonMaxSuppression_:fF});function gF(e,t,n){let a=yF(e,t,n),r=a<0?-(a+1):a;e.splice(r,0,t)}function yF(e,t,n){return xF(e,t,n||AF)}function AF(e,t){return e>t?1:e<t?-1:0}function xF(e,t,n){let a=0,r=e.length,s=0,i=!1;for(;a<r;){s=a+(r-a>>>1);let o=n(t,e[s]);o>0?a=s+1:(r=s,i=!o)}return i?a:-a-1}function Q3(e,t,n,a,r){return mg(e,t,n,a,r,0)}function e7(e,t,n,a,r,s){return mg(e,t,n,a,r,0,!1,s,!0)}function t7(e,t,n,a,r,s){return mg(e,t,n,a,r,s,!0)}function mg(e,t,n,a,r,s,i=!1,o=!1,l=!1){let u=[];for(let g=0;g<t.length;g++)t[g]>r&&u.push({score:t[g],boxIndex:g,suppressBeginIndex:0});u.sort(n7);let d=s>0?-.5/s:0,p=[],c=[];for(;p.length<n&&u.length>0;){let g=u.pop(),{score:y,boxIndex:A,suppressBeginIndex:x}=g;if(y<r)break;let v=!1;for(let b=p.length-1;b>=x;--b){let w=bF(e,A,p[b]);if(w>=a){v=!0;break}if(g.score=g.score*vF(a,d,w),g.score<=r)break}g.suppressBeginIndex=p.length,v||(g.score===y?(p.push(A),c.push(g.score)):g.score>r&&gF(u,g,n7))}let h=p.length,m=n-h;o&&m>0&&(p.push(...new Array(m).fill(0)),c.push(...new Array(m).fill(0)));let f={selectedIndices:p};return i&&(f.selectedScores=c),l&&(f.validOutputs=h),f}function bF(e,t,n){let a=e.subarray(t*4,t*4+4),r=e.subarray(n*4,n*4+4),s=Math.min(a[0],a[2]),i=Math.min(a[1],a[3]),o=Math.max(a[0],a[2]),l=Math.max(a[1],a[3]),u=Math.min(r[0],r[2]),d=Math.min(r[1],r[3]),p=Math.max(r[0],r[2]),c=Math.max(r[1],r[3]),h=(o-s)*(l-i),m=(p-u)*(c-d);if(h<=0||m<=0)return 0;let f=Math.max(s,u),g=Math.max(i,d),y=Math.min(o,p),A=Math.min(l,c),x=Math.max(y-f,0)*Math.max(A-g,0);return x/(h+m-x)}function vF(e,t,n){let a=Math.exp(t*n*n);return n<=e?a:0}function n7(e,t){return e.score-t.score||e.score===t.score&&t.boxIndex-e.boxIndex}async function wF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY){let s=M(e,"boxes","nonMaxSuppressionAsync"),i=M(t,"scores","nonMaxSuppressionAsync"),o=_l(s,i,n,a,r);n=o.maxOutputSize,a=o.iouThreshold,r=o.scoreThreshold;let l=await Promise.all([s.data(),i.data()]),u=l[0],d=l[1],{selectedIndices:p}=Q3(u,d,n,a,r);return s!==e&&s.dispose(),i!==t&&i.dispose(),Dt(p,"int32")}var kF=wF;function IF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=_l(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u={boxes:i,scores:o},d={maxOutputSize:n,iouThreshold:a,scoreThreshold:r,softNmsSigma:s},p=P.runKernel(Zo,u,d);return{selectedIndices:p[0],selectedScores:p[1]}}var SF=L({nonMaxSuppressionWithScore_:IF});async function NF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=0){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=_l(i,o,n,a,r,s);n=l.maxOutputSize,a=l.iouThreshold,r=l.scoreThreshold,s=l.softNmsSigma;let u=await Promise.all([i.data(),o.data()]),d=u[0],p=u[1],{selectedIndices:c,selectedScores:h}=t7(d,p,n,a,r,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Dt(c,"int32"),selectedScores:Dt(h)}}var TF=NF;function CF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppression"),o=M(t,"scores","nonMaxSuppression"),l=_l(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,c={boxes:i,scores:o},h={maxOutputSize:u,iouThreshold:d,scoreThreshold:p,padToMaxOutputSize:s},m=P.runKernel(Ko,c,h);return{selectedIndices:m[0],validOutputs:m[1]}}var EF=L({nonMaxSuppressionPadded_:CF});async function RF(e,t,n,a=.5,r=Number.NEGATIVE_INFINITY,s=!1){let i=M(e,"boxes","nonMaxSuppressionAsync"),o=M(t,"scores","nonMaxSuppressionAsync"),l=_l(i,o,n,a,r,null),u=l.maxOutputSize,d=l.iouThreshold,p=l.scoreThreshold,[c,h]=await Promise.all([i.data(),o.data()]),{selectedIndices:m,validOutputs:f}=e7(c,h,u,d,p,s);return i!==e&&i.dispose(),o!==t&&o.dispose(),{selectedIndices:Dt(m,"int32"),validOutputs:ke(f,"int32")}}var MF=RF;function FF(e,t,n=!1,a=!1){let r=M(e,"images","resizeBilinear");D(r.rank===3||r.rank===4,()=>`Error in resizeBilinear: x must be rank 3 or 4, but got rank ${r.rank}.`),D(t.length===2,()=>`Error in resizeBilinear: new shape must 2D, but got shape ${t}.`),D(a===!1||n===!1,()=>"Error in resizeBilinear: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=q(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(Js,o,l);return i?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var a7=L({resizeBilinear_:FF});function $F(e,t,n=!1,a=!1){let r=M(e,"images","resizeNearestNeighbor");D(r.rank===3||r.rank===4,()=>`Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank ${r.rank}.`),D(t.length===2,()=>`Error in resizeNearestNeighbor: new shape must 2D, but got shape ${t}.`),D(r.dtype==="float32"||r.dtype==="int32",()=>"`images` must have `int32` or `float32` as dtype"),D(a===!1||n===!1,()=>"Error in resizeNearestNeighbor: If halfPixelCenters is true, alignCorners must be false.");let s=r,i=!1;r.rank===3&&(i=!0,s=q(r,[1,r.shape[0],r.shape[1],r.shape[2]]));let[]=t,o={images:s},l={alignCorners:n,halfPixelCenters:a,size:t},u=P.runKernel(Uu,o,l);return i?q(u,[u.shape[1],u.shape[2],u.shape[3]]):u}var r7=L({resizeNearestNeighbor_:$F});function DF(e,t="binary",n=!1,a=.5){let r=M(e,"image","threshold"),s=.2989,i=.587,o=.114,l=r.shape[0]*r.shape[1],u=B(Dt([a]),255),d,p,c,h;if(D(r.rank===3,()=>`Error in threshold: image must be rank 3,but got rank ${r.rank}.`),D(r.shape[2]===3||r.shape[2]===1,()=>`Error in threshold: image color channel must be equal to 3 or 1but got ${r.shape[2]}.`),D(r.dtype==="int32"||r.dtype==="float32",()=>`Error in dtype: image dtype must be int32 or float32,but got dtype ${r.dtype}.`),D(t==="otsu"||t==="binary",()=>`Method must be binary or otsu, but was ${t}`),r.shape[2]===3){[d,p,c]=Zt(r,[1,1,1],-1);let f=B(d,s),g=B(p,i),y=B(c,o);h=ie(ie(f,g),y)}else h=e;if(t==="otsu"){let f=_1(ge(sh(h),"int32"),ln([]),256);u=OF(f,l)}let m=n?Xr(h,u):Wn(h,u);return ge(B(m,255),"int32")}function OF(e,t){let n=Dt([-1]),a=Dt([0]),r=Dt([0]),s,i,o,l,u,d;for(let p=0;p<e.size-1;p++){s=Re(e,0,p+1),i=Re(e,p+1),u=me(Se(s),t),d=me(Se(i),t);let c=Se(B(s,Dl(0,s.size)));o=me(c,Se(s));let h=Rl(i.shape,s.size),m=ie(Dl(0,i.size),h),f=B(i,m);l=me(Se(f),Se(i));let g=ye(o,l),y=ye(o,l),A=B(u,d);r=B(B(A,g),y);let x=Wn(r,a);a=un(x,r,a),n=un(x,Dt([p]),n)}return n}var zF=L({threshold_:DF});function _F(e,t,n="nearest",a="constant",r=0,s){let i=M(e,"image","transform","float32"),o=M(t,"transforms","transform","float32");D(i.rank===4,()=>`Error in transform: image must be rank 4,but got rank ${i.rank}.`),D(o.rank===2&&(o.shape[0]===i.shape[0]||o.shape[0]===1)&&o.shape[1]===8,()=>"Error in transform: Input transform should be batch x 8 or 1 x 8"),D(s==null||s.length===2,()=>`Error in transform: outputShape must be [height, width] or null, but got ${s}.`);let l={image:i,transforms:o},u={interpolation:n,fillMode:a,fillValue:r,outputShape:s};return P.runKernel(cl,l,u)}var PF=L({transform_:_F});function LF(e,t,n){D(t%1==0,()=>`bandPart(): numLower must be an integer, got ${t}.`),D(n%1==0,()=>`bandPart(): numUpper must be an integer, got ${n}.`);let a=M(e,"a","bandPart");D(a.rank>=2,()=>`bandPart(): Rank must be at least 2, got ${a.rank}.`);let r=a.shape,[s,i]=a.shape.slice(-2);if(!(t<=s))throw new Error(`bandPart(): numLower (${t}) must not be greater than the number of rows (${s}).`);if(!(n<=i))throw new Error(`bandPart(): numUpper (${n}) must not be greater than the number of columns (${i}).`);t<0&&(t=s),n<0&&(n=i);let o=q(Dl(0,s,1,"int32"),[-1,1]),l=Dl(0,i,1,"int32"),u=ye(o,l),d=xa(Xr(u,ke(+t,"int32")),qr(u,ke(-n,"int32"))),p=$t([s,i],a.dtype);return q(gn(Gn(q(a,[-1,s,i])).map(c=>un(d,c,p))),r)}var WF=L({bandPart_:LF});function BF(e){let t;if(Array.isArray(e)){t=!1,D(e!=null&&e.length>0,()=>"Gram-Schmidt process: input must not be null, undefined, or empty");let r=e[0].shape[0];for(let s=1;s<e.length;++s)D(e[s].shape[0]===r,()=>`Gram-Schmidt: Non-unique lengths found in the input vectors: (${e[s].shape[0]} vs. ${r})`)}else t=!0,e=Zt(e,e.shape[0],0).map(r=>Vt(r,[0]));D(e.length<=e[0].shape[0],()=>`Gram-Schmidt: Number of vectors (${e.length}) exceeds number of dimensions (${e[0].shape[0]}).`);let n=[],a=e;for(let r=0;r<e.length;++r)n.push(P.tidy(()=>{let s=a[r];if(r>0)for(let i=0;i<r;++i){let o=B(Se(B(n[i],s)),n[i]);s=ye(s,o)}return me(s,gh(s,"euclidean"))}));return t?gn(n,0):n}var VF=L({gramSchmidt_:BF});function jF(e,t=!1){if(D(e.rank>=2,()=>`qr() requires input tensor to have a rank >= 2, but got rank ${e.rank}`),e.rank===2)return s7(e,t);{let n=e.shape.slice(0,e.shape.length-2).reduce((l,u)=>l*u),a=Gn(q(e,[n,e.shape[e.shape.length-2],e.shape[e.shape.length-1]]),0),r=[],s=[];a.forEach(l=>{let[u,d]=s7(l,t);r.push(u),s.push(d)});let i=q(gn(r,0),e.shape),o=q(gn(s,0),e.shape);return[i,o]}}function s7(e,t=!1){return P.tidy(()=>{D(e.shape.length===2,()=>`qr2d() requires a 2D Tensor, but got a ${e.shape.length}D Tensor.`);let n=e.shape[0],a=e.shape[1],r=G1(n),s=Ha(e),i=Ta([[1]],[1,1]),o=Ha(i),l=n>=a?a:n;for(let u=0;u<l;++u){let d=s,p=o,c=r;[o,s,r]=P.tidy(()=>{let h=Re(s,[u,u],[n-u,1]),m=gh(h),f=Re(s,[u,u],[1,1]),g=un(Wn(f,0),Ta([[-1]]),Ta([[1]])),y=ye(f,B(g,m)),A=me(h,y);A.shape[0]===1?o=Ha(i):o=lt([i,Re(A,[1,0],[A.shape[0]-1,A.shape[1]])],0);let x=St(me(je(g,y),m)),v=Re(s,[u,0],[n-u,a]),b=B(x,o),w=Qe(o);if(u===0)s=ye(v,je(b,je(w,v)));else{let E=ye(v,je(b,je(w,v)));s=lt([Re(s,[0,0],[u,a]),E],0)}let N=Qe(b),C=Re(r,[0,u],[n,r.shape[1]-u]);if(u===0)r=ye(C,je(je(C,o),N));else{let E=ye(C,je(je(C,o),N));r=lt([Re(r,[0,0],[n,u]),E],1)}return[o,s,r]}),he([d,p,c])}return!t&&n>a&&(r=Re(r,[0,0],[n,a]),s=Re(s,[0,0],[a,a])),[r,s]})}var UF=L({qr_:jF}),yn;(function(e){e[e.NONE=0]="NONE",e[e.MEAN=1]="MEAN",e[e.SUM=2]="SUM",e[e.SUM_BY_NONZERO_WEIGHTS=3]="SUM_BY_NONZERO_WEIGHTS"})(yn||(yn={}));function HF(e,t,n=yn.SUM_BY_NONZERO_WEIGHTS){let a=M(e,"losses","computeWeightedLoss"),r=null;t!=null&&(r=M(t,"weights","computeWeightedLoss"));let s=r==null?a:B(a,r);if(n===yn.NONE)return s;if(n===yn.SUM)return Se(s);if(n===yn.MEAN){if(r==null)return Nt(s);{let i=a.size/r.size,o=me(Se(s),Se(r));return i>1?me(o,ke(i)):o}}if(n===yn.SUM_BY_NONZERO_WEIGHTS){if(r==null)return me(Se(s),ke(a.size));{let i=B(r,jn(a.shape)),o=ge(Se(Ri(i,ke(0))),"float32");return me(Se(s),o)}}throw Error(`Unknown reduction: ${n}`)}var Ar=L({computeWeightedLoss_:HF});function GF(e,t,n,a=yn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","absoluteDifference"),s=M(t,"predictions","absoluteDifference"),i=null;n!=null&&(i=M(n,"weights","absoluteDifference")),cn(r.shape,s.shape,"Error in absoluteDifference: ");let o=Wt(ye(r,s));return Ar(o,i,a)}var qF=L({absoluteDifference_:GF});function XF(e,t,n,a,r=yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","cosineDistance"),i=M(t,"predictions","cosineDistance"),o=null;a!=null&&(o=M(a,"weights","cosineDistance")),cn(s.shape,i.shape,"Error in cosineDistance: ");let l=ke(1),u=ye(l,Se(B(s,i),n,!0));return Ar(u,o,r)}var KF=L({cosineDistance_:XF});function ZF(e,t,n,a=yn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","hingeLoss"),s=M(t,"predictions","hingeLoss"),i=null;n!=null&&(i=M(n,"weights","hingeLoss")),cn(r.shape,s.shape,"Error in hingeLoss: ");let o=ke(1);r=ye(B(ke(2),r),o);let l=Ka(ye(o,B(r,s)));return Ar(l,i,a)}var YF=L({hingeLoss_:ZF});function JF(e,t,n,a=1,r=yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","huberLoss"),i=M(t,"predictions","huberLoss"),o=null;n!=null&&(o=M(n,"weights","huberLoss")),cn(s.shape,i.shape,"Error in huberLoss: ");let l=ke(a),u=Wt(ye(i,s)),d=Fl(u,l),p=ye(u,d),c=ie(B(ke(.5),ot(d)),B(l,p));return Ar(c,o,r)}var QF=L({huberLoss_:JF});function e$(e,t,n,a=1e-7,r=yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"labels","logLoss"),i=M(t,"predictions","logLoss"),o=null;n!=null&&(o=M(n,"weights","logLoss")),cn(s.shape,i.shape,"Error in logLoss: ");let l=ke(1),u=ke(a),d=St(B(s,Bn(ie(i,u)))),p=B(ye(l,s),Bn(ie(ye(l,i),u))),c=ye(d,p);return Ar(c,o,r)}var t$=L({logLoss_:e$});function n$(e,t,n,a=yn.SUM_BY_NONZERO_WEIGHTS){let r=M(e,"labels","meanSquaredError"),s=M(t,"predictions","meanSquaredError"),i=null;n!=null&&(i=M(n,"weights","meanSquaredError")),cn(r.shape,s.shape,"Error in meanSquaredError: ");let o=hh(r,s);return Ar(o,i,a)}var a$=L({meanSquaredError_:n$});function r$(e,t){let n=M(e,"labels","sigmoidCrossEntropyWithLogits"),a=M(t,"logits","sigmoidCrossEntropyWithLogits");cn(n.shape,a.shape,"Error in sigmoidCrossEntropyWithLogits: ");let r=Ka(a),s=B(a,n),i=Jc(la(St(Wt(a))));return ie(ye(r,s),i)}function s$(e,t,n,a=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"multiClassLabels","sigmoidCrossEntropy"),i=M(t,"logits","sigmoidCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","sigmoidCrossEntropy")),cn(s.shape,i.shape,"Error in sigmoidCrossEntropy: "),a>0){let u=ke(a),d=ke(1),p=ke(.5);s=ie(B(s,ye(d,u)),B(p,u))}let l=r$(s,i);return Ar(l,o,r)}var i$=L({sigmoidCrossEntropy_:s$});function o$(e,t,n=-1){if(n===-1&&(n=t.rank-1),n!==t.rank-1)throw Error(`Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank ${t.rank} and dim was ${n}`);return qa((a,r,s)=>{let i=Y1(r,[n],!0),o=ye(ge(r,"float32"),i);s([a,o]);let l=St(B(o,a));return{value:Se(l,[n]),gradFunc:(u,d)=>{let[p,c]=d,h=Ei(u.shape,[n]);return[B(q(u,h),ye(ge(p,"float32"),la(c))),B(q(u,h),ye(la(c),ge(p,"float32")))]}}})(e,t)}function l$(e,t,n,a=0,r=yn.SUM_BY_NONZERO_WEIGHTS){let s=M(e,"onehotLabels","softmaxCrossEntropy"),i=M(t,"logits","softmaxCrossEntropy"),o=null;if(n!=null&&(o=M(n,"weights","softmaxCrossEntropy")),cn(s.shape,i.shape,"Error in softmaxCrossEntropy: "),a>0){let u=ke(a),d=ke(1),p=ke(s.shape[1]);s=ie(B(s,ye(d,u)),me(u,p))}let l=o$(s,i);return Ar(l,o,r)}var u$=L({softmaxCrossEntropy_:l$});function d$(e,t,n,a){let r=M(e,"indices","sparseFillEmptyRows"),s=M(t,"values","sparseFillEmptyRows"),i=M(n,"denseShape","sparseFillEmptyRows"),o=M(a,"defaultValue","sparseFillEmptyRows",s.dtype);if(r.rank!==2)throw new Error(`Indices should be Tensor2D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Values should be Tensor1D but received shape ${s.shape}`);if(i.rank!==1)throw new Error(`Dense shape should be Tensor1D but received shape ${i.shape}`);if(o.rank!==0)throw new Error(`Default value should be a scalar but received shape ${o.shape}`);let l={indices:r,values:s,denseShape:i,defaultValue:o},u=P.runKernel(vc,l);return{outputIndices:u[0],outputValues:u[1],emptyRowIndicator:u[2],reverseIndexMap:u[3]}}var p$=L({sparseFillEmptyRows_:d$});function c$(e,t,n){let a=M(e,"inputIndices","sparseReshape"),r=M(t,"inputShape","sparseReshape"),s=M(n,"newShape","sparseReshape");if(a.rank!==2)throw new Error(`Input indices should be Tensor2D but received shape
|
|
${a.shape}`);if(r.rank!==1)throw new Error(`Input shape should be Tensor1D but received shape ${r.shape}`);if(s.rank!==1)throw new Error(`New shape should be Tensor1D but received shape ${s.shape}`);let i={inputIndices:a,inputShape:r,newShape:s},o=P.runKernel(wc,i);return{outputIndices:o[0],outputShape:o[1]}}var h$=L({sparseReshape_:c$});function f$(e,t,n){let a=M(e,"data","sparseSegmentMean"),r=M(t,"indices","sparseSegmentMean"),s=M(n,"segmentIds","sparseSegmentMean");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return P.runKernel(kc,i)}var m$=L({sparseSegmentMean_:f$});function g$(e,t,n){let a=M(e,"data","sparseSegmentSum"),r=M(t,"indices","sparseSegmentSum"),s=M(n,"segmentIds","sparseSegmentSum");if(a.rank<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.rank!==1)throw new Error(`Indices should be Tensor1D but received shape
|
|
${r.shape}`);if(s.rank!==1)throw new Error(`Segment ids should be Tensor1D but received shape
|
|
${s.shape}`);let i={data:a,indices:r,segmentIds:s};return P.runKernel(Ic,i)}var y$=L({sparseSegmentSum_:g$});function A$(e,t,n,a,r,s,i,o){let l=M(e,"data","stringNGrams","string");if(l.dtype!=="string")throw new Error("Data must be of datatype string");if(l.shape.length!==1)throw new Error(`Data must be a vector, saw: ${l.shape}`);let u=M(t,"dataSplits","stringNGrams");if(u.dtype!=="int32")throw new Error("Data splits must be of datatype int32");let d={separator:n,nGramWidths:a,leftPad:r,rightPad:s,padWidth:i,preserveShortSequences:o},p={data:l,dataSplits:u},c=P.runKernel(Nc,p,d);return{nGrams:c[0],nGramsSplits:c[1]}}var x$=L({stringNGrams_:A$});function b$(e,t,n=!0){let a=M(e,"input","stringSplit","string"),r=M(t,"delimiter","stringSplit","string");if(a.rank!==1)throw new Error(`Input should be Tensor1D but received shape ${a.shape}`);if(r.rank!==0)throw new Error(`Delimiter should be a scalar but received shape ${r.shape}`);let s={skipEmpty:n},i={input:a,delimiter:r},o=P.runKernel(Tc,i,s);return{indices:o[0],values:o[1],shape:o[2]}}var v$=L({stringSplit_:b$});function w$(e,t){let n=M(e,"input","stringToHashBucketFast","string"),a={numBuckets:t};if(t<=0)throw new Error("Number of buckets must be at least 1");let r={input:n};return P.runKernel(Cc,r,a)}var k$=L({stringToHashBucketFast_:w$}),I$={fft:bd,ifft:Ol,rfft:vd,irfft:ch},S$={hammingWindow:aF,hannWindow:Y3,frame:J3,stft:oF},De={flipLeftRight:pF,resizeNearestNeighbor:r7,resizeBilinear:a7,rotateWithOffset:hF,cropAndResize:uF,nonMaxSuppression:mF,nonMaxSuppressionAsync:kF,nonMaxSuppressionWithScore:SF,nonMaxSuppressionWithScoreAsync:TF,nonMaxSuppressionPadded:EF,nonMaxSuppressionPaddedAsync:MF,threshold:zF,transform:PF},i7={bandPart:WF,gramSchmidt:VF,qr:UF},N$={absoluteDifference:qF,computeWeightedLoss:Ar,cosineDistance:KF,hingeLoss:YF,huberLoss:QF,logLoss:t$,meanSquaredError:a$,sigmoidCrossEntropy:i$,softmaxCrossEntropy:u$},wd={sparseFillEmptyRows:p$,sparseReshape:h$,sparseSegmentMean:m$,sparseSegmentSum:y$},vh={stringNGrams:x$,stringSplit:v$,stringToHashBucketFast:k$},xr=class extends u3{minimize(e,t=!1,n){let{value:a,grads:r}=this.computeGradients(e,n);if(n!=null){let s=n.map(i=>({name:i.name,tensor:r[i.name]}));this.applyGradients(s)}else this.applyGradients(r);return he(r),t?a:(a.dispose(),null)}get iterations(){return this.iterations_==null&&(this.iterations_=0),this.iterations_}incrementIterations(){this.iterations_=this.iterations+1}computeGradients(e,t){return M3(e,t)}dispose(){this.iterations_!=null&&he(this.iterations_)}async saveIterations(){return this.iterations_==null&&(this.iterations_=0),{name:"iter",tensor:ke(this.iterations_,"int32")}}async getWeights(){throw new Error("getWeights() is not implemented for this optimizer yet.")}async setWeights(e){throw new Error(`setWeights() is not implemented for this optimizer class ${this.getClassName()}`)}async extractIterations(e){return this.iterations_=(await e[0].tensor.data())[0],e.slice(1)}};Object.defineProperty(xr,Symbol.hasInstance,{value:e=>e.minimize!=null&&e.computeGradients!=null&&e.applyGradients!=null});var wh=class extends xr{constructor(e,t,n=null){super();this.learningRate=e,this.rho=t,this.epsilon=n,this.accumulatedGrads=[],this.accumulatedUpdates=[],n==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedGrads[n]==null&&(this.accumulatedGrads[n]={originalName:`${t}/accum_grad`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedUpdates[n]==null&&(this.accumulatedUpdates[n]={originalName:`${t}/accum_var`,variable:V(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedGrads[n].variable,o=this.accumulatedUpdates[n].variable;V(()=>{let l=ie(B(i,this.rho),B(ot(s),1-this.rho)),u=B(me(an(ie(o,this.epsilon)),an(ie(i,this.epsilon))),s),d=ie(B(o,this.rho),B(ot(u),1-this.rho));i.assign(l),o.assign(d);let p=ie(B(u,-this.learningRate),a);a.assign(p)})}),this.incrementIterations()}dispose(){this.accumulatedUpdates!=null&&(he(this.accumulatedGrads.map(e=>e.variable)),he(this.accumulatedUpdates.map(e=>e.variable)))}async getWeights(){let e=[...this.accumulatedGrads,...this.accumulatedUpdates];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=e.length/2,n=!1;this.accumulatedGrads=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedUpdates=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,rho:this.rho,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.rho,t.epsilon)}};wh.className="Adadelta";jr(wh);var kh=class extends xr{constructor(e,t=.1){super();this.learningRate=e,this.initialAccumulatorValue=t,this.accumulatedGrads=[]}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulatedGrads[n]==null){let i=!1;this.accumulatedGrads[n]={originalName:`${t}/accumulator`,variable:V(()=>Rl(a.shape,this.initialAccumulatorValue).variable(i))}}let r=Array.isArray(e)?e[n].tensor:e[t];if(r==null)return;let s=this.accumulatedGrads[n].variable;V(()=>{let i=ie(s,ot(r));s.assign(i);let o=ie(B(me(r,an(ie(i,P.backend.epsilon()))),-this.learningRate),a);a.assign(o)})}),this.incrementIterations()}dispose(){this.accumulatedGrads!=null&&he(this.accumulatedGrads.map(e=>e.variable))}async getWeights(){return[await this.saveIterations()].concat(this.accumulatedGrads.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulatedGrads=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,initialAccumulatorValue:this.initialAccumulatorValue}}static fromConfig(e,t){return new e(t.learningRate,t.initialAccumulatorValue)}};kh.className="Adagrad";jr(kh);var Ih=class extends xr{constructor(e,t,n,a=null){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.accumulatedFirstMoment=[],this.accumulatedSecondMoment=[],V(()=>{this.accBeta1=ke(t).variable(),this.accBeta2=ke(n).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ye(1,this.accBeta1),a=ye(1,this.accBeta2);t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:V(()=>Ge(i).variable(o))}),this.accumulatedSecondMoment[s]==null&&(this.accumulatedSecondMoment[s]={originalName:`${r}/v`,variable:V(()=>Ge(i).variable(o))});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedSecondMoment[s].variable,p=ie(B(u,this.beta1),B(l,1-this.beta1)),c=ie(B(d,this.beta2),B(ot(l),1-this.beta2)),h=me(p,n),m=me(c,a);u.assign(p),d.assign(c);let f=ie(B(me(h,ie(an(m),this.epsilon)),-this.learningRate),i);i.assign(f)}),this.accBeta1.assign(B(this.accBeta1,this.beta1)),this.accBeta2.assign(B(this.accBeta2,this.beta2))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.accBeta2.dispose(),this.accumulatedFirstMoment!=null&&he(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedSecondMoment!=null&&he(this.accumulatedSecondMoment.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedFirstMoment,...this.accumulatedSecondMoment];return[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e),V(()=>{this.accBeta1.assign(yr(this.beta1,this.iterations_+1)),this.accBeta2.assign(yr(this.beta2,this.iterations_+1))});let t=e.length/2,n=!1;this.accumulatedFirstMoment=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedSecondMoment=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)}))}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon)}};Ih.className="Adam";jr(Ih);var Sh=class extends xr{constructor(e,t,n,a=null,r=0){super();this.learningRate=e,this.beta1=t,this.beta2=n,this.epsilon=a,this.decay=r,this.accumulatedFirstMoment=[],this.accumulatedWeightedInfNorm=[],V(()=>{this.iteration=ke(0).variable(),this.accBeta1=ke(t).variable()}),a==null&&(this.epsilon=P.backend.epsilon())}applyGradients(e){let t=Array.isArray(e)?e.map(n=>n.name):Object.keys(e);V(()=>{let n=ye(1,this.accBeta1),a=me(-this.learningRate,ie(B(this.iteration,this.decay),1));t.forEach((r,s)=>{let i=P.registeredVariables[r],o=!1;this.accumulatedFirstMoment[s]==null&&(this.accumulatedFirstMoment[s]={originalName:`${r}/m`,variable:Ge(i).variable(o)}),this.accumulatedWeightedInfNorm[s]==null&&(this.accumulatedWeightedInfNorm[s]={originalName:`${r}/v`,variable:Ge(i).variable(o)});let l=Array.isArray(e)?e[s].tensor:e[r];if(l==null)return;let u=this.accumulatedFirstMoment[s].variable,d=this.accumulatedWeightedInfNorm[s].variable,p=ie(B(u,this.beta1),B(l,1-this.beta1)),c=B(d,this.beta2),h=Wt(l),m=Xa(c,h);u.assign(p),d.assign(m);let f=ie(B(me(a,n),me(p,ie(m,this.epsilon))),i);i.assign(f)}),this.iteration.assign(ie(this.iteration,1)),this.accBeta1.assign(B(this.accBeta1,this.beta1))}),this.incrementIterations()}dispose(){this.accBeta1.dispose(),this.iteration.dispose(),this.accumulatedFirstMoment!=null&&he(this.accumulatedFirstMoment.map(e=>e.variable)),this.accumulatedWeightedInfNorm!=null&&he(this.accumulatedWeightedInfNorm.map(e=>e.variable))}async getWeights(){throw new Error("getWeights() is not implemented for Adamax yet.")}async setWeights(e){throw new Error("setWeights() is not implemented for Adamax yet.")}getConfig(){return{learningRate:this.learningRate,beta1:this.beta1,beta2:this.beta2,epsilon:this.epsilon,decay:this.decay}}static fromConfig(e,t){return new e(t.learningRate,t.beta1,t.beta2,t.epsilon,t.decay)}};Sh.className="Adamax";jr(Sh);var kd=class extends xr{constructor(e){super();this.learningRate=e,this.setLearningRate(e)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=Array.isArray(e)?e[n].tensor:e[t];if(a==null)return;let r=P.registeredVariables[t];V(()=>{let s=ie(B(this.c,a),r);r.assign(s)})}),this.incrementIterations()}setLearningRate(e){this.learningRate=e,this.c!=null&&this.c.dispose(),this.c=Kt(ke(-e))}dispose(){this.c.dispose()}async getWeights(){return[await this.saveIterations()]}async setWeights(e){if(e=await this.extractIterations(e),e.length!==0)throw new Error("SGD optimizer does not have settable weights.")}getConfig(){return{learningRate:this.learningRate}}static fromConfig(e,t){return new e(t.learningRate)}};kd.className="SGD";jr(kd);var Nh=class extends kd{constructor(e,t,n=!1){super(e);this.learningRate=e,this.momentum=t,this.useNesterov=n,this.accumulations=[],this.m=ke(this.momentum)}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t];if(this.accumulations[n]==null){let i=!1;this.accumulations[n]={originalName:`${t}/momentum`,variable:V(()=>Ge(a).variable(i))}}let r=this.accumulations[n].variable,s=Array.isArray(e)?e[n].tensor:e[t];s!=null&&V(()=>{let i,o=ie(B(this.m,r),s);this.useNesterov?i=ie(B(this.c,ie(s,B(o,this.m))),a):i=ie(B(this.c,o),a),r.assign(o),a.assign(i)})}),this.incrementIterations()}dispose(){this.m.dispose(),this.accumulations!=null&&he(this.accumulations.map(e=>e.variable))}setMomentum(e){this.momentum=e}async getWeights(){return[await this.saveIterations()].concat(this.accumulations.map(e=>({name:e.originalName,tensor:e.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=!1;this.accumulations=e.map(n=>({originalName:n.name,variable:n.tensor.variable(t)}))}getConfig(){return{learningRate:this.learningRate,momentum:this.momentum,useNesterov:this.useNesterov}}static fromConfig(e,t){return new e(t.learningRate,t.momentum,t.useNesterov)}};Nh.className="Momentum";jr(Nh);var Th=class extends xr{constructor(e,t=.9,n=0,a=null,r=!1){super();if(this.learningRate=e,this.decay=t,this.momentum=n,this.epsilon=a,this.accumulatedMeanSquares=[],this.accumulatedMoments=[],this.accumulatedMeanGrads=[],this.centered=r,a==null&&(this.epsilon=P.backend.epsilon()),e==null)throw new Error("learningRate for RMSPropOptimizer must be defined.")}applyGradients(e){(Array.isArray(e)?e.map(t=>t.name):Object.keys(e)).forEach((t,n)=>{let a=P.registeredVariables[t],r=!1;this.accumulatedMeanSquares[n]==null&&(this.accumulatedMeanSquares[n]={originalName:`${t}/rms`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedMoments[n]==null&&(this.accumulatedMoments[n]={originalName:`${t}/momentum`,variable:V(()=>Ge(a).variable(r))}),this.accumulatedMeanGrads[n]==null&&this.centered&&(this.accumulatedMeanGrads[n]={originalName:`${t}/mg`,variable:V(()=>Ge(a).variable(r))});let s=Array.isArray(e)?e[n].tensor:e[t];if(s==null)return;let i=this.accumulatedMeanSquares[n].variable,o=this.accumulatedMoments[n].variable;V(()=>{let l=ie(B(i,this.decay),B(ot(s),1-this.decay));if(this.centered){let u=this.accumulatedMeanGrads[n].variable,d=ie(B(u,this.decay),B(s,1-this.decay)),p=me(B(s,this.learningRate),an(ye(l,ie(ot(d),this.epsilon)))),c=ie(B(o,this.momentum),p);i.assign(l),u.assign(d),o.assign(c);let h=ye(a,c);a.assign(h)}else{let u=ie(B(i,this.decay),B(ot(s),1-this.decay)),d=ie(B(o,this.momentum),me(B(s,this.learningRate),an(ie(u,this.epsilon))));i.assign(u),o.assign(d);let p=ye(a,d);a.assign(p)}})}),this.incrementIterations()}dispose(){this.accumulatedMeanSquares!=null&&he(this.accumulatedMeanSquares.map(e=>e.variable)),this.accumulatedMeanGrads!=null&&this.centered&&he(this.accumulatedMeanGrads.map(e=>e.variable)),this.accumulatedMoments!=null&&he(this.accumulatedMoments.map(e=>e.variable))}async getWeights(){let e=[...this.accumulatedMeanSquares,...this.accumulatedMoments];return this.centered&&e.push(...this.accumulatedMeanGrads),[await this.saveIterations()].concat(e.map(t=>({name:t.originalName,tensor:t.variable})))}async setWeights(e){e=await this.extractIterations(e);let t=this.centered?e.length/3:e.length/2,n=!1;this.accumulatedMeanSquares=e.slice(0,t).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.accumulatedMoments=e.slice(t,t*2).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})),this.centered&&(this.accumulatedMeanGrads=e.slice(t*2,t*3).map(a=>({originalName:a.name,variable:a.tensor.variable(n)})))}getConfig(){return{learningRate:this.learningRate,decay:this.decay,momentum:this.momentum,epsilon:this.epsilon,centered:this.centered}}static fromConfig(e,t){return new e(t.learningRate,t.decay,t.momentum,t.epsilon,t.centered)}};Th.className="RMSProp";jr(Th);var Mi=class{static sgd(e){return new kd(e)}static momentum(e,t,n=!1){return new Nh(e,t,n)}static rmsprop(e,t=.9,n=0,a=null,r=!1){return new Th(e,t,n,a,r)}static adam(e=.001,t=.9,n=.999,a=null){return new Ih(e,t,n,a)}static adadelta(e=.001,t=.95,n=null){return new wh(e,t,n)}static adamax(e=.002,t=.9,n=.999,a=null,r=0){return new Sh(e,t,n,a,r)}static adagrad(e,t=.1){return new kh(e,t)}},Fi={sgd:Mi.sgd,momentum:Mi.momentum,adadelta:Mi.adadelta,adagrad:Mi.adagrad,rmsprop:Mi.rmsprop,adamax:Mi.adamax,adam:Mi.adam},T$=(()=>typeof requestAnimationFrame!="undefined"?requestAnimationFrame:typeof setImmediate!="undefined"?setImmediate:e=>e())();function Ch(){return new Promise(e=>T$(()=>e()))}var F={};Fe(F,{ERF_A1:()=>P$,ERF_A2:()=>L$,ERF_A3:()=>W$,ERF_A4:()=>B$,ERF_A5:()=>V$,ERF_P:()=>_$,PARALLELIZE_THRESHOLD:()=>gg,SELU_SCALE:()=>l7,SELU_SCALEALPHA:()=>o7,applyActivation:()=>xh,assertAndGetBroadcastShape:()=>mt,assertAxesAreInnerMostDims:()=>HE,assertParamsConsistent:()=>C$,assignToTypedArray:()=>Z$,axesAreInnerMostDims:()=>K1,calculateShapes:()=>Yb,checkEinsumDimSizes:()=>nD,combineLocations:()=>$3,complexWithEvenIndex:()=>q$,complexWithOddIndex:()=>X$,computeConv2DInfo:()=>od,computeConv3DInfo:()=>m3,computeDefaultPad:()=>D1,computeDilation2DInfo:()=>mC,computeOptimalWindowSize:()=>R$,computeOutAndReduceShapes:()=>D3,computeOutShape:()=>E$,computePool2DInfo:()=>f3,computePool3DInfo:()=>gC,convertConv2DDataFormat:()=>g3,decodeEinsumEquation:()=>eD,eitherStridesOrDilationsAreOne:()=>Ga,expandShapeToKeepDim:()=>Ei,exponent:()=>J$,exponents:()=>Y$,fromStringArrayToUint8:()=>pD,fromUint8ToStringArray:()=>dD,getAxesPermutation:()=>O3,getBroadcastDims:()=>iE,getComplexWithIndex:()=>K$,getEinsumComputePath:()=>aD,getEinsumPermutation:()=>tD,getFusedBiasGradient:()=>Ah,getFusedDyActivation:()=>yh,getImageCenter:()=>M$,getInnerMostAxes:()=>GE,getPermuted:()=>$$,getReductionAxes:()=>Bt,getReshaped:()=>F$,getReshapedPermuted:()=>D$,getSliceBeginCoords:()=>O$,getSliceSize:()=>z$,getUndoAxesPermutation:()=>Z1,isIdentityPermutation:()=>rD,log:()=>U$,mergeRealAndImagArrays:()=>H$,prepareAndValidate:()=>Zb,prepareSplitSize:()=>iD,segment_util:()=>p7,shouldFuse:()=>bh,slice_util:()=>fn,splitRealAndImagArrays:()=>G$,tupleValuesAreOne:()=>Ur,upcastType:()=>Aa,validateInput:()=>b1,validateUpdateShape:()=>x1,warn:()=>j$});function C$(e,t){let n=e[0].length;e.forEach((r,s)=>{D(r.length===n,()=>`Error in concat${n}D: rank of tensors[${s}] must be the same as the rank of the rest (${n})`)}),D(t>=0&&t<n,()=>`Error in concat${n}D: axis must be between 0 and ${n-1}.`);let a=e[0];e.forEach((r,s)=>{for(let i=0;i<n;i++)D(i===t||r[i]===a[i],()=>`Error in concat${n}D: Shape of tensors[${s}] (${r}) does not match the shape of the rest (${a}) along the non-concatenated axis ${s}.`)})}function E$(e,t){let n=e[0].slice();for(let a=1;a<e.length;a++)n[t]+=e[a][t];return n}var gg=30;function R$(e){return e<=gg?e:Gp(e,Math.floor(Math.sqrt(e)))}function M$(e,t,n){let a=n*(typeof e=="number"?e:e[0]),r=t*(typeof e=="number"?e:e[1]);return[a,r]}function F$(e,t,n,a=!0){let r=[];if(a)r=r.concat(t.slice(0)),r.push(e[0]/n),r=r.concat(e.slice(1));else{r=r.concat(e[0]);let s=t.length;for(let i=0;i<s;++i)r=r.concat([e[i+1]/t[i],t[i]]);r=r.concat(e.slice(s+1))}return r}function $$(e,t,n=!0){let a=[];if(n){a.push(t);for(let r=t+1;r<e;++r)r<=2*t?(a.push(r),a.push(r-(t+1))):a.push(r)}else{let r=[],s=[];for(let i=1;i<e;++i)i>=t*2+1||i%2==1?s.push(i):r.push(i);a.push(...r),a.push(0),a.push(...s)}return a}function D$(e,t,n,a=!0){let r=[];a?r.push(e[0]/n):r.push(e[0]*n);for(let s=1;s<e.length;++s)s<=t.length?a?r.push(t[s-1]*e[s]):r.push(e[s]/t[s-1]):r.push(e[s]);return r}function O$(e,t){let n=[0];for(let a=0;a<t;++a)n.push(e[a][0]);return n}function z$(e,t,n){let a=e.slice(0,1);for(let r=0;r<n;++r)a.push(e[r+1]-t[r][0]-t[r][1]);return a}var o7=1.7580993408473768,l7=1.0507009873554805,_$=.3275911,P$=.254829592,L$=-.284496736,W$=1.421413741,B$=-1.453152027,V$=1.061405429;function j$(...e){te().getBool("IS_TEST")||console.warn(...e)}function U$(...e){te().getBool("IS_TEST")||console.log(...e)}function H$(e,t){if(e.length!==t.length)throw new Error(`Cannot merge real and imag arrays of different lengths. real:${e.length}, imag: ${t.length}.`);let n=new Float32Array(e.length*2);for(let a=0;a<n.length;a+=2)n[a]=e[a/2],n[a+1]=t[a/2];return n}function G$(e){let t=new Float32Array(e.length/2),n=new Float32Array(e.length/2);for(let a=0;a<e.length;a+=2)t[a/2]=e[a],n[a/2]=e[a+1];return{real:t,imag:n}}function q$(e){let t=Math.ceil(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=0;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function X$(e){let t=Math.floor(e.length/4),n=new Float32Array(t),a=new Float32Array(t);for(let r=2;r<e.length;r+=4)n[Math.floor(r/4)]=e[r],a[Math.floor(r/4)]=e[r+1];return{real:n,imag:a}}function K$(e,t){let n=e[t*2],a=e[t*2+1];return{real:n,imag:a}}function Z$(e,t,n,a){e[a*2]=t,e[a*2+1]=n}function Y$(e,t){let n=new Float32Array(e/2),a=new Float32Array(e/2);for(let r=0;r<Math.ceil(e/2);r++){let s=(t?2:-2)*Math.PI*(r/e);n[r]=Math.cos(s),a[r]=Math.sin(s)}return{real:n,imag:a}}function J$(e,t,n){let a=(n?2:-2)*Math.PI*(e/t),r=Math.cos(a),s=Math.sin(a);return{real:r,imag:s}}var yg="->",Q$=/->/g,u7=",",d7="...";function eD(e,t){e=e.replace(/\s/g,"");let n=(e.length-e.replace(Q$,"").length)/yg.length;if(n<1)throw new Error("Equations without an arrow are not supported.");if(n>1)throw new Error(`Equation must contain exactly one arrow ("${yg}").`);let[a,r]=e.split(yg);D(a.indexOf(d7)===-1,()=>`The ellipsis notation ("${d7}") is not supported yet.`);let s=a.split(u7),i=s.length;if(t!==i)throw new Error(`Expected ${i} input tensors, received ${t}`);if(i>2)throw new Error("Support for more than 2 input tensors is not implemented yet.");let o=[];for(let c=0;c<r.length;++c){let h=r[c];if(!s.some(m=>m.indexOf(h)!==-1))throw new Error(`Output subscripts contain the label ${h} not present in the input subscripts.`);o.indexOf(h)===-1&&o.push(h)}for(let c=0;c<a.length;++c){let h=a[c];o.indexOf(h)===-1&&h!==u7&&o.push(h)}let l=new Array(s.length);for(let c=0;c<i;++c){if(new Set(s[c].split("")).size!==s[c].length)throw new Error(`Found duplicate axes in input component ${s[c]}. Support for duplicate axes in input is not implemented yet.`);l[c]=[];for(let h=0;h<s[c].length;++h)l[c].push(o.indexOf(s[c][h]))}let u=o.length,d=r.length,p=[];for(let c=d;c<u;++c)p.push(c);return{allDims:o,summedDims:p,idDims:l}}function tD(e,t){let n=new Array(e);n.fill(-1);for(let r=0;r<t.length;++r)n[t[r]]=r;let a=[];for(let r=0;r<e;++r)n[r]===-1&&a.push(r);return n=n.filter(r=>r!==-1),{permutationIndices:n,expandDims:a}}function nD(e,t,n){let a=new Array(e);for(let r=0;r<n.length;++r){let s=n[r].shape;for(let i=0;i<t[r].length;++i)a[t[r][i]]===void 0?a[t[r][i]]=s[i]:D(a[t[r][i]]===s[i],()=>`Expected dimension ${a[t[r][i]]} at axis ${i} of input shaped ${JSON.stringify(s)}, but got dimension ${s[i]}`)}}function aD(e,t){let n=e,a=[],r=0;e.length===0&&n.push(-1),r=e.length+1;for(let i=0;i<r;++i)a.push([]);let s=[];for(let i=0;i<n.length;++i){let o=n[i],l=sD(t,o);for(let u of l)s.indexOf(u)===-1&&(a[i].push(u),s.push(u))}return{path:n,steps:a}}function rD(e){return e.every((t,n)=>t===n)}function sD(e,t){let n=[];for(let a=0;a<e.length;++a)(e[a].length===0||e[a].indexOf(t)!==-1||t===-1)&&n.push(a);return n}function iD(e,t,n=0){let a=[];if(typeof t=="number")D(e.shape[n]%t==0,()=>"Number of splits must evenly divide the axis."),a=new Array(t).fill(e.shape[n]/t);else{let r=t.reduce((i,o)=>(o===-1&&(i+=1),i),0);D(r<=1,()=>"There should be only one negative value in split array.");let s=t.indexOf(-1);if(s!==-1){let i=t.reduce((o,l)=>l>0?o+l:o);t[s]=e.shape[n]-i}D(e.shape[n]===t.reduce((i,o)=>i+o),()=>"The sum of sizes must match the size of the axis dimension."),a=t}return a}var p7={};Fe(p7,{collectGatherOpShapeInfo:()=>uD,computeOutShape:()=>lD,segOpComputeOptimalWindowSize:()=>oD});function oD(e,t){let n=!1,a;for(e<=gg?(a=e,n=!0):a=Gp(e,Math.floor(Math.sqrt(e)));!n;)a>t||a===e?n=!0:a=Gp(e,a+1);return a}function lD(e,t,n){let a=[],r=e.length;for(let s=0;s<r;s++)s!==t?a.push(e[s]):a.push(n);return a}function uD(e,t,n,a){let r=t.shape.length,s=e.shape.length;if(a!==0&&(a<-r||a>r))throw new Error(`Expect batchDims in the range of [-${r}, ${r}], but got ${a}`);if(a<0&&(a+=r),a>s)throw new Error(`batchDims (${a}) must be less than rank(x) (
|
|
${s}).`);if(n<a)throw new Error(`batchDims (${a}) must be less than or equal to axis (${n}).`);for(let p=0;p<a;++p)if(e.shape[p]!==t.shape[p])throw new Error(`x.shape[${p}]: ${e.shape[p]} should be equal to indices.shape[${p}]: ${t.shape[p]}.`);let i=e.shape[n],o=[],l=1,u=1,d=1;for(let p=0;p<a;++p)o.push(e.shape[p]),l*=e.shape[p];for(let p=a;p<n;p++)o.push(e.shape[p]),u*=e.shape[p];for(let p=a;p<r;p++)o.push(t.shape[p]);for(let p=n+1;p<s;p++)o.push(e.shape[p]),d*=e.shape[p];return{batchSize:l,sliceSize:d,outerSize:u,dimSize:i,outputShape:o}}function dD(e){try{return e.map(t=>Dc(t))}catch(t){throw new Error(`Failed to decode encoded string bytes into utf-8, error: ${t}`)}}function pD(e){return e.map(t=>Yu(t))}var Za={};Fe(Za,{nonMaxSuppressionV3Impl:()=>Q3,nonMaxSuppressionV4Impl:()=>e7,nonMaxSuppressionV5Impl:()=>t7,whereImpl:()=>j3});function we(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the CPU backend.`)})}var cD=Za.whereImpl,Eh=class extends Eu{constructor(){super();this.blockSize=48,this.firstUse=!0,this.data=new Up(this,fr())}nextDataId(){return Eh.nextDataId++}write(e,t,n){this.firstUse&&(this.firstUse=!1,te().get("IS_NODE")&&F.warn(`
|
|
============================
|
|
Hi there \u{1F44B}. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.
|
|
============================`));let a={id:this.nextDataId()};return this.data.set(a,{values:e,dtype:n,refCount:1}),a}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return{dataId:a,shape:e,dtype:t}}refCount(e){return this.data.has(e)?this.data.get(e).refCount:0}incRef(e){let t=this.data.get(e);t.refCount++}decRef(e){if(this.data.has(e)){let t=this.data.get(e);t.refCount--}}move(e,t,n,a,r){this.data.set(e,{values:t,dtype:a,refCount:r})}numDataIds(){return this.data.numDataIds()}async read(e){return this.readSync(e)}readSync(e){let{dtype:t,complexTensorInfos:n}=this.data.get(e);if(t==="complex64"){let a=this.readSync(n.real.dataId),r=this.readSync(n.imag.dataId);return F.mergeRealAndImagArrays(a,r)}return this.data.get(e).values}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}makeOutput(e,t,n){let a=this.write(e,t,n);return fr().makeTensorFromDataId(a,t,n,this)}disposeData(e,t=!1){if(this.data.has(e)){if(this.data.get(e).refCount--,!t&&this.data.get(e).refCount>0)return!1;let{complexTensorInfos:n}=this.data.get(e);n!=null&&(this.disposeData(n.real.dataId,!0),this.disposeData(n.imag.dataId,!0)),this.data.delete(e)}return!0}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}memory(){return{unreliable:!0,reasons:["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]}}where(e){we([e],"where");let t=this.readSync(e.dataId);return cD(e.shape,t)}dispose(){}floatPrecision(){return 32}epsilon(){return super.epsilon()}};Eh.nextDataId=0;var Ag={};Fe(Ag,{addImpl:()=>h7,bincountImpl:()=>bg,bincountReduceImpl:()=>f7,ceilImpl:()=>m7,concatImpl:()=>vg,equalImpl:()=>g7,expImpl:()=>A7,expm1Impl:()=>b7,floorImpl:()=>v7,gatherNdImpl:()=>w7,gatherV2Impl:()=>k7,greaterEqualImpl:()=>S7,greaterImpl:()=>I7,lessEqualImpl:()=>T7,lessImpl:()=>N7,linSpaceImpl:()=>C7,logImpl:()=>E7,maxImpl:()=>R7,maximumImpl:()=>M7,minimumImpl:()=>F7,multiplyImpl:()=>wg,negImpl:()=>$7,notEqualImpl:()=>D7,prodImpl:()=>O7,rangeImpl:()=>Ig,rsqrtImpl:()=>z7,simpleAbsImpl:()=>c7,sliceImpl:()=>Fh,sparseFillEmptyRowsImpl:()=>_7,sparseReshapeImpl:()=>P7,sparseSegmentReductionImpl:()=>Sg,squaredDifferenceImpl:()=>L7,stridedSliceImpl:()=>W7,stringNGramsImpl:()=>B7,stringSplitImpl:()=>V7,stringToHashBucketFastImpl:()=>j7,subImpl:()=>U7,tileImpl:()=>H7,topKImpl:()=>G7,transposeImpl:()=>kg,uniqueImpl:()=>q7});function c7(e){let t=new Float32Array(e.length);for(let n=0;n<e.length;++n)t[n]=Math.abs(e[n]);return t}var hD=e=>{let{x:t}=e.inputs,n=e.backend;we(t,"abs");let a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId).values;return a=c7(r),n.makeOutput(a,t.shape,"float32")},fD={kernelName:mo,backendName:"cpu",kernelFunc:hD};function Ot(e){return(t,n,a,r,s)=>{let i=F.assertAndGetBroadcastShape(t,n),o=i.length,l=k.computeStrides(i),u=k.sizeFromShape(i),d=k.getTypedArrayFromDType(s,u),p=t.length,c=n.length,h=k.computeStrides(t),m=k.computeStrides(n),f=F.getBroadcastDims(t,i),g=F.getBroadcastDims(n,i);if(f.length+g.length===0)for(let y=0;y<d.length;++y)d[y]=e(a[y%a.length],r[y%r.length]);else for(let y=0;y<d.length;++y){let A=k.indexToLoc(y,o,l),x=A.slice(-p);f.forEach(N=>x[N]=0);let v=k.locToIndex(x,p,h),b=A.slice(-c);g.forEach(N=>b[N]=0);let w=k.locToIndex(b,c,m);d[y]=e(a[v],r[w])}return[d,i]}}function qn(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,o=n.makeTensorInfo(a.shape,"complex64"),l=n.data.get(o.dataId);return l.complexTensorInfos={real:n.makeTensorInfo(a.shape,"float32",s),imag:n.makeTensorInfo(r.shape,"float32",i)},o}var mD={kernelName:Yp,backendName:"cpu",kernelFunc:qn};function Rh(e,t,n="float32"){if(n==="complex64"){let r=Rh(e,t,"float32"),s=Rh(e,t,"float32");return qn({inputs:{real:r,imag:s},backend:e})}let a=k.makeZerosTypedArray(k.sizeFromShape(t),n);return e.makeTensorInfo(t,n,a)}function Ya(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var gD={kernelName:zs,backendName:"cpu",kernelFunc:Ya};function $i(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.real,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var yD={kernelName:Ac,backendName:"cpu",kernelFunc:$i};function Zr(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Ya({inputs:{x:r},backend:n});let i=Rh(n,r.shape,r.dtype),o=Zr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=qn({inputs:{real:o,imag:i},backend:n});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=$i({inputs:{input:r},backend:n}),o=Zr({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Ya({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32"){let i=n.data.get(r.dataId).values,o=Int32Array.from(i);return n.makeTensorInfo(r.shape,"int32",o)}if(s==="bool"){let i=n.data.get(r.dataId).values,o=k.toTypedArray([0],r.dtype),[l,u]=Ot((d,p)=>d!==p?1:0)(r.shape,[],i,o,"bool");return n.makeTensorInfo(u,"bool",l)}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var AD={kernelName:ks,backendName:"cpu",kernelFunc:Zr};function Yt(e,t,n,a){return n==null?({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;we([i,o],e);let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=i.dtype==="string"?F.fromUint8ToStringArray(u):u,c=i.dtype==="string"?F.fromUint8ToStringArray(d):d,h=a||i.dtype,[m,f]=t(i.shape,o.shape,p,c,h);return l.makeTensorInfo(f,h,m)}:({inputs:r,backend:s})=>{let{a:i,b:o}=r,l=s;if(i.dtype==="complex64"||o.dtype==="complex64"){let u=Zr({inputs:{x:i},backend:l,attrs:{dtype:"complex64"}}),d=l.data.get(u.dataId),p=d.complexTensorInfos.real,c=d.complexTensorInfos.imag,h=l.data.get(p.dataId).values,m=l.data.get(c.dataId).values,f=Zr({inputs:{x:o},backend:l,attrs:{dtype:"complex64"}}),g=l.data.get(f.dataId),y=g.complexTensorInfos.real,A=g.complexTensorInfos.imag,x=l.data.get(y.dataId).values,v=l.data.get(A.dataId).values,[b,w,N]=n(i.shape,o.shape,h,m,x,v),C=l.makeTensorInfo(N,"float32",b),E=l.makeTensorInfo(N,"float32",w),_=qn({inputs:{real:C,imag:E},backend:l});return l.disposeIntermediateTensorInfo(u),l.disposeIntermediateTensorInfo(f),l.disposeIntermediateTensorInfo(C),l.disposeIntermediateTensorInfo(E),_}else{let u=l.data.get(i.dataId).values,d=l.data.get(o.dataId).values,p=a||i.dtype,[c,h]=t(i.shape,o.shape,u,d,p);return l.makeTensorInfo(h,p,c)}}}function xg(e){return(t,n,a,r,s,i)=>{let o=F.assertAndGetBroadcastShape(t,n),l=k.sizeFromShape(o),u=o.length,d=k.computeStrides(o),p=k.getTypedArrayFromDType("float32",l),c=k.getTypedArrayFromDType("float32",l),h=F.getBroadcastDims(t,o),m=F.getBroadcastDims(n,o),f=F.mergeRealAndImagArrays(a,r),g=F.mergeRealAndImagArrays(s,i),y=t.length,A=k.computeStrides(t),x=n.length,v=k.computeStrides(n);if(h.length+m.length===0)for(let b=0;b<p.length;b++){let w=b%f.length,N=b%g.length,C=e(f[w*2],f[w*2+1],g[N*2],g[N*2+1]);p[b]=C.real,c[b]=C.imag}else for(let b=0;b<p.length;b++){let w=k.indexToLoc(b,u,d),N=w.slice(-y);h.forEach(S=>N[S]=0);let C=k.locToIndex(N,y,A),E=w.slice(-x);m.forEach(S=>E[S]=0);let _=k.locToIndex(E,x,v),$=e(f[C*2],f[C*2+1],g[_*2],g[_*2+1]);p[b]=$.real,c[b]=$.imag}return[p,c,o]}}var h7=Ot((e,t)=>e+t),xD=xg((e,t,n,a)=>({real:e+n,imag:t+a})),Id=Yt(Or,h7,xD),bD={kernelName:Or,backendName:"cpu",kernelFunc:Id};function bg(e,t,n,a,r){let s=k.sizeFromShape(a),i=k.makeZerosTypedArray(r,n);for(let o=0;o<e.length;o++){let l=e[o];if(l<0)throw new Error("Input x must be non-negative!");l>=r||(s>0?i[l]+=t[o]:i[l]+=1)}return i}function f7(e,t,n,a=!1){let r=e.shape[0],s=e.shape[1],i=Ve([r,n],t.dtype);for(let o=0;o<r;o++)for(let l=0;l<s;l++){let u=e.get(o,l);if(u<0)throw new Error("Input x must be non-negative!");u>=n||(a?i.set(1,o,u):t.size>0?i.set(i.get(o,u)+t.get(o,l),o,u):i.set(i.get(o,u)+1,o,u))}return i}function Pl(e){return(t,n,a)=>{let r=k.getTypedArrayFromDType(n,t.length);for(let s=0;s<t.length;++s)r[s]=e(t[s],a);return r}}function rt(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=k.sizeFromShape(i.shape),d=n||i.dtype,p=k.getArrayFromDType(d,u);for(let c=0;c<u;++c)p[c]=t(l[c],r);return o.makeTensorInfo(i.shape,d,p)}}function Ll(e,t,n){return({inputs:a,attrs:r,backend:s})=>{let{x:i}=a;if(we(i,e),i.dtype==="string"||n==="string")throw new Error("unaryKernelFunc does not support string input/output");let o=s,l=o.data.get(i.dataId).values,u=n||i.dtype,d=t(l,u,r);return o.makeTensorInfo(i.shape,u,d)}}var m7=Pl(e=>Math.ceil(e)),vD=Ll(Is,m7),wD={kernelName:Is,backendName:"cpu",kernelFunc:vD};function vg(e,t,n,a){let r=k.getArrayFromDType(n,k.sizeFromShape(t));if(a&&n!=="string"){let s=0;e.forEach(i=>{let o=k.sizeFromShape(i.shape);r.set(i.vals,s),s+=o})}else{let s=0;e.forEach(i=>{let o=n==="string"?F.fromUint8ToStringArray(i.vals):i.vals,l=0;for(let u=0;u<i.shape[0];++u){let d=u*t[1]+s;for(let p=0;p<i.shape[1];++p)r[d+p]=o[l++]}s+=i.shape[1]})}return r}var g7=Ot((e,t)=>e===t?1:0),y7=Yt(Mo,g7,null,"bool"),kD={kernelName:Mo,backendName:"cpu",kernelFunc:y7},A7=Pl(e=>Math.exp(e)),x7=Ll(Ms,A7),ID={kernelName:Ms,backendName:"cpu",kernelFunc:x7},b7=Pl(e=>Math.expm1(e)),SD=Ll($o,b7),ND={kernelName:$o,backendName:"cpu",kernelFunc:SD},v7=Pl(e=>Math.floor(e)),TD=Ll(Fs,v7),CD={kernelName:Fs,backendName:"cpu",kernelFunc:TD};function w7(e,t,n,a,r,s,i,o,l){let u=Ve([a,s],n);for(let d=0;d<a;d++){let p=[],c=0;for(let h=0;h<r;h++){let m=e[d*r+h];c+=m*i[h],p.push(m)}if(c<0||c>=l/s)throw new Error(`Invalid indices: ${p} does not index into ${o}`);for(let h=0;h<s;h++)u.values[d*s+h]=t.get(...t.indexToLoc(c*s+h))}return u}function k7(e,t,n){let a=Ve(n,e.dtype);for(let r=0;r<a.size;++r){let s=a.indexToLoc(r).slice(),i=s[0],o=s[2],l=t.locToIndex([i,o]);s[2]=t.values[l];let u=e.locToIndex(s);a.values[r]=e.values[u]}return a}var I7=Ot((e,t)=>e>t?1:0),ED=Yt(_o,I7,null,"bool"),RD={kernelName:_o,backendName:"cpu",kernelFunc:ED},S7=Ot((e,t)=>e>=t?1:0),MD=Yt(Os,S7,null,"bool"),FD={kernelName:Os,backendName:"cpu",kernelFunc:MD},N7=Ot((e,t)=>e<t?1:0),$D=Yt(Bo,N7,null,"bool"),DD={kernelName:Bo,backendName:"cpu",kernelFunc:$D},T7=Ot((e,t)=>e<=t?1:0),OD=Yt(Vo,T7,null,"bool"),zD={kernelName:Vo,backendName:"cpu",kernelFunc:OD};function C7(e,t,n){let a=(t-e)/(n-1),r=k.makeZerosTypedArray(n,"float32");r[0]=e;for(let s=1;s<r.length;s++)r[s]=r[s-1]+a;return r}var E7=Pl(e=>Math.log(e)),_D=Ll(Ps,E7),PD={kernelName:Ps,backendName:"cpu",kernelFunc:_D};function R7(e,t,n,a){let r=k.getTypedArrayFromDType(a,k.sizeFromShape(n));for(let s=0;s<r.length;++s){let i=s*t,o=e[i];for(let l=0;l<t;++l){let u=e[i+l];(Number.isNaN(u)||u>o)&&(o=u)}r[s]=o}return r}var M7=Ot((e,t)=>Math.max(e,t)),LD=Yt(Ws,M7),WD={kernelName:Ws,backendName:"cpu",kernelFunc:LD},F7=Ot((e,t)=>Math.min(e,t)),BD=Yt(Us,F7),VD={kernelName:Us,backendName:"cpu",kernelFunc:BD},wg=Ot((e,t)=>e*t),jD=xg((e,t,n,a)=>({real:e*n-t*a,imag:e*a+t*n})),Mh=Yt(Gs,wg,jD),UD={kernelName:Gs,backendName:"cpu",kernelFunc:Mh};function $7(e,t,n){let a=k.createScalarValue(-1,n);return wg([],t,a,e,n)}function HD(e){let{inputs:t,backend:n}=e,{x:a}=t;we(a,"neg");let r=n.data.get(a.dataId).values,[s,i]=$7(r,a.shape,a.dtype);return n.makeTensorInfo(i,a.dtype,s)}var GD={kernelName:Go,backendName:"cpu",kernelFunc:HD},D7=Ot((e,t)=>e!==t?1:0),qD=Yt(qo,D7,null,"bool"),XD={kernelName:qo,backendName:"cpu",kernelFunc:qD};function kg(e,t,n,a,r){let s=t.length,i=k.sizeFromShape(t),o=k.computeStrides(t),l=k.computeStrides(r),u=k.getTypedArrayFromDType(n,k.sizeFromShape(r));for(let d=0;d<i;++d){let p=k.indexToLoc(d,s,o),c=new Array(p.length);for(let m=0;m<c.length;m++)c[m]=p[a[m]];let h=k.locToIndex(c,s,l);u[h]=e[d]}return u}function ua(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{perm:s}=n;we(r,"transpose");let i=r.shape.length,o=new Array(i);for(let d=0;d<o.length;d++)o[d]=r.shape[s[d]];let l=a.data.get(r.dataId).values,u=kg(l,r.shape,r.dtype,s,o);return{dataId:a.write(u,o,r.dtype),shape:o,dtype:r.dtype}}var KD={kernelName:ci,backendName:"cpu",kernelFunc:ua};function O7(e,t,n,a){let[r,s]=F.computeOutAndReduceShapes(e,a),i=Aa(t,"int32"),o=k.makeZerosTypedArray(k.sizeFromShape(r),i),l=k.sizeFromShape(s);for(let u=0;u<o.length;++u){let d=u*l,p=1;for(let c=0;c<l;++c)p*=n[d+c];o[u]=p}return{outVals:o,outShape:r,outDtype:i}}function ZD(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"prod");let o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=F.getAxesPermutation(l,o),d=l,p=r,c=[];u!=null&&(p=ua({inputs:{x:r},backend:n,attrs:{perm:u}}),c.push(p),d=F.getInnerMostAxes(d.length,o));let h=n.data.get(p.dataId).values,{outVals:m,outShape:f,outDtype:g}=O7(p.shape,p.dtype,h,d),y=f;return i&&(y=F.expandShapeToKeepDim(f,l)),c.forEach(A=>n.disposeIntermediateTensorInfo(A)),n.makeTensorInfo(y,g,m)}var YD={kernelName:Qo,backendName:"cpu",kernelFunc:ZD};function Ig(e,t,n,a){let r=e===t,s=e<t&&n<0,i=t<e&&n>1;if(r||s||i)return k.makeZerosTypedArray(0,a);let o=Math.abs(Math.ceil((t-e)/n)),l=k.makeZerosTypedArray(o,a);t<e&&n===1&&(n=-1),l[0]=e;for(let u=1;u<l.length;u++)l[u]=l[u-1]+n;return l}var z7=Pl(e=>1/Math.sqrt(e)),JD=Ll(ni,z7),QD={kernelName:ni,backendName:"cpu",kernelFunc:JD};function Fh(e,t,n,a,r){let s=fn.isSliceContinous(a,t,n),i=k.sizeFromShape(n),o=k.computeStrides(a);if(s){let p=fn.computeFlatOffset(t,o);return r==="string"?e.slice(p,p+i):e.subarray(p,p+i)}let l=r==="string"?F.fromUint8ToStringArray(e):e,u=Ve(a,r,l),d=Ve(n,r);for(let p=0;p<d.size;++p){let c=d.indexToLoc(p),h=c.map((m,f)=>m+t[f]);d.set(u.get(...h),...c)}return r==="string"?F.fromStringArrayToUint8(d.values):d.values}function Di(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a;we(r,"slice");let[o,l]=fn.parseSliceParams(r,s,i);fn.assertParamsValid(r,o,l);let u=n.data.get(r.dataId).values,d=Fh(u,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,d)}var eO={kernelName:sl,backendName:"cpu",kernelFunc:Di};function _7(e,t,n,a,r,s,i){let o=t[0],l=s[0],u=new Array(l),d=new Array(o),p=t[1];if(l===0){if(o!==0)throw new Error(`Received SparseTensor with denseShape[0] = 0 but
|
|
indices.shape[0] = ${o}`);let g=k.getArrayFromDType(n,0),y=k.getArrayFromDType(r,0);return[g,[0,p],y,u,d]}let c=!0,h=0,m=new Array(l).fill(0);for(let g=0;g<o;++g){let y=e[g*p];if(y<0)throw new Error(`indices(${g}, 0) is invalid: ${y} < 0`);if(y>=l)throw new Error(`indices(${g}, 0) is invalid: ${y} >= ${l}`);++m[y],c=c&&y>=h,h=y}let f=!0;for(let g=0;g<l;++g){let y=m[g]===0;u[g]=y,f=f&&!y,m[g]=Math.max(m[g],1),g>0&&(m[g]+=m[g-1])}if(f&&c){let g=e,y=a;for(let A=0;A<o;++A)d[A]=A;return[g,[o,p],y,u,d]}else{let g=m[l-1],y=k.getArrayFromDType(n,g*p),A=k.getArrayFromDType(r,g),x=new Array(l).fill(0);for(let v=0;v<o;++v){let b=e[v*p],w=x[b],N=(b===0?0:m[b-1])+w;x[b]++;for(let C=0;C<p;++C)y[N*p+C]=e[v*p+C];A[N]=a[v],d[v]=N}for(let v=0;v<l;++v)if(x[v]===0){let b=v===0?0:m[v-1];y[b*p+0]=v;for(let w=1;w<p;++w)y[b*p+w]=0;A[b]=i}return[y,[g,p],A,u,d]}}function P7(e,t,n,a,r){let s=k.sizeFromShape(a),i=t[0],o=r.length,l=[],u=1,d=-1;for(let g=0;g<o;++g){let y=r[g];if(y===-1){if(d!==-1)throw new Error(`only one output dimension may be -1, not both ${d} and ${g}`);d=g,l.push(1)}else{if(y<0)throw new Error(`size ${g} must be non-negative, not ${y}`);u*=y,l.push(y)}}if(d!==-1){if(u<=0)throw new Error("reshape cannot infer the missing input size for an empty tensor unless all specified input sizes are non-zero");let g=Math.trunc(s/u);if(u*g!==s)throw new Error(`Input to reshape is a SparseTensor with ${s}
|
|
dense values, but the requested shape requires a multiple of ${u}. inputShape=${a} outputShape= ${l}`);l[d]=g}let p=k.sizeFromShape(l);if(p!==s)throw new Error(`Input to reshape is a tensor with ${s} dense values, but the requested shape has ${p}. inputShape=${a} outputShape=${l}`);let c=a.length,h=[];if(c>0){h[c-1]=1;for(let g=c-2;g>=0;--g)h[g]=h[g+1]*a[g+1]}let m=[];if(o>0){m[o-1]=1;for(let g=o-2;g>=0;--g)m[g]=m[g+1]*l[g+1]}let f=k.getArrayFromDType(n,i*o);for(let g=0;g<i;++g){let y=0;for(let A=0;A<c;++A)y+=e[g*c+A]*h[A];for(let A=0;A<o;++A)f[g*o+A]=Math.trunc(y/m[A]),y%=m[A]}return[f,[i,o],l]}function Sg(e,t,n,a,r,s=!1,i=0){let o=a.length;if(o!==r.length)throw new Error("segmentIds and indices should have same size.");let l=[t[0],e.length/t[0]],u=l[1],d=o>0?r[o-1]+1:0;if(d<0)throw new Error("segment ids must be >= 0");let p=t.slice();p[0]=d;let c=p.reduce((A,x)=>A*x,1),h=k.getArrayFromDType(n,c);if(o===0)return d>0&&h.fill(i),[h,p];if(d<=0)throw new Error("segment ids must be >= 0");let m=0,f=1,g=0,y=r[m];for(;;){let A=0;if(f<o){if(A=r[f],y===A){++f;continue}if(y>=A)throw new Error("segment ids are not increasing")}if(y<0||y>=d)throw new Error(`Segment id ${y} out of range [0, ${d}), possibly because segmentIds input is not sorted.`);y>g&&h.fill(i,g*u,y*u);for(let x=m;x<f;++x){let v=a[x];if(v<0||v>=l[0])throw new Error(`Bad: indices[${x}] == ${a[x]} out of range [0, ${l[0]})`);for(let b=0;b<u;b++)h[y*u+b]+=e[v*u+b]}if(s)for(let x=0;x<u;x++)h[y*u+x]/=f-m;if(m=f,++f,g=y+1,y=A,f>o)break}return g<d&&h.fill(i,g*u,d*u),[h,p]}var L7=Ot((e,t)=>{let n=e-t;return n*n}),tO=Yt(li,L7),nO={kernelName:li,backendName:"cpu",kernelFunc:tO};function W7(e,t,n,a){let r=Ve(e,t.dtype);for(let s=0;s<r.size;s++){let i=r.indexToLoc(s),o=new Array(i.length);for(let l=0;l<o.length;l++)o[l]=i[l]*n[l]+a[l];r.set(t.get(...o),...i)}return r}var aO=class{constructor(e,t,n,a,r,s){this.separator=k.encodeString(e),this.nGramWidths=t,this.leftPad=k.encodeString(n),this.rightPad=k.encodeString(a),this.padWidth=r,this.preserveShort=s}getPadWidth(e){return Math.min(this.padWidth<0?e-1:this.padWidth,e-1)}getNumNGrams(e,t){let n=this.getPadWidth(t);return Math.max(0,e+2*n-t+1)}createNGrams(e,t,n,a,r,s){for(let i=0;i<r;++i){let o=this.getPadWidth(s),l=Math.max(0,o-i),u=Math.max(0,o-(r-(i+1))),d=s-(l+u),p=t+(l>0?0:i-o),c=0;c+=l*this.leftPad.length;for(let g=0;g<d;++g)c+=e[p+g].length;c+=u*this.rightPad.length,c+=(l+u+d-1)*this.separator.length,n[a+i]=new Uint8Array(c);let h=n[a+i],m=0,f=g=>g.forEach(y=>h[m++]=y);for(let g=0;g<l;++g)f(this.leftPad),f(this.separator);for(let g=0;g<d-1;++g)f(e[p+g]),f(this.separator);if(d>0){f(e[p+d-1]);for(let g=0;g<u;++g)f(this.separator),f(this.rightPad)}else{for(let g=0;g<u-1;++g)f(this.rightPad),f(this.separator);f(this.rightPad)}}}compute(e,t){let n=e.length,a=t.length;if(a>0){let o=t[0];if(o!==0)throw new Error(`First split value must be 0, got ${o}`);for(let l=1;l<a;++l){let u=t[l]>=o;if(u=u&&t[l]<=n,!u)throw new Error(`Invalid split value ${t[l]}, must be in [${o}, ${n}]`);o=t[l]}if(o!==n)throw new Error(`Last split value must be data size. Expected ${n}, got ${o}`)}let r=a-1,s=k.getArrayFromDType("int32",a);if(n===0||a===0){let o=new Array(n);for(let l=0;l<=r;++l)s[l]=0;return[o,s]}s[0]=0;for(let o=1;o<=r;++o){let l=t[o]-t[o-1],u=0;this.nGramWidths.forEach(d=>{u+=this.getNumNGrams(l,d)}),this.preserveShort&&l>0&&u===0&&(u=1),s[o]=s[o-1]+u}let i=new Array(s[r]);for(let o=0;o<r;++o){let l=t[o],u=s[o];if(this.nGramWidths.forEach(d=>{let p=t[o+1]-t[o],c=this.getNumNGrams(p,d);this.createNGrams(e,l,i,u,c,d),u+=c}),this.preserveShort&&u===s[o]){let d=t[o+1]-t[o];if(d===0)continue;let p=d+2*this.padWidth,c=1;this.createNGrams(e,l,i,u,c,p)}}return[i,s]}};function B7(e,t,n,a,r,s,i,o){return new aO(n,a,r,s,i,o).compute(e,t)}function rO(e,t,n){if(!e.length)return[];if(t.length===0){let s=new Array(e.length);for(let i=0;i<e.length;++i)s[i]=e.subarray(i,i+1);return s}if(t.length===1){let s=t[0],i=[],o=e.indexOf(s);for(;o!==-1;){let l=e.subarray(0,o);(!n||l.length!==0)&&i.push(l),e=e.subarray(o+1),o=e.indexOf(s)}return(!n||e.length!==0)&&i.push(e),i}let a=[],r=0;for(let s=0;s<e.length+1;s++)if(s===e.length||t.indexOf(e[s])!==-1){let i=e.subarray(r,s);(!n||i.length!==0)&&a.push(i),r=s+1}return a}function V7(e,t,n){let a=e.length,r=[],s=0,i=0,o=new Array(a);for(let c=0;c<a;++c){let h=rO(e[c],t,n),m=h.length;o[c]=m,s+=m,i=Math.max(i,m),r.push(...h)}let l=k.getArrayFromDType("int32",s*2),u=new Array(s),d=[a,i],p=0;for(let c=0;c<a;++c)for(let h=0;h<o[c];++h)l[p*2]=c,l[p*2+1]=h,u[p]=r[p],++p;return[l,u,d]}function j7(e,t){let n=k.getArrayFromDType("int32",e.length);for(let a=0;a<e.length;++a)n[a]=k.fingerPrint64(e[a]).modulo(t).getLowBitsUnsigned();return n}var U7=Ot((e,t)=>e-t),sO=xg((e,t,n,a)=>({real:e-n,imag:t-a})),Ng=Yt(ui,U7,sO),iO={kernelName:ui,backendName:"cpu",kernelFunc:Ng};function H7(e,t){let n=new Array(e.rank);for(let r=0;r<n.length;r++)n[r]=e.shape[r]*t[r];let a=Ve(n,e.dtype);for(let r=0;r<a.values.length;++r){let s=a.indexToLoc(r),i=new Array(e.rank);for(let l=0;l<i.length;l++)i[l]=s[l]%e.shape[l];let o=e.locToIndex(i);a.values[r]=e.values[o]}return a}function G7(e,t,n,a,r){let s=t[t.length-1],[i,o]=[e.length/s,s],l=k.getTypedArrayFromDType(n,i*a),u=k.getTypedArrayFromDType("int32",i*a);for(let p=0;p<i;p++){let c=p*o,h=e.subarray(c,c+o),m=[];for(let A=0;A<h.length;A++)m.push({value:h[A],index:A});m.sort((A,x)=>x.value-A.value);let f=p*a,g=l.subarray(f,f+a),y=u.subarray(f,f+a);for(let A=0;A<a;A++)g[A]=m[A].value,y[A]=m[A].index}let d=t.slice();return d[d.length-1]=a,[Ve(d,n,l),Ve(d,"int32",u)]}function q7(e,t,n,a){let r=k.parseAxisParam(t,n)[0],s=[1,n[0],1];for(let m=0;m<r;m++)s[0]*=n[m];s[1]=n[r];for(let m=r+1;m<n.length;m++)s[2]*=n[m];let i={},o=new Int32Array(n[r]),l=new Lt(s,a,e),u=[],d=s[0]===1&&s[2]===1;for(let m=0;m<n[r];m++){let f;if(d)f=e[m].toString();else{let g=[];for(let y=0;y<s[0];y++)for(let A=0;A<s[2];A++)g.push(l.get(y,m,A));f=g.join(",")}if(i[f]!==void 0)o[m]=i[f];else{let g=Object.keys(i).length;i[f]=g,o[m]=g,u.push(m)}}let p=s.slice();p[1]=Object.keys(i).length;let c=new Lt(p,a);u.forEach((m,f)=>{for(let g=0;g<s[0];g++)for(let y=0;y<s[2];y++)c.set(l.get(g,m,y),g,f,y)});let h=n.slice();return h[r]=p[1],{outputValues:c.values,outputShape:h,indices:o}}var X7="3.7.0";Il("cpu",()=>new Eh,1);var K7=rt(Eo,e=>e>=0?e:Math.exp(e)-1),oO={kernelName:Eo,backendName:"cpu",kernelFunc:K7};function Z7(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a;we([r],"leakyRelu");let i=k.sizeFromShape(r.shape),o=n.data.get(r.dataId).values,l=k.getTypedArrayFromDType("float32",i);for(let u=0;u<o.length;u++)l[u]=o[u]<0?s*o[u]:o[u];return n.makeTensorInfo(r.shape,"float32",l)}var lO={kernelName:_s,backendName:"cpu",kernelFunc:Z7},uO=Ot((e,t)=>e<0?t*e:e);function Y7(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t;we([a,r],"prelu");let s=n.data.get(a.dataId).values,i=n.data.get(r.dataId).values,[o,l]=uO(a.shape,r.shape,s,i,a.dtype);return n.makeTensorInfo(l,a.dtype,o)}var dO={kernelName:Zs,backendName:"cpu",kernelFunc:Y7},J7=rt(Ys,e=>Math.max(0,e)),pO={kernelName:Ys,backendName:"cpu",kernelFunc:J7},Q7=rt(Qs,e=>Math.min(Math.max(0,e),6)),cO={kernelName:Qs,backendName:"cpu",kernelFunc:Q7},ev=rt(ri,e=>1/(1+Math.exp(-e))),hO={kernelName:ri,backendName:"cpu",kernelFunc:ev};function Tg(e,t,n,a,r){if(n==="linear")return Ya({inputs:{x:t},backend:e});if(n==="relu")return J7({inputs:{x:t},backend:e});if(n==="elu")return K7({inputs:{x:t},backend:e});if(n==="relu6")return Q7({inputs:{x:t},backend:e});if(n==="prelu")return Y7({inputs:{x:t,alpha:a},backend:e});if(n==="leakyrelu")return Z7({inputs:{x:t},backend:e,attrs:{alpha:r}});if(n==="sigmoid")return ev({inputs:{x:t},backend:e});throw new Error(`Activation ${n} has not been implemented for the CPU backend.`)}function gt(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=k.sizeFromShape(r.shape),o=k.inferFromImplicitShape(s,i),l=k.sizeFromShape(o);k.assert(i===l,()=>`The new shape (${o}) has ${l} elements and the old shape (${r.shape}) has ${i} elements. The new shape and old shape must have the same number of elements.`),n.incRef(r.dataId);let u=n.data.get(r.dataId);if(u.complexTensorInfos!=null){let d=u.complexTensorInfos.real,p=u.complexTensorInfos.imag;d.shape=o,p.shape=o}return{dataId:r.dataId,shape:o,dtype:r.dtype}}var fO={kernelName:tl,backendName:"cpu",kernelFunc:gt};function tv(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;we([r,s],"matMul");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,c]:[g,c,d],b=o?[y,h,p]:[y,p,h],w=gt({inputs:{x:r},backend:n,attrs:{shape:v}}),N=gt({inputs:{x:s},backend:n,attrs:{shape:b}}),C=i?w.shape[1]:w.shape[2],E=i?w.shape[2]:w.shape[1],_=o?N.shape[1]:N.shape[2],$=Math.max(g,y),S=n.data.get(w.dataId).values,z=n.data.get(N.dataId).values,O=k.computeStrides(w.shape),W=k.computeStrides(N.shape),[G,H,J]=i?[O[0],1,O[1]]:[O[0],O[1],1],[K,ne,Q]=o?[1,W[1],W[0]]:[W[1],1,W[0]],se=E*_,Z=Ve([$,E,_],w.dtype),le=Z.values,oe=n.blockSize;for(let xe=0;xe<$;xe++)for(let fe=0;fe<E;fe+=oe)for(let Ne=0;Ne<_;Ne+=oe)for(let Te=0;Te<C;Te+=oe){let Oe=Math.min(fe+oe,E),Pe=Math.min(Ne+oe,_),ze=Math.min(Te+oe,C);for(let tt=fe;tt<Oe;tt++)for(let nt=Ne;nt<Pe;nt++){let it=0;for(let Ye=Te;Ye<ze;Ye++){let ht=Math.min(xe,g-1)*G,Ue=Math.min(xe,y-1)*Q,In=S[ht+tt*H+Ye*J],kt=z[Ye*K+nt*ne+Ue];it+=In*kt}le[xe*se+(tt*_+nt)]+=it}}return n.disposeIntermediateTensorInfo(w),n.disposeIntermediateTensorInfo(N),n.makeTensorInfo(x,Z.dtype,Z.values)}var mO={kernelName:ws,backendName:"cpu",kernelFunc:tv};function gO(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c,h,m,f=[];c=tv({inputs:{a:r,b:s},attrs:{transposeA:l,transposeB:u},backend:n}),i&&(h=Id({inputs:{a:c,b:i},backend:n}),f.push(c),c=h),d&&(m=Tg(n,c,d,o,p),f.push(c),c=m);for(let g of f)n.disposeIntermediateTensorInfo(g);return c}var yO={kernelName:hi,backendName:"cpu",kernelFunc:gO},AO=rt(go,e=>Math.acos(e)),xO={kernelName:go,backendName:"cpu",kernelFunc:AO},bO=rt(yo,e=>Math.acosh(e)),vO={kernelName:yo,backendName:"cpu",kernelFunc:bO};function wO(e){let{inputs:t,backend:n}=e,a=t;we(t,"addN");let r=a.map(o=>n.data.get(o.dataId).values),s=Ve(a[0].shape,a[0].dtype),i=s.values;for(let o=0;o<a.length;o++){let l=r[o];for(let u=0;u<i.length;u++)i[u]+=l[u]}return n.makeTensorInfo(s.shape,s.dtype,s.values)}var kO={kernelName:xs,backendName:"cpu",kernelFunc:wO};function IO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"all");let o=k.parseAxisParam(s,r.shape),l=o,u=F.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ua({inputs:{x:r},backend:n,attrs:{perm:u}}),l=F.getInnerMostAxes(l.length,r.shape.length)),F.assertAxesAreInnerMostDims("all",l,d.shape.length);let[p,c]=F.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*h,x=f[A];for(let v=0;v<h;++v){let b=f[A+v];x=x&&b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let y=F.expandShapeToKeepDim(p,o),A=gt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var SO={kernelName:Ao,backendName:"cpu",kernelFunc:IO};function NO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"any");let o=k.parseAxisParam(s,r.shape),l=o,u=F.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ua({inputs:{x:r},backend:n,attrs:{perm:u}}),l=F.getInnerMostAxes(l.length,r.shape.length)),F.assertAxesAreInnerMostDims("any",l,d.shape.length);let[p,c]=F.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*h,x=f[A];for(let v=0;v<h;++v){let b=f[A+v];x=x||b}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let y=F.expandShapeToKeepDim(p,o),A=gt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var TO={kernelName:xo,backendName:"cpu",kernelFunc:NO};function CO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMax");let i=k.parseAxisParam(s,r.shape),o=F.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ua({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],F.assertAxesAreInnerMostDims("argMax",i,l.shape.length);let[d,p]=F.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,A=f[y],x=0;for(let v=0;v<m;++v){let b=f[y+v];b>A&&(A=b,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",h)}var EO={kernelName:bs,backendName:"cpu",kernelFunc:CO};function RO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a;we(r,"argMin");let i=k.parseAxisParam(s,r.shape),o=F.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=ua({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),i=[i[0]],F.assertAxesAreInnerMostDims("argMin",i,l.shape.length);let[d,p]=F.computeOutAndReduceShapes(l.shape,i),c=k.sizeFromShape(d),h=k.makeZerosTypedArray(c,"int32"),m=k.sizeFromShape(p),f=n.data.get(l.dataId).values;for(let g=0;g<h.length;++g){let y=g*m,A=f[y],x=0;for(let v=0;v<m;++v){let b=f[y+v];b<A&&(A=b,x=v)}h[g]=x}return u.forEach(g=>n.disposeIntermediateTensorInfo(g)),n.makeTensorInfo(d,"int32",h)}var MO={kernelName:Fu,backendName:"cpu",kernelFunc:RO},FO=rt(bo,e=>Math.asin(e)),$O={kernelName:bo,backendName:"cpu",kernelFunc:FO},DO=rt(vo,e=>Math.asinh(e)),OO={kernelName:vo,backendName:"cpu",kernelFunc:DO},zO=rt(wo,e=>Math.atan(e)),_O={kernelName:wo,backendName:"cpu",kernelFunc:zO},PO=Ot((e,t)=>Math.atan2(e,t)),LO=Yt(Io,PO),WO={kernelName:Io,backendName:"cpu",kernelFunc:LO},BO=rt(ko,e=>Math.atanh(e)),VO={kernelName:ko,backendName:"cpu",kernelFunc:BO};function Cg(e,t,n,a,r,s){let i=r.strideHeight,o=r.strideWidth,l=r.dilationHeight,u=r.dilationWidth,d=r.effectiveFilterHeight,p=r.effectiveFilterWidth,c=r.padInfo.top,h=r.padInfo.left,m=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,f=Ve(r.outShape,n),g=f.values,y=r.outShape[1]*r.outShape[2]*r.outShape[3],A=r.outShape[2]*r.outShape[3],x=r.outShape[3];for(let v=0;v<r.batchSize;++v){let b=v*y,w=v*a[0];for(let N=0;N<r.inChannels;++N)for(let C=0;C<r.outHeight;++C){let E=C*i-c,_=Math.max(0,E),$=Math.min(r.inHeight,d+E),S=b+C*A;for(let z=0;z<r.outWidth;++z){let O=z*o-h,W=Math.max(0,O),G=Math.min(r.inWidth,p+O),H=m,J=0,K=0;for(let Q=_;Q<$;Q+=l){let se=w+Q*a[1];for(let Z=W;Z<G;Z+=u){let le=se+Z*a[2],oe=e[le+N];s==="max"&&oe>H?H=oe:s==="avg"&&(J+=oe,K++)}if(isNaN(H))break}let ne=S+z*x+N;g[ne]=s==="avg"?J/K:H}}}return f}function nv(e,t,n,a,r=!1,s=!1){let i=Ve(a.outShape,"int32"),o=a.strideHeight,l=a.strideWidth,u=a.dilationHeight,d=a.dilationWidth,p=a.effectiveFilterHeight,c=a.effectiveFilterWidth,h=a.padInfo.top,m=a.padInfo.left,f=Ve(t,n,e);for(let g=0;g<a.batchSize;++g)for(let y=0;y<a.inChannels;++y)for(let A=0;A<a.outHeight;++A){let x=A*o-h,v=x;for(;v<0;)v+=u;let b=Math.min(a.inHeight,p+x);for(let w=0;w<a.outWidth;++w){let N=w*l-m,C=N;for(;C<0;)C+=d;let E=Math.min(a.inWidth,c+N),_=Number.NEGATIVE_INFINITY,$=-1;for(let S=v;S<b;S+=u){let z=S-x;for(let O=C;O<E;O+=d){let W=O-N,G=f.get(g,S,O,y);G>_&&(_=G,r?$=s?((g*a.inHeight+S)*a.inWidth+O)*a.inChannels+y:(S*a.inWidth+O)*a.inChannels+y:$=z*c+W)}}i.set($,g,A,w,y)}}return i}function av(e,t,n,a,r,s){let i=r.strideDepth,o=r.strideHeight,l=r.strideWidth,u=r.dilationDepth,d=r.dilationHeight,p=r.dilationWidth,c=r.effectiveFilterDepth,h=r.effectiveFilterHeight,m=r.effectiveFilterWidth,f=r.padInfo.front,g=r.padInfo.top,y=r.padInfo.left,A=s==="max"?Number.NEGATIVE_INFINITY:Number.POSITIVE_INFINITY,x=Ve(r.outShape,n),v=x.values,b=r.outShape[1]*r.outShape[2]*r.outShape[3]*r.outShape[4],w=r.outShape[2]*r.outShape[3]*r.outShape[4],N=r.outShape[3]*r.outShape[4],C=r.outShape[4];for(let E=0;E<r.batchSize;++E){let _=E*b,$=E*a[0];for(let S=0;S<r.inChannels;++S)for(let z=0;z<r.outDepth;++z){let O=z*i-f,W=O;for(;W<0;)W+=u;let G=Math.min(r.inDepth,c+O),H=_+z*w;for(let J=0;J<r.outHeight;++J){let K=J*o-g,ne=K;for(;ne<0;)ne+=d;let Q=Math.min(r.inHeight,h+K),se=H+J*N;for(let Z=0;Z<r.outWidth;++Z){let le=Z*l-y,oe=le;for(;oe<0;)oe+=p;let xe=Math.min(r.inWidth,m+le),fe=se+Z*C,Ne=A,Te=0,Oe=0;for(let ze=W;ze<G;ze+=u){let tt=$+ze*a[1];for(let nt=ne;nt<Q;nt+=d){let it=tt+nt*a[2];for(let Ye=oe;Ye<xe;Ye+=p){let ht=it+Ye*a[3],Ue=e[ht+S];if(s==="max"&&Ue>Ne?Ne=Ue:s==="avg"&&(Te+=Ue,Oe++),isNaN(Ne))break}if(isNaN(Ne))break}if(isNaN(Ne))break}let Pe=fe+S;v[Pe]=s==="avg"?Te/Oe:Ne}}}}return x}function jO(e,t){let n=Ve(t.outShape,"int32"),a=t.strideDepth,r=t.strideHeight,s=t.strideWidth,i=t.dilationDepth,o=t.dilationHeight,l=t.dilationWidth,u=t.effectiveFilterDepth,d=t.effectiveFilterHeight,p=t.effectiveFilterWidth,c=t.padInfo.front,h=t.padInfo.top,m=t.padInfo.left;for(let f=0;f<t.batchSize;++f)for(let g=0;g<t.inChannels;++g)for(let y=0;y<t.outDepth;++y){let A=y*a-c,x=A;for(;x<0;)x+=i;let v=Math.min(t.inDepth,u+A);for(let b=0;b<t.outHeight;++b){let w=b*r-h,N=w;for(;N<0;)N+=o;let C=Math.min(t.inHeight,d+w);for(let E=0;E<t.outWidth;++E){let _=E*s-m,$=_;for(;$<0;)$+=l;let S=Math.min(t.inWidth,p+_),z=Number.NEGATIVE_INFINITY,O=-1;for(let W=x;W<v;W+=i){let G=W-A;for(let H=N;H<C;H+=o){let J=H-w;for(let K=$;K<S;K+=l){let ne=K-_,Q=e.get(f,W,H,K,g);Q>=z&&(z=Q,O=G*d*p+J*d+ne)}}}n.set(O,f,y,b,E,g)}}}return n}function UO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(F.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=F.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ya({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Cg(c,r.shape,r.dtype,h,d,"avg");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var HO={kernelName:vs,backendName:"cpu",kernelFunc:UO};function GO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;we(r,"avgPool3d");let d=F.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=av(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"avg");return n.makeTensorInfo(c.shape,"float32",c.values)}var qO={kernelName:$u,backendName:"cpu",kernelFunc:GO};function XO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;we([r,s],"avgPool3DGrad");let d=F.computePool3DInfo(s.shape,i,o,1,l,u),p=d.strideDepth,c=d.strideHeight,h=d.strideWidth,m=d.filterDepth,f=d.filterHeight,g=d.filterWidth,y=d.dilationDepth,A=d.dilationHeight,x=d.dilationWidth,v=d.effectiveFilterDepth,b=d.effectiveFilterHeight,w=d.effectiveFilterWidth,N=v-1-d.padInfo.front,C=w-1-d.padInfo.left,E=b-1-d.padInfo.top,_=Ve(s.shape,"float32"),$=1/(m*f*g),S=n.bufferSync(r);for(let z=0;z<d.batchSize;++z)for(let O=0;O<d.inChannels;++O)for(let W=0;W<d.inDepth;++W)for(let G=0;G<d.inHeight;++G)for(let H=0;H<d.inWidth;++H){let J=W-N,K=G-E,ne=H-C,Q=0;for(let se=0;se<v;se+=y){let Z=(J+se)/p;if(!(Z<0||Z>=d.outDepth||Math.floor(Z)!==Z))for(let le=0;le<b;le+=A){let oe=(K+le)/c;if(!(oe<0||oe>=d.outHeight||Math.floor(oe)!==oe))for(let xe=0;xe<w;xe+=x){let fe=(ne+xe)/h;fe<0||fe>=d.outWidth||Math.floor(fe)!==fe||(Q+=S.get(z,Z,oe,fe,O))}}}_.set(Q*$,z,W,G,H,O)}return n.makeTensorInfo(_.shape,_.dtype,_.values)}var KO={kernelName:Kp,backendName:"cpu",kernelFunc:XO};function ZO(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;we([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=F.computePool2DInfo(i.shape,o,l,1,u),p=d.strideHeight,c=d.strideWidth,h=d.filterHeight,m=d.filterWidth,f=d.dilationHeight,g=d.dilationWidth,y=d.effectiveFilterHeight,A=d.effectiveFilterWidth,x=A-1-d.padInfo.left,v=y-1-d.padInfo.top,b=Ve(i.shape,"float32"),w=1/(h*m),N=n.data.get(r.dataId).values,C=Ve(r.shape,"float32",N);for(let E=0;E<d.batchSize;++E)for(let _=0;_<d.inChannels;++_)for(let $=0;$<d.inHeight;++$)for(let S=0;S<d.inWidth;++S){let z=$-v,O=S-x,W=0;for(let G=0;G<y;G+=f){let H=(z+G)/p;if(!(H<0||H>=d.outHeight||Math.floor(H)!==H))for(let J=0;J<A;J+=g){let K=(O+J)/c;K<0||K>=d.outWidth||Math.floor(K)!==K||(W+=C.get(E,H,K,_))}}b.set(W*w,E,$,S,_)}return n.makeTensorInfo(b.shape,b.dtype,b.values)}var YO={kernelName:Xp,backendName:"cpu",kernelFunc:ZO};function JO(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,scale:s,offset:i,mean:o,variance:l}=t;k.assert(o.shape.length===l.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||o.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(s==null||o.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks."),we([r,o,l,s,i],"batchNorm");let{varianceEpsilon:u}=a;u==null&&(u=.001);let d=n.data.get(r.dataId).values,p=n.data.get(o.dataId).values,c=n.data.get(l.dataId).values,h=s?n.data.get(s.dataId).values:new Float32Array([1]),m=i?n.data.get(i.dataId).values:new Float32Array([0]),f=new Float32Array(d.length),g=m.length,y=h.length,A=c.length,x=p.length,v=0,b=0,w=0,N=0;for(let C=0;C<d.length;++C)f[C]=m[v++]+(d[C]-p[b++])*h[w++]/Math.sqrt(c[N++]+u),v>=g&&(v=0),b>=x&&(b=0),w>=y&&(w=0),N>=A&&(N=0);return n.makeTensorInfo(r.shape,r.dtype,f)}var QO={kernelName:Ds,backendName:"cpu",kernelFunc:JO};function ez(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;we([r],"batchToSpaceND");let o=s.reduce((y,A)=>y*A),l=F.getReshaped(r.shape,s,o),u=F.getPermuted(l.length,s.length),d=F.getReshapedPermuted(r.shape,s,o),p=F.getSliceBeginCoords(i,s.length),c=F.getSliceSize(d,i,s.length),h=gt({inputs:{x:r},backend:n,attrs:{shape:l}}),m=ua({inputs:{x:h},backend:n,attrs:{perm:u}}),f=gt({inputs:{x:m},backend:n,attrs:{shape:d}}),g=Di({inputs:{x:f},backend:n,attrs:{begin:p,size:c}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var tz={kernelName:Du,backendName:"cpu",kernelFunc:ez};function nz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,u=bg(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var az={kernelName:Zp,backendName:"cpu",kernelFunc:nz},rz=rt(zr,(e,t)=>{let n=t;return e>n.clipValueMax?n.clipValueMax:e<n.clipValueMin?n.clipValueMin:e}),sz={kernelName:zr,backendName:"cpu",kernelFunc:rz},iz=e=>{let{x:t}=e.inputs,n=e.backend,a=new Float32Array(k.sizeFromShape(t.shape)),r=n.data.get(t.dataId),s=r.complexTensorInfos.real,i=r.complexTensorInfos.imag,o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values;for(let u=0;u<o.length;u++){let d=o[u],p=l[u];a[u]=Math.hypot(d,p)}return n.makeOutput(a,t.shape,"float32")},oz={kernelName:Ou,backendName:"cpu",kernelFunc:iz};function Wl(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.data.get(a.dataId).complexTensorInfos.imag,s=n.data.get(r.dataId).values;return n.makeTensorInfo(r.shape,r.dtype,s)}var lz={kernelName:pc,backendName:"cpu",kernelFunc:Wl};function Bl(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=F.computeOutShape(t.map(f=>f.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(f=>k.sizeFromShape(f.shape)>0);if(o.length===1)return Ya({inputs:{x:o[0]},backend:n});let l=o.map(f=>f.shape);if(F.assertParamsConsistent(l,s),o[0].dtype==="complex64"){let f=o.map(v=>$i({inputs:{input:v},backend:n})),g=o.map(v=>Wl({inputs:{input:v},backend:n})),y=Bl({inputs:f,backend:n,attrs:{axis:s}}),A=Bl({inputs:g,backend:n,attrs:{axis:s}}),x=qn({inputs:{real:y,imag:A},backend:n});return f.forEach(v=>n.disposeIntermediateTensorInfo(v)),g.forEach(v=>n.disposeIntermediateTensorInfo(v)),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),x}let u=o.map(f=>{let g=k.sizeFromShape(f.shape.slice(s));return gt({inputs:{x:f},backend:n,attrs:{shape:[-1,g]}})}),d=u.map(f=>({vals:n.data.get(f.dataId).values,shape:f.shape}));i=F.computeOutShape(u.map(f=>f.shape),1);let p=u[0].shape[0]===1,c=vg(d,i,t[0].dtype,p),h=F.computeOutShape(o.map(f=>f.shape),s),m=n.makeTensorInfo(h,t[0].dtype,c);return u.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var uz={kernelName:So,backendName:"cpu",kernelFunc:Bl};function rv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a;we([r,s],"conv2d");let p=F.convertConv2DDataFormat(l),c=F.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h=c.filterHeight,m=c.filterWidth,f=c.dilationHeight,g=c.dilationWidth,y=c.padInfo.left,A=c.padInfo.top,x=c.dataFormat==="channelsLast",v=new Lt(c.outShape,r.dtype),b=k.computeStrides(r.shape),w=k.computeStrides(s.shape),N=b[0],C=x?b[1]:b[2],E=x?b[2]:1,_=x?1:b[1],$=v.strides[0],S=x?v.strides[1]:v.strides[2],z=x?v.strides[2]:1,O=x?1:v.strides[1],W=n.data.get(r.dataId).values,G=n.data.get(s.dataId).values,H=v.values;for(let J=0;J<c.batchSize;++J){let K=J*N,ne=J*$;for(let Q=0;Q<c.outHeight;++Q){let se=ne+Q*S,Z=Q*c.strideHeight-A;for(let le=0;le<h;++le){let oe=Z+le*f;if(oe<0||oe>=c.inHeight)continue;let xe=le*w[0],fe=K+oe*C;for(let Ne=0;Ne<c.outWidth;++Ne){let Te=se+Ne*z,Oe=Ne*c.strideWidth-y;for(let Pe=0;Pe<m;++Pe){let ze=Oe+Pe*g;if(ze<0||ze>=c.inWidth)continue;let tt=xe+Pe*w[1],nt=fe+ze*E,it=tt;for(let Ye=0;Ye<c.inChannels;++Ye){let ht=W[nt+Ye*_];for(let Ue=0;Ue<c.outChannels;++Ue)H[Te+Ue*O]+=ht*G[it+Ue];it+=c.outChannels}}}}}}return n.makeTensorInfo(v.shape,v.dtype,H)}var dz={kernelName:Ss,backendName:"cpu",kernelFunc:rv};function pz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a;we([r,s],"conv2dBackpropFilter");let p=F.convertConv2DDataFormat(l),c=F.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),{strideHeight:h,strideWidth:m,filterHeight:f,filterWidth:g}=c,y=c.dataFormat==="channelsLast",A=new Lt(c.filterShape,"float32"),x=c.padInfo.left,v=c.padInfo.top,b=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,N=new Lt(r.shape,r.dtype,b),C=new Lt(s.shape,s.dtype,w);for(let E=0;E<f;++E){let _=Math.max(0,Math.ceil((v-E)/h)),$=Math.min(c.outHeight,(c.inHeight+v-E)/h);for(let S=0;S<g;++S){let z=Math.max(0,Math.ceil((x-S)/m)),O=Math.min(c.outWidth,(c.inWidth+x-S)/m);for(let W=0;W<c.inChannels;++W)for(let G=0;G<c.outChannels;++G){let H=0;for(let J=0;J<c.batchSize;++J)for(let K=_;K<$;++K){let ne=E+K*h-v;for(let Q=z;Q<O;++Q){let se=S+Q*m-x;y?H+=N.get(J,ne,se,W)*C.get(J,K,Q,G):H+=N.get(J,W,ne,se)*C.get(J,G,K,Q)}}A.set(H,E,S,W,G)}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var cz={kernelName:Jp,backendName:"cpu",kernelFunc:pz};function hz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a;we([r,s],"conv2dBackpropInput");let p=k.computeStrides(s.shape),c=k.computeStrides(r.shape),h=F.convertConv2DDataFormat(u),m=F.computeConv2DInfo(i,s.shape,o,1,l,d,!1,h),f=new Lt(m.inShape,"float32"),g=f.values,y=n.data.get(r.dataId).values,A=n.data.get(s.dataId).values,[x,v,b]=p,{batchSize:w,filterHeight:N,filterWidth:C,inChannels:E,inHeight:_,inWidth:$,outChannels:S,outHeight:z,outWidth:O,strideHeight:W,strideWidth:G}=m;h=m.dataFormat;let H=N-1-m.padInfo.top,J=C-1-m.padInfo.left,K=h==="channelsLast",ne=f.strides[0],Q=K?f.strides[1]:f.strides[2],se=K?f.strides[2]:1,Z=K?1:f.strides[1],le=c[0],oe=K?c[1]:c[2],xe=K?c[2]:1,fe=K?1:c[1];for(let Ne=0;Ne<w;++Ne)for(let Te=0;Te<E;++Te)for(let Oe=0;Oe<_;++Oe){let Pe=Oe-H,ze=Math.max(0,Math.ceil(Pe/W)),tt=Math.min(z,(N+Pe)/W);for(let nt=0;nt<$;++nt){let it=nt-J,Ye=Math.max(0,Math.ceil(it/G)),ht=Math.min(O,(C+it)/G),Ue=0;for(let kt=ze;kt<tt;++kt){let ta=kt*W-Pe;for(let en=Ye;en<ht;++en){let Sn=en*G-it,na=le*Ne+oe*kt+xe*en,Pn=x*(N-1-ta)+v*(C-1-Sn)+b*Te;for(let dn=0;dn<S;++dn){let tn=y[na+fe*dn],Ba=A[Pn+dn];Ue+=tn*Ba}}}let In=ne*Ne+Q*Oe+se*nt+Z*Te;g[In]=Ue}}return n.makeTensorInfo(f.shape,f.dtype,f.values)}var fz={kernelName:Ns,backendName:"cpu",kernelFunc:hz};function mz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a;we([r,s],"conv3d");let u=F.computeConv3DInfo(r.shape,s.shape,i,l,o),{filterDepth:d,filterHeight:p,filterWidth:c,dilationDepth:h,dilationHeight:m,dilationWidth:f,padInfo:g}=u,y=g.front,A=g.left,x=g.top,v=new Lt(u.outShape,r.dtype),b=n.data.get(r.dataId).values,w=n.data.get(s.dataId).values,N=v.values,C=k.computeStrides(r.shape),E=k.computeStrides(s.shape);for(let _=0;_<u.batchSize;++_){let $=_*C[0],S=_*v.strides[0];for(let z=0;z<u.outDepth;++z){let O=S+z*v.strides[1],W=z*u.strideDepth-y;for(let G=0;G<d;++G){let H=W+G*h;if(H<0||H>=u.inDepth)continue;let J=G*E[0],K=$+H*C[1];for(let ne=0;ne<u.outHeight;++ne){let Q=O+ne*v.strides[2],se=ne*u.strideHeight-x;for(let Z=0;Z<p;++Z){let le=se+Z*m;if(le<0||le>=u.inHeight)continue;let oe=J+Z*E[1],xe=K+le*C[2];for(let fe=0;fe<u.outWidth;++fe){let Ne=Q+fe*u.outChannels,Te=fe*u.strideWidth-A;for(let Oe=0;Oe<c;++Oe){let Pe=Te+Oe*f;if(Pe<0||Pe>=u.inWidth)continue;let ze=oe+Oe*E[2],tt=xe+Pe*u.inChannels,nt=ze;for(let it=0;it<u.inChannels;++it){let Ye=b[tt+it];for(let ht=0;ht<u.outChannels;++ht)N[Ne+ht]+=Ye*w[nt+ht];nt+=u.outChannels}}}}}}}}return n.makeTensorInfo(v.shape,v.dtype,v.values)}var gz={kernelName:zu,backendName:"cpu",kernelFunc:mz};function yz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a;we([r,s],"conv3dBackpropFilterV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=F.computeConv3DInfo(r.shape,l,i,1,o),c=p.strideDepth,h=p.strideHeight,m=p.strideWidth,f=p.filterDepth,g=p.filterHeight,y=p.filterWidth,A=new Lt(p.filterShape,"float32"),x=A.values,[v,b,w,N]=A.strides,C=n.data.get(s.dataId).values,[E,_,$,S]=d,z=n.data.get(r.dataId).values,[O,W,G,H]=u,J=p.padInfo.front,K=p.padInfo.left,ne=p.padInfo.top;for(let Q=0;Q<f;++Q){let se=Math.max(0,Math.ceil((J-Q)/c)),Z=Math.min(p.outDepth,(p.inDepth+J-Q)/c),le=Q*v;for(let oe=0;oe<g;++oe){let xe=Math.max(0,Math.ceil((ne-oe)/h)),fe=Math.min(p.outHeight,(p.inHeight+ne-oe)/h),Ne=oe*b+le;for(let Te=0;Te<y;++Te){let Oe=Math.max(0,Math.ceil((K-Te)/m)),Pe=Math.min(p.outWidth,(p.inWidth+K-Te)/m),ze=Te*w+Ne;for(let tt=0;tt<p.inChannels;++tt){let nt=tt*N+ze;for(let it=0;it<p.outChannels;++it){let Ye=0;for(let ht=0;ht<p.batchSize;++ht){let Ue=ht*O,In=ht*E;for(let kt=se;kt<Z;++kt){let ta=(Q+kt*c-J)*W+Ue,en=kt*_+In;for(let Sn=xe;Sn<fe;++Sn){let na=(oe+Sn*h-ne)*G+ta,Pn=Sn*$+en;for(let dn=Oe;dn<Pe;++dn){let tn=(Te+dn*m-K)*H+na,Ba=dn*S+Pn;Ye+=z[tn+tt]*C[Ba+it]}}}}x[nt+it]=Ye}}}}}return n.makeTensorInfo(A.shape,A.dtype,A.values)}var Az={kernelName:Qp,backendName:"cpu",kernelFunc:yz};function xz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a;we([r],"conv3dBackpropInputV2");let u=k.computeStrides(r.shape),d=k.computeStrides(s.shape),p=F.computeConv3DInfo(l,s.shape,o,1,i),c=new Lt(p.inShape,"float32"),h=c.values,[m,f,g,y]=c.strides,A=n.data.get(r.dataId).values,[x,v,b,w]=u,N=n.data.get(s.dataId).values,[C,E,_,$]=d,{batchSize:S,filterDepth:z,filterHeight:O,filterWidth:W,inChannels:G,inDepth:H,inHeight:J,inWidth:K,outChannels:ne,outDepth:Q,outHeight:se,outWidth:Z,strideDepth:le,strideHeight:oe,strideWidth:xe}=p,fe=z-1-p.padInfo.front,Ne=O-1-p.padInfo.top,Te=W-1-p.padInfo.left;for(let Oe=0;Oe<S;++Oe)for(let Pe=0;Pe<G;++Pe)for(let ze=0;ze<H;++ze){let tt=ze-fe,nt=Math.max(0,Math.ceil(tt/le)),it=Math.min(Q,(z+tt)/le);for(let Ye=0;Ye<J;++Ye){let ht=Ye-Ne,Ue=Math.max(0,Math.ceil(ht/oe)),In=Math.min(se,(O+ht)/oe);for(let kt=0;kt<K;++kt){let ta=kt-Te,en=Math.max(0,Math.ceil(ta/xe)),Sn=Math.min(Z,(W+ta)/xe),na=0;for(let Pn=nt;Pn<it;++Pn){let dn=Pn*le-tt;for(let tn=Ue;tn<In;++tn){let Ba=tn*oe-ht;for(let fa=en;fa<Sn;++fa){let ma=fa*xe-ta,Nr=x*Oe+v*Pn+b*tn+w*fa,or=C*(z-1-dn)+E*(O-1-Ba)+_*(W-1-ma)+$*Pe;for(let Tr=0;Tr<ne;++Tr){let eo=A[Nr+Tr],Va=N[or+Tr];na+=eo*Va}}}}h[m*Oe+f*ze+g*Ye+y*kt+Pe]=na}}}return n.makeTensorInfo(c.shape,c.dtype,c.values)}var bz={kernelName:ec,backendName:"cpu",kernelFunc:xz},vz=rt(Ts,e=>Math.cos(e)),wz={kernelName:Ts,backendName:"cpu",kernelFunc:vz},kz=rt(No,e=>Math.cosh(e)),Iz={kernelName:No,backendName:"cpu",kernelFunc:kz};function Sz(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,[d,p,c,h]=r.shape,m=s.shape[0],[f,g]=o,y=Ve([m,f,g,h],"float32"),A=n.data.get(s.dataId).values,x=n.data.get(i.dataId).values,v=n.data.get(r.dataId).values,b=k.computeStrides(r.shape),w=k.computeStrides(y.shape);for(let N=0;N<m;N++){let C=N*4,E=A[C],_=A[C+1],$=A[C+2],S=A[C+3],z=x[N];if(z>=d)continue;let O=f>1?($-E)*(p-1)/(f-1):0,W=g>1?(S-_)*(c-1)/(g-1):0;for(let G=0;G<f;G++){let H=f>1?E*(p-1)+G*O:.5*(E+$)*(p-1);if(H<0||H>p-1){for(let J=0;J<g;J++)for(let K=0;K<h;K++){let ne=K+J*w[2]+G*w[1]+N*w[0];y.values[ne]=u}continue}if(l==="bilinear"){let J=Math.floor(H),K=Math.ceil(H),ne=H-J;for(let Q=0;Q<g;Q++){let se=g>1?_*(c-1)+Q*W:.5*(_+S)*(c-1);if(se<0||se>c-1){for(let xe=0;xe<h;xe++){let fe=xe+Q*w[2]+G*w[1]+N*w[0];y.values[fe]=u}continue}let Z=Math.floor(se),le=Math.ceil(se),oe=se-Z;for(let xe=0;xe<h;xe++){let fe=xe+Z*b[2]+J*b[1]+z*b[0],Ne=v[fe];fe=xe+le*b[2]+J*b[1]+z*b[0];let Te=v[fe];fe=xe+Z*b[2]+K*b[1]+z*b[0];let Oe=v[fe];fe=xe+le*b[2]+K*b[1]+z*b[0];let Pe=v[fe],ze=Ne+(Te-Ne)*oe,tt=Oe+(Pe-Oe)*oe;fe=xe+Q*w[2]+G*w[1]+N*w[0],y.values[fe]=ze+(tt-ze)*ne}}}else for(let J=0;J<g;++J){let K=g>1?_*(c-1)+J*W:.5*(_+S)*(c-1);if(K<0||K>c-1){for(let se=0;se<h;se++){let Z=se+J*w[2]+G*w[1]+N*w[0];y.values[Z]=u}continue}let ne=Math.round(K),Q=Math.round(H);for(let se=0;se<h;se++){let Z=se+ne*b[2]+Q*b[1]+z*b[0],le=se+J*w[2]+G*w[1]+N*w[0];y.values[le]=v[Z]}}}}return n.makeTensorInfo(y.shape,y.dtype,y.values)}var Nz={kernelName:To,backendName:"cpu",kernelFunc:Sz};function Tz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a;we(r,"cumsum");let l=F.getAxesPermutation([s],r.shape.length),u=r;l!=null&&(u=ua({inputs:{x:r},backend:n,attrs:{perm:l}}));let d=F.getInnerMostAxes(1,r.shape.length)[0];if(d!==u.shape.length-1)throw new Error(`backend.cumsum in CPU expects an inner-most axis=${u.shape.length-1} but got axis=${d}`);let p=Aa(u.dtype,"int32"),c=k.makeZerosTypedArray(k.sizeFromShape(u.shape),p),h=n.data.get(u.dataId).values,m=u.shape[u.shape.length-1],f=o?(y,A)=>y+m-A-1:(y,A)=>y+A;for(let y=0;y<h.length;y+=m)for(let A=0;A<m;A++){let x=f(y,A);if(A===0)c[x]=i?0:h[x];else{let v=f(y,A-1);c[x]=i?h[v]+c[v]:h[x]+c[v]}}let g=n.makeTensorInfo(u.shape,p,c);if(l!=null){let y=F.getUndoAxesPermutation(l),A=ua({inputs:{x:g},backend:n,attrs:{perm:y}});return n.disposeIntermediateTensorInfo(g),n.disposeIntermediateTensorInfo(u),A}return g}var Cz={kernelName:Cs,backendName:"cpu",kernelFunc:Tz};function Ez(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=bg(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=f7(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var Rz={kernelName:tc,backendName:"cpu",kernelFunc:Ez};function Mz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(i==="NHWC",()=>`Only NHWC dataFormat supported on CPU for depthToSpace. Got ${i}`),k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=r.shape[1],u=r.shape[2],d=r.shape[3],p=l*s,c=u*s,h=d/(s*s),m=n.data.get(r.dataId).values,f=new Float32Array(o*p*c*h),g=0;for(let y=0;y<o;++y)for(let A=0;A<p;++A){let x=Math.floor(A/s),v=A%s;for(let b=0;b<c;++b){let w=Math.floor(b/s),N=b%s,C=(v*s+N)*h;for(let E=0;E<h;++E){let _=E+C+d*(w+u*(x+l*y));f[g++]=m[_]}}}return n.makeTensorInfo([o,p,c,h],r.dtype,f)}var Fz={kernelName:Co,backendName:"cpu",kernelFunc:Mz};function sv(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a;we([r,s],"depthwiseConv2DNative");let d=k.computeStrides(r.shape),p=k.computeStrides(s.shape),c=l;c==null&&(c=[1,1]),k.assert(F.eitherStridesOrDilationsAreOne(i,c),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${c}'`);let h=F.computeConv2DInfo(r.shape,s.shape,i,c,o,u,!0),{filterHeight:m,filterWidth:f,dilationHeight:g,dilationWidth:y,padInfo:A}=h,x=A.left,v=A.top,b=h.outChannels/h.inChannels,w=new Lt(h.outShape,r.dtype),N=n.data.get(r.dataId).values,C=n.data.get(s.dataId).values,E=w.values;for(let _=0;_<h.batchSize;++_){let $=_*d[0],S=_*w.strides[0];for(let z=0;z<h.outHeight;++z){let O=S+z*w.strides[1],W=z*h.strideHeight-v;for(let G=0;G<m;++G){let H=W+G*g;if(H<0||H>=h.inHeight)continue;let J=G*p[0],K=$+H*d[1];for(let ne=0;ne<h.outWidth;++ne){let Q=O+ne*w.strides[2],se=ne*h.strideWidth-x;for(let Z=0;Z<f;++Z){let le=se+Z*y;if(le<0||le>=h.inWidth)continue;let oe=J+Z*p[1],xe=K+le*h.inChannels,fe=Q,Ne=oe;for(let Te=0;Te<h.inChannels;++Te){let Oe=N[xe+Te];for(let Pe=0;Pe<b;++Pe)E[fe+Pe]+=Oe*C[Ne+Pe];fe+=b,Ne+=b}}}}}}return n.makeTensorInfo(w.shape,w.dtype,w.values)}var $z={kernelName:Es,backendName:"cpu",kernelFunc:sv};function Dz(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a;we([r,s],"depthwiseConv2dNativeBackpropFilter");let p=F.computeConv2DInfo(r.shape,d,i,o,l,u,!0),{strideHeight:c,strideWidth:h,filterHeight:m,filterWidth:f}=p,g=new Lt(p.filterShape,"float32"),y=p.padInfo.left,A=p.padInfo.top,x=p.outChannels/p.inChannels,v=n.data.get(r.dataId).values,b=new Lt(r.shape,r.dtype,v),w=n.data.get(s.dataId).values,N=new Lt(s.shape,s.dtype,w);for(let C=0;C<m;++C){let E=Math.max(0,Math.ceil((A-C)/c)),_=Math.min(p.outHeight,(p.inHeight+A-C)/c);for(let $=0;$<f;++$){let S=Math.max(0,Math.ceil((y-$)/h)),z=Math.min(p.outWidth,(p.inWidth+y-$)/h);for(let O=0;O<p.outChannels;++O){let W=Math.trunc(O/x),G=O%x,H=0;for(let J=0;J<p.batchSize;++J)for(let K=E;K<_;++K){let ne=C+K*c-A;for(let Q=S;Q<z;++Q){let se=$+Q*h-y;H+=b.get(J,ne,se,W)*N.get(J,K,Q,O)}}g.set(H,C,$,W,G)}}}return n.makeTensorInfo(g.shape,g.dtype,g.values)}var Oz={kernelName:nc,backendName:"cpu",kernelFunc:Dz};function zz(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a;we([r,s],"depthwiseConv2DNativeBackpropInput");let p=k.computeStrides(r.shape),c=k.computeStrides(s.shape),h=F.computeConv2DInfo(d,s.shape,i,o,l,u,!0),m=new Lt(h.inShape,"float32"),f=m.values,[g,y,A]=m.strides,x=n.data.get(r.dataId).values,[v,b,w]=p,N=n.data.get(s.dataId).values,[C,E,_]=c,{batchSize:$,filterHeight:S,filterWidth:z,inChannels:O,inHeight:W,inWidth:G,outChannels:H,outHeight:J,outWidth:K,strideHeight:ne,strideWidth:Q}=h,se=S-1-h.padInfo.top,Z=z-1-h.padInfo.left,le=H/O;for(let oe=0;oe<$;++oe)for(let xe=0;xe<O;++xe)for(let fe=0;fe<W;++fe){let Ne=fe-se,Te=Math.max(0,Math.ceil(Ne/ne)),Oe=Math.min(J,(S+Ne)/ne);for(let Pe=0;Pe<G;++Pe){let ze=Pe-Z,tt=Math.max(0,Math.ceil(ze/Q)),nt=Math.min(K,(z+ze)/Q),it=0;for(let Ye=Te;Ye<Oe;++Ye){let ht=Ye*ne-Ne;for(let Ue=tt;Ue<nt;++Ue){let In=Ue*Q-ze,kt=v*oe+b*Ye+w*Ue,ta=C*(S-1-ht)+E*(z-1-In)+_*xe;for(let en=0;en<le;++en){let Sn=xe*le+en,na=x[kt+Sn],Pn=N[ta+en];it+=na*Pn}}}f[g*oe+y*fe+A*Pe+xe]=it}}return n.makeTensorInfo(m.shape,m.dtype,m.values)}var _z={kernelName:ac,backendName:"cpu",kernelFunc:zz};function Pz(e){let{inputs:t,backend:n}=e,{x:a}=t,r=k.sizeFromShape(a.shape),s=n.data.get(a.dataId).values,i=Ve([r,r],a.dtype),o=i.values;for(let u=0;u<s.length;u++)o[u*r+u]=s[u];let l=[...a.shape,...a.shape];return n.makeTensorInfo(l,i.dtype,i.values)}var Lz={kernelName:rc,backendName:"cpu",kernelFunc:Pz},Wz={kernelName:_u,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r}=e,{strides:s,pad:i,dilations:o}=n,l=t,u=l.data.get(a.dataId).values,d=a.shape.length,p=l.data.get(r.dataId).values,c=r.shape.length,{batchSize:h,inHeight:m,inWidth:f,inChannels:g,outHeight:y,outWidth:A,padInfo:x,strideHeight:v,strideWidth:b,filterHeight:w,filterWidth:N,dilationHeight:C,dilationWidth:E,outShape:_}=F.computeDilation2DInfo(a.shape,r.shape,s,i,"NHWC",o),$=k.sizeFromShape(_),S=_.length,z=k.getArrayFromDType(a.dtype,$);for(let O=0;O<h;++O)for(let W=0;W<y;++W){let G=W*v-x.top;for(let H=0;H<A;++H){let J=H*b-x.left;for(let K=0;K<g;++K){let ne=Number.MIN_SAFE_INTEGER;for(let se=0;se<w;++se){let Z=G+se*C;if(Z>=0&&Z<m)for(let le=0;le<N;++le){let oe=J+le*E;if(oe>=0&&oe<f){let xe=k.locToIndex([O,Z,oe,K],d,k.computeStrides(a.shape)),fe=k.locToIndex([se,le,K],c,k.computeStrides(r.shape)),Ne=u[xe]+p[fe];Ne>ne&&(ne=Ne)}}}let Q=k.locToIndex([O,W,H,K],S,k.computeStrides(_));z[Q]=ne}}}return{dataId:l.write(k.toTypedArray(z,a.dtype),_,a.dtype),shape:_,dtype:a.dtype}}},Bz={kernelName:ic,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:N,dilationWidth:C,outShape:E}=F.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${ic}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let _=k.toNestedArray(E,u.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(r.shape,r.dtype);for(let S=0;S<c;++S)for(let z=0;z<g;++z){let O=z*x-A.top;for(let W=0;W<y;++W){let G=W*v-A.left;for(let H=0;H<f;++H){let J=Number.MIN_SAFE_INTEGER,K=0,ne=0;for(let Q=0;Q<b;++Q){let se=O+Q*N;if(se>=0&&se<h)for(let Z=0;Z<w;++Z){let le=G+Z*C;if(le>=0&&le<m){let oe=d[S][se][le][H]+p[Q][Z][H];oe>J&&(J=oe,K=Q,ne=Z)}}}$[K][ne][H]+=_[S][z][W][H]}}}return{dataId:u.write(k.toTypedArray($,a.dtype),r.shape,r.dtype),shape:r.shape,dtype:r.dtype}}},Vz={kernelName:sc,backendName:"cpu",kernelFunc:({inputs:e,backend:t,attrs:n})=>{let{x:a,filter:r,dy:s}=e,{strides:i,pad:o,dilations:l}=n,u=t,d=k.toNestedArray(a.shape,u.data.get(a.dataId).values),p=k.toNestedArray(r.shape,u.data.get(r.dataId).values),{batchSize:c,inHeight:h,inWidth:m,inChannels:f,outHeight:g,outWidth:y,padInfo:A,strideHeight:x,strideWidth:v,filterHeight:b,filterWidth:w,dilationHeight:N,dilationWidth:C,outShape:E}=F.computeDilation2DInfo(a.shape,r.shape,i,o,"NHWC",l);k.assert(s.rank===E.length,()=>`Error in ${sc}, dy must have the same rank as output ${E.length}, but got ${s.rank}`);let _=k.toNestedArray(E,u.data.get(s.dataId).values),$=k.makeZerosNestedTypedArray(a.shape,a.dtype);for(let S=0;S<c;++S)for(let z=0;z<g;++z){let O=z*x-A.top;for(let W=0;W<y;++W){let G=W*v-A.left;for(let H=0;H<f;++H){let J=Number.MIN_SAFE_INTEGER,K=O<0?0:O,ne=G<0?0:G;for(let Q=0;Q<b;++Q){let se=O+Q*N;if(se>=0&&se<h)for(let Z=0;Z<w;++Z){let le=G+Z*C;if(le>=0&&le<m){let oe=d[S][se][le][H]+p[Q][Z][H];oe>J&&(J=oe,K=se,ne=le)}}}$[S][K][ne][H]+=_[S][z][W][H]}}}return{dataId:u.write(k.toTypedArray($,a.dtype),a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}};function Sd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"sum");let o;r.dtype==="bool"?o=Zr({inputs:{x:r},backend:n,attrs:{dtype:"int32"}}):o=Ya({inputs:{x:r},backend:n});let l=o.shape.length,u=k.parseAxisParam(s,o.shape),d=F.getAxesPermutation(u,l),p=u,c=o;d!=null&&(c=ua({inputs:{x:o},backend:n,attrs:{perm:d}}),p=F.getInnerMostAxes(p.length,l)),F.assertAxesAreInnerMostDims("sum",p,c.shape.length);let[h,m]=F.computeOutAndReduceShapes(c.shape,p),f=F.upcastType(c.dtype,"int32"),g=Rh(n,h,f),y=k.sizeFromShape(m),A=n.data.get(g.dataId).values,x=n.data.get(c.dataId).values;for(let v=0;v<A.length;++v){let b=v*y,w=0;for(let N=0;N<y;++N)w+=x[b+N];A[v]=w}if(i){let v=F.expandShapeToKeepDim(g.shape,u),b=g;g=gt({inputs:{x:g},backend:n,attrs:{shape:v}}),n.disposeIntermediateTensorInfo(b)}return n.disposeIntermediateTensorInfo(o),d!=null&&n.disposeIntermediateTensorInfo(c),g}var jz={kernelName:ii,backendName:"cpu",kernelFunc:Sd};function Uz(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=F.decodeEinsumEquation(r,s.length);F.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=F.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=F.getEinsumPermutation(h,l[g]),x;F.isIdentityPermutation(y)?x=s[g]:(x=ua({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let b=0;b<A.length;++b)v.splice(A[b],0,1);k.arraysEqual(x.shape,v)||(x=gt({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=Mh({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=Sd({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var Hz={kernelName:oc,backendName:"cpu",kernelFunc:Uz};function Gz(e){let{inputs:t,backend:n}=e,{dy:a,y:r}=t;we([a,r],"eluGrad");let s=new Float32Array(k.sizeFromShape(r.shape)),i=n.data.get(r.dataId).values,o=n.data.get(a.dataId).values;for(let l=0;l<i.length;++l){let u=i[l];u>=1?s[l]=o[l]:s[l]=o[l]*(u+1)}return n.makeTensorInfo(r.shape,"float32",s)}var qz={kernelName:lc,backendName:"cpu",kernelFunc:Gz},Xz=F.ERF_P,Kz=F.ERF_A1,Zz=F.ERF_A2,Yz=F.ERF_A3,Jz=F.ERF_A4,Qz=F.ERF_A5,e_=rt(Ro,e=>{let t=Math.sign(e),n=Math.abs(e),a=1/(1+Xz*n);return t*(1-((((Qz*a+Jz)*a+Yz)*a+Zz)*a+Kz)*a*Math.exp(-n*n))}),t_={kernelName:Ro,backendName:"cpu",kernelFunc:e_};function $h(e){let{inputs:t,backend:n,attrs:a}=e,{input:r}=t,{dim:s}=a,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),gt({inputs:{x:r},backend:n,attrs:{shape:o}})}var n_={kernelName:Fo,backendName:"cpu",kernelFunc:$h},a_=Ot((e,t)=>e/t),Eg=Yt(Rs,a_),Rg={kernelName:Rs,backendName:"cpu",kernelFunc:Eg};function iv(e,t,n){let a=e.shape,r=a[0],s=a[1],i=n.data.get(e.dataId),o=i.complexTensorInfos.real,l=i.complexTensorInfos.imag,u=[r,s],d=k.sizeFromShape(u),p=k.getTypedArrayFromDType("float32",d),c=k.getTypedArrayFromDType("float32",d);for(let g=0;g<r;g++){let y=Di({inputs:{x:o},backend:n,attrs:{begin:[g,0],size:[1,s]}}),A=Di({inputs:{x:l},backend:n,attrs:{begin:[g,0],size:[1,s]}}),x=qn({inputs:{real:y,imag:A},backend:n}),{real:v,imag:b}=r_(x,t,n),w=F.mergeRealAndImagArrays(v,b);for(let N=0;N<s;N++){let C=F.getComplexWithIndex(w,N);p[g*s+N]=C.real,c[g*s+N]=C.imag}n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(A),n.disposeIntermediateTensorInfo(x)}let h=n.makeTensorInfo(u,"float32",p),m=n.makeTensorInfo(u,"float32",c),f=qn({inputs:{real:h,imag:m},backend:n});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}function r_(e,t,n){let a=k.sizeFromShape(e.shape),r=n.data.get(e.dataId),s=n.data.get(r.complexTensorInfos.real.dataId).values,i=n.data.get(r.complexTensorInfos.imag.dataId).values;if(s_(a)){let o=Mg(s,i,a,t,n),l=[e.shape[0],e.shape[1]];if(t){let u=n.makeTensorInfo(l,"float32",o.real),d=n.makeTensorInfo(l,"float32",o.imag),p=n.makeTensorInfo([],"float32",k.createScalarValue(a,"float32")),c=Ya({inputs:{x:p},backend:n}),h=Rg.kernelFunc({inputs:{a:u,b:p},backend:n}),m=Rg.kernelFunc({inputs:{a:d,b:c},backend:n}),f=n.data.get(h.dataId).values,g=n.data.get(m.dataId).values;return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),{real:f,imag:g}}return o}else{let o=F.mergeRealAndImagArrays(s,i),l=i_(o,a,t);return F.splitRealAndImagArrays(l)}}function s_(e){return(e&e-1)==0}function Mg(e,t,n,a,r){if(n===1)return{real:e,imag:t};let s=F.mergeRealAndImagArrays(e,t),i=n/2,o=F.complexWithEvenIndex(s),l=o.real,u=o.imag,d=[l.length],p=r.makeTensorInfo(d,"float32",l),c=r.makeTensorInfo(d,"float32",u),h=qn({inputs:{real:p,imag:c},backend:r}),m=F.complexWithOddIndex(s),f=m.real,g=m.imag,y=[f.length],A=r.makeTensorInfo(y,"float32",f),x=r.makeTensorInfo(y,"float32",g),v=qn({inputs:{real:A,imag:x},backend:r}),b=Mg(l,u,i,a,r),w=b.real,N=b.imag,C=[w.length],E=r.makeTensorInfo(C,"float32",w),_=r.makeTensorInfo(C,"float32",N),$=qn({inputs:{real:E,imag:_},backend:r}),S=Mg(f,g,i,a,r),z=S.real,O=S.imag,W=[z.length],G=r.makeTensorInfo(W,"float32",z),H=r.makeTensorInfo(W,"float32",O),J=qn({inputs:{real:G,imag:H},backend:r}),K=F.exponents(n,a),ne=[K.real.length],Q=r.makeTensorInfo(ne,"float32",K.real),se=r.makeTensorInfo(ne,"float32",K.imag),Z=qn({inputs:{real:Q,imag:se},backend:r}),le=Mh({inputs:{a:Z,b:J},backend:r}),oe=Id({inputs:{a:$,b:le},backend:r}),xe=Ng({inputs:{a:$,b:le},backend:r}),fe=$i({inputs:{input:oe},backend:r}),Ne=$i({inputs:{input:xe},backend:r}),Te=Wl({inputs:{input:oe},backend:r}),Oe=Wl({inputs:{input:xe},backend:r}),Pe=Bl({inputs:[fe,Ne],backend:r,attrs:{axis:0}}),ze=Bl({inputs:[Te,Oe],backend:r,attrs:{axis:0}}),tt=r.data.get(Pe.dataId).values,nt=r.data.get(ze.dataId).values;return r.disposeIntermediateTensorInfo(p),r.disposeIntermediateTensorInfo(c),r.disposeIntermediateTensorInfo(h),r.disposeIntermediateTensorInfo(A),r.disposeIntermediateTensorInfo(x),r.disposeIntermediateTensorInfo(v),r.disposeIntermediateTensorInfo(E),r.disposeIntermediateTensorInfo(_),r.disposeIntermediateTensorInfo($),r.disposeIntermediateTensorInfo(G),r.disposeIntermediateTensorInfo(H),r.disposeIntermediateTensorInfo(J),r.disposeIntermediateTensorInfo(Q),r.disposeIntermediateTensorInfo(se),r.disposeIntermediateTensorInfo(Z),r.disposeIntermediateTensorInfo(le),r.disposeIntermediateTensorInfo(oe),r.disposeIntermediateTensorInfo(xe),r.disposeIntermediateTensorInfo(fe),r.disposeIntermediateTensorInfo(Te),r.disposeIntermediateTensorInfo(Ne),r.disposeIntermediateTensorInfo(Oe),r.disposeIntermediateTensorInfo(Pe),r.disposeIntermediateTensorInfo(ze),{real:tt,imag:nt}}function i_(e,t,n){let a=new Float32Array(t*2);for(let r=0;r<t;r++){let s=0,i=0;for(let o=0;o<t;o++){let l=F.exponent(r*o,t,n),u=F.getComplexWithIndex(e,o);s+=u.real*l.real-u.imag*l.imag,i+=u.real*l.imag+u.imag*l.real}n&&(s/=t,i/=t),F.assignToTypedArray(a,s,i,r)}return a}function o_(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=gt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=iv(o,!1,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var l_={kernelName:uc,backendName:"cpu",kernelFunc:o_};function Fg(e){let{backend:t,attrs:n}=e,{shape:a,value:r,dtype:s}=n,i=s||k.inferDtype(r),o=k.getArrayFromDType(i,k.sizeFromShape(a));return d_(o,r,i),t.makeTensorInfo(a,i,o)}var u_={kernelName:Pu,backendName:"cpu",kernelFunc:Fg};function d_(e,t,n){e.fill(t)}var p_={kernelName:Do,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,r=n,s=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[i,o,l,u]=a.shape,d=r.data.get(a.dataId).values;for(let p=0;p<i;p++){let c=p*l*o*u;for(let h=0;h<o;h++){let m=h*(l*u);for(let f=0;f<l;f++){let g=f*u;for(let y=0;y<u;y++){let A=[i,h,f,y][2],x=Math.round(l-A),v=c+m+g+y,b=d[v];if(x>=0&&x<l){let w=x*u,N=c+m+w+y;b=d[N]}s[v]=b}}}}return{dataId:r.write(s,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},c_=Ot((e,t)=>Math.floor(e/t)),h_=Yt($s,c_,null,"int32"),f_={kernelName:$s,backendName:"cpu",kernelFunc:h_};function m_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=rv({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let g=f;f=Id({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Tg(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var g_={kernelName:fi,backendName:"cpu",kernelFunc:m_};function y_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=sv({inputs:{x:r,filter:s},backend:n,attrs:{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c}});if(i){let g=f;f=Id({inputs:{a:f,b:i},backend:n}),n.disposeIntermediateTensorInfo(g)}if(h){let g=f;f=Tg(n,f,h,o,m),n.disposeIntermediateTensorInfo(g)}return f}var A_={kernelName:mi,backendName:"cpu",kernelFunc:y_};function x_(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=k.sizeFromShape(a.shape),i=r.shape,o=i[i.length-1],[l,u,d,p]=F.prepareAndValidate(a,r);if(u===0)return n.makeTensorInfo(l,a.dtype,[]);let c=n.data.get(r.dataId).values,h=n.bufferSync(a),m=w7(c,h,a.dtype,u,o,d,p,a.shape,s);return n.makeTensorInfo(l,a.dtype,m.values)}var b_={kernelName:zo,backendName:"cpu",kernelFunc:x_};function v_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a;we([r,s],"gatherV2");let l=o;o==null&&(l=0);let u=k.sizeFromShape(s.shape),d=k.parseAxisParam(i,r.shape)[0],p=F.segment_util.collectGatherOpShapeInfo(r,s,d,l),c=gt({inputs:{x:r},backend:n,attrs:{shape:[p.batchSize,p.outerSize,p.dimSize,p.sliceSize]}}),h=gt({inputs:{x:s},backend:n,attrs:{shape:[p.batchSize,u/p.batchSize]}}),m=[p.batchSize,p.outerSize,u/p.batchSize,p.sliceSize],f=n.bufferSync(h),g=n.bufferSync(c),y=k7(g,f,m);return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.makeTensorInfo(p.outputShape,y.dtype,y.values)}var w_={kernelName:Oo,backendName:"cpu",kernelFunc:v_};function k_(e){let{inputs:t,backend:n}=e,{input:a}=t,r=k.sizeFromShape(a.shape),s=a.shape[a.shape.length-1],i=r/s,o=gt({inputs:{x:a},backend:n,attrs:{shape:[i,s]}}),l=iv(o,!0,n),u=gt({inputs:{x:l},backend:n,attrs:{shape:a.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(l),u}var I_={kernelName:dc,backendName:"cpu",kernelFunc:k_},S_=rt(Po,e=>Number.isFinite(e)?1:0,"bool"),N_={kernelName:Po,backendName:"cpu",kernelFunc:S_},T_=rt(Lo,e=>Math.abs(e)===Infinity?1:0,"bool"),C_={kernelName:Lo,backendName:"cpu",kernelFunc:T_},E_=rt(Wo,e=>Number.isNaN(e)?1:0,"bool"),R_={kernelName:Wo,backendName:"cpu",kernelFunc:E_};function M_(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=C7(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var F_={kernelName:cc,backendName:"cpu",kernelFunc:M_},$_=rt(jo,e=>Math.log1p(e)),D_={kernelName:jo,backendName:"cpu",kernelFunc:$_},O_=Ot((e,t)=>e&&t),z_=Yt(Uo,O_,null,"bool"),__={kernelName:Uo,backendName:"cpu",kernelFunc:z_},P_=rt(Lu,e=>e?0:1,"bool"),L_={kernelName:Lu,backendName:"cpu",kernelFunc:P_},W_=Ot((e,t)=>e||t),B_=Yt(Wu,W_,null,"bool"),V_={kernelName:Wu,backendName:"cpu",kernelFunc:B_};function j_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a;we(r,"LRN");let u=r.shape[3],d=u-1,p=n.data.get(r.dataId).values,c=k.sizeFromShape(r.shape),h=new Float32Array(c);function m(f){let g=f%u,y=f-g+Math.max(0,g-s),A=f-g+Math.min(g+s,d),x=0;for(;y<=A;y++){let v=p[y];x+=v*v}return x}for(let f=0;f<c;f++){let g=m(f),y=p[f]*Math.pow(i+o*g,-l);h[f]=y}return n.makeTensorInfo(r.shape,r.dtype,h)}var U_={kernelName:Bu,backendName:"cpu",kernelFunc:j_};function H_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a;we(i,"LRNGrad");let p=k.sizeFromShape(i.shape),c=i.shape[3],h=n.data.get(i.dataId).values,m=n.data.get(r.dataId).values,f=n.data.get(s.dataId).values,g=new Float32Array(p),y=p;for(let A=0;A<y;A++){let x=A%c,v=A-x+Math.max(0,x-o),b=A-x+Math.min(c,x+o+1),w=0;for(let N=v;N<b;N++)w+=Math.pow(m[N],2);w=u*w+l;for(let N=v;N<b;N++){let C=-2*u*d*m[N]*f[A]/w;A===N&&(C+=Math.pow(w,-d)),C*=h[A],g[N]+=C}}return n.makeTensorInfo(i.shape,r.dtype,g)}var G_={kernelName:hc,backendName:"cpu",kernelFunc:H_};function ov(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=n,l=r.shape,u=l.length,d=k.parseAxisParam(s,l),p=d,c=F.getAxesPermutation(p,u),h=o.data.get(r.dataId).values;if(c!=null){let v=new Array(u);for(let b=0;b<v.length;b++)v[b]=l[c[b]];h=kg(h,l,r.dtype,c,v),p=F.getInnerMostAxes(p.length,u),l=v}we(r,"max"),F.assertAxesAreInnerMostDims("max",p,u);let[m,f]=F.computeOutAndReduceShapes(l,p),g=k.sizeFromShape(f),y=R7(h,g,m,r.dtype),A=o.write(y,m,r.dtype),x=m;return i&&(x=F.expandShapeToKeepDim(m,d)),{dataId:A,shape:x,dtype:r.dtype}}var q_={kernelName:Ls,backendName:"cpu",kernelFunc:ov};function X_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;we(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(F.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=F.computePool2DInfo(r.shape,s,i,u,o,l),p;if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))p=Ya({inputs:{x:r},backend:n});else{let c=n.data.get(r.dataId).values,h=k.computeStrides(r.shape),m=Cg(c,r.shape,r.dtype,h,d,"max");p=n.makeTensorInfo(d.outShape,r.dtype,m.values)}return p}var K_={kernelName:Bs,backendName:"cpu",kernelFunc:X_};function Z_(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a;we(r,"maxPool3d");let d=F.computePool3DInfo(r.shape,s,i,1,o,l,u),p=n.data.get(r.dataId).values,c=av(p,r.shape,r.dtype,k.computeStrides(r.shape),d,"max");return n.makeTensorInfo(c.shape,"float32",c.values)}var Y_={kernelName:Vu,backendName:"cpu",kernelFunc:Z_};function J_(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=a;we([r,s],"maxPool3DGrad");let d=F.computePool3DInfo(s.shape,i,o,1,l,u),p=n.bufferSync(s),c=jO(p,d),h=d.strideDepth,m=d.strideHeight,f=d.strideWidth,g=d.dilationDepth,y=d.dilationHeight,A=d.dilationWidth,x=d.effectiveFilterDepth,v=d.effectiveFilterHeight,b=d.effectiveFilterWidth,w=x-1-d.padInfo.front,N=b-1-d.padInfo.left,C=v-1-d.padInfo.top,E=Ve(s.shape,"float32"),_=n.bufferSync(r);for(let $=0;$<d.batchSize;++$)for(let S=0;S<d.inChannels;++S)for(let z=0;z<d.inDepth;++z)for(let O=0;O<d.inHeight;++O)for(let W=0;W<d.inWidth;++W){let G=z-w,H=O-C,J=W-N,K=0;for(let ne=0;ne<x;ne+=g){let Q=(G+ne)/h;if(!(Q<0||Q>=d.outDepth||Math.floor(Q)!==Q))for(let se=0;se<v;se+=y){let Z=(H+se)/m;if(!(Z<0||Z>=d.outHeight||Math.floor(Z)!==Z))for(let le=0;le<b;le+=A){let oe=(J+le)/f;if(oe<0||oe>=d.outWidth||Math.floor(oe)!==oe)continue;let xe=x*v*b-1-c.get($,Q,Z,oe,S),fe=ne*v*b+se*b+le,Ne=xe===fe?1:0;Ne!==0&&(K+=_.get($,Q,Z,oe,S)*Ne)}}}E.set(K,$,z,O,W,S)}return n.makeTensorInfo(E.shape,E.dtype,E.values)}var Q_={kernelName:mc,backendName:"cpu",kernelFunc:J_};function eP(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;we([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=F.computePool2DInfo(o.shape,l,u,1,d,p),h=n.data.get(o.dataId).values,m=Ve(c.outShape,o.dtype,nv(h,o.shape,o.dtype,c).values),f=c.strideHeight,g=c.strideWidth,y=c.dilationHeight,A=c.dilationWidth,x=c.effectiveFilterHeight,v=c.effectiveFilterWidth,b=v-1-c.padInfo.left,w=x-1-c.padInfo.top,N=Ve(o.shape,"float32"),C=n.data.get(r.dataId).values,E=Ve(r.shape,"float32",C);for(let _=0;_<c.batchSize;++_)for(let $=0;$<c.inChannels;++$)for(let S=0;S<c.inHeight;++S)for(let z=0;z<c.inWidth;++z){let O=S-w,W=z-b,G=0;for(let H=0;H<x;H+=y){let J=(O+H)/f;if(!(J<0||J>=c.outHeight||Math.floor(J)!==J))for(let K=0;K<v;K+=A){let ne=(W+K)/g;if(ne<0||ne>=c.outWidth||Math.floor(ne)!==ne)continue;let Q=x*v-1-m.get(_,J,ne,$),se=H*v+K,Z=Q===se?1:0;Z!==0&&(G+=E.get(_,J,ne,$)*Z)}}N.set(G,_,S,z,$)}return n.makeTensorInfo(N.shape,N.dtype,N.values)}var tP={kernelName:fc,backendName:"cpu",kernelFunc:eP};function nP(e,t,n,a,r){let s=k.computeStrides(t),i=Cg(e,t,n,s,r,"max"),o=nv(e,t,n,r,!0,a);return[i.values,o.values]}var aP={kernelName:gc,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;we(a,"MaxPoolWithArgmax");let u=l.data.get(a.dataId).values,d=F.computePool2DInfo(a.shape,r,s,[1,1],i),[p,c]=nP(u,a.shape,a.dtype,o,d),h=l.write(p,d.outShape,a.dtype),m=l.write(c,d.outShape,a.dtype);return[{dataId:h,shape:d.outShape,dtype:a.dtype},{dataId:m,shape:d.outShape,dtype:"int32"}]}};function rP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=k.parseAxisParam(s,r.shape),l=F.computeOutAndReduceShapes(r.shape,o)[1],u=k.sizeFromShape(l),d=[],p=n.makeTensorInfo([],"float32",new Float32Array([u]));d.push(p);let c=Zr({inputs:{x:r},backend:n,attrs:{dtype:"float32"}});d.push(c);let h=Eg({inputs:{a:c,b:p},backend:n});d.push(h);let m=Sd({inputs:{x:h},backend:n,attrs:{axis:s,keepDims:i}});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var sP={kernelName:Vs,backendName:"cpu",kernelFunc:rP};function iP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;we(r,"min");let o=k.parseAxisParam(s,r.shape),l=o,u=F.getAxesPermutation(l,r.shape.length),d=r;u!=null&&(d=ua({inputs:{x:r},backend:n,attrs:{perm:u}}),l=F.getInnerMostAxes(l.length,r.shape.length)),F.assertAxesAreInnerMostDims("min",l,d.shape.length);let[p,c]=F.computeOutAndReduceShapes(d.shape,l),h=k.sizeFromShape(c),m=k.makeZerosTypedArray(k.sizeFromShape(p),d.dtype),f=n.data.get(d.dataId).values;for(let y=0;y<m.length;++y){let A=y*h,x=f[A];for(let v=0;v<h;++v){let b=f[A+v];(Number.isNaN(b)||b<x)&&(x=b)}m[y]=x}u!=null&&n.disposeIntermediateTensorInfo(d);let g=n.makeTensorInfo(p,d.dtype,m);if(i){let y=F.expandShapeToKeepDim(p,o),A=gt({inputs:{x:g},backend:n,attrs:{shape:y}});return n.disposeIntermediateTensorInfo(g),A}return g}var oP={kernelName:js,backendName:"cpu",kernelFunc:iP};function lP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,mode:i}=a;we(r,"mirrorPad");let o=s.map((A,x)=>A[0]+r.shape[x]+A[1]),l=s.map(A=>A[0]),u=s.map((A,x)=>A[0]+r.shape[x]),d=i==="reflect"?0:1,p=n.data.get(r.dataId).values,c=r.shape.length,h=k.computeStrides(r.shape),m=k.sizeFromShape(o),f=o.length,g=k.computeStrides(o),y=k.getTypedArrayFromDType(r.dtype,m);for(let A=0;A<m;A++){let x=k.indexToLoc(A,f,g);for(let b=0;b<f;b++)x[b]<l[b]?x[b]=l[b]*2-x[b]-d:x[b]>=u[b]&&(x[b]=(u[b]-1)*2-x[b]+d);x=x.map((b,w)=>b-l[w]);let v=k.locToIndex(x,c,h);y[A]=p[v]}return{dataId:n.write(y,o,r.dtype),shape:o,dtype:r.dtype}}var uP={kernelName:Hs,backendName:"cpu",kernelFunc:lP},dP=Ot((e,t)=>{let n=e%t;return e<0&&t<0||e>=0&&t>=0?n:(n+t)%t}),pP=Yt(Ho,dP),cP={kernelName:Ho,backendName:"cpu",kernelFunc:pP},hP=gs(N5());function lv(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=r.shape.length,o=s;if(o===-1&&(o=i-1),o!==i-1)throw Error(`Softmax along a non-last dimension is not yet supported. Logits was rank ${i} and dim was ${o}`);let l=k.parseAxisParam([o],r.shape),u=ov({inputs:{x:r},backend:n,attrs:{reductionIndices:l,keepDims:!1}}),d=F.expandShapeToKeepDim(u.shape,l),p=gt({inputs:{x:u},backend:n,attrs:{shape:d}}),c=Ng({inputs:{a:r,b:p},backend:n}),h=x7({inputs:{x:c},backend:n}),m=Sd({inputs:{x:h},backend:n,attrs:{axis:l,keepDims:!1}}),f=gt({inputs:{x:m},backend:n,attrs:{shape:d}}),g=Eg({inputs:{a:h,b:f},backend:n});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(f),g}var fP={kernelName:oi,backendName:"cpu",kernelFunc:lv};function mP(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a;we(r,"multinomial");let l=o?r:lv({inputs:{logits:r},backend:n,attrs:{dim:-1}}),u=l.shape[0],d=l.shape[1],p=n.data.get(l.dataId).values,c=[u,s],h=k.makeZerosTypedArray(k.sizeFromShape(c),"int32");for(let m=0;m<u;++m){let f=m*d,g=new Float32Array(d-1);g[0]=p[f];for(let x=1;x<g.length;++x)g[x]=g[x-1]+p[f+x];let y=hP.alea(i.toString()),A=m*s;for(let x=0;x<s;++x){let v=y();h[A+x]=g.length;for(let b=0;b<g.length;b++)if(v<g[b]){h[A+x]=b;break}}}return o||n.disposeIntermediateTensorInfo(l),n.makeTensorInfo(c,"int32",h)}var gP={kernelName:yc,backendName:"cpu",kernelFunc:mP},yP=Za.nonMaxSuppressionV3Impl;function AP(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a;we(r,"NonMaxSuppression");let u=n.data.get(r.dataId).values,d=n.data.get(s.dataId).values,{selectedIndices:p}=yP(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var xP={kernelName:Xo,backendName:"cpu",kernelFunc:AP},bP=Za.nonMaxSuppressionV4Impl;function vP(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a;we(r,"NonMaxSuppressionPadded");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,{selectedIndices:c,validOutputs:h}=bP(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var wP={kernelName:Ko,backendName:"cpu",kernelFunc:vP},kP=Za.nonMaxSuppressionV5Impl;function IP(e){let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a;we(r,"NonMaxSuppressionWithScore");let d=n.data.get(r.dataId).values,p=n.data.get(s.dataId).values,c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=kP(d,p,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var SP={kernelName:Zo,backendName:"cpu",kernelFunc:IP};function NP(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a;we(r,"oneHot");let l=k.sizeFromShape(r.shape),u=new Float32Array(l*s);u.fill(o);let d=n.data.get(r.dataId).values;for(let p=0;p<l;++p)d[p]>=0&&d[p]<s&&(u[p*s+d[p]]=i);return n.makeTensorInfo([...r.shape,s],"int32",u)}var TP={kernelName:qs,backendName:"cpu",kernelFunc:NP};function Dh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("zerosLike is not supported for string tensors");if(a.dtype==="complex64"){let r=$i({inputs:{input:a},backend:n}),s=Dh({inputs:{x:r},backend:n}),i=Wl({inputs:{input:a},backend:n}),o=Dh({inputs:{x:i},backend:n}),l=qn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Fg({backend:n,attrs:{shape:a.shape,value:0,dtype:a.dtype}})}var CP={kernelName:fl,backendName:"cpu",kernelFunc:Dh};function uv(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported for string tensors");if(a.dtype==="complex64"){let r=$i({inputs:{input:a},backend:n}),s=uv({inputs:{x:r},backend:n}),i=Wl({inputs:{input:a},backend:n}),o=Dh({inputs:{x:i},backend:n}),l=qn({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Fg({backend:n,attrs:{shape:a.shape,value:1,dtype:a.dtype}})}var EP={kernelName:Yo,backendName:"cpu",kernelFunc:uv};function dv(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return $h({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=$h({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Bl({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var RP={kernelName:Jo,backendName:"cpu",kernelFunc:dv};function MP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a;we(r,"pad");let o=s.map((y,A)=>y[0]+r.shape[A]+y[1]),l=s.map(y=>y[0]),u=n.data.get(r.dataId).values,d=k.sizeFromShape(r.shape),p=r.shape.length,c=k.computeStrides(r.shape),h=k.sizeFromShape(o),m=o.length,f=k.computeStrides(o),g=k.getTypedArrayFromDType(r.dtype,h);i!==0&&g.fill(i);for(let y=0;y<d;y++){let A=k.indexToLoc(y,p,c).map((v,b)=>v+l[b]),x=k.locToIndex(A,m,f);g[x]=u[y]}return{dataId:n.write(g,o,r.dtype),shape:o,dtype:r.dtype}}var pv={kernelName:Xs,backendName:"cpu",kernelFunc:MP},FP=Ot((e,t)=>Math.pow(e,t)),$P=Yt(Ks,FP),DP={kernelName:Ks,backendName:"cpu",kernelFunc:$P};function OP(e){let{backend:t,attrs:n}=e,{start:a,stop:r,dtype:s,step:i}=n,o=Ig(a,r,i,s);return t.makeTensorInfo([o.length],s,o)}var zP={kernelName:ju,backendName:"cpu",kernelFunc:OP},_P=rt(el,e=>1/e),PP={kernelName:el,backendName:"cpu",kernelFunc:_P};function LP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeBilinear");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(k.sizeFromShape([p,u,d,m])),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=0,v=y[0]/A[0],b=y[1]/A[1];for(let w=0;w<p;w++)for(let N=0;N<u;N++){let C;i?C=v*(N+.5)-.5:C=v*N;let E=Math.max(0,Math.floor(C)),_=C-E,$=Math.min(c-1,Math.ceil(C)),S=w*l[0]+E*l[1],z=w*l[0]+$*l[1];for(let O=0;O<d;O++){let W;i?W=b*(O+.5)-.5:W=b*O;let G=Math.max(0,Math.floor(W)),H=W-G,J=Math.min(h-1,Math.ceil(W)),K=S+G*l[2],ne=z+G*l[2],Q=S+J*l[2],se=z+J*l[2];for(let Z=0;Z<m;Z++){let le=f[K+Z],oe=f[ne+Z],xe=f[Q+Z],fe=f[se+Z],Ne=le+(xe-le)*H,Te=oe+(fe-oe)*H,Oe=Ne+(Te-Ne)*_;g[x++]=Oe}}}return n.makeTensorInfo([p,u,d,m],"float32",g)}var WP={kernelName:Js,backendName:"cpu",kernelFunc:LP};function BP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeBilinearGrad");let o=k.computeStrides(r.shape),[l,u,d,p]=r.shape,[,c,h]=s.shape,m=new Float32Array(l*u*d*p),f=[i&&c>1?u-1:u,i&&h>1?d-1:d],g=[i&&c>1?c-1:c,i&&h>1?h-1:h],y=f[0]/g[0],A=f[1]/g[1],x=n.data.get(s.dataId).values,v=0;for(let b=0;b<l;b++){let w=b*o[0];for(let N=0;N<c;N++){let C=N*y,E=Math.floor(C),_=Math.min(Math.ceil(C),u-1),$=w+E*o[1],S=w+_*o[1],z=C-E,O=1-z;for(let W=0;W<h;W++){let G=W*A,H=Math.floor(G),J=Math.min(Math.ceil(G),d-1),K=G-H,ne=1-K,Q=$+H*o[2],se=$+J*o[2],Z=S+H*o[2],le=S+J*o[2],oe=O*ne,xe=O*K,fe=z*ne,Ne=z*K;for(let Te=0;Te<p;Te++){let Oe=x[v++];m[Q+Te]+=Oe*oe,m[se+Te]+=Oe*xe,m[Z+Te]+=Oe*fe,m[le+Te]+=Oe*Ne}}}}return n.makeTensorInfo([l,d,u,p],"float32",m)}var VP={kernelName:bc,backendName:"cpu",kernelFunc:BP};function jP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a;we(r,"resizeNearestNeighbor");let l=k.computeStrides(r.shape),[u,d]=o,[p,c,h,m]=r.shape,f=n.data.get(r.dataId).values,g=new Float32Array(p*u*d*m),y=[s&&u>1?c-1:c,s&&d>1?h-1:h],A=[s&&u>1?u-1:u,s&&d>1?d-1:d],x=y[0]/A[0],v=y[1]/A[1],b=0;for(let w=0;w<p;w++){let N=w*l[0];for(let C=0;C<u;C++){let E=i?x*(C+.5):x*C,_=Math.min(c-1,s?Math.round(E):Math.floor(E));i&&(_=Math.max(0,_));let $=N+_*l[1];for(let S=0;S<d;S++){let z=i?v*(S+.5):v*S,O=Math.min(h-1,s?Math.round(z):Math.floor(z));i&&(O=Math.max(0,O));let W=$+O*l[2];for(let G=0;G<m;G++){let H=f[W+G];g[b++]=H}}}}return n.makeTensorInfo([p,u,d,m],r.dtype,g)}var UP={kernelName:Uu,backendName:"cpu",kernelFunc:jP};function HP(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a;we([s,r],"resizeNearestNeighborGrad");let o=k.computeStrides(r.shape),l=k.computeStrides(s.shape),[u,d,p,c]=r.shape,[,h,m]=s.shape,f=new Float32Array(u*d*p*c),g=n.data.get(s.dataId).values,y=[i&&h>1?d-1:d,i&&m>1?p-1:p],A=[i&&h>1?h-1:h,i&&m>1?m-1:m],x=y[0]/A[0],v=y[1]/A[1],b=1/x,w=1/v,N=Math.ceil(b)*2+2,C=Math.ceil(w)*2+2;for(let E=0;E<u;E++){let _=E*o[0];for(let $=0;$<d;$++){let S=_+$*o[1],z=Math.floor($*b),O=Math.floor(z-N/2);for(let W=0;W<p;W++){let G=S+W*o[2],H=Math.floor(W*w),J=Math.floor(H-C/2);for(let K=0;K<c;K++){let ne=0;for(let Q=0;Q<N;Q++){let se=Q+O;if(se<0||se>=h)continue;let Z=_+se*l[1],le=se*x,oe=Math.min(d-1,i?Math.round(le):Math.floor(le));if($===oe)for(let xe=0;xe<C;xe++){let fe=xe+J;if(fe<0||fe>=m)continue;let Ne=Z+fe*l[2],Te=fe*v,Oe=Math.min(p-1,i?Math.round(Te):Math.floor(Te));W===Oe&&(ne+=g[Ne+K])}}f[G+K]=ne}}}}return n.makeTensorInfo(r.shape,r.dtype,f)}var GP={kernelName:xc,backendName:"cpu",kernelFunc:HP};function qP(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a;we(r,"reverse");let i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Ya({inputs:{x:r},backend:n});let l=new Lt(r.shape,r.dtype),u=n.bufferSync(r);for(let d=0;d<l.size;d++){let p=l.indexToLoc(d),c=p.slice();o.forEach(h=>c[h]=r.shape[h]-1-c[h]),l.set(u.get(...c),...p)}return n.makeTensorInfo(l.shape,l.dtype,l.values)}var XP={kernelName:ei,backendName:"cpu",kernelFunc:qP},KP={kernelName:ml,backendName:"cpu",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=k.getTypedArrayFromDType(a.dtype,k.sizeFromShape(a.shape)),[u,d,p,c]=a.shape,[h,m]=F.getImageCenter(i,d,p),f=255,g=Math.sin(r),y=Math.cos(r),A=o.data.get(a.dataId).values;for(let x=0;x<u;x++){let v=x*p*d*c;for(let b=0;b<d;b++){let w=b*(p*c);for(let N=0;N<p;N++){let C=N*c;for(let E=0;E<c;E++){let _=[u,b,N,E],$=_[2],S=_[1],z=($-h)*y-(S-m)*g,O=($-h)*g+(S-m)*y;z=Math.round(z+h),O=Math.round(O+m);let W=s;if(typeof s!="number"&&(E===3?W=f:W=s[E]),z>=0&&z<p&&O>=0&&O<d){let H=O*(p*c),J=z*c,K=v+H+J+E;W=A[K]}let G=v+w+C+E;l[G]=W}}}}return{dataId:o.write(l,a.shape,a.dtype),shape:a.shape,dtype:a.dtype}}},ZP=rt(ti,e=>{let t=Math.floor(e);return e-t<.5?Math.floor(e):e-t>.5?Math.ceil(e):t%2==0?t:t+1}),YP={kernelName:ti,backendName:"cpu",kernelFunc:ZP};function cv(e,t,n,a,r,s,i,o,l,u){let d=[a/r,r],p=e.values,c=t.values;if(a===0)return Ve(n,t.dtype);let h=Ve(d,t.dtype);h.values.fill(l);for(let m=0;m<s;m++){let f=[],g=0;for(let y=0;y<i;y++){let A=p[m*i+y];f.push(A),g+=A*o[y]}if(g<0||g>=a/r)throw new Error(`Invalid indices: ${f} does not index into ${n}`);for(let y=0;y<r;y++)u?h.values[g*r+y]+=c[m*r+y]:h.values[g*r+y]=t.rank===0?c[0]:c[m*r+y]}return h}function JP(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=F.calculateShapes(s,r,i),c=!0,h=n.bufferSync(r),m=n.bufferSync(s),f=cv(h,m,i,p,u,l,o,d,0,c);return n.makeTensorInfo(i,f.dtype,f.values)}var QP={kernelName:nl,backendName:"cpu",kernelFunc:JP};function eL(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t;we([a,r,s],"select");let i=a.shape.length,o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=Aa(r.dtype,s.dtype),p=k.makeZerosTypedArray(k.sizeFromShape(r.shape),d),c=0,h=i===0||i>1||r.shape.length===1?1:k.sizeFromShape(r.shape.slice(1));for(let m=0;m<o.length;m++)for(let f=0;f<h;f++)o[m]===1?p[c++]=l[m]:p[c++]=u[m];return n.makeTensorInfo(r.shape,d,p)}var tL={kernelName:al,backendName:"cpu",kernelFunc:eL},nL=F.SELU_SCALEALPHA,aL=F.SELU_SCALE,rL=rt(rl,e=>e>=0?aL*e:nL*(Math.exp(e)-1)),sL={kernelName:rl,backendName:"cpu",kernelFunc:rL},iL=rt(ol,e=>e<0?-1:e>0?1:0),oL={kernelName:ol,backendName:"cpu",kernelFunc:iL},lL=rt(ai,e=>Math.sin(e)),uL={kernelName:ai,backendName:"cpu",kernelFunc:lL},dL=rt(il,e=>Math.sinh(e)),pL={kernelName:il,backendName:"cpu",kernelFunc:dL},cL=11920928955078125e-23,hv=Math.log(cL)+2,hL=rt(ll,e=>{let t=e>-hv,n=e<hv,a=Math.exp(e),r;return n?r=a:t?r=e:r=Math.log(1+a),r}),fL={kernelName:ll,backendName:"cpu",kernelFunc:hL};function mL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;we([r],"spaceToBatchND");let o=k.sizeFromShape(s),l=[[0,0]];l.push(...i);for(let g=1+s.length;g<r.shape.length;++g)l.push([0,0]);let u=pv.kernelFunc({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),d=F.getReshaped(u.shape,s,o,!1),p=F.getPermuted(d.length,s.length,!1),c=F.getReshapedPermuted(u.shape,s,o,!1),h=gt({inputs:{x:u},backend:n,attrs:{shape:d}}),m=ua({inputs:{x:h},backend:n,attrs:{perm:p}}),f=gt({inputs:{x:m},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),f}var gL={kernelName:Hu,backendName:"cpu",kernelFunc:mL};function yL(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.data.get(a.dataId).values,l=n.data.get(r.dataId).values,u=n.data.get(s.dataId).values,d=n.data.get(i.dataId).values[0],[p,c,h,m,f]=_7(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var AL={kernelName:vc,backendName:"cpu",kernelFunc:yL};function xL(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.data.get(r.dataId).values),o=n.data.get(a.dataId).values,l=Array.from(n.data.get(s.dataId).values),[u,d,p]=P7(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var bL={kernelName:wc,backendName:"cpu",kernelFunc:xL};function vL(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=Sg(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var wL={kernelName:kc,backendName:"cpu",kernelFunc:vL};function kL(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.data.get(a.dataId).values,o=n.data.get(r.dataId).values,l=n.data.get(s.dataId).values,[u,d]=Sg(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var IL={kernelName:Ic,backendName:"cpu",kernelFunc:kL};function SL(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=F.calculateShapes(s,r,o),h=!1,m=n.bufferSync(r),f=n.bufferSync(s),g=n.data.get(i.dataId).values[0],y=cv(m,f,o,c,d,u,l,p,g,h);return n.makeTensorInfo(o,y.dtype,y.values)}var NL={kernelName:Sc,backendName:"cpu",kernelFunc:SL};function TL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=F.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=Di({inputs:{x:r},backend:n,attrs:{begin:u,size:c}});return u[o]+=p,h})}var CL={kernelName:ul,backendName:"cpu",kernelFunc:TL},EL=rt(si,e=>Math.sqrt(e)),RL={kernelName:si,backendName:"cpu",kernelFunc:EL},ML={kernelName:Gu,backendName:"cpu",kernelFunc:({inputs:e,backend:t})=>{let{x:n}=e,a=t;we(n,"square");let r=a.data.get(n.dataId).values,s=new Float32Array(r.length);for(let i=0;i<r.length;++i){let o=r[i];s[i]=o*o}return{dataId:a.write(s,n.shape,n.dtype),shape:n.shape,dtype:n.dtype}}},FL=rt(Pr,(e,t)=>{let n=t;return isNaN(e)?NaN:e>0?1:n.alpha}),$L={kernelName:Pr,backendName:"cpu",kernelFunc:FL};function DL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a;we(r,"stridedSlice");let{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:A}=fn.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=gt({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let w=Di({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=gt({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))v=n.makeTensorInfo(A,r.dtype,[]);else{let w=n.bufferSync(x),N=W7(A,w,f,m);v=n.makeTensorInfo(N.shape,N.dtype,N.values)}let b=gt({inputs:{x:v},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var OL={kernelName:dl,backendName:"cpu",kernelFunc:DL};function zL(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:p}=t,c=n.data.get(d.dataId).values,h=n.data.get(p.dataId).values,[m,f]=B7(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(p.shape,"int32",f)]}var _L={kernelName:Nc,backendName:"cpu",kernelFunc:zL};function PL(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.data.get(s.dataId).values,l=n.data.get(i.dataId).values[0],[u,d,p]=V7(o,l,r),c=d.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var LL={kernelName:Tc,backendName:"cpu",kernelFunc:PL};function WL(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.data.get(s.dataId).values,o=j7(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var BL={kernelName:Cc,backendName:"cpu",kernelFunc:WL},VL=rt(di,e=>Math.tan(e)),jL={kernelName:di,backendName:"cpu",kernelFunc:VL},UL=rt(pi,e=>Math.tanh(e)),HL={kernelName:pi,backendName:"cpu",kernelFunc:UL};function GL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;we(r,"tile");let i=H7(n.bufferSync(r),s);return n.makeTensorInfo(i.shape,i.dtype,i.values)}var qL={kernelName:_r,backendName:"cpu",kernelFunc:GL};function XL(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a;we(r,"topk");let o=n.data.get(r.dataId).values,[l,u]=G7(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var KL={kernelName:pl,backendName:"cpu",kernelFunc:XL};function ZL(e){let{inputs:t,attrs:n,backend:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=n,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],y=k.computeStrides(r.shape),A=y[0],x=y[1],v=y[2],b=k.getTypedArrayFromDType(r.dtype,k.sizeFromShape(g));b.fill(l);let w=a.data.get(r.dataId).values,N=a.data.get(s.dataId).values;for(let C=0;C<d;++C){let E=s.shape[0]===1?N:N.subarray(C*8,C*8+8);for(let _=0;_<m;++_)for(let $=0;$<f;++$)for(let S=0;S<h;++S){let z,O=E[6]*$+E[7]*_+1;if(O===0)continue;let W=(E[0]*$+E[1]*_+E[2])/O,G=(E[3]*$+E[4]*_+E[5])/O,H=fv(W,c,o),J=fv(G,p,o);switch(i){case"nearest":z=nW(w,p,c,A,x,v,C,J,H,S,l);break;case"bilinear":z=aW(w,p,c,A,x,v,C,J,H,S,l);break;default:throw new Error(`Error in Transform: Expect 'nearest' or 'bilinear', but got ${i}`)}let K=C*A+_*x+$*v+S;b[K]=z}return a.makeTensorInfo(g,r.dtype,b)}return{dataId:a.write(b,g,r.dtype),shape:r.shape,dtype:r.dtype}}var YL={kernelName:cl,backendName:"cpu",kernelFunc:ZL};function fv(e,t,n){switch(n){case"reflect":return JL(e,t);case"wrap":return QL(e,t);case"nearest":return tW(e,t);case"constant":default:return eW(e,t)}}function JL(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=2*t;n<a&&(n=a*Math.trunc(-n/a)+n),n=n<-t?n+a:-n-1}else if(n>t-1)if(t<=1)n=0;else{let a=2*t;n-=a*Math.trunc(n/a),n>=t&&(n=a-n-1)}return k.clamp(0,n,t-1)}function QL(e,t){let n=e;if(n<0)if(t<=1)n=0;else{let a=t-1;n+=t*(Math.trunc(-n/a)+1)}else if(n>t-1)if(t<=1)n=0;else{let a=t-1;n-=t*Math.trunc(n/a)}return k.clamp(0,n,t-1)}function eW(e,t){return e}function tW(e,t){return k.clamp(0,e,t-1)}function Nd(e,t,n,a,r,s,i,o,l,u,d){let p=i*a+o*r+l*s+u;return 0<=o&&o<t&&0<=l&&l<n?e[p]:d}function nW(e,t,n,a,r,s,i,o,l,u,d){let p=Math.round(o),c=Math.round(l);return Nd(e,t,n,a,r,s,i,p,c,u,d)}function aW(e,t,n,a,r,s,i,o,l,u,d){let p=Math.floor(o),c=Math.floor(l),h=p+1,m=c+1,f=(m-l)*Nd(e,t,n,a,r,s,i,p,c,u,d)+(l-c)*Nd(e,t,n,a,r,s,i,p,m,u,d),g=(m-l)*Nd(e,t,n,a,r,s,i,h,c,u,d)+(l-c)*Nd(e,t,n,a,r,s,i,h,m,u,d);return(h-o)*f+(o-p)*g}function rW(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;we(s,"unique");let i=a.data.get(s.dataId).values,{outputValues:o,outputShape:l,indices:u}=q7(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var sW={kernelName:Ec,backendName:"cpu",kernelFunc:rW};function iW(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape.length,o=r.shape[s],l=new Array(i-1),u=0;for(let h=0;h<i;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i).fill(0),p=r.shape.slice();p[s]=1;let c=new Array(o);for(let h=0;h<c.length;h++){d[s]=h;let m=Di({inputs:{x:r},backend:n,attrs:{begin:d,size:p}});c[h]=gt({inputs:{x:m},backend:n,attrs:{shape:l}}),n.disposeIntermediateTensorInfo(m)}return c}var oW={kernelName:hl,backendName:"cpu",kernelFunc:iW};function lW(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a;we(r,"unsortedSegmentSum");let o=r.shape.length,l=s.shape.length,u=[],d=[],p=o-l,c=s;for(let m=0;m<p;++m){let f=$h({inputs:{input:c},backend:n,attrs:{dim:m+1}});c=f,d.push(f)}for(let m=0;m<i;++m){let f=k.createScalarValue(m,"int32"),g=n.makeTensorInfo([],"int32",f),y=y7({inputs:{a:g,b:c},backend:n}),A=Zr({inputs:{x:y},backend:n,attrs:{dtype:"float32"}}),x=Mh({inputs:{a:A,b:r},backend:n}),v=Sd({inputs:{x},backend:n,attrs:{axis:0,keepDims:!1}});u.push(v),d.push(g),d.push(y),d.push(A),d.push(x),d.push(v)}let h=dv({inputs:u,backend:n,attrs:{axis:0}});return d.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var uW={kernelName:qu,backendName:"cpu",kernelFunc:lW},dW=[yO,fD,xO,vO,bD,kO,SO,TO,EO,MO,$O,OO,_O,WO,VO,HO,qO,KO,YO,mO,QO,tz,az,AD,wD,sz,mD,oz,uz,cz,fz,dz,Az,bz,gz,wz,Iz,Nz,Cz,Rz,Fz,$z,Oz,_z,Lz,Wz,Vz,Bz,Rg,Hz,oO,qz,kD,t_,ID,n_,ND,l_,u_,p_,CD,f_,g_,A_,b_,w_,RD,FD,gD,I_,lz,N_,C_,R_,lO,DD,zD,F_,PD,D_,__,L_,V_,U_,G_,WD,K_,Y_,Q_,tP,aP,q_,sP,oP,VD,uP,cP,gP,UD,GD,xP,wP,SP,XD,TP,EP,RP,pv,DP,dO,YD,zP,yD,PP,pO,cO,fO,WP,VP,UP,GP,XP,KP,YP,QD,QP,tL,sL,hO,oL,uL,pL,eO,fP,fL,gL,AL,bL,wL,IL,NL,CL,RL,ML,nO,$L,OL,_L,LL,BL,iO,jz,jL,HL,qL,KL,KD,YL,sW,oW,uW,CP];for(let e of dW)gi(e);var mv={};Fe(mv,{assertNotComplex:()=>jl,bindCanvasToFramebuffer:()=>wW,bindColorTextureToFramebuffer:()=>_h,bindTextureToProgramUniformSampler:()=>Rv,bindTextureUnit:()=>Tv,bindVertexBufferToProgramAttribute:()=>Og,callAndCheck:()=>be,canBeRepresented:()=>gv,createFragmentShader:()=>xv,createFramebuffer:()=>Nv,createProgram:()=>bv,createStaticIndexBuffer:()=>kv,createStaticVertexBuffer:()=>wv,createTexture:()=>Iv,createVertexShader:()=>Av,getBatchDim:()=>zi,getExtensionOrThrow:()=>Rd,getFramebufferErrorMessage:()=>Mv,getMaxTexturesInShader:()=>Ov,getNumChannels:()=>bW,getProgramUniformLocation:()=>Ev,getProgramUniformLocationOrThrow:()=>Cv,getRowsCols:()=>_i,getShapeAs3D:()=>Ph,getTextureShapeFromLogicalShape:()=>$v,getWebGLDisjointQueryTimerVersion:()=>zv,getWebGLErrorMessage:()=>yv,getWebGLMaxTextureSize:()=>Dv,hasExtension:()=>pa,isCapableOfRenderingToFloatTexture:()=>_v,isDownloadFloatTextureEnabled:()=>Pv,isReshapeFree:()=>Fd,isWebGLFenceEnabled:()=>Lv,isWebGLVersionEnabled:()=>_g,linkProgram:()=>vv,resetMaxTextureSize:()=>kW,resetMaxTexturesInShader:()=>IW,unbindColorTextureFromFramebuffer:()=>zg,unbindTextureUnit:()=>vW,validateFramebuffer:()=>Md,validateProgram:()=>zh,validateTextureSize:()=>Sv});var Oi={},$g={alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!0};function Oh(e,t){Oi[e]=t}function Ja(e){if(!(e in Oi)){let n=cW(e);if(n!==null)Oi[e]=n;else return console.log("Could not get context for WebGL version",e),null}let t=Oi[e];return t.isContextLost()?(delete Oi[e],Ja(e)):(t.disable(t.DEPTH_TEST),t.disable(t.STENCIL_TEST),t.disable(t.BLEND),t.disable(t.DITHER),t.disable(t.POLYGON_OFFSET_FILL),t.disable(t.SAMPLE_COVERAGE),t.enable(t.SCISSOR_TEST),t.enable(t.CULL_FACE),t.cullFace(t.BACK),Oi[e])}function pW(e){if(typeof OffscreenCanvas!="undefined"&&e===2)return new OffscreenCanvas(300,150);if(typeof document!="undefined")return document.createElement("canvas");throw new Error("Cannot create a canvas in this context")}function cW(e){if(e!==1&&e!==2)throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");let t=pW(e);return t.addEventListener("webglcontextlost",n=>{n.preventDefault(),delete Oi[e]},!1),e===1?t.getContext("webgl",$g)||t.getContext("experimental-webgl",$g):t.getContext("webgl2",$g)}var Td;(function(e){e[e.DENSE=0]="DENSE",e[e.SHARED_BATCH=1]="SHARED_BATCH"})(Td||(Td={}));var da;(function(e){e[e.RENDER=0]="RENDER",e[e.UPLOAD=1]="UPLOAD",e[e.PIXELS=2]="PIXELS",e[e.DOWNLOAD=3]="DOWNLOAD"})(da||(da={}));var rn;(function(e){e[e.UNPACKED_FLOAT16=0]="UNPACKED_FLOAT16",e[e.UNPACKED_FLOAT32=1]="UNPACKED_FLOAT32",e[e.PACKED_4X1_UNSIGNED_BYTE=2]="PACKED_4X1_UNSIGNED_BYTE",e[e.PACKED_2X2_FLOAT32=3]="PACKED_2X2_FLOAT32",e[e.PACKED_2X2_FLOAT16=4]="PACKED_2X2_FLOAT16"})(rn||(rn={}));function Cd(e,t){return[t,e]}function hW(e,t){return e*t}function Ed(e){let t=k.sizeFromShape(e),n=Math.ceil(t/4);return k.sizeToSquarishShape(n)}function Vl(e,t){return[Math.max(1,Math.ceil(t/2)),Math.max(1,Math.ceil(e/2))]}function fW(e,t){let[n,a]=Vl(e,t);return n*a*4}function Dg(e,t){let n=e,a,r,s,i,o,l,u,d,p,c;return te().getNumber("WEBGL_VERSION")===2?(a=n.R32F,r=n.R16F,s=n.RGBA16F,i=n.RGBA32F,o=n.RED,u=4,d=1,p=n.HALF_FLOAT,c=n.FLOAT):(a=e.RGBA,r=e.RGBA,s=e.RGBA,i=n.RGBA,o=e.RGBA,u=4,d=4,p=t!=null?t.HALF_FLOAT_OES:null,c=e.FLOAT),l=e.RGBA,{internalFormatFloat:a,internalFormatHalfFloat:r,internalFormatPackedHalfFloat:s,internalFormatPackedFloat:i,textureFormatFloat:o,downloadTextureFormat:l,downloadUnpackNumChannels:u,defaultNumChannels:d,textureTypeHalfFloat:p,textureTypeFloat:c}}function be(e,t){let n=t();return te().getBool("DEBUG")&&mW(e),n}function mW(e){let t=e.getError();if(t!==e.NO_ERROR)throw new Error("WebGL Error: "+yv(e,t))}var gW=596e-10,yW=65504;function gv(e){return!!(te().getBool("WEBGL_RENDER_FLOAT32_ENABLED")||e===0||gW<Math.abs(e)&&Math.abs(e)<yW)}function yv(e,t){switch(t){case e.NO_ERROR:return"NO_ERROR";case e.INVALID_ENUM:return"INVALID_ENUM";case e.INVALID_VALUE:return"INVALID_VALUE";case e.INVALID_OPERATION:return"INVALID_OPERATION";case e.INVALID_FRAMEBUFFER_OPERATION:return"INVALID_FRAMEBUFFER_OPERATION";case e.OUT_OF_MEMORY:return"OUT_OF_MEMORY";case e.CONTEXT_LOST_WEBGL:return"CONTEXT_LOST_WEBGL";default:return`Unknown error code ${t}`}}function Rd(e,t){return br(e,()=>e.getExtension(t),'Extension "'+t+'" not supported on this browser.')}function Av(e,t){let n=br(e,()=>e.createShader(e.VERTEX_SHADER),"Unable to create vertex WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw console.log(e.getShaderInfoLog(n)),new Error("Failed to compile vertex shader.");return n}function xv(e,t){let n=br(e,()=>e.createShader(e.FRAGMENT_SHADER),"Unable to create fragment WebGLShader.");if(be(e,()=>e.shaderSource(n,t)),be(e,()=>e.compileShader(n)),e.getShaderParameter(n,e.COMPILE_STATUS)===!1)throw xW(t,e.getShaderInfoLog(n)),new Error("Failed to compile fragment shader.");return n}var AW=/ERROR: [0-9]+:([0-9]+):/g;function xW(e,t){let n=AW.exec(t);if(n==null){console.log(`Couldn't parse line number in error: ${t}`),console.log(e);return}let a=+n[1],r=e.split(`
|
|
`),s=r.length.toString().length+2,i=r.map((p,c)=>k.rightPad((c+1).toString(),s)+p),o=0;for(let p=0;p<i.length;p++)o=Math.max(i[p].length,o);let l=i.slice(0,a-1),u=i.slice(a-1,a),d=i.slice(a);console.log(l.join(`
|
|
`)),console.log(t.split(`
|
|
`)[0]),console.log(`%c ${k.rightPad(u[0],o)}`,"border:1px solid red; background-color:#e3d2d2; color:#a61717"),console.log(d.join(`
|
|
`))}function bv(e){return br(e,()=>e.createProgram(),"Unable to create WebGLProgram.")}function vv(e,t){if(be(e,()=>e.linkProgram(t)),e.getProgramParameter(t,e.LINK_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Failed to link vertex and fragment shaders.")}function zh(e,t){if(be(e,()=>e.validateProgram(t)),e.getProgramParameter(t,e.VALIDATE_STATUS)===!1)throw console.log(e.getProgramInfoLog(t)),new Error("Shader program validation failed.")}function wv(e,t){let n=br(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function kv(e,t){let n=br(e,()=>e.createBuffer(),"Unable to create WebGLBuffer");return be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,n)),be(e,()=>e.bufferData(e.ELEMENT_ARRAY_BUFFER,t,e.STATIC_DRAW)),n}function bW(){return te().getNumber("WEBGL_VERSION")===2?1:4}function Iv(e){return br(e,()=>e.createTexture(),"Unable to create WebGLTexture.")}function Sv(e,t){let n=te().getNumber("WEBGL_MAX_TEXTURE_SIZE");if(e<=0||t<=0){let a=`[${e}x${t}]`;throw new Error("Requested texture size "+a+" is invalid.")}if(e>n||t>n){let a=`[${e}x${t}]`,r=`[${n}x${n}]`;throw new Error("Requested texture size "+a+" greater than WebGL maximum on this browser / GPU "+r+".")}}function Nv(e){return br(e,()=>e.createFramebuffer(),"Unable to create WebGLFramebuffer.")}function Og(e,t,n,a,r,s,i){let o=e.getAttribLocation(t,n);return o===-1?!1:(be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,a)),be(e,()=>e.vertexAttribPointer(o,r,e.FLOAT,!1,s,i)),be(e,()=>e.enableVertexAttribArray(o)),!0)}function Tv(e,t,n){Fv(e,n),be(e,()=>e.activeTexture(e.TEXTURE0+n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,t))}function vW(e,t){Fv(e,t),be(e,()=>e.activeTexture(e.TEXTURE0+t)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Cv(e,t,n){return br(e,()=>e.getUniformLocation(t,n),'uniform "'+n+'" not present in program.')}function Ev(e,t,n){return e.getUniformLocation(t,n)}function Rv(e,t,n,a){be(e,()=>Tv(e,t,a)),be(e,()=>e.uniform1i(n,a))}function wW(e){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.viewport(0,0,e.canvas.width,e.canvas.height)),be(e,()=>e.scissor(0,0,e.canvas.width,e.canvas.height))}function _h(e,t,n){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,n)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,t,0))}function zg(e,t){be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,t)),be(e,()=>e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,null,0))}function Md(e){let t=e.checkFramebufferStatus(e.FRAMEBUFFER);if(t!==e.FRAMEBUFFER_COMPLETE)throw new Error("Error binding framebuffer: "+Mv(e,t))}function Mv(e,t){switch(t){case e.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:return"FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";case e.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:return"FRAMEBUFFER_INCOMPLETE_DIMENSIONS";case e.FRAMEBUFFER_UNSUPPORTED:return"FRAMEBUFFER_UNSUPPORTED";default:return`unknown error ${t}`}}function br(e,t,n){let a=be(e,()=>t());if(a==null)throw new Error(n);return a}function Fv(e,t){let n=e.MAX_COMBINED_TEXTURE_IMAGE_UNITS-1,a=t+e.TEXTURE0;if(a<e.TEXTURE0||a>n){let r=`[gl.TEXTURE0, gl.TEXTURE${n}]`;throw new Error(`textureUnit must be in ${r}.`)}}function zi(e,t=2){return k.sizeFromShape(e.slice(0,e.length-t))}function _i(e){if(e.length===0)throw Error("Cannot get rows and columns of an empty shape array.");return[e.length>1?e[e.length-2]:1,e[e.length-1]]}function Ph(e){let t=[1,1,1];return e.length===0||e.length===1&&e[0]===1||(t=[zi(e),..._i(e)]),t}function $v(e,t=!1){let n=te().getNumber("WEBGL_MAX_TEXTURE_SIZE");t&&(n=n*2,e=e.map((r,s)=>s>=e.length-2?k.nearestLargerEven(e[s]):e[s]),e.length===1&&(e=[2,e[0]])),e.length!==2&&(e=k.squeezeShape(e).newShape);let a=k.sizeFromShape(e);if(e.length<=1&&a<=n)return[1,a];if(e.length===2&&e[0]<=n&&e[1]<=n)return e;if(e.length===3&&e[0]*e[1]<=n&&e[2]<=n)return[e[0]*e[1],e[2]];if(e.length===3&&e[0]<=n&&e[1]*e[2]<=n)return[e[0],e[1]*e[2]];if(e.length===4&&e[0]*e[1]*e[2]<=n&&e[3]<=n)return[e[0]*e[1]*e[2],e[3]];if(e.length===4&&e[0]<=n&&e[1]*e[2]*e[3]<=n)return[e[0],e[1]*e[2]*e[3]];if(t){let r=zi(e),s=2,i=2;return e.length&&([s,i]=_i(e)),a=r*(s/2)*(i/2),k.sizeToSquarishShape(a).map(o=>o*2)}return k.sizeToSquarishShape(a)}function Lh(e){return e%2==0}function Fd(e,t){if(e=e.slice(-2),t=t.slice(-2),k.arraysEqual(e,t)||!e.length||!t.length||e[0]===0||e[1]===0||t[0]===0||t[1]===0)return!0;if(e.length!==t.length){let n=e.slice(-1)[0],a=t.slice(-1)[0];if(n===a||Lh(n)&&Lh(a)&&(e[0]===1||t[0]===1))return!0}return e[1]===t[1]&&Lh(e[0])&&Lh(t[0])}var Wh,Bh;function Dv(e){if(Wh==null){let t=Ja(e);Wh=t.getParameter(t.MAX_TEXTURE_SIZE)}return Wh}function kW(){Wh=null}function IW(){Bh=null}function Ov(e){if(Bh==null){let t=Ja(e);Bh=t.getParameter(t.MAX_TEXTURE_IMAGE_UNITS)}return Math.min(16,Bh)}function zv(e){if(e===0)return 0;let t,n=Ja(e);return pa(n,"EXT_disjoint_timer_query_webgl2")&&e===2?t=2:pa(n,"EXT_disjoint_timer_query")?t=1:t=0,t}function pa(e,t){return e.getExtension(t)!=null}function _g(e){try{if(Ja(e)!=null)return!0}catch(t){return console.log("Error when getting WebGL context: ",t),!1}return!1}function _v(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!pa(t,"OES_texture_float"))return!1}else if(!pa(t,"EXT_color_buffer_float"))return!1;return Pg(t)}function Pv(e){if(e===0)return!1;let t=Ja(e);if(e===1){if(!pa(t,"OES_texture_float")||!pa(t,"WEBGL_color_buffer_float"))return!1}else{if(pa(t,"EXT_color_buffer_float"))return Pg(t);let n="EXT_color_buffer_half_float";if(pa(t,n)){let a=t.getExtension(n);return SW(t,a)}return!1}return Pg(t)}function Pg(e){let t=Dg(e),n=e.createTexture();e.bindTexture(e.TEXTURE_2D,n);let a=1,r=1;e.texImage2D(e.TEXTURE_2D,0,t.internalFormatFloat,a,r,0,t.textureFormatFloat,t.textureTypeFloat,null);let s=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,s),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,n,0);let i=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(n),e.deleteFramebuffer(s),i}function SW(e,t){let n=Dg(e,t),a=e.createTexture();e.bindTexture(e.TEXTURE_2D,a);let r=1,s=1;e.texImage2D(e.TEXTURE_2D,0,n.internalFormatHalfFloat,r,s,0,n.textureFormatFloat,n.textureTypeHalfFloat,null);let i=e.createFramebuffer();e.bindFramebuffer(e.FRAMEBUFFER,i),e.framebufferTexture2D(e.FRAMEBUFFER,e.COLOR_ATTACHMENT0,e.TEXTURE_2D,a,0);let o=e.checkFramebufferStatus(e.FRAMEBUFFER)===e.FRAMEBUFFER_COMPLETE;return e.bindTexture(e.TEXTURE_2D,null),e.bindFramebuffer(e.FRAMEBUFFER,null),e.deleteTexture(a),e.deleteFramebuffer(i),o}function Lv(e){return e!==2?!1:Ja(e).fenceSync!=null}function jl(e,t){Array.isArray(e)||(e=[e]),e.forEach(n=>{n!=null&&k.assert(n.dtype!=="complex64",()=>`${t} does not support complex64 tensors in the WebGL backend.`)})}var Me=te();Me.registerFlag("HAS_WEBGL",()=>Me.getNumber("WEBGL_VERSION")>0);Me.registerFlag("WEBGL_VERSION",()=>_g(2)?2:_g(1)?1:0);Me.registerFlag("WEBGL_CHECK_NUMERICAL_PROBLEMS",()=>!1);Me.registerFlag("WEBGL_BUFFER_SUPPORTED",()=>Me.get("WEBGL_VERSION")===2);Me.registerFlag("WEBGL_CPU_FORWARD",()=>!0);Me.registerFlag("WEBGL_FORCE_F16_TEXTURES",()=>!1);Me.registerFlag("WEBGL_PACK",()=>Me.getBool("HAS_WEBGL"));Me.registerFlag("WEBGL_PACK_NORMALIZATION",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_CLIP",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_DEPTHWISECONV",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_BINARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_UNARY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_PACK_REDUCE",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_LAZILY_UNPACK",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_CONV_IM2COL",()=>Me.getBool("WEBGL_PACK"));Me.registerFlag("WEBGL_MAX_TEXTURE_SIZE",()=>Dv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER",()=>Ov(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION",()=>{let e=Me.getNumber("WEBGL_VERSION");return e===0?0:zv(e)});Me.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE",()=>Me.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0&&!ad.isMobile());Me.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE",()=>_v(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED",()=>Me.getBool("WEBGL_FORCE_F16_TEXTURES")?!1:Me.getBool("WEBGL_RENDER_FLOAT32_CAPABLE"));Me.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED",()=>Pv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_FENCE_API_ENABLED",()=>Lv(Me.getNumber("WEBGL_VERSION")));Me.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM",()=>Me.getBool("WEBGL_RENDER_FLOAT32_ENABLED")?4:0);Me.registerFlag("WEBGL_DELETE_TEXTURE_THRESHOLD",()=>-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_DELETE_TEXTURE_THRESHOLD must be -1 (indicating never delete) or at least 0, but got ${e}.`)});Me.registerFlag("WEBGL_FLUSH_THRESHOLD",()=>ad.isMobile()&&Me.getBool("IS_CHROME")?1:-1,e=>{if(e<0&&e!==-1)throw new Error(`WEBGL_FLUSH_THRESHOLD must be -1 (indicating never manual flush) or at least 0, but got ${e}.`)});Me.registerFlag("CPU_HANDOFF_SIZE_THRESHOLD",()=>128);function An(){let e,t,n,a,r,s,i,o,l,u;return te().getNumber("WEBGL_VERSION")===2?(e="#version 300 es",t="in",n="out",a="in",r="texture",s="outputColor",i="out vec4 outputColor;",o=`
|
|
bool isnan_custom(float val) {
|
|
return (val > 0.0 || val < 0.0) ? false : val != 0.0;
|
|
}
|
|
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan_custom(val.x),
|
|
isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));
|
|
}
|
|
|
|
#define isnan(value) isnan_custom(value)
|
|
`,l="",u=`
|
|
#define round(value) newRound(value)
|
|
int newRound(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 newRound(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`):(e="",t="attribute",n="varying",a="varying",r="texture2D",s="gl_FragColor",i="",o=`
|
|
#define isnan(value) isnan_custom(value)
|
|
bool isnan_custom(float val) {
|
|
return (val > 0. || val < 1. || val == 0.) ? false : true;
|
|
}
|
|
bvec4 isnan_custom(vec4 val) {
|
|
return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));
|
|
}
|
|
`,l=`
|
|
uniform float INFINITY;
|
|
|
|
bool isinf(float val) {
|
|
return abs(val) == INFINITY;
|
|
}
|
|
bvec4 isinf(vec4 val) {
|
|
return equal(abs(val), vec4(INFINITY));
|
|
}
|
|
`,u=`
|
|
int round(float value) {
|
|
return int(floor(value + 0.5));
|
|
}
|
|
|
|
ivec4 round(vec4 value) {
|
|
return ivec4(floor(value + vec4(0.5)));
|
|
}
|
|
`),{version:e,attribute:t,varyingVs:n,varyingFs:a,texture2D:r,output:s,defineOutput:i,defineSpecialNaN:o,defineSpecialInf:l,defineRound:u}}function Pi(e,t,n="index"){let a=k.computeStrides(t);return a.map((r,s)=>{let i=`int ${e[s]} = ${n} / ${r}`,o=s===a.length-1?`int ${e[s+1]} = ${n} - ${e[s]} * ${r}`:`index -= ${e[s]} * ${r}`;return`${i}; ${o};`}).join("")}function Lg(e){let t=k.computeStrides(e).map(n=>n.toString());return`
|
|
int getFlatIndex(ivec3 coords) {
|
|
return coords.x * ${t[0]} + coords.y * ${t[1]} + coords.z;
|
|
}
|
|
`}var Wv=`
|
|
const float FLOAT_MAX = 1.70141184e38;
|
|
const float FLOAT_MIN = 1.17549435e-38;
|
|
|
|
lowp vec4 encode_float(highp float v) {
|
|
if (isnan(v)) {
|
|
return vec4(255, 255, 255, 255);
|
|
}
|
|
|
|
highp float av = abs(v);
|
|
|
|
if(av < FLOAT_MIN) {
|
|
return vec4(0.0, 0.0, 0.0, 0.0);
|
|
} else if(v > FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;
|
|
} else if(v < -FLOAT_MAX) {
|
|
return vec4(0.0, 0.0, 128.0, 255.0) / 255.0;
|
|
}
|
|
|
|
highp vec4 c = vec4(0,0,0,0);
|
|
|
|
highp float e = floor(log2(av));
|
|
highp float m = exp2(fract(log2(av))) - 1.0;
|
|
|
|
c[2] = floor(128.0 * m);
|
|
m -= c[2] / 128.0;
|
|
c[1] = floor(32768.0 * m);
|
|
m -= c[1] / 32768.0;
|
|
c[0] = floor(8388608.0 * m);
|
|
|
|
highp float ebias = e + 127.0;
|
|
c[3] = floor(ebias / 2.0);
|
|
ebias -= c[3] * 2.0;
|
|
c[2] += floor(ebias) * 128.0;
|
|
|
|
c[3] += 128.0 * step(0.0, -v);
|
|
|
|
return c / 255.0;
|
|
}
|
|
`,NW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outPackingScheme=Td.DENSE;let t=Ed(e),n=An();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Pi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getA(rc.x, rc.y, rc.z);
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},TW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outPackingScheme=Td.DENSE;let t=Ed(e),n=An();this.outputShape=e,this.userCode=`
|
|
ivec3 outCoordsFromFlatIndex(int index) {
|
|
${Pi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = 4 * (resTexRC.x * ${t[1]} + resTexRC.y);
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for (int i=0; i<4; i++) {
|
|
int flatIndex = index + i;
|
|
ivec3 rc = outCoordsFromFlatIndex(flatIndex);
|
|
result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));
|
|
}
|
|
|
|
${n.output} = result;
|
|
}
|
|
`}},CW=class{constructor(e){this.variableNames=["A"],this.outTexUsage=da.DOWNLOAD;let t=An();this.outputShape=e,this.userCode=`
|
|
${Wv}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},EW=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outTexUsage=da.DOWNLOAD;let t=An();this.outputShape=e,this.userCode=`
|
|
${Wv}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));
|
|
${t.output} = encode_float(x);
|
|
}
|
|
`}},RW=class{constructor(e,t,n=!1){this.variableNames=["A"];let a=An(),[r,s]=t;this.outputShape=e;let i="result";n&&(i="floor(result * 255. + 0.5)"),this.userCode=`
|
|
${Lg(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
int flatIndex = getFlatIndex(coords);
|
|
int offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
int r = flatIndex / ${s};
|
|
int c = imod(flatIndex, ${s});
|
|
vec2 uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
vec4 values = ${a.texture2D}(A, uv);
|
|
|
|
float result;
|
|
|
|
if(offset == 0) {
|
|
result = values[0];
|
|
} else if(offset == 1) {
|
|
result = values[1];
|
|
} else if(offset == 2) {
|
|
result = values[2];
|
|
} else {
|
|
result = values[3];
|
|
}
|
|
|
|
${a.output} = vec4(${i}, 0., 0., 0.);
|
|
}
|
|
`}},MW=class{constructor(e,t,n=!1){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let a=An(),[r,s]=t;this.outputShape=e;let i="",o="result";n&&(o="floor(result * 255. + 0.5)");for(let l=0;l<=1;l++)for(let u=0;u<=1;u++){let d=l*2+u;i+=`
|
|
localCoords = coords;
|
|
if(localCoords[2] + ${u} < ${e[2]}) {
|
|
localCoords[2] += ${u};
|
|
if(localCoords[1] + ${l} < ${e[1]}) {
|
|
localCoords[1] += ${l};
|
|
|
|
flatIndex = getFlatIndex(localCoords);
|
|
offset = imod(flatIndex, 4);
|
|
|
|
flatIndex = idiv(flatIndex, 4, 1.);
|
|
|
|
r = flatIndex / ${s};
|
|
c = imod(flatIndex, ${s});
|
|
uv = (vec2(c, r) + halfCR) / vec2(${s}.0, ${r}.0);
|
|
values = ${a.texture2D}(A, uv);
|
|
|
|
if(offset == 0) {
|
|
result[${d}] = values[0];
|
|
} else if(offset == 1) {
|
|
result[${d}] = values[1];
|
|
} else if(offset == 2) {
|
|
result[${d}] = values[2];
|
|
} else {
|
|
result[${d}] = values[3];
|
|
}
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
${Lg(e)}
|
|
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
int flatIndex, r, c, offset;
|
|
ivec3 localCoords;
|
|
vec2 uv;
|
|
vec4 values;
|
|
|
|
${i}
|
|
|
|
${a.output} = ${o};
|
|
}
|
|
`}},Bv={};Fe(Bv,{bindVertexProgramAttributeStreams:()=>Zv,createBufferFromOutputTexture:()=>Qv,createFloat16MatrixTexture:()=>Gv,createFloat16PackedMatrixTexture:()=>Kv,createFloat32MatrixTexture:()=>Hv,createIndexBuffer:()=>Uv,createPackedMatrixTexture:()=>Xv,createUnsignedBytesMatrixTexture:()=>qv,createVertexBuffer:()=>jv,createVertexShader:()=>Vv,downloadByteEncodedFloatMatrixFromOutputTexture:()=>tw,downloadFloat32MatrixFromBuffer:()=>ew,downloadMatrixFromPackedOutputTexture:()=>aw,downloadPackedMatrixFromBuffer:()=>nw,getInternalFormatForFloat16MatrixTexture:()=>Bg,getInternalFormatForFloat16PackedMatrixTexture:()=>Ug,getInternalFormatForFloat32MatrixTexture:()=>Wg,getInternalFormatForPackedMatrixTexture:()=>jg,getInternalFormatForUnsignedBytesMatrixTexture:()=>Vg,uploadDenseMatrixToTexture:()=>Yv,uploadPixelDataToTexture:()=>Jv});function Vv(e){let t=An(),n=`${t.version}
|
|
precision highp float;
|
|
${t.attribute} vec3 clipSpacePos;
|
|
${t.attribute} vec2 uv;
|
|
${t.varyingVs} vec2 resultUV;
|
|
|
|
void main() {
|
|
gl_Position = vec4(clipSpacePos, 1);
|
|
resultUV = uv;
|
|
}`;return Av(e,n)}function jv(e){let t=new Float32Array([-1,1,0,0,1,-1,-1,0,0,0,1,1,0,1,1,1,-1,0,1,0]);return wv(e,t)}function Uv(e){let t=new Uint16Array([0,1,2,2,1,3]);return kv(e,t)}function $d(e,t,n,a,r,s){Sv(t,n);let i=Iv(e),o=e.TEXTURE_2D;return be(e,()=>e.bindTexture(o,i)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_S,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_WRAP_T,e.CLAMP_TO_EDGE)),be(e,()=>e.texParameteri(o,e.TEXTURE_MIN_FILTER,e.NEAREST)),be(e,()=>e.texParameteri(o,e.TEXTURE_MAG_FILTER,e.NEAREST)),be(e,()=>e.texImage2D(o,0,a,t,n,0,r,s,null)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null)),i}function Wg(e){return e.internalFormatFloat}function Hv(e,t,n,a){let[r,s]=Cd(t,n);return $d(e,r,s,Wg(a),a.textureFormatFloat,e.FLOAT)}function Bg(e){return e.internalFormatHalfFloat}function Gv(e,t,n,a){let[r,s]=Cd(t,n);return $d(e,r,s,Bg(a),a.textureFormatFloat,a.textureTypeHalfFloat)}function Vg(e){return e.downloadTextureFormat}function qv(e,t,n,a){let[r,s]=Cd(t,n);return $d(e,r,s,Vg(a),e.RGBA,e.UNSIGNED_BYTE)}function jg(e){return e.internalFormatPackedFloat}function Xv(e,t,n,a){let[r,s]=Vl(t,n);return $d(e,r,s,jg(a),e.RGBA,e.FLOAT)}function Ug(e){return e.internalFormatPackedHalfFloat}function Kv(e,t,n,a){let[r,s]=Vl(t,n);return $d(e,r,s,Ug(a),e.RGBA,a.textureTypeHalfFloat)}function Zv(e,t,n){let a=0,r=3*4,s=3*4+2*4;return be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,n)),Og(e,t,"clipSpacePos",n,3,s,a)&&Og(e,t,"uv",n,2,s,r)}function Yv(e,t,n,a,r,s){be(e,()=>e.bindTexture(e.TEXTURE_2D,t));let i,o,l;r instanceof Uint8Array?(i=new Uint8Array(n*a*4),o=e.UNSIGNED_BYTE,l=e.RGBA):(i=new Float32Array(n*a*4),o=e.FLOAT,l=s.internalFormatPackedFloat),i.set(r),be(e,()=>e.texImage2D(e.TEXTURE_2D,0,l,n,a,0,e.RGBA,o,i)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Jv(e,t,n){be(e,()=>e.bindTexture(e.TEXTURE_2D,t)),n.data instanceof Uint8Array?be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,n.width,n.height,0,e.RGBA,e.UNSIGNED_BYTE,n.data)):be(e,()=>e.texImage2D(e.TEXTURE_2D,0,e.RGBA,e.RGBA,e.UNSIGNED_BYTE,n)),be(e,()=>e.bindTexture(e.TEXTURE_2D,null))}function Qv(e,t,n,a){let r=e.createBuffer();be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,r));let s=4*4*t*n;return be(e,()=>e.bufferData(e.PIXEL_PACK_BUFFER,s,e.STREAM_READ)),be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,0)),be(e,()=>e.bindBuffer(e.PIXEL_PACK_BUFFER,null)),r}function ew(e,t,n){let a=e,r=new Float32Array(n);return a.bindBuffer(a.PIXEL_PACK_BUFFER,t),a.getBufferSubData(a.PIXEL_PACK_BUFFER,0,r),a.bindBuffer(a.PIXEL_PACK_BUFFER,null),r}function tw(e,t,n,a){let[r,s]=Cd(t,n),i=4,o=new Uint8Array(hW(t*n,i));return be(e,()=>e.readPixels(0,0,r,s,a.downloadTextureFormat,e.UNSIGNED_BYTE,o)),new Float32Array(o.buffer)}function nw(e,t,n,a,r,s,i,o){let l=e,u=new Float32Array(fW(s,i));return l.bindBuffer(l.PIXEL_PACK_BUFFER,t),l.getBufferSubData(l.PIXEL_PACK_BUFFER,0,u),l.bindBuffer(l.PIXEL_PACK_BUFFER,null),u}function aw(e,t,n){let a=new Float32Array(t*n*4);return be(e,()=>e.readPixels(0,0,n,t,e.RGBA,e.FLOAT,a)),a}var Vh=class{constructor(e){this.outputTexture=null,this.program=null,this.disposed=!1,this.vertexAttrsAreBound=!1,this.itemsToPoll=[];let t=te().getNumber("WEBGL_VERSION");e!=null?(this.gl=e,Oh(t,e)):this.gl=Ja(t);let n="WEBGL_color_buffer_float",a="EXT_color_buffer_half_float";if(te().getNumber("WEBGL_VERSION")===1){let r="OES_texture_float",s="OES_texture_half_float";if(this.textureFloatExtension=Rd(this.gl,r),pa(this.gl,s))this.textureHalfFloatExtension=Rd(this.gl,s);else if(te().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support half float textures, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.");if(this.colorBufferFloatExtension=this.gl.getExtension(n),pa(this.gl,a))this.colorBufferHalfFloatExtension=Rd(this.gl,a);else if(te().get("WEBGL_FORCE_F16_TEXTURES"))throw new Error("GL context does not support color renderable half floats, yet the environment flag WEBGL_FORCE_F16_TEXTURES is set to true.")}else if(n="EXT_color_buffer_float",pa(this.gl,n))this.colorBufferFloatExtension=this.gl.getExtension(n);else if(pa(this.gl,a))this.colorBufferHalfFloatExtension=this.gl.getExtension(a);else throw new Error("GL context does not support color renderable floats");this.vertexBuffer=jv(this.gl),this.indexBuffer=Uv(this.gl),this.framebuffer=Nv(this.gl),this.textureConfig=Dg(this.gl,this.textureHalfFloatExtension)}get debug(){return te().getBool("DEBUG")}dispose(){if(this.disposed)return;this.program!=null&&console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."),this.outputTexture!=null&&console.warn("Disposing a GPGPUContext that still has a bound output matrix texture. This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");let e=this.gl;be(e,()=>e.finish()),be(e,()=>e.bindFramebuffer(e.FRAMEBUFFER,null)),be(e,()=>e.deleteFramebuffer(this.framebuffer)),be(e,()=>e.bindBuffer(e.ARRAY_BUFFER,null)),be(e,()=>e.bindBuffer(e.ELEMENT_ARRAY_BUFFER,null)),be(e,()=>e.deleteBuffer(this.indexBuffer)),this.disposed=!0}createFloat32MatrixTexture(e,t){return this.throwIfDisposed(),Hv(this.gl,e,t,this.textureConfig)}createFloat16MatrixTexture(e,t){return this.throwIfDisposed(),Gv(this.gl,e,t,this.textureConfig)}createUnsignedBytesMatrixTexture(e,t){return this.throwIfDisposed(),qv(this.gl,e,t,this.textureConfig)}uploadPixelDataToTexture(e,t){this.throwIfDisposed(),Jv(this.gl,e,t)}uploadDenseMatrixToTexture(e,t,n,a){this.throwIfDisposed(),Yv(this.gl,e,t,n,a,this.textureConfig)}createFloat16PackedMatrixTexture(e,t){return this.throwIfDisposed(),Kv(this.gl,e,t,this.textureConfig)}createPackedMatrixTexture(e,t){return this.throwIfDisposed(),Xv(this.gl,e,t,this.textureConfig)}deleteMatrixTexture(e){this.throwIfDisposed(),this.outputTexture===e&&(zg(this.gl,this.framebuffer),this.outputTexture=null),be(this.gl,()=>this.gl.deleteTexture(e))}downloadByteEncodedFloatMatrixFromOutputTexture(e,t,n){return this.downloadMatrixDriver(e,()=>tw(this.gl,t,n,this.textureConfig))}downloadPackedMatrixFromBuffer(e,t,n,a,r,s){return nw(this.gl,e,t,n,a,r,s,this.textureConfig)}downloadFloat32MatrixFromBuffer(e,t){return ew(this.gl,e,t)}createBufferFromTexture(e,t,n){this.bindTextureToFrameBuffer(e);let a=Qv(this.gl,t,n,this.textureConfig);return this.unbindTextureToFrameBuffer(),a}createAndWaitForFence(){let e=this.createFence(this.gl);return this.pollFence(e)}createFence(e){let t,n;if(te().getBool("WEBGL_FENCE_API_ENABLED")){let a=e,r=a.fenceSync(a.SYNC_GPU_COMMANDS_COMPLETE,0);e.flush(),n=()=>{let s=a.clientWaitSync(r,0,0);return s===a.ALREADY_SIGNALED||s===a.CONDITION_SATISFIED},t=r}else te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")>0?(t=this.beginQuery(),this.endQuery(),n=()=>this.isQueryAvailable(t,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))):n=()=>!0;return{query:t,isFencePassed:n}}downloadMatrixFromPackedTexture(e,t,n){return this.downloadMatrixDriver(e,()=>aw(this.gl,t,n))}createProgram(e){this.throwIfDisposed();let t=this.gl,n=xv(t,e);this.vertexShader==null&&(this.vertexShader=Vv(t));let a=bv(t);return be(t,()=>t.attachShader(a,this.vertexShader)),be(t,()=>t.attachShader(a,n)),vv(t,a),this.debug&&zh(t,a),this.vertexAttrsAreBound||(this.setProgram(a),this.vertexAttrsAreBound=Zv(t,this.program,this.vertexBuffer)),a}deleteProgram(e){this.throwIfDisposed(),e===this.program&&(this.program=null),e!=null&&be(this.gl,()=>this.gl.deleteProgram(e))}setProgram(e){this.throwIfDisposed(),this.program=e,this.program!=null&&this.debug&&zh(this.gl,this.program),be(this.gl,()=>this.gl.useProgram(e))}getUniformLocation(e,t,n=!0){return this.throwIfDisposed(),n?Cv(this.gl,e,t):Ev(this.gl,e,t)}getAttributeLocation(e,t){return this.throwIfDisposed(),be(this.gl,()=>this.gl.getAttribLocation(e,t))}getUniformLocationNoThrow(e,t){return this.throwIfDisposed(),this.gl.getUniformLocation(e,t)}setInputMatrixTexture(e,t,n){this.throwIfDisposed(),this.throwIfNoProgram(),Rv(this.gl,e,t,n)}setOutputMatrixTexture(e,t,n){this.setOutputMatrixTextureDriver(e,n,t)}setOutputPackedMatrixTexture(e,t,n){this.throwIfDisposed();let[a,r]=Vl(t,n);this.setOutputMatrixTextureDriver(e,a,r)}setOutputMatrixWriteRegion(e,t,n,a){this.setOutputMatrixWriteRegionDriver(n,e,a,t)}setOutputPackedMatrixWriteRegion(e,t,n,a){throw new Error("setOutputPackedMatrixWriteRegion not implemented.")}debugValidate(){this.program!=null&&zh(this.gl,this.program),Md(this.gl)}executeProgram(){this.throwIfDisposed(),this.throwIfNoProgram();let e=this.gl;this.debug&&this.debugValidate(),be(e,()=>e.drawElements(e.TRIANGLES,6,e.UNSIGNED_SHORT,0))}blockUntilAllProgramsCompleted(){this.throwIfDisposed(),be(this.gl,()=>this.gl.finish())}getQueryTimerExtension(){return this.disjointQueryTimerExtension==null&&(this.disjointQueryTimerExtension=Rd(this.gl,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2?"EXT_disjoint_timer_query_webgl2":"EXT_disjoint_timer_query")),this.disjointQueryTimerExtension}getQueryTimerExtensionWebGL2(){return this.getQueryTimerExtension()}getQueryTimerExtensionWebGL1(){return this.getQueryTimerExtension()}beginQuery(){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.createQuery();return n.beginQuery(a.TIME_ELAPSED_EXT,r),r}let e=this.getQueryTimerExtensionWebGL1(),t=e.createQueryEXT();return e.beginQueryEXT(e.TIME_ELAPSED_EXT,t),t}endQuery(){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")===2){let t=this.gl,n=this.getQueryTimerExtensionWebGL2();t.endQuery(n.TIME_ELAPSED_EXT);return}let e=this.getQueryTimerExtensionWebGL1();e.endQueryEXT(e.TIME_ELAPSED_EXT)}async waitForQueryAndGetTime(e){return await k.repeatedTry(()=>this.disposed||this.isQueryAvailable(e,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))),this.getQueryTime(e,te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))}getQueryTime(e,t){if(t===0)return null;if(t===2){let n=this.gl;return n.getQueryParameter(e,n.QUERY_RESULT)/1e6}else{let n=this.getQueryTimerExtensionWebGL1();return n.getQueryObjectEXT(e,n.QUERY_RESULT_EXT)/1e6}}isQueryAvailable(e,t){if(t===0)return!0;if(t===2){let n=this.gl,a=this.getQueryTimerExtensionWebGL2(),r=n.getQueryParameter(e,n.QUERY_RESULT_AVAILABLE);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(a.GPU_DISJOINT_EXT)),r&&!this.disjoint}else{let n=this.getQueryTimerExtensionWebGL1(),a=n.getQueryObjectEXT(e,n.QUERY_RESULT_AVAILABLE_EXT);return this.disjoint==null&&(this.disjoint=this.gl.getParameter(n.GPU_DISJOINT_EXT)),a&&!this.disjoint}}pollFence(e){return new Promise(t=>{this.addItemToPoll(()=>e.isFencePassed(),()=>t())})}pollItems(){let e=FW(this.itemsToPoll.map(t=>t.isDoneFn));for(let t=0;t<=e;++t){let{resolveFn:n}=this.itemsToPoll[t];n()}this.itemsToPoll=this.itemsToPoll.slice(e+1)}addItemToPoll(e,t){this.itemsToPoll.push({isDoneFn:e,resolveFn:t}),!(this.itemsToPoll.length>1)&&k.repeatedTry(()=>(this.pollItems(),this.itemsToPoll.length===0))}bindTextureToFrameBuffer(e){this.throwIfDisposed(),_h(this.gl,e,this.framebuffer),this.debug&&Md(this.gl)}unbindTextureToFrameBuffer(){this.outputTexture!=null?(_h(this.gl,this.outputTexture,this.framebuffer),this.debug&&Md(this.gl)):zg(this.gl,this.framebuffer)}downloadMatrixDriver(e,t){this.bindTextureToFrameBuffer(e);let n=t();return this.unbindTextureToFrameBuffer(),n}setOutputMatrixTextureDriver(e,t,n){this.throwIfDisposed();let a=this.gl;_h(a,e,this.framebuffer),this.debug&&Md(a),this.outputTexture=e,be(a,()=>a.viewport(0,0,t,n)),be(a,()=>a.scissor(0,0,t,n))}setOutputMatrixWriteRegionDriver(e,t,n,a){this.throwIfDisposed(),be(this.gl,()=>this.gl.scissor(e,t,n,a))}throwIfDisposed(){if(this.disposed)throw new Error("Attempted to use disposed GPGPUContext.")}throwIfNoProgram(){if(this.program==null)throw new Error("No GPU program is currently set.")}};function FW(e){let t=0;for(;t<e.length&&e[t]();++t);return t-1}var{getBroadcastDims:rw}=F;function $W(e,t,n,a){let r=[];e.forEach(h=>{let m=k.sizeFromShape(h.shapeInfo.logicalShape);h.shapeInfo.isUniform?r.push(`uniform float ${h.name}${m>1?`[${m}]`:""};`):(r.push(`uniform sampler2D ${h.name};`),r.push(`uniform int offset${h.name};`))});let s=r.join(`
|
|
`),i=e.map(h=>DW(h,t,a)).join(`
|
|
`),o=t.texShape,l=An(),u=_W(l),d,p,c=WW(l);return t.isPacked?(d=OW(t.logicalShape,o),p=LW(l)):(d=zW(t.logicalShape,o),p=PW(l)),a&&(c+=UW),[c,u,p,s,d,i,n].join(`
|
|
`)}function Ul(e){let t=e.shapeInfo.logicalShape;switch(t.length){case 0:return nB(e);case 1:return rB(e);case 2:return iB(e);case 3:return lB(e);case 4:return dB(e);case 5:return pB(e);case 6:return cB(e);default:throw new Error(`${t.length}-D input sampling is not yet supported`)}}function sw(e){switch(e.shapeInfo.logicalShape.length){case 0:return tB(e);case 1:return aB(e);case 2:return sB(e);case 3:return oB(e);default:return uB(e)}}function DW(e,t,n=!1){let a="";n?a+=sw(e):a+=Ul(e);let r=e.shapeInfo.logicalShape,s=t.logicalShape;return r.length<=s.length&&(n?a+=hB(e,t):a+=fB(e,t)),a}function OW(e,t){switch(e.length){case 0:return iw();case 1:return HW(e,t);case 2:return QW(e,t);case 3:return qW(e,t);default:return KW(e,t)}}function zW(e,t){switch(e.length){case 0:return iw();case 1:return GW(e,t);case 2:return eB(e,t);case 3:return XW(e,t);case 4:return ZW(e,t);case 5:return YW(e,t);case 6:return JW(e,t);default:throw new Error(`${e.length}-D output sampling is not yet supported`)}}function _W(e){return`
|
|
float sampleTexture(sampler2D textureSampler, vec2 uv) {
|
|
return ${e.texture2D}(textureSampler, uv).r;
|
|
}
|
|
`}function PW(e){return`
|
|
void setOutput(float val) {
|
|
${e.output} = vec4(val, 0, 0, 0);
|
|
}
|
|
`}function LW(e){return`
|
|
void setOutput(vec4 val) {
|
|
${e.output} = val;
|
|
}
|
|
`}function WW(e){return`${e.version}
|
|
precision highp float;
|
|
precision highp int;
|
|
precision highp sampler2D;
|
|
${e.varyingFs} vec2 resultUV;
|
|
${e.defineOutput}
|
|
const vec2 halfCR = vec2(0.5, 0.5);
|
|
|
|
struct ivec5
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
};
|
|
|
|
struct ivec6
|
|
{
|
|
int x;
|
|
int y;
|
|
int z;
|
|
int w;
|
|
int u;
|
|
int v;
|
|
};
|
|
|
|
uniform float NAN;
|
|
${e.defineSpecialNaN}
|
|
${e.defineSpecialInf}
|
|
${e.defineRound}
|
|
|
|
int imod(int x, int y) {
|
|
return x - y * (x / y);
|
|
}
|
|
|
|
int idiv(int a, int b, float sign) {
|
|
int res = a / b;
|
|
int mod = imod(a, b);
|
|
if (sign < 0. && mod != 0) {
|
|
res -= 1;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
//Based on the work of Dave Hoskins
|
|
//https://www.shadertoy.com/view/4djSRW
|
|
#define HASHSCALE1 443.8975
|
|
float random(float seed){
|
|
vec2 p = resultUV * seed;
|
|
vec3 p3 = fract(vec3(p.xyx) * HASHSCALE1);
|
|
p3 += dot(p3, p3.yzx + 19.19);
|
|
return fract((p3.x + p3.y) * p3.z);
|
|
}
|
|
|
|
${BW}
|
|
${VW}
|
|
${jW}
|
|
`}var BW=`
|
|
vec2 uvFromFlat(int texNumR, int texNumC, int index) {
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
vec2 packedUVfrom1D(int texNumR, int texNumC, int index) {
|
|
int texelIndex = index / 2;
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,VW=`
|
|
vec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,
|
|
int texNumC, int row, int col) {
|
|
int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = texelIndex / texNumC;
|
|
int texC = texelIndex - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,jW=`
|
|
vec2 packedUVfrom3D(int texNumR, int texNumC,
|
|
int texelsInBatch, int texelsInLogicalRow, int b,
|
|
int row, int col) {
|
|
int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);
|
|
int texR = index / texNumC;
|
|
int texC = index - texR * texNumC;
|
|
return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);
|
|
}
|
|
`,UW=`
|
|
float getChannel(vec4 frag, vec2 innerDims) {
|
|
vec2 modCoord = mod(innerDims, 2.);
|
|
return modCoord.x == 0. ?
|
|
(modCoord.y == 0. ? frag.r : frag.g) :
|
|
(modCoord.y == 0. ? frag.b : frag.a);
|
|
}
|
|
float getChannel(vec4 frag, int dim) {
|
|
float modCoord = mod(float(dim), 2.);
|
|
return modCoord == 0. ? frag.r : frag.g;
|
|
}
|
|
`;function iw(){return`
|
|
int getOutputCoords() {
|
|
return 0;
|
|
}
|
|
`}function HW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];return n[0]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.x * ${n[1]}.0);
|
|
}
|
|
`:n[1]===1?`
|
|
int getOutputCoords() {
|
|
return 2 * int(resultUV.y * ${n[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
return 2 * (resTexRC.x * ${n[1]} + resTexRC.y);
|
|
}
|
|
`}function GW(e,t){return t[0]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.x * ${t[1]}.0);
|
|
}
|
|
`:t[1]===1?`
|
|
int getOutputCoords() {
|
|
return int(resultUV.y * ${t[0]}.0);
|
|
}
|
|
`:`
|
|
int getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
return resTexRC.x * ${t[1]} + resTexRC.y;
|
|
}
|
|
`}function qW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[2]/2),r=a*Math.ceil(e[1]/2);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec3(b, r, c);
|
|
}
|
|
`}function XW(e,t){let n=Pi(["r","c","d"],e);return`
|
|
ivec3 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}function KW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)],a=Math.ceil(e[e.length-1]/2),r=a*Math.ceil(e[e.length-2]/2),s=r,i="",o="b, r, c";for(let l=2;l<e.length-1;l++)s*=e[e.length-l-1],i=`
|
|
int b${l} = index / ${s};
|
|
index -= b${l} * ${s};
|
|
`+i,o=`b${l}, `+o;return`
|
|
ivec${e.length} getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
|
|
${i}
|
|
|
|
int b = index / ${r};
|
|
index -= b * ${r};
|
|
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec${e.length}(${o});
|
|
}
|
|
`}function ZW(e,t){let n=Pi(["r","c","d","d2"],e);return`
|
|
ivec4 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
${n}
|
|
return ivec4(r, c, d, d2);
|
|
}
|
|
`}function YW(e,t){let n=Pi(["r","c","d","d2","d3"],e);return`
|
|
ivec5 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx * vec2(${t[0]},
|
|
${t[1]}));
|
|
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec5 outShape = ivec5(r, c, d, d2, d3);
|
|
return outShape;
|
|
}
|
|
`}function JW(e,t){let n=Pi(["r","c","d","d2","d3","d4"],e);return`
|
|
ivec6 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
|
|
${n}
|
|
|
|
ivec6 result = ivec6(r, c, d, d2, d3, d4);
|
|
return result;
|
|
}
|
|
`}function QW(e,t){let n=[Math.ceil(t[0]/2),Math.ceil(t[1]/2)];if(k.arraysEqual(e,t))return`
|
|
ivec2 getOutputCoords() {
|
|
return 2 * ivec2(resultUV.yx * vec2(${n[0]}, ${n[1]}));
|
|
}
|
|
`;let a=Math.ceil(e[1]/2);return`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${n[0]}, ${n[1]}));
|
|
|
|
int index = resTexRC.x * ${n[1]} + resTexRC.y;
|
|
int r = 2 * (index / ${a});
|
|
int c = imod(index, ${a}) * 2;
|
|
|
|
return ivec2(r, c);
|
|
}
|
|
`}function eB(e,t){return k.arraysEqual(e,t)?`
|
|
ivec2 getOutputCoords() {
|
|
return ivec2(resultUV.yx * vec2(${t[0]}, ${t[1]}));
|
|
}
|
|
`:e[1]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(index, 0);
|
|
}
|
|
`:e[0]===1?`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
return ivec2(0, index);
|
|
}
|
|
`:`
|
|
ivec2 getOutputCoords() {
|
|
ivec2 resTexRC = ivec2(resultUV.yx *
|
|
vec2(${t[0]}, ${t[1]}));
|
|
int index = resTexRC.x * ${t[1]} + resTexRC.y;
|
|
int r = index / ${e[1]};
|
|
int c = index - r * ${e[1]};
|
|
return ivec2(r, c);
|
|
}
|
|
`}function Li(e){return`offset${e}`}function tB(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=An();return`
|
|
vec4 ${n}() {
|
|
return ${a.texture2D}(${t}, halfCR);
|
|
}
|
|
`}function nB(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`float ${n}() {return ${t};}`;let[a,r]=e.shapeInfo.texShape;if(a===1&&r===1)return`
|
|
float ${n}() {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let[s,i]=e.shapeInfo.texShape,o=Li(t);return`
|
|
float ${n}() {
|
|
vec2 uv = uvFromFlat(${s}, ${i}, ${o});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function aB(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1),a=e.shapeInfo.texShape,r=[Math.ceil(a[0]/2),Math.ceil(a[1]/2)],s=An();return`
|
|
vec4 ${n}(int index) {
|
|
vec2 uv = packedUVfrom1D(
|
|
${r[0]}, ${r[1]}, index);
|
|
return ${s.texture2D}(${t}, uv);
|
|
}
|
|
`}function rB(e){let t=e.name,n="get"+t.charAt(0).toUpperCase()+t.slice(1);if(e.shapeInfo.isUniform)return`
|
|
float ${n}(int index) {
|
|
${Hl(e)}
|
|
}
|
|
`;let a=e.shapeInfo.texShape,r=a[0],s=a[1];if(s===1&&r===1)return`
|
|
float ${n}(int index) {
|
|
return sampleTexture(${t}, halfCR);
|
|
}
|
|
`;let i=Li(t);return s===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2(0.5, (float(index + ${i}) + 0.5) / ${r}.0);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:r===1?`
|
|
float ${n}(int index) {
|
|
vec2 uv = vec2((float(index + ${i}) + 0.5) / ${s}.0, 0.5);
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`:`
|
|
float ${n}(int index) {
|
|
vec2 uv = uvFromFlat(${r}, ${s}, index + ${i});
|
|
return sampleTexture(${t}, uv);
|
|
}
|
|
`}function sB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=r[0],i=r[1],o=An();if(r!=null&&k.arraysEqual(t,r))return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${i}.0, ${s}.0);
|
|
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`;let l=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)],u=Math.ceil(t[1]/2);return`
|
|
vec4 ${a}(int row, int col) {
|
|
vec2 uv = packedUVfrom2D(${u}, ${l[0]}, ${l[1]}, row, col);
|
|
return ${o.texture2D}(${n}, uv);
|
|
}
|
|
`}function iB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape;if(r!=null&&k.arraysEqual(t,r)){let p=r[0],c=r[1];return`
|
|
float ${a}(int row, int col) {
|
|
vec2 uv = (vec2(col, row) + halfCR) / vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}let{newShape:s,keptDims:i}=k.squeezeShape(t),o=s;if(o.length<t.length){let p=Gl(e,o),c=["row","col"];return`
|
|
${Ul(p)}
|
|
float ${a}(int row, int col) {
|
|
return ${a}(${ql(c,i)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col) {
|
|
int index = round(dot(vec2(row, col), vec2(${t[1]}, 1)));
|
|
${Hl(e)}
|
|
}
|
|
`;let l=r[0],u=r[1],d=Li(n);return u===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2(0.5, (index + 0.5) / ${l}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:l===1?`
|
|
float ${a}(int row, int col) {
|
|
float index = dot(vec3(row, col, ${d}), vec3(${t[1]}, 1, 1));
|
|
vec2 uv = vec2((index + 0.5) / ${u}.0, 0.5);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`:`
|
|
float ${a}(int row, int col) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${t[1]} + col + ${d};
|
|
vec2 uv = uvFromFlat(${l}, ${u}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function oB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=e.shapeInfo.texShape,s=[Math.ceil(r[0]/2),Math.ceil(r[1]/2)];if(t[0]===1){let p=t.slice(1),c=[1,2],h=Gl(e,p),m=["b","row","col"];return`
|
|
${sw(h)}
|
|
vec4 ${a}(int b, int row, int col) {
|
|
return ${a}(${ql(m,c)});
|
|
}
|
|
`}let i=s[0],o=s[1],l=Math.ceil(t[2]/2),u=l*Math.ceil(t[1]/2),d=An();return`
|
|
vec4 ${a}(int b, int row, int col) {
|
|
vec2 uv = packedUVfrom3D(
|
|
${i}, ${o}, ${u}, ${l}, b, row, col);
|
|
return ${d.texture2D}(${n}, uv);
|
|
}
|
|
`}function lB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[1]*t[2],s=t[2],{newShape:i,keptDims:o}=k.squeezeShape(t),l=i;if(l.length<t.length){let m=Gl(e,l),f=["row","col","depth"];return`
|
|
${Ul(m)}
|
|
float ${a}(int row, int col, int depth) {
|
|
return ${a}(${ql(f,o)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
int index = round(dot(vec3(row, col, depth),
|
|
vec3(${r}, ${s}, 1)));
|
|
${Hl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.texShape,d=u[0],p=u[1],c=e.shapeInfo.flatOffset;if(p===r&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = float(row);
|
|
float texC = dot(vec2(col, depth), vec2(${s}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(p===s&&c==null)return`
|
|
float ${a}(int row, int col, int depth) {
|
|
float texR = dot(vec2(row, col), vec2(${t[1]}, 1));
|
|
float texC = float(depth);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${p}.0, ${d}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Li(n);return`
|
|
float ${a}(int row, int col, int depth) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${r} + col * ${s} + depth + ${h};
|
|
vec2 uv = uvFromFlat(${d}, ${p}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function uB(e){let t=e.shapeInfo.logicalShape,n=t.length,a=e.name,r="get"+a.charAt(0).toUpperCase()+a.slice(1),s=e.shapeInfo.texShape,i=[Math.ceil(s[0]/2),Math.ceil(s[1]/2)],o=i[0],l=i[1],u=Math.ceil(t[n-1]/2),d=u*Math.ceil(t[n-2]/2),p="int b, int row, int col",c=`b * ${d} + (row / 2) * ${u} + (col / 2)`;for(let m=2;m<n-1;m++)p=`int b${m}, `+p,d*=t[n-m-1],c=`b${m} * ${d} + `+c;let h=An();return`
|
|
vec4 ${r}(${p}) {
|
|
int index = ${c};
|
|
int texR = index / ${l};
|
|
int texC = index - texR * ${l};
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${l}, ${o});
|
|
return ${h.texture2D}(${a}, uv);
|
|
}
|
|
`}function dB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[3],s=t[2]*r,i=t[1]*s,{newShape:o,keptDims:l}=k.squeezeShape(t);if(o.length<t.length){let m=Gl(e,o),f=["row","col","depth","depth2"];return`
|
|
${Ul(m)}
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
return ${a}(${ql(f,l)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
int index = round(dot(vec4(row, col, depth, depth2),
|
|
vec4(${i}, ${s}, ${r}, 1)));
|
|
${Hl(e)}
|
|
}
|
|
`;let u=e.shapeInfo.flatOffset,d=e.shapeInfo.texShape,p=d[0],c=d[1];if(c===i&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = float(row);
|
|
float texC =
|
|
dot(vec3(col, depth, depth2),
|
|
vec3(${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(c===r&&u==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
float texR = dot(vec3(row, col, depth),
|
|
vec3(${t[1]*t[2]}, ${t[2]}, 1));
|
|
float texC = float(depth2);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${c}.0, ${p}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let h=Li(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${i} + col * ${s} +
|
|
depth * ${r} + depth2;
|
|
vec2 uv = uvFromFlat(${p}, ${c}, index + ${h});
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function pB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),r=t[4],s=t[3]*r,i=t[2]*s,o=t[1]*i,{newShape:l,keptDims:u}=k.squeezeShape(t);if(l.length<t.length){let f=Gl(e,l),g=["row","col","depth","depth2","depth3"];return`
|
|
${Ul(f)}
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
return ${a}(${ql(g,u)});
|
|
}
|
|
`}if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float index = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${o}, ${i}, ${s}, ${r})) +
|
|
depth3;
|
|
${Hl(e)}
|
|
}
|
|
`;let d=e.shapeInfo.flatOffset,p=e.shapeInfo.texShape,c=p[0],h=p[1];if(h===o&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${i}, ${s}, ${r}, 1));
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(h===r&&d==null)return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
float texR = dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]},
|
|
${t[2]*t[3]}, ${t[3]}, 1));
|
|
int texC = depth3;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${h}.0, ${c}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let m=Li(n);return`
|
|
float ${a}(int row, int col, int depth, int depth2, int depth3) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${o} + col * ${i} + depth * ${s} +
|
|
depth2 * ${r} + depth3 + ${m};
|
|
vec2 uv = uvFromFlat(${c}, ${h}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function cB(e){let t=e.shapeInfo.logicalShape,n=e.name,a="get"+n.charAt(0).toUpperCase()+n.slice(1),{newShape:r,keptDims:s}=k.squeezeShape(t);if(r.length<t.length){let g=Gl(e,r),y=["row","col","depth","depth2","depth3","depth4"];return`
|
|
${Ul(g)}
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
return ${a}(${ql(y,s)});
|
|
}
|
|
`}let i=t[5],o=t[4]*i,l=t[3]*o,u=t[2]*l,d=t[1]*u;if(e.shapeInfo.isUniform)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int index = round(dot(
|
|
vec4(row, col, depth, depth2),
|
|
vec4(${d}, ${u}, ${l}, ${o})) +
|
|
dot(
|
|
vec2(depth3, depth4),
|
|
vec2(${i}, 1)));
|
|
${Hl(e)}
|
|
}
|
|
`;let p=e.shapeInfo.flatOffset,c=e.shapeInfo.texShape,h=c[0],m=c[1];if(m===d&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
int texR = row;
|
|
float texC = dot(vec4(col, depth, depth2, depth3),
|
|
vec4(${u}, ${l}, ${o}, ${i})) +
|
|
float(depth4);
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;if(m===i&&p==null)return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
float texR = dot(vec4(row, col, depth, depth2),
|
|
vec4(${t[1]*t[2]*t[3]*t[4]},
|
|
${t[2]*t[3]*t[4]},
|
|
${t[3]*t[4]},
|
|
${t[4]})) + float(depth3);
|
|
int texC = depth4;
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${m}.0, ${h}.0);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`;let f=Li(n);return`
|
|
float ${a}(int row, int col, int depth,
|
|
int depth2, int depth3, int depth4) {
|
|
// Explicitly use integer operations as dot() only works on floats.
|
|
int index = row * ${d} + col * ${u} + depth * ${l} +
|
|
depth2 * ${o} + depth3 * ${i} + depth4 + ${f};
|
|
vec2 uv = uvFromFlat(${h}, ${m}, index);
|
|
return sampleTexture(${n}, uv);
|
|
}
|
|
`}function Hl(e){let t=e.name,n=k.sizeFromShape(e.shapeInfo.logicalShape);return n<2?`return ${t};`:`
|
|
for (int i = 0; i < ${n}; i++) {
|
|
if (i == index) {
|
|
return ${t}[i];
|
|
}
|
|
}
|
|
`}function hB(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=e.shapeInfo.logicalShape.length,i=t.logicalShape.length,o=rw(e.shapeInfo.logicalShape,t.logicalShape),l=ut(i),u=i-s,d,p=["x","y","z","w","u","v"];s===0?d="":i<2&&o.length>=1?d="coords = 0;":d=o.map(g=>`coords.${p[g+u]} = 0;`).join(`
|
|
`);let c="";i<2&&s>0?c="coords":c=e.shapeInfo.logicalShape.map((g,y)=>`coords.${p[y+u]}`).join(", ");let h="return outputValue;",m=k.sizeFromShape(e.shapeInfo.logicalShape)===1,f=k.sizeFromShape(t.logicalShape)===1;if(s===1&&!m&&!f)h=`
|
|
return vec4(outputValue.xy, outputValue.xy);
|
|
`;else if(m&&!f)i===1?h=`
|
|
return vec4(outputValue.x, outputValue.x, 0., 0.);
|
|
`:h=`
|
|
return vec4(outputValue.x);
|
|
`;else if(o.length){let g=s-2,y=s-1;o.indexOf(g)>-1&&o.indexOf(y)>-1?h="return vec4(outputValue.x);":o.indexOf(g)>-1?h="return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);":o.indexOf(y)>-1&&(h="return vec4(outputValue.xx, outputValue.zz);")}return`
|
|
vec4 ${r}() {
|
|
${l} coords = getOutputCoords();
|
|
${d}
|
|
vec4 outputValue = get${a}(${c});
|
|
${h}
|
|
}
|
|
`}function fB(e,t){let n=e.name,a=n.charAt(0).toUpperCase()+n.slice(1),r="get"+a+"AtOutCoords",s=t.texShape,i=e.shapeInfo.texShape,o=e.shapeInfo.logicalShape.length,l=t.logicalShape.length;if(!e.shapeInfo.isUniform&&o===l&&e.shapeInfo.flatOffset==null&&k.arraysEqual(i,s))return`
|
|
float ${r}() {
|
|
return sampleTexture(${n}, resultUV);
|
|
}
|
|
`;let u=ut(l),d=rw(e.shapeInfo.logicalShape,t.logicalShape),p=l-o,c,h=["x","y","z","w","u","v"];o===0?c="":l<2&&d.length>=1?c="coords = 0;":c=d.map(f=>`coords.${h[f+p]} = 0;`).join(`
|
|
`);let m="";return l<2&&o>0?m="coords":m=e.shapeInfo.logicalShape.map((f,g)=>`coords.${h[g+p]}`).join(", "),`
|
|
float ${r}() {
|
|
${u} coords = getOutputCoords();
|
|
${c}
|
|
return get${a}(${m});
|
|
}
|
|
`}function ut(e){if(e<=1)return"int";if(e===2)return"ivec2";if(e===3)return"ivec3";if(e===4)return"ivec4";if(e===5)return"ivec5";if(e===6)return"ivec6";throw Error(`GPU for rank ${e} is not yet supported`)}function Gl(e,t){let n=JSON.parse(JSON.stringify(e));return n.shapeInfo.logicalShape=t,n}function ql(e,t){return t.map(n=>e[n]).join(", ")}function mB(e,t,n,a){let r=t.userCode,s=n.map((h,m)=>{let f={logicalShape:h.shape,texShape:h.isUniform?null:h.texData.texShape,isUniform:h.isUniform,isPacked:h.isUniform?!1:h.texData.isPacked,flatOffset:null};return h.texData!=null&&h.texData.slice!=null&&h.texData.slice.flatOffset>0&&(f.flatOffset=h.texData.slice.flatOffset),{name:t.variableNames[m],shapeInfo:f}}),i=s.map(h=>h.shapeInfo),o={logicalShape:a.shape,texShape:a.texData.texShape,isUniform:!1,isPacked:a.texData.isPacked,flatOffset:null},l=$W(s,o,r,t.packedInputs),u=e.createProgram(l),d=null,p=e.getUniformLocation(u,"NAN",!1);te().getNumber("WEBGL_VERSION")===1&&(d=e.getUniformLocation(u,"INFINITY",!1));let c={};for(let h=0;h<t.variableNames.length;h++){let m=t.variableNames[h],f=!1;c[m]=e.getUniformLocation(u,m,f),c[`offset${m}`]=e.getUniformLocation(u,`offset${m}`,f)}return{program:t,source:l,webGLProgram:u,uniformLocations:c,inShapeInfos:i,outShapeInfo:o,infLoc:d,nanLoc:p}}function ow(e,t){if(e.length!==t.length)throw Error(`Binary was compiled with ${e.length} inputs, but was executed with ${t.length} inputs`);e.forEach((n,a)=>{let r=n.logicalShape,s=t[a],i=s.shape;if(!k.arraysEqual(r,i))throw Error(`Binary was compiled with different shapes than the current args. Shapes ${r} and ${i} must match`);if(n.isUniform&&s.isUniform)return;let o=n.texShape,l=s.isUniform?null:s.texData.texShape;if(!k.arraysEqual(o,l))throw Error(`Binary was compiled with different texture shapes than the current args. Shape ${o} and ${l} must match`)})}function gB(e,t,n,a,r){ow(t.inShapeInfos,n),ow([t.outShapeInfo],[a]);let s=a.texData.texture,i=a.texData.texShape;a.texData.isPacked?e.setOutputPackedMatrixTexture(s,i[0],i[1]):e.setOutputMatrixTexture(s,i[0],i[1]),e.setProgram(t.webGLProgram),te().getNumber("WEBGL_VERSION")===1&&t.infLoc!==null&&e.gl.uniform1f(t.infLoc,Infinity),t.nanLoc!==null&&e.gl.uniform1f(t.nanLoc,NaN),n.forEach((o,l)=>{let u=t.program.variableNames[l],d=t.uniformLocations[u],p=t.uniformLocations[`offset${u}`];if(d!=null){if(o.isUniform){if(k.sizeFromShape(o.shape)<2)e.gl.uniform1f(d,o.uniformValues[0]);else{let c=o.uniformValues;c instanceof Float32Array||(c=new Float32Array(c)),e.gl.uniform1fv(d,c)}return}o.texData.slice!=null&&p!=null&&e.gl.uniform1i(p,o.texData.slice.flatOffset),e.setInputMatrixTexture(o.texData.texture,d,l)}}),r!=null&&r(e,t.webGLProgram),e.executeProgram()}function yB(e,t,n){let a="";t.concat(n).forEach(i=>{let o=i.texData!=null&&i.texData.slice!=null&&i.texData.slice.flatOffset>0,l=i.isUniform?"uniform":i.texData.texShape;a+=`${i.shape}_${l}_${o}`});let r=e.userCode,s=e.constructor.name;return s+="_"+a+"_"+r,s}var{addImpl:AB,bincountImpl:lw,bincountReduceImpl:xB,ceilImpl:bB,concatImpl:vB,equalImpl:wB,expImpl:kB,expm1Impl:IB,floorImpl:SB,gatherNdImpl:NB,gatherV2Impl:TB,greaterImpl:CB,greaterEqualImpl:EB,lessImpl:RB,lessEqualImpl:MB,linSpaceImpl:FB,logImpl:$B,maxImpl:DB,maximumImpl:OB,minimumImpl:zB,multiplyImpl:_B,negImpl:PB,notEqualImpl:LB,prodImpl:WB,rangeImpl:BB,rsqrtImpl:VB,simpleAbsImpl:uw,sliceImpl:jB,sparseFillEmptyRowsImpl:UB,sparseReshapeImpl:HB,sparseSegmentReductionImpl:dw,stridedSliceImpl:GB,stringNGramsImpl:qB,stringSplitImpl:XB,stringToHashBucketFastImpl:KB,subImpl:ZB,tileImpl:YB,topKImpl:JB,transposeImpl:Hg,uniqueImpl:QB}=Ag;function pw(e,t){return["x","y","z","w","u","v"].slice(0,t).map(n=>`${e}.${n}`)}function xn(e,t){return t===1?[e]:pw(e,t)}function eV(e,t){if(e===1)return"rc";let n="";for(let a=0;a<e;a++)n+=t[a],a<e-1&&(n+=",");return n}var tV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0,this.outputShape=e;let t=e.length;if(t===0)this.userCode=`
|
|
void main() {
|
|
setOutput(vec4(getA(), 0., 0., 0.));
|
|
}
|
|
`;else{let n=xn("rc",t),a=ut(t),r=aV(t,e,n),s=rV(t,e[e.length-1],e[e.length-2],n),i=sV(e,n);this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
|
|
if(${r}) {
|
|
setOutput(vec4(0));
|
|
} else {
|
|
${s}
|
|
|
|
setOutput(vec4(${i}));
|
|
}
|
|
}
|
|
`}}};function nV(e,t){let n=[];for(let a=0;a<=1;a++)for(let r=0;r<=1;r++){let s=`${a===0?"r":"rp1"}, ${r===0?"c":"cp1"}`;for(let i=2;i<e;i++)s=`${t[t.length-1-i]},`+s;n.push(s)}return n}function aV(e,t,n){if(e===1)return`rc > ${t[0]}`;let a="";for(let r=e-2;r<e;r++)a+=`${n[r]} >= ${t[r]}`,r<e-1&&(a+="||");return a}function rV(e,t,n,a){if(e===1)return"";let r=a.slice(-2);return`
|
|
int r = ${r[0]};
|
|
int c = ${r[1]};
|
|
int rp1 = r + 1;
|
|
int cp1 = c + 1;
|
|
|
|
bool cEdge = cp1 >= ${t};
|
|
bool rEdge = rp1 >= ${n};
|
|
`}function sV(e,t){let n=e.length,a=nV(n,t);return n===1?`getA(rc),
|
|
rc + 1 >= ${e[0]} ? 0. : getA(rc + 1),
|
|
0, 0`:`getA(${a[0]}),
|
|
cEdge ? 0. : getA(${a[1]}),
|
|
rEdge ? 0. : getA(${a[2]}),
|
|
rEdge || cEdge ? 0. : getA(${a[3]})`}var cw=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let n="";for(let a=0;a<4;a++){let r="thisRC = rc;";a%2==1&&(r+="thisRC.z += 1;"),a>1&&(r+="thisRC.y += 1;"),n+=`
|
|
${r}
|
|
${a>0?"if(thisRC.y < rows && thisRC.z < cols){":""}
|
|
int flatIndex = getFlatIndex(thisRC);
|
|
|
|
ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);
|
|
vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));
|
|
|
|
result[${a}] =
|
|
getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);
|
|
${a>0?"}":""}
|
|
`}this.userCode=`
|
|
${iV(t)}
|
|
${Lg(e)}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
ivec3 thisRC;
|
|
int rows = ${e[1]};
|
|
int cols = ${e[2]};
|
|
|
|
${n}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function iV(e){return`
|
|
ivec3 inputCoordsFromReshapedOutCoords(int index) {
|
|
${Pi(["r","c","d"],e)}
|
|
return ivec3(r, c, d);
|
|
}
|
|
`}var oV=class{constructor(e){this.gpgpu=e,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0,this.freeTextures={},this.logEnabled=!1,this.usedTextures={}}acquireTexture(e,t,n){let a=fw(t,n),r=mw(e,a,n);r in this.freeTextures||(this.freeTextures[r]=[]),r in this.usedTextures||(this.usedTextures[r]=[]);let s=hw(e,a,this.gpgpu.gl,this.gpgpu.textureConfig,n);if(this.freeTextures[r].length>0){this.numFreeTextures--,this.numUsedTextures++,this._numBytesFree-=s,this.log();let o=this.freeTextures[r].shift();return this.usedTextures[r].push(o),o}let i;return a===rn.PACKED_2X2_FLOAT32?i=this.gpgpu.createPackedMatrixTexture(e[0],e[1]):a===rn.PACKED_2X2_FLOAT16?i=this.gpgpu.createFloat16PackedMatrixTexture(e[0],e[1]):a===rn.UNPACKED_FLOAT32?i=this.gpgpu.createFloat32MatrixTexture(e[0],e[1]):a===rn.UNPACKED_FLOAT16?i=this.gpgpu.createFloat16MatrixTexture(e[0],e[1]):a===rn.PACKED_4X1_UNSIGNED_BYTE&&(i=this.gpgpu.createUnsignedBytesMatrixTexture(e[0],e[1])),this.usedTextures[r].push(i),this.numUsedTextures++,this._numBytesAllocated+=s,this.log(),i}releaseTexture(e,t,n,a){if(this.freeTextures==null)return;let r=fw(n,a),s=mw(t,r,a);s in this.freeTextures||(this.freeTextures[s]=[]);let i=hw(t,r,this.gpgpu.gl,this.gpgpu.textureConfig,a),o=te().get("WEBGL_DELETE_TEXTURE_THRESHOLD");o!==-1&&this._numBytesAllocated>o?(this.gpgpu.deleteMatrixTexture(e),this._numBytesAllocated-=i):(this.freeTextures[s].push(e),this.numFreeTextures++,this._numBytesFree+=i),this.numUsedTextures--;let l=this.usedTextures[s],u=l.indexOf(e);if(u<0)throw new Error("Cannot release a texture that was never provided by this texture manager");l.splice(u,1),this.log()}log(){if(!this.logEnabled)return;let e=this.numFreeTextures+this.numUsedTextures;console.log("Free/Used",`${this.numFreeTextures} / ${this.numUsedTextures}`,`(${e})`);let t=this._numBytesFree/this._numBytesAllocated;console.log(`Bytes allocated: ${this._numBytesAllocated}`),console.log(`Bytes unused: ${this._numBytesFree} (${Math.round(100*t)}%)`)}get numBytesAllocated(){return this._numBytesAllocated}get numBytesFree(){return this._numBytesFree}getNumUsedTextures(){return this.numUsedTextures}getNumFreeTextures(){return this.numFreeTextures}dispose(){if(this.freeTextures!=null){for(let e in this.freeTextures)this.freeTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});for(let e in this.usedTextures)this.usedTextures[e].forEach(t=>{this.gpgpu.deleteMatrixTexture(t)});this.freeTextures=null,this.usedTextures=null,this.numUsedTextures=0,this.numFreeTextures=0,this._numBytesAllocated=0,this._numBytesFree=0}}};function lV(e,t){let n=e;if(t===n.R32F)return 4;if(t===n.R16F)return 2;if(t===n.RGBA32F||t===e.RGBA)return 16;if(t===n.RGBA16F)return 8;throw new Error(`Unknown internal format ${t}`)}function hw(e,t,n,a,r){let s=uV(t,a),i;if(r){let[l,u]=Vl(e[0],e[1]);i=l*u}else{let[l,u]=Cd(e[0],e[1]);i=l*u}let o=lV(n,s);return i*o}function uV(e,t){switch(e){case rn.PACKED_2X2_FLOAT32:return jg(t);case rn.PACKED_2X2_FLOAT16:return Ug(t);case rn.UNPACKED_FLOAT32:return Wg(t);case rn.UNPACKED_FLOAT16:return Bg(t);case rn.PACKED_4X1_UNSIGNED_BYTE:return Vg(t);default:throw new Error(`Unknown physical texture type ${e}`)}}function dV(e){return te().getBool("WEBGL_RENDER_FLOAT32_ENABLED")?e?rn.PACKED_2X2_FLOAT32:rn.UNPACKED_FLOAT32:e?rn.PACKED_2X2_FLOAT16:rn.UNPACKED_FLOAT16}function fw(e,t){if(e===da.UPLOAD)return rn.PACKED_2X2_FLOAT32;if(e===da.RENDER||e==null)return dV(t);if(e===da.DOWNLOAD||e===da.PIXELS)return rn.PACKED_4X1_UNSIGNED_BYTE;throw new Error(`Unknown logical texture type ${e}`)}function mw(e,t,n){return`${e[0]}_${e[1]}_${t}_${n}`}var Yr=class{constructor(e,t){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
float unaryOperation(float x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
float x = getAAtOutCoords();
|
|
float y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},Ca="if (isnan(x)) return x;",pV="return x;",gw="return abs(x);",cV="return (x >= 0.0) ? x : (exp(x) - 1.0);",hV=Ca+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,fV=Ca+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,jh="return x;",mV="return 1.0 / (1.0 + exp(-1.0 * x));",gV="return x;",yV=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,AV=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,xV=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,bV="return 1.0 / (1.0 + exp(-1.0 * x));",Xl=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
vec4 unaryOperation(vec4 x) {
|
|
${t}
|
|
}
|
|
|
|
void main() {
|
|
vec4 x = getAAtOutCoords();
|
|
vec4 y = unaryOperation(x);
|
|
|
|
setOutput(y);
|
|
}
|
|
`}},vV=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!1,this.outputShape=e;let t=e.length,n=xn("rc",t),a=ut(t),r=eV(t,n),s=n.slice(-2),i=t<=1?"rc":`vec2(${s.join(",")})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 packedInput = getA(${r});
|
|
|
|
setOutput(getChannel(packedInput, ${i}));
|
|
}
|
|
`}},wV=Za.whereImpl,kV=1e-7,IV=1e-4,Gg={};function SV(e){return e in Gg||(Gg[e]={}),Gg[e]}var NV=te().getNumber("CPU_HANDOFF_SIZE_THRESHOLD"),TV=600;function CV(){return te().global.screen==null?1024:te().global.screen.height*te().global.screen.width*window.devicePixelRatio*TV/1024/1024}var Kl=class extends Eu{constructor(e){super();if(this.pendingRead=new WeakMap,this.pendingDisposal=new WeakSet,this.dataRefCount=new WeakMap,this.numBytesInGPU=0,this.uploadWaitMs=0,this.downloadWaitMs=0,this.lastGlFlushTime=0,this.warnedAboutMemory=!1,this.pendingDeletes=0,this.disposed=!1,!te().getBool("HAS_WEBGL"))throw new Error("WebGL is not supported on this device");if(e==null){let t=Ja(te().getNumber("WEBGL_VERSION"));this.binaryCache=SV(te().getNumber("WEBGL_VERSION")),this.gpgpu=new Vh(t),this.canvas=t.canvas,this.gpgpuCreatedLocally=!0}else this.gpgpu=e,this.binaryCache={},this.gpgpuCreatedLocally=!1,this.canvas=e.gl.canvas;this.textureManager=new oV(this.gpgpu),this.numMBBeforeWarning=CV(),this.texData=new Up(this,fr())}nextDataId(){return Kl.nextDataId++}numDataIds(){return this.texData.numDataIds()-this.pendingDeletes}write(e,t,n){if((te().getBool("WEBGL_CHECK_NUMERICAL_PROBLEMS")||te().getBool("DEBUG"))&&this.checkNumericalProblems(e),n==="complex64"&&e!=null)throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");let a={id:this.nextDataId()};return this.texData.set(a,{shape:t,dtype:n,values:e,usage:da.UPLOAD,refCount:1}),a}refCount(e){return this.texData.has(e)?this.texData.get(e).refCount:0}incRef(e){let t=this.texData.get(e);t.refCount++}decRef(e){if(this.texData.has(e)){let t=this.texData.get(e);t.refCount--}}move(e,t,n,a,r){if(te().getBool("DEBUG")&&this.checkNumericalProblems(t),a==="complex64")throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");this.texData.set(e,{shape:n,dtype:a,values:t,usage:da.UPLOAD,refCount:r})}disposeIntermediateTensorInfo(e){this.disposeData(e.dataId)}readSync(e){let t=this.texData.get(e),{values:n,dtype:a,complexTensorInfos:r,slice:s,shape:i,isPacked:o}=t;if(s!=null){let p;o?p=new Xl(i,jh):p=new Yr(i,jh);let c=this.runWebGLProgram(p,[{dataId:e,shape:i,dtype:a}],a),h=this.readSync(c.dataId);return this.disposeIntermediateTensorInfo(c),h}if(n!=null)return this.convertAndCacheOnCPU(e);if(a==="string")return n;let l=this.activeTimers!=null,u;l&&(u=k.now());let d;if(a==="complex64"){let p=this.readSync(r.real.dataId),c=this.readSync(r.imag.dataId);d=F.mergeRealAndImagArrays(p,c)}else d=this.getValuesFromTexture(e);return l&&(this.downloadWaitMs+=k.now()-u),this.convertAndCacheOnCPU(e,d)}async read(e){if(this.pendingRead.has(e)){let h=this.pendingRead.get(e);return new Promise(m=>h.push(m))}let t=this.texData.get(e),{values:n,shape:a,slice:r,dtype:s,complexTensorInfos:i,isPacked:o}=t;if(r!=null){let h;o?h=new Xl(a,jh):h=new Yr(a,jh);let m=this.runWebGLProgram(h,[{dataId:e,shape:a,dtype:s}],s),f=this.read(m.dataId);return this.disposeIntermediateTensorInfo(m),f}if(n!=null)return this.convertAndCacheOnCPU(e);if(!te().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")&&te().getNumber("WEBGL_VERSION")===2)throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");let l=null,u;if(s!=="complex64"&&te().get("WEBGL_BUFFER_SUPPORTED")){u=this.decode(e);let h=this.texData.get(u.dataId);l=this.gpgpu.createBufferFromTexture(h.texture,...Ed(a))}this.pendingRead.set(e,[]),s!=="complex64"&&await this.gpgpu.createAndWaitForFence();let d;if(s==="complex64"){let h=await Promise.all([this.read(i.real.dataId),this.read(i.imag.dataId)]),m=h[0],f=h[1];d=F.mergeRealAndImagArrays(m,f)}else if(l==null)d=this.getValuesFromTexture(e);else{let h=k.sizeFromShape(a);d=this.gpgpu.downloadFloat32MatrixFromBuffer(l,h)}u!=null&&this.disposeIntermediateTensorInfo(u);let p=this.convertAndCacheOnCPU(e,d),c=this.pendingRead.get(e);return this.pendingRead.delete(e),c.forEach(h=>h(p)),this.pendingDisposal.has(e)&&(this.pendingDisposal.delete(e),this.disposeData(e)&&fr().removeDataId(e,this),this.pendingDeletes--),p}bufferSync(e){let t=this.readSync(e.dataId),n=t;if(e.dtype==="string")try{n=t.map(a=>k.decodeString(a))}catch(a){throw new Error("Failed to decode encoded string bytes into utf-8")}return Ve(e.shape,e.dtype,n)}checkNumericalProblems(e){if(e!=null)for(let t=0;t<e.length;t++){let n=e[t];if(!gv(n))throw te().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")?Error(`The value ${n} cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'`):Error(`The value ${n} cannot be represented on this device.`)}}getValuesFromTexture(e){let{shape:t,dtype:n,isPacked:a}=this.texData.get(e),r=k.sizeFromShape(t);if(te().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")){let p=this.decode(e),c=this.texData.get(p.dataId),h=this.gpgpu.downloadMatrixFromPackedTexture(c.texture,...Ed(t)).subarray(0,r);return this.disposeIntermediateTensorInfo(p),h}let s=te().getBool("WEBGL_PACK")&&a===!0,i=s?Ph(t):t,o=s?new EW(i):new CW(i),l=this.runWebGLProgram(o,[{shape:i,dtype:n,dataId:e}],"float32"),u=this.texData.get(l.dataId),d=this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(u.texture,u.texShape[0],u.texShape[1]).subarray(0,r);return this.disposeIntermediateTensorInfo(l),d}timerAvailable(){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0}async time(e){let t=this.activeTimers,n=[],a=!1;this.programTimersStack==null?(this.programTimersStack=n,a=!0):this.activeTimers.push(n),this.activeTimers=n,e();let r=k.flatten(this.activeTimers.map(o=>o.query)).filter(o=>o!=null),s=k.flatten(this.activeTimers.map(o=>o.name)).filter(o=>o!=null);this.activeTimers=t,a&&(this.programTimersStack=null);let i={uploadWaitMs:this.uploadWaitMs,downloadWaitMs:this.downloadWaitMs,kernelMs:null,wallMs:null};if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0){let o=await Promise.all(r);i.kernelMs=k.sum(o),i.getExtraProfileInfo=()=>o.map((l,u)=>({name:s[u],ms:l})).map(l=>`${l.name}: ${l.ms}`).join(", ")}else i.kernelMs={error:"WebGL query timers are not supported in this environment."};return this.uploadWaitMs=0,this.downloadWaitMs=0,i}memory(){return{unreliable:!1,numBytesInGPU:this.numBytesInGPU,numBytesInGPUAllocated:this.textureManager.numBytesAllocated,numBytesInGPUFree:this.textureManager.numBytesFree}}startTimer(){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?this.gpgpu.beginQuery():{startMs:k.now(),endMs:null}}endTimer(e){return te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0?(this.gpgpu.endQuery(),e):(e.endMs=k.now(),e)}async getQueryTime(e){if(te().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE")>0)return this.gpgpu.waitForQueryAndGetTime(e);let t=e;return t.endMs-t.startMs}disposeData(e,t=!1){if(this.pendingDisposal.has(e))return!1;if(!this.texData.has(e))return!0;if(t?this.texData.get(e).refCount=0:this.texData.get(e).refCount--,!t&&this.texData.get(e).refCount>0)return!1;if(this.pendingRead.has(e))return this.pendingDisposal.add(e),this.pendingDeletes++,!1;this.releaseGPUData(e);let{complexTensorInfos:n}=this.texData.get(e);return n!=null&&(this.disposeData(n.real.dataId,t),this.disposeData(n.imag.dataId,t)),this.texData.delete(e),!0}releaseGPUData(e){let{texture:t,dtype:n,texShape:a,usage:r,isPacked:s,slice:i}=this.texData.get(e),o=i&&i.origDataId||e,l=this.dataRefCount.get(o);l>1?this.dataRefCount.set(o,l-1):(this.dataRefCount.delete(o),t!=null&&(this.numBytesInGPU-=this.computeBytes(a,n),this.textureManager.releaseTexture(t,a,r,s)));let u=this.texData.get(e);u.texture=null,u.texShape=null,u.isPacked=!1,u.slice=null}getTexture(e){return this.uploadToGPU(e),this.texData.get(e).texture}getDataInfo(e){return this.texData.get(e)}shouldExecuteOnCPU(e,t=NV){return te().getBool("WEBGL_CPU_FORWARD")&&e.every(n=>this.texData.get(n.dataId).texture==null&&k.sizeFromShape(n.shape)<t)}getGPGPUContext(){return this.gpgpu}where(e){F.warn("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");let t=e.dataSync();return wV(e.shape,t)}packedUnaryOp(e,t,n){let a=new Xl(e.shape,t),r=this.compileAndRun(a,[e],n);return fr().makeTensorFromDataId(r.dataId,r.shape,r.dtype)}abs(e){if(this.shouldExecuteOnCPU([e])&&e.dtype!=="complex64"){let a=uw(this.texData.get(e.dataId).values);return this.makeOutput(e.shape,e.dtype,a)}if(te().getBool("WEBGL_PACK_UNARY_OPERATIONS"))return this.packedUnaryOp(e,gw,e.dtype);let t=new Yr(e.shape,gw),n=this.compileAndRun(t,[e]);return fr().makeTensorFromDataId(n.dataId,n.shape,n.dtype)}makeTensorInfo(e,t,n){let a;if(t==="string"&&n!=null&&n.length>0&&k.isString(n[0])){let r=n.map(s=>k.encodeString(s));a=this.write(r,e,t)}else a=this.write(n,e,t);return this.texData.get(a).usage=null,{dataId:a,shape:e,dtype:t}}makeOutput(e,t,n){let{dataId:a}=this.makeTensorInfo(e,t,n);return fr().makeTensorFromDataId(a,e,t,this)}unpackTensor(e){let t=new vV(e.shape);return this.runWebGLProgram(t,[e],e.dtype)}packTensor(e){let t=new tV(e.shape),n=!0;return this.runWebGLProgram(t,[e],e.dtype,null,n)}packedReshape(e,t){let n=[zi(e.shape),..._i(e.shape)],a={dtype:e.dtype,shape:n,dataId:e.dataId},r=[zi(t),..._i(t)],s=new cw(r,n),i=!0,o=this.runWebGLProgram(s,[a],e.dtype,null,i);return{dataId:o.dataId,shape:t,dtype:o.dtype}}decode(e){let t=this.texData.get(e),{isPacked:n,shape:a,dtype:r}=t,s=Ph(a),i;n?i=new TW(s):i=new NW(s);let o=!0,l=this.runWebGLProgram(i,[{shape:s,dtype:r,dataId:e}],r,null,o);return{dtype:r,shape:a,dataId:l.dataId}}runWebGLProgram(e,t,n,a,r=!1){let s=this.makeTensorInfo(e.outputShape,n),i=this.texData.get(s.dataId);if(e.packedOutput&&(i.isPacked=!0),e.outPackingScheme===Td.DENSE){let f=Ed(e.outputShape);i.texShape=f.map(g=>g*2)}if(e.outTexUsage!=null&&(i.usage=e.outTexUsage),k.sizeFromShape(s.shape)===0)return i.values=k.getTypedArrayFromDType(s.dtype,0),s;let o=[],l=t.map(f=>{if(f.dtype==="complex64")throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");let g=this.texData.get(f.dataId);if(g.texture==null){if(!e.packedInputs&&k.sizeFromShape(f.shape)<=te().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM"))return{shape:f.shape,texData:null,isUniform:!0,uniformValues:g.values};e.packedInputs&&(g.isPacked=!0,g.shape=f.shape)}else if(!!g.isPacked!=!!e.packedInputs)f=g.isPacked?this.unpackTensor(f):this.packTensor(f),o.push(f),g=this.texData.get(f.dataId);else if(g.isPacked&&!Fd(g.shape,f.shape)){let y=f,A=f.shape;f.shape=g.shape,f=this.packedReshape(f,A),o.push(f),g=this.texData.get(f.dataId),y.shape=A}return this.uploadToGPU(f.dataId),{shape:f.shape,texData:g,isUniform:!1}});this.uploadToGPU(s.dataId);let u={shape:s.shape,texData:i,isUniform:!1},d=yB(e,l,u),p=this.getAndSaveBinary(d,()=>mB(this.gpgpu,e,l,u)),c=this.activeTimers!=null,h;c&&(h=this.startTimer()),gB(this.gpgpu,p,l,u,a),o.forEach(f=>this.disposeIntermediateTensorInfo(f)),c&&(h=this.endTimer(h),this.activeTimers.push({name:e.constructor.name,query:this.getQueryTime(h)}));let m=te().get("WEBGL_FLUSH_THRESHOLD");if(m>0){let f=k.now();f-this.lastGlFlushTime>m&&(this.gpgpu.gl.flush(),this.lastGlFlushTime=f)}if(!te().getBool("WEBGL_LAZILY_UNPACK")&&i.isPacked&&r===!1){let f=this.unpackTensor(s);return this.disposeIntermediateTensorInfo(s),f}return s}compileAndRun(e,t,n,a,r=!1){return n=n||t[0].dtype,this.runWebGLProgram(e,t,n,a,r)}getAndSaveBinary(e,t){return e in this.binaryCache||(this.binaryCache[e]=t()),this.binaryCache[e]}getTextureManager(){return this.textureManager}dispose(){this.disposed||(te().getBool("IS_TEST")||Object.keys(this.binaryCache).forEach(e=>{this.gpgpu.deleteProgram(this.binaryCache[e].webGLProgram),delete this.binaryCache[e]}),this.textureManager.dispose(),this.canvas!=null&&typeof HTMLCanvasElement!="undefined"&&this.canvas instanceof HTMLCanvasElement?this.canvas.remove():this.canvas=null,this.gpgpuCreatedLocally&&(this.gpgpu.program=null,this.gpgpu.dispose()),this.disposed=!0)}floatPrecision(){return this.floatPrecisionValue==null&&(this.floatPrecisionValue=V(()=>{if(!te().get("WEBGL_RENDER_FLOAT32_ENABLED")){let e=te().getBool("DEBUG");te().set("DEBUG",!1);let t=this.abs(ke(1e-8)).dataSync()[0];if(te().set("DEBUG",e),t>0)return 32}return 16})),this.floatPrecisionValue}epsilon(){return this.floatPrecision()===32?kV:IV}uploadToGPU(e){let t=this.texData.get(e),{shape:n,dtype:a,values:r,texture:s,usage:i,isPacked:o}=t;if(s!=null)return;let l=this.activeTimers!=null,u;l&&(u=k.now());let d=t.texShape;if(d==null&&(d=$v(n,o),t.texShape=d),r!=null){let p=Ph(n),c,h=d[1],m=d[0],f=r instanceof Uint8Array;o?([h,m]=Vl(d[0],d[1]),c=new MW(p,[m,h],f)):c=new RW(p,[m,h],f);let g=this.makeTensorInfo([m,h],a);f?this.texData.get(g.dataId).usage=da.PIXELS:this.texData.get(g.dataId).usage=da.UPLOAD,this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId),h,m,r);let y=!0,A=this.runWebGLProgram(c,[g],a,null,y),x=this.texData.get(A.dataId);t.texture=x.texture,t.texShape=x.texShape,t.isPacked=x.isPacked,t.usage=x.usage,this.disposeIntermediateTensorInfo(g),this.texData.delete(A.dataId),t.values=null,l&&(this.uploadWaitMs+=k.now()-u)}else{let p=this.acquireTexture(d,i,a,o);t.texture=p}}convertAndCacheOnCPU(e,t){let n=this.texData.get(e),{dtype:a}=n;return this.releaseGPUData(e),t!=null&&(n.values=EV(t,a)),n.values}acquireTexture(e,t,n,a){if(this.numBytesInGPU+=this.computeBytes(e,n),!this.warnedAboutMemory&&this.numBytesInGPU>this.numMBBeforeWarning*1024*1024){let r=(this.numBytesInGPU/1024/1024).toFixed(2);this.warnedAboutMemory=!0,console.warn(`High memory usage in GPU: ${r} MB, most likely due to a memory leak`)}return this.textureManager.acquireTexture(e,t,a)}computeBytes(e,t){return e[0]*e[1]*k.bytesPerElement(t)}};Kl.nextDataId=0;function EV(e,t){if(t==="float32"||t==="complex64")return e;if(t==="int32"||t==="bool"){let n=t==="int32"?new Int32Array(e.length):new Uint8Array(e.length);for(let a=0;a<n.length;++a)n[a]=Math.round(e[a]);return n}else throw new Error(`Unknown dtype ${t}`)}var yw="3.7.0";function Aw(){te().set("WEBGL_FORCE_F16_TEXTURES",!0)}ad.isBrowser()&&Il("webgl",()=>new Kl,2);var RV={forceHalfFloat:Aw},xw=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,Zl=class{constructor(e,t,n){this.variableNames=["A","B"],this.outputShape=F.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOperation(float a, float b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float a = getAAtOutCoords();
|
|
float b = getBAtOutCoords();
|
|
setOutput(binaryOperation(a, b));
|
|
}
|
|
`}},Uh=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`,Dd=class{constructor(e,t,n,a=!1){this.variableNames=["A","B"],this.supportsBroadcasting=!0,this.packedInputs=!0,this.packedOutput=!0,this.outputShape=F.assertAndGetBroadcastShape(t,n);let r=this.outputShape.length,s="";if(a)if(r===0||k.sizeFromShape(this.outputShape)===1)s=`
|
|
result.y = 0.;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else if(s=`
|
|
${ut(r)} coords = getOutputCoords();
|
|
`,r===1)s+=`
|
|
result.y = (coords + 1) >= ${this.outputShape[0]} ? 0. : result.y;
|
|
result.z = 0.;
|
|
result.w = 0.;
|
|
`;else{let i=xn("coords",r);s+=`
|
|
bool nextRowOutOfBounds =
|
|
(${i[r-2]} + 1) >= ${this.outputShape[r-2]};
|
|
bool nextColOutOfBounds =
|
|
(${i[r-1]} + 1) >= ${this.outputShape[r-1]};
|
|
result.y = nextColOutOfBounds ? 0. : result.y;
|
|
result.z = nextRowOutOfBounds ? 0. : result.z;
|
|
result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;
|
|
`}this.userCode=`
|
|
vec4 binaryOperation(vec4 a, vec4 b) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
vec4 a = getAAtOutCoords();
|
|
vec4 b = getBAtOutCoords();
|
|
|
|
vec4 result = binaryOperation(a, b);
|
|
${s}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}};function Xn(e){let{inputs:t,backend:n}=e,{x:a}=t;return n.incRef(a.dataId),{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}var MV={kernelName:zs,backendName:"webgl",kernelFunc:Xn};function Jr(e){let{inputs:t,backend:n}=e,{real:a,imag:r}=t,s=n.makeTensorInfo(a.shape,"complex64"),i=n.texData.get(s.dataId),o=Xn({inputs:{x:a},backend:n}),l=Xn({inputs:{x:r},backend:n});return i.complexTensorInfos={real:o,imag:l},s}var FV={kernelName:Yp,backendName:"webgl",kernelFunc:Jr},bw="return (a < 0.) ? b * a : a;",vw=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function $V(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{alpha:s}=a,i=n.makeTensorInfo([],"float32",k.createScalarValue(s,"float32")),o=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dd(vw,r.shape,i.shape):new Zl(bw,r.shape,i.shape),l=n.runWebGLProgram(o,[r,i],r.dtype);return n.disposeIntermediateTensorInfo(i),l}var DV={kernelName:_s,backendName:"webgl",kernelFunc:$V},ww="return (a < 0.) ? b * a : a;",kw=`
|
|
vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));
|
|
return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);
|
|
`;function OV(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dd(kw,a.shape,r.shape):new Zl(ww,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)}var zV={kernelName:Zs,backendName:"webgl",kernelFunc:OV},Iw="if (isnan(x)) return x;",_V=`
|
|
if (isnan(a)) return a;
|
|
if (isnan(b)) return b;
|
|
`,PV=`
|
|
result.r = isNaN.r > 0. ? NAN : result.r;
|
|
result.g = isNaN.g > 0. ? NAN : result.g;
|
|
result.b = isNaN.b > 0. ? NAN : result.b;
|
|
result.a = isNaN.a > 0. ? NAN : result.a;
|
|
`;function Ze({opSnippet:e,packedOpSnippet:t,cpuKernelImpl:n,dtype:a}){return({inputs:r,backend:s})=>{let{x:i}=r,o=s,l=a||i.dtype;if(o.shouldExecuteOnCPU([i])&&n!=null){let p=o.texData.get(i.dataId),c=n(p.values,l);return o.makeTensorInfo(i.shape,l,c)}let u=te().getBool("WEBGL_PACK_UNARY_OPERATIONS")&&t!=null,d;return u?d=new Xl(i.shape,t):d=new Yr(i.shape,e),o.runWebGLProgram(d,[i],l)}}function sn({opSnippet:e,packedOpSnippet:t,checkOutOfBounds:n=!1,supportsComplex:a=!1,cpuKernelImpl:r,dtype:s}){return({inputs:i,backend:o})=>{let{a:l,b:u}=i,d=o;if(a&&l.dtype==="complex64"){let m=d.texData.get(l.dataId),f=d.texData.get(u.dataId),[g,y]=[[m.complexTensorInfos.real,f.complexTensorInfos.real],[m.complexTensorInfos.imag,f.complexTensorInfos.imag]].map(x=>{let[v,b]=x,w={dataId:v.dataId,dtype:v.dtype,shape:l.shape},N={dataId:b.dataId,dtype:b.dtype,shape:u.shape},C=new Zl(e,l.shape,u.shape);return d.runWebGLProgram(C,[w,N],Aa(v.dtype,b.dtype))}),A=Jr({inputs:{real:g,imag:y},backend:d});return d.disposeIntermediateTensorInfo(g),d.disposeIntermediateTensorInfo(y),A}let p=s||Aa(l.dtype,u.dtype);if((l.dtype==="string"||u.dtype==="string"||d.shouldExecuteOnCPU([l,u]))&&r!=null){let m=d.texData.get(l.dataId).values,f=d.texData.get(u.dataId).values,g=l.dtype==="string"?F.fromUint8ToStringArray(m):m,y=l.dtype==="string"?F.fromUint8ToStringArray(f):f,[A,x]=r(l.shape,u.shape,g,y,p),v=d.makeTensorInfo(x,p),b=d.texData.get(v.dataId);return b.values=A,v}let c=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")&&t!=null,h;return c?h=new Dd(t,l.shape,u.shape,n):h=new Zl(e,l.shape,u.shape),d.runWebGLProgram(h,[l,u],p)}}function Hh(e,t=!1){if(e==="linear")return t?gV:pV;if(e==="relu")return t?AV:hV;if(e==="elu")return t?yV:cV;if(e==="relu6")return t?xV:fV;if(e==="prelu")return t?kw:ww;if(e==="leakyrelu")return t?vw:bw;if(e==="sigmoid")return t?bV:mV;throw new Error(`Activation ${e} has not been implemented for the WebGL backend.`)}var Sw=class{constructor(e,t,n,a=!1,r=!1,s=!1,i=null,o=!1,l=!1){this.variableNames=["matrixA","matrixB"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=n;let u=a?e[1]:e[2],d=Math.ceil(u/2),p=a?"i * 2, rc.y":"rc.y, i * 2",c=r?"rc.z, i * 2":"i * 2, rc.z",h=a?["a.xxyy","a.zzww"]:["a.xxzz","a.yyww"],m=r?["b.xzxz","b.ywyw"]:["b.xyxy","b.zwzw"],f="",g="";i&&(o?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${i}
|
|
}`:l?f=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${i}
|
|
}`:f=`vec4 activation(vec4 x) {
|
|
${i}
|
|
}`,g="result = activation(result);");let y=s?"result += getBiasAtOutCoords();":"";s&&this.variableNames.push("bias"),o&&this.variableNames.push("preluActivationWeights"),l&&this.variableNames.push("leakyreluAlpha");let A="rc.x",x="rc.x";e[0]<t[0]?A=`int(min(float(rc.x), ${e[0]-1}.))`:t[0]<e[0]&&(x=`int(min(float(rc.x), ${t[0]-1}.))`),this.userCode=`
|
|
${f}
|
|
|
|
const float sharedDimension = ${d}.0;
|
|
|
|
vec4 dot2x2ARowBCol(ivec3 rc) {
|
|
vec4 result = vec4(0);
|
|
for (int i = 0; i < ${d}; i++) {
|
|
int batchA = ${A};
|
|
int batchB = ${x};
|
|
vec4 a = getMatrixA(batchA, ${p});
|
|
vec4 b = getMatrixB(batchB, ${c});
|
|
|
|
// These swizzled products need to be separately added.
|
|
// See: https://github.com/tensorflow/tfjs/issues/1735
|
|
result += (${h[0]} * ${m[0]});
|
|
result += (${h[1]} * ${m[1]});
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec3 rc = getOutputCoords();
|
|
vec4 result = dot2x2ARowBCol(rc);
|
|
|
|
${y}
|
|
|
|
${g}
|
|
|
|
setOutput(result);
|
|
}
|
|
`}},Nw={REAL:"return areal * breal - aimag * bimag;",IMAG:"return areal * bimag + aimag * breal;"},Tw=class{constructor(e,t,n){this.variableNames=["AReal","AImag","BReal","BImag"],this.outputShape=F.assertAndGetBroadcastShape(t,n),this.userCode=`
|
|
float binaryOpComplex(
|
|
float areal, float aimag, float breal, float bimag) {
|
|
${e}
|
|
}
|
|
|
|
void main() {
|
|
float areal = getARealAtOutCoords();
|
|
float aimag = getAImagAtOutCoords();
|
|
float breal = getBRealAtOutCoords();
|
|
float bimag = getBImagAtOutCoords();
|
|
setOutput(binaryOpComplex(areal, aimag, breal, bimag));
|
|
}
|
|
`}},Cw="return a * b;";function qg(e){let{inputs:t,backend:n}=e,{a,b:r}=t,s=F.upcastType(a.dtype,r.dtype);if(a.dtype==="complex64"){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),u=new Tw(Nw.REAL,a.shape,r.shape),d=new Tw(Nw.IMAG,a.shape,r.shape),p=[{dataId:o.complexTensorInfos.real.dataId,dtype:o.complexTensorInfos.real.dtype,shape:a.shape},{dataId:o.complexTensorInfos.imag.dataId,dtype:o.complexTensorInfos.imag.dtype,shape:a.shape},{dataId:l.complexTensorInfos.real.dataId,dtype:l.complexTensorInfos.real.dtype,shape:r.shape},{dataId:l.complexTensorInfos.imag.dataId,dtype:l.complexTensorInfos.imag.dtype,shape:r.shape}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=Jr({inputs:{real:c,imag:h},backend:n});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}if(n.shouldExecuteOnCPU([a,r])){let o=n.texData.get(a.dataId),l=n.texData.get(r.dataId),[u,d]=_B(a.shape,r.shape,o.values,l.values,s),p=n.makeTensorInfo(d,s),c=n.texData.get(p.dataId);return c.values=u,p}let i;return te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?i=new Dd(Cw,a.shape,r.shape):i=new Zl(Cw,a.shape,r.shape),n.runWebGLProgram(i,[a,r],s)}var LV={kernelName:Gs,backendName:"webgl",kernelFunc:qg};function WV(e,t,n){let a=[zi(e.shape),..._i(e.shape)],r={dtype:e.dtype,shape:a,dataId:e.dataId},s=[zi(t),..._i(t)],i=new cw(s,a),o=!0,l=n.runWebGLProgram(i,[r],e.dtype,null,o);return{dataId:l.dataId,shape:t,dtype:l.dtype}}function Ae(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{shape:s}=a,i=n,o=k.sizeFromShape(r.shape),l=k.inferFromImplicitShape(s,o),u=k.sizeFromShape(l);k.assert(o===u,()=>`The new shape (${l}) has ${u} elements and the old shape (${r.shape}) has ${o} elements. The new shape and old shape must have the same number of elements.`);let d=i.texData.get(r.dataId);return d.isPacked&&!Fd(r.shape,l)&&!(d.texture!==null&&Fd(d.shape,l))?WV(r,l,i):(i.incRef(r.dataId),{dataId:r.dataId,shape:l,dtype:r.dtype})}var BV={kernelName:tl,backendName:"webgl",kernelFunc:Ae},Ew=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i=Math.floor(n/4)*4,o=n%4,l="sumValue += dot(values, ones);";if(t!=null){let d=1/t;l=`sumValue += dot(values * ${k.isInt(d)?d.toPrecision(2):d}, ones);`}let u="";r%n>0&&(u=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return 0.0;
|
|
}
|
|
`),this.userCode=`
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${u}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${i}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${l}
|
|
}
|
|
|
|
int inIdx = inOffset + ${i};
|
|
if (${o===1}) {
|
|
vec4 values = vec4(getValue(batch, inIdx), 0.0, 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1), 0.0, 0.0);
|
|
|
|
${l}
|
|
} else if (${o===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2), 0.0);
|
|
|
|
${l}
|
|
}
|
|
setOutput(sumValue);
|
|
}
|
|
`}},VV=class{constructor(e,t){this.variableNames=["x"];let{windowSize:n,batchSize:a,inSize:r,outSize:s}=e;this.outputShape=[a,s];let i="0.0",o="";t==="prod"?i="1.0":t==="min"?(i="1.0 / 1e-20",o="min"):t==="max"&&(i="-1.0 / 1e-20",o="max");let l=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="sum"?l="sumValue":t==="prod"?l="prodValue":t==="all"?l="allValue":t==="any"&&(l="anyValue");let u=Math.floor(n/4)*4,d=n%4,p=`
|
|
if (${t==="sum"}) {
|
|
sumValue += dot(values, ones);
|
|
} else if (${t==="prod"}) {
|
|
vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);
|
|
prodValue *= tmp[0] * tmp[1];
|
|
} else {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
if (${t==="min"} || ${t==="max"}) {
|
|
minMaxValue = ${o}(values, minMaxValue);
|
|
bvec4 isNaN = isnan(values);
|
|
if (isNaN.r || isNaN.g || isNaN.b || isNaN.a) {
|
|
minMaxValue = vec4(NAN);
|
|
}
|
|
}
|
|
}
|
|
`,c="vec4";t==="all"?(i="1.0",p=`
|
|
bool reducedAllValue = all(values);
|
|
float floatedReducedAllValue = float(reducedAllValue);
|
|
allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);
|
|
`,c="bvec4"):t==="any"&&(i="0.0",p=`
|
|
bool reducedAnyValue = any(values);
|
|
float floatedReducedAnyValue = float(reducedAnyValue);
|
|
anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);
|
|
`,c="bvec4");let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${i};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${h}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${n};
|
|
|
|
vec4 minMaxValue = vec4(${i});
|
|
float prodValue = 1.0;
|
|
float sumValue = 0.0;
|
|
float allValue = 1.0;
|
|
float anyValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
${c} values = ${c}(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function jV(e){let t=[];for(;t.length===0||t[t.length-1].outSize!==1;){let n=t.length?t[t.length-1].outSize:e[1],a=F.computeOptimalWindowSize(n);t.push({inSize:n,windowSize:a,outSize:Math.ceil(n/a)})}return t}function Wi(e,t,n,a){let r=jV(e.shape),s=e;for(let i=0;i<r.length;i++){let{inSize:o,windowSize:l,outSize:u}=r[i],d,p;n==="mean"?d=i===0?new Ew({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},o):new Ew({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u}):d=new VV({windowSize:l,inSize:o,batchSize:e.shape[0],outSize:u},n),p=s,s=a.runWebGLProgram(d,[s],t),p.dataId!==e.dataId&&a.disposeIntermediateTensorInfo(p)}return s}var UV=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[t[s]];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=HV(t);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function HV(e){let t=e.length;if(t>6)throw Error(`Transpose for rank ${t} is not yet supported`);let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u","resRC.v"],a=new Array(t);for(let r=0;r<e.length;r++)a[e[r]]=n[r];return a.join()}var GV=class{constructor(e,t){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0;let n=new Array(e.length);for(let u=0;u<n.length;u++)n[u]=e[t[u]];if(this.outputShape=n,this.rank=n.length,this.rank>6)throw Error(`Packed transpose for rank ${this.rank} is not yet supported.`);let a=ut(this.rank),r=pw("rc",this.rank),s=new Array(this.rank);for(let u=0;u<t.length;u++)s[t[u]]=r[u];let i=`vec2(${s.slice(-2).join()})`,o=`++${r[this.rank-1]} < ${n[this.rank-1]}`,l=`getChannel(getA(${s.join()}), ${i})`;this.userCode=`
|
|
void main() {
|
|
${a} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result[0] = ${l};
|
|
if(${o}) {
|
|
result[1] = ${l};
|
|
}
|
|
--${r[this.rank-1]};
|
|
if(++${r[this.rank-2]} < ${n[this.rank-2]}) {
|
|
result[2] = ${l};
|
|
if(${o}) {
|
|
result[3] = ${l};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Gh(e,t,n){let a=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new GV(e.shape,t):new UV(e.shape,t);return n.runWebGLProgram(a,[e],e.dtype)}function qV(e,t,n,a){let r=t,s=e.shape.length,i=k.parseAxisParam(r,e.shape),o=i,l=F.getAxesPermutation(o,s),u=l!=null,d=e;u&&(d=Gh(e,l,a),o=F.getInnerMostAxes(o.length,s)),F.assertAxesAreInnerMostDims("sum",o,s);let[p,c]=F.computeOutAndReduceShapes(d.shape,o),h=p;n&&(h=F.expandShapeToKeepDim(p,i));let m=k.sizeFromShape(c),f=k.sizeFromShape(e.shape)/m,g=Ae({inputs:{x:d},attrs:{shape:[f,m]},backend:a}),y=zc(e.dtype),A=Wi(g,y,"sum",a),x=Ae({inputs:{x:A},attrs:{shape:h},backend:a});return a.disposeIntermediateTensorInfo(g),a.disposeIntermediateTensorInfo(A),u&&a.disposeIntermediateTensorInfo(d),x}function qh(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a;return qV(r,s,i,n)}var XV={kernelName:ii,backendName:"webgl",kernelFunc:qh};function bn(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{perm:s}=a,i=n,o=r.shape.length,l=new Array(o);for(let d=0;d<l.length;d++)l[d]=r.shape[s[d]];let u;if(i.shouldExecuteOnCPU([r])){let d=i.texData.get(r.dataId).values,p=Hg(d,r.shape,r.dtype,s,l);u=i.makeTensorInfo(l,r.dtype);let c=i.texData.get(u.dataId);c.values=p}else u=Gh(r,s,i);return u}var KV={kernelName:ci,backendName:"webgl",kernelFunc:bn},Rw=1e3;function Xh({a:e,b:t,transposeA:n,transposeB:a,backend:r,bias:s=null,preluActivationWeights:i=null,leakyreluAlpha:o=0,activation:l=null}){let u=e.shape.length,d=t.shape.length,p=n?e.shape[u-2]:e.shape[u-1],c=a?t.shape[d-1]:t.shape[d-2],h=n?e.shape[u-1]:e.shape[u-2],m=a?t.shape[d-2]:t.shape[d-1],f=e.shape.slice(0,-2),g=t.shape.slice(0,-2),y=k.sizeFromShape(f),A=k.sizeFromShape(g),x=y===A||y===1||A===1;k.assert(u>=2&&d>=2&&x,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${f}) and (${g}).`);let v=(y>A?e.shape.slice(0,-2):t.shape.slice(0,-2)).concat([h,m]);k.assert(p===c,()=>`Error in matMul: inner shapes (${p}) and (${c}) of Tensors with shapes ${e.shape} and ${t.shape} and transposeA=${n} and transposeB=${a} must match.`);let b=n?[y,p,h]:[y,h,p],w=a?[A,m,c]:[A,c,m],N=Ae({inputs:{x:e},backend:r,attrs:{shape:b}}),C=Ae({inputs:{x:t},backend:r,attrs:{shape:w}}),E=[N,C],_=Math.max(y,A),$=n?N.shape[1]:N.shape[2],S=s!=null,z=i!=null,O=l==="leakyrelu",W=l!=null?Hh(l,!0):null,G=S||z||O||W!=null,H;if((h===1||m===1)&&$>Rw&&G===!1){let K=N,ne=C;n&&(K=bn({inputs:{x:N},backend:r,attrs:{perm:[0,2,1]}}),E.push(K)),a&&(ne=bn({inputs:{x:C},backend:r,attrs:{perm:[0,2,1]}}),E.push(ne));let Q=m!==1,se=m===1,Z=K;Q&&(Z=Ae({inputs:{x:K},backend:r,attrs:{shape:[_,$,1]}}),E.push(Z));let le=m===1?2:1,oe=ne;se&&(oe=Ae({inputs:{x:ne},backend:r,attrs:{shape:[_,1,$]}}),E.push(oe));let xe=qg({inputs:{a:Z,b:oe},backend:r});H=qh({inputs:{x:xe},backend:r,attrs:{axis:le,keepDims:!0}}),E.push(xe)}else{let K=Aa(e.dtype,t.dtype),ne=new Sw(b,w,[_,h,m],n,a,S,W,z,O),Q=[N,C];if(s!=null&&Q.push(s),z&&Q.push(i),O){let se=r.makeTensorInfo([],"float32",k.createScalarValue(o,"float32"));Q.push(se),E.push(se)}H=r.runWebGLProgram(ne,Q,K)}let J=Ae({inputs:{x:H},backend:r,attrs:{shape:v}});E.push(H);for(let K of E)r.disposeIntermediateTensorInfo(K);return J}function ZV(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t,{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a;return Xh({a:r,b:s,transposeA:l,transposeB:u,backend:n,bias:i,preluActivationWeights:o,leakyreluAlpha:p,activation:d})}var YV={kernelName:hi,backendName:"webgl",kernelFunc:ZV},Mw="return abs(x);";function JV(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])&&a.dtype!=="complex64"){let s=n.texData.get(a.dataId),i=uw(s.values);return n.makeTensorInfo(a.shape,a.dtype,i)}let r;return te().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Xl(a.shape,Mw):r=new Yr(a.shape,Mw),n.runWebGLProgram(r,[a],a.dtype)}var QV={kernelName:mo,backendName:"webgl",kernelFunc:JV},ej=Ca+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return acos(x);
|
|
`,tj=Ze({opSnippet:ej}),nj={kernelName:go,backendName:"webgl",kernelFunc:tj},aj=Ca+`
|
|
if (x < 1.0) return NAN;
|
|
return log(x + sqrt(x * x - 1.0));`,rj=Ze({opSnippet:aj}),sj={kernelName:yo,backendName:"webgl",kernelFunc:rj},Fw="return a + b;",ij=sn({opSnippet:Fw,packedOpSnippet:Fw,supportsComplex:!0,cpuKernelImpl:AB}),oj={kernelName:Or,backendName:"webgl",kernelFunc:ij},lj=class{constructor(e,t){this.outputShape=[],this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`float v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
float result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}},uj=class{constructor(e,t){this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.variableNames=t.map((r,s)=>`T${s}`);let n=[];this.variableNames.forEach(r=>{n.push(`vec4 v${r} = get${r}AtOutCoords();`)});let a=this.variableNames.map(r=>`v${r}`).join(" + ");this.userCode=`
|
|
void main() {
|
|
${n.join(`
|
|
`)}
|
|
|
|
vec4 result = ${a};
|
|
setOutput(result);
|
|
}
|
|
`}};function Kh(e){let{inputs:t,backend:n}=e,a=t;if(a.length===1)return Xn({inputs:{x:a[0]},backend:n});if(a.length>te().get("WEBGL_MAX_TEXTURES_IN_SHADER")){let o=Math.floor(a.length/2),l=Kh({inputs:a.slice(0,o),backend:n}),u=Kh({inputs:a.slice(o),backend:n});return Kh({inputs:[l,u],backend:n})}let r=a.map(o=>o.dtype).reduce((o,l)=>Aa(o,l)),s=a.map(o=>o.shape),i=te().getBool("WEBGL_PACK")?new uj(a[0].shape,s):new lj(a[0].shape,s);return n.runWebGLProgram(i,a,r)}var dj={kernelName:xs,backendName:"webgl",kernelFunc:Kh};function pj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=F.getAxesPermutation(u,o),p=r;d!=null&&(p=bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=F.getInnerMostAxes(u.length,o)),F.assertAxesAreInnerMostDims("all",u,o);let[c,h]=F.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Wi(f,f.dtype,"all",n),y;if(i){let A=F.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),y}var cj={kernelName:Ao,backendName:"webgl",kernelFunc:pj};function hj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=F.getAxesPermutation(u,o),p=r;d!=null&&(p=bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=F.getInnerMostAxes(u.length,o)),F.assertAxesAreInnerMostDims("any",u,o);let[c,h]=F.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Wi(f,f.dtype,"any",n),y;if(i){let A=F.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),y}var fj={kernelName:xo,backendName:"webgl",kernelFunc:hj},mj=class{constructor(e,t,n){this.variableNames=["A"];let{windowSize:a,batchSize:r,outSize:s}=e;n||this.variableNames.push("bestIndicesA"),this.outputShape=[r,s];let i=t==="max"?">":"<",o=n?"inOffset + i;":"round(getBestIndicesA(batch, inOffset + i));";this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = outIdx * ${a};
|
|
|
|
int bestIndex = inOffset;
|
|
float bestValue = getA(batch, bestIndex);
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
int inIdx = ${o};
|
|
float candidate = getA(batch, inIdx);
|
|
if (candidate ${i} bestValue) {
|
|
bestValue = candidate;
|
|
bestIndex = inIdx;
|
|
}
|
|
}
|
|
setOutput(float(bestIndex));
|
|
}
|
|
`}},gj=class{constructor(e,t,n,a){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,k.assert(e.length>2,()=>`Packed arg${n.charAt(0).toUpperCase()+n.slice(1)} supports only inputs with rank above 2.`);let r=e[e.length-1],s=Math.ceil(r/t);this.outputShape=e.slice(0,-1),s>1&&this.outputShape.push(s),a||this.variableNames.push("bestIndicesA");let i=this.outputShape,o=i.length,l=ut(o),u=xn("coords",o),d,p;if(s===1){p=o+1;let N=ut(p);d=`
|
|
${N} sourceLocR = ${N}(${u.join()}, 0);
|
|
++${u[o-1]};
|
|
${N} sourceLocG = ${N}(${u.join()}, 0);
|
|
++${u[o-2]};
|
|
${N} sourceLocA = ${N}(${u.join()}, 0);
|
|
--${u[o-1]};
|
|
${N} sourceLocB = ${N}(${u.join()}, 0);
|
|
--${u[o-2]};`}else p=o,d=`
|
|
${l} sourceLocR = coords;
|
|
++${u[o-1]};
|
|
${l} sourceLocG = coords;
|
|
++${u[o-2]};
|
|
${l} sourceLocA = coords;
|
|
--${u[o-1]};
|
|
${l} sourceLocB = coords;
|
|
--${u[o-2]};`;let c=["x","y","z","w","u","v"].slice(0,p),h="."+c[p-1],m=c.map(N=>"int "+N),f=xn("sourceLocR",p-1).concat("inIdx.r"),g=xn("sourceLocG",p-1).concat("inIdx.g"),y=xn("sourceLocB",p-1).concat("inIdx.b"),A=xn("sourceLocA",p-1).concat("inIdx.a"),x=n==="max"?"greaterThan":"lessThan",v=a?"":`
|
|
inIdx = round(vec4(getBestIndicesAChannel(${f.join()}),
|
|
getBestIndicesAChannel(${g.join()}),
|
|
getBestIndicesAChannel(${y.join()}),
|
|
getBestIndicesAChannel(${A.join()})));`,b=`vec4(
|
|
getAChannel(${f.join()}),
|
|
hasNextCol ? getAChannel(${g.join()}) : 0.,
|
|
hasNextRow ? getAChannel(${y.join()}) : 0.,
|
|
hasNextRow && hasNextCol ? getAChannel(${A.join()}) : 0.)`,w=a?"":`
|
|
float getBestIndicesAChannel(${m.join()}) {
|
|
return getChannel(getBestIndicesA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}`;this.userCode=`
|
|
float getAChannel(${m.join()}) {
|
|
return getChannel(getA(${c.join()}),
|
|
vec2(${c.slice(-2).join()}));
|
|
}
|
|
${w}
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
bool hasNextCol = ${u[o-1]} < ${i[o-1]-1};
|
|
bool hasNextRow = ${u[o-2]} < ${i[o-2]-1};
|
|
${d}
|
|
ivec4 srcIdx = ivec4(sourceLocR${h}, sourceLocG${h},
|
|
sourceLocB${h}, sourceLocA${h}) * ${t};
|
|
ivec4 inIdx = srcIdx;
|
|
vec4 bestIndex = vec4(inIdx);
|
|
vec4 bestValue = ${b};
|
|
|
|
for (int i = 0; i < ${t}; i++) {
|
|
inIdx = srcIdx;
|
|
${v}
|
|
vec4 candidate = ${b};
|
|
bvec4 nan = isnan(candidate);
|
|
bvec4 replace = bvec4(
|
|
vec4(${x}(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));
|
|
|
|
bestValue = vec4(replace.x ? candidate.x : bestValue.x,
|
|
replace.y ? candidate.y : bestValue.y,
|
|
replace.z ? candidate.z : bestValue.z,
|
|
replace.w ? candidate.w : bestValue.w);
|
|
bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));
|
|
srcIdx++;
|
|
}
|
|
setOutput(bestIndex);
|
|
}
|
|
`}};function $w(e,t,n,a=null){let r=t.shape[0],s=t.shape[1];a!=null&&(r=a.shape[0],s=a.shape[1]);let i=F.computeOptimalWindowSize(s),o={windowSize:i,inSize:s,batchSize:r,outSize:Math.ceil(s/i)},l=new mj(o,n,a==null),u=[t];a!=null&&u.push(a);let d=e.runWebGLProgram(l,u,"int32");if(d.shape[1]===1)return d;let p=$w(e,t,n,d);return e.disposeIntermediateTensorInfo(d),p}function Dw(e,t,n,a=null){let r=a!=null?a.shape:t.shape,s=r[r.length-1],i=F.computeOptimalWindowSize(s),o=new gj(r,i,n,a==null),l=a==null?[t]:[t,a],u=e.runWebGLProgram(o,l,"int32");if(u.shape.length===t.shape.length){let d=Dw(e,t,n,u);return e.disposeIntermediateTensorInfo(u),d}return u}function Ow(e,t,n,a){let r=[n];if(F.assertAxesAreInnerMostDims("arg"+a.charAt(0).toUpperCase()+a.slice(1),r,t.shape.length),!te().getBool("WEBGL_PACK_REDUCE")||t.shape.length<=2){let s=[],[i,o]=F.computeOutAndReduceShapes(t.shape,r),l=k.sizeFromShape(o),u=Ae({inputs:{x:t},backend:e,attrs:{shape:[-1,l]}});s.push(u);let d=$w(e,u,a);s.push(d);let p=Ae({inputs:{x:d},backend:e,attrs:{shape:i}});return s.forEach(c=>e.disposeIntermediateTensorInfo(c)),p}return Dw(e,t,a)}function yj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=F.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=bn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),F.assertAxesAreInnerMostDims("argMax",[i[0]],l.shape.length);let d=Ow(n,l,i[0],"max");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var Aj={kernelName:bs,backendName:"webgl",kernelFunc:yj};function xj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s}=a,i=k.parseAxisParam(s,r.shape),o=F.getAxesPermutation(i,r.shape.length),l=r,u=[];o!=null&&(l=bn({inputs:{x:r},backend:n,attrs:{perm:o}}),u.push(l),i=F.getInnerMostAxes(i.length,l.shape.length)),F.assertAxesAreInnerMostDims("argMin",[i[0]],l.shape.length);let d=Ow(n,l,i[0],"min");return u.forEach(p=>n.disposeIntermediateTensorInfo(p)),d}var bj={kernelName:Fu,backendName:"webgl",kernelFunc:xj},vj=Ca+`
|
|
if (abs(x) > 1.) {
|
|
return NAN;
|
|
}
|
|
return asin(x);
|
|
`,wj=Ze({opSnippet:vj}),kj={kernelName:bo,backendName:"webgl",kernelFunc:wj},Ij=Ca+"return log(x + sqrt(x * x + 1.0));",Sj=Ze({opSnippet:Ij}),Nj={kernelName:vo,backendName:"webgl",kernelFunc:Sj},Tj=Ca+`
|
|
return atan(x);
|
|
`,Cj=Ze({opSnippet:Tj}),Ej={kernelName:wo,backendName:"webgl",kernelFunc:Cj},Rj=_V+`
|
|
return atan(a, b);
|
|
`,Mj=`
|
|
vec4 result = atan(a, b);
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+PV+`
|
|
return result;
|
|
`,Fj=sn({opSnippet:Rj,packedOpSnippet:Mj}),$j={kernelName:Io,backendName:"webgl",kernelFunc:Fj},Dj=Ca+`
|
|
if ((x < -1.0) || (x > 1.0)) return NAN;
|
|
return (log(1.0 + x) - log(1.0 - x)) / 2.0;`,Oj=Ze({opSnippet:Dj}),zj={kernelName:ko,backendName:"webgl",kernelFunc:Oj},Od=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideHeight,o=e.strideWidth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterHeight,p=e.effectiveFilterWidth,c=e.padInfo.top,h=e.padInfo.left;this.outputShape=e.outShape;let m=t==="avg",f=`((batch * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + d`,g=`(xR * ${e.inWidth} + xC) * ${e.inChannels} + d`,y="0.0";if(m||(y="-1.0 / 1e-20"),n){let N=">=";this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
float avgValue = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${p};
|
|
wC += ${u}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xR, xC, d);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${N} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?f:g:`wR * ${p} + wC`};
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let A="max",x=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(x="avgValue / count");let v=Math.floor(s/4)*4,b=s%4,w=`
|
|
if (${m}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${A}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec2 strides = ivec2(${i}, ${o});
|
|
const ivec2 pads = ivec2(${c}, ${h});
|
|
const float initializationValue = ${y};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xR, int xC, int d) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xR, xC, d);
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// max/min x(?, ?, d) to get y(yR, yC, d).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${y});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wR = 0; wR < ${d};
|
|
wR += ${l}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${v}; wC += 4) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
getValue(batch, xR, xC + 3 * ${u}, d)
|
|
);
|
|
|
|
${w}
|
|
}
|
|
|
|
int xC = xCCorner + ${v};
|
|
if (${b===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${b===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
} else if (${b===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xR, xC, d),
|
|
getValue(batch, xR, xC + ${u}, d),
|
|
getValue(batch, xR, xC + 2 * ${u}, d),
|
|
initializationValue
|
|
);
|
|
|
|
${w}
|
|
}
|
|
}
|
|
setOutput(${x});
|
|
}
|
|
`}},Xg=class{constructor(e,t,n,a=!1,r=!1){if(this.variableNames=["x"],t==="avg"&&n)throw new Error("Cannot compute positions for average pool.");let s=e.filterWidth,i=e.strideDepth,o=e.strideHeight,l=e.strideWidth,u=e.dilationDepth,d=e.dilationHeight,p=e.dilationWidth,c=e.effectiveFilterDepth,h=e.effectiveFilterHeight,m=e.effectiveFilterWidth,f=e.padInfo.front,g=e.padInfo.top,y=e.padInfo.left;this.outputShape=e.outShape;let A=t==="avg",x="0.0";if(A||(x="-1.0 / 1e-20"),n){let E=">=";this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
float minMaxValue = 0.0;
|
|
float minMaxValueFound = 0.0;
|
|
int minMaxPosition = 0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m};
|
|
wC += ${p}) {
|
|
int xC = xCCorner + wC;
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float value = getX(batch, xD, xR, xC, ch);
|
|
|
|
// If a min / max value has already been found, use it. If not,
|
|
// use the current value.
|
|
float currMinMaxValue = mix(
|
|
value, minMaxValue, minMaxValueFound);
|
|
if (value ${E} currMinMaxValue) {
|
|
minMaxValue = value;
|
|
minMaxValueFound = 1.0;
|
|
minMaxPosition = ${a?r?`(((batch * ${e.inDepth} + xD) * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`((xD * ${e.inHeight} + xR) * ${e.inWidth} + xC) * ${e.inChannels} + ch`:`wD * ${h} * ${m} +
|
|
wR * ${m} + wC`};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(float(minMaxPosition));
|
|
}
|
|
`;return}let v="max",b=`${t}(${t}(${t}(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])`;t==="avg"&&(b="avgValue / count");let w=Math.floor(s/4)*4,N=s%4,C=`
|
|
if (${A}) {
|
|
avgValue += dot(values, ones);
|
|
} else {
|
|
minMaxValue = ${v}(values, minMaxValue);
|
|
}
|
|
`;this.userCode=`
|
|
const ivec3 strides =
|
|
ivec3(${i}, ${o}, ${l});
|
|
const ivec3 pads = ivec3(${f}, ${g}, ${y});
|
|
const float initializationValue = ${x};
|
|
const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);
|
|
|
|
float count = 0.0;
|
|
|
|
float getValue(int batch, int xD, int xR, int xC, int ch) {
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
return initializationValue;
|
|
}
|
|
count += 1.0;
|
|
return getX(batch, xD, xR, xC, ch);
|
|
}
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xDCorner = xCorner.x;
|
|
int xRCorner = xCorner.y;
|
|
int xCCorner = xCorner.z;
|
|
|
|
// max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).
|
|
// ? = to be determined
|
|
vec4 minMaxValue = vec4(${x});
|
|
float avgValue = 0.0;
|
|
count = 0.0;
|
|
|
|
for (int wD = 0; wD < ${c};
|
|
wD += ${u}) {
|
|
int xD = xDCorner + wD;
|
|
|
|
if (xD < 0 || xD >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${h};
|
|
wR += ${d}) {
|
|
int xR = xRCorner + wR;
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${w}; wC += 4) {
|
|
int xC = xCCorner + wC * ${p};
|
|
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 3 * ${p}, ch)
|
|
);
|
|
|
|
${C}
|
|
}
|
|
|
|
int xC = xCCorner + ${w};
|
|
if (${N===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${N===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
} else if (${N===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, xD, xR, xC, ch),
|
|
getValue(batch, xD, xR, xC + ${p}, ch),
|
|
getValue(batch, xD, xR, xC + 2 * ${p}, ch),
|
|
initializationValue
|
|
);
|
|
|
|
${C}
|
|
}
|
|
}
|
|
setOutput(${b});
|
|
}
|
|
}
|
|
`}};function _j(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;jl(r,"avgPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(F.eitherStridesOrDilationsAreOne(i,u),()=>`Error in avgPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=F.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Xn({inputs:{x:r},backend:n});let p=new Od(d,"avg",!1);return n.runWebGLProgram(p,[r],"float32")}var Pj={kernelName:vs,backendName:"webgl",kernelFunc:_j};function Lj(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l,dataFormat:u}=a,d=[1,1,1],p=F.computePool3DInfo(r.shape,s,i,d,o,l,u),c=new Xg(p,"avg",!1);return n.runWebGLProgram(c,[r],"float32")}var Wj={kernelName:$u,backendName:"webgl",kernelFunc:Lj},Bj=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterHeight,l=e.effectiveFilterWidth,u=o-1-e.padInfo.top,d=l-1-e.padInfo.left,p=1/(t*n);this.userCode=`
|
|
const ivec2 pads = ivec2(${u}, ${d});
|
|
const float avgMultiplier = float(${p});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${o};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${l};
|
|
wC+= ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Vj=class{constructor(e){this.variableNames=["dy"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.effectiveFilterDepth,p=e.effectiveFilterHeight,c=e.effectiveFilterWidth,h=d-1-e.padInfo.front,m=p-1-e.padInfo.top,f=c-1-e.padInfo.left,g=1/(t*n*a);this.userCode=`
|
|
const ivec3 pads = ivec3(${h}, ${m}, ${f});
|
|
const float avgMultiplier = float(${g});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${d};
|
|
wD += ${o}) {
|
|
float dyD = float(dyDCorner + wD) / ${r}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${p};
|
|
wR += ${l}) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${c};
|
|
wC += ${u}) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
|
|
dotProd += dyValue * avgMultiplier;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function jj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=F.computePool3DInfo(i.shape,o,l,p,u,d),h=new Vj(c);return n.runWebGLProgram(h,[r],i.dtype)}var Uj={kernelName:Kp,backendName:"webgl",kernelFunc:jj};function Hj(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s;jl([r,s],"avgPoolGrad");let{filterSize:o,strides:l,pad:u}=a,d=F.computePool2DInfo(i.shape,o,l,1,u),p=new Bj(d);return n.runWebGLProgram(p,[r],i.dtype)}var Gj={kernelName:Xp,backendName:"webgl",kernelFunc:Hj};function qj(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;return Xh({a:r,b:s,transposeA:i,transposeB:o,backend:n})}var Xj={kernelName:ws,backendName:"webgl",kernelFunc:qj},Kj=class{constructor(e,t,n,a,r,s){this.outputShape=[],this.variableNames=["x","mean","variance"],F.assertAndGetBroadcastShape(e,t),F.assertAndGetBroadcastShape(e,n);let i="0.0";a!=null&&(F.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="1.0";r!=null&&(F.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float x = getXAtOutCoords();
|
|
float mean = getMeanAtOutCoords();
|
|
float variance = getVarianceAtOutCoords();
|
|
float offset = ${i};
|
|
float scale = ${o};
|
|
float inv = scale * inversesqrt(variance + float(${s}));
|
|
setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));
|
|
}
|
|
`}},Zj=class{constructor(e,t,n,a,r,s){this.packedInputs=!0,this.packedOutput=!0,this.variableNames=["x","mean","variance"],F.assertAndGetBroadcastShape(e,t),F.assertAndGetBroadcastShape(e,n);let i="vec4(0.0)";a!=null&&(F.assertAndGetBroadcastShape(e,a),this.variableNames.push("offset"),i="getOffsetAtOutCoords()");let o="vec4(1.0)";r!=null&&(F.assertAndGetBroadcastShape(e,r),this.variableNames.push("scale"),o="getScaleAtOutCoords()"),this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
vec4 offset = ${i};
|
|
vec4 scale = ${o};
|
|
|
|
vec4 x = getXAtOutCoords();
|
|
vec4 mean = getMeanAtOutCoords();
|
|
vec4 variance = getVarianceAtOutCoords();
|
|
|
|
vec4 inv = scale * inversesqrt(variance + vec4(${s}));
|
|
|
|
setOutput((x - mean) * inv + offset);
|
|
}
|
|
`}},Yj=({inputs:e,backend:t,attrs:n})=>{let{x:a,mean:r,variance:s,offset:i,scale:o}=e;k.assert(r.shape.length===s.shape.length,()=>"Batch normalization gradient requires mean and variance to have equal ranks."),k.assert(i==null||r.shape.length===i.shape.length,()=>"Batch normalization gradient requires mean and offset to have equal ranks."),k.assert(o==null||r.shape.length===o.shape.length,()=>"Batch normalization gradient requires mean and scale to have equal ranks.");let{varianceEpsilon:l}=n;l==null&&(l=.001);let u=[a,r,s],d=null;i!=null&&(d=i.shape,u.push(i));let p=null;o!=null&&(p=o.shape,u.push(o));let c=te().getBool("WEBGL_PACK_NORMALIZATION")?new Zj(a.shape,r.shape,s.shape,d,p,l):new Kj(a.shape,r.shape,s.shape,d,p,l);return t.runWebGLProgram(c,u,u[0].dtype)},Jj={kernelName:Ds,backendName:"webgl",kernelFunc:Yj},Qj=class{constructor(e){this.variableNames=["source"],this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=`uniform int start[${this.rank}];`,a=eU(this.rank),r,s=e.map((i,o)=>`sourceLoc.${Kg[o]} = start[${o}] + coords.${Kg[o]};`);r=`
|
|
${t} sourceLoc;
|
|
${t} coords = getOutputCoords();
|
|
${s.join(`
|
|
`)}
|
|
`,this.userCode=`
|
|
${n}
|
|
void main() {
|
|
${r}
|
|
setOutput(getSource(${a}));
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}},Kg=["x","y","z","w","u","v"];function eU(e){if(e===1)return"sourceLoc";if(e<=6)return Kg.slice(0,e).map(t=>"sourceLoc."+t).join(",");throw Error(`Slicing for rank ${e} is not yet supported`)}var tU=class{constructor(e){this.variableNames=["source"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.rank=e.length;let t=ut(this.rank),n=xn("coords",this.rank),a=xn("sourceLoc",this.rank),r=this.rank===1?"sourceLoc":`vec2(${a.slice(-2).join()})`,s=`getChannel(getSource(${a.join()}), ${r})`,i=`
|
|
result.x = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.y = ${s};
|
|
--${a[this.rank-1]};
|
|
}
|
|
`,o=this.rank===1?"":`
|
|
--${n[this.rank-1]};
|
|
if (++${n[this.rank-2]} < ${e[this.rank-2]}) {
|
|
++${a[this.rank-2]};
|
|
result.z = ${s};
|
|
if (++${n[this.rank-1]} < ${e[this.rank-1]}) {
|
|
++${a[this.rank-1]};
|
|
result.w = ${s};
|
|
}
|
|
}
|
|
`,l=this.rank<=4?`sourceLoc = coords +
|
|
${t}(${e.map((u,d)=>`start[${d}]`).join()});`:e.map((u,d)=>`${a[d]} = ${n[d]} + start[${d}];`).join(`
|
|
`);this.userCode=`
|
|
uniform int start[${this.rank}];
|
|
void main() {
|
|
${t} coords = getOutputCoords();
|
|
${t} sourceLoc;
|
|
${l}
|
|
vec4 result = vec4(0.);
|
|
${i}
|
|
${o}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){if(e.length!==this.rank)throw Error(`The rank (${this.rank}) of the program must match the length of start (${e.length})`);return(t,n)=>{this.startLoc==null&&(this.startLoc=t.getUniformLocationNoThrow(n,"start"),this.startLoc==null)||t.gl.uniform1iv(this.startLoc,e)}}};function nU(e,t,n,a){let r=a.texData.get(e.dataId),s=a.makeTensorInfo(n,e.dtype),i=a.texData.get(s.dataId);Object.assign(i,r),i.refCount=1,i.shape=n,i.dtype=e.dtype;let o=fn.computeFlatOffset(t,k.computeStrides(e.shape));r.slice&&(o+=r.slice.flatOffset),i.slice={flatOffset:o,origDataId:r.slice&&r.slice.origDataId||e.dataId};let l=a.dataRefCount.get(i.slice.origDataId)||1;return a.dataRefCount.set(i.slice.origDataId,l+1),s}function zd(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,size:i}=a,[o,l]=fn.parseSliceParams(r,s,i);if(fn.assertParamsValid(r,o,l),k.sizeFromShape(l)===0)return n.makeTensorInfo(l,r.dtype,[]);if(n.shouldExecuteOnCPU([r])||r.dtype==="string"){let p=n.texData.get(r.dataId),c=jB(p.values,o,l,r.shape,r.dtype);return n.makeTensorInfo(l,r.dtype,c)}let{isPacked:u}=n.texData.get(r.dataId),d=fn.isSliceContinous(r.shape,o,l);if(u||!d){let p=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new tU(l):new Qj(l),c=p.getCustomSetupFunc(o);return n.runWebGLProgram(p,[r],r.dtype,c)}return n.uploadToGPU(r.dataId),nU(r,o,l,n)}var aU={kernelName:sl,backendName:"webgl",kernelFunc:zd},rU=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,crops:i}=a;k.assert(r.shape.length<=4,()=>"batchToSpaceND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((A,x)=>A*x),l=F.getReshaped(r.shape,s,o),u=F.getPermuted(l.length,s.length),d=F.getReshapedPermuted(r.shape,s,o),p=F.getSliceBeginCoords(i,s.length),c=F.getSliceSize(d,i,s.length),h=[],m=Ae({inputs:{x:r},backend:n,attrs:{shape:l}}),f=bn({inputs:{x:m},backend:n,attrs:{perm:u}}),g=Ae({inputs:{x:f},backend:n,attrs:{shape:d}}),y=zd({inputs:{x:g},backend:n,attrs:{begin:p,size:c}});return h.push(m),h.push(f),h.push(g),h.forEach(A=>n.disposeIntermediateTensorInfo(A)),y},sU={kernelName:Du,backendName:"webgl",kernelFunc:rU};function iU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i}=a,o=n.readSync(r.dataId),l=n.readSync(s.dataId),u=lw(o,l,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,u)}var oU={kernelName:Zp,backendName:"webgl",kernelFunc:iU},lU="return float(a != b);",zw=sn({opSnippet:lU,cpuKernelImpl:LB,dtype:"bool"}),uU={kernelName:qo,backendName:"webgl",kernelFunc:zw};function _d(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Xn({inputs:{x:r.complexTensorInfos.real},backend:n})}var dU={kernelName:Ac,backendName:"webgl",kernelFunc:_d},pU="return float(int(x));";function cU(e,t){let n=new Yr(e.shape,pU),a=t.runWebGLProgram(n,[e],"int32");return{dataId:a.dataId,shape:a.shape,dtype:a.dtype}}function Zg(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dtype:s}=a;if(s==="complex64"){if(r.dtype==="complex64")return Xn({inputs:{x:r},backend:n});let i=$t(r.shape),o=Zg({inputs:{x:r},backend:n,attrs:{dtype:"float32"}}),l=Jr({inputs:{real:o,imag:i},backend:n});return i.dispose(),n.disposeIntermediateTensorInfo(o),l}if(r.dtype==="complex64"){let i=_d({inputs:{input:r},backend:n}),o=Zg({inputs:{x:i},backend:n,attrs:{dtype:s}});return n.disposeIntermediateTensorInfo(i),o}if(!k.hasEncodingLoss(r.dtype,s)){let i=Xn({inputs:{x:r},backend:n});return{dataId:i.dataId,shape:i.shape,dtype:s}}if(s==="int32")return cU(r,n);if(s==="bool"){let i=n.makeTensorInfo([],"bool",k.getTypedArrayFromDType("bool",1)),o=zw({inputs:{a:r,b:i},backend:n});return n.disposeIntermediateTensorInfo(i),o}throw new Error(`Error in Cast: failed to cast ${r.dtype} to ${s}`)}var hU={kernelName:ks,backendName:"webgl",kernelFunc:Zg},_w="return ceil(x);",fU=Ze({opSnippet:_w,packedOpSnippet:_w,cpuKernelImpl:bB}),mU={kernelName:Is,backendName:"webgl",kernelFunc:fU},gU=class{constructor(e){this.variableNames=["A"],this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
float value = getAAtOutCoords();
|
|
if (isnan(value)) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, minVal, maxVal));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}},yU=class{constructor(e){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e,this.userCode=`
|
|
uniform float minVal;
|
|
uniform float maxVal;
|
|
|
|
void main() {
|
|
vec4 value = getAAtOutCoords();
|
|
|
|
if (any(isnan(value))) {
|
|
setOutput(value);
|
|
return;
|
|
}
|
|
|
|
setOutput(clamp(value, vec4(minVal), vec4(maxVal)));
|
|
}
|
|
`}getCustomSetupFunc(e,t){return(n,a)=>{this.minLoc==null&&(this.minLoc=n.getUniformLocationNoThrow(a,"minVal"),this.maxLoc=n.getUniformLocationNoThrow(a,"maxVal")),n.gl.uniform1f(this.minLoc,e),n.gl.uniform1f(this.maxLoc,t)}}};function AU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o;te().getBool("WEBGL_PACK_CLIP")?o=new yU(r.shape):o=new gU(r.shape);let l=o.getCustomSetupFunc(s,i);return n.runWebGLProgram(o,[r],r.dtype,l)}var xU={kernelName:zr,backendName:"webgl",kernelFunc:AU},bU=class{constructor(e){this.variableNames=["real","imag"],this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
float re = abs(getRealAtOutCoords());
|
|
float im = abs(getImagAtOutCoords());
|
|
float mx = max(re, im);
|
|
|
|
// sadly the length function in glsl is not underflow-safe
|
|
// (at least not on Intel GPUs). So the safe solution is
|
|
// to ensure underflow-safety in all cases.
|
|
setOutput(
|
|
mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))
|
|
);
|
|
}
|
|
`}};function Pw(e,t){return{dataId:t.dataId,dtype:t.dtype,shape:e.shape}}function vU(e){let{inputs:t,backend:n}=e,{x:a}=t,r=n.texData.get(a.dataId),s=new bU(a.shape),i=[Pw(a,r.complexTensorInfos.real),Pw(a,r.complexTensorInfos.imag)];return n.runWebGLProgram(s,i,i[0].dtype)}var wU={kernelName:Ou,backendName:"webgl",kernelFunc:vU},kU=class{constructor(e){this.outputShape=[],this.outputShape=F.computeOutShape(e,1),this.variableNames=e.map((s,i)=>`T${i}`);let t=new Array(e.length-1);t[0]=e[0][1];for(let s=1;s<t.length;s++)t[s]=t[s-1]+e[s][1];let n=[`if (yC < ${t[0]}) setOutput(getT0(yR, yC));`];for(let s=1;s<t.length;s++){let i=t[s-1];n.push(`else if (yC < ${t[s]}) setOutput(getT${s}(yR, yC-${i}));`)}let a=t.length,r=t[t.length-1];n.push(`else setOutput(getT${a}(yR, yC-${r}));`),this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int yR = coords.x;
|
|
int yC = coords.y;
|
|
|
|
${n.join(`
|
|
`)}
|
|
}
|
|
`}},IU=class{constructor(e,t){this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[],this.outputShape=F.computeOutShape(e,t);let n=this.outputShape,a=n.length,r=ut(a),s=xn("coords",a),i=["x","y","z","w","u","v"].slice(0,a);this.variableNames=e.map((m,f)=>`T${f}`);let o=new Array(e.length-1);o[0]=e[0][t];for(let m=1;m<o.length;m++)o[m]=o[m-1]+e[m][t];let l=i[t],u=i.slice(-2),d=i.join(),p=`if (${l} < ${o[0]}) {
|
|
return getChannel(
|
|
getT0(${d}), vec2(${u.join()}));
|
|
}`;for(let m=1;m<o.length;m++){let f=o[m-1];p+=`
|
|
if (${l} < ${o[m]} && ${l} >= ${o[m-1]}) {
|
|
return getChannel(
|
|
getT${m}(${Zh(i,l,f)}),
|
|
vec2(${Zh(u,l,f)}));
|
|
}`}let c=o.length,h=o[o.length-1];p+=`
|
|
return getChannel(
|
|
getT${c}(${Zh(i,l,h)}),
|
|
vec2(${Zh(u,l,h)}));`,this.userCode=`
|
|
float getValue(${i.map(m=>"int "+m)}) {
|
|
${p}
|
|
}
|
|
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
vec4 result = vec4(getValue(${s}), 0., 0., 0.);
|
|
|
|
${s[a-1]} = ${s[a-1]} + 1;
|
|
if (${s[a-1]} < ${n[a-1]}) {
|
|
result.g = getValue(${s});
|
|
}
|
|
|
|
${s[a-2]} = ${s[a-2]} + 1;
|
|
if (${s[a-2]} < ${n[a-2]}) {
|
|
result.a = getValue(${s});
|
|
}
|
|
|
|
${s[a-1]} = ${s[a-1]} - 1;
|
|
if (${s[a-2]} < ${n[a-2]} &&
|
|
${s[a-1]} < ${n[a-1]}) {
|
|
result.b = getValue(${s});
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}};function Zh(e,t,n){let a=e.indexOf(t);return e.map((r,s)=>s===a?`${r} - ${n}`:r).join()}function Yh(e){let{inputs:t,backend:n}=e,{input:a}=t,r=n.texData.get(a.dataId);return Xn({inputs:{x:r.complexTensorInfos.imag},backend:n})}var SU={kernelName:pc,backendName:"webgl",kernelFunc:Yh};function Yl(e,t,n){let a=e[0].dtype;if(a==="complex64"){let d=e.map(f=>_d({inputs:{input:f},backend:n})),p=e.map(f=>Yh({inputs:{input:f},backend:n})),c=Yl(d,t,n),h=Yl(p,t,n),m=Jr({inputs:{real:c,imag:h},backend:n});return d.forEach(f=>n.disposeIntermediateTensorInfo(f)),p.forEach(f=>n.disposeIntermediateTensorInfo(f)),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}let r=n.shouldExecuteOnCPU(e);if(a==="string"&&(r=!0),r){let d=e.map(y=>{let A=k.sizeFromShape(y.shape.slice(t));return Ae({inputs:{x:y},backend:n,attrs:{shape:[-1,A]}})}),p=d.map(y=>({vals:n.readSync(y.dataId),shape:y.shape})),c=F.computeOutShape(d.map(y=>y.shape),1),h=d[0].shape[0]===1,m=vB(p,c,a,h),f=F.computeOutShape(e.map(y=>y.shape),t),g=n.makeTensorInfo(f,a,m);return d.forEach(y=>n.disposeIntermediateTensorInfo(y)),g}if(e.length>te().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")){let d=Math.floor(e.length/2),p=Yl(e.slice(0,d),t,n),c=Yl(e.slice(d),t,n),h=Yl([p,c],t,n);return n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),h}if(te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")&&e[0].shape.length>1){let d=new IU(e.map(p=>p.shape),t);return n.runWebGLProgram(d,e,a)}let{tensors2D:s,outShape:i}=NU(e,t,n),o=new kU(s.map(d=>d.shape)),l=n.runWebGLProgram(o,s,a);s.forEach(d=>n.disposeIntermediateTensorInfo(d));let u=Ae({inputs:{x:l},attrs:{shape:i},backend:n});return n.disposeIntermediateTensorInfo(l),u}function NU(e,t,n){let a=F.computeOutShape(e.map(r=>r.shape),t);return{tensors2D:e.map(r=>Ae({inputs:{x:r},attrs:{shape:[-1,k.sizeFromShape(r.shape.slice(t))]},backend:n})),outShape:a}}function Lw(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a,s=k.parseAxisParam(r,t[0].shape)[0],i=F.computeOutShape(t.map(u=>u.shape),s);if(k.sizeFromShape(i)===0)return n.makeTensorInfo(i,t[0].dtype,[]);let o=t.filter(u=>k.sizeFromShape(u.shape)>0);if(o.length===1)return Xn({inputs:{x:o[0]},backend:n});let l=o.map(u=>u.shape);return F.assertParamsConsistent(l,s),Yl(o,s,n)}var TU={kernelName:So,backendName:"webgl",kernelFunc:Lw},Ww=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.padInfo.top,i=e.padInfo.left,o=e.strideHeight,l=e.strideWidth,u=e.dilationHeight,d=e.dilationWidth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4,f=e.dataFormat==="channelsLast",g=f?1:2,y=f?2:3,A=f?3:1,x="",v="";n&&(a?x=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?x=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:x=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,v="result = activation(result);");let b=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${x}
|
|
|
|
const ivec2 strides = ivec2(${o}, ${l});
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d2 = coords[${A}];
|
|
|
|
ivec2 xRCCorner =
|
|
ivec2(coords[${g}], coords[${y}]) * strides - pads;
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${u};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${d};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 wValues = vec4(
|
|
getW(wR, wC, d1, d2),
|
|
getW(wR, wC, d1 + 1, d2),
|
|
getW(wR, wC, d1 + 2, d2),
|
|
getW(wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xR, xC, d1),
|
|
getX(batch, xR, xC, d1 + 1),
|
|
getX(batch, xR, xC, d1 + 2),
|
|
getX(batch, xR, xC, d1 + 3)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec4 xValues = vec4(
|
|
getX(batch, d1, xR, xC),
|
|
getX(batch, d1 + 1, xR, xC),
|
|
getX(batch, d1 + 2, xR, xC),
|
|
getX(batch, d1 + 3, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
|
|
if (${m===1}) {
|
|
|
|
if (${f}) {
|
|
dotProd +=
|
|
getX(batch, xR, xC, ${h}) *
|
|
getW(wR, wC, ${h}, d2);
|
|
} else {
|
|
dotProd +=
|
|
getX(batch, ${h}, xR, xC) *
|
|
getW(wR, wC, ${h}, d2);
|
|
}
|
|
|
|
} else if (${m===2}) {
|
|
vec2 wValues = vec2(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec2 xValues = vec2(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
} else if (${m===3}) {
|
|
vec3 wValues = vec3(
|
|
getW(wR, wC, ${h}, d2),
|
|
getW(wR, wC, ${h} + 1, d2),
|
|
getW(wR, wC, ${h} + 2, d2)
|
|
);
|
|
|
|
if (${f}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xR, xC, ${h}),
|
|
getX(batch, xR, xC, ${h} + 1),
|
|
getX(batch, xR, xC, ${h} + 2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else {
|
|
vec3 xValues = vec3(
|
|
getX(batch, ${h}, xR, xC),
|
|
getX(batch, ${h} + 1, xR, xC),
|
|
getX(batch, ${h} + 2, xR, xC)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${b}
|
|
${v}
|
|
setOutput(result);
|
|
}
|
|
`}},CU=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let t=e.padInfo.front,n=e.padInfo.top,a=e.padInfo.left,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=e.dilationDepth,l=e.dilationHeight,u=e.dilationWidth,d=e.filterDepth,p=e.filterHeight,c=e.filterWidth,h=Math.floor(e.inChannels/4)*4,m=e.inChannels%4;this.userCode=`
|
|
const ivec3 strides = ivec3(${r}, ${s}, ${i});
|
|
const ivec3 pads = ivec3(${t}, ${n}, ${a});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d2 = coords.u;
|
|
|
|
ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;
|
|
int xFCorner = xFRCCorner.x;
|
|
int xRCorner = xFRCCorner.y;
|
|
int xCCorner = xFRCCorner.z;
|
|
|
|
// Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get
|
|
// y(yF, yR, yC, d2). ? = to be determined. : = across all
|
|
// values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${d}; wF++) {
|
|
int xF = xFCorner + wF * ${o};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wR = 0; wR < ${p}; wR++) {
|
|
int xR = xRCorner + wR * ${l};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${c}; wC++) {
|
|
int xC = xCCorner + wC * ${u};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int d1 = 0; d1 < ${h}; d1 += 4) {
|
|
vec4 xValues = vec4(
|
|
getX(batch, xF, xR, xC, d1),
|
|
getX(batch, xF, xR, xC, d1 + 1),
|
|
getX(batch, xF, xR, xC, d1 + 2),
|
|
getX(batch, xF, xR, xC, d1 + 3)
|
|
);
|
|
vec4 wValues = vec4(
|
|
getW(wF, wR, wC, d1, d2),
|
|
getW(wF, wR, wC, d1 + 1, d2),
|
|
getW(wF, wR, wC, d1 + 2, d2),
|
|
getW(wF, wR, wC, d1 + 3, d2)
|
|
);
|
|
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
|
|
if (${m===1}) {
|
|
dotProd +=
|
|
getX(batch, xF, xR, xC, ${h}) *
|
|
getW(wF, wR, wC, ${h}, d2);
|
|
} else if (${m===2}) {
|
|
vec2 xValues = vec2(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1)
|
|
);
|
|
vec2 wValues = vec2(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
} else if (${m===3}) {
|
|
vec3 xValues = vec3(
|
|
getX(batch, xF, xR, xC, ${h}),
|
|
getX(batch, xF, xR, xC, ${h} + 1),
|
|
getX(batch, xF, xR, xC, ${h} + 2)
|
|
);
|
|
vec3 wValues = vec3(
|
|
getW(wF, wR, wC, ${h}, d2),
|
|
getW(wF, wR, wC, ${h} + 1, d2),
|
|
getW(wF, wR, wC, ${h} + 2, d2)
|
|
);
|
|
dotProd += dot(xValues, wValues);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},EU=class{constructor(e,t,n){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e;let{filterWidth:a,inChannels:r,strideWidth:s,strideHeight:i,padInfo:o,outWidth:l,dilationWidth:u,dilationHeight:d,dataFormat:p}=n,{left:c,top:h}=o,m=r*a,f=An(),g=p==="channelsLast",y=g?0:1,A=g?1:2,x="";for(let v=0;v<=1;v++)for(let b=0;b<=1;b++)x+=`
|
|
blockIndex = rc.y + ${b};
|
|
pos = rc.x + ${v};
|
|
|
|
if(blockIndex < ${e[1]} && pos < ${e[0]}) {
|
|
offsetY = int(blockIndex / (${l})) * ${i} - ${h};
|
|
d0 = offsetY + ${d} * (pos / ${m});
|
|
|
|
if(d0 < ${t[y]} && d0 >= 0) {
|
|
|
|
offsetX = int(mod(float(blockIndex), ${l}.) * ${s}. - ${c}.);
|
|
d1 = offsetX + ${u} * (int(mod(float(pos), ${m}.) / ${r}.));
|
|
|
|
if(d1 < ${t[A]} && d1 >= 0) {
|
|
|
|
ch = int(mod(float(pos), ${r}.));
|
|
|
|
if (${g}) {
|
|
innerDims = vec2(d1, ch);
|
|
result[${v*2+b}] = getChannel(
|
|
getA(d0, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
} else {
|
|
innerDims = vec2(d0, d1);
|
|
result[${v*2+b}] = getChannel(
|
|
getA(ch, int(innerDims.x),
|
|
int(innerDims.y)), innerDims);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
`;this.userCode=`
|
|
void main() {
|
|
ivec2 rc = getOutputCoords();
|
|
|
|
vec4 result = vec4(0);
|
|
|
|
int blockIndex, pos, offsetY, d0, offsetX, d1, ch;
|
|
vec2 innerDims;
|
|
|
|
${x}
|
|
|
|
${f.output} = result;
|
|
}
|
|
`}};function Bw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let l=e.shape,u=a.texData.get(e.dataId),d=n.inChannels,p=l[0]*l[1]*l[2],c=n.outChannels,h=n.dataFormat==="channelsLast",m=!1,f=!1,g,y=[],A=(p===1||c===1)&&d>Rw,x=l[2]%2!=0&&!!u.isPacked;if(A||!te().getBool("WEBGL_LAZILY_UNPACK")||!te().getBool("WEBGL_PACK_BINARY_OPERATIONS")||!x){let v=h?l[0]*l[1]*l[2]:l[0]*l[2]*l[3],b=Ae({inputs:{x:e},backend:a,attrs:{shape:[1,v,n.inChannels]}}),w=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}}),N=Xh({a:b,b:w,transposeA:m,transposeB:f,backend:a,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i});g=Ae({inputs:{x:N},backend:a,attrs:{shape:n.outShape}}),y.push(b),y.push(w),y.push(N)}else{let v=h?l[0]*l[1]*(l[2]+1):l[0]*l[2]*(l[3]+1),b={dataId:e.dataId,shape:[1,v,n.inChannels],dtype:e.dtype},w=u.shape;u.shape=u.shape.slice(),u.shape[u.shape.length-2]++,k.assert(Fd(u.shape,b.shape),()=>`packed reshape ${u.shape} to ${b.shape} isn't free`);let N=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,n.inChannels,n.outChannels]}});y.push(N);let C=Xh({a:b,b:N,backend:a,transposeA:m,transposeB:f,bias:r,activation:o,preluActivationWeights:s,leakyreluAlpha:i}),E=a.texData.get(C.dataId);k.assert(E.isPacked,()=>"batchMatMul result is expected to be packed"),u.shape=w,E.shape=n.outShape,g=Xn({inputs:{x:C},backend:a}),g.shape=n.outShape,y.push(C)}for(let v of y)a.disposeIntermediateTensorInfo(v);return g}function Vw({x:e,filter:t,convInfo:n,backend:a,bias:r=null,preluActivationWeights:s=null,leakyreluAlpha:i=0,activation:o=null}){let{filterWidth:l,filterHeight:u,inChannels:d,outWidth:p,outHeight:c,dataFormat:h}=n,m=h==="channelsLast",f=l*u*d,g=c*p,y=[f,g],A=!0,x=!1,v=[],b=Ae({inputs:{x:e},backend:a,attrs:{shape:e.shape.slice(1)}}),w=Ae({inputs:{x:t},backend:a,attrs:{shape:[1,f,k.sizeFromShape(t.shape)/f]}});v.push(b),v.push(w);let N=new EU(y,b.shape,n),C=a.runWebGLProgram(N,[b],"float32"),E=Ae({inputs:{x:C},backend:a,attrs:{shape:[1,y[0],y[1]]}});v.push(C),v.push(E);let _=r!=null,$=s!=null,S=o==="leakyrelu",z=o?Hh(o,!0):null,O=new Sw(E.shape,w.shape,[1,g,n.outChannels],A,x,_,z,$,S),W=[E,w];if(r&&W.push(r),$&&W.push(s),S){let K=a.makeTensorInfo([],"float32",k.createScalarValue(i,"float32"));W.push(K),v.push(K)}let G=a.runWebGLProgram(O,W,"float32"),H=m?[1,c,p,n.outChannels]:[1,n.outChannels,c,p],J=Ae({inputs:{x:G},backend:a,attrs:{shape:H}});v.push(G);for(let K of v)a.disposeIntermediateTensorInfo(K);return J}function RU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dataFormat:l,dilations:u,dimRoundingMode:d}=a,p=F.convertConv2DDataFormat(l),c=F.computeConv2DInfo(r.shape,s.shape,i,u,o,d,!1,p),h;if(c.filterHeight===1&&c.filterWidth===1&&c.dilationHeight===1&&c.dilationWidth===1&&c.strideHeight===1&&c.strideWidth===1&&(c.padInfo.type==="SAME"||c.padInfo.type==="VALID"))h=Bw({x:r,filter:s,convInfo:c,backend:n});else if(te().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)h=Vw({x:r,filter:s,convInfo:c,backend:n});else{let f=new Ww(c);h=n.runWebGLProgram(f,[r,s],"float32")}let m=Ae({inputs:{x:h},backend:n,attrs:{shape:c.outShape}});return n.disposeIntermediateTensorInfo(h),m}var MU={kernelName:Ss,backendName:"webgl",kernelFunc:RU},FU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.dataFormat==="channelsLast";this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int d2 = coords.w;
|
|
|
|
// Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
if (${s}) {
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
} else {
|
|
float dyValue = getDy(b, d2, yR, yC);
|
|
float xValue = getX(b, d1, xR, xC);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},$U=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=e.dataFormat==="channelsLast",i=t-1-e.padInfo.top,o=n-1-e.padInfo.left,l=s?1:2,u=s?2:3,d=s?3:1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[${d}];
|
|
|
|
ivec2 dyCorner = ivec2(coords[${l}], coords[${u}]) - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
// Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
|
|
if (${s}) {
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
} else {
|
|
float xValue = getDy(batch, d2, idyR, idyC);
|
|
float wValue = getW(wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},DU=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.padInfo.front,s=e.padInfo.top,i=e.padInfo.left;this.userCode=`
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int wF = coords.x;
|
|
int wR = coords.y;
|
|
int wC = coords.z;
|
|
int d1 = coords.w;
|
|
int d2 = coords.u;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yF = 0; yF < ${e.outDepth}; yF++) {
|
|
int xF = wF + yF * ${t} - ${r};
|
|
|
|
if (xF < 0 || xF >= ${e.inDepth}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${n} - ${s};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${a} - ${i};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yF, yR, yC, d2);
|
|
float xValue = getX(b, xF, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},OU=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterDepth,n=e.filterHeight,a=e.filterWidth,r=e.strideDepth,s=e.strideHeight,i=e.strideWidth,o=t-1-e.padInfo.front,l=n-1-e.padInfo.top,u=a-1-e.padInfo.left;this.userCode=`
|
|
const ivec3 pads = ivec3(${o}, ${l}, ${u});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.u;
|
|
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyFCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
float dotProd = 0.0;
|
|
for (int wF = 0; wF < ${t}; wF++) {
|
|
float dyF = float(dyFCorner + wF) / ${r}.0;
|
|
|
|
if (dyF < 0.0 || dyF >= ${e.outDepth}.0 || fract(dyF) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyF = int(dyF);
|
|
|
|
int wFPerm = ${t} - 1 - wF;
|
|
|
|
for (int wR = 0; wR < ${n}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${s}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${n} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${a}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${i}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${a} - 1 - wC;
|
|
|
|
for (int d2 = 0; d2 < ${e.outChannels}; d2++) {
|
|
float xValue = getDy(batch, idyF, idyR, idyC, d2);
|
|
float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function zU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,filterShape:d}=a,p=F.convertConv2DDataFormat(l),c=F.computeConv2DInfo(r.shape,d,i,1,o,u,!1,p),h=new FU(c);return n.runWebGLProgram(h,[r,s],"float32")}var _U={kernelName:Jp,backendName:"webgl",kernelFunc:zU};function PU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{inputShape:i,strides:o,pad:l,dataFormat:u,dimRoundingMode:d}=a,p=F.convertConv2DDataFormat(u),c=F.computeConv2DInfo(i,s.shape,o,1,l,d,!1,p),h=new $U(c);return n.runWebGLProgram(h,[r,s],"float32")}var LU={kernelName:Ns,backendName:"webgl",kernelFunc:PU};function WU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=F.computeConv3DInfo(r.shape,s.shape,i,l,o),d=new CU(u);return n.runWebGLProgram(d,[r,s],"float32")}var BU={kernelName:zu,backendName:"webgl",kernelFunc:WU};function VU(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,pad:o,filterShape:l}=a,u=F.computeConv3DInfo(r.shape,l,i,1,o),d=new DU(u);return n.runWebGLProgram(d,[r,s],"float32")}var jU={kernelName:Qp,backendName:"webgl",kernelFunc:VU};function UU(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{pad:i,strides:o,inputShape:l}=a,u=F.computeConv3DInfo(l,s.shape,o,1,i),d=new OU(u);return n.runWebGLProgram(d,[r,s],"float32")}var HU={kernelName:ec,backendName:"webgl",kernelFunc:UU},GU=Iw+`
|
|
return cos(x);
|
|
`,qU=Ze({opSnippet:GU}),XU={kernelName:Ts,backendName:"webgl",kernelFunc:qU},KU=`
|
|
float e2x = exp(-x);
|
|
return (e2x + 1.0 / e2x) / 2.0;
|
|
`,ZU=Ze({opSnippet:KU}),YU={kernelName:No,backendName:"webgl",kernelFunc:ZU},JU=class{constructor(e,t,n,a,r){this.variableNames=["Image","Boxes","BoxInd"],this.outputShape=[];let[s,i,o,l]=e,[u]=t,[d,p]=n;this.outputShape=[u,d,p,l];let c=a==="bilinear"?1:0,[h,m]=[`${i-1}.0`,`${o-1}.0`],[f,g,y]=d>1?[`${(i-1)/(d-1)}`,"(y2-y1) * height_ratio",`y1*${h} + float(y)*(height_scale)`]:["0.0","0.0",`0.5 * (y1+y2) * ${h}`],[A,x,v]=p>1?[`${(o-1)/(p-1)}`,"(x2-x1) * width_ratio",`x1*${m} + float(x)*(width_scale)`]:["0.0","0.0",`0.5 * (x1+x2) * ${m}`];this.userCode=`
|
|
const float height_ratio = float(${f});
|
|
const float width_ratio = float(${A});
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int y = coords[1];
|
|
int x = coords[2];
|
|
int d = coords[3];
|
|
|
|
// get box vals
|
|
float y1 = getBoxes(b,0);
|
|
float x1 = getBoxes(b,1);
|
|
float y2 = getBoxes(b,2);
|
|
float x2 = getBoxes(b,3);
|
|
|
|
// get image in batch index
|
|
int bInd = round(getBoxInd(b));
|
|
if(bInd < 0 || bInd >= ${s}) {
|
|
return;
|
|
}
|
|
|
|
float height_scale = ${g};
|
|
float width_scale = ${x};
|
|
|
|
float in_y = ${y};
|
|
if( in_y < 0.0 || in_y > ${h} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
float in_x = ${v};
|
|
if( in_x < 0.0 || in_x > ${m} ) {
|
|
setOutput(float(${r}));
|
|
return;
|
|
}
|
|
|
|
vec2 sourceFracIndexCR = vec2(in_x,in_y);
|
|
if(${c} == 1) {
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);
|
|
ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));
|
|
|
|
float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);
|
|
float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);
|
|
float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);
|
|
float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);
|
|
|
|
vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracCR.x;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;
|
|
float newValue = top + (bottom - top) * fracCR.y;
|
|
setOutput(newValue);
|
|
} else {
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestCR = ivec2(floor(
|
|
sourceFracIndexCR + vec2(0.5,0.5)));
|
|
float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);
|
|
setOutput(newValue);
|
|
}
|
|
}
|
|
`}},QU=e=>{let{inputs:t,backend:n,attrs:a}=e,{image:r,boxes:s,boxInd:i}=t,{cropSize:o,method:l,extrapolationValue:u}=a,d=new JU(r.shape,s.shape,o,l,u);return n.runWebGLProgram(d,[r,s,i],"float32")},eH={kernelName:To,backendName:"webgl",kernelFunc:QU},jw=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=e;let a=e.length,r=t?"0.0":`getX(${Uw(a,"coords")})`,s=e[e.length-1],i="",o="";t?(i=n?`end != ${s-1}`:"end != 0",o=n?"end + 1":"end - 1"):(i=n?`end + pow2 < ${s}`:"end >= pow2",o=n?"end + pow2":"end - pow2"),this.userCode=`
|
|
uniform float index;
|
|
void main() {
|
|
${ut(a)} coords = getOutputCoords();
|
|
int end = ${Hw(a,"coords")};
|
|
float val = ${r};
|
|
int pow2 = int(pow(2.0, index));
|
|
if (${i}) {
|
|
int idx = ${o};
|
|
${Hw(a,"coords")} = idx;
|
|
val += getX(${Uw(a,"coords")});
|
|
}
|
|
setOutput(val);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.index==null&&(this.index=t.getUniformLocation(n,"index")),t.gl.uniform1f(this.index,e)}}};function Uw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.x, ${t}.y`;if(e===3)return`${t}.x, ${t}.y, ${t}.z`;if(e===4)return`${t}.x, ${t}.y, ${t}.z, ${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function Hw(e,t){if(e===1)return`${t}`;if(e===2)return`${t}.y`;if(e===3)return`${t}.z`;if(e===4)return`${t}.w`;throw Error(`Cumulative sum for rank ${e} is not yet supported`)}function tH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length,u=F.getAxesPermutation([s],l),d=r;u!=null&&(d=bn({inputs:{x:r},backend:n,attrs:{perm:u}}));let p=F.getInnerMostAxes(1,l)[0];if(p!==l-1)throw new Error(`WebGL cumsum shader expects an inner-most axis=${r.shape.length-1} but got axis=${s}`);let c=d.shape[p],h=Xn({inputs:{x:d},backend:n});for(let m=0;m<=Math.ceil(Math.log2(c))-1;m++){let f=new jw(d.shape,!1,o),g=f.getCustomSetupFunc(m),y=h;h=n.runWebGLProgram(f,[h],h.dtype,g),n.disposeIntermediateTensorInfo(y)}if(i){let m=new jw(d.shape,i,o),f=h;h=n.runWebGLProgram(m,[h],h.dtype),n.disposeIntermediateTensorInfo(f)}if(u!=null){let m=F.getUndoAxesPermutation(u),f=bn({inputs:{x:h},backend:n,attrs:{perm:m}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(d),f}return h}var nH={kernelName:Cs,backendName:"webgl",kernelFunc:tH};function aH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,weights:s}=t,{size:i,binaryOutput:o}=a;if(r.shape.length===1){let l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=lw(l,u,s.dtype,s.shape,i);return n.makeTensorInfo([i],s.dtype,d)}else if(r.shape.length===2){let l=n.bufferSync(r),u=n.bufferSync(s),d=xB(l,u,i,o);return n.makeTensorInfo(d.shape,s.dtype,d.values)}throw new Error(`Error in denseBincount: input must be at most rank 2, but got rank${r.shape.length}.`)}var rH={kernelName:tc,backendName:"webgl",kernelFunc:aH},sH=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=[],this.outputShape=e,this.blockSize=t,this.dataFormat=n,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int h = ${this.getHeightCoordString()};
|
|
int w = ${this.getWidthCoordString()};
|
|
int d = ${this.getDepthCoordString()};
|
|
|
|
int in_h = h / ${t};
|
|
int offset_h = imod(h, ${t});
|
|
int in_w = w / ${t};
|
|
int offset_w = imod(w, ${t});
|
|
int offset_d = (offset_h * ${t} + offset_w) *
|
|
${this.getOutputDepthSize()};
|
|
int in_d = d + offset_d;
|
|
|
|
float result = ${this.getInputSamplingString()};
|
|
setOutput(result);
|
|
}
|
|
`}getHeightCoordString(){return this.dataFormat==="NHWC"?"coords[1]":"coords[2]"}getWidthCoordString(){return this.dataFormat==="NHWC"?"coords[2]":"coords[3]"}getDepthCoordString(){return this.dataFormat==="NHWC"?"coords[3]":"coords[1]"}getOutputDepthSize(){return this.dataFormat==="NHWC"?this.outputShape[3]:this.outputShape[1]}getInputSamplingString(){return this.dataFormat==="NHWC"?"getX(b, in_h, in_w, in_d)":"getX(b, in_d, in_h, in_w)"}};function iH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=new sH(m,s,i);return n.runWebGLProgram(f,[r],r.dtype)}var oH={kernelName:Co,backendName:"webgl",kernelFunc:iH},Gw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.outputShape=e.outShape;let s=e.inHeight,i=e.inWidth,o=e.padInfo.top,l=e.padInfo.left,u=e.strideHeight,d=e.strideWidth,p=e.dilationHeight,c=e.dilationWidth,h=e.filterHeight,m=e.filterWidth,f=e.outChannels/e.inChannels,g="",y="";n&&(a?g=`float activation(float a) {
|
|
float b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?g=`float activation(float a) {
|
|
float b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:g=`
|
|
float activation(float x) {
|
|
${n}
|
|
}
|
|
`,y="result = activation(result);");let A=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${g}
|
|
|
|
const ivec2 strides = ivec2(${u}, ${d});
|
|
const ivec2 pads = ivec2(${o}, ${l});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${f};
|
|
int q = d2 - d1 * ${f};
|
|
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
// Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
// TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.
|
|
for (int wR = 0; wR < ${h}; wR++) {
|
|
int xR = xRCorner + wR * ${p};
|
|
|
|
if (xR < 0 || xR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int wC = 0; wC < ${m}; wC++) {
|
|
int xC = xCCorner + wC * ${c};
|
|
|
|
if (xC < 0 || xC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float xVal = getX(batch, xR, xC, d1);
|
|
float wVal = getW(wR, wC, d1, q);
|
|
dotProd += xVal * wVal;
|
|
}
|
|
}
|
|
|
|
float result = dotProd;
|
|
${A}
|
|
${y}
|
|
setOutput(result);
|
|
}
|
|
`}},qw=class{constructor(e,t=!1,n=null,a=!1,r=!1){this.variableNames=["x","W"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=e.outShape;let s=e.outChannels/e.inChannels,i=e.inHeight,o=e.inWidth,l=e.padInfo.top,u=e.padInfo.left,d=e.strideHeight,p=e.strideWidth,c=e.dilationHeight,h=e.dilationWidth,m=e.filterHeight,f=e.filterWidth,g=f,y=`
|
|
int xR; int xC; int xCOffset;
|
|
vec4 wTexel; vec4 previous; vec4 final;`;for(let b=0;b<f;b++)y+=`
|
|
vec4 xTexelC${b*2};
|
|
int xTexelC${b*2}Ready;
|
|
vec4 xC${b};`;for(let b=0;b<m;b++){for(let w=0;w<f;w++)y+=`
|
|
xTexelC${w*2} = vec4(0.0);
|
|
xTexelC${w*2}Ready = 0;
|
|
xC${w} = vec4(0.0);`;y+=`
|
|
xR = xRCorner + ${b*c};
|
|
if (xR >=0 && xR < ${i}) {
|
|
`;for(let w=0;w<(g+1)/2;w++){let N=w*2,C=N*h;if(y+=`
|
|
xC = xCCorner + ${C};
|
|
`,p===1){if(N<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${C}Ready == 0) {
|
|
xTexelC${C} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${C}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C}Ready = 1;
|
|
}
|
|
`,h===1&&C>0?y+=`
|
|
xC${N} = vec4(xTexelC${C-2}.zw, xTexelC${C}.xy);
|
|
`:y+=`
|
|
xCOffset = xC + 1 - 2;
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o}) {
|
|
previous = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
previous.zw = vec2(0.0);
|
|
}
|
|
|
|
xC${N} = vec4(previous.zw, xTexelC${C}.xy);
|
|
} else {
|
|
xC${N} = vec4(0.0, 0.0, xTexelC${C}.xy);
|
|
}
|
|
`):y+=`
|
|
if (xC >= 0 && xC < ${o} && xTexelC${C}Ready == 0) {
|
|
xTexelC${C} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${C}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C}Ready = 1;
|
|
}
|
|
|
|
xC${N} = xTexelC${C};
|
|
`,C+1<f)){let E=u%2==0?k.nearestLargerEven(h):h;h%2==0&&u%2==1||h%2!=0&&u%2!=1?(y+=`
|
|
xCOffset = xC + ${u%2} + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${C+2}Ready == 0) {
|
|
xTexelC${C+2} = getX(batch, xR, xCOffset, d1);
|
|
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${C+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C+2}Ready = 1;
|
|
}
|
|
`,h>1&&(y+=`
|
|
xCOffset -= 2;
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${C}Ready == 0) {
|
|
xTexelC${C} = getX(batch, xR, xCOffset, d1);
|
|
xTexelC${C}Ready = 1;
|
|
}
|
|
`),y+=`
|
|
xC${N+1} = vec4(xTexelC${C}.zw, xTexelC${C+2}.xy);
|
|
`):E===1?y+=`
|
|
xC${N+1} = xTexelC${C};
|
|
`:y+=`
|
|
xCOffset = xC + ${E};
|
|
|
|
if (xCOffset >= 0 && xCOffset < ${o} && xTexelC${C+2}Ready == 0) {
|
|
xTexelC${C+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${C+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C+2}Ready = 1;
|
|
}
|
|
|
|
xC${N+1} = xTexelC${C+2};
|
|
`}}else C<f&&(u%2==1?(y+=`
|
|
xCOffset = xC + 1 - ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${C}Ready == 0) {
|
|
xTexelC${C} = getX(batch, xR, xCOffset, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${C}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C}Ready = 1;
|
|
}
|
|
|
|
if(xC + 1 >= 0 && xC + 1 < ${o} && xTexelC${C+2}Ready == 0) {
|
|
xTexelC${C+2} = getX(batch, xR, xC + 1, d1);
|
|
// Need to manually clear unused channels in case
|
|
// we're reading from recycled texture.
|
|
if (xC + 2 >= ${o}) {
|
|
xTexelC${C+2}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(xTexelC${C}.zw, xTexelC${C+2}.zw);
|
|
`,C+1<f&&(y+=`
|
|
final = vec4(0.0);
|
|
xCOffset = xC + 1 + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o}) {
|
|
final = getX(batch, xR, xCOffset, d1);
|
|
}
|
|
xC${N+1} = vec4(xTexelC${C+2}.xy, final.xy);
|
|
`)):(y+=`
|
|
if(xC >= 0 && xC < ${o} && xTexelC${C}Ready == 0) {
|
|
xTexelC${C} = getX(batch, xR, xC, d1);
|
|
if (xC + 1 >= ${o}) {
|
|
xTexelC${C}.zw = vec2(0.0);
|
|
}
|
|
xTexelC${C}Ready = 1;
|
|
}
|
|
|
|
xCOffset = xC + ${p};
|
|
if(xCOffset >= 0 && xCOffset < ${o} && xTexelC${C+2}Ready == 0) {
|
|
xTexelC${C+2} = getX(batch, xR, xCOffset, d1);
|
|
if (xCOffset + 1 >= ${o}) {
|
|
xTexelC${C+2}.zw = vec2(0.);
|
|
}
|
|
xTexelC${C+2}Ready = 1;
|
|
}
|
|
|
|
xC${N} = vec4(
|
|
xTexelC${C}.xy, xTexelC${C+2}.xy);
|
|
`,C+1<f&&(y+=`
|
|
xC${N+1} = vec4(xTexelC${C}.zw, xTexelC${C+2}.zw);
|
|
`)));N<f&&(y+=`
|
|
wTexel = getW(${b}, ${C}, d1, q);
|
|
dotProd += xC${N} * vec4(wTexel.xz, wTexel.xz);
|
|
`,C+1<f&&(y+=`
|
|
wTexel = getW(${b}, ${C+1}, d1, q);
|
|
dotProd += xC${N+1} * vec4(wTexel.xz, wTexel.xz);
|
|
`))}y+=`
|
|
}
|
|
`}let A="",x="";n&&(a?A=`vec4 activation(vec4 a) {
|
|
vec4 b = getPreluActivationWeightsAtOutCoords();
|
|
${n}
|
|
}`:r?A=`vec4 activation(vec4 a) {
|
|
vec4 b = getLeakyreluAlphaAtOutCoords();
|
|
${n}
|
|
}`:A=`vec4 activation(vec4 x) {
|
|
${n}
|
|
}`,x="result = activation(result);");let v=t?"result += getBiasAtOutCoords();":"";t&&this.variableNames.push("bias"),a&&this.variableNames.push("preluActivationWeights"),r&&this.variableNames.push("leakyreluAlpha"),this.userCode=`
|
|
${A}
|
|
|
|
const ivec2 strides = ivec2(${d}, ${p});
|
|
const ivec2 pads = ivec2(${l}, ${u});
|
|
|
|
void main() {
|
|
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
ivec2 xRCCorner = coords.yz * strides - pads;
|
|
int d2 = coords.w;
|
|
int d1 = d2 / ${s};
|
|
int q = d2 - d1 * ${s};
|
|
int xRCorner = xRCCorner.x;
|
|
int xCCorner = xRCCorner.y;
|
|
|
|
//intialize dotProd with a small epsilon seems to reduce GPU accuracy loss.
|
|
vec4 dotProd = vec4(0.000000000000001);
|
|
|
|
${y}
|
|
|
|
vec4 result = dotProd - vec4(0.000000000000001);
|
|
${v}
|
|
${x}
|
|
setOutput(result);
|
|
}
|
|
`}};function lH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l,dimRoundingMode:u}=a,d=l;d==null&&(d=[1,1]),k.assert(F.eitherStridesOrDilationsAreOne(i,d),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${i} and dilations '${d}'`);let p=F.computeConv2DInfo(r.shape,s.shape,i,d,o,u,!0),c;return te().getBool("WEBGL_PACK_DEPTHWISECONV")&&p.strideWidth<=2&&p.outChannels/p.inChannels==1?c=new qw(p):c=new Gw(p),n.runWebGLProgram(c,[r,s],"float32")}var uH={kernelName:Es,backendName:"webgl",kernelFunc:lH},dH=class{constructor(e){this.variableNames=["x","dy"],this.outputShape=e.filterShape;let t=e.strideHeight,n=e.strideWidth,a=e.padInfo.top,r=e.padInfo.left,s=e.outChannels/e.inChannels;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int wR = coords.x;
|
|
int wC = coords.y;
|
|
int d1 = coords.z;
|
|
int dm = coords.w;
|
|
int d2 = d1 * ${s} + dm;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
// TO DO: Vec4 over the batch size
|
|
for (int b = 0; b < ${e.batchSize}; b++) {
|
|
for (int yR = 0; yR < ${e.outHeight}; yR++) {
|
|
int xR = wR + yR * ${t} - ${a};
|
|
|
|
if (xR < 0 || xR >= ${e.inHeight}) {
|
|
continue;
|
|
}
|
|
|
|
for (int yC = 0; yC < ${e.outWidth}; yC++) {
|
|
int xC = wC + yC * ${n} - ${r};
|
|
|
|
if (xC < 0 || xC >= ${e.inWidth}) {
|
|
continue;
|
|
}
|
|
|
|
float dyValue = getDy(b, yR, yC, d2);
|
|
float xValue = getX(b, xR, xC, d1);
|
|
dotProd += (xValue * dyValue);
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},pH=class{constructor(e){this.variableNames=["dy","W"],this.outputShape=e.inShape;let t=e.filterHeight,n=e.filterWidth,a=e.strideHeight,r=e.strideWidth,s=t-1-e.padInfo.top,i=n-1-e.padInfo.left,o=e.outChannels/e.inChannels;this.userCode=`
|
|
const ivec2 pads = ivec2(${s}, ${i});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int d1 = coords[3];
|
|
ivec2 dyCorner = coords.yz - pads;
|
|
int dyRCorner = dyCorner.x;
|
|
int dyCCorner = dyCorner.y;
|
|
|
|
float dotProd = 0.0;
|
|
|
|
for (int wR = 0; wR < ${t}; wR++) {
|
|
float dyR = float(dyRCorner + wR) / ${a}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
int wRPerm = ${t} - 1 - wR;
|
|
|
|
for (int wC = 0; wC < ${n}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${r}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
int wCPerm = ${n} - 1 - wC;
|
|
|
|
// TO DO: Vec4 over the channelMul
|
|
for (int dm = 0; dm < ${o}; dm++) {
|
|
int d2 = d1 * ${o} + dm;
|
|
float xValue = getDy(batch, idyR, idyC, d2);
|
|
float wValue = getW(wRPerm, wCPerm, d1, dm);
|
|
dotProd += xValue * wValue;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function cH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,dy:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,filterShape:d}=a,p=F.computeConv2DInfo(r.shape,d,i,o,l,u,!0),c=new dH(p);return n.runWebGLProgram(c,[r,s],"float32")}var hH={kernelName:nc,backendName:"webgl",kernelFunc:cH};function fH(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,filter:s}=t,{strides:i,dilations:o,pad:l,dimRoundingMode:u,inputShape:d}=a,p=F.computeConv2DInfo(d,s.shape,i,o,l,u,!0),c=new pH(p);return n.runWebGLProgram(c,[r,s],"float32")}var mH={kernelName:ac,backendName:"webgl",kernelFunc:fH},gH=class{constructor(e){this.variableNames=["X"],this.outputShape=[e,e],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;
|
|
setOutput(val);
|
|
}
|
|
`}};function yH(e){let{inputs:t,backend:n}=e,{x:a}=t,r=[...a.shape,...a.shape],s=k.sizeFromShape(a.shape),i=Ae({inputs:{x:a},backend:n,attrs:{shape:[s]}}),o=new gH(s),l=n.runWebGLProgram(o,[i],i.dtype),u=Ae({inputs:{x:l},backend:n,attrs:{shape:r}});return n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(l),u}var AH={kernelName:rc,backendName:"webgl",kernelFunc:yH},xH=class{constructor(e){this.variableNames=["x","W"],this.outputShape=e.outShape;let{inHeight:t,inWidth:n,padInfo:a,strideHeight:r,strideWidth:s,filterHeight:i,filterWidth:o,dilationHeight:l,dilationWidth:u}=e,{top:d,left:p}=a;this.userCode=`
|
|
const ivec2 strides = ivec2(${r}, ${s});
|
|
const ivec2 pads = ivec2(${d}, ${p});
|
|
const float neg_infinity = -3.4e38;
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int d1 = coords.w;
|
|
ivec2 outTopLeftCorner =
|
|
coords.yz * strides - pads;
|
|
int hBeg = outTopLeftCorner.x;
|
|
int wBeg = outTopLeftCorner.y;
|
|
|
|
float curVal = neg_infinity;
|
|
for (int h = 0; h < ${i}; h++) {
|
|
int hIn = hBeg + h * ${l};
|
|
|
|
if (hIn >= 0 && hIn < ${t}) {
|
|
for (int w = 0; w < ${o}; w++) {
|
|
int wIn = wBeg + w * ${u};
|
|
|
|
if (wIn >= 0 && wIn < ${n}) {
|
|
float xVal = getX(batch, hIn, wIn, d1);
|
|
float wVal = getW(h, w, d1);
|
|
|
|
float val = xVal + wVal;
|
|
if (val > curVal) {
|
|
curVal = val;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float result = curVal;
|
|
setOutput(result);
|
|
}
|
|
`}};function bH(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s}=t,{strides:i,pad:o,dilations:l}=a,u=F.computeDilation2DInfo(r.shape,s.shape,i,o,"NHWC",l),d,p=new xH(u);d=n.runWebGLProgram(p,[r,s],"float32");let c=Ae({inputs:{x:d},backend:n,attrs:{shape:u.outShape}});return n.disposeIntermediateTensorInfo(d),c}var vH={kernelName:_u,backendName:"webgl",kernelFunc:bH};function wH(e){let{inputs:t,backend:n,attrs:a}=e,{equation:r}=a,s=t,{allDims:i,summedDims:o,idDims:l}=F.decodeEinsumEquation(r,s.length);F.checkEinsumDimSizes(i.length,l,s);let{path:u,steps:d}=F.getEinsumComputePath(o,l),p=d.length,c=null,h=i.length,m=[];for(let f=0;f<p;++f){for(let g of d[f]){let{permutationIndices:y,expandDims:A}=F.getEinsumPermutation(h,l[g]),x;F.isIdentityPermutation(y)?x=s[g]:(x=bn({inputs:{x:s[g]},backend:n,attrs:{perm:y}}),m.push(x));let v=x.shape.slice();for(let b=0;b<A.length;++b)v.splice(A[b],0,1);k.arraysEqual(x.shape,v)||(x=Ae({inputs:{x},backend:n,attrs:{shape:v}}),m.push(x)),c===null?c=x:(c=qg({inputs:{a:x,b:c},backend:n}),m.push(c))}f<p-1&&(u[f]>=0&&(c=qh({inputs:{x:c},backend:n,attrs:{axis:u[f]-(i.length-h),keepDims:!1}}),m.push(c)),h--)}for(let f of m)f!==c&&n.disposeIntermediateTensorInfo(f);return c}var kH={kernelName:oc,backendName:"webgl",kernelFunc:wH},IH="return (x >= 0.0) ? x : (exp(x) - 1.0);",SH=`
|
|
vec4 result;
|
|
|
|
result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);
|
|
result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);
|
|
result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);
|
|
result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);
|
|
|
|
return result;
|
|
`,NH=Ze({opSnippet:IH,packedOpSnippet:SH}),TH={kernelName:Eo,backendName:"webgl",kernelFunc:NH},CH="return (b >= 1.0) ? a : a * (b + 1.0);",EH=`
|
|
vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));
|
|
return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));
|
|
`,RH=e=>{let{inputs:t,backend:n}=e,{dy:a,y:r}=t,s=te().getBool("WEBGL_PACK_BINARY_OPERATIONS")?new Dd(EH,a.shape,r.shape):new Zl(CH,a.shape,r.shape);return n.runWebGLProgram(s,[a,r],a.dtype)},MH={kernelName:lc,backendName:"webgl",kernelFunc:RH},FH=`
|
|
return vec4(equal(a, b));
|
|
`,$H="return float(a == b);",DH=sn({opSnippet:$H,packedOpSnippet:FH,dtype:"bool",cpuKernelImpl:wB}),OH={kernelName:Mo,backendName:"webgl",kernelFunc:DH},zH=`
|
|
// Error function is calculated approximately with elementary function.
|
|
// See "Handbook of Mathematical Functions with Formulas,
|
|
// Graphs, and Mathematical Tables", Abramowitz and Stegun.
|
|
float p = ${F.ERF_P};
|
|
float a1 = ${F.ERF_A1};
|
|
float a2 = ${F.ERF_A2};
|
|
float a3 = ${F.ERF_A3};
|
|
float a4 = ${F.ERF_A4};
|
|
float a5 = ${F.ERF_A5};
|
|
|
|
float sign = sign(x);
|
|
x = abs(x);
|
|
float t = 1.0 / (1.0 + p * x);
|
|
return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));
|
|
`,_H=Ze({opSnippet:zH}),PH={kernelName:Ro,backendName:"webgl",kernelFunc:_H},Xw="return exp(x);",Kw=Ze({opSnippet:Xw,packedOpSnippet:Xw,cpuKernelImpl:kB}),LH={kernelName:Ms,backendName:"webgl",kernelFunc:Kw};function Yg(e){let{inputs:t,attrs:n,backend:a}=e,{dim:r}=n,{input:s}=t,i=s.shape.length,o=s.shape.slice(),l=r;return r<0&&(k.assert(-(i+1)<=r,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+r+1),o.splice(l,0,1),Ae({inputs:{x:s},backend:a,attrs:{shape:o}})}var WH={kernelName:Fo,backendName:"webgl",kernelFunc:Yg},Zw="return exp(x) - 1.0;",BH=Ze({opSnippet:Zw,packedOpSnippet:Zw,cpuKernelImpl:IB}),VH={kernelName:$o,backendName:"webgl",kernelFunc:BH},Yw=class{constructor(e,t,n){this.variableNames=["real","imag"];let a=t[1];this.outputShape=t;let r=n?`2.0 * ${Math.PI}`:`-2.0 * ${Math.PI}`,s=n?`${a}.0`:"1.0",i;if(e==="real")i="return real * expR - imag * expI;";else if(e==="imag")i="return real * expI + imag * expR;";else throw new Error(`FFT component must be either "real" or "imag", got ${e}.`);this.userCode=`
|
|
const float exponentMultiplier = ${r};
|
|
|
|
float unaryOpComplex(float real, float expR, float imag, float expI) {
|
|
${i}
|
|
}
|
|
|
|
float mulMatDFT(int batch, int index) {
|
|
float indexRatio = float(index) / float(${a});
|
|
float exponentMultiplierTimesIndexRatio =
|
|
exponentMultiplier * indexRatio;
|
|
|
|
float result = 0.0;
|
|
|
|
for (int i = 0; i < ${a}; i++) {
|
|
// x = (-2|2 * PI / N) * index * i;
|
|
float x = exponentMultiplierTimesIndexRatio * float(i);
|
|
float expR = cos(x);
|
|
float expI = sin(x);
|
|
float real = getReal(batch, i);
|
|
float imag = getImag(batch, i);
|
|
|
|
result +=
|
|
unaryOpComplex(real, expR, imag, expI) / ${s};
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
setOutput(mulMatDFT(coords[0], coords[1]));
|
|
}
|
|
`}};function Jw(e,t,n){let a=n.texData.get(e.dataId),r=k.sizeFromShape(e.shape),s=e.shape[e.shape.length-1],i=r/s,o=Ae({inputs:{x:e},backend:n,attrs:{shape:[i,s]}}),l=o.shape,u=new Yw("real",l,t),d=new Yw("imag",l,t),p=[{dataId:a.complexTensorInfos.real.dataId,dtype:a.complexTensorInfos.real.dtype,shape:l},{dataId:a.complexTensorInfos.imag.dataId,dtype:a.complexTensorInfos.imag.dtype,shape:l}],c=n.runWebGLProgram(u,p,"float32"),h=n.runWebGLProgram(d,p,"float32"),m=Jr({inputs:{real:c,imag:h},backend:n});n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h);let f=Ae({inputs:{x:m},backend:n,attrs:{shape:e.shape}});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(m),f}function jH(e){let{inputs:t,backend:n}=e,{input:a}=t;return Jw(a,!1,n)}var UH={kernelName:uc,backendName:"webgl",kernelFunc:jH},HH=class{constructor(e,t){this.outputShape=[],this.variableNames=["x"],this.outputShape=e,this.userCode=`
|
|
uniform float value;
|
|
void main() {
|
|
// Input can be obtained from uniform value.
|
|
setOutput(value);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}};function Jg(e){let{backend:t,attrs:n}=e,{shape:a,value:r}=n,{dtype:s}=n;if(s=s||k.inferDtype(r),s==="string"){let i=k.getArrayFromDType(s,k.sizeFromShape(a));return i.fill(r),t.makeTensorInfo(a,s,i)}else{let i=new HH(a,r),o=i.getCustomSetupFunc(r);return t.runWebGLProgram(i,[],s,o)}}var GH={kernelName:Pu,backendName:"webgl",kernelFunc:Jg},qH=class{constructor(e){this.variableNames=["Image"],this.outputShape=[];let t=e[2];this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
|
|
int coordX = ${t} - x;
|
|
float outputValue;
|
|
if(coordX >= 0 && coordX < ${t}) {
|
|
outputValue = getImage(coords[0], coords[1], coordX, coords[3]);
|
|
} else {
|
|
outputValue = getImage(coords[0], coords[1], coords[2], coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}},XH={kernelName:Do,backendName:"webgl",kernelFunc:({inputs:e,backend:t})=>{let{image:n}=e,a=t,r=new qH(n.shape);return a.runWebGLProgram(r,[n],n.dtype)}},Qw="return floor(x);",KH=Ze({opSnippet:Qw,packedOpSnippet:Qw,cpuKernelImpl:SB}),ZH={kernelName:Fs,backendName:"webgl",kernelFunc:KH},YH=`
|
|
float s = sign(a) * sign(b);
|
|
int ia = round(a);
|
|
int ib = round(b);
|
|
if (ib != 0) {
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
return float(idiv(ia, ib, s));
|
|
} else {
|
|
return NAN;
|
|
}
|
|
`,JH=`
|
|
ivec4 ia = round(a);
|
|
ivec4 ib = round(b);
|
|
bvec4 cond = notEqual(ib, ivec4(0));
|
|
ivec4 result = ivec4(0);
|
|
vec4 s = sign(a) * sign(b);
|
|
|
|
// Windows (D3D) wants guaranteed non-zero int division at compile-time.
|
|
if (cond[0]) {
|
|
result[0] = idiv(ia[0], ib[0], s[0]);
|
|
}
|
|
if (cond[1]) {
|
|
result[1] = idiv(ia[1], ib[1], s[1]);
|
|
}
|
|
if (cond[2]) {
|
|
result[2] = idiv(ia[2], ib[2], s[2]);
|
|
}
|
|
if (cond[3]) {
|
|
result[3] = idiv(ia[3], ib[3], s[3]);
|
|
}
|
|
return vec4(result);
|
|
`,QH=sn({opSnippet:YH,packedOpSnippet:JH,dtype:"int32"}),eG={kernelName:$s,backendName:"webgl",kernelFunc:QH},tG=class{constructor(e){this.variableNames=["A"];let t=An(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
vec2 uv = (vec2(texC, texR) + halfCR) / vec2(${a}.0, ${n}.0);
|
|
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
setOutput(floor(value * 255.0 + 0.5));
|
|
}
|
|
`}},nG=class{constructor(e){this.variableNames=["A"],this.packedInputs=!1,this.packedOutput=!0;let t=An(),[n,a]=e;this.outputShape=e,this.userCode=`
|
|
void main() {
|
|
ivec3 coords = getOutputCoords();
|
|
int texR = coords[0];
|
|
int texC = coords[1];
|
|
int depth = coords[2];
|
|
|
|
vec4 result = vec4(0.);
|
|
|
|
for(int row=0; row<=1; row++) {
|
|
for(int col=0; col<=1; col++) {
|
|
texC = coords[1] + row;
|
|
depth = coords[2] + col;
|
|
|
|
vec2 uv = (vec2(texC, texR) + halfCR) /
|
|
vec2(${a}.0, ${n}.0);
|
|
vec4 values = ${t.texture2D}(A, uv);
|
|
float value;
|
|
if (depth == 0) {
|
|
value = values.r;
|
|
} else if (depth == 1) {
|
|
value = values.g;
|
|
} else if (depth == 2) {
|
|
value = values.b;
|
|
} else if (depth == 3) {
|
|
value = values.a;
|
|
}
|
|
|
|
result[row * 2 + col] = floor(value * 255.0 + 0.5);
|
|
}
|
|
}
|
|
|
|
${t.output} = result;
|
|
}
|
|
`}},aG={kernelName:Rc,backendName:"webgl",kernelFunc:rG},Jl;function rG(e){let{inputs:t,backend:n,attrs:a}=e,{pixels:r}=t,{numChannels:s}=a,i=typeof HTMLVideoElement!="undefined"&&r instanceof HTMLVideoElement,o=typeof HTMLImageElement!="undefined"&&r instanceof HTMLImageElement,[l,u]=i?[r.videoWidth,r.videoHeight]:[r.width,r.height],d=[u,l],p=[u,l,s];(o||i)&&(Jl==null&&(Jl=document.createElement("canvas").getContext("2d")),Jl.canvas.width=l,Jl.canvas.height=u,Jl.drawImage(r,0,0,l,u),r=Jl.canvas);let c=n.makeTensorInfo(d,"int32");n.texData.get(c.dataId).usage=da.PIXELS,n.gpgpu.uploadPixelDataToTexture(n.getTexture(c.dataId),r);let h=te().getBool("WEBGL_PACK")?new nG(p):new tG(p),m=n.runWebGLProgram(h,[c],"int32");return n.disposeData(c.dataId),m}function sG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dataFormat:d,dilations:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=a,f=F.convertConv2DDataFormat(d),g=F.computeConv2DInfo(r.shape,s.shape,l,p,u,c,!1,f),y,A=[];if(g.filterHeight===1&&g.filterWidth===1&&g.dilationHeight===1&&g.dilationWidth===1&&g.strideHeight===1&&g.strideWidth===1&&(g.padInfo.type==="SAME"||g.padInfo.type==="VALID"))y=Bw({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else if(te().getBool("WEBGL_CONV_IM2COL")&&r.shape[0]===1)y=Vw({x:r,filter:s,convInfo:g,backend:n,bias:i,activation:h,preluActivationWeights:o,leakyreluAlpha:m});else{let v=i!=null,b=o!=null,w=h==="leakyrelu",N=h?Hh(h,!1):null,C=new Ww(g,v,N,b,w),E=[r,s];if(i&&E.push(i),o&&E.push(o),w){let _=n.makeTensorInfo([],"float32",k.createScalarValue(m,"float32"));E.push(_),A.push(_)}y=n.runWebGLProgram(C,E,"float32")}let x=Ae({inputs:{x:y},backend:n,attrs:{shape:g.outShape}});return A.push(y),A.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var iG={kernelName:fi,backendName:"webgl",kernelFunc:sG};function oG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dimRoundingMode:p,activation:c,leakyreluAlpha:h}=a,m=[],f=d;f==null&&(f=[1,1]),k.assert(F.eitherStridesOrDilationsAreOne(l,f),()=>`Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides ${l} and dilations '${f}'`);let g=F.computeConv2DInfo(r.shape,s.shape,l,f,u,p,!0),y=te().getBool("WEBGL_PACK_DEPTHWISECONV")&&g.strideWidth<=2&&g.outChannels/g.inChannels==1,A=c?Hh(c,y):null,x=[r,s],v=i!=null,b=o!=null,w=c==="leakyrelu";if(v&&x.push(i),b&&x.push(o),w){let E=n.makeTensorInfo([],"float32",k.createScalarValue(h,"float32"));x.push(E),m.push(E)}let N;y?N=new qw(g,v,A,b,w):N=new Gw(g,v,A,b,w);let C=n.runWebGLProgram(N,x,"float32");return m.forEach(E=>n.disposeIntermediateTensorInfo(E)),C}var lG={kernelName:mi,backendName:"webgl",kernelFunc:oG},uG=class{constructor(e,t,n){this.sliceDim=e,this.strides=t,this.variableNames=["x","indices"],this.outputShape=n;let a=ut(t.length),r=ut(n.length),s=this.sliceDim>1?"strides[j]":"strides";this.userCode=`
|
|
${a} strides = ${a}(${this.strides});
|
|
void main() {
|
|
${r} coords = getOutputCoords();
|
|
int flattenIndex = 0;
|
|
for (int j = 0; j < ${this.sliceDim}; j++) {
|
|
int index = round(getIndices(coords[0], j));
|
|
flattenIndex += index * ${s};
|
|
}
|
|
setOutput(getX(flattenIndex, coords[1]));
|
|
}
|
|
`}};function dG(e){let{inputs:t,backend:n}=e,{params:a,indices:r}=t,s=r.shape,i=s[s.length-1],o=k.sizeFromShape(a.shape),[l,u,d,p]=F.prepareAndValidate(a,r),c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u,i]}}),h=Ae({inputs:{x:a},backend:n,attrs:{shape:[k.sizeFromShape(a.shape)/d,d]}});if(n.shouldExecuteOnCPU([a,r])||a.dtype==="string"){let y=n.readSync(r.dataId),A=n.bufferSync(a),x=NB(y,A,a.dtype,u,i,d,p,a.shape,o);return n.makeTensorInfo(l,a.dtype,x.values)}let m=new uG(i,p,[u,d]),f=n.runWebGLProgram(m,[h,c],h.dtype),g=Ae({inputs:{x:f},backend:n,attrs:{shape:l}});return n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(f),g}var pG={kernelName:zo,backendName:"webgl",kernelFunc:dG},cG=class{constructor(e,t){this.variableNames=["A","indices"],this.outputShape=t,this.rank=t.length;let n=ut(this.rank),a=hG(e,2);this.userCode=`
|
|
void main() {
|
|
${n} resRC = getOutputCoords();
|
|
setOutput(getA(${a}));
|
|
}
|
|
`}};function hG(e,t){let n=["resRC.x","resRC.y","resRC.z","resRC.w"],a=[];for(let r=0;r<e.length;r++)r===2?a.push("int(getIndices(resRC.x, resRC.z))"):a.push(`${n[r]}`);return a.join()}function fG(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,indices:s}=t,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=F.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=k.sizeFromShape(s.shape),p=[],c=Ae({inputs:{x:r},backend:n,attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]}}),h=Ae({inputs:{x:s},backend:n,attrs:{shape:[u.batchSize,d/u.batchSize]}});p.push(c),p.push(h);let m=[u.batchSize,u.outerSize,d/u.batchSize,u.sliceSize];if(n.shouldExecuteOnCPU([r,s])||r.dtype==="string"){let A=n.bufferSync(h),x=n.bufferSync(c),v=TB(x,A,m);return p.forEach(b=>n.disposeIntermediateTensorInfo(b)),n.makeTensorInfo(u.outputShape,v.dtype,v.values)}let f=new cG(c.shape,m),g=n.runWebGLProgram(f,[c,h],c.dtype);p.push(g);let y=Ae({inputs:{x:g},backend:n,attrs:{shape:u.outputShape}});return p.forEach(A=>n.disposeIntermediateTensorInfo(A)),y}var mG={kernelName:Oo,backendName:"webgl",kernelFunc:fG},gG="return float(a > b);",yG=`
|
|
return vec4(greaterThan(a, b));
|
|
`,AG=sn({opSnippet:gG,packedOpSnippet:yG,cpuKernelImpl:CB,dtype:"bool"}),xG={kernelName:_o,backendName:"webgl",kernelFunc:AG},bG="return float(a >= b);",vG=`
|
|
return vec4(greaterThanEqual(a, b));
|
|
`,wG=sn({opSnippet:bG,packedOpSnippet:vG,dtype:"bool",cpuKernelImpl:EB}),kG={kernelName:Os,backendName:"webgl",kernelFunc:wG};function IG(e){let{inputs:t,backend:n}=e,{input:a}=t;return Jw(a,!0,n)}var SG={kernelName:dc,backendName:"webgl",kernelFunc:IG},NG="return float(!isnan(x) && !isinf(x));",TG=Ze({opSnippet:NG,dtype:"bool"}),CG={kernelName:Po,backendName:"webgl",kernelFunc:TG},EG="return float(isinf(x));",RG=Ze({opSnippet:EG,dtype:"bool"}),MG={kernelName:Lo,backendName:"webgl",kernelFunc:RG},FG="return float(isnan(x));",$G=Ze({opSnippet:FG,dtype:"bool"}),DG={kernelName:Wo,backendName:"webgl",kernelFunc:$G},OG="return float(a < b);",zG=`
|
|
return vec4(lessThan(a, b));
|
|
`,_G=sn({opSnippet:OG,packedOpSnippet:zG,cpuKernelImpl:RB,dtype:"bool"}),PG={kernelName:Bo,backendName:"webgl",kernelFunc:_G},LG="return float(a <= b);",WG=`
|
|
return vec4(lessThanEqual(a, b));
|
|
`,BG=sn({opSnippet:LG,packedOpSnippet:WG,cpuKernelImpl:MB,dtype:"bool"}),VG={kernelName:Vo,backendName:"webgl",kernelFunc:BG};function jG(e){let{backend:t,attrs:n}=e,{start:a,stop:r,num:s}=n,i=FB(a,r,s);return t.makeTensorInfo([i.length],"float32",i)}var UG={kernelName:cc,backendName:"webgl",kernelFunc:jG},HG=`if (x < 0.0) return NAN;
|
|
return log(x);`,GG=`
|
|
vec4 result = log(x);
|
|
vec4 isNaN = vec4(lessThan(x, vec4(0.0)));
|
|
result.r = isNaN.r == 1.0 ? NAN : result.r;
|
|
result.g = isNaN.g == 1.0 ? NAN : result.g;
|
|
result.b = isNaN.b == 1.0 ? NAN : result.b;
|
|
result.a = isNaN.a == 1.0 ? NAN : result.a;
|
|
|
|
return result;
|
|
`,qG=Ze({opSnippet:HG,packedOpSnippet:GG,cpuKernelImpl:$B}),XG={kernelName:Ps,backendName:"webgl",kernelFunc:qG},KG="return log(1.0 + x);",ZG=Ze({opSnippet:KG}),YG={kernelName:jo,backendName:"webgl",kernelFunc:ZG},JG="return float(a >= 1.0 && b >= 1.0);",QG=`
|
|
return vec4(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) *
|
|
vec4(greaterThanEqual(b, vec4(1.0))));
|
|
`,eq=sn({opSnippet:JG,packedOpSnippet:QG,dtype:"bool"}),tq={kernelName:Uo,backendName:"webgl",kernelFunc:eq},nq="return float(!(x >= 1.0));",aq=Ze({opSnippet:nq}),rq={kernelName:Lu,backendName:"webgl",kernelFunc:aq},sq="return float(a >= 1.0 || b >= 1.0);",iq=`
|
|
return min(
|
|
vec4(greaterThanEqual(a, vec4(1.0))) +
|
|
vec4(greaterThanEqual(b, vec4(1.0))),
|
|
vec4(1.0));
|
|
`,oq=sn({opSnippet:sq,packedOpSnippet:iq,dtype:"bool"}),lq={kernelName:Wu,backendName:"webgl",kernelFunc:oq},uq=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[];let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
int d = coords[3];
|
|
float x = getX(b, r, c, d);
|
|
float sum = 0.0;
|
|
for (int j = -${s}; j <= ${s}; j++) {
|
|
int idx = d + j;
|
|
if (idx >= 0 && idx <= ${i}) {
|
|
float z = getX(b, r, c, idx);
|
|
sum += z * z;
|
|
}
|
|
}
|
|
float val = x * ${o};
|
|
setOutput(val);
|
|
}
|
|
`}},dq=class{constructor(e,t,n,a,r){this.variableNames=["x"],this.outputShape=[],this.packedInputs=!0,this.packedOutput=!0;let s=t,i=e[3]-1;this.outputShape=e;let o,l=`float(${n}) + float(${a}) * sum`;r===.5?o=`inversesqrt(${l})`:r===1?o=`1.0/(${l})`:o=`exp(log(${l}) * float(-${r}));`,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords.x;
|
|
int r = coords.y;
|
|
int c = coords.z;
|
|
int d = coords.w;
|
|
|
|
bool hasNextCol = d < ${this.outputShape[3]};
|
|
bool hasNextRow = c < ${this.outputShape[2]};
|
|
|
|
vec4 sum = vec4(0.);
|
|
vec4 xFragAtOutputCoords = getX(b, r, c, d);
|
|
|
|
vec4 xAtOutputCoords = vec4(
|
|
getChannel(xFragAtOutputCoords, vec2(c, d)),
|
|
hasNextCol ?
|
|
getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,
|
|
hasNextRow ?
|
|
getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0
|
|
);
|
|
|
|
int firstChannel = d - ${s};
|
|
vec2 cache = vec2(0.);
|
|
if(firstChannel >= 0){
|
|
vec4 firstChannelFrag = getX(b, r, c, firstChannel);
|
|
cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));
|
|
if(hasNextRow){
|
|
cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));
|
|
}
|
|
}
|
|
|
|
ivec2 depth = ivec2(d, d + 1);
|
|
for (int j = - ${s}; j <= ${s}; j++) {
|
|
ivec2 idx = depth + j;
|
|
bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));
|
|
bvec2 belowUpperBound = lessThanEqual(idx, ivec2(${i}));
|
|
|
|
bool depthInRange = aboveLowerBound.x && belowUpperBound.x;
|
|
bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;
|
|
|
|
if(depthInRange || depthPlusOneInRange){
|
|
vec4 z = vec4(0.);
|
|
vec4 xFragAtCurrentDepth;
|
|
z.xz = cache.xy;
|
|
if(depthPlusOneInRange && hasNextCol){
|
|
xFragAtCurrentDepth = idx.y != d ?
|
|
getX(b, r, c, idx.y) : xFragAtOutputCoords;
|
|
z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));
|
|
if(hasNextRow){
|
|
z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));
|
|
}
|
|
}
|
|
cache.xy = z.yw;
|
|
sum += z * z;
|
|
}
|
|
}
|
|
vec4 result = xAtOutputCoords * ${o};
|
|
setOutput(result);
|
|
}
|
|
`}},pq=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{depthRadius:s,bias:i,alpha:o,beta:l}=a,u=te().getBool("WEBGL_PACK_NORMALIZATION")?new dq(r.shape,s,i,o,l):new uq(r.shape,s,i,o,l);return n.runWebGLProgram(u,[r],r.dtype)},cq={kernelName:Bu,backendName:"webgl",kernelFunc:pq},hq=class{constructor(e,t,n,a,r){this.variableNames=["inputImage","outputImage","dy"],this.outputShape=[],this.outputShape=e,this.depth=e[3],this.depthRadius=t,this.bias=n,this.alpha=a,this.beta=r,this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float result = 0.0;
|
|
for (int d = 0; d < ${this.depth}; ++d) {
|
|
int depthBegin = int(max(0.0, float(d - ${t})));
|
|
int depthEnd = int(min(float(${this.depth}),
|
|
float(d + ${t} + 1)));
|
|
|
|
const int MIN_DEPTH_BEGIN = 0;
|
|
const int MAX_DEPTH_END = ${this.depth};
|
|
|
|
float norm = 0.0;
|
|
for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd) {
|
|
norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
norm = float(${a}) * norm + float(${n});
|
|
|
|
for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){
|
|
if (k < depthBegin){
|
|
continue;
|
|
}
|
|
else if (k >= depthBegin && k < depthEnd){
|
|
float dyi = -2.0 * float(${a})
|
|
* float(${r})
|
|
* getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)
|
|
/ norm;
|
|
if (k == d) {
|
|
dyi += pow(norm, -1.0 * ${r});
|
|
}
|
|
if (k == coords[3]) {
|
|
dyi *= getDy(b, r, c, d);
|
|
result += dyi;
|
|
}
|
|
}
|
|
else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`}},fq=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r,y:s,dy:i}=t,{depthRadius:o,bias:l,alpha:u,beta:d}=a,p=new hq(r.shape,o,l,u,d);return n.runWebGLProgram(p,[r,s,i],r.dtype)},mq={kernelName:hc,backendName:"webgl",kernelFunc:fq};function gq(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Wi(i,e.dtype,"max",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}function e6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reductionIndices:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=F.getAxesPermutation(u,o),p=d!=null,c=n.shouldExecuteOnCPU([r]),h=r;if(p){if(c){let A=n.texData.get(h.dataId).values,x=new Array(o);for(let w=0;w<x.length;w++)x[w]=r.shape[d[w]];let v=Hg(A,r.shape,r.dtype,d,x);h=n.makeTensorInfo(x,r.dtype);let b=n.texData.get(h.dataId);b.values=v}else h=Gh(r,d,n);u=F.getInnerMostAxes(u.length,o)}F.assertAxesAreInnerMostDims("max",u,o);let[m,f]=F.computeOutAndReduceShapes(h.shape,u),g=m;i&&(g=F.expandShapeToKeepDim(m,l));let y;if(c){let A=n.texData.get(h.dataId).values,x=DB(A,k.sizeFromShape(f),g,r.dtype);y=n.makeTensorInfo(g,r.dtype);let v=n.texData.get(y.dataId);v.values=x}else y=gq(h,f,g,n);return p&&n.disposeIntermediateTensorInfo(h),y}var yq={kernelName:Ls,backendName:"webgl",kernelFunc:e6},Aq=xw+`
|
|
return max(a, b);
|
|
`,xq=`
|
|
vec4 result = vec4(max(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Uh+`
|
|
return result;
|
|
`,bq=sn({opSnippet:Aq,packedOpSnippet:xq,cpuKernelImpl:OB}),vq={kernelName:Ws,backendName:"webgl",kernelFunc:bq};function wq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t;jl(r,"maxPool");let{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=a,u=1;k.assert(F.eitherStridesOrDilationsAreOne(i,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${i} and dilations '${u}'`);let d=F.computePool2DInfo(r.shape,s,i,u,o,l);if(d.filterWidth===1&&d.filterHeight===1&&k.arraysEqual(d.inShape,d.outShape))return Xn({inputs:{x:r},backend:n});let p=new Od(d,"max",!1);return n.runWebGLProgram(p,[r],r.dtype)}var kq={kernelName:Bs,backendName:"webgl",kernelFunc:wq};function Iq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{filterSize:s,strides:i,pad:o,dataFormat:l,dimRoundingMode:u}=a,d=[1,1,1],p=F.computePool3DInfo(r.shape,s,i,d,o,u,l),c=new Xg(p,"max",!1);return n.runWebGLProgram(c,[r],r.dtype)}var Sq={kernelName:Vu,backendName:"webgl",kernelFunc:Iq},Nq=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideHeight,n=e.strideWidth,a=e.dilationHeight,r=e.effectiveFilterHeight,s=e.effectiveFilterWidth,i=r-1-e.padInfo.top,o=s-1-e.padInfo.left,l=r*s-1;this.userCode=`
|
|
const ivec2 pads = ivec2(${i}, ${o});
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
|
|
ivec2 dyRCCorner = coords.yz - pads;
|
|
int dyRCorner = dyRCCorner.x;
|
|
int dyCCorner = dyRCCorner.y;
|
|
|
|
// Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
for (int wR = 0; wR < ${r};
|
|
wR += ${a}) {
|
|
float dyR = float(dyRCorner + wR) / ${t}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 || fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${s}; wC++) {
|
|
float dyC = float(dyCCorner + wC) / ${n}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(b, idyR, idyC, d);
|
|
int maxPosValue = ${l} - int(getMaxPos(b, idyR, idyC, d));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue = wR * ${s} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}},Tq=class{constructor(e){this.variableNames=["dy","maxPos"],this.outputShape=e.inShape;let t=e.strideDepth,n=e.strideHeight,a=e.strideWidth,r=e.dilationDepth,s=e.dilationHeight,i=e.dilationWidth,o=e.effectiveFilterDepth,l=e.effectiveFilterHeight,u=e.effectiveFilterWidth,d=o-1-e.padInfo.front,p=l-1-e.padInfo.top,c=u-1-e.padInfo.left,h=o*l*u-1;this.userCode=`
|
|
const ivec3 pads = ivec3(${d}, ${p}, ${c});
|
|
|
|
void main() {
|
|
ivec5 coords = getOutputCoords();
|
|
int batch = coords.x;
|
|
int ch = coords.u;
|
|
|
|
ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;
|
|
int dyDCorner = dyCorner.x;
|
|
int dyRCorner = dyCorner.y;
|
|
int dyCCorner = dyCorner.z;
|
|
|
|
// Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get
|
|
// dx(xD, xR, xC, ch).
|
|
// ? = to be determined. : = across all values in that axis.
|
|
float dotProd = 0.0;
|
|
|
|
for (int wD = 0; wD < ${o};
|
|
wD += ${r}) {
|
|
float dyD = float(dyDCorner + wD) / ${t}.0;
|
|
|
|
if (dyD < 0.0 || dyD >= ${e.outDepth}.0 || fract(dyD) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyD = int(dyD);
|
|
|
|
for (int wR = 0; wR < ${l};
|
|
wR += ${s}) {
|
|
float dyR = float(dyRCorner + wR) / ${n}.0;
|
|
|
|
if (dyR < 0.0 || dyR >= ${e.outHeight}.0 ||
|
|
fract(dyR) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyR = int(dyR);
|
|
|
|
for (int wC = 0; wC < ${u};
|
|
wC += ${i}) {
|
|
float dyC = float(dyCCorner + wC) / ${a}.0;
|
|
|
|
if (dyC < 0.0 || dyC >= ${e.outWidth}.0 ||
|
|
fract(dyC) > 0.0) {
|
|
continue;
|
|
}
|
|
int idyC = int(dyC);
|
|
|
|
float dyValue = getDy(batch, idyD, idyR, idyC, ch);
|
|
int maxPosValue = ${h} -
|
|
int(getMaxPos(batch, idyD, idyR, idyC, ch));
|
|
|
|
// Get the current value, check it against the value from the
|
|
// position matrix.
|
|
int curPosValue =
|
|
wD * ${l} * ${u} +
|
|
wR * ${u} + wC;
|
|
float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);
|
|
|
|
dotProd += dyValue * mask;
|
|
}
|
|
}
|
|
}
|
|
setOutput(dotProd);
|
|
}
|
|
`}};function Cq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s}=t,i=s,{filterSize:o,strides:l,pad:u,dimRoundingMode:d}=a,p=[1,1,1],c=F.computePool3DInfo(i.shape,o,l,p,u,d),h=new Xg(c,"max",!0),m=n.runWebGLProgram(h,[i],i.dtype),f=new Tq(c),g=n.runWebGLProgram(f,[r,m],i.dtype);return n.disposeIntermediateTensorInfo(m),g}var Eq={kernelName:mc,backendName:"webgl",kernelFunc:Cq};function Rq(e){let{inputs:t,backend:n,attrs:a}=e,{dy:r,input:s,output:i}=t,o=s;jl([s,i],"maxPoolGrad");let{filterSize:l,strides:u,pad:d,dimRoundingMode:p}=a,c=F.computePool2DInfo(o.shape,l,u,1,d,p),h=!0,m=new Od(c,"max",h),f=n.runWebGLProgram(m,[o],o.dtype),g=new Nq(c),y=n.runWebGLProgram(g,[r,f],o.dtype);return n.disposeIntermediateTensorInfo(f),y}var Mq={kernelName:fc,backendName:"webgl",kernelFunc:Rq};function Fq(e,t,n,a){let r=new Od(n,"max",!1),s=a.runWebGLProgram(r,[e],"float32");r=new Od(n,"max",!0,!0,t);let i=a.runWebGLProgram(r,[e],"float32");return[s,i]}var $q={kernelName:gc,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{filterSize:r,strides:s,pad:i,includeBatchInIndex:o}=t,l=n;k.assert(a.shape.length===4,()=>`Error in maxPool: input must be rank 4 but got rank ${a.shape.length}.`);let u=[1,1];k.assert(F.eitherStridesOrDilationsAreOne(s,u),()=>`Error in maxPool: Either strides or dilations must be 1. Got strides ${s} and dilations '${u}'`);let d=F.computePool2DInfo(a.shape,r,s,u,i),[p,c]=Fq(a,o,d,l);return[p,c]}};function Dq(e,t,n,a){let r=k.sizeFromShape(t),s=k.sizeFromShape(e.shape)/r,i=Ae({inputs:{x:e},attrs:{shape:[s,r]},backend:a}),o=Wi(i,"float32","mean",a),l=Ae({inputs:{x:o},attrs:{shape:n},backend:a});return a.disposeIntermediateTensorInfo(i),a.disposeIntermediateTensorInfo(o),l}var Oq={kernelName:Vs,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{x:a}=e,{keepDims:r,axis:s}=t,i=n,o=a.shape.length,l=k.parseAxisParam(s,a.shape),u=l,d=F.getAxesPermutation(u,o),p=d!=null,c=i.shouldExecuteOnCPU([a]),h=[],m=a;if(p){if(c){let x=i.texData.get(m.dataId).values,v=new Array(o);for(let N=0;N<v.length;N++)v[N]=a.shape[d[N]];let b=Hg(x,a.shape,a.dtype,d,v);m=i.makeTensorInfo(v,a.dtype);let w=i.texData.get(m.dataId);w.values=b}else m=Gh(a,d,i);h.push(m),u=F.getInnerMostAxes(u.length,o)}F.assertAxesAreInnerMostDims("sum",u,o);let[f,g]=F.computeOutAndReduceShapes(m.shape,u),y=f;r&&(y=F.expandShapeToKeepDim(f,l));let A=Dq(m,g,y,i);for(let x of h)i.disposeIntermediateTensorInfo(x);return A}};function zq(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=k.parseAxisParam(s,r.shape),u=l,d=F.getAxesPermutation(u,o),p=r;d!=null&&(p=bn({inputs:{x:r},backend:n,attrs:{perm:d}}),u=F.getInnerMostAxes(u.length,r.shape.length)),F.assertAxesAreInnerMostDims("min",u,o);let[c,h]=F.computeOutAndReduceShapes(p.shape,u),m=k.sizeFromShape(h),f=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,m]}}),g=Wi(f,f.dtype,"min",n),y;if(i){let A=F.expandShapeToKeepDim(c,l);y=Ae({inputs:{x:g},backend:n,attrs:{shape:A}})}else y=Ae({inputs:{x:g},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(f),n.disposeIntermediateTensorInfo(g),d!=null&&n.disposeIntermediateTensorInfo(p),y}var _q={kernelName:js,backendName:"webgl",kernelFunc:zq},Pq=xw+`
|
|
return min(a, b);
|
|
`,Lq=`
|
|
vec4 result = vec4(min(a, b));
|
|
vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));
|
|
`+Uh+`
|
|
return result;
|
|
`,Wq=sn({opSnippet:Pq,packedOpSnippet:Lq,cpuKernelImpl:zB}),Bq={kernelName:Us,backendName:"webgl",kernelFunc:Wq},Vq=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((u,d)=>u[0]+e[d]+u[1]);let a=e.length,r=ut(a),s=t.map(u=>u[0]).join(","),i=t.map((u,d)=>u[0]+e[d]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a),l=n==="reflect"?0:1;if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start) {
|
|
outC = start * 2 - outC - ${l};
|
|
} else if(outC >= end) {
|
|
outC = (end - 1) * 2 - outC + ${l};
|
|
}
|
|
setOutput(getX(outC - start));
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
for (int i = 0; i < ${a}; i++) {
|
|
if (outC[i] < start[i]) {
|
|
outC[i] = start[i] * 2 - outC[i] - ${l};
|
|
} else if(outC[i] >= end[i]) {
|
|
outC[i] = (end[i] - 1) * 2 - outC[i] + ${l};
|
|
}
|
|
}
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
`}},jq=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((h,m)=>h[0]+e[m]+h[1]);let a=e.length,r=ut(a),s=t.map(h=>h[0]).join(","),i=t.map((h,m)=>h[0]+e[m]).join(","),o=xn("rc",a),l=xn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=n==="reflect"?0:1,c="";if(a===1){let h=`
|
|
${r} source = rc;
|
|
if (source < start) {
|
|
source = start * 2 - source - ${p};
|
|
} else if (source >= end) {
|
|
source = (end - 1) * 2 - source + ${p};
|
|
}
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`}else{let h=`
|
|
${r} source = rc;
|
|
${r} lt = ${r}(lessThan(source, start));
|
|
${r} gte = ${r}(greaterThanEqual(source, end));
|
|
${r} orig = 1 - (lt + gte);
|
|
source = orig * source +
|
|
lt * (start * 2 - source - ${p}) +
|
|
gte * ((end - 1) * 2 - source + ${p});
|
|
source -= start;
|
|
`;c=`
|
|
${r} rc = outputLoc;
|
|
${h}
|
|
result[0] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[1] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {
|
|
${h}
|
|
result[2] = getChannel(getX(${l.join()}), ${d});
|
|
${o[a-1]} += 1;
|
|
if(${u}) {
|
|
${h}
|
|
result[3] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
}
|
|
`}this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${c}
|
|
setOutput(result);
|
|
}
|
|
`}},Uq=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{paddings:r,mode:s}=n,i=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new jq(a.shape,r,s):new Vq(a.shape,r,s);return t.runWebGLProgram(i,[a],a.dtype)},Hq={kernelName:Hs,backendName:"webgl",kernelFunc:Uq},Gq=`if (b == 0.0) return NAN;
|
|
return mod(a, b);`,qq=`
|
|
vec4 result = mod(a, b);
|
|
vec4 isNaN = vec4(equal(b, vec4(0.0)));
|
|
`+Uh+`
|
|
return result;
|
|
`,Xq=sn({opSnippet:Gq,packedOpSnippet:qq}),Kq={kernelName:Ho,backendName:"webgl",kernelFunc:Xq},Zq=class{constructor(e,t,n){this.variableNames=["probs"],this.outputShape=[e,n],this.userCode=`
|
|
uniform float seed;
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
|
|
float r = random(seed);
|
|
float cdf = 0.0;
|
|
|
|
for (int i = 0; i < ${t-1}; i++) {
|
|
cdf += getProbs(batch, i);
|
|
|
|
if (r < cdf) {
|
|
setOutput(float(i));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If no other event happened, last event happened.
|
|
setOutput(float(${t-1}));
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.seedLoc==null&&(this.seedLoc=t.getUniformLocation(n,"seed")),t.gl.uniform1f(this.seedLoc,e)}}},Yq=`
|
|
if (a == b) {
|
|
return 1.0;
|
|
};
|
|
return a / b;`,Jq=`
|
|
// vec4 one = vec4(equal(a, b));
|
|
// return one + (vec4(1.0) - one) * a / b;
|
|
vec4 result = a / b;
|
|
if(a.x == b.x) {
|
|
result.x = 1.;
|
|
}
|
|
if(a.y == b.y) {
|
|
result.y = 1.;
|
|
}
|
|
if(a.z == b.z) {
|
|
result.z = 1.;
|
|
}
|
|
if(a.w == b.w) {
|
|
result.w = 1.;
|
|
}
|
|
|
|
return result;
|
|
`,t6=sn({opSnippet:Yq,packedOpSnippet:Jq,checkOutOfBounds:!0}),Qq={kernelName:Rs,backendName:"webgl",kernelFunc:t6},n6="return a - b;",a6=sn({opSnippet:n6,packedOpSnippet:n6,supportsComplex:!0,cpuKernelImpl:ZB}),eX={kernelName:ui,backendName:"webgl",kernelFunc:a6};function r6(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{dim:s}=a,i=k.parseAxisParam([s],r.shape),o=e6({inputs:{x:r},backend:n,attrs:{reductionIndices:i,keepDims:!1}}),l=F.expandShapeToKeepDim(o.shape,i),u=Ae({inputs:{x:o},backend:n,attrs:{shape:l}}),d=a6({inputs:{a:r,b:u},backend:n}),p=Kw({inputs:{x:d},backend:n}),c=qh({inputs:{x:p},backend:n,attrs:{axis:i,keepDims:!1}}),h=Ae({inputs:{x:c},backend:n,attrs:{shape:l}}),m=t6({inputs:{a:p,b:h},backend:n});return n.disposeIntermediateTensorInfo(o),n.disposeIntermediateTensorInfo(u),n.disposeIntermediateTensorInfo(d),n.disposeIntermediateTensorInfo(p),n.disposeIntermediateTensorInfo(c),n.disposeIntermediateTensorInfo(h),m}var tX={kernelName:oi,backendName:"webgl",kernelFunc:r6};function nX(e){let{inputs:t,backend:n,attrs:a}=e,{logits:r}=t,{numSamples:s,seed:i,normalized:o}=a,l=o?r:r6({inputs:{logits:r},backend:n,attrs:{dim:r.shape.length-1}}),u=l.shape[0],d=l.shape[1],p=new Zq(u,d,s),c=p.getCustomSetupFunc(i),h=n.runWebGLProgram(p,[l],"int32",c);return o||n.disposeIntermediateTensorInfo(l),h}var aX={kernelName:yc,backendName:"webgl",kernelFunc:nX},s6="return -x;";function rX(e){let{inputs:t,backend:n}=e,{x:a}=t;if(n.shouldExecuteOnCPU([a])){let s=n.texData.get(a.dataId),[i,o]=PB(s.values,a.shape,a.dtype);return n.makeTensorInfo(o,a.dtype,i)}let r;return te().getBool("WEBGL_PACK_UNARY_OPERATIONS")?r=new Xl(a.shape,s6):r=new Yr(a.shape,s6),n.runWebGLProgram(r,[a],a.dtype)}var sX={kernelName:Go,backendName:"webgl",kernelFunc:rX},iX=Za.nonMaxSuppressionV3Impl;function oX(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l}=a,u=n.readSync(r.dataId),d=n.readSync(s.dataId),{selectedIndices:p}=iX(u,d,i,o,l);return n.makeTensorInfo([p.length],"int32",new Int32Array(p))}var lX={kernelName:Xo,backendName:"webgl",kernelFunc:oX},uX=Za.nonMaxSuppressionV4Impl;function dX(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,padToMaxOutputSize:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),{selectedIndices:c,validOutputs:h}=uX(d,p,i,o,l,u);return[n.makeTensorInfo([c.length],"int32",new Int32Array(c)),n.makeTensorInfo([],"int32",new Int32Array([h]))]}var pX={kernelName:Ko,backendName:"webgl",kernelFunc:dX},cX=Za.nonMaxSuppressionV5Impl;function hX(e){F.warn("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead");let{inputs:t,backend:n,attrs:a}=e,{boxes:r,scores:s}=t,{maxOutputSize:i,iouThreshold:o,scoreThreshold:l,softNmsSigma:u}=a,d=n.readSync(r.dataId),p=n.readSync(s.dataId),c=i,h=o,m=l,f=u,{selectedIndices:g,selectedScores:y}=cX(d,p,c,h,m,f);return[n.makeTensorInfo([g.length],"int32",new Int32Array(g)),n.makeTensorInfo([y.length],"float32",new Float32Array(y))]}var fX={kernelName:Zo,backendName:"webgl",kernelFunc:hX},mX=class{constructor(e,t,n,a){this.variableNames=["indices"],this.outputShape=[e,t],this.userCode=`
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int index = round(getIndices(coords.x));
|
|
setOutput(mix(float(${a}), float(${n}),
|
|
float(index == coords.y)));
|
|
}
|
|
`}},gX=e=>{let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=k.sizeFromShape(r.shape),u=new mX(l,s,i,o),d=Ae({inputs:{x:r},backend:n,attrs:{shape:[l]}}),p=n.runWebGLProgram(u,[d],r.dtype);n.disposeIntermediateTensorInfo(d);let c=[...r.shape,s],h=Ae({inputs:{x:p},backend:n,attrs:{shape:c}});return n.disposeIntermediateTensorInfo(p),h},yX={kernelName:qs,backendName:"webgl",kernelFunc:gX};function Jh(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="complex64"){let r=_d({inputs:{input:a},backend:n}),s=Jh({inputs:{x:r},backend:n}),i=Yh({inputs:{input:a},backend:n}),o=Jh({inputs:{x:i},backend:n}),l=Jr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Jg({attrs:{shape:a.shape,dtype:a.dtype,value:a.dtype==="string"?"":0},backend:n})}var AX={kernelName:fl,backendName:"webgl",kernelFunc:Jh};function i6(e){let{inputs:t,backend:n}=e,{x:a}=t;if(a.dtype==="string")throw new Error("onesLike is not supported under string dtype");if(a.dtype==="complex64"){let r=_d({inputs:{input:a},backend:n}),s=i6({inputs:{x:r},backend:n}),i=Yh({inputs:{input:a},backend:n}),o=Jh({inputs:{x:i},backend:n}),l=Jr({inputs:{real:s,imag:o},backend:n});return n.disposeIntermediateTensorInfo(r),n.disposeIntermediateTensorInfo(s),n.disposeIntermediateTensorInfo(i),n.disposeIntermediateTensorInfo(o),l}else return Jg({attrs:{shape:a.shape,dtype:a.dtype,value:1},backend:n})}var xX={kernelName:Yo,backendName:"webgl",kernelFunc:i6};function bX(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return Yg({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=Yg({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=Lw({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeIntermediateTensorInfo(d)),u}var vX={kernelName:Jo,backendName:"webgl",kernelFunc:bX},wX=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=t.map((l,u)=>l[0]+e[u]+l[1]);let a=e.length,r=ut(a),s=t.map(l=>l[0]).join(","),i=t.map((l,u)=>l[0]+e[u]).join(","),o=["coords[0]","coords[1]","coords[2]","coords[3]"].slice(0,a);if(a===1){this.userCode=`
|
|
int start = ${s};
|
|
int end = ${i};
|
|
uniform float value;
|
|
|
|
void main() {
|
|
int outC = getOutputCoords();
|
|
if (outC < start || outC >= end) {
|
|
setOutput(value);
|
|
} else {
|
|
setOutput(getX(outC - start));
|
|
}
|
|
}
|
|
`;return}this.userCode=`
|
|
${r} start = ${r}(${s});
|
|
${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outC = getOutputCoords();
|
|
if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {
|
|
setOutput(value);
|
|
} else {
|
|
${r} coords = outC - start;
|
|
setOutput(getX(${o}));
|
|
}
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},kX=class{constructor(e,t,n){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=t.map((m,f)=>m[0]+e[f]+m[1]);let a=e.length,r=ut(a),s=t.map(m=>m[0]).join(","),i=t.map((m,f)=>m[0]+e[f]).join(","),o=xn("rc",a),l=xn("source",a),u=`${o[a-1]} < ${this.outputShape[a-1]}`,d=a===1?"source":`vec2(${l.slice(-2).join()})`,p=[`${r} rc = outputLoc;`,`${o[a-1]} += 1;
|
|
if(${u}) {
|
|
`,a===1?"":`}
|
|
rc = outputLoc;
|
|
${o[a-2]} += 1;
|
|
if(${o[a-2]} < ${this.outputShape[a-2]}) {`,a===1?"":` ${o[a-1]} += 1;
|
|
if(${u}) {`],c=a===1?"rc < start || rc >= end":"any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))",h="";for(let m=0,f=a===1?2:4;m<f;m++)h+=`
|
|
${p[m]}
|
|
if (${c}) {
|
|
result[${m}] = float(value);
|
|
} else {
|
|
${r} source = rc - start;
|
|
result[${m}] = getChannel(getX(${l.join()}), ${d});
|
|
}
|
|
`;h+=a===1?"} ":"}}",this.userCode=`
|
|
const ${r} start = ${r}(${s});
|
|
const ${r} end = ${r}(${i});
|
|
uniform float value;
|
|
|
|
void main() {
|
|
${r} outputLoc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
${h}
|
|
setOutput(result);
|
|
}
|
|
`}getCustomSetupFunc(e){return(t,n)=>{this.valueLoc==null&&(this.valueLoc=t.getUniformLocationNoThrow(n,"value")),t.gl.uniform1f(this.valueLoc,e)}}},o6=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{paddings:s,constantValue:i}=a,o=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new kX(r.shape,s,i):new wX(r.shape,s,i),l=o.getCustomSetupFunc(i);return n.runWebGLProgram(o,[r],r.dtype,l)},IX={kernelName:Xs,backendName:"webgl",kernelFunc:o6},SX=`
|
|
if(a < 0.0 && floor(b) < b){
|
|
return NAN;
|
|
}
|
|
if (b == 0.0) {
|
|
return 1.0;
|
|
}
|
|
return (round(mod(b, 2.0)) != 1) ?
|
|
pow(abs(a), b) : sign(a) * pow(abs(a), b);
|
|
`,NX=`
|
|
// isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.
|
|
vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));
|
|
vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);
|
|
vec4 result = multiplier * pow(abs(a), b);
|
|
|
|
// Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS
|
|
bvec4 isExpZero = equal(b, vec4(0.0));
|
|
result.r = isExpZero.r ? 1.0 : result.r;
|
|
result.g = isExpZero.g ? 1.0 : result.g;
|
|
result.b = isExpZero.b ? 1.0 : result.b;
|
|
result.a = isExpZero.a ? 1.0 : result.a;
|
|
|
|
vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));
|
|
`+Uh+`
|
|
return result;
|
|
`,TX=sn({opSnippet:SX,packedOpSnippet:NX}),CX={kernelName:Ks,backendName:"webgl",kernelFunc:TX};function EX(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,keepDims:i}=a,o=r.shape.length,l=[],u=k.parseAxisParam(s,r.shape),d=u,p=F.getAxesPermutation(d,o),c=r;p!=null&&(c=bn({inputs:{x:r},backend:n,attrs:{perm:p}}),d=F.getInnerMostAxes(d.length,o),l.push(c)),F.assertAxesAreInnerMostDims("prod",d,o);let h;if(n.shouldExecuteOnCPU([c])){let m=n.texData.get(c.dataId).values,{outVals:f,outShape:g,outDtype:y}=WB(c.shape,c.dtype,m,d);h=n.makeTensorInfo(g,y,f)}else{let[m,f]=F.computeOutAndReduceShapes(c.shape,d),g=k.sizeFromShape(f),y=Ae({inputs:{x:c},backend:n,attrs:{shape:[-1,g]}}),A=zc(r.dtype),x=Wi(y,A,"prod",n);h=Ae({inputs:{x},backend:n,attrs:{shape:m}}),l.push(y),l.push(x)}if(i){l.push(h);let m=F.expandShapeToKeepDim(h.shape,u);h=Ae({inputs:{x:h},backend:n,attrs:{shape:m}})}return l.forEach(m=>n.disposeIntermediateTensorInfo(m)),h}var RX={kernelName:Qo,backendName:"webgl",kernelFunc:EX},l6=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=BB(a,r,s,i);return t.makeTensorInfo([o.length],i,o)},MX={kernelName:ju,backendName:"webgl",kernelFunc:l6},FX="return 1.0 / x;",$X=Ze({opSnippet:FX}),DX={kernelName:el,backendName:"webgl",kernelFunc:$X},OX=Ca+`
|
|
return (x < 0.0) ? 0.0 : x;
|
|
`,zX=`
|
|
vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,_X=Ze({opSnippet:OX,packedOpSnippet:zX}),PX={kernelName:Ys,backendName:"webgl",kernelFunc:_X},LX=Ca+`
|
|
return (x < 0.0) ? 0.0 : min(6.0, x);
|
|
`,WX=`
|
|
vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));
|
|
bvec4 isNaN = isnan(x);
|
|
|
|
result.r = isNaN.r ? x.r : result.r;
|
|
result.g = isNaN.g ? x.g : result.g;
|
|
result.b = isNaN.b ? x.b : result.b;
|
|
result.a = isNaN.a ? x.a : result.a;
|
|
|
|
return result;
|
|
`,BX=Ze({opSnippet:LX,packedOpSnippet:WX}),VX={kernelName:Qs,backendName:"webgl",kernelFunc:BX},jX=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC - vec2(0.5)":p="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec2 sourceFloorRC = ivec2(max(sourceFracIndexRC, vec2(0.0)));
|
|
ivec2 sourceCeilRC = ivec2(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);
|
|
float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);
|
|
float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);
|
|
float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);
|
|
|
|
vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);
|
|
|
|
float top = topLeft + (topRight - topLeft) * fracRC.y;
|
|
float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;
|
|
float newValue = top + (bottom - top) * fracRC.x;
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},UX=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p;r?p="(vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC - vec3(0.5)":p="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${p};
|
|
|
|
// Compute the four integer indices.
|
|
ivec3 sourceFloorRC = ivec3(max(sourceFracIndexRC, vec3(0.0)));
|
|
ivec3 sourceCeilRC = ivec3(
|
|
min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
// In parallel, construct four corners for all four components in
|
|
// packed 2x2 cell.
|
|
vec4 topLeft = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomLeft = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);
|
|
|
|
vec4 topRight = vec4(
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec4 bottomRight = vec4(
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);
|
|
|
|
vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);
|
|
|
|
vec4 top = mix(topLeft, topRight, fracRC.yyzz);
|
|
vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);
|
|
vec4 newValue = mix(top, bottom, fracRC.x);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function HX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=te().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new UX(r.shape,l,u,s,i):new jX(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],"float32")}var GX={kernelName:Js,backendName:"webgl",kernelFunc:HX},qX=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(startRLerp - float(winHeight / 2));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(startCLerp - float(winWidth / 2));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float dxR = float(dyR) * heightScale;
|
|
int topDxRIndex = int(floor(dxR));
|
|
int bottomDxRIndex = int(min(ceil(dxR), ${a-1}.0));
|
|
float dxRLerp = dxR - float(topDxRIndex);
|
|
float inverseDxRLerp = 1.0 - dxRLerp;
|
|
|
|
float dxC = float(dyC) * widthScale;
|
|
int leftDxCIndex = int(floor(dxC));
|
|
int rightDxCIndex = int(min(ceil(dxC), ${r-1}.0));
|
|
float dxCLerp = dxC - float(leftDxCIndex);
|
|
float inverseDxCLerp = 1.0 - dxCLerp;
|
|
|
|
if (r == topDxRIndex && c == leftDxCIndex) {
|
|
// topLeft
|
|
accumulator +=
|
|
getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == topDxRIndex && c == rightDxCIndex) {
|
|
// topRight
|
|
accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == leftDxCIndex) {
|
|
// bottomLeft
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;
|
|
}
|
|
|
|
if (r == bottomDxRIndex && c == rightDxCIndex) {
|
|
// bottomRight
|
|
accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function XX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new qX(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var KX={kernelName:bc,backendName:"webgl",kernelFunc:XX},ZX=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec2(yRC) + vec2(0.5)) * effectiveInputOverOutputRatioRC, vec2(0.0))":c="vec2(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec2 effectiveInputOverOutputRatioRC = vec2(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]});
|
|
const vec2 inputShapeRC = vec2(${i}.0, ${o}.0);
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
ivec2 yRC = coords.yz;
|
|
|
|
// Fractional source index.
|
|
vec2 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec2 sourceNearestRC = ivec2(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}},YX=class{constructor(e,t,n,a,r){this.variableNames=["A"],this.packedInputs=!0,this.packedOutput=!0,this.outputShape=[];let[s,i,o,l]=e;this.outputShape=[s,t,n,l];let u=[a&&t>1?i-1:i,a&&n>1?o-1:o],d=[a&&t>1?t-1:t,a&&n>1?n-1:n],p=a?"0.5":"0.0",c;r?c="max((vec3(yRC) + vec3(0.5)) * effectiveInputOverOutputRatioRC, vec3(0.0))":c="vec3(yRC) * effectiveInputOverOutputRatioRC",this.userCode=`
|
|
const vec3 effectiveInputOverOutputRatioRC = vec3(
|
|
${u[0]/d[0]},
|
|
${u[1]/d[1]},
|
|
${u[1]/d[1]});
|
|
const vec3 inputShapeRC = vec3(${i}.0, ${o}.0,
|
|
${o}.0);
|
|
|
|
float getAValue(int b, int r, int c, int d) {
|
|
return getChannel(getA(b, r, c, d), vec2(c, d));
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
// Calculate values for next column in yRC.z.
|
|
ivec3 yRC = coords.yzz + ivec3(0, 0, 1);
|
|
|
|
// Fractional source index.
|
|
vec3 sourceFracIndexRC = ${c};
|
|
|
|
// Compute the coordinators of nearest neighbor point.
|
|
ivec3 sourceNearestRC = ivec3(
|
|
min(inputShapeRC - 1.0, floor(sourceFracIndexRC + ${p})));
|
|
|
|
// Should we calculate next column and row elements in 2x2 packed cell.
|
|
bool hasNextCol = d < ${l-1};
|
|
bool hasNextRow = coords.z < ${n-1};
|
|
|
|
vec4 newValue = vec4(
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d),
|
|
hasNextCol ? getAValue(b, sourceNearestRC.x, sourceNearestRC.y, d + 1)
|
|
: 0.0,
|
|
hasNextRow ? getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d)
|
|
: 0.0,
|
|
(hasNextRow && hasNextCol) ?
|
|
getAValue(b, sourceNearestRC.x, sourceNearestRC.z, d + 1) : 0.0);
|
|
|
|
setOutput(newValue);
|
|
}
|
|
`}};function JX(e){let{inputs:t,backend:n,attrs:a}=e,{images:r}=t,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,d=te().getBool("WEBGL_PACK_IMAGE_OPERATIONS")?new YX(r.shape,l,u,s,i):new ZX(r.shape,l,u,s,i);return n.runWebGLProgram(d,[r],r.dtype)}var QX={kernelName:Uu,backendName:"webgl",kernelFunc:JX},eK=class{constructor(e,t,n){this.variableNames=["dy"],this.outputShape=[],this.outputShape=t;let[,a,r]=t,[,s,i]=e,o=[n&&s>1?a-1:a,n&&i>1?r-1:r],l=[n&&s>1?s-1:s,n&&i>1?i-1:i],u=o[0]/l[0],d=o[1]/l[1],p=1/u,c=1/d,h=Math.ceil(p)*2+2,m=Math.ceil(c)*2+2;this.userCode=`
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int b = coords[0];
|
|
int d = coords[3];
|
|
int r = coords[1];
|
|
int c = coords[2];
|
|
|
|
float accumulator = 0.0;
|
|
|
|
const float heightScale = float(${u});
|
|
const float widthScale = float(${d});
|
|
|
|
const float invHeightScale = float(${p});
|
|
const float invWidthScale = float(${c});
|
|
|
|
const int winHeight = int(${h});
|
|
const int winWidth = int(${m});
|
|
|
|
// Compute bounds for where in dy we will look
|
|
float startRLerp = floor(float(r) * invHeightScale);
|
|
int startDyR = int(floor(startRLerp - float(winHeight / 2)));
|
|
|
|
float startCLerp = floor(float(c) * invWidthScale);
|
|
int startDyC = int(floor(startCLerp - float(winWidth / 2)));
|
|
|
|
// Loop over dy
|
|
for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {
|
|
int dyR = dyROffset + startDyR;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyR < 0 || dyR >= ${s}) {
|
|
continue;
|
|
}
|
|
|
|
for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {
|
|
int dyC = dyCOffset + startDyC;
|
|
|
|
// Guard against the window exceeding the bounds of dy
|
|
if (dyC < 0 || dyC >= ${i}) {
|
|
continue;
|
|
}
|
|
|
|
float sourceFracRow =
|
|
float(${o[0]}) *
|
|
(float(dyR) / float(${l[0]}));
|
|
|
|
float sourceFracCol =
|
|
float(${o[1]}) *
|
|
(float(dyC) / float(${l[1]}));
|
|
|
|
int sourceNearestRow = int(min(
|
|
float(int(${a}) - 1),
|
|
${n} ? float(round(sourceFracRow)) :
|
|
float(floor(sourceFracRow))));
|
|
|
|
int sourceNearestCol = int(min(
|
|
float(int(${r}) - 1),
|
|
${n} ? float(round(sourceFracCol)) :
|
|
float(floor(sourceFracCol))));
|
|
|
|
if (r == sourceNearestRow && c == sourceNearestCol) {
|
|
accumulator += getDy(b, dyR, dyC, d);
|
|
}
|
|
}
|
|
}
|
|
// End loop over dy
|
|
|
|
setOutput(accumulator);
|
|
}
|
|
`}};function tK(e){let{inputs:t,backend:n,attrs:a}=e,{images:r,dy:s}=t,{alignCorners:i}=a,o=new eK(s.shape,r.shape,i);return n.runWebGLProgram(o,[s],s.dtype)}var nK={kernelName:xc,backendName:"webgl",kernelFunc:tK},aK=class{constructor(e,t){this.variableNames=["x"];let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);if(this.outputShape=e,n===1){this.userCode=`
|
|
void main() {
|
|
int coord = getOutputCoords();
|
|
setOutput(getX(${e[0]} - coord - 1));
|
|
}
|
|
`;return}let a=i=>t.indexOf(i)!==-1&&e[i]!==1?`${e[i]} - coords[${i}] - 1`:`coords[${i}]`,r=e.map((i,o)=>a(o)).join(","),s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${r}));
|
|
}
|
|
`}},rK=class{constructor(e,t){this.variableNames=["x"],this.packedInputs=!0,this.packedOutput=!0;let n=e.length;if(n>4)throw new Error(`WebGL backend: Reverse of rank-${n} tensor is not yet supported`);this.outputShape=e;let a=xn("rc",n),r=`${a[n-1]} + 1 < ${this.outputShape[n-1]}`,s=`${a[n-2]} + 1 < ${this.outputShape[n-2]}`,i=ut(n);n===1?this.userCode=`
|
|
void main(){
|
|
int rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = getChannel(getX(${e[0]} - rc - 1),
|
|
${e[0]} - rc - 1);
|
|
if(${r}){
|
|
result.g = getChannel(getX(${e[0]} - (rc + 1) - 1),
|
|
${e[0]} - (rc + 1) - 1);
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`:this.userCode=`
|
|
void main() {
|
|
${i} rc = getOutputCoords();
|
|
vec4 result = vec4(0.);
|
|
result.r = ${o(a.slice())};
|
|
if(${r}){
|
|
result.g = ${l(a.slice())};
|
|
}
|
|
if(${s}) {
|
|
result.b = ${u(a.slice())};
|
|
if(${r}) {
|
|
result.a = ${d(a.slice())};
|
|
}
|
|
}
|
|
setOutput(result);
|
|
}
|
|
`;function o(h){return p(h)}function l(h){return h[n-1]="("+h[n-1]+" + 1)",p(h)}function u(h){return h[n-2]="("+h[n-2]+" + 1)",p(h)}function d(h){return h[n-1]="("+h[n-1]+" + 1)",h[n-2]="("+h[n-2]+" + 1)",p(h)}function p(h){let m=e.map((y,A)=>c(A,h)),f=m.join(","),g=m.slice(-2).join(",");return`getChannel(getX(${f}), vec2(${g}))`}function c(h,m){return t.indexOf(h)!==-1&&e[h]!==1?`${e[h]} - ${m[h]} - 1`:`${m[h]}`}}};function sK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=r.shape.length,o=k.parseAxisParam(s,r.shape);if(i===0)return Xn({inputs:{x:r},backend:n});let l=te().getBool("WEBGL_PACK_ARRAY_OPERATIONS")?new rK(r.shape,o):new aK(r.shape,o);return n.runWebGLProgram(l,[r],r.dtype)}var iK={kernelName:ei,backendName:"webgl",kernelFunc:sK},oK=class{constructor(e,t){this.variableNames=["Image"],this.outputShape=[];let n=e[1],a=e[2];this.outputShape=e;let r="";typeof t=="number"?r=`float outputValue = ${t.toFixed(2)};`:r=`
|
|
vec3 fill = vec3(${t.join(",")});
|
|
float outputValue = fill[coords[3]];`,this.userCode=`
|
|
uniform vec4 params;
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
float coordXFloat = (float(x) - params[0]) * params[3] -
|
|
(float(y) - params[1]) * params[2];
|
|
float coordYFloat = (float(x) - params[0]) * params[2] +
|
|
(float(y) - params[1]) * params[3];
|
|
int coordX = int(round(coordXFloat + params[0]));
|
|
int coordY = int(round(coordYFloat + params[1]));
|
|
${r}
|
|
if(coordX >= 0 && coordX < ${a} && coordY >= 0 && coordY < ${n}) {
|
|
outputValue = getImage(coords[0], coordY, coordX, coords[3]);
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}getCustomSetupFunc(e,t,n,a){return(r,s)=>{this.paramsLoc==null&&(this.paramsLoc=r.getUniformLocationNoThrow(s,"params")),r.gl.uniform4f(this.paramsLoc,e,t,n,a)}}},lK={kernelName:ml,backendName:"webgl",kernelFunc:({inputs:e,attrs:t,backend:n})=>{let{image:a}=e,{radians:r,fillValue:s,center:i}=t,o=n,l=new oK(a.shape,s),[u,d]=F.getImageCenter(i,a.shape[1],a.shape[2]),p=l.getCustomSetupFunc(u,d,Math.sin(r),Math.cos(r));return o.runWebGLProgram(l,[a],a.dtype,p)}},uK=`
|
|
// OpenGL ES does not support round function.
|
|
// The algorithm is based on banker's rounding.
|
|
float base = floor(x);
|
|
if ((x - base) < 0.5) {
|
|
return floor(x);
|
|
} else if ((x - base) > 0.5) {
|
|
return ceil(x);
|
|
} else {
|
|
if (mod(base, 2.0) == 0.0) {
|
|
return base;
|
|
} else {
|
|
return base + 1.0;
|
|
}
|
|
}
|
|
`,dK=Ze({opSnippet:uK}),pK={kernelName:ti,backendName:"webgl",kernelFunc:dK},cK="return inversesqrt(x);",hK=Ze({opSnippet:cK,cpuKernelImpl:VB}),fK={kernelName:ni,backendName:"webgl",kernelFunc:hK},u6=class{constructor(e,t,n,a,r,s,i=!0){this.variableNames=["updates","indices","defaultValue"],this.outputShape=s;let o=ut(r.length),l=ut(s.length),u="";n===1?u="i":n===2&&(u="i, j");let d=`getIndices(${u})`,p="";a===1?p="i":a===2&&(p="i, coords[1]");let c=`getUpdates(${p})`,h=t>1?"strides[j]":"strides";this.userCode=`
|
|
${o} strides = ${o}(${r});
|
|
|
|
void main() {
|
|
${l} coords = getOutputCoords();
|
|
float sum = 0.0;
|
|
bool found = false;
|
|
for (int i = 0; i < ${e}; i++) {
|
|
int flattenedIndex = 0;
|
|
for (int j = 0; j < ${t}; j++) {
|
|
int index = round(${d});
|
|
flattenedIndex += index * ${h};
|
|
}
|
|
if (flattenedIndex == coords[0]) {
|
|
sum += ${c};
|
|
found = true;
|
|
}
|
|
}
|
|
setOutput(mix(getDefaultValue(), sum, float(found)));
|
|
}
|
|
`}};function mK(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r,updates:s}=t,{shape:i}=a,{sliceRank:o,numUpdates:l,sliceSize:u,strides:d,outputSize:p}=F.calculateShapes(s,r,i),c=[p/u,u];if(p===0)return n.makeTensorInfo(i,r.dtype);let h=Ae({inputs:{x:r},backend:n,attrs:{shape:[l,o]}}),m=Ae({inputs:{x:s},backend:n,attrs:{shape:[l,u]}}),f=n.makeTensorInfo([],"float32",new Float32Array([0])),g=new u6(l,o,h.shape.length,m.shape.length,d,c),y=n.runWebGLProgram(g,[m,h,f],m.dtype),A=Ae({inputs:{x:y},backend:n,attrs:{shape:i}});return n.disposeIntermediateTensorInfo(h),n.disposeIntermediateTensorInfo(m),n.disposeIntermediateTensorInfo(y),n.disposeIntermediateTensorInfo(f),A}var gK={kernelName:nl,backendName:"webgl",kernelFunc:mK},yK=class{constructor(e,t,n){this.variableNames=["c","a","b"],this.outputShape=t;let a,r;if(n>4)throw Error(`Where for rank ${n} is not yet supported`);if(n===1)r="resRC",a="resRC";else{let i=["resRC.x","resRC.y","resRC.z","resRC.w"],o=[],l=[];for(let u=0;u<t.length;u++)l.push(`${i[u]}`),u<e&&o.push(`${i[u]}`);a=o.join(),r=l.join()}let s=ut(n);this.userCode=`
|
|
void main() {
|
|
${s} resRC = getOutputCoords();
|
|
float cVal = getC(${a});
|
|
if (cVal >= 1.0) {
|
|
setOutput(getA(${r}));
|
|
} else {
|
|
setOutput(getB(${r}));
|
|
}
|
|
}
|
|
`}};function AK(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=new yK(a.shape.length,r.shape,r.shape.length);return n.runWebGLProgram(i,[a,r,s],Aa(r.dtype,s.dtype))}var xK={kernelName:al,backendName:"webgl",kernelFunc:AK},bK=`
|
|
// Stable and Attracting Fixed Point (0, 1) for Normalized Weights.
|
|
// see: https://arxiv.org/abs/1706.02515
|
|
float scaleAlpha = ${F.SELU_SCALEALPHA};
|
|
float scale = ${F.SELU_SCALE};
|
|
return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);
|
|
`,vK=Ze({opSnippet:bK}),wK={kernelName:rl,backendName:"webgl",kernelFunc:vK},kK="return 1.0 / (1.0 + exp(-1.0 * x));",IK=Ze({opSnippet:kK}),SK={kernelName:ri,backendName:"webgl",kernelFunc:IK},NK=`
|
|
if (isnan(x)) { return 0.0; }
|
|
return sign(x);
|
|
`,TK=Ze({opSnippet:NK}),CK={kernelName:ol,backendName:"webgl",kernelFunc:TK},EK=Iw+`
|
|
return sin(x);
|
|
`,RK=Ze({opSnippet:EK}),MK={kernelName:ai,backendName:"webgl",kernelFunc:RK},FK=`
|
|
float e2x = exp(x);
|
|
return (e2x - 1.0 / e2x) / 2.0;
|
|
`,$K=Ze({opSnippet:FK}),DK={kernelName:il,backendName:"webgl",kernelFunc:$K},OK=`
|
|
float epsilon = 1.1920928955078125e-7;
|
|
float threshold = log(epsilon) + 2.0;
|
|
|
|
bool too_large = x > -threshold;
|
|
bool too_small = x < threshold;
|
|
|
|
float result;
|
|
float exp_x = exp(x);
|
|
|
|
if (too_large){
|
|
result = x;
|
|
}
|
|
else if (too_small){
|
|
result = exp_x;
|
|
}
|
|
else{
|
|
result = log(exp_x + 1.0);
|
|
}
|
|
return result;
|
|
`,zK=Ze({opSnippet:OK}),_K={kernelName:ll,backendName:"webgl",kernelFunc:zK},PK=e=>{let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{blockShape:s,paddings:i}=a;k.assert(r.shape.length<=4,()=>"spaceToBatchND for rank > 4 with a WebGL backend not implemented yet");let o=s.reduce((y,A)=>y*A),l=[[0,0]];l.push(...i);for(let y=1+s.length;y<r.shape.length;++y)l.push([0,0]);let u=[],d=o6({inputs:{x:r},backend:n,attrs:{paddings:l,constantValue:0}}),p=F.getReshaped(d.shape,s,o,!1),c=F.getPermuted(p.length,s.length,!1),h=F.getReshapedPermuted(d.shape,s,o,!1),m=Ae({inputs:{x:d},backend:n,attrs:{shape:p}}),f=bn({inputs:{x:m},backend:n,attrs:{perm:c}}),g=Ae({inputs:{x:f},backend:n,attrs:{shape:h}});return u.push(d),u.push(m),u.push(f),u.forEach(y=>n.disposeIntermediateTensorInfo(y)),g},LK={kernelName:Hu,backendName:"webgl",kernelFunc:PK};function WK(e){let{inputs:t,backend:n}=e,{indices:a,values:r,denseShape:s,defaultValue:i}=t;if(s.shape.length!==1)throw new Error(`Dense shape must be a vector, saw:
|
|
${s.shape}`);if(a.shape.length!==2)throw new Error(`Indices must be a matrix, saw:
|
|
${a.shape}`);if(r.shape.length!==1)throw new Error(`Values must be a vector, saw:
|
|
${r.shape}`);if(i.shape.length!==0)throw new Error(`Default value must be a scalar, saw:
|
|
${i.shape}`);let o=n.readSync(a.dataId),l=n.readSync(r.dataId),u=n.readSync(s.dataId),d=n.readSync(i.dataId)[0],[p,c,h,m,f]=UB(o,a.shape,a.dtype,l,r.dtype,u,d);return[n.makeTensorInfo(c,a.dtype,p),n.makeTensorInfo([c[0]],r.dtype,h),n.makeTensorInfo([m.length],"bool",new Uint8Array(m.map(g=>Number(g)))),n.makeTensorInfo([f.length],a.dtype,new Int32Array(f))]}var BK={kernelName:vc,backendName:"webgl",kernelFunc:WK};function VK(e){let{inputs:t,backend:n}=e,{inputIndices:a,inputShape:r,newShape:s}=t;if(a.shape.length!==2)throw new Error(`Input indices should be a matrix but received shape ${a.shape}`);if(r.shape.length!==1)throw new Error(`Input shape should be a vector but received shape ${r.shape}`);if(s.shape.length!==1)throw new Error(`Target shape should be a vector but received shape ${s.shape}`);let i=Array.from(n.readSync(r.dataId)),o=n.readSync(a.dataId),l=Array.from(n.readSync(s.dataId)),[u,d,p]=HB(o,a.shape,a.dtype,i,l);return[n.makeTensorInfo(d,a.dtype,u),n.makeTensorInfo([p.length],s.dtype,new Int32Array(p))]}var jK={kernelName:wc,backendName:"webgl",kernelFunc:VK};function UK(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=dw(i,a.shape,a.dtype,o,l,!0);return n.makeTensorInfo(d,a.dtype,u)}var HK={kernelName:kc,backendName:"webgl",kernelFunc:UK};function GK(e){let{inputs:t,backend:n}=e,{data:a,indices:r,segmentIds:s}=t;if(a.shape.length<1)throw new Error("Data should be at least 1 dimensional but received scalar");if(r.shape.length!==1)throw new Error(`Indices should be a vector but received shape
|
|
${r.shape}`);if(s.shape.length!==1)throw new Error(`Segment ids should be a vector but received shape
|
|
${s.shape}`);let i=n.readSync(a.dataId),o=n.readSync(r.dataId),l=n.readSync(s.dataId),[u,d]=dw(i,a.shape,a.dtype,o,l);return n.makeTensorInfo(d,a.dtype,u)}var qK={kernelName:Ic,backendName:"webgl",kernelFunc:GK};function XK(e){let{inputs:t,backend:n,attrs:a}=e,{sparseIndices:r,sparseValues:s,defaultValue:i}=t,{outputShape:o}=a,{sliceRank:l,numUpdates:u,strides:d,outputSize:p}=F.calculateShapes(s,r,o),c=!1,h=new u6(u,l,r.shape.length,s.shape.length,d,[p,1],c),m=n.runWebGLProgram(h,[s,r,i],s.dtype),f=Ae({inputs:{x:m},backend:n,attrs:{shape:o}});return n.disposeIntermediateTensorInfo(m),f}var KK={kernelName:Sc,backendName:"webgl",kernelFunc:XK};function ZK(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=a,o=k.parseAxisParam(i,r.shape)[0],l=F.prepareSplitSize(r,s,o),u=r.shape.length,d=new Array(u).fill(0),p=r.shape.slice();return l.map(c=>{let h=[...p];h[o]=c;let m=zd({inputs:{x:r},backend:n,attrs:{begin:d,size:h}});return d[o]+=c,m})}var YK={kernelName:ul,backendName:"webgl",kernelFunc:ZK},JK="return sqrt(x);",QK=Ze({opSnippet:JK}),eZ={kernelName:si,backendName:"webgl",kernelFunc:QK},tZ="return x * x;",nZ=Ze({opSnippet:tZ}),aZ={kernelName:Gu,backendName:"webgl",kernelFunc:nZ},d6="return (a - b) * (a - b);",rZ=sn({opSnippet:d6,packedOpSnippet:d6}),sZ={kernelName:li,backendName:"webgl",kernelFunc:rZ};function iZ({inputs:e,attrs:t,backend:n}){let{x:a}=e,r=Ca+`
|
|
return x > 0.0 ? 1.0 : float(${t.alpha});
|
|
`,s=new Yr(a.shape,r);return n.runWebGLProgram(s,[a],a.dtype)}var oZ={kernelName:Pr,backendName:"webgl",kernelFunc:iZ},lZ=class{constructor(e,t,n){this.variableNames=["x"],this.outputShape=n;let a=n.length,r=ut(n.length),s=ut(n.length),i="";if(a===1)i="coords * strides + begin";else{let o=0;i=n.map((l,u)=>(o++,n.length===1?`coords * strides[${u}] + begin[${u}]`:`coords[${o-1}] * strides[${u}] + begin[${u}]`)).join(",")}this.userCode=`
|
|
${r} begin = ${r}(${e});
|
|
${r} strides = ${r}(${t});
|
|
|
|
void main() {
|
|
${s} coords = getOutputCoords();
|
|
setOutput(getX(${i}));
|
|
}
|
|
`}};function uZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{begin:s,end:i,strides:o,beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,{nonStrided:h,$begin:m,$strides:f,size:g,newShape:y,outShape:A}=fn.sliceInfo(r.shape,s,i,o,l,u,d,p,c),x=Ae({inputs:{x:r},backend:n,attrs:{shape:y}}),v;if(h){let w=zd({inputs:{x},backend:n,attrs:{begin:m,size:g}});v=Ae({inputs:{x:w},backend:n,attrs:{shape:A}}),n.disposeIntermediateTensorInfo(w)}else if(A.some(w=>w===0))v=n.makeTensorInfo(A,r.dtype,[]);else if(n.shouldExecuteOnCPU([x])){let w=n.texData.get(x.dataId).values,N=Ve(x.shape,x.dtype,w),C=GB(A,N,f,m);v=n.makeTensorInfo(A,x.dtype,C.values)}else{let w=new lZ(m,f,A);v=n.runWebGLProgram(w,[x],x.dtype)}let b=Ae({inputs:{x:v},backend:n,attrs:{shape:A}});return n.disposeIntermediateTensorInfo(x),n.disposeIntermediateTensorInfo(v),b}var dZ={kernelName:dl,backendName:"webgl",kernelFunc:uZ};function pZ(e){let{inputs:t,backend:n,attrs:a}=e,{separator:r,nGramWidths:s,leftPad:i,rightPad:o,padWidth:l,preserveShortSequences:u}=a,{data:d,dataSplits:p}=t,c=n.readSync(d.dataId),h=n.readSync(p.dataId),[m,f]=qB(c,h,r,s,i,o,l,u);return[n.makeTensorInfo([m.length],"string",m),n.makeTensorInfo(p.shape,"int32",f)]}var cZ={kernelName:Nc,backendName:"webgl",kernelFunc:pZ};function hZ(e){let{inputs:t,backend:n,attrs:a}=e,{skipEmpty:r}=a,{input:s,delimiter:i}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(s.shape.length!==1)throw new Error(`Input must be a vector, got shape: ${s.shape}`);if(i.shape.length!==0)throw new Error(`Delimiter must be a scalar, got shape: ${i.shape}`);let o=n.readSync(s.dataId),l=n.readSync(i.dataId)[0],[u,d,p]=XB(o,l,r),c=d.length;return[n.makeTensorInfo([c,2],"int32",u),n.makeTensorInfo([c],"string",d),n.makeTensorInfo([2],"int32",new Int32Array(p))]}var fZ={kernelName:Tc,backendName:"webgl",kernelFunc:hZ};function mZ(e){let{inputs:t,backend:n,attrs:a}=e,{numBuckets:r}=a,{input:s}=t;if(s.dtype!=="string")throw new Error("Input must be of datatype string");if(r<=0)throw new Error("Number of buckets must be at least 1");let i=n.readSync(s.dataId),o=KB(i,r);return n.makeTensorInfo(s.shape,"int32",o)}var gZ={kernelName:Cc,backendName:"webgl",kernelFunc:mZ},yZ="return tan(x);",AZ=Ze({opSnippet:yZ}),xZ={kernelName:di,backendName:"webgl",kernelFunc:AZ},bZ=`
|
|
float e2x = exp(-2.0 * abs(x));
|
|
return sign(x) * (1.0 - e2x) / (1.0 + e2x);
|
|
`,vZ=Ze({opSnippet:bZ}),wZ={kernelName:pi,backendName:"webgl",kernelFunc:vZ},kZ=class{constructor(e,t){this.variableNames=["A"];let n=new Array(e.length);for(let s=0;s<n.length;s++)n[s]=e[s]*t[s];this.outputShape=n,this.rank=n.length;let a=ut(this.rank),r=IZ(e);this.userCode=`
|
|
void main() {
|
|
${a} resRC = getOutputCoords();
|
|
setOutput(getA(${r}));
|
|
}
|
|
`}};function IZ(e){let t=e.length;if(t>5)throw Error(`Tile for rank ${t} is not yet supported`);if(t===1)return`imod(resRC, ${e[0]})`;let n=["resRC.x","resRC.y","resRC.z","resRC.w","resRC.u"],a=[];for(let r=0;r<e.length;r++)a.push(`imod(${n[r]}, ${e[r]})`);return a.join()}function p6(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{reps:s}=a;if(r.dtype==="string"||r.shape.length>5){let o=n.readSync(r.dataId),l=r.dtype==="string"?o.map(p=>k.decodeString(p)):o,u=Ve(r.shape,r.dtype,l),d=YB(u,s);return n.makeTensorInfo(d.shape,d.dtype,d.values)}let i=new kZ(r.shape,s);return n.runWebGLProgram(i,[r],r.dtype)}var SZ={kernelName:_r,backendName:"webgl",kernelFunc:p6};function NZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{k:s,sorted:i}=a,o=n.readSync(r.dataId),[l,u]=JB(o,r.shape,r.dtype,s,i);return[n.makeTensorInfo(l.shape,l.dtype,l.values),n.makeTensorInfo(u.shape,u.dtype,u.values)]}var TZ={kernelName:pl,backendName:"webgl",kernelFunc:NZ},CZ=class{constructor(e,t,n,a,r,s){this.variableNames=["Image","Transforms"],this.outputShape=s;let i=n==="nearest"?1:2,o;switch(a){case"constant":o=1;break;case"reflect":o=2;break;case"wrap":o=3;break;case"nearest":o=4;break;default:o=1;break}this.userCode=`
|
|
float mapCoord(float outCoord, float len) {
|
|
float inCoord = outCoord;
|
|
if(${o} == 2) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
if (inCoord < sz2) {
|
|
inCoord = sz2 * float(int(float(-inCoord / sz2))) +
|
|
inCoord;
|
|
}
|
|
inCoord = inCoord < -len ? inCoord + sz2 : -inCoord - 1.0;
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz2 = 2.0 * len;
|
|
inCoord -= sz2 * float(int(float(inCoord / sz2)));
|
|
if (inCoord >= len) {
|
|
inCoord = sz2 - inCoord - 1.0;
|
|
}
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 3) {
|
|
if (inCoord < 0.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord += len * (float(int(float(-inCoord / sz))) + 1.0);
|
|
}
|
|
} else if (inCoord > len - 1.0) {
|
|
if (len <= 1.0) {
|
|
inCoord = 0.0;
|
|
} else {
|
|
float sz = len - 1.0;
|
|
inCoord -= len * float(int(float(inCoord / sz)));
|
|
}
|
|
}
|
|
return clamp(inCoord, 0.0, len - 1.0);
|
|
} else if (${o} == 4) {
|
|
return clamp(outCoord, 0.0, len - 1.0);
|
|
} else {
|
|
return outCoord;
|
|
}
|
|
}
|
|
|
|
float readWithFillValue(int batch, int coordY, int coordX,
|
|
int channel) {
|
|
float outputValue;
|
|
if (0 <= coordY && coordY < ${e} && 0 <= coordX && coordX < ${t}) {
|
|
outputValue = getImage(batch, coordY, coordX, channel);
|
|
} else {
|
|
outputValue = float(${r});
|
|
}
|
|
return outputValue;
|
|
}
|
|
|
|
void main() {
|
|
ivec4 coords = getOutputCoords();
|
|
float outputValue;
|
|
int batch = coords[0];
|
|
int x = coords[2];
|
|
int y = coords[1];
|
|
int channel = coords[3];
|
|
float xf = float(x);
|
|
float yf = float(y);
|
|
float a1 = getTransforms(batch, 0);
|
|
float a2 = getTransforms(batch, 1);
|
|
float a3 = getTransforms(batch, 2);
|
|
float b1 = getTransforms(batch, 3);
|
|
float b2 = getTransforms(batch, 4);
|
|
float b3 = getTransforms(batch, 5);
|
|
float c1 = getTransforms(batch, 6);
|
|
float c2 = getTransforms(batch, 7);
|
|
float projection = c1 * xf + c2 * yf + 1.0;
|
|
if (projection == 0.0) {
|
|
outputValue = float(${r});
|
|
} else {
|
|
float inX = (a1 * xf + a2 * yf + a3) / projection;
|
|
float inY = (b1 * xf + b2 * yf + b3) / projection;
|
|
float mapX = mapCoord(inX, float(${t}));
|
|
float mapY = mapCoord(inY, float(${e}));
|
|
|
|
if (${i} == 1) {
|
|
int coordY = int(round(mapY));
|
|
int coordX = int(round(mapX));
|
|
outputValue = readWithFillValue(batch, coordY, coordX,
|
|
channel);
|
|
} else {
|
|
float yFloor = floor(mapY);
|
|
float xFloor = floor(mapX);
|
|
float yCeil = yFloor + 1.0;
|
|
float xCeil = xFloor + 1.0;
|
|
float valueYFloor = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yFloor), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yFloor), int(xCeil), channel);
|
|
float valueYCeil = (xCeil - mapX) *
|
|
readWithFillValue(batch, int(yCeil), int(xFloor), channel) +
|
|
(mapX - xFloor) *
|
|
readWithFillValue(batch, int(yCeil), int(xCeil), channel);
|
|
outputValue = (yCeil - mapY) * valueYFloor +
|
|
(mapY - yFloor) * valueYCeil;
|
|
}
|
|
}
|
|
setOutput(outputValue);
|
|
}
|
|
`}};function EZ(e){let{inputs:t,backend:n,attrs:a}=e,{image:r,transforms:s}=t,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],y=new CZ(p,c,i,o,l,g);return n.runWebGLProgram(y,[r,s],"float32")}var RZ={kernelName:cl,backendName:"webgl",kernelFunc:EZ};function MZ(e){let{inputs:t,attrs:n,backend:a}=e,{axis:r}=n,{x:s}=t;jl(s,"unique"),console.warn("WARNING: ","UI might be locked temporarily as data is being downloaded");let i=a.readSync(s.dataId),{outputValues:o,outputShape:l,indices:u}=QB(i,r,s.shape,s.dtype);return[a.makeTensorInfo(l,s.dtype,o),a.makeTensorInfo([u.length],"int32",u)]}var FZ={kernelName:Ec,backendName:"webgl",kernelFunc:MZ};function $Z(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r,o=i.shape.length,l=r.shape[s],u=new Array(o-1),d=0;for(let f=0;f<o;f++)f!==s&&(u[d++]=i.shape[f]);let p=[],c=new Array(o).fill(0),h=i.shape.slice();h[s]=1;let m=new Array(l);for(let f=0;f<m.length;f++){c[s]=f;let g=zd({inputs:{x:i},backend:n,attrs:{begin:c,size:h}}),y=Ae({inputs:{x:g},backend:n,attrs:{shape:u}});m[f]=y,p.push(g)}return p.forEach(f=>n.disposeIntermediateTensorInfo(f)),m}var DZ={kernelName:hl,backendName:"webgl",kernelFunc:$Z},OZ=class{constructor(e,t){this.variableNames=["x","segmentIds"];let n=e.windowSize,a=e.batchSize,r=e.inSize,s=e.numSegments,i=s*Math.ceil(r/n);this.outputShape=[a,i];let o="0.0",l="sumValue",u=Math.floor(n/4)*4,d=n%4,p=`
|
|
sumValue += dot(values, segFilter);
|
|
`,c="";r%n>0&&(c=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return initializationValue;
|
|
}
|
|
`);let h="";r%n>0&&(h=`
|
|
if (inIdx < 0 || inIdx >= ${r}) {
|
|
return -1.0;
|
|
}
|
|
`),this.userCode=`
|
|
const float initializationValue = ${o};
|
|
|
|
float getValue(int batch, int inIdx) {
|
|
${c}
|
|
return getX(batch, inIdx);
|
|
}
|
|
|
|
float getSegmentIdAtIndex(int inIdx) {
|
|
${h}
|
|
return getSegmentIds(inIdx);
|
|
}
|
|
|
|
void main() {
|
|
ivec2 coords = getOutputCoords();
|
|
int batch = coords[0];
|
|
int outIdx = coords[1];
|
|
int inOffset = int(floor(float(outIdx) / float(
|
|
${s})) * float(${n}));
|
|
int currentSeg = int(mod(float(outIdx), float(${s})));
|
|
|
|
float sumValue = 0.0;
|
|
|
|
for (int i = 0; i < ${u}; i += 4) {
|
|
int inIdx = inOffset + i;
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
getValue(batch, inIdx + 3)
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
|
|
int inIdx = inOffset + ${u};
|
|
if (${d===1}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
initializationValue,
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
int inIdxSeg = int(getSegmentIdAtIndex(inIdx));
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===2}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
initializationValue,
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
} else if (${d===3}) {
|
|
vec4 values = vec4(
|
|
getValue(batch, inIdx),
|
|
getValue(batch, inIdx + 1),
|
|
getValue(batch, inIdx + 2),
|
|
initializationValue
|
|
);
|
|
|
|
vec4 segFilter = vec4(
|
|
int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,
|
|
int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,
|
|
0
|
|
);
|
|
|
|
${p}
|
|
}
|
|
setOutput(${l});
|
|
}
|
|
`}};function zZ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r,segmentIds:s}=t,{numSegments:i}=a,o=r.shape.length,l=[],u=0,d=F.getAxesPermutation([u],o),p=r;d!=null&&(p=bn({inputs:{x:r},backend:n,attrs:{perm:d}}),l.push(p),u=F.getInnerMostAxes(1,o)[0]);let c=F.segment_util.computeOutShape(p.shape,u,i),h=k.sizeFromShape([p.shape[u]]),m=Ae({inputs:{x:p},backend:n,attrs:{shape:[-1,h]}});l.push(m);let f=zc(r.dtype),g=(v,b,w,N,C)=>{let E=v.shape[0],_=v.shape[1],$=F.segment_util.segOpComputeOptimalWindowSize(_,C),S={windowSize:$,inSize:_,batchSize:E,numSegments:C},z=new OZ(S,b),O=n.compileAndRun(z,[v,w],N);if(l.push(O),O.shape[1]===C)return O;let W=l6({backend:n,attrs:{start:0,stop:C,step:1,dtype:"float32"}}),G=p6({inputs:{x:W},backend:n,attrs:{reps:[_/$]}});return l.push(W),l.push(G),g(O,b,G,N,C)},y=g(m,"unsortedSegmentSum",s,f,i),A=Ae({inputs:{x:y},backend:n,attrs:{shape:c}}),x=A;if(d!=null){l.push(A);let v=F.getUndoAxesPermutation(d);x=bn({inputs:{x},backend:n,attrs:{perm:v}})}return l.forEach(v=>n.disposeIntermediateTensorInfo(v)),x}var _Z={kernelName:qu,backendName:"webgl",kernelFunc:zZ},PZ=[cq,mq,YV,QV,nj,sj,oj,dj,cj,fj,Aj,bj,kj,Nj,$j,Ej,zj,Wj,Pj,Uj,Gj,Xj,Jj,sU,oU,hU,mU,xU,wU,FV,TU,_U,LU,MU,jU,HU,BU,XU,YU,eH,nH,rH,oH,hH,mH,uH,AH,vH,kH,TH,MH,OH,PH,LH,WH,VH,UH,GH,XH,ZH,eG,aG,iG,lG,pG,mG,xG,kG,MV,SG,SU,CG,MG,DG,DV,PG,VG,UG,YG,XG,tq,rq,lq,yq,Sq,kq,Eq,Mq,$q,vq,Oq,_q,Bq,Hq,Kq,aX,LV,sX,lX,pX,fX,uU,yX,xX,vX,IX,CX,zV,RX,MX,dU,Qq,DX,VX,PX,BV,GX,KX,QX,nK,iK,lK,pK,fK,gK,xK,wK,SK,CK,MK,DK,aU,tX,_K,LK,BK,jK,HK,qK,KK,YK,eZ,aZ,sZ,oZ,dZ,cZ,fZ,gZ,eX,XV,xZ,wZ,SZ,TZ,RZ,KV,FZ,DZ,_Z,AX];for(let e of PZ)gi(e);var Fn;(function(e){e[e.float32=0]="float32",e[e.int32=1]="int32",e[e.bool=2]="bool",e[e.string=3]="string",e[e.complex64=4]="complex64"})(Fn||(Fn={}));var Pd;(function(e){e[e.linear=0]="linear",e[e.relu=1]="relu",e[e.relu6=2]="relu6",e[e.prelu=3]="prelu",e[e.leakyrelu=4]="leakyrelu",e[e.sigmoid=5]="sigmoid"})(Pd||(Pd={}));var c6;function LZ(e){c6=e.wasm.cwrap(hi,null,["number","array","number","number","array","number","number","number","number","number","number","number","number"])}function WZ(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s,bias:i,preluActivationWeights:o}=t;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("_FusedMatMul for non non-float32 tensors not yet supported.");let{transposeA:l,transposeB:u,activation:d,leakyreluAlpha:p}=a,c=n.dataIdMap.get(r.dataId).id,h=n.dataIdMap.get(s.dataId).id,m=0;if(i!=null){let C=n.dataIdMap.get(i.dataId);if(C.shape.length!==1)throw new Error(`_FusedMatMul only supports rank-1 bias but got rank ${C.shape.length}.`);m=C.id}let f=o==null?0:n.dataIdMap.get(o.dataId).id,g=Pd[d];if(g==null)throw new Error(`${d} activation not yet supported for FusedConv2D in the wasm backend.`);let y=l?r.shape[2]:r.shape[1],A=u?s.shape[1]:s.shape[2],x=r.shape[0],v=n.makeOutput([x,y,A],r.dtype),b=n.dataIdMap.get(v.dataId).id,w=new Uint8Array(new Int32Array(r.shape).buffer),N=new Uint8Array(new Int32Array(s.shape).buffer);return c6(c,w,r.shape.length,h,N,s.shape.length,l,u,g,m,f,p||0,b),v}var BZ={kernelName:hi,backendName:"wasm",setupFunc:LZ,kernelFunc:WZ};function vn(e){let t;function n(r){t=r.wasm.cwrap(e,null,["number","number"])}function a(r){let{backend:s,inputs:{x:i}}=r,o=s.dataIdMap.get(i.dataId).id,l=s.makeOutput(i.shape,i.dtype),u=s.dataIdMap.get(l.dataId).id;return k.sizeFromShape(l.shape)===0||t(o,u),l}return{kernelName:e,backendName:"wasm",setupFunc:n,kernelFunc:a}}var VZ=vn(mo);function wn(e,t,n){let a;function r(i){a=i.wasm.cwrap(e,null,["number","array","number","number","array","number","number","number"])}function s(i){let{backend:o,inputs:l}=i,{a:u,b:d}=l,p=o.dataIdMap.get(u.dataId).id,c=o.dataIdMap.get(d.dataId).id,h=n!=null?n:u.dtype,m=F.assertAndGetBroadcastShape(u.shape,d.shape),f=o.makeOutput(m,h);if(k.sizeFromShape(m)===0)return f;let g=new Uint8Array(new Int32Array(u.shape).buffer),y=new Uint8Array(new Int32Array(d.shape).buffer),A=o.dataIdMap.get(f.dataId).id,x=()=>a(p,g,u.shape.length,c,y,d.shape.length,Fn[u.dtype],A);if(t&&u.dtype==="float32")return x(),f;let v=F.getBroadcastDims(u.shape,m),b=F.getBroadcastDims(d.shape,m),w=v.every((C,E)=>C===E),N=b.every((C,E)=>C===E);if(w&&N)return x(),f;throw new Error(`Broadcasting along outer dims is not yet supported for ${u.dtype} ${e}.`)}return{kernelName:e,backendName:"wasm",setupFunc:r,kernelFunc:s}}var jZ=!0,UZ=wn(Or,jZ),h6;function HZ(e){h6=e.wasm.cwrap(xs,null,["array","number","number","number"])}function GZ(e){let{inputs:t,backend:n}=e,a=n.makeOutput(t[0].shape,t[0].dtype);if(k.sizeFromShape(a.shape)===0)return a;let r=t.map(o=>n.dataIdMap.get(o.dataId).id),s=new Uint8Array(new Int32Array(r).buffer),i=n.dataIdMap.get(a.dataId).id;return h6(s,r.length,Fn[a.dtype],i),a}var qZ={kernelName:xs,backendName:"wasm",setupFunc:HZ,kernelFunc:GZ};function Qh(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype),r=n.typedArrayFromHeap(t);return n.typedArrayFromHeap(a).set(r),a}var XZ={kernelName:zs,backendName:"wasm",kernelFunc:Qh},f6;function KZ(e){f6=e.wasm.cwrap(ci,null,["number","array","number","number","number","array","number"])}function e0(e){let{inputs:t,backend:n,attrs:a}=e,[r,s]=YZ(t.x.shape,a.perm),i=!0;for(let m=0;m<s.length;m++)s[m]!==m&&(i=!1);let o=ZZ(t.x.shape,a.perm),l={dataId:t.x.dataId,shape:r,dtype:t.x.dtype};if(i){let m=Qh({inputs:t,backend:n});return m.shape=o,m}let u=n.makeOutput(o,l.dtype),d=n.dataIdMap.get(l.dataId).id,p=n.dataIdMap.get(u.dataId).id,c=new Uint8Array(new Int32Array(s).buffer),h=new Uint8Array(new Int32Array(l.shape).buffer);return f6(d,h,l.shape.length,Fn[l.dtype],p,c,s.length),u}function ZZ(e,t){let n=new Array(e.length);for(let a=0;a<n.length;a++)n[a]=e[t[a]];return n}function YZ(e,t){let n=[],a=[];for(let r=0;r<e.length;++r)e[r]!==1&&n.push(e[r]),e[t[r]]!==1&&a.push(t[r]);for(let r=0;r<a.length;++r){let s=-1;for(let i=0;i<a.length;++i)a[i]>=r&&(s===-1||a[s]>a[i])&&(s=i);a[s]=r}return[n,a]}var JZ={kernelName:ci,backendName:"wasm",kernelFunc:e0,setupFunc:KZ};function Qr(e,t,n){let a=e.shape,r=e.shape.length,s=k.parseAxisParam(t,a),i=s,o=F.getAxesPermutation(i,r),l=null,u=!1;if(o!=null){let d=new Array(r);for(let c=0;c<d.length;c++)d[c]=a[o[c]];i=F.getInnerMostAxes(i.length,r),l=e0({inputs:{x:e},attrs:{perm:o},backend:n});let p=n.dataIdMap.get(e.dataId).id;n.dataIdMap.get(l.dataId).id!==p&&(u=!0)}return{transposed:l,originalAxes:s,axes:i,inputWasTransposed:u}}var m6;function QZ(e){m6=e.wasm.cwrap(Ao,null,["number, number, number"])}function eY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Qr(i,r,t);if(c){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;F.assertAxesAreInnerMostDims("all",d,h);let[m,f]=F.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;m6(o,g,A)}if(c&&t.disposeData(u.dataId),s){let A=F.expandShapeToKeepDim(y.shape,p);y.shape=A}return y}var tY={kernelName:Ao,backendName:"wasm",setupFunc:QZ,kernelFunc:eY},g6;function nY(e){g6=e.wasm.cwrap(xo,null,["number, number, number"])}function aY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Qr(i,r,t);if(c){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;F.assertAxesAreInnerMostDims("any",d,h);let[m,f]=F.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;g6(o,g,A)}if(c&&t.disposeData(u.dataId),s){let A=F.expandShapeToKeepDim(y.shape,p);y.shape=A}return y}var rY={kernelName:xo,backendName:"wasm",setupFunc:nY,kernelFunc:aY},y6;function sY(e){y6=e.wasm.cwrap(bs,null,["number","number","number","number","number"])}function iY(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=i,l=s,{transposed:u,axes:d,inputWasTransposed:p}=Qr(s,r,t);if(p){let y=t.dataIdMap.get(u.dataId).id;y!==i&&(l=u,o=y)}let c=l.shape.slice(0,-1),h=t.makeOutput(c,"int32"),m=t.dataIdMap.get(h.dataId).id,f=k.sizeFromShape(h.shape),g=l.shape[d[0]];return y6(o,Fn[l.dtype],f,g,m),p&&t.disposeData(u.dataId),h}var oY={kernelName:bs,backendName:"wasm",kernelFunc:iY,setupFunc:sY},A6;function lY(e){A6=e.wasm.cwrap(vs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function uY(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=F.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.strideHeight,A=d.strideWidth,x=d.inChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);if(d.dilationWidth!==1||d.dilationHeight!==1)throw new Error(`was backend only supports average pooling with dilation = [1, 1], got [${d.dilationHeight}, ${d.dilationWidth}].`);let v=a.makeOutput(d.outShape,"float32"),b=a.dataIdMap.get(v.dataId).id;return A6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,g,y,A,x,b),v}var dY={kernelName:vs,backendName:"wasm",setupFunc:lY,kernelFunc:uY};function Ea(e){let{inputs:t,attrs:n}=e,{x:a}=t,{shape:r}=n,s=k.sizeFromShape(a.shape),i=k.inferFromImplicitShape(r,s);return k.assert(s===k.sizeFromShape(i),()=>`new shape: ${i}, old shape: ${a.shape}. New shape and old shape must have the same number of elements.`),e.backend.incRef(a.dataId),{dataId:a.dataId,shape:i,dtype:a.dtype}}var pY={kernelName:tl,backendName:"wasm",kernelFunc:Ea},x6;function cY(e){x6=e.wasm.cwrap(ws,null,["number","array","number","number","array","number","number","number","number"])}function hY(e){let{inputs:t,backend:n,attrs:a}=e,{a:r,b:s}=t,{transposeA:i,transposeB:o}=a;if(r.dtype!=="float32"||s.dtype!=="float32")throw new Error("BatchMatMul for non non-float32 tensors not yet supported.");let l=r.shape.length,u=s.shape.length,d=i?r.shape[l-2]:r.shape[l-1],p=o?s.shape[u-1]:s.shape[u-2],c=i?r.shape[l-1]:r.shape[l-2],h=o?s.shape[u-2]:s.shape[u-1],m=r.shape.slice(0,-2),f=s.shape.slice(0,-2),g=k.sizeFromShape(m),y=k.sizeFromShape(f),A=g===y||g===1||y===1;k.assert(l>=2&&u>=2&&A,()=>`Error in matMul: the input batch dimensions must either be the same or at least one input batch dimension must be 1. Got input batch dimensions of (${m}) and (${f}).`);let x=(g>y?r.shape.slice(0,-2):s.shape.slice(0,-2)).concat([c,h]);k.assert(d===p,()=>`Error in matMul: inner shapes (${d}) and (${p}) of Tensors with shapes ${r.shape} and ${s.shape} and transposeA=${i} and transposeB=${o} must match.`);let v=i?[g,d,c]:[g,c,d],b=o?[y,h,p]:[y,p,h],w=Ea({inputs:{x:r},backend:n,attrs:{shape:v}}),N=Ea({inputs:{x:s},backend:n,attrs:{shape:b}}),C=n.dataIdMap.get(w.dataId).id,E=n.dataIdMap.get(N.dataId).id,_=i?w.shape[2]:w.shape[1],$=o?N.shape[1]:N.shape[2],S=Math.max(g,y),z=n.makeOutput([S,_,$],w.dtype),O=n.dataIdMap.get(z.dataId).id,W=new Uint8Array(new Int32Array(w.shape).buffer),G=new Uint8Array(new Int32Array(N.shape).buffer);return x6(C,W,w.shape.length,E,G,N.shape.length,i,o,O),n.disposeData(w.dataId),n.disposeData(N.dataId),z.shape=x,z}var fY={kernelName:ws,backendName:"wasm",setupFunc:cY,kernelFunc:hY};function t0(e){let{inputs:{x:t},attrs:{dtype:n},backend:a}=e,r=a.makeOutput(t.shape,n),s=a.typedArrayFromHeap(t);return a.typedArrayFromHeap(r).set(s),r}var mY={kernelName:ks,backendName:"wasm",kernelFunc:t0},gY=vn(Is),b6;function yY(e){b6=e.wasm.cwrap(zr,null,["number","number","number","number"])}function AY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{clipValueMin:s,clipValueMax:i}=a,o=n.dataIdMap.get(r.dataId).id,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(l.dataId).id;return b6(o,s,i,u),l}var xY={kernelName:zr,backendName:"wasm",setupFunc:yY,kernelFunc:AY};function v6(e){let{inputs:t,backend:n}=e,a=k.parseAxisParam(e.attrs.axis,t[0].shape)[0],r=F.computeOutShape(t.map(h=>h.shape),a),s=t.filter(h=>k.sizeFromShape(h.shape)>0);if(s.length===1)return Qh({inputs:{x:s[0]},backend:n});let i=n.makeOutput(r,t[0].dtype);if(k.sizeFromShape(r)===0)return i;let o=s.map(h=>h.shape);if(F.assertParamsConsistent(o,a),s[0].dtype==="string"){let h=s.map(x=>{let v=k.sizeFromShape(x.shape.slice(a));return Ea({inputs:{x},backend:n,attrs:{shape:[-1,v]}})}),m=h.map(x=>({vals:n.readSync(x.dataId),shape:x.shape}));r=F.computeOutShape(h.map(x=>x.shape),1);let f=h[0].shape[0]===1,g=vg(m,r,t[0].dtype,f),y=F.computeOutShape(s.map(x=>x.shape),a);i.shape=y;let A=n.dataIdMap.get(i.dataId);return A.stringBytes=F.fromStringArrayToUint8(g),h.forEach(x=>n.disposeData(x.dataId)),i}let l=k.sizeFromShape(s[0].shape.slice(0,a)),u=0,d=s.map(h=>{let m=k.sizeFromShape(h.shape.slice(a));return u+=m,m}),p=s.map(h=>n.typedArrayFromHeap(h)),c=n.typedArrayFromHeap(i);for(let h=0;h<l;h++){let m=h*u;for(let f=0;f<p.length;f++){let g=d[f],y=h*g,A=p[f].subarray(y,y+g);c.set(A,m),m+=g}}return i}var bY={kernelName:So,backendName:"wasm",kernelFunc:v6},w6;function vY(e){w6=e.wasm.cwrap(Ss,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function wY(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p,dataFormat:c}=n,h=F.convertConv2DDataFormat(c),m=F.computeConv2DInfo(r.shape,s.shape,l,u,d,p,!1,h),f=m.filterHeight,g=m.filterWidth,y=m.padInfo.top,A=m.padInfo.right,x=m.padInfo.bottom,v=m.padInfo.left,b=m.dilationHeight,w=m.dilationWidth,N=m.strideHeight,C=m.strideWidth,E=m.inChannels,_=m.outChannels,$=m.padInfo.type==="SAME"?1:0;if(m.dataFormat!=="channelsLast")throw new Error(`wasm backend Conv2D does not support dataFormat:'${m.dataFormat}'. Please use 'channelsLast'.`);let S=a.makeOutput(m.outShape,"float32"),z=a.dataIdMap.get(S.dataId).id;return w6(i,r.shape[0],r.shape[1],r.shape[2],o,f,g,y,A,x,v,$,b,w,N,C,E,_,z),S}var kY={kernelName:Ss,backendName:"wasm",setupFunc:vY,kernelFunc:wY},k6;function IY(e){k6=e.wasm.cwrap(Ns,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function SY(e){let{backend:t,inputs:n,attrs:a}=e,{dy:r,filter:s}=n,{strides:i,pad:o,dataFormat:l,dimRoundingMode:u,inputShape:d}=a,p=1,c=F.convertConv2DDataFormat(l),h=F.computeConv2DInfo(d,s.shape,i,p,o,u,!1,c),{batchSize:m,filterHeight:f,filterWidth:g,inChannels:y,inHeight:A,inWidth:x,outChannels:v,outHeight:b,outWidth:w,strideHeight:N,strideWidth:C}=h,E=f-1-h.padInfo.top,_=g-1-h.padInfo.left,$=h.dataFormat==="channelsLast",S=k.computeStrides(h.inShape),z=k.computeStrides(r.shape),[O,W,G]=k.computeStrides(s.shape),H=S[0],J=$?S[1]:S[2],K=$?S[2]:1,ne=$?1:S[1],Q=z[0],se=$?z[1]:z[2],Z=$?z[2]:1,le=$?1:z[1],oe=t.makeOutput(h.inShape,"float32"),xe=t.dataIdMap.get(oe.dataId).id,fe=t.dataIdMap.get(r.dataId).id,Ne=t.dataIdMap.get(s.dataId).id;return k6(fe,Ne,m,f,g,A,x,y,b,w,v,N,C,E,_,O,W,G,H,J,K,ne,Q,se,Z,le,xe),oe}var NY={kernelName:Ns,backendName:"wasm",setupFunc:IY,kernelFunc:SY},TY=vn(Ts),Qg;(function(e){e[e.bilinear=0]="bilinear",e[e.nearest=1]="nearest"})(Qg||(Qg={}));var I6;function CY(e){I6=e.wasm.cwrap(To,null,["number","number","number","number","array","number","number","number","number","number"])}function EY(e){let{backend:t,inputs:n,attrs:a}=e,{method:r,extrapolationValue:s,cropSize:i}=a,{image:o,boxes:l,boxInd:u}=n,d=l.shape[0],[p,c]=i,h=[d,p,c,o.shape[3]],m=t.dataIdMap.get(o.dataId),f;o.dtype!=="float32"&&(f=t0({backend:t,inputs:{x:o},attrs:{dtype:"float32"}}),m=t.dataIdMap.get(f.dataId));let g=m.id,y=t.dataIdMap.get(l.dataId).id,A=t.dataIdMap.get(u.dataId).id,x=t.makeOutput(h,"float32"),v=t.dataIdMap.get(x.dataId).id,b=new Uint8Array(new Int32Array(o.shape).buffer);return I6(g,y,A,d,b,p,c,Qg[r],s,v),f!=null&&t.disposeData(f.dataId),x}var RY={kernelName:To,backendName:"wasm",setupFunc:CY,kernelFunc:EY},S6;function MY(e){S6=e.wasm.cwrap(Cs,null,["number","number","number","number","number","number"])}function FY(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{axis:s,exclusive:i,reverse:o}=a,l=r.shape.length;k.assert(r.dtype==="float32"||r.dtype==="int32",()=>`cumsum does not support ${r.dtype} tensors in the WASM backend`);let u=F.getAxesPermutation([s],l),d=r;u!==null&&(d=e0({inputs:{x:r},attrs:{perm:u},backend:n}));let p=F.getInnerMostAxes(1,l)[0];F.assertAxesAreInnerMostDims("cumsum",[p],l);let c=n.makeOutput(d.shape,d.dtype),h=d.shape[p],m=n.dataIdMap.get(d.dataId).id,f=n.dataIdMap.get(c.dataId).id;S6(m,i?1:0,o?1:0,h,f,Fn[r.dtype]);let g=c;if(u!==null){let y=F.getUndoAxesPermutation(u);g=e0({inputs:{x:c},attrs:{perm:y},backend:n}),n.disposeData(d.dataId),n.disposeData(c.dataId)}return g}var $Y={kernelName:Cs,backendName:"wasm",setupFunc:MY,kernelFunc:FY},N6;function DY(e){N6=e.wasm.cwrap(Co,null,["number","number","number","array","number","array","array","number","number"])}function OY(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{blockSize:s,dataFormat:i}=a;k.assert(s>1,()=>`blockSize should be > 1 for depthToSpace, but was: ${s}`);let o=r.shape[0],l=i==="NHWC"?r.shape[1]:r.shape[2],u=i==="NHWC"?r.shape[2]:r.shape[3],d=i==="NHWC"?r.shape[3]:r.shape[1],p=l*s,c=u*s,h=d/(s*s),m=i==="NHWC"?[o,p,c,h]:[o,h,p,c],f=t.makeOutput(m,"float32"),g=t.dataIdMap.get(r.dataId).id,y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),A=new Uint8Array(new Int32Array(m).buffer),x=new Uint8Array(new Int32Array(k.computeStrides(m)).buffer),v=t.dataIdMap.get(f.dataId).id;return N6(g,s,i==="NHWC"?1:0,y,r.shape.length-1,A,x,m.length,v),f}var zY={kernelName:Co,backendName:"wasm",setupFunc:DY,kernelFunc:OY},T6;function _Y(e){T6=e.wasm.cwrap(Es,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function PY(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s}=t,i=a.dataIdMap.get(r.dataId).id,o=a.dataIdMap.get(s.dataId).id,{strides:l,dilations:u,pad:d,dimRoundingMode:p}=n,c=u==null?[1,1]:u,h=F.computeConv2DInfo(r.shape,s.shape,l,c,d,p,!0),m=h.filterHeight,f=h.filterWidth,g=h.padInfo.top,y=h.padInfo.right,A=h.padInfo.bottom,x=h.padInfo.left,v=h.dilationHeight,b=h.dilationWidth,w=h.strideHeight,N=h.strideWidth,C=h.inChannels,E=h.outChannels,_=h.padInfo.type==="SAME"?1:0;if(h.dataFormat!=="channelsLast")throw new Error(`wasm backend DepthwiseConv2dNative does not support dataFormat:'${h.dataFormat}'. Please use 'channelsLast'.`);let $=a.makeOutput(h.outShape,"float32"),S=a.dataIdMap.get($.dataId).id;return T6(i,r.shape[0],r.shape[1],r.shape[2],o,m,f,g,y,A,x,_,v,b,w,N,C,E,S),$}var LY={kernelName:Es,backendName:"wasm",setupFunc:_Y,kernelFunc:PY},WY=!1,BY=wn(Mo,WY,"bool"),VY=vn(Ms);function ey(e){let{inputs:t,attrs:n,backend:a}=e,{input:r}=t,{dim:s}=n,i=r.shape.length,o=r.shape.slice(),l=s;return s<0&&(k.assert(-(i+1)<=s,()=>`Axis must be in the interval [${-(i+1)}, ${i}]`),l=i+s+1),o.splice(l,0,1),Ea({inputs:{x:r},backend:a,attrs:{shape:o}})}var jY={kernelName:Fo,backendName:"wasm",kernelFunc:ey};function UY(e){let{attrs:{shape:t,value:n,dtype:a},backend:r}=e,s=r.makeOutput(t,a);return r.typedArrayFromHeap(s).fill(n),s}var HY={kernelName:Pu,backendName:"wasm",kernelFunc:UY},C6;function GY(e){C6=e.wasm.cwrap(Do,null,["number","number","number","number","number","number"])}function qY(e){let{inputs:t,backend:n}=e,{image:a}=t,r=n.makeOutput(a.shape,a.dtype),s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,[o,l,u,d]=a.shape;return C6(s,o,l,u,d,i),r}var XY={kernelName:Do,backendName:"wasm",kernelFunc:qY,setupFunc:GY},KY=vn(Fs),ZY=!1,YY=wn($s,ZY),E6;function JY(e){E6=e.wasm.cwrap(Ds,null,["number","number","number","number","number","number","number"])}function QY(e){let{backend:t,inputs:n,attrs:a}=e,{varianceEpsilon:r}=a,{x:s,mean:i,variance:o,offset:l,scale:u}=n,d=t.dataIdMap.get(s.dataId).id,p=t.dataIdMap.get(i.dataId).id,c=t.dataIdMap.get(o.dataId).id,h=l!=null?t.dataIdMap.get(l.dataId).id:0,m=u!=null?t.dataIdMap.get(u.dataId).id:0,f=t.makeOutput(s.shape,s.dtype);if(k.sizeFromShape(s.shape)===0)return f;let g=t.dataIdMap.get(f.dataId).id;return E6(d,p,c,h,m,r,g),f}var eJ={kernelName:Ds,backendName:"wasm",setupFunc:JY,kernelFunc:QY},R6;function tJ(e){R6=e.wasm.cwrap(fi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function nJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=F.computeConv2DInfo(r.shape,s.shape,l,d,u,c),g=Pd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,A=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let b=f.filterHeight,w=f.filterWidth,N=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,_=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,z=f.strideHeight,O=f.strideWidth,W=f.inChannels,G=f.padInfo.type==="SAME"?1:0,H=f.batchSize,J=f.inHeight,K=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(ne.dataId).id,se=o==null?0:a.dataIdMap.get(o.dataId).id;return R6(y,H,J,K,A,b,w,v,N,C,E,_,G,$,S,z,O,W,x,g,se,m||0,Q),ne}var aJ={kernelName:fi,backendName:"wasm",setupFunc:tJ,kernelFunc:nJ},M6;function rJ(e){M6=e.wasm.cwrap(mi,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function sJ(e){let{inputs:t,attrs:n,backend:a}=e,{x:r,filter:s,bias:i,preluActivationWeights:o}=t,{strides:l,pad:u,dilations:d,dataFormat:p,dimRoundingMode:c,activation:h,leakyreluAlpha:m}=n,f=F.computeConv2DInfo(r.shape,s.shape,l,d,u,c,!0),g=Pd[h];if(g==null)throw new Error(`${h} activation not yet supported for FusedDepthwiseConv2D in the wasm backend.`);let y=a.dataIdMap.get(r.dataId).id,A=a.dataIdMap.get(s.dataId).id,x=f.outChannels,v=0;if(i!=null){let Z=a.dataIdMap.get(i.dataId);if(Z.shape.length!==1)throw new Error(`FusedDepthwiseConv2D only supports rank-1 bias but got rank ${Z.shape.length}.`);if(Z.shape[0]!==x)throw new Error(`FusedDepthwiseConv2D bias shape (${Z.shape}) does not match the number of output channels (${x})`);v=Z.id}let b=f.filterHeight,w=f.filterWidth,N=f.padInfo.top,C=f.padInfo.right,E=f.padInfo.bottom,_=f.padInfo.left,$=f.dilationHeight,S=f.dilationWidth,z=f.strideHeight,O=f.strideWidth,W=f.inChannels,G=f.padInfo.type==="SAME"?1:0,H=f.batchSize,J=f.inHeight,K=f.inWidth;if(p!=="NHWC")throw new Error(`wasm backend FusedDepthwiseConv2D does not support dataFormat:'${p}'. Please use 'NHWC'.`);let ne=a.makeOutput(f.outShape,"float32"),Q=a.dataIdMap.get(ne.dataId).id,se=o==null?0:a.dataIdMap.get(o.dataId).id;return M6(y,H,J,K,A,b,w,v,N,C,E,_,G,$,S,z,O,W,x,g,se,m||0,Q),ne}var iJ={kernelName:mi,backendName:"wasm",setupFunc:rJ,kernelFunc:sJ},F6;function oJ(e){F6=e.wasm.cwrap(zo,null,["number","number","number","number","number","number","array","number"])}function lJ(e){let{backend:t,inputs:n}=e,{params:a,indices:r}=n,[s,i,o,l]=y1.prepareAndValidate(a,r),u=t.makeOutput(s,a.dtype);if(i===0)return u;let d=r.shape,p=d[d.length-1],c=t.dataIdMap.get(a.dataId).id,h=t.dataIdMap.get(r.dataId).id,m=new Uint8Array(new Int32Array(l).buffer),f=t.dataIdMap.get(u.dataId).id;return F6(c,Fn[a.dtype],h,i,p,o,m,f),u}var uJ={kernelName:zo,backendName:"wasm",setupFunc:oJ,kernelFunc:lJ},$6;function dJ(e){$6=e.wasm.cwrap("Gather",null,["number","number","array","number","number","number","array","number"])}function pJ(e){let{backend:t,inputs:n,attrs:a}=e,{x:r,indices:s}=n,{axis:i,batchDims:o}=a,l=k.parseAxisParam(i,r.shape)[0],u=F.segment_util.collectGatherOpShapeInfo(r,s,l,o),d=Ea({inputs:{x:r},attrs:{shape:[u.batchSize,u.outerSize,u.dimSize,u.sliceSize]},backend:t}),p=k.sizeFromShape(s.shape),c=Ea({inputs:{x:s},attrs:{shape:[u.batchSize,p/u.batchSize]},backend:t}),h=[u.batchSize,u.outerSize,p/u.batchSize,u.sliceSize],m=t.makeOutput(h,r.dtype);if(k.sizeFromShape(r.shape)===0)return m;let f=d.shape.length-1,g=t.dataIdMap.get(d.dataId).id,y=t.dataIdMap.get(c.dataId).id,A=t.dataIdMap.get(m.dataId).id,x=new Uint8Array(new Int32Array(k.computeStrides(d.shape)).buffer),v=new Uint8Array(new Int32Array(k.computeStrides(h)).buffer);return $6(g,Fn[r.dtype],x,f,y,u.batchSize,v,A),t.disposeData(d.dataId),t.disposeData(c.dataId),m.shape=u.outputShape,m}var cJ={kernelName:Oo,backendName:"wasm",setupFunc:dJ,kernelFunc:pJ},hJ=!1,fJ=wn(_o,hJ,"bool"),mJ=!1,gJ=wn(Os,mJ,"bool"),D6;function yJ(e){D6=e.wasm.cwrap(_s,null,["number","number","number"])}function AJ(e){let{inputs:{x:t},attrs:{alpha:n},backend:a}=e,r=a.dataIdMap.get(t.dataId).id,s=a.makeOutput(t.shape,t.dtype);if(k.sizeFromShape(t.shape)!==0){let i=a.dataIdMap.get(s.dataId).id;D6(r,n,i)}return s}var xJ={kernelName:_s,backendName:"wasm",setupFunc:yJ,kernelFunc:AJ},bJ=!1,vJ=wn(Bo,bJ,"bool"),wJ=!1,kJ=wn(Vo,wJ,"bool"),IJ=vn(Ps),SJ=!1,NJ=wn(Uo,SJ,"bool"),O6;function TJ(e){O6=e.wasm.cwrap(Ls,null,["number, number, number"])}function CJ(e){let{backend:t,inputs:n,attrs:a}=e,{reductionIndices:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=i,{transposed:u,axes:d,originalAxes:p,inputWasTransposed:c}=Qr(i,r,t);if(c){let A=t.dataIdMap.get(u.dataId).id;l=u,o=A}let h=l.shape.length;F.assertAxesAreInnerMostDims("max",d,h);let[m,f]=F.computeOutAndReduceShapes(l.shape,d),g=k.sizeFromShape(f),y=t.makeOutput(m,i.dtype);if(k.sizeFromShape(l.shape)!==0){let A=t.dataIdMap.get(y.dataId).id;O6(o,g,A)}if(c&&t.disposeData(u.dataId),s){let A=F.expandShapeToKeepDim(y.shape,p);y.shape=A}return y}var EJ={kernelName:Ls,backendName:"wasm",setupFunc:TJ,kernelFunc:CJ},RJ=!1,MJ=wn(Ws,RJ),z6;function FJ(e){z6=e.wasm.cwrap(Bs,null,["number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number","number"])}function $J(e){let{inputs:t,attrs:n,backend:a}=e,r=t.x,s=a.dataIdMap.get(r.dataId).id,{filterSize:i,strides:o,pad:l,dimRoundingMode:u}=n,d=F.computePool2DInfo(r.shape,i,o,1,l,u),p=d.filterHeight,c=d.filterWidth,h=d.padInfo.top,m=d.padInfo.right,f=d.padInfo.bottom,g=d.padInfo.left,y=d.dilationHeight,A=d.dilationWidth,x=d.strideHeight,v=d.strideWidth,b=d.inChannels,w=d.outChannels;if(d.dataFormat!=="channelsLast")throw new Error(`wasm backend does not support dataFormat:'${d.dataFormat}'. Please use 'channelsLast'.`);let N=a.makeOutput(d.outShape,"float32"),C=a.dataIdMap.get(N.dataId).id;return z6(s,r.shape[0],r.shape[1],r.shape[2],p,c,h,m,f,g,y,A,x,v,b,w,C),N}var DJ={kernelName:Bs,backendName:"wasm",setupFunc:FJ,kernelFunc:$J},_6;function OJ(e){_6=e.wasm.cwrap(Vs,null,["number, number, number"])}function zJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Qr(i,r,t),m=p;if(h){let v=t.dataIdMap.get(d.dataId).id;v!==o&&(u=d,l=v,m=F.getInnerMostAxes(m.length,u.shape.length))}F.assertAxesAreInnerMostDims("mean",m,u.shape.length);let[f,g]=F.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=u;u.dtype!=="float32"&&(A=t0({backend:t,inputs:{x:u},attrs:{dtype:"float32"}}),l=t.dataIdMap.get(A.dataId).id);let x=t.makeOutput(f,"float32");if(k.sizeFromShape(u.shape)!==0){let v=t.dataIdMap.get(x.dataId).id;_6(l,y,v)}if(h&&t.disposeData(d.dataId),s){let v=F.expandShapeToKeepDim(x.shape,c);x.shape=v}return u.dtype!=="float32"&&t.disposeData(A.dataId),x}var _J={kernelName:Vs,backendName:"wasm",setupFunc:OJ,kernelFunc:zJ},P6;function PJ(e){P6=e.wasm.cwrap(js,null,["number, number, number"])}function LJ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Qr(i,r,t);if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x)}let m=u.shape.length;F.assertAxesAreInnerMostDims("min",p,m);let[f,g]=F.computeOutAndReduceShapes(u.shape,p),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;P6(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=F.expandShapeToKeepDim(A.shape,c);A.shape=x}return A}var WJ={kernelName:js,backendName:"wasm",setupFunc:PJ,kernelFunc:LJ},BJ=!1,VJ=wn(Us,BJ),ty;(function(e){e[e.reflect=0]="reflect",e[e.symmetric=1]="symmetric"})(ty||(ty={}));var L6;function jJ(e){L6=e.wasm.cwrap(Hs,null,["number","array","number","number","array","array","number","number"])}function UJ(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,mode:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return L6(i,u,t.shape.length,Fn[t.dtype],c,h,ty[r],l),o}var HJ={kernelName:Hs,backendName:"wasm",kernelFunc:UJ,setupFunc:jJ},GJ=!0,qJ=wn(Gs,GJ),XJ=vn(Go);function ny(e,t){let n=new Int32Array(e.wasm.HEAPU8.buffer,t,4),a=n[0],r=n[1],s=n[2],i=n[3];return e.wasm._free(t),{pSelectedIndices:a,selectedSize:r,pSelectedScores:s,pValidOutputs:i}}var W6;function KJ(e){W6=e.wasm.cwrap(Xo,"number",["number","number","number","number","number"])}function ZJ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i}=a,{boxes:o,scores:l}=n,u=t.dataIdMap.get(o.dataId).id,d=t.dataIdMap.get(l.dataId).id,p=W6(u,d,s,r,i),{pSelectedIndices:c,selectedSize:h,pSelectedScores:m,pValidOutputs:f}=ny(t,p);return t.wasm._free(m),t.wasm._free(f),t.makeOutput([h],"int32",c)}var YJ={kernelName:Xo,backendName:"wasm",setupFunc:KJ,kernelFunc:ZJ},B6;function JJ(e){B6=e.wasm.cwrap(Ko,"number",["number","number","number","number","number","bool"])}function QJ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,padToMaxOutputSize:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=B6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=ny(t,c);t.wasm._free(f);let y=t.makeOutput([m],"int32",h),A=t.makeOutput([],"int32",g);return[y,A]}var eQ={kernelName:Ko,backendName:"wasm",setupFunc:JJ,kernelFunc:QJ},V6;function tQ(e){V6=e.wasm.cwrap(Zo,"number",["number","number","number","number","number","number"])}function nQ(e){let{backend:t,inputs:n,attrs:a}=e,{iouThreshold:r,maxOutputSize:s,scoreThreshold:i,softNmsSigma:o}=a,{boxes:l,scores:u}=n,d=t.dataIdMap.get(l.dataId).id,p=t.dataIdMap.get(u.dataId).id,c=V6(d,p,s,r,i,o),{pSelectedIndices:h,selectedSize:m,pSelectedScores:f,pValidOutputs:g}=ny(t,c);t.wasm._free(g);let y=t.makeOutput([m],"int32",h),A=t.makeOutput([m],"float32",f);return[y,A]}var aQ={kernelName:Zo,backendName:"wasm",setupFunc:tQ,kernelFunc:nQ},rQ=!1,sQ=wn(qo,rQ,"bool"),j6;function iQ(e){j6=e.wasm.cwrap(qs,null,["number","number","number","number","number"])}function oQ(e){let{inputs:t,backend:n,attrs:a}=e,{indices:r}=t,{depth:s,onValue:i,offValue:o}=a,l=n.makeOutput([...r.shape,s],"int32"),u=n.dataIdMap.get(l.dataId).id,d=n.dataIdMap.get(r.dataId).id;return j6(d,s,i,o,u),l}var lQ={kernelName:qs,backendName:"wasm",setupFunc:iQ,kernelFunc:oQ};function uQ(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(1),a}var dQ={kernelName:Yo,backendName:"wasm",kernelFunc:uQ};function pQ(e){let{inputs:t,backend:n,attrs:a}=e,{axis:r}=a;if(t.length===1)return ey({inputs:{input:t[0]},backend:n,attrs:{dim:r}});let s=t[0].shape,i=t[0].dtype;t.forEach(d=>{k.assertShapesMatch(s,d.shape,"All tensors passed to stack must have matching shapes"),k.assert(i===d.dtype,()=>"All tensors passed to stack must have matching dtypes")});let o=[],l=t.map(d=>{let p=ey({inputs:{input:d},backend:n,attrs:{dim:r}});return o.push(p),p}),u=v6({inputs:l,backend:n,attrs:{axis:r}});return o.forEach(d=>n.disposeData(d.dataId)),u}var cQ={kernelName:Jo,backendName:"wasm",kernelFunc:pQ},U6;function hQ(e){U6=e.wasm.cwrap(Xs,null,["number","array","number","number","array","array","number","number"])}function fQ(e){let{inputs:{x:t},backend:n,attrs:{paddings:a,constantValue:r}}=e,s=a.map((m,f)=>m[0]+t.shape[f]+m[1]),i=n.dataIdMap.get(t.dataId).id,o=n.makeOutput(s,t.dtype),l=n.dataIdMap.get(o.dataId).id,u=new Uint8Array(new Int32Array(t.shape).buffer),d=a.map(m=>m[0]),p=a.map(m=>m[1]),c=new Uint8Array(new Int32Array(d).buffer),h=new Uint8Array(new Int32Array(p).buffer);return U6(i,u,t.shape.length,Fn[t.dtype],c,h,r,l),o}var mQ={kernelName:Xs,backendName:"wasm",kernelFunc:fQ,setupFunc:hQ},gQ=!1,yQ=wn(Ks,gQ),H6;function AQ(e){H6=e.wasm.cwrap(Zs,null,["number","number","number"])}function xQ(e){let{inputs:t,backend:n}=e,{x:a,alpha:r}=t,s=n.dataIdMap.get(a.dataId).id,i=n.dataIdMap.get(r.dataId).id,o=n.makeOutput(a.shape,"float32"),l=n.dataIdMap.get(o.dataId).id;return H6(s,i,l),o}var bQ={kernelName:Zs,backendName:"wasm",setupFunc:AQ,kernelFunc:xQ},G6;function vQ(e){G6=e.wasm.cwrap(Qo,null,["number","number","number","number"])}function wQ(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Qr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=F.getInnerMostAxes(m.length,u.shape.length))}F.assertAxesAreInnerMostDims("prod",m,u.shape.length);let[f,g]=F.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;G6(l,y,Fn[A.dtype],x)}if(h&&t.disposeData(d.dataId),s){let x=F.expandShapeToKeepDim(A.shape,c);A.shape=x}return A}var kQ={kernelName:Qo,backendName:"wasm",setupFunc:vQ,kernelFunc:wQ},IQ=e=>{let{backend:t,attrs:n}=e,{start:a,stop:r,step:s,dtype:i}=n,o=Ig(a,r,s,i),l=t.makeOutput([o.length],i);return t.typedArrayFromHeap(l).set(o),l},SQ={kernelName:ju,backendName:"wasm",kernelFunc:IQ},NQ=!0,TQ=wn(Rs,NQ),CQ=vn(Ys),EQ=vn(Qs),q6;function RQ(e){q6=e.wasm.cwrap(Js,null,["number","number","number","number","number","number","number","number","number","number"])}function MQ(e){let{backend:t,inputs:n,attrs:a}=e,{images:r}=n,{alignCorners:s,halfPixelCenters:i,size:o}=a,[l,u]=o,[d,p,c,h]=r.shape,m=[d,l,u,h],f=t.dataIdMap.get(r.dataId),g;f.dtype!=="float32"&&(g=t0({backend:t,inputs:{x:r},attrs:{dtype:"float32"}}),f=t.dataIdMap.get(g.dataId));let y=f.id,A=t.makeOutput(m,"float32");if(k.sizeFromShape(r.shape)===0)return A;let x=t.dataIdMap.get(A.dataId).id;return q6(y,d,p,c,h,l,u,s?1:0,i?1:0,x),g!=null&&t.disposeData(g.dataId),A}var FQ={kernelName:Js,backendName:"wasm",setupFunc:RQ,kernelFunc:MQ},X6;function $Q(e){X6=e.wasm.cwrap(ei,null,["number","array","number","array","number","number"])}function DQ(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,{dims:s}=a,i=k.parseAxisParam(s,r.shape);if(r.shape.length===0)return Qh({inputs:{x:r},backend:n});let o=n.makeOutput(r.shape,r.dtype),l=n.dataIdMap.get(r.dataId).id,u=n.dataIdMap.get(o.dataId).id,d=new Uint8Array(new Int32Array(i).buffer),p=new Uint8Array(new Int32Array(r.shape).buffer);X6(l,d,i.length,p,r.shape.length,u);let c=Ea({inputs:{x:o},attrs:{shape:r.shape},backend:n});return n.disposeData(o.dataId),c}var OQ={kernelName:ei,backendName:"wasm",kernelFunc:DQ,setupFunc:$Q},K6;function zQ(e){K6=e.wasm.cwrap(ml,null,["number","number","number","number","number","number","number","number","array","number","number"])}function _Q(e){let{inputs:t,backend:n,attrs:a}=e,{image:r}=t,{radians:s,fillValue:i,center:o}=a,l=n.makeOutput(r.shape,r.dtype),u=n.dataIdMap.get(r.dataId).id,d=n.dataIdMap.get(l.dataId).id,[p,c,h,m]=r.shape,[f,g]=F.getImageCenter(o,c,h),y=i===0,A=255,x=typeof i=="number"?[i,i,i,y?0:A]:[...i,A],v=new Uint8Array(new Int32Array(x).buffer);return K6(u,p,c,h,m,s,f,g,v,x.length,d),l}var PQ={kernelName:ml,backendName:"wasm",kernelFunc:_Q,setupFunc:zQ},LQ=vn(ti),WQ=vn(ni),Z6;function BQ(e){Z6=e.wasm.cwrap(nl,null,["number","number","number","number","number","number","array","number","number"])}function VQ(e){let{backend:t,inputs:n,attrs:a}=e,{indices:r,updates:s}=n,{shape:i}=a,o=t.makeOutput(i,s.dtype);if(k.sizeFromShape(i)===0)return o;let{sliceRank:l,numUpdates:u,sliceSize:d,strides:p,outputSize:c}=A1.calculateShapes(s,r,i),h=t.dataIdMap.get(r.dataId).id,m=t.dataIdMap.get(s.dataId).id,f=new Uint8Array(new Int32Array(p).buffer),g=t.dataIdMap.get(o.dataId).id;return Z6(h,m,Fn[s.dtype],l,u,d,f,c,g),o}var jQ={kernelName:nl,backendName:"wasm",setupFunc:BQ,kernelFunc:VQ},Y6;function UQ(e){Y6=e.wasm.cwrap("SelectV2",null,["number","number","number","number","number"])}function HQ(e){let{inputs:t,backend:n}=e,{condition:a,t:r,e:s}=t,i=n.dataIdMap.get(a.dataId).id,o=n.dataIdMap.get(r.dataId).id,l=n.dataIdMap.get(s.dataId).id,u=n.makeOutput(r.shape,r.dtype),d=n.dataIdMap.get(u.dataId).id,p=a.shape.length,c=r.shape.length,h=p===0||p>1||c===1?1:k.sizeFromShape(r.shape.slice(1));return Y6(i,o,l,h,d),u}var GQ={kernelName:al,backendName:"wasm",kernelFunc:HQ,setupFunc:UQ},J6;function qQ(e){J6=e.wasm.cwrap(ri,null,["number","number"])}function XQ(e){let{backend:t,inputs:{x:n}}=e,a=t.dataIdMap.get(n.dataId).id,r=t.makeOutput(n.shape,n.dtype),s=t.dataIdMap.get(r.dataId).id;return k.sizeFromShape(r.shape)===0||J6(a,s),r}var KQ={kernelName:"Sigmoid",backendName:"wasm",setupFunc:qQ,kernelFunc:XQ},ZQ=vn(ai);function n0(e){let{inputs:{x:t},attrs:{begin:n,size:a},backend:r}=e,[s,i]=fn.parseSliceParams(t,n,a),o=fn.isSliceContinous(t.shape,s,i),l=r.readSync(t.dataId),u=r.makeOutput(i,t.dtype),d=k.computeStrides(t.shape),p=r.dataIdMap.get(u.dataId);if(o){let m=fn.computeFlatOffset(s,d);return t.dtype==="string"?p.stringBytes=l.slice(m,m+k.sizeFromShape(i)):r.typedArrayFromHeap(u).set(l.subarray(m,m+k.sizeFromShape(i))),u}if(t.dtype==="string"){let m=Fh(l,s,i,t.shape,t.dtype);return p.stringBytes=m,u}let c=r.typedArrayFromHeap(u),h=t.shape.length;if(h===2)YQ(l,d[0],c,s,i);else if(h===3)JQ(l,d[0],d[1],c,s,i);else if(h===4)QQ(l,d[0],d[1],d[2],c,s,i);else{let m=Fh(l,s,i,t.shape,t.dtype);c.set(m)}return u}function YQ(e,t,n,a,r){let s=0,i=a[0],o=a[1],l=i+r[0];for(let u=i;u<l;u++){let d=u*t+o;n.set(e.subarray(d,d+r[1]),s),s+=r[1]}}function JQ(e,t,n,a,r,s){let i=0,o=r[0],l=r[1],u=r[2],d=o+s[0],p=l+s[1];for(let c=o;c<d;c++)for(let h=l;h<p;h++){let m=c*t+h*n+u;a.set(e.subarray(m,m+s[2]),i),i+=s[2]}}function QQ(e,t,n,a,r,s,i){let o=0,l=s[0],u=s[1],d=s[2],p=l+i[0],c=u+i[1],h=d+i[2],m=s[3];for(let f=l;f<p;f++)for(let g=u;g<c;g++)for(let y=d;y<h;y++){let A=f*t+g*n+y*a+m;r.set(e.subarray(A,A+i[3]),o),o+=i[3]}}var eee={kernelName:sl,backendName:"wasm",kernelFunc:n0},Q6;function tee(e){Q6=e.wasm.cwrap(oi,null,["number","number","number","number"])}function nee(e){let{backend:t,inputs:{logits:n},attrs:{dim:a}}=e,r=t.dataIdMap.get(n.dataId).id,s=t.makeOutput(n.shape,n.dtype),i=t.dataIdMap.get(s.dataId).id,o=n.shape[a],l=k.sizeFromShape(n.shape)/o;return k.sizeFromShape(s.shape)===0||Q6(r,i,o,l),s}var aee={kernelName:oi,backendName:"wasm",setupFunc:tee,kernelFunc:nee};function ree(e){let{inputs:t,attrs:n,backend:a}=e,{x:r}=t,{numOrSizeSplits:s,axis:i}=n,o=k.parseAxisParam(i,r.shape)[0],l=F.prepareSplitSize(r,s,o),u=new Array(r.shape.length).fill(0),d=r.shape.slice();return l.map(p=>{let c=[...d];c[o]=p;let h=n0({inputs:{x:r},attrs:{begin:u,size:c},backend:a});return u[o]+=p,h})}var see={kernelName:ul,backendName:"wasm",kernelFunc:ree},iee=vn(si),oee=vn(Gu),lee=!0,uee=wn(li,lee),e4;function dee(e){e4=e.wasm.cwrap(Pr,null,["number","number","number"])}function pee(e){let{backend:t,inputs:n,attrs:a}=e,{alpha:r}=a,{x:s}=n,i=t.dataIdMap.get(s.dataId).id,o=t.makeOutput(s.shape,s.dtype),l=t.dataIdMap.get(o.dataId).id;return e4(i,r,l),o}var cee={kernelName:Pr,backendName:"wasm",setupFunc:dee,kernelFunc:pee},t4;function hee(e){t4=e.wasm.cwrap(dl,null,["number","array","number","array","array","array","array","array","number","number"])}function fee(e){let{backend:t,inputs:n,attrs:a}=e,{x:r}=n,{begin:s,end:i,strides:o}=a;o==null&&(o=new Array(s.length));let{beginMask:l,endMask:u,ellipsisMask:d,newAxisMask:p,shrinkAxisMask:c}=a,h=F.slice_util.maskToAxes(d);if(h.length>1)throw new Error("Multiple ellipses in slice is not allowed.");if(d!==0&&p!==0)throw new Error("Using both ellipsisMask and newAxisMask is not yet supported.");if(d!==0&&c!==0)throw new Error("Using both ellipsisMask and shrinkAxisMask is not yet supported.");let m=r.shape.length-s.length,f=F.slice_util.maskToAxes(p),g=r.shape.slice();f.forEach(_=>{s[_]=0,i[_]=1,g.splice(_,0,1)});let y=Ea({inputs:{x:r},attrs:{shape:g},backend:t}),{begin:A,end:x,strides:v}=F.slice_util.getNormalizedAxes(y.shape,h,m,s,i,o,l,u,d);s=A,i=x,o=v;let b=F.slice_util.maskToAxes(c);b.forEach(_=>{i[_]=s[_]+1,o[_]=1});let w=F.slice_util.computeOutShape(s,i,o),N=w.filter((_,$)=>b.indexOf($)===-1);if(o.every(_=>_===1)){let _=n0({inputs:{x:y},attrs:{begin:s,size:w},backend:t});t.disposeData(y.dataId);let $=Ea({inputs:{x:_},attrs:{shape:N},backend:t});return t.disposeData(_.dataId),$}let C=t.makeOutput(N,"float32");if(!N.some(_=>_===0)){let _=t.dataIdMap.get(y.dataId).id,$=new Uint8Array(new Int32Array(k.computeStrides(y.shape)).buffer),S=new Uint8Array(new Int32Array(s).buffer),z=new Uint8Array(new Int32Array(i).buffer),O=new Uint8Array(new Int32Array(o).buffer),W=new Uint8Array(new Int32Array(N).buffer),G=new Uint8Array(new Int32Array(k.computeStrides(N)).buffer),H=t.dataIdMap.get(C.dataId).id;t4(_,$,y.shape.length,S,z,O,W,G,N.length,H)}t.disposeData(y.dataId);let E=Ea({inputs:{x:C},attrs:{shape:N},backend:t});return t.disposeData(C.dataId),E}var mee={kernelName:dl,backendName:"wasm",setupFunc:hee,kernelFunc:fee},gee=!0,yee=wn(ui,gee),n4;function Aee(e){n4=e.wasm.cwrap(ii,null,["number, number, number"])}function xee(e){let{backend:t,inputs:n,attrs:a}=e,{axis:r,keepDims:s}=a,{x:i}=n,o=t.dataIdMap.get(i.dataId).id,l=o,u=i,{transposed:d,axes:p,originalAxes:c,inputWasTransposed:h}=Qr(i,r,t),m=p;if(h){let x=t.dataIdMap.get(d.dataId).id;x!==o&&(u=d,l=x,m=F.getInnerMostAxes(m.length,u.shape.length))}F.assertAxesAreInnerMostDims("sum",m,u.shape.length);let[f,g]=F.computeOutAndReduceShapes(u.shape,m),y=k.sizeFromShape(g),A=t.makeOutput(f,u.dtype);if(k.sizeFromShape(u.shape)!==0){let x=t.dataIdMap.get(A.dataId).id;n4(l,y,x)}if(h&&t.disposeData(d.dataId),s){let x=F.expandShapeToKeepDim(A.shape,c);A.shape=x}return A}var bee={kernelName:ii,backendName:"wasm",setupFunc:Aee,kernelFunc:xee},vee=vn(di),wee=vn(pi),a4;function kee(e){a4=e.wasm.cwrap(_r,null,["number","array","number","array","number","number"])}function Iee(e){let{inputs:t,backend:n,attrs:a}=e,{x:r}=t,s=n.dataIdMap.get(r.dataId).id,{reps:i}=a,o=new Array(r.shape.length);for(let c=0;c<o.length;c++)o[c]=r.shape[c]*i[c];let l=new Uint8Array(new Int32Array(r.shape).buffer),u=new Uint8Array(new Int32Array(o).buffer),d=n.makeOutput(o,r.dtype),p=n.dataIdMap.get(d.dataId).id;return a4(s,l,r.shape.length,u,o.length,Fn[d.dtype],p),d}var See={kernelName:_r,backendName:"wasm",setupFunc:kee,kernelFunc:Iee},r4;function Nee(e){r4=e.wasm.cwrap(pl,null,["number","array","number","number","number","bool","number","number"])}var Tee=({inputs:e,backend:t,attrs:n})=>{let{x:a}=e,{k:r,sorted:s}=n,i=t.dataIdMap.get(a.dataId).id,o=new Uint8Array(new Int32Array(a.shape).buffer),l=a.shape.slice();l[l.length-1]=r;let u=t.makeOutput(l,a.dtype),d=t.dataIdMap.get(u.dataId).id,p=t.makeOutput(l,"int32"),c=t.dataIdMap.get(p.dataId).id;return r4(i,o,a.shape.length,Fn[a.dtype],r,s,d,c),[u,p]},Cee={kernelName:pl,backendName:"wasm",setupFunc:Nee,kernelFunc:Tee},s4;function Eee(e){s4=e.wasm.cwrap(cl,null,["number","number","bool","number","number","number","number","number","number","array","number","number","number","number","number"])}function Ree(e){let{backend:t,inputs:n,attrs:a}=e,{image:r,transforms:s}=n,{interpolation:i,fillMode:o,fillValue:l,outputShape:u}=a,[d,p,c,h]=r.shape,[m,f]=u!=null?u:[p,c],g=[d,m,f,h],y=new Uint8Array(new Int32Array(k.computeStrides(r.shape)).buffer),A=t.makeOutput(g,r.dtype),x=t.dataIdMap.get(A.dataId).id,v=t.dataIdMap.get(r.dataId).id,b=t.dataIdMap.get(s.dataId).id,w=i==="nearest"?1:2,N;switch(o){case"constant":N=1;break;case"reflect":N=2;break;case"wrap":N=3;break;case"nearest":N=4;break;default:N=1;break}return s4(v,b,s.shape[0]>1,d,m,f,h,c,p,y,r.shape.length-1,w,N,l,x),A}var Mee={kernelName:cl,backendName:"wasm",setupFunc:Eee,kernelFunc:Ree};function Fee(e){let{inputs:t,backend:n,attrs:a}=e,{value:r}=t,{axis:s}=a;s<0&&(s+=r.shape.length);let i=r.shape[s],o=r.shape.length,l=new Array(o-1),u=0;for(let h=0;h<o;h++)h!==s&&(l[u++]=r.shape[h]);let d=new Array(i),p=new Array(o).fill(0),c=r.shape.slice();c[s]=1;for(let h=0;h<d.length;h++)p[s]=h,d[h]=n0({inputs:{x:r},attrs:{begin:p,size:c},backend:n});return d.map(({dataId:h,dtype:m})=>({dataId:h,dtype:m,shape:l}))}var $ee={kernelName:hl,backendName:"wasm",kernelFunc:Fee};function Dee(e){let{inputs:{x:t},backend:n}=e,a=n.makeOutput(t.shape,t.dtype);return n.typedArrayFromHeap(a).fill(0),a}var Oee={kernelName:fl,backendName:"wasm",kernelFunc:Dee},zee=[VZ,UZ,qZ,tY,rY,oY,dY,fY,mY,gY,xY,bY,kY,NY,TY,RY,$Y,zY,LY,BY,VY,jY,HY,XY,KY,YY,BZ,eJ,aJ,iJ,uJ,cJ,fJ,gJ,XZ,xJ,vJ,kJ,IJ,NJ,EJ,MJ,DJ,_J,WJ,VJ,HJ,qJ,XJ,YJ,eQ,aQ,sQ,lQ,dQ,cQ,mQ,yQ,bQ,kQ,SQ,TQ,CQ,EQ,pY,FQ,OQ,PQ,WQ,LQ,jQ,GQ,KQ,ZQ,eee,aee,see,iee,oee,uee,cee,mee,yee,bee,vee,wee,See,Cee,Mee,JZ,$ee,Oee];for(let e of zee)gi(e);var ay=te();ay.registerFlag("WASM_HAS_SIMD_SUPPORT",async()=>WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,10,9,1,7,0,65,0,253,15,26,11])));ay.registerFlag("WASM_HAS_MULTITHREAD_SUPPORT",async()=>{if(ay.get("IS_NODE"))return!1;try{return new MessageChannel().port1.postMessage(new SharedArrayBuffer(1)),WebAssembly.validate(new Uint8Array([0,97,115,109,1,0,0,0,1,4,1,96,0,0,3,2,1,0,5,4,1,3,1,1,10,11,1,9,0,65,0,254,16,2,0,26,11]))}catch(e){return!1}});var i4=gs(lS()),_ee='var Module={};function threadPrintErr(){var text=Array.prototype.slice.call(arguments).join(" ");console.error(text)}function threadAlert(){var text=Array.prototype.slice.call(arguments).join(" ");postMessage({cmd:"alert",text:text,threadId:Module["_pthread_self"]()})}var err=threadPrintErr;this.alert=threadAlert;Module["instantiateWasm"]=function(info,receiveInstance){var instance=new WebAssembly.Instance(Module["wasmModule"],info);Module["wasmModule"]=null;receiveInstance(instance);return instance.exports};function moduleLoaded(){}this.onmessage=function(e){try{if(e.data.cmd==="load"){Module["wasmModule"]=e.data.wasmModule;Module["wasmMemory"]=e.data.wasmMemory;Module["buffer"]=Module["wasmMemory"].buffer;Module["ENVIRONMENT_IS_PTHREAD"]=true;if(typeof e.data.urlOrBlob==="string"){importScripts(e.data.urlOrBlob)}else{var objectUrl=URL.createObjectURL(e.data.urlOrBlob);importScripts(objectUrl);URL.revokeObjectURL(objectUrl)}WasmBackendModuleThreadedSimd(Module).then(function(instance){Module=instance;moduleLoaded()})}else if(e.data.cmd==="objectTransfer"){Module["PThread"].receiveObjectTransfer(e.data)}else if(e.data.cmd==="run"){Module["__performance_now_clock_drift"]=performance.now()-e.data.time;Module["__emscripten_thread_init"](e.data.threadInfoStruct,0,0);var max=e.data.stackBase;var top=e.data.stackBase+e.data.stackSize;Module["establishStackSpace"](top,max);Module["_emscripten_tls_init"]();Module["PThread"].receiveObjectTransfer(e.data);Module["PThread"].setThreadStatus(Module["_pthread_self"](),1);try{var result=Module["invokeEntryPoint"](e.data.start_routine,e.data.arg);if(!Module["getNoExitRuntime"]())Module["PThread"].threadExit(result)}catch(ex){if(ex==="Canceled!"){Module["PThread"].threadCancel()}else if(ex!="unwind"){if(ex instanceof Module["ExitStatus"]){if(Module["getNoExitRuntime"]()){}else{Module["PThread"].threadExit(ex.status)}}else{Module["PThread"].threadExit(-2);throw ex}}}}else if(e.data.cmd==="cancel"){if(Module["_pthread_self"]()){Module["PThread"].threadCancel()}}else if(e.data.target==="setimmediate"){}else if(e.data.cmd==="processThreadQueue"){if(Module["_pthread_self"]()){Module["_emscripten_current_thread_process_queued_calls"]()}}else{err("worker.js received unknown command "+e.data.cmd);err(e.data)}}catch(ex){err("worker.js onmessage() captured an uncaught exception: "+ex);if(ex&&ex.stack)err(ex.stack);throw ex}};if(typeof process==="object"&&typeof process.versions==="object"&&typeof process.versions.node==="string"){self={location:{href:__filename}};var onmessage=this.onmessage;var nodeWorkerThreads=require("worker_threads");global.Worker=nodeWorkerThreads.Worker;var parentPort=nodeWorkerThreads.parentPort;parentPort.on("message",function(data){onmessage({data:data})});var nodeFS=require("fs");var nodeRead=function(filename){return nodeFS.readFileSync(filename,"utf8")};function globalEval(x){global.require=require;global.Module=Module;eval.call(null,x)}importScripts=function(f){globalEval(nodeRead(f))};postMessage=function(msg){parentPort.postMessage(msg)};if(typeof performance==="undefined"){performance={now:function(){return Date.now()}}}}',Pee=gs(uS()),o4=class extends Eu{constructor(e){super();this.wasm=e,this.dataIdNextNumber=1,this.wasm.tfjs.init(),this.dataIdMap=new Up(this,fr())}write(e,t,n){let a={id:this.dataIdNextNumber++};return this.move(a,e,t,n,1),a}numDataIds(){return this.dataIdMap.numDataIds()}async time(e){let t=k.now();return e(),{kernelMs:k.now()-t}}move(e,t,n,a,r){let s=this.dataIdNextNumber++;if(a==="string"){let u=t;this.dataIdMap.set(e,{id:s,stringBytes:u,shape:n,dtype:a,memoryOffset:null,refCount:r});return}let i=k.sizeFromShape(n),o=i*k.bytesPerElement(a),l=this.wasm._malloc(o);this.dataIdMap.set(e,{id:s,memoryOffset:l,shape:n,dtype:a,refCount:r}),this.wasm.tfjs.registerTensor(s,i,l),t!=null&&this.wasm.HEAPU8.set(new Uint8Array(t.buffer,t.byteOffset,o),l)}async read(e){return this.readSync(e)}readSync(e){let{memoryOffset:t,dtype:n,shape:a,stringBytes:r}=this.dataIdMap.get(e);if(n==="string")return r;let s=this.wasm.HEAPU8.slice(t,t+k.sizeFromShape(a)*k.bytesPerElement(n));return Bee(s.buffer,n)}disposeData(e,t=!1){if(this.dataIdMap.has(e)){let n=this.dataIdMap.get(e);if(n.refCount--,!t&&n.refCount>0)return!1;this.wasm._free(n.memoryOffset),this.wasm.tfjs.disposeData(n.id),this.dataIdMap.delete(e)}return!0}refCount(e){return this.dataIdMap.has(e)?this.dataIdMap.get(e).refCount:0}incRef(e){let t=this.dataIdMap.get(e);t!=null&&t.refCount++}floatPrecision(){return 32}getMemoryOffset(e){return this.dataIdMap.get(e).memoryOffset}dispose(){this.wasm.tfjs.dispose(),"PThread"in this.wasm&&this.wasm.PThread.terminateAllThreads(),this.wasm=null}memory(){return{unreliable:!1}}makeOutput(e,t,n){let a;if(n==null)a=this.write(null,e,t);else{let r=this.dataIdNextNumber++;a={id:r},this.dataIdMap.set(a,{id:r,memoryOffset:n,shape:e,dtype:t,refCount:1});let s=k.sizeFromShape(e);this.wasm.tfjs.registerTensor(r,s,n)}return{dataId:a,shape:e,dtype:t}}typedArrayFromHeap({shape:e,dtype:t,dataId:n}){let a=this.wasm.HEAPU8.buffer,{memoryOffset:r}=this.dataIdMap.get(n),s=k.sizeFromShape(e);switch(t){case"float32":return new Float32Array(a,r,s);case"int32":return new Int32Array(a,r,s);case"bool":return new Uint8Array(a,r,s);default:throw new Error(`Unknown dtype ${t}`)}}};function Lee(e){return(t,n)=>(k.fetch(e,{credentials:"same-origin"}).then(a=>{a.ok||t.env.a(`failed to load wasm binary file at '${e}'`),a.arrayBuffer().then(r=>{WebAssembly.instantiate(r,t).then(s=>{n(s.instance,s.module)})})}),{})}function l4(e,t,n){if(a0!=null)return a0;let a="tfjs-backend-wasm.wasm";return e&&t?a="tfjs-backend-wasm-threaded-simd.wasm":e&&(a="tfjs-backend-wasm-simd.wasm"),Wd!=null&&Wd[a]!=null?Wd[a]:n+a}async function Wee(){let[e,t]=await Promise.all([te().getAsync("WASM_HAS_SIMD_SUPPORT"),te().getAsync("WASM_HAS_MULTITHREAD_SUPPORT")]);return new Promise((n,a)=>{let r={};r.locateFile=(o,l)=>{if(o.endsWith(".worker.js")){let u=_ee,d=new Blob([u],{type:"application/javascript"});return URL.createObjectURL(d)}return o.endsWith(".wasm")?l4(e,t,Ld!=null?Ld:l):l+o},ry&&(r.instantiateWasm=Lee(l4(e,t,Ld!=null?Ld:"")));let s=!1;r.onAbort=()=>{s||Bd||(Bd=!0,a({message:"Make sure the server can serve the `.wasm` file relative to the bundled js file. For more details see https://github.com/tensorflow/tfjs/blob/master/tfjs-backend-wasm/README.md#using-bundlers"}))};let i;t&&e&&a0==null?(r.mainScriptUrlOrBlob=new Blob(["var WasmBackendModuleThreadedSimd = "+i4.default.toString()],{type:"text/javascript"}),i=(0,i4.default)(r)):i=(0,Pee.default)(r),i.then(o=>{s=!0,Bd=!1;let l=null;o.tfjs={init:o.cwrap("init",null,[]),registerTensor:o.cwrap("register_tensor",null,["number","number","number"]),disposeData:o.cwrap("dispose_data",l,["number"]),dispose:o.cwrap("dispose",l,[])},n({wasm:o})})})}function Bee(e,t){switch(t){case"float32":return new Float32Array(e);case"int32":return new Int32Array(e);case"bool":return new Uint8Array(e);default:throw new Error(`Unknown dtype ${t}`)}}var Vee=["tfjs-backend-wasm.wasm","tfjs-backend-wasm-simd.wasm","tfjs-backend-wasm-threaded-simd.wasm"],a0=null,Ld=null,Wd={},Bd=!1,ry=!1;function jee(e,t=!1){if(I1("setWasmPath has been deprecated in favor of setWasmPaths and will be removed in a future release."),Bd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPath()` before you call `tf.setBackend()` or `tf.ready()`");a0=e,ry=t}function Uee(e,t=!1){if(Bd)throw new Error("The WASM backend was already initialized. Make sure you call `setWasmPaths()` before you call `tf.setBackend()` or `tf.ready()`");if(typeof e=="string")Ld=e;else{Wd=e;let n=Vee.filter(a=>Wd[a]==null);if(n.length>0)throw new Error(`There were no entries found for the following binaries: ${n.join(",")}. Please either call setWasmPaths with a map providing a path for each binary, or with a string indicating the directory where all the binaries can be found.`)}ry=t}var u4="3.7.0",Hee=2;Il("wasm",async()=>{let{wasm:e}=await Wee();return new o4(e)},Hee);ee().prototype.abs=function(){return this.throwIfDisposed(),Wt(this)};ee().prototype.acos=function(){return this.throwIfDisposed(),N1(this)};ee().prototype.acosh=function(){return this.throwIfDisposed(),T1(this)};ee().prototype.add=function(e){return this.throwIfDisposed(),ie(this,e)};ee().prototype.all=function(e,t){return this.throwIfDisposed(),Uc(this,e,t)};ee().prototype.any=function(e,t){return this.throwIfDisposed(),id(this,e,t)};ee().prototype.argMax=function(e){return this.throwIfDisposed(),ki(this,e)};ee().prototype.argMin=function(e){return this.throwIfDisposed(),C1(this,e)};ee().prototype.asScalar=function(){return this.throwIfDisposed(),D(this.size===1,()=>"The array must have only 1 element."),q(this,[])};ee().prototype.asType=function(e){return this.throwIfDisposed(),ge(this,e)};ee().prototype.as1D=function(){return this.throwIfDisposed(),q(this,[this.size])};ee().prototype.as2D=function(e,t){return this.throwIfDisposed(),q(this,[e,t])};ee().prototype.as3D=function(e,t,n){return this.throwIfDisposed(),q(this,[e,t,n])};ee().prototype.as4D=function(e,t,n,a){return this.throwIfDisposed(),q(this,[e,t,n,a])};ee().prototype.as5D=function(e,t,n,a,r){return this.throwIfDisposed(),q(this,[e,t,n,a,r])};ee().prototype.asin=function(){return this.throwIfDisposed(),E1(this)};ee().prototype.asinh=function(){return this.throwIfDisposed(),R1(this)};ee().prototype.atan=function(){return this.throwIfDisposed(),M1(this)};ee().prototype.atan2=function(e){return this.throwIfDisposed(),F1(this,e)};ee().prototype.atanh=function(){return this.throwIfDisposed(),$1(this)};ee().prototype.avgPool=function(e,t,n,a){return this.throwIfDisposed(),ld(this,e,t,n,a)};ee().prototype.batchToSpaceND=function(e,t){return this.throwIfDisposed(),ud(this,e,t)};ee().prototype.batchNorm=function(e,t,n,a,r){return this.throwIfDisposed(),Ni(this,e,t,n,a,r)};ee().prototype.broadcastTo=function(e){return this.throwIfDisposed(),Nl(this,e)};ee().prototype.cast=function(e){return this.throwIfDisposed(),ge(this,e)};ee().prototype.ceil=function(){return this.throwIfDisposed(),P1(this)};ee().prototype.clipByValue=function(e,t){return this.throwIfDisposed(),Mn(this,e,t)};ee().prototype.concat=function(e,t){return this.throwIfDisposed(),e instanceof Be&&(e=[e]),lt([this,...e],t)};ee().prototype.conv1d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Gc(this,e,t,n,a,r,s)};ee().prototype.conv2dTranspose=function(e,t,n,a,r){return this.throwIfDisposed(),qc(this,e,t,n,a,r)};ee().prototype.conv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),mr(this,e,t,n,a,r,s)};ee().prototype.cos=function(){return this.throwIfDisposed(),dd(this)};ee().prototype.cosh=function(){return this.throwIfDisposed(),Xc(this)};ee().prototype.cumsum=function(e,t,n){return this.throwIfDisposed(),Kc(this,e,t,n)};ee().prototype.depthToSpace=function(e,t){return this.throwIfDisposed(),B1(this,e,t)};ee().prototype.depthwiseConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),Cl(this,e,t,n,a,r,s)};ee().prototype.dilation2d=function(e,t,n,a,r){return this.throwIfDisposed(),V1(this,e,t,n,a,r)};ee().prototype.divNoNan=function(e){return this.throwIfDisposed(),j1(this,e)};ee().prototype.div=function(e){return this.throwIfDisposed(),me(this,e)};ee().prototype.dot=function(e){return this.throwIfDisposed(),N3(this,e)};ee().prototype.elu=function(){return this.throwIfDisposed(),El(this)};ee().prototype.equal=function(e){return this.throwIfDisposed(),Hr(this,e)};ee().prototype.erf=function(){return this.throwIfDisposed(),U1(this)};ee().prototype.exp=function(){return this.throwIfDisposed(),la(this)};ee().prototype.expandDims=function(e){return this.throwIfDisposed(),mn(this,e)};ee().prototype.expm1=function(){return this.throwIfDisposed(),H1(this)};ee().prototype.fft=function(){return this.throwIfDisposed(),bd(this)};ee().prototype.flatten=function(){return this.throwIfDisposed(),q(this,[this.size])};ee().prototype.floor=function(){return this.throwIfDisposed(),Ml(this)};ee().prototype.floorDiv=function(e){return this.throwIfDisposed(),Vc(this,e)};ee().prototype.gather=function(e,t){return this.throwIfDisposed(),Ti(this,e,t)};ee().prototype.greaterEqual=function(e){return this.throwIfDisposed(),qr(this,e)};ee().prototype.greater=function(e){return this.throwIfDisposed(),Wn(this,e)};ee().prototype.ifft=function(){return this.throwIfDisposed(),Ol(this)};ee().prototype.irfft=function(){return this.throwIfDisposed(),ch(this)};ee().prototype.isFinite=function(){return this.throwIfDisposed(),C3(this)};ee().prototype.isInf=function(){return this.throwIfDisposed(),E3(this)};ee().prototype.isNaN=function(){return this.throwIfDisposed(),q1(this)};ee().prototype.leakyRelu=function(e){return this.throwIfDisposed(),pd(this,e)};ee().prototype.lessEqual=function(e){return this.throwIfDisposed(),Xr(this,e)};ee().prototype.less=function(e){return this.throwIfDisposed(),Yc(this,e)};ee().prototype.localResponseNormalization=function(e,t,n,a){return this.throwIfDisposed(),X1(this,e,t,n,a)};ee().prototype.logSigmoid=function(){return this.throwIfDisposed(),F3(this)};ee().prototype.logSoftmax=function(e){return this.throwIfDisposed(),eh(this,e)};ee().prototype.logSumExp=function(e,t){return this.throwIfDisposed(),Y1(this,e,t)};ee().prototype.log=function(){return this.throwIfDisposed(),Bn(this)};ee().prototype.log1p=function(){return this.throwIfDisposed(),Jc(this)};ee().prototype.logicalAnd=function(e){return this.throwIfDisposed(),xa(this,e)};ee().prototype.logicalNot=function(){return this.throwIfDisposed(),cd(this)};ee().prototype.logicalOr=function(e){return this.throwIfDisposed(),th(this,e)};ee().prototype.logicalXor=function(e){return this.throwIfDisposed(),z3(this,e)};ee().prototype.matMul=function(e,t,n){return this.throwIfDisposed(),je(this,e,t,n)};ee().prototype.maxPool=function(e,t,n,a){return this.throwIfDisposed(),hd(this,e,t,n,a)};ee().prototype.max=function(e,t){return this.throwIfDisposed(),Vn(this,e,t)};ee().prototype.maximum=function(e){return this.throwIfDisposed(),Xa(this,e)};ee().prototype.mean=function(e,t){return this.throwIfDisposed(),Nt(this,e,t)};ee().prototype.min=function(e,t){return this.throwIfDisposed(),fd(this,e,t)};ee().prototype.minimum=function(e){return this.throwIfDisposed(),Fl(this,e)};ee().prototype.mirrorPad=function(e,t){return this.throwIfDisposed(),Q1(this,e,t)};ee().prototype.mod=function(e){return this.throwIfDisposed(),eg(this,e)};ee().prototype.mul=function(e){return this.throwIfDisposed(),B(this,e)};ee().prototype.neg=function(){return this.throwIfDisposed(),St(this)};ee().prototype.norm=function(e,t,n){return this.throwIfDisposed(),gh(this,e,t,n)};ee().prototype.notEqual=function(e){return this.throwIfDisposed(),Ri(this,e)};ee().prototype.oneHot=function(e,t=1,n=0){return this.throwIfDisposed(),wl(this,e,t,n)};ee().prototype.onesLike=function(){return this.throwIfDisposed(),Un(this)};ee().prototype.pad=function(e,t){return this.throwIfDisposed(),gr(this,e,t)};ee().prototype.pool=function(e,t,n,a,r){return this.throwIfDisposed(),L3(this,e,t,n,a,r)};ee().prototype.pow=function(e){return this.throwIfDisposed(),yr(this,e)};ee().prototype.prelu=function(e){return this.throwIfDisposed(),gd(this,e)};ee().prototype.prod=function(e,t){return this.throwIfDisposed(),ah(this,e,t)};ee().prototype.reciprocal=function(){return this.throwIfDisposed(),ag(this)};ee().prototype.relu=function(){return this.throwIfDisposed(),Ka(this)};ee().prototype.relu6=function(){return this.throwIfDisposed(),rh(this)};ee().prototype.reshapeAs=function(e){return this.throwIfDisposed(),q(this,e.shape)};ee().prototype.reshape=function(e){return this.throwIfDisposed(),q(this,e)};ee().prototype.resizeBilinear=function(e,t,n){return this.throwIfDisposed(),a7(this,e,t,n)};ee().prototype.resizeNearestNeighbor=function(e,t,n){return this.throwIfDisposed(),r7(this,e,t,n)};ee().prototype.reverse=function(e){return this.throwIfDisposed(),Hn(this,e)};ee().prototype.rfft=function(){return this.throwIfDisposed(),vd(this)};ee().prototype.round=function(){return this.throwIfDisposed(),sh(this)};ee().prototype.rsqrt=function(){return this.throwIfDisposed(),ih(this)};ee().prototype.selu=function(){return this.throwIfDisposed(),oh(this)};ee().prototype.separableConv2d=function(e,t,n,a,r,s){return this.throwIfDisposed(),rg(this,e,t,n,a,r,s)};ee().prototype.sigmoid=function(){return this.throwIfDisposed(),Rn(this)};ee().prototype.sign=function(){return this.throwIfDisposed(),sg(this)};ee().prototype.sin=function(){return this.throwIfDisposed(),lh(this)};ee().prototype.sinh=function(){return this.throwIfDisposed(),uh(this)};ee().prototype.slice=function(e,t){return this.throwIfDisposed(),Re(this,e,t)};ee().prototype.softmax=function(e){return this.throwIfDisposed(),xd(this,e)};ee().prototype.softplus=function(){return this.throwIfDisposed(),Ci(this)};ee().prototype.spaceToBatchND=function(e,t){return this.throwIfDisposed(),md(this,e,t)};ee().prototype.split=function(e,t){return this.throwIfDisposed(),Zt(this,e,t)};ee().prototype.sqrt=function(){return this.throwIfDisposed(),an(this)};ee().prototype.square=function(){return this.throwIfDisposed(),ot(this)};ee().prototype.squaredDifference=function(e){return this.throwIfDisposed(),hh(this,e)};ee().prototype.squeeze=function(e){return this.throwIfDisposed(),Vt(this,e)};ee().prototype.stack=function(e,t){this.throwIfDisposed();let n=e instanceof Be?[this,e]:[this,...e];return gn(n,t)};ee().prototype.step=function(e){return this.throwIfDisposed(),zl(this,e)};ee().prototype.stridedSlice=function(e,t,n,a,r,s,i,o){return this.throwIfDisposed(),og(this,e,t,n,a,r,s,i,o)};ee().prototype.sub=function(e){return this.throwIfDisposed(),ye(this,e)};ee().prototype.sum=function(e,t){return this.throwIfDisposed(),Se(this,e,t)};ee().prototype.tan=function(){return this.throwIfDisposed(),lg(this)};ee().prototype.tanh=function(){return this.throwIfDisposed(),Si(this)};ee().prototype.tile=function(e){return this.throwIfDisposed(),Gr(this,e)};ee().prototype.toBool=function(){return this.throwIfDisposed(),ge(this,"bool")};ee().prototype.toFloat=function(){return this.throwIfDisposed(),ge(this,"float32")};ee().prototype.toInt=function(){return this.throwIfDisposed(),ge(this,"int32")};ee().prototype.topk=function(e,t){return this.throwIfDisposed(),ug(this,e,t)};ee().prototype.transpose=function(e){return this.throwIfDisposed(),Qe(this,e)};ee().prototype.unique=function(e){return this.throwIfDisposed(),mh(this,e)};ee().prototype.unsortedSegmentSum=function(e,t){return this.throwIfDisposed(),dg(this,e,t)};ee().prototype.unstack=function(e){return this.throwIfDisposed(),Gn(this,e)};ee().prototype.where=function(e,t){return this.throwIfDisposed(),un(e,this,t)};ee().prototype.zerosLike=function(){return this.throwIfDisposed(),Ge(this)};var d4={kernelName:mo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,zl(ge(n,"float32"),-1))}}},Gee={kernelName:go,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=ot(ge(n,"float32")),r=an(ye(ke(1),a));return St(me(e,r))}}}},qee={kernelName:yo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=an(ye(ot(ge(n,"float32")),1));return me(e,a)}}}},Xee={kernelName:Or,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=Se(s,i)),q(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=Se(s,i)),q(s,a.shape)}}}},Kee={kernelName:xs,saveAllInputs:!0,gradFunc:(e,t)=>{let n={};return t.forEach((a,r)=>{n[r]=()=>e.clone()}),n}},Zee={kernelName:bs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},Yee={kernelName:Fu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Ge(n)}}},Jee={kernelName:bo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,an(ye(ke(1),ot(ge(n,"float32")))))}}},Qee={kernelName:vo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=an(ie(ke(1),ot(ge(n,"float32"))));return me(e,a)}}}},ete={kernelName:Io,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=ie(ot(n),ot(a)),i=B(e,me(a,s)),o=Bt(n.shape,r);return o.length>0&&(i=Se(i,o)),q(i,n.shape)},b:()=>{let s=ie(ot(n),ot(a)),i=St(B(e,me(n,s))),o=Bt(a.shape,r);return o.length>0&&(i=Se(i,o)),q(i,a.shape)}}}},tte={kernelName:wo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ie(ot(ge(n,"float32")),1))}}},nte={kernelName:ko,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ye(ke(1),ot(ge(n,"float32"))))}}};function ate(e,t,n,a,r,s){let i=M(e,"dy","avgPool3dGrad"),o=M(t,"input","avgPool3dGrad"),l=i,u=o,d=!1;o.rank===4&&(d=!0,l=q(i,[1,i.shape[0],i.shape[1],i.shape[2],i.shape[3]]),u=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]])),D(l.rank===5,()=>`Error in avgPool3dGrad: dy must be rank 5 but got rank ${l.rank}.`),D(u.rank===5,()=>`Error in avgPool3dGrad: input must be rank 5 but got rank ${u.rank}.`),s!=null&&D(qt(r),()=>`Error in avgPool3dGrad: pad must be an integer when using, dimRoundingMode ${s} but got pad ${r}.`);let p={dy:l,input:u},c={filterSize:n,strides:a,pad:r,dimRoundingMode:s},h=P.runKernel(Kp,p,c);return d?q(h,[h.shape[1],h.shape[2],h.shape[3],h.shape[4]]):h}var rte=L({avgPool3dGrad_:ate}),ste={kernelName:$u,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i,dimRoundingMode:o}=n;return{x:()=>rte(e,a,r,s,i,o)}}};function ite(e,t,n,a,r){let s=M(e,"dy","avgPoolGrad"),i=M(t,"input","avgPoolGrad");D(i.rank===s.rank,()=>`Rank of input (${i.rank}) does not match rank of dy (${s.rank})`);let o=i,l=s,u=!1;i.rank===3&&(u=!0,o=q(i,[1,i.shape[0],i.shape[1],i.shape[2]]),l=q(s,[1,s.shape[0],s.shape[1],s.shape[2]])),D(l.rank===4,()=>`Error in avgPoolGrad: dy must be rank 4 but got rank ${l.rank}.`),D(o.rank===4,()=>`Error in avgPoolGrad: input must be rank 4 but got rank ${o.rank}.`);let d={dy:l,input:o},p={filterSize:n,strides:a,pad:r},c=P.runKernel(Xp,d,p);return u?q(c,[c.shape[1],c.shape[2],c.shape[3]]):c}var ote=L({avgPoolGrad_:ite}),lte={kernelName:vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{filterSize:r,strides:s,pad:i}=n;return{x:()=>ote(e,a,r,s,i)}}},ute={kernelName:ws,inputsToSave:["a","b"],gradFunc:(e,t,n)=>{let[a,r]=t,{transposeA:s,transposeB:i}=n;return!s&&!i?{a:()=>je(e,r,!1,!0),b:()=>je(a,e,!0,!1)}:!s&&i?{a:()=>je(e,r,!1,!1),b:()=>je(e,a,!0,!1)}:s&&!i?{a:()=>je(r,e,!1,!0),b:()=>je(a,e,!1,!1)}:{a:()=>je(r,e,!0,!0),b:()=>je(e,a,!0,!0)}}},dte={kernelName:Du,gradFunc:(e,t,n)=>{let{blockShape:a,crops:r}=n;return{x:()=>md(e,a,r)}}},pte={kernelName:gb,gradFunc:(e,t,n)=>{let a=n,r=a.inputShape,s=a.shape,i=Array.from(s);for(let l=r.length-1;l>=0;l--)if(r[l]===s[l])i[l]=1;else if(r[l]!==1)throw new Error(`broadcastTo(): [${r}] cannot be broadcast to [${s}].`);let o=[];for(let l=0;l<i.length;l++)i[l]>1&&o.push(l);return{x:()=>Se(e,o,!0)}}},cte={kernelName:ks,gradFunc:e=>({x:()=>e.clone()})},hte={kernelName:Is,gradFunc:e=>({x:()=>Ge(e)})},fte={kernelName:zr,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{clipValueMin:r,clipValueMax:s}=n;return{x:()=>un(xa(qr(a,r),Xr(a,s)),e,Ge(e))}}},mte={kernelName:Ou,inputsToSave:["x"],gradFunc:d4.gradFunc},gte={kernelName:So,saveAllInputs:!0,gradFunc:(e,t,n)=>{let a=t.map(o=>o.shape),{axis:r}=n,s=ya(r,t[0].shape)[0],i=a.map(o=>o[s]);return Zt(e,i,s).map(o=>()=>o)}},yte={kernelName:Ss,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{dilations:s,strides:i,pad:o,dataFormat:l}=n;return D(Ur(s),()=>`Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${s}'`),{x:()=>L1(a.shape,e,r,i,o,l),filter:()=>fg(a,e,r.shape,i,o,l)}}},Ate={kernelName:Ns,inputsToSave:["dy","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,{strides:s,pad:i,dataFormat:o,dimRoundingMode:l}=n;return{dy:()=>mr(e,r,s,i,o,1,l),filter:()=>fg(e,a,r.shape,s,i,o,l)}}};function xte(e,t,n,a,r){let s=e;e.rank===4&&(s=q(e,[1,e.shape[0],e.shape[1],e.shape[2],e.shape[3]]));let i=t;i.rank===4&&(i=q(t,[1,t.shape[0],t.shape[1],t.shape[2],t.shape[3]])),D(s.rank===5,()=>`Error in conv3dDerFilter: input must be rank 5, but got shape ${s.shape}.`),D(i.rank===5,()=>`Error in conv3dDerFilter: dy must be rank 5, but got shape ${i.shape}.`),D(n.length===5,()=>`Error in conv3dDerFilter: filterShape must be length 5, but got ${n}.`),D(s.shape[4]===n[3],()=>`Error in conv3dDerFilter: depth of input ${s.shape[4]}) must match input depth in filter (${n[3]}.`),D(i.shape[4]===n[4],()=>`Error in conv3dDerFilter: depth of dy (${i.shape[4]}) must match output depth for filter (${n[4]}).`);let o={x:s,dy:i},l={strides:a,pad:r,filterShape:n};return P.runKernel(Qp,o,l)}var bte=L({conv3DBackpropFilter_:xte}),vte={kernelName:zu,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s}=n;D(Ur(a),()=>`Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '${a}'`);let[i,o]=t;return{x:()=>k3(i.shape,e,o,r,s),filter:()=>bte(i,e,o.shape,r,s)}}},wte={kernelName:Ts,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(St(lh(ge(n,"float32"))),e)}}},kte={kernelName:No,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(uh(ge(n,"float32")),e)}}},Ite={kernelName:Cs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r,exclusive:s,reverse:i}=n;return{x:()=>{let o=O3([r],a.rank),l=Kc(e,r,s,!i);return o!=null&&(l=Qe(l,o)),l}}}},Ste={kernelName:Es,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let{dilations:a,strides:r,pad:s,dimRoundingMode:i}=n,o=a==null?[1,1]:a;D(Ur(o),()=>`Error in gradient of depthwiseConv2dNative: dilation rates greater than 1 are not yet supported. Got dilations '${o}'`);let[l,u]=t;return D(l.rank===4,()=>`Error in gradient of depthwiseConv2dNative: input must be rank 4, but got rank ${l.rank}.`),D(u.rank===4,()=>`Error in gradient of depthwiseConv2dNative: filter must be rank 4, but got rank ${u.rank}.`),D(l.shape[3]===u.shape[2],()=>`Error in gradient of depthwiseConv2d: number of input channels (${l.shape[3]}) must match the inChannels dimension in filter ${u.shape[2]}.`),D(Ga(r,o),()=>`Error in gradient of depthwiseConv2d: Either strides or dilations must be 1. Got strides ${r} and dilations '${o}'.`),i!=null&&D(qt(s),()=>`Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`),{x:()=>Z3(l.shape,e,u,r,s,a,i),filter:()=>K3(l,e,u.shape,r,s,a,i)}}},Nte={kernelName:_u,inputsToSave:["x","filter"],gradFunc:(e,t,n)=>{let[a,r]=t,s={x:a,filter:r,dy:e},i={x:a,filter:r,dy:e};return{x:()=>P.runKernel(sc,s,n),filter:()=>P.runKernel(ic,i,n)}}},Tte={kernelName:Eo,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t,a={dy:e,y:n};return{x:()=>P.runKernel(lc,a)}}},Cte={kernelName:Ro,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(la(St(ot(n))),2/Math.sqrt(Math.PI));return{x:()=>B(e,a)}}},Ete={kernelName:Ms,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,n)}}},Rte={kernelName:Fo,inputsToSave:["input"],gradFunc:(e,t)=>{let[n]=t;return{input:()=>q(e,n.shape)}}},Mte={kernelName:$o,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,la(n))}}},Fte={kernelName:Fs,gradFunc:e=>({x:()=>Ge(e)})},$te={kernelName:$s,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=me(e,ge(a,"float32")),i=Bt(n.shape,r);return i.length>0?q(Se(s,i),n.shape):s},b:()=>{let s=B(e,ge(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=q(Se(s,i),a.shape));let o=ot(a);return St(me(s,ge(o,"float32")))}}}},Dte={kernelName:Ds,inputsToSave:["x","mean","variance","scale"],gradFunc:(e,t,n)=>{let{varianceEpsilon:a}=n,[r,s,i,o]=t,l=o==null?ke(1):o,u=Bt(s.shape,r.shape),d=[];if(s.rank===1){for(let f=0;f<r.shape.length-1;++f)d.push(r.shape[f]);d.push(1)}let p=ye(r,s),c=B(e,l),h=ih(ie(i,ke(a))),m=B(B(B(h,h),h),ke(-.5));return{x:()=>s.rank===1?q(B(B(e,Gr(q(h,[1,1,1,s.shape[0]]),d)),l),r.shape):q(B(B(e,h),l),r.shape),mean:()=>{let f=B(B(h,ke(-1)),c);return s.rank===1&&(f=Se(f,u)),q(f,s.shape)},variance:()=>{let f=B(B(m,p),c);return s.rank===1&&(f=Se(f,u)),q(f,s.shape)},scale:()=>{let f=B(p,h),g=B(e,f);return s.rank===1&&(g=Se(g,u)),q(g,s.shape)},offset:()=>{let f=e;return s.rank===1&&(f=Se(f,u)),q(f,s.shape)}}}},Ote={kernelName:Oo,inputsToSave:["x","indices"],gradFunc:(e,t,n)=>{let[a,r]=t,{axis:s}=n,i=ya(s,a.shape)[0];return{x:()=>{let o=a.shape,l=r.size,u=o.slice(0,i),d=u.length,p=o.slice(s,o.length).slice(1),c=p.length,h=p4(0,d),m=p4(d+1,d+1+c),f=c4([u,[l],p]),g=q(e,f),y=q(r,[l]),A=c4([[d],h,m]),x=Qe(g,A),v=dg(x,y,a.shape[i]),b=Z1(A);return v=Qe(v,b),v},indices:()=>r}}};function p4(e,t){let n=[];for(let a=e;a<t;++a)n.push(a);return n}function c4(e){let t=[];for(let n=0;n<e.length;++n)for(let a=0;a<e[n].length;++a)t.push(e[n][a]);return t}var zte={kernelName:Os,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>Ge(n),b:()=>Ge(a)}}},_te={kernelName:zs,gradFunc:e=>({x:()=>ge(e,"float32")})},Pte={kernelName:Po,gradFunc:e=>({x:()=>Ge(e)})},Lte={kernelName:Lo,gradFunc:e=>({x:()=>Ge(e)})},Wte={kernelName:Wo,gradFunc:e=>({x:()=>Ge(e)})},Bte={kernelName:_s,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{alpha:r}=n,s=Wn(a,0);return{x:()=>un(s,e,B(e,r))}}},Vte={kernelName:jo,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ie(n,1))}}},jte={kernelName:Ps,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ge(n,"float32"))}}},Ute={kernelName:yb,inputsToSave:[],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n;return{logits:()=>{let s=!0,i=la(a);return ye(e,B(Se(e,r,s),i))}}}};function Hte(e,t,n,a=5,r=1,s=1,i=.5){let o={x:e,y:t,dy:n},l={depthRadius:a,bias:r,alpha:s,beta:i};return P.runKernel(hc,o,l)}var Gte=L({localResponseNormalizationBackprop_:Hte}),qte={kernelName:Bu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{depthRadius:s,bias:i,alpha:o,beta:l}=n;return{x:()=>Gte(a,r,e,s,i,o,l)}}};function h4(e,t,n,a){return t.rank<n.rank&&(t=q(t,Ei(t.shape,a))),e.rank<n.rank&&(e=q(e,Ei(e.shape,a))),{x:()=>B(e,ge(Hr(n,t),e.dtype))}}var f4={kernelName:Ls,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{reductionIndices:r}=a,s=t[0],i=t[1],o=ya(r,s.shape),l=h4(e,i,s,o);return{x:()=>l.x()}}},Xte={kernelName:Ws,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,ge(qr(n,a),"float32")),b:()=>B(e,ge(Yc(n,a),"float32"))}}};function Kte(e,t,n,a,r,s,i){let o=M(e,"dy","maxPool3dGrad"),l=M(t,"input","maxPool3dGrad"),u=M(n,"output","maxPool3dGrad"),d=o,p=l,c=u,h=!1;l.rank===4&&(h=!0,d=q(o,[1,o.shape[0],o.shape[1],o.shape[2],o.shape[3]]),p=q(l,[1,l.shape[0],l.shape[1],l.shape[2],l.shape[3]]),c=q(u,[1,u.shape[0],u.shape[1],u.shape[2],u.shape[3]])),D(d.rank===5,()=>`Error in maxPool3dGrad: dy must be rank 5 but got rank ${d.rank}.`),D(p.rank===5,()=>`Error in maxPool3dGrad: input must be rank 5 but got rank ${p.rank}.`),D(c.rank===5,()=>`Error in maxPool3dGrad: output must be rank 5 but got rank ${c.rank}.`),i!=null&&D(qt(s),()=>`Error in maxPool3dGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let m={dy:d,input:p,output:c},f={filterSize:a,strides:r,pad:s,dimRoundingMode:i},g=P.runKernel(mc,m,f);return h?q(g,[g.shape[1],g.shape[2],g.shape[3],g.shape[4]]):g}var Zte=L({maxPool3dGrad_:Kte}),Yte={kernelName:Vu,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o,dimRoundingMode:l}=n;return{x:()=>Zte(e,a,r,s,i,o,l)}}};function Jte(e,t,n,a,r,s,i){let o=M(e,"dy","maxPoolGrad"),l=M(t,"input","maxPoolGrad"),u=M(n,"output","maxPoolGrad");D(l.rank===o.rank,()=>`Rank of input (${l.rank}) does not match rank of dy (${o.rank})`),D(o.rank===4,()=>`Error in maxPoolGrad: dy must be rank 4 but got rank ${o.rank}.`),D(l.rank===4,()=>`Error in maxPoolGrad: input must be rank 4 but got rank ${l.rank}.`),i!=null&&D(qt(s),()=>`Error in maxPoolGrad: pad must be an integer when using, dimRoundingMode ${i} but got pad ${s}.`);let d={dy:o,input:l,output:u},p={filterSize:a,strides:r,pad:s,dimRoundingMode:i};return P.runKernel(fc,d,p)}var Qte=L({maxPoolGrad_:Jte}),ene={kernelName:Bs,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a,r]=t,{filterSize:s,strides:i,pad:o}=n;return{x:()=>Qte(e,a,r,s,i,o)}}},tne={kernelName:Vs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{axis:r}=n,s=ya(r,a.shape),i=D3(a.shape,s)[1],o=Mt(i);return{x:()=>{let l=a.shape.slice();s.forEach(d=>{l[d]=1});let u=q(e,l);return me(B(u,jn(a.shape,"float32")),o)}}}},nne={kernelName:js,inputsToSave:["x"],outputsToSave:[!0],gradFunc:(e,t,n)=>{let a=n,{axis:r}=a,[s,i]=t,o=ya(r,s.shape),l=h4(e,i,s,o);return{x:()=>l.x()}}},ane={kernelName:Us,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t;return{a:()=>B(e,ge(Xr(n,a),"float32")),b:()=>B(e,ge(Wn(n,a),"float32"))}}},rne={kernelName:Hs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},sne={kernelName:Ho,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=Bt(n.shape,r);return s.length>0?q(Se(e,s),n.shape):e},b:()=>{let s=B(e,St(Ml(me(n,a)))),i=Bt(a.shape,r);return i.length>0?q(Se(s,i),a.shape):s}}}},ine={kernelName:Gs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=B(e,ge(a,"float32")),i=Bt(n.shape,r);return i.length>0?q(Se(s,i),n.shape):s},b:()=>{let s=B(e,ge(n,"float32")),i=Bt(a.shape,r);return i.length>0?q(Se(s,i),a.shape):s}}}},one={kernelName:Go,gradFunc:e=>({x:()=>St(e)})},lne={kernelName:qs,inputsToSave:["indices"],gradFunc:(e,t)=>{let n=t[0];return{indices:()=>$t(n.shape,"float32")}}},une={kernelName:Yo,gradFunc:e=>({x:()=>Ge(e)})},dne={kernelName:Jo,saveAllInputs:!0,gradFunc:(e,t,n)=>{let{axis:a}=n;return Gn(e,a).map(r=>()=>r)}},m4={kernelName:Xs,inputsToSave:["x"],gradFunc:(e,t,n)=>{let a=t[0],{paddings:r}=n,s=r.map(i=>i[0]);return{x:()=>Re(e,s,a.shape)}}},pne={kernelName:Ks,inputsToSave:["a","b"],outputsToSave:[!0],gradFunc:(e,t)=>{let[n,a,r]=t,s=n,i=a,o=mt(s.shape,i.shape);return{a:()=>{let l=ge(i,"float32"),u=B(e,B(l,yr(s,ye(l,ke(1))))),d=Bt(s.shape,o);return d.length>0&&(u=Se(u,d)),q(u,s.shape)},b:()=>{let l=Wn(s,0),u=un(l,Bn(s),Ge(s)),d=B(e,B(r,u)),p=Bt(i.shape,o);return p.length>0&&(d=Se(d,p)),q(d,i.shape)}}}},cne={kernelName:Zs,inputsToSave:["x","alpha"],gradFunc:(e,t)=>{let[n,a]=t,r=Wn(n,0);return{x:()=>un(r,e,B(e,a)),alpha:()=>{let s=un(r,Ge(e),B(e,n)),i=Bt(a.shape,e.shape);return i.length>0&&(s=Se(s,i)),q(s,a.shape)}}}},hne={kernelName:Rs,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=me(e,ge(a,"float32")),i=Bt(n.shape,r);return i.length>0?q(Se(s,i),n.shape):s},b:()=>{let s=B(e,ge(n,"float32")),i=Bt(a.shape,r);i.length>0&&(s=q(Se(s,i),a.shape));let o=ot(a);return St(me(s,ge(o,"float32")))}}}},fne={kernelName:el,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,St(ot(n)))}}},mne={kernelName:Qs,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t,a=B(Xr(n,6),zl(n));return{x:()=>B(e,ge(a,"float32"))}}},gne={kernelName:Ys,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,ge(zl(n),"float32"))}}},yne={kernelName:tl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>q(e,n.shape)}}},Ane={kernelName:Js,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(bc,r,n)}}},xne={kernelName:Uu,inputsToSave:["images"],gradFunc:(e,t,n)=>{let[a]=t,r={dy:e,images:a};return{images:()=>P.runKernel(xc,r,n)}}},bne={kernelName:ei,gradFunc:(e,t,n)=>{let{dims:a}=n,r=ya(a,e.shape);return{x:()=>Hn(e,r)}}},vne={kernelName:ti,gradFunc:e=>({x:()=>Ge(e)})},wne={kernelName:ni,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>St(me(e,B(yr(n,1.5),2)))}}},kne={kernelName:al,inputsToSave:["condition"],gradFunc:(e,t)=>{let[n]=t;return{condition:()=>ge(Ge(n),"float32"),t:()=>B(e,ge(n,e.dtype)),e:()=>B(e,ge(cd(n),e.dtype))}}},Ine={kernelName:rl,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>{let a=Wn(n,ke(0)),r=ke(o7),s=ke(l7),i=B(e,s),o=B(B(e,r),la(ge(n,"float32")));return un(a,i,o)}}}},Sne={kernelName:ri,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(n,ye(ke(1),n)))}}},Nne={kernelName:ol,gradFunc:e=>({x:()=>Ge(e)})},Tne={kernelName:ai,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(dd(ge(n,"float32")),e)}}},Cne={kernelName:il,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(Xc(ge(n,"float32")),e)}}},Ene={kernelName:sl,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{begin:r,size:s}=n,i=a.shape,[o,l]=l3(a,r,s),u=[];for(let d=0;d<e.rank;d++)u.push([o[d],i[d]-o[d]-l[d]]);return{x:()=>gr(e,u)}}},Rne={kernelName:oi,outputsToSave:[!0],gradFunc:(e,t,n)=>{let[a]=t,{dim:r}=n,s=!0,i=B(e,a);return{logits:()=>ye(i,B(Se(i,[r],s),a))}}},Mne={kernelName:ll,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,Rn(n))}}},g4={kernelName:Hu,gradFunc:(e,t,n)=>{let{blockShape:a,paddings:r}=n;return{x:()=>ud(e,a,r)}}},y4={kernelName:ul,gradFunc:(e,t,n)=>{let{axis:a}=n;return{x:()=>lt(e,a)}}},Fne={kernelName:si,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,B(an(ge(n,"float32")),2))}}},$ne={kernelName:Gu,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(e,B(ge(n,"float32"),2))}}},Dne={kernelName:li,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=ke(2);return{a:()=>B(e,B(r,ye(n,a))),b:()=>B(e,B(r,ye(a,n)))}}},One={kernelName:Pr,gradFunc:e=>({x:()=>Ge(e)})},zne={kernelName:ui,inputsToSave:["a","b"],gradFunc:(e,t)=>{let[n,a]=t,r=mt(n.shape,a.shape);return{a:()=>{let s=e,i=Bt(n.shape,r);return i.length>0&&(s=Se(s,i)),q(s,n.shape)},b:()=>{let s=e,i=Bt(a.shape,r);return i.length>0&&(s=Se(s,i)),q(St(s),a.shape)}}}},_ne={kernelName:ii,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,r=a.shape.slice(),{axis:s}=n;ya(s,a.shape).forEach(l=>{r[l]=1});let i=q(e,r),o=B(i,jn(a.shape,"float32"));return{x:()=>o}}},Pne={kernelName:di,inputsToSave:["x"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>me(e,ot(dd(n)))}}},Lne={kernelName:pi,outputsToSave:[!0],gradFunc:(e,t)=>{let[n]=t;return{x:()=>B(ye(ke(1),ot(n)),e)}}},Wne={kernelName:_r,inputsToSave:["x"],gradFunc:(e,t,n)=>{let[a]=t,{reps:r}=n;return{x:()=>{let s=Ge(a);if(a.rank===1)for(let i=0;i<r[0];++i)s=ie(s,Re(e,[i*a.shape[0]],[a.shape[0]]));else if(a.rank===2)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)s=ie(s,Re(e,[i*a.shape[0],o*a.shape[1]],[a.shape[0],a.shape[1]]));else if(a.rank===3)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)s=ie(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2]],[a.shape[0],a.shape[1],a.shape[2]]));else if(a.rank===4)for(let i=0;i<r[0];++i)for(let o=0;o<r[1];++o)for(let l=0;l<r[2];++l)for(let u=0;u<r[3];++u)s=ie(s,Re(e,[i*a.shape[0],o*a.shape[1],l*a.shape[2],u*a.shape[3]],[a.shape[0],a.shape[1],a.shape[2],a.shape[3]]));else throw new Error(`Gradient for tile operation is not implemented for rank-${a.rank} tensors yet.`);return s}}}},Bne={kernelName:ci,gradFunc:(e,t,n)=>{let a=n,{perm:r}=a,s=Z1(r);return{x:()=>Qe(e,s)}}},Vne={kernelName:hl,gradFunc:(e,t,n)=>{let a=n,{axis:r}=a;return{value:()=>gn(e,r)}}},jne={kernelName:qu,inputsToSave:["segmentIds"],gradFunc:(e,t)=>{let[n]=t;return{x:()=>Une(e,n)}}};function Une(e,t){let n=Xa(t,Ge(t)),a=Ti(e,n),r=qr(t,ke(0,"int32")),s=a.rank-r.rank;for(let o=0;o<s;++o)r=mn(r,o+1);r=xa(r,jn(a.shape,"bool"));let i=Ge(a);return un(r,a,i)}var Hne={kernelName:fl,gradFunc:e=>({x:()=>Ge(e)})},Gne=[d4,Gee,qee,Xee,Kee,Zee,Yee,Jee,Qee,ete,tte,nte,ste,lte,ute,dte,pte,cte,hte,fte,mte,gte,Ate,yte,vte,wte,kte,Ite,Ste,Nte,hne,Tte,Cte,Ete,Rte,Mte,$te,Fte,Dte,Ote,zte,_te,Pte,Lte,Wte,Bte,Vte,jte,Ute,qte,f4,f4,Xte,Yte,ene,tne,nne,ane,rne,sne,ine,one,lne,une,dne,m4,m4,pne,cne,fne,mne,gne,yne,Ane,xne,bne,vne,wne,kne,Ine,Sne,Nne,Tne,Cne,Ene,Rne,Mne,g4,g4,y4,y4,Fne,Dne,$ne,One,zne,_ne,Pne,Lne,Wne,Bne,Vne,jne,Hne];for(let e of Gne)Ab(e);var A4={};Fe(A4,{maxNorm:()=>Zne,minMaxNorm:()=>Qne,nonNeg:()=>Jne,unitNorm:()=>Yne});var sy;function jt(){return sy==null&&(sy=h3().epsilon()),sy}function Ra(){return"channelsLast"}var vr=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,vr.prototype)}},Ma=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,Ma.prototype)}},U=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,U.prototype)}},_e=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,_e.prototype)}},x4=class extends Error{constructor(e){super(e);Object.setPrototypeOf(this,x4.prototype)}};function Bi(e,t){if(Array.isArray(e)){let n=[];for(let a=0;a<t;a++)n=n.concat(e);return n}else{let n=new Array(t);return n.fill(e),n}}function Qa(e,t){if(!e)throw new x4(t)}function b4(e,t){let n=0;for(let a of e)a===t&&n++;return n}function $n(e){return e.length===1?e[0]:e}function yt(e){return Array.isArray(e)?e:[e]}function wr(e){let t=e.replace(/(.)([A-Z][a-z0-9]+)/g,"$1_$2").replace(/([a-z])([A-Z])/g,"$1_$2").toLowerCase();return t[0]!=="_"?t:"private"+t}function Vi(e){return e.length<=1||e.indexOf("_")===-1?e:e.replace(/[_]+(\w|$)/g,(t,n)=>n.toUpperCase())}var ba={};function iy(e){if(e==null)return null;let t={};return t.className=e.getClassName(),t.config=e.getConfig(),t}function oy(e){if(!(e==null||typeof e!="object"))if(Array.isArray(e))e.forEach(t=>oy(t));else{let t=Object.keys(e);for(let n of t){let a=e[n];a!=null&&typeof a=="object"&&(!Array.isArray(a)&&a.type==="ndarray"&&typeof a.value=="number"?e[n]=a.value:oy(a))}}}function Vd(e,t={},n={},a="object",r=!1){if(typeof e=="string"){let s=e,i;if(s in n)i=n[s];else if(s in ba)i=ba[s];else if(i=t[s],i==null)throw new U(`Unknown ${a}: ${e}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);return i}else{let s=e;if(s.className==null||s.config==null)throw new U(`${a}: Improper config format: ${JSON.stringify(s)}.
|
|
'className' and 'config' must set.`);let i=s.className,o,l;if(i in n?[o,l]=n[i]:i in ba?[o,l]=ba.className:i in t&&([o,l]=t[i]),o==null)throw new U(`Unknown ${a}: ${i}. This may be due to one of the following reasons:
|
|
1. The ${a} is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.
|
|
2. The custom ${a} is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().`);if(l!=null){let u={};for(let h of Object.keys(ba))u[h]=ba[h];for(let h of Object.keys(n))u[h]=n[h];let d=s.config;d.customObjects=u;let p=Object.assign({},ba);for(let h of Object.keys(n))ba[h]=n[h];oy(s.config);let c=l(o,s.config,n,r);return ba=Object.assign({},p),c}else{let u=Object.assign({},ba);for(let p of Object.keys(n))ba[p]=n[p];let d=new o(s.config);return ba=Object.assign({},u),d}}}function qne(e,t){return e<t?-1:e>t?1:0}function r0(e,t){return-1*qne(e,t)}function es(e){if(e==null)return e;let t=[];for(let n of e)t.indexOf(n)===-1&&t.push(n);return t}function Xne(e){if(e==null)throw new U(`Invalid value in obj: ${JSON.stringify(e)}`);for(let t in e)if(e.hasOwnProperty(t))return!1;return!0}function ji(e,t,n){if(n!=null&&e.indexOf(n)<0)throw new U(`${n} is not a valid ${t}. Valid values are ${e} or null/undefined.`)}function ly(e,t,n=0,a=Infinity){return Qa(n>=0),Qa(a>=n),Array.isArray(e)&&e.length>=n&&e.length<=a&&e.every(r=>typeof r===t)}function Jt(e,t){Array.isArray(e)?(k.assert(e.length>0,()=>`${t} is unexpectedly an empty array.`),e.forEach((n,a)=>Jt(n,`element ${a+1} of ${t}`))):k.assert(Number.isInteger(e)&&e>0,()=>`Expected ${t} to be a positive integer, but got ${v4(e)}.`)}function v4(e){return e===null?"null":Array.isArray(e)?"["+e.map(t=>v4(t)).join(",")+"]":typeof e=="string"?`"${e}"`:`${e}`}function Kne(e,t){let n=k.now(),a;return(...r)=>{let s=k.now();return s-n<t||(n=s,a=e(...r)),a}}function w4(e){return e==="relu"?"relu":e==="linear"?"linear":e==="elu"?"elu":null}function uy(e,t){return V(()=>an(Se(B(e,e),t,!0)))}var jd=class extends re.Serializable{getConfig(){return{}}},dy=class extends jd{constructor(e){super();this.defaultMaxValue=2,this.defaultAxis=0,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=uy(e,this.axis),n=Mn(t,0,this.maxValue);return B(e,me(n,ie(jt(),t)))})}getConfig(){return{maxValue:this.maxValue,axis:this.axis}}};dy.className="MaxNorm";re.registerClass(dy);var py=class extends jd{constructor(e){super();this.defaultAxis=0,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>me(e,ie(jt(),uy(e,this.axis))))}getConfig(){return{axis:this.axis}}};py.className="UnitNorm";re.registerClass(py);var cy=class extends jd{apply(e){return Ka(e)}};cy.className="NonNeg";re.registerClass(cy);var hy=class extends jd{constructor(e){super();this.defaultMinValue=0,this.defaultMaxValue=1,this.defaultRate=1,this.defaultAxis=0,this.minValue=e.minValue!=null?e.minValue:this.defaultMinValue,this.maxValue=e.maxValue!=null?e.maxValue:this.defaultMaxValue,this.rate=e.rate!=null?e.rate:this.defaultRate,this.axis=e.axis!=null?e.axis:this.defaultAxis}apply(e){return V(()=>{let t=uy(e,this.axis),n=ie(B(this.rate,Mn(t,this.minValue,this.maxValue)),B(1-this.rate,t));return B(e,me(n,ie(jt(),t)))})}getConfig(){return{minValue:this.minValue,maxValue:this.maxValue,rate:this.rate,axis:this.axis}}};hy.className="MinMaxNorm";re.registerClass(hy);var k4={maxNorm:"MaxNorm",minMaxNorm:"MinMaxNorm",nonNeg:"NonNeg",unitNorm:"UnitNorm"};function Ut(e){return iy(e)}function I4(e,t={}){return Vd(e,re.SerializationMap.getMap().classNameMap,t,"constraint")}function Ht(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in k4?k4[e]:e,config:{}};return I4(t)}else return e instanceof jd?e:I4(e)}function Zne(e){return new dy(e)}function Yne(e){return new py(e)}function Jne(){return new cy}function Qne(e){return new hy(e)}var S4={};Fe(S4,{constant:()=>wae,glorotNormal:()=>Eae,glorotUniform:()=>Cae,heNormal:()=>Rae,heUniform:()=>Mae,identity:()=>Nae,leCunNormal:()=>Fae,leCunUniform:()=>$ae,ones:()=>vae,orthogonal:()=>Dae,randomNormal:()=>Iae,randomUniform:()=>kae,truncatedNormal:()=>Sae,varianceScaling:()=>Tae,zeros:()=>bae});var eae=["channelsFirst","channelsLast"],tae=["nearest","bilinear"],nae=["valid","same","causal"],aae=["max","avg"],rae=["sum","mul","concat","ave"],Ql=new Map;function Ft(e){ji(eae,"DataFormat",e)}function sae(e){ji(tae,"InterpolationFormat",e)}function ca(e){ji(nae,"PaddingMode",e)}function N4(e){ji(aae,"PoolMode",e)}var Ud=[],T4="/";function Ui(e,t){Ud.push(e);try{let n=t();return Ud.pop(),n}catch(n){throw Ud.pop(),n}}function iae(){return Ud.length===0?"":Ud.join(T4)+T4}function C4(e){if(!R4(e))throw new Error("Not a valid tensor name: '"+e+"'");return iae()+e}function E4(e){if(!R4(e))throw new Error("Not a valid tensor name: '"+e+"'");Ql.has(e)||Ql.set(e,0);let t=Ql.get(e);if(Ql.set(e,Ql.get(e)+1),t>0){let n=`${e}_${t}`;return Ql.set(n,1),n}else return e}var oae=new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);function R4(e){return!!e.match(oae)}function lae(e){return e===parseInt(e.toString(),10)}function ts(e,t,n){t==null&&(t=0),n==null&&(n=e.length);let a=1;for(let r=t;r<n;++r)a*=e[r];return a}function eu(e){if(e.length===0)return Number.NaN;let t=Number.POSITIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a<t&&(t=a)}return t}function ns(e){if(e.length===0)return Number.NaN;let t=Number.NEGATIVE_INFINITY;for(let n=0;n<e.length;n++){let a=e[n];a>t&&(t=a)}return t}function Fa(e,t){if(t<e)throw new U(`end (${t}) < begin (${e}) is forbidden.`);let n=[];for(let a=e;a<t;++a)n.push(a);return n}function Hd(e,t){return e.asType(t)}function Gd(e,t=-1){let n=e.shape.slice();return t<0&&(t=n.length+t+1),n.splice(t,0,1),e.reshape(n)}function uae(e,t){return V(()=>{if(e.shape.length!==2)throw new U(`repeat() expects a rank-2 tensor, but received a rank-${e.shape.length} tensor.`);let n=Gd(e,1);return gy(n,[1,t,1])})}function dae(e){let t=[ts(e.shape)];return e.reshape(t)}function pae(e){if(e.rank<=1)throw new U(`batchFlatten requires a minimum rank of 2. Got rank: ${e.rank}.`);let t=[e.shape[0],ts(e.shape,1)];return e.reshape(t)}function Hi(e,t,n){return V(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:return ig(e,[t,0],[n,e.shape[1]]);case 3:return ph(e,[t,0,0],[n,e.shape[1],e.shape[2]]);case 4:return Ad(e,[t,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3]]);case 5:return Re(e,[t,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4]]);case 6:return Re(e,[t,0,0,0,0,0],[n,e.shape[1],e.shape[2],e.shape[3],e.shape[4],e.shape[5]]);default:throw new U(`sliceAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}})}function fy(e,t,n){return V(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:return ig(e,[0,t],[e.shape[0],n]);case 3:return ph(e,[0,0,t],[e.shape[0],e.shape[1],n]);case 4:return Ad(e,[0,0,0,t],[e.shape[0],e.shape[1],e.shape[2],n]);default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function s0(e,t,n,a){return V(()=>{switch(e.rank){case 1:return dh(e,t,n);case 2:switch(a){case 1:return Hi(e,t,n);case 2:return fy(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${a}`)}case 3:switch(a){case 1:return Hi(e,t,n);case 2:return ph(e,[0,t,0],[e.shape[0],n,e.shape[2]]);case 3:return fy(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${a}`)}case 4:switch(a){case 1:return Hi(e,t,n);case 2:return Ad(e,[0,t,0,0],[e.shape[0],n,e.shape[2],e.shape[3]]);case 3:return Ad(e,[0,0,t,0],[e.shape[0],e.shape[1],n,e.shape[3]]);case 4:return fy(e,t,n);default:throw new U(`The axis is not within the rank of the tensor ${a}`)}default:throw new U(`sliceAlongLastAxis() received an unsupported tensor rank: ${e.rank}`)}})}function my(e,t=-1){let n;return t<0&&(n=e[0].rank,n!==0?t=n:t=0),t===e[0].rank&&(t=-1),lt(e,t)}function M4(e,t){switch(e.rank){case 1:return b3([e,t]);case 2:return Tl([e,t],0);case 3:return v3([e,t],0);case 4:return w3([e,t],0);default:throw new U(`concatAlongFirstAxis() received an unsupported tensor rank: ${e.rank}`)}}function gy(e,t){if(Array.isArray(t)||(t=[t]),e.rank!==t.length)throw new U(`The length of input n (${t.length}) does not match the number of dimensions in input x (${e.rank})`);return Gr(e,t)}function i0(e,t=0,n=1,a,r){return W3(e,t,n,a,r)}function er(e,t,n,a){if(e.rank<2||t.rank<2)throw new _e(`dot requires both inputs to be rank >= 2 but got x shape = ${e.shape} and y shape = ${t.shape}`);if(t.rank>=3){let r=e.shape.slice(-1)[0],s=t.shape.slice(-2)[0];if(r!==s)throw new _e(`If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = ${e.shape} and y shape = ${t.shape}`)}if(e.rank===2&&t.rank===2){let r=!1,s=!1;return Kr.matMul({a:e,b:t,transposeA:r,transposeB:s,bias:a?yy(e.rank,a,Ra()):null,activation:n})}else{let r=e.shape.slice(),s=r.pop();e=e.reshape([-1,s]);let i=t.shape.slice(),o=i.pop(),l=i.pop(),u=[...i,o],d=Array.from({length:t.rank},(m,f)=>f===0?t.rank-2:f<=t.rank-2?f-1:f);t=t.transpose(d).reshape([l,-1]);let p=[...r,...u],c=!1,h=!1;return Kr.matMul({a:e,b:t,transposeA:c,transposeB:h,bias:a?yy(e.rank,a,Ra()):null,activation:n}).reshape(p)}}function F4(e,t,n){return V(()=>(Array.isArray(t)?t=Dt(t,"int32"):t=t.toInt(),Ti(e,t,n)))}function qd(e){return B(e,e)}function yy(e,t,n){let a=t.shape;if(t.rank!==1&&t.rank!==e)throw new U(`Unexpected bias dimensions: ${t.rank}; expected it to be 1 or ${e}`);if(e===5){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1,1]):t.reshape([1,a[3],a[0],a[1],a[2]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===4){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1,1]):t.reshape([1,a[2],a[0],a[1]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,1,a[0]]):t.reshape([1].concat(a))}else if(e===3){if(n==="channelsFirst")return a.length===1?t.reshape([1,a[0],1]):t.reshape([1,a[1],a[0]]);if(n==="channelsLast")return a.length===1?t.reshape([1,1,a[0]]):t.reshape([1].concat(a))}else if(e<3)return t;throw new U(`Unsupported input rank by biasAdd: ${t.rank}`)}function $a(e,t,n){return V(()=>(n==null&&(n=Ra()),Ft(n),e.add(yy(e.rank,t,n))))}function cae(e,t=1){if(t!==1)throw new _e(`Support for alpha values other than 1 (${t}) is not implemented yet.`);return El(e)}function hae(e){return V(()=>me(e,Wt(e).add(1)))}function $4(e,t,n,a){return V(()=>q3(e,t,n,a))}function fae(e){return V(()=>{let t=ie(.5,B(.2,e));return Mn(t,0,1)})}function Xd(e,t,n=!1){return n?e():t()}var mae=["fanIn","fanOut","fanAvg"],gae=["normal","uniform","truncatedNormal"];function yae(e){ji(mae,"FanMode",e)}function Aae(e){ji(gae,"Distribution",e)}var va=class extends re.Serializable{fromConfigUsesCustomObjects(){return!1}getConfig(){return{}}},Ay=class extends va{apply(e,t){return $t(e,t)}};Ay.className="Zeros";re.registerClass(Ay);var o0=class extends va{apply(e,t){return jn(e,t)}};o0.className="Ones";re.registerClass(o0);var xy=class extends va{constructor(e){super();if(typeof e!="object")throw new U(`Expected argument of type ConstantConfig but got ${e}`);if(e.value===void 0)throw new U(`config must have value set but got ${e}`);this.value=e.value}apply(e,t){return V(()=>B(ke(this.value),jn(e,t)))}getConfig(){return{value:this.value}}};xy.className="Constant";re.registerClass(xy);var by=class extends va{constructor(e){super();this.DEFAULT_MINVAL=-.05,this.DEFAULT_MAXVAL=.05,this.minval=e.minval||this.DEFAULT_MINVAL,this.maxval=e.maxval||this.DEFAULT_MAXVAL,this.seed=e.seed}apply(e,t){return $l(e,this.minval,this.maxval,t)}getConfig(){return{minval:this.minval,maxval:this.maxval,seed:this.seed}}};by.className="RandomUniform";re.registerClass(by);var vy=class extends va{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new _e(`randomNormal does not support dType ${t}.`);return i0(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};vy.className="RandomNormal";re.registerClass(vy);var wy=class extends va{constructor(e){super();this.DEFAULT_MEAN=0,this.DEFAULT_STDDEV=.05,this.mean=e.mean||this.DEFAULT_MEAN,this.stddev=e.stddev||this.DEFAULT_STDDEV,this.seed=e.seed}apply(e,t){if(t=t||"float32",t!=="float32"&&t!=="int32")throw new _e(`truncatedNormal does not support dType ${t}.`);return fh(e,this.mean,this.stddev,t,this.seed)}getConfig(){return{mean:this.mean,stddev:this.stddev,seed:this.seed}}};wy.className="TruncatedNormal";re.registerClass(wy);var ky=class extends va{constructor(e){super();this.gain=e.gain!=null?e.gain:1}apply(e,t){return V(()=>{if(e.length!==2||e[0]!==e[1])throw new U("Identity matrix initializer can only be used for 2D square matrices.");return B(this.gain,G1(e[0]))})}getConfig(){return{gain:this.gain}}};ky.className="Identity";re.registerClass(ky);function xae(e,t="channelsLast"){let n,a;if(Ft(t),e.length===2)n=e[0],a=e[1];else if([3,4,5].indexOf(e.length)!==-1){if(t==="channelsFirst"){let r=ts(e,2);n=e[1]*r,a=e[0]*r}else if(t==="channelsLast"){let r=ts(e,0,e.length-2);n=e[e.length-2]*r,a=e[e.length-1]*r}}else{let r=ts(e);n=Math.sqrt(r),a=Math.sqrt(r)}return[n,a]}var Dn=class extends va{constructor(e){super();if(e.scale<0)throw new U(`scale must be a positive float. Got: ${e.scale}`);this.scale=e.scale==null?1:e.scale,this.mode=e.mode==null?"fanIn":e.mode,yae(this.mode),this.distribution=e.distribution==null?"normal":e.distribution,Aae(this.distribution),this.seed=e.seed}apply(e,t){let n=xae(e),a=n[0],r=n[1],s=this.scale;if(this.mode==="fanIn"?s/=Math.max(1,a):this.mode==="fanOut"?s/=Math.max(1,r):s/=Math.max(1,(a+r)/2),this.distribution==="normal"){let i=Math.sqrt(s);if(t=t||"float32",t!=="float32"&&t!=="int32")throw new _e(`${this.getClassName()} does not support dType ${t}.`);return fh(e,0,i,t,this.seed)}else{let i=Math.sqrt(3*s);return $l(e,-i,i,t)}}getConfig(){return{scale:this.scale,mode:this.mode,distribution:this.distribution,seed:this.seed}}};Dn.className="VarianceScaling";re.registerClass(Dn);var l0=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};l0.className="GlorotUniform";re.registerClass(l0);var u0=class extends Dn{constructor(e){super({scale:1,mode:"fanAvg",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};u0.className="GlorotNormal";re.registerClass(u0);var d0=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};d0.className="HeNormal";re.registerClass(d0);var p0=class extends Dn{constructor(e){super({scale:2,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};p0.className="HeUniform";re.registerClass(p0);var c0=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"normal",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};c0.className="LeCunNormal";re.registerClass(c0);var h0=class extends Dn{constructor(e){super({scale:1,mode:"fanIn",distribution:"uniform",seed:e==null?null:e.seed})}getClassName(){return Dn.className}};h0.className="LeCunNormal";re.registerClass(h0);var Iy=class extends va{constructor(e){super();if(this.DEFAULT_GAIN=1,this.gain=e.gain==null?this.DEFAULT_GAIN:e.gain,this.seed=e.seed,this.seed!=null)throw new _e("Random seed is not implemented for Orthogonal Initializer yet.")}apply(e,t){return V(()=>{if(e.length<2)throw new _e("Shape must be at least 2D.");e[0]*e[1]>2e3&&console.warn(`Orthogonal initializer is being called on a matrix with more than 2000 (${e[0]*e[1]}) elements: Slowness may result.`);let n=e[0]>e[1]?[e[1],e[0]]:e,a=i0(n,0,1,"float32"),r=i7.gramSchmidt(a);return e[0]>e[1]&&(r=r.transpose()),B(this.gain,r)})}getConfig(){return{gain:this.gain,seed:this.seed}}};Iy.className="Orthogonal";re.registerClass(Iy);var D4={constant:"Constant",glorotNormal:"GlorotNormal",glorotUniform:"GlorotUniform",heNormal:"HeNormal",heUniform:"HeUniform",identity:"Identity",leCunNormal:"LeCunNormal",leCunUniform:"LeCunUniform",ones:"Ones",orthogonal:"Orthogonal",randomNormal:"RandomNormal",randomUniform:"RandomUniform",truncatedNormal:"TruncatedNormal",varianceScaling:"VarianceScaling",zeros:"Zeros"};function O4(e,t={}){return Vd(e,re.SerializationMap.getMap().classNameMap,t,"initializer")}function Tt(e){return iy(e)}function bt(e){if(typeof e=="string"){let t=e in D4?D4[e]:e;if(t==="GlorotNormal")return new u0;if(t==="GlorotUniform")return new l0;if(t==="HeNormal")return new d0;if(t==="HeUniform")return new p0;if(t==="LeCunNormal")return new c0;if(t==="LeCunUniform")return new h0;{let n={};return n.className=t,n.config={},O4(n)}}else return e instanceof va?e:O4(e)}function bae(){return new Ay}function vae(){return new o0}function wae(e){return new xy(e)}function kae(e){return new by(e)}function Iae(e){return new vy(e)}function Sae(e){return new wy(e)}function Nae(e){return new ky(e)}function Tae(e){return new Dn(e)}function Cae(e){return new l0(e)}function Eae(e){return new u0(e)}function Rae(e){return new d0(e)}function Mae(e){return new p0(e)}function Fae(e){return new c0(e)}function $ae(e){return new h0(e)}function Dae(e){return new Iy(e)}var z4={};Fe(z4,{Layer:()=>Xe,RNN:()=>ar,RNNCell:()=>ap,activation:()=>gse,add:()=>Sse,alphaDropout:()=>lie,average:()=>Nse,averagePooling1d:()=>VA,averagePooling2d:()=>jA,averagePooling3d:()=>UA,avgPool1d:()=>Ose,avgPool2d:()=>_se,avgPool3d:()=>Lse,avgPooling1d:()=>zse,avgPooling2d:()=>Pse,avgPooling3d:()=>Wse,batchNormalization:()=>Fse,bidirectional:()=>eie,concatenate:()=>Tse,conv1d:()=>ose,conv2d:()=>lse,conv2dTranspose:()=>use,conv3d:()=>dse,conv3dTranspose:()=>pse,convLstm2d:()=>Zse,convLstm2dCell:()=>Yse,cropping2D:()=>hse,dense:()=>yse,depthwiseConv2d:()=>mse,dot:()=>Mse,dropout:()=>Ase,elu:()=>tse,embedding:()=>Ise,flatten:()=>bse,gaussianDropout:()=>oie,gaussianNoise:()=>iie,globalAveragePooling1d:()=>Bse,globalAveragePooling2d:()=>Vse,globalMaxPool1d:()=>nie,globalMaxPool2d:()=>aie,globalMaxPooling1d:()=>H8,globalMaxPooling2d:()=>G8,gru:()=>Use,gruCell:()=>Hse,input:()=>m8,inputLayer:()=>ese,layerNormalization:()=>$se,leakyReLU:()=>ase,lstm:()=>Gse,lstmCell:()=>qse,masking:()=>uie,maxPool1d:()=>rie,maxPool2d:()=>sie,maxPooling1d:()=>q8,maxPooling2d:()=>X8,maxPooling3d:()=>jse,maximum:()=>Cse,minimum:()=>Ese,multiply:()=>Rse,permute:()=>kse,prelu:()=>rse,reLU:()=>nse,repeatVector:()=>vse,reshape:()=>wse,rnn:()=>Jse,separableConv2d:()=>cse,simpleRNN:()=>Xse,simpleRNNCell:()=>Kse,softmax:()=>sse,spatialDropout1d:()=>xse,stackedRNNCells:()=>Qse,thresholdedReLU:()=>ise,timeDistributed:()=>tie,upSampling2d:()=>fse,zeroPadding2d:()=>Dse});var Oae=0;function _4(){return Oae++}var f0={};function m0(e=""){return e in f0||(f0[e]=0),f0[e]+=1,e+f0[e].toString()}function Sy(e){return Array.isArray(e)&&Array.isArray(e[0])}function g0(e){return e.length===0?[]:Array.isArray(e[0])?e:[e]}function Le(e){let t;if(Array.isArray(e)){if(e.length!==1)throw new U(`Expected Tensor length to be 1; got ${e.length}`);t=e[0]}else t=e;return t}function st(e){if(Array.isArray(e)&&Array.isArray(e[0])){if(e.length===1)return e=e,e[0];throw new U(`Expected exactly 1 Shape; got ${e.length}`)}else return e}function y0(e){let t=0;for(let n of e)n.shape.length===0?t+=1:t+=n.shape.reduce((a,r)=>a*r);return t}var P4="Variable",L4=class{constructor(e,t="float32",n=P4,a=!0,r=null){this.dtype=t==null?"float32":t,this.shape=e.shape,this.id=_4(),n=n==null?P4:n,this.originalName=C4(n),this.name=E4(this.originalName),this.trainable_=a,this.constraint=r,this.val=V3(e,this.trainable_,this.name,this.dtype)}read(){return this.assertNotDisposed(),this.val}write(e){return this.assertNotDisposed(),zae(this.val,e),this.val.id!==e.id&&(this.val.assign(e),this.constraint!=null&&this.val.assign(this.constraint.apply(this.val))),this}dispose(){this.assertNotDisposed(),this.val.dispose()}assertNotDisposed(){if(this.val.isDisposed)throw new Error(`LayersVariable ${this.name} is already disposed.`)}get trainable(){return this.trainable_}set trainable(e){this.trainable_=e,this.val.trainable=e}};function zae(e,t){if(e.shape.toString()!==t.shape.toString())throw new Error("Shape mismatch: "+JSON.stringify(e.shape)+" vs. "+JSON.stringify(t.shape))}function Ny(e){return e.map(t=>t.read())}function Ty(e){e.forEach(t=>{t[0].write(t[1])})}var zt=class{constructor(e){this.dtype=e.dtype,this.shape=e.shape,e.shape!=null?this.ndim=e.shape.length:this.ndim=e.ndim,this.maxNDim=e.maxNDim,this.minNDim=e.minNDim,this.axes=e.axes||{}}},Da=class{constructor(e,t,n,a,r,s,i){this.dtype=e,this.shape=t,this.sourceLayer=n,this.inputs=a,this.callArgs=r,this.outputTensorIndex=i,this.id=_4(),s!=null&&(this.originalName=C4(s),this.name=E4(this.originalName)),this.rank=t.length}},_ae=0,A0=class{constructor(e,t){this.callArgs=t,this.id=_ae++,this.outboundLayer=e.outboundLayer,this.inboundLayers=e.inboundLayers,this.nodeIndices=e.nodeIndices,this.tensorIndices=e.tensorIndices,this.inputTensors=e.inputTensors,this.outputTensors=e.outputTensors,this.inputMasks=e.inputMasks,this.outputMasks=e.outputMasks,this.inputShapes=e.inputShapes,this.outputShapes=e.outputShapes;for(let n of e.inboundLayers)n!=null&&n.outboundNodes.push(this);e.outboundLayer.inboundNodes.push(this)}getConfig(){let e=[];for(let t of this.inboundLayers)t!=null?e.push(t.name):e.push(null);return{outboundLayer:this.outboundLayer?this.outboundLayer.name:null,inboundLayers:e,nodeIndices:this.nodeIndices,tensorIndices:this.tensorIndices}}},Pae=0,Xe=class extends re.Serializable{constructor(e={}){super();this._callHook=null,this._addedWeightNames=[],this._stateful=!1,this.id=Pae++,this.activityRegularizer=null,this.inputSpec=null,this.supportsMasking=!1,this._trainableWeights=[],this._nonTrainableWeights=[],this._losses=[],this._updates=[],this._built=!1,this.inboundNodes=[],this.outboundNodes=[];let t=e.name;if(!t){let n=this.getClassName();t=wr(n)+"_"+m0(n)}if(this.name=t,this.trainable_=e.trainable==null?!0:e.trainable,e.inputShape!=null||e.batchInputShape!=null){let n;if(e.batchInputShape!=null)n=e.batchInputShape;else if(e.inputShape!=null){let r=null;e.batchSize!=null&&(r=e.batchSize),n=[r].concat(e.inputShape)}this.batchInputShape=n;let a=e.dtype;a==null&&(a=e.inputDType),a==null&&(a="float32"),this.dtype=a}e.weights!=null?this.initialWeights=e.weights:this.initialWeights=null,this._refCount=null,this.fastWeightInitDuringBuild=!1}static nodeKey(e,t){return e.name+"_ib-"+t.toString()}getNodeAtIndex(e,t){if(this.inboundNodes.length===0)throw new Ma(`The layer has never been called and thus has no defined ${t}.`);if(this.inboundNodes.length<=e)throw new U(`Asked to get ${t} at node ${e}, but the layer has only ${this.inboundNodes.length} inbound nodes.`);return this.inboundNodes[e]}getInputAt(e){return $n(this.getNodeAtIndex(e,"input").inputTensors)}getOutputAt(e){return $n(this.getNodeAtIndex(e,"output").outputTensors)}get input(){if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use \`getInputAt(nodeIndex)\` instead.`);if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} is not connected, no input to return.`);return $n(this.getNodeAtIndex(0,"input").inputTensors)}get output(){if(this.inboundNodes.length===0)throw new vr(`Layer ${this.name} has no inbound nodes.`);if(this.inboundNodes.length>1)throw new vr(`Layer ${this.name} has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use \`getOutputAt(nodeIndex)\` instead.`);return $n(this.getNodeAtIndex(0,"output").outputTensors)}get losses(){return this._losses}calculateLosses(){return this.losses.map(e=>e())}get updates(){return this._updates}get built(){return this._built}set built(e){this._built=e}get trainable(){return this.trainable_}set trainable(e){this._trainableWeights.forEach(t=>t.trainable=e),this.trainable_=e}get trainableWeights(){return this.trainable_?this._trainableWeights.filter(e=>e.trainable):[]}set trainableWeights(e){this._trainableWeights=e}get nonTrainableWeights(){return this.trainable?this._trainableWeights.filter(e=>!e.trainable).concat(this._nonTrainableWeights):this._trainableWeights.concat(this._nonTrainableWeights)}set nonTrainableWeights(e){this._nonTrainableWeights=e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}get stateful(){return this._stateful}resetStates(){if(!this.stateful)throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.")}assertInputCompatibility(e){if(e=yt(e),this.inputSpec==null||this.inputSpec.length===0)return;let t=yt(this.inputSpec);if(e.length!==t.length)throw new U(`Layer ${this.name} expects ${t.length} inputs, but it received ${e.length} input tensors. Input received: ${e}`);for(let n=0;n<e.length;n++){let a=e[n],r=t[n];if(r==null)continue;let s=a.rank;if(r.ndim!=null&&s!==r.ndim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected ndim=${r.ndim}, found ndim=${s}`);if(r.maxNDim!=null&&s>r.maxNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected max_ndim=${r.maxNDim}, found ndim=${s}`);if(r.minNDim!=null&&s<r.minNDim)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected min_ndim=${r.minNDim}, found ndim=${s}.`);if(r.dtype!=null&&a.dtype!==r.dtype)throw new U(`Input ${n} is incompatible with layer ${this.name} : expected dtype=${r.dtype}, found dtype=${a.dtype}.`);if(r.axes){let i=a.shape;for(let o in r.axes){let l=Number(o),u=r.axes[o],d=l>=0?i[l]:i[i.length+l];if(u!=null&&[u,null].indexOf(d)===-1)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected axis ${l} of input shape to have value ${u} but got shape ${i}.`)}}if(r.shape!=null)for(let i=0;i<r.shape.length;++i){let o=r.shape[i],l=a.shape[i];if(o!=null&&l!=null&&o!==l)throw new U(`Input ${n} is incompatible with layer ${this.name}: expected shape=${r.shape}, found shape=${a.shape}.`)}}}call(e,t){return e}invokeCallHook(e,t){this._callHook!=null&&this._callHook(e,t)}setCallHook(e){this._callHook=e}clearCallHook(){this._callHook=null}apply(e,t){t=t||{},this.assertNotDisposed();let n=yt(e),a=!0;for(let s of n)if(!(s instanceof Da)){a=!1;break}let r=!0;for(let s of n)if(s instanceof Da){r=!1;break}if(a===r)throw new U("Arguments to apply() must be all SymbolicTensors or all Tensors");return Ui(this.name,()=>{if(!this.built){this.assertInputCompatibility(e);let s=[];for(let i of yt(e))s.push(i.shape);this.build($n(s)),this.built=!0,this.initialWeights&&this.setWeights(this.initialWeights),this._refCount===null&&r&&(this._refCount=1)}if(this.assertInputCompatibility(e),r){let s=this.call(e,t),i=yt(s),o=[];for(let l of i)n.indexOf(l)!==-1&&(l=l.clone()),o.push(l);if(s=$n(o),this.activityRegularizer!=null)throw new _e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return s}else{let s=Lae(e),i=this.computeOutputShape(s),o,l=Wae(e);if(this.warnOnIncompatibleInputShape(Array.isArray(e)?s[0]:s),i!=null&&i.length>0&&Array.isArray(i[0])?o=i.map((u,d)=>new Da(l,u,this,yt(e),t,this.name,d)):o=new Da(l,i,this,yt(e),t,this.name),this.addInboundNode(e,o,null,null,s,i,t),this._refCount++,this.activityRegularizer!=null)throw new _e("Layer invocation in the presence of activity regularizer(s) is not supported yet.");return o}})}warnOnIncompatibleInputShape(e){if(this.batchInputShape!=null)if(e.length!==this.batchInputShape.length)console.warn(`The rank of the input tensor provided (shape: ${JSON.stringify(e)}) does not match that of the batchInputShape (${JSON.stringify(this.batchInputShape)}) of the layer ${this.name}`);else{let t=!1;this.batchInputShape.forEach((n,a)=>{n!=null&&e[a]!=null&&e[a]!==n&&(t=!0)}),t&&console.warn(`The shape of the input tensor (${JSON.stringify(e)}) does not match the expectation of layer ${this.name}: ${JSON.stringify(this.batchInputShape)}`)}}get outputShape(){if(this.inboundNodes==null||this.inboundNodes.length===0)throw new vr(`The layer ${this.name} has never been called and thus has no defined output shape.`);let e=[];for(let t of this.inboundNodes){let n=JSON.stringify(t.outputShapes);e.indexOf(n)===-1&&e.push(n)}if(e.length===1){let t=this.inboundNodes[0].outputShapes;return Array.isArray(t)&&Array.isArray(t[0])&&t.length===1?t[0]:t}else throw new vr(`The layer ${this.name} has multiple inbound nodes with different output shapes. Hence the notion of "output shape" is ill-defined for the layer.`)}countParams(){if(!this.built)throw new Ma(`You tried to call countParams() on ${this.name}, but the layer is not built yet. Build it first by calling build(batchInputShape).`);return y0(this.weights)}build(e){this.built=!0}getWeights(e=!1){return Ny(e?this.trainableWeights:this.weights)}setWeights(e){V(()=>{let t=this.weights;if(t.length!==e.length)throw new U(`You called setWeights(weights) on layer "${this.name}" with a weight list of length ${e.length}, but the layer was expecting ${t.length} weights. Provided weights: ${e}...`);if(t.length===0)return;let n=[],a=Ny(t);for(let r=0;r<a.length;++r){let s=a[r],i=t[r],o=e[r];if(!k.arraysEqual(s.shape,o.shape))throw new U(`Layer weight shape ${s.shape} not compatible with provided weight shape ${o.shape}`);n.push([i,o])}Ty(n)})}addWeight(e,t,n,a,r,s,i){if(this._addedWeightNames.indexOf(e)!==-1)throw new U(`Duplicate weight name ${e} for layer ${this.name}`);this._addedWeightNames.push(e),n==null&&(n="float32"),this.fastWeightInitDuringBuild&&(a=bt("zeros"));let o=a.apply(t,n),l=new L4(o,n,e,s,i);return o.dispose(),r!=null&&this.addLoss(()=>r.apply(l.read())),s==null&&(s=!0),s?this._trainableWeights.push(l):this._nonTrainableWeights.push(l),l}setFastWeightInitDuringBuild(e){this.fastWeightInitDuringBuild=e}addLoss(e){e==null||Array.isArray(e)&&e.length===0||(e=yt(e),this._losses!==void 0&&this._losses!==null&&this.losses.push(...e))}computeOutputShape(e){return e}computeMask(e,t){if(!this.supportsMasking){if(t!=null)if(Array.isArray(t))t.forEach(n=>{if(n!=null)throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`)});else throw new TypeError(`Layer ${this.name} does not support masking, but was passed an inputMask.`);return null}return t}addInboundNode(e,t,n,a,r,s,i=null){let o=yt(e);t=yt(t),n=yt(n),a=yt(a),r=g0(r),s=g0(s);let l=[],u=[],d=[];for(let p of o)l.push(p.sourceLayer),u.push(p.nodeIndex),d.push(p.tensorIndex);new A0({outboundLayer:this,inboundLayers:l,nodeIndices:u,tensorIndices:d,inputTensors:o,outputTensors:t,inputMasks:n,outputMasks:a,inputShapes:r,outputShapes:s},i);for(let p=0;p<t.length;p++)t[p].sourceLayer=this,t[p].nodeIndex=this.inboundNodes.length-1,t[p].tensorIndex=p}getConfig(){let e={name:this.name,trainable:this.trainable};return this.batchInputShape!=null&&(e.batchInputShape=this.batchInputShape),this.dtype!=null&&(e.dtype=this.dtype),e}disposeWeights(){return this.weights.forEach(e=>e.dispose()),this.weights.length}assertNotDisposed(){if(this._refCount===0)throw new Error(`Layer '${this.name}' is already disposed.`)}dispose(){if(!this.built)throw new Error(`Cannot dispose Layer ${this.name} because it has not been built yet.`);if(this._refCount===null)throw new Error(`Cannot dispose Layer ${this.name} because it has not been used yet.`);this.assertNotDisposed();let e=0;return--this._refCount==0&&(e=this.disposeWeights()),{refCountAfterDispose:this._refCount,numDisposedVariables:e}}};function Lae(e){e=yt(e);let t=[];for(let n of e)t.push(n.shape);return $n(t)}function Wae(e){return"float32"}function W4(e,t,n){if((t==null||n!=null&&n>0)&&(t=e.sourceLayer,n=e.nodeIndex),t.inboundNodes.length===0)return[e];{let a=t.inboundNodes[n];if(a.inboundLayers.length===0)return a.inputTensors;{let r=[];for(let s=0;s<a.inboundLayers.length;s++){let i=a.inputTensors[s],o=a.inboundLayers[s],l=a.nodeIndices[s],u=W4(i,o,l);for(let d of u)r.indexOf(d)===-1&&r.push(d)}return r}}}var tu=class extends Xe{constructor(e){super({dtype:e.dtype,name:e.name!=null?e.name:m0("input").toString()});if(e.batchSize==null&&(e.batchSize=null),e.sparse==null&&(e.sparse=!1),this.trainable=!1,this.built=!0,this.sparse=e.sparse,e.inputShape!=null&&e.batchInputShape!=null)throw new U("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");let t=e.batchInputShape;if(t==null){if(e.inputShape==null)throw new U("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");t=[e.batchSize].concat(e.inputShape)}else if(e.batchSize!=null)throw new U("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");let n=e.dtype||"float32";this.batchInputShape=t,this.dtype=n,this.inputSpec=[{shape:t}];let a=new Da(this.dtype,this.batchInputShape,this,[],{},this.name);a.nodeIndex=0,a.tensorIndex=0,new A0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:[a],outputTensors:[a],inputMasks:[null],outputMasks:[null],inputShapes:[t],outputShapes:[t]})}apply(e,t){throw new U(`Cannot pass any input to an InputLayer's apply() method. InputLayer name: ${this.name}`)}dispose(){return{refCountAfterDispose:this._refCount,numDisposedVariables:0}}getConfig(){return{batchInputShape:this.batchInputShape,dtype:this.dtype,sparse:this.sparse,name:this.name}}};tu.className="InputLayer";re.registerClass(tu);function B4(e){if(e.batchShape==null&&e.shape==null)throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");if(e.batchShape!=null&&e.shape!=null)throw new U("Please provide either a `shape` or `batchShape` argument to Input, but not both.");let t=e.batchShape;e.shape!=null&&t==null&&(t=[null].concat(e.shape));let n=e.dtype;return n==null&&(n="float32"),new tu({batchInputShape:t,name:e.name,dtype:n,sparse:e.sparse}).inboundNodes[0].outputTensors[0]}async function as(e){if(e==null)return;let t=[],n=[],a=[];for(let r in e){let s=e[r];if(typeof s!="number"){let i=s;t.push(i.data()),n.push(r),a.push(i)}}if(t.length>0){let r=await Promise.all(t);for(let s=0;s<r.length;++s)e[n[s]]=r[s][0];he(a)}}function V4(e){if(e!=null)for(let t in e){let n=e[t];typeof n!="number"&&n.dispose()}}var j4;(function(e){e[e.SILENT=0]="SILENT",e[e.VERBOSE=1]="VERBOSE"})(j4||(j4={}));var Bae=125,nu=class{constructor(){this.validationData=null}setParams(e){this.params=e}async onEpochBegin(e,t){}async onEpochEnd(e,t){}async onBatchBegin(e,t){}async onBatchEnd(e,t){}async onTrainBegin(e){}async onTrainEnd(e){}setModel(e){}},U4=class{constructor(e,t=10){e==null&&(e=[]),this.callbacks=e,this.queueLength=t}append(e){this.callbacks.push(e)}setParams(e){for(let t of this.callbacks)t.setParams(e)}setModel(e){for(let t of this.callbacks)t.setModel(e)}async onEpochBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochBegin(e,t)}async onEpochEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onEpochEnd(e,t)}async onBatchBegin(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchBegin(e,t)}async onBatchEnd(e,t){t==null&&(t={});for(let n of this.callbacks)await n.onBatchEnd(e,t)}async onTrainBegin(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainBegin(e)}async onTrainEnd(e){e==null&&(e={});for(let t of this.callbacks)await t.onTrainEnd(e)}},Vae=class extends nu{constructor(){super()}async onEpochBegin(e){this.seen=0,this.totals={}}async onBatchEnd(e,t){t==null&&(t={});let n=t.size==null?0:t.size;this.seen+=n;for(let a in t){let r=t[a];if(typeof r=="number")this.totals.hasOwnProperty(a)||(this.totals[a]=0),this.totals[a]=this.totals[a]+r*n;else{let s;a in this.totals?s=this.totals[a]:this.totals[a]=0;let i=V(()=>ie(this.totals[a],B(r,n)));this.totals[a]=i,s!=null&&s.dispose()}}}async onEpochEnd(e,t){if(t!=null)for(let n of this.params.metrics)this.totals[n]!=null&&(typeof this.totals[n]=="number"?t[n]=this.totals[n]/this.seen:V(()=>{let a=B(me(1,this.seen),this.totals[n]);t[n]=a,this.totals[n].dispose(),Kt(t[n])}))}},H4=class extends nu{async onTrainBegin(e){this.epoch=[],this.history={}}async onEpochEnd(e,t){t==null&&(t={}),this.epoch.push(e);for(let n in t)this.history[n]==null&&(this.history[n]=[]),this.history[n].push(t[n])}async syncData(){let e=[],t=[],n=[];for(let r in this.history){let s=this.history[r];for(let i=0;i<s.length;++i)if(typeof s[i]!="number"){let o=s[i];e.push(o.data()),t.push(r),n.push(i)}}let a=await Promise.all(e);for(let r=0;r<a.length;++r)this.history[t[r]][n[r]].dispose(),this.history[t[r]][n[r]]=a[r][0]}},G4=class extends nu{constructor(e,t){super();if(this.currentEpoch=0,this.yieldEvery=t||"auto",this.yieldEvery==="auto"&&(this.yieldEvery=Bae),this.yieldEvery==="never"&&e.onYield!=null)throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");k.isNumber(this.yieldEvery)&&(this.maybeWait=Kne(this.maybeWait.bind(this),this.yieldEvery)),this.trainBegin=e.onTrainBegin,this.trainEnd=e.onTrainEnd,this.epochBegin=e.onEpochBegin,this.epochEnd=e.onEpochEnd,this.batchBegin=e.onBatchBegin,this.batchEnd=e.onBatchEnd,this.yield=e.onYield}async maybeWait(e,t,n){let a=[];this.yield!=null&&(await as(n),a.push(this.yield(e,t,n))),a.push(Ch()),await Promise.all(a)}async onEpochBegin(e,t){this.currentEpoch=e,this.epochBegin!=null&&(await as(t),await this.epochBegin(e,t))}async onEpochEnd(e,t){let n=[];this.epochEnd!=null&&(await as(t),n.push(this.epochEnd(e,t))),this.yieldEvery==="epoch"&&n.push(Ch()),await Promise.all(n)}async onBatchBegin(e,t){this.batchBegin!=null&&(await as(t),await this.batchBegin(e,t))}async onBatchEnd(e,t){let n=[];this.batchEnd!=null&&(await as(t),n.push(this.batchEnd(e,t))),this.yieldEvery==="batch"?n.push(Ch()):k.isNumber(this.yieldEvery)&&n.push(this.maybeWait(this.currentEpoch,e,t)),await Promise.all(n)}async onTrainBegin(e){this.trainBegin!=null&&(await as(e),await this.trainBegin(e))}async onTrainEnd(e){this.trainEnd!=null&&(await as(e),await this.trainEnd(e))}};function q4(e,t){return e==null&&(e={}),e instanceof nu?[e]:Array.isArray(e)&&e[0]instanceof nu?e:yt(e).map(n=>new G4(n,t))}var wa=class{constructor(){}static registerCallbackConstructor(e,t){k.assert(e>=0&&Number.isInteger(e),()=>`Verbosity level is expected to be an integer >= 0, but got ${e}`),wa.checkForDuplicate(t),wa.constructors[e]==null&&(wa.constructors[e]=[]),wa.constructors[e].push(t)}static checkForDuplicate(e){for(let t in wa.constructors)wa.constructors[+t].forEach(n=>{if(n===e)throw new U("Duplicate callback constructor.")})}static clear(){wa.constructors={}}static createCallbacks(e){let t=[];for(let n in wa.constructors){let a=+n;e>=a&&t.push(...wa.constructors[a])}return t.map(n=>new n)}};wa.constructors={};function X4(e,t,n,a,r,s,i,o,l){let u=new H4,d=[new Vae,...wa.createCallbacks(t)];e!=null&&d.push(...e),d.push(u);let p=new U4(d);return p.setParams({epochs:n,initialEpoch:a,samples:r,steps:s,batchSize:i,verbose:t,doValidation:o,metrics:l}),{callbackList:p,history:u}}function Oa(e,t={},n=!1){return Vd(e,re.SerializationMap.getMap().classNameMap,t,"layer",n)}function x0(e,t){return V(()=>{e.dtype!=="float32"&&(e=e.asType("float32"));let n=Se(qd(e),t,!0),a=Rl(n.shape,jt()),r=an(Xa(n,a));return me(e,r)})}function Gi(e,t){return V(()=>Nt(qd(ye(t,e)),-1))}function b0(e,t){return V(()=>Nt(Wt(ye(t,e)),-1))}function au(e,t){return V(()=>{let n=ye(e,t),a=Mn(Wt(e),jt(),Number.MAX_VALUE),r=Wt(me(n,a));return B(100,Nt(r,-1))})}function jae(e,t){return V(()=>{let n=Mn(t,jt(),Number.MAX_VALUE),a=Bn(ie(1,n)),r=Mn(e,jt(),Number.MAX_VALUE),s=Bn(ie(1,r));return Nt(qd(ye(a,s)),-1)})}function Uae(e,t){return V(()=>{let n=Xa(0,ye(1,B(e,t)));return Nt(qd(n),-1)})}function Hae(e,t){return V(()=>{let n=Xa(0,ye(1,B(e,t)));return Nt(n,-1)})}function Gae(e,t){return V(()=>{let n=Se(B(e,t),-1),a=Vn(B(ye(1,e),t),-1);return Xa(0,ie(1,ye(a,n)))})}function qae(e,t){return V(()=>{let n=Math.log(2),a=ye(t,e),r=ye(ie(a,Ci(B(-2,a))),n);return Nt(r,-1)})}function Kd(e,t,n=!1){return V(()=>{if(n)t=xd(t);else{let a=Se(t,t.shape.length-1,!0);t=me(t,a)}return t=Mn(t,jt(),1-jt()),St(Se(B(e.toFloat(),Bn(t)),t.shape.length-1))})}function v0(e,t,n=!1){return V(()=>{let a=Ml(dae(e)).toInt();t=Mn(t,jt(),1-jt());let r=t.shape,s=wl(a,r[r.length-1]).reshape(r);return Kd(s,t,n)})}function Xae(e,t){if(!k.arraysEqual(e.shape,t.shape))throw new U(`logits and labels must have the same shape, but got shapes ${JSON.stringify(e.shape)} and ${JSON.stringify(t.shape)}`);return V(()=>{let n=t.relu(),a=t.abs().neg();return n.sub(t.mul(e)).add(a.exp().log1p())})}function w0(e,t){return V(()=>{let n;return n=Mn(t,jt(),1-jt()),n=Bn(me(n,ye(1,n))),Nt(Xae(e,n),-1)})}function Kae(e,t){return V(()=>{let n=Mn(e,jt(),1),a=Mn(t,jt(),1);return Se(B(e,Bn(me(n,a))),-1)})}function Zae(e,t){return V(()=>{let n=Bn(ie(jt(),t));return Nt(ye(t,B(e,n)),-1)})}function Cy(e,t){return V(()=>{let n=x0(e,-1),a=x0(t,-1),r=B(n,a);return St(Se(r,-1))})}var k0={meanSquaredError:Gi,meanAbsoluteError:b0,meanAbsolutePercentageError:au,meanSquaredLogarithmicError:jae,squaredHinge:Uae,hinge:Hae,categoricalHinge:Gae,logcosh:qae,categoricalCrossentropy:Kd,sparseCategoricalCrossentropy:v0,binaryCrossentropy:w0,kullbackLeiblerDivergence:Kae,poisson:Zae,cosineProximity:Cy};function Ey(e){if(typeof e=="string"){if(e in k0)return k0[e];let t=`Unknown loss ${e}`;throw e.toLowerCase().includes("softmaxcrossentropy")&&(t=`Unknown loss ${e}. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy`),new U(t)}else return e}function Ry(e,t){return V(()=>{let n=B(.5,Un(t)),a=Hd(Wn(t,n),e.dtype);return Nt(Hr(e,a),-1)})}function My(e,t){return V(()=>Hd(Hr(ki(e,-1),ki(t,-1)),"float32"))}function K4(e,t){return V(()=>xa(e.equal(1),t.equal(1)).sum().cast("float32"))}function Yae(e,t){return V(()=>xa(e.equal(1),t.equal(0)).sum().cast("float32"))}function Jae(e,t){return V(()=>xa(e.equal(0),t.equal(1)).sum().cast("float32"))}function Z4(e,t){return V(()=>{let n=K4(e,t),a=Jae(e,t),r=n.add(a);return un(Wn(r,0),n.div(r),0).cast("float32")})}function Qae(e,t){return V(()=>{let n=K4(e,t),a=Yae(e,t),r=n.add(a);return un(Wn(r,0),n.div(r),0).cast("float32")})}function Y4(e,t){return w0(e,t)}function J4(e,t){return e.rank===t.rank&&(e=e.squeeze([e.rank-1])),t=t.argMax(-1),t.dtype!==e.dtype&&(t=t.asType(e.dtype)),Hr(e,t).asType("float32")}var ere=Gi,tre=Gi,nre=b0,are=b0,rre=au,sre=au,Fy=Kd,ire=Cy,Q4=v0,I0={binaryAccuracy:Ry,categoricalAccuracy:My,precision:Z4,categoricalCrossentropy:Fy,sparseCategoricalCrossentropy:Q4,mse:ere,MSE:tre,mae:nre,MAE:are,mape:rre,MAPE:sre,cosine:ire};function ore(e){if(typeof e=="string"&&e in I0)return I0[e];if(typeof e!="string"&&e!=null)return e;throw new U(`Unknown metric ${e}`)}function S0(e){if(Qa(e!==null,`Unknown LossOrMetricFn ${e}`),typeof e=="string")return e;{let t;for(let n of Object.keys(k0))if(k0[n]===e){t=n;break}if(t!==void 0)return t;for(let n of Object.keys(I0))if(I0[n]===e){t=n;break}return t!==void 0?t:e.name}}function lre(e){let t={Adagrad:()=>Fi.adagrad(.01),Adadelta:()=>Fi.adadelta(1,.95,jt()),Adam:()=>Fi.adam(.001,.9,.999,jt()),Adamax:()=>Fi.adamax(.002,.9,.999,jt(),0),RMSProp:()=>Fi.rmsprop(.001,.9,0,jt()),SGD:()=>Fi.sgd(.01)};if(t.adagrad=t.Adagrad,t.adadelta=t.Adadelta,t.adam=t.Adam,t.adamax=t.Adamax,t.rmsprop=t.RMSProp,t.sgd=t.SGD,e in t)return t[e]();throw new U(`Unknown Optimizer ${e}`)}var e8=1*1024*1024;function t8(e,t,n=!1){if(e==null||typeof e!="object"||Object.getPrototypeOf(e)!==Object.prototype||!$y(e))throw new Error("User-defined metadata is expected to be a JSON object, but is not.");if(n){let a=JSON.stringify(e);a.length>e8&&console.warn(`User-defined metadata of model "${t}" is too large in size (length=${a.length} when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= ${e8}.`)}}function $y(e){if(e===null)return!0;if(typeof e=="object")if(Object.getPrototypeOf(e)===Object.prototype){let t=Object.keys(e);for(let n of t)if(typeof n!="string"||!$y(e[n]))return!1;return!0}else if(Array.isArray(e)){for(let t of e)if(!$y(t))return!1;return!0}else return!1;else{let t=typeof e;return t==="string"||t==="number"||t==="boolean"}}function ure(e,t,n,a=console.log){let r=pre(e),s=["Layer (type)","Output shape","Param #"];r?(t=t||65,n=n||[.45,.85,1]):(t=t||98,n=n||[.33,.55,.67,1]),n[n.length-1]<=1&&(n=n.map(d=>Math.floor(t*d)));let i;if(!r){s.push("Receives inputs"),i=[];for(let d in e.nodesByDepth)i.push(...e.nodesByDepth[d])}a("_".repeat(t)),N0(s,n,a),a("=".repeat(t));let o=e.layers;for(let d=0;d<o.length;++d)r?cre(o[d],n,a):hre(o[d],n,i,a),a((d===o.length-1?"=":"_").repeat(t));e.checkTrainableWeightsConsistency();let l=dre(e),u=y0(e.nonTrainableWeights);a(`Total params: ${l+u}`),a(`Trainable params: ${l}`),a(`Non-trainable params: ${u}`),a("_".repeat(t))}function dre(e){let t;return e.collectedTrainableWeights!=null?t=y0(e.collectedTrainableWeights):t=y0(e.trainableWeights),t}function pre(e){let t=!0,n=[],a=[];for(let r in e.nodesByDepth)n.push(e.nodesByDepth[r]);for(let r of n){if(r.length>1||r.length===1&&r[0].inboundLayers.length>1){t=!1;break}a.push(...r)}if(t)for(let r of e.layers){let s=!1;for(let i of r.inboundNodes)if(a.indexOf(i)!==-1)if(s){t=!1;break}else s=!0;if(!t)break}return t}function N0(e,t,n=console.log){let a="";for(let r=0;r<e.length;++r)r>0&&(a=a.slice(0,a.length-1)+" "),a+=e[r],a=a.slice(0,t[r]),a+=" ".repeat(t[r]-a.length);n(a)}function cre(e,t,n){let a;try{a=JSON.stringify(e.outputShape)}catch(o){a="multiple"}let r=e.name,s=e.getClassName(),i=[`${r} (${s})`,a,e.countParams().toString()];N0(i,t,n)}function hre(e,t,n,a){let r;try{r=JSON.stringify(e.outputShape)}catch(d){r="multiple"}let s=[];for(let d of e.inboundNodes)if(!(n!=null&&n.length>0&&n.indexOf(d)===-1))for(let p=0;p<d.inboundLayers.length;++p){let c=d.inboundLayers[p].name,h=d.nodeIndices[p],m=d.tensorIndices[p];s.push(`${c}[${h}][${m}]`)}let i=e.name,o=e.getClassName(),l=s.length===0?"":s[0],u=[`${i} (${o})`,r,e.countParams().toString(),l];N0(u,t,a);for(let d=1;d<s.length;++d)N0(["","","",s[d]],t,a)}function n8(e,t,n){return(e==="inboundNodes"||e==="outputLayers"||e==="inputLayers")&&t===0&&typeof n=="string"}function Zd(e,t){if(e===null)return null;if(typeof e=="string")return Vi(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];n8(t,r,s)?n.push(s):n.push(Zd(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a];if(a==="name"&&typeof r=="string")n[a]=r;else{let s=Vi(a);n[s]=Zd(r,s)}}return n}}function Dy(e,t){if(e==null)return null;if(typeof e=="string")return wr(e);if(typeof e=="number"||typeof e=="boolean")return e;if(e instanceof Array){let n=[],a=e.length;for(let r=0;r<a;++r){let s=e[r];n8(t,r,s)?n.push(s):n.push(Dy(s,t))}return n}else{let n={};for(let a of Object.keys(e)){let r=e[a],s=wr(a);(a==="name"||a==="className")&&typeof r=="string"?n[s]=r:n[s]=Dy(r,a)}return n}}var Oy="3.7.0";function fre(e,t){if(e.dtype==null||e.dtype===t.dtype)return t;try{return ge(t,e.dtype)}catch(n){throw new U(`The dtype of the feed (${t.dtype}) can not be cast to the dtype of the key '${e.name}' (${e.dtype}).`)}}var qi=class{constructor(e){if(this.id2Value={},this.id2Mask={},this.name2Id={},e instanceof qi)for(let t in e.id2Value)this.id2Value[t]=e.id2Value[t],t in e.id2Mask&&(this.id2Mask[t]=e.id2Mask[t]);else{if(e==null)return;for(let t of e)this.add(t.key,t.value)}}add(e,t,n){if(this.id2Value[e.id]==null)this.id2Value[e.id]=fre(e,t),this.name2Id[e.name]=e.id,n!=null&&(this.id2Mask[e.id]=n);else throw new U(`Duplicate key: name=${e.name}, id=${e.id}`);return this}addFeed(e){this.add(e.key,e.value)}hasKey(e){return this.id2Value[e.id]!=null}names(){return Object.keys(this.name2Id)}getValue(e){if(e instanceof Da){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Value[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Value[t]}}getMask(e){if(e instanceof Da){if(this.id2Value[e.id]==null)throw new U(`Nonexistent key: ${e.name}`);return this.id2Mask[e.id]}else{let t=this.name2Id[e];if(t==null)throw new U(`Feed dict has no SymbolicTensor name: ${e}`);return this.id2Mask[t]}}disposeMasks(){this.id2Mask!=null&&he(this.id2Mask)}},zy={},a8={};function Yd(e,t,n,a){let r=n==null?!1:n.training,s=Array.isArray(e),i=s?e:[e],o=i.map(m=>m.name),l=[],u=t.names();for(let m of o)u.indexOf(m)!==-1?l.push(t.getValue(m)):l.push(null);a!=null&&(a.maxNumTensors=-Infinity,a.minNumTensors=Infinity);let d=o.join(",")+"|"+t.names().join(","),p,c;if(zy[d]==null){let m=mre(i,t);p=m.sorted,c=m.recipientCounts,zy[d]=p,a8[d]=c}p=zy[d],c={},r||Object.assign(c,a8[d]);let h=new qi(t);for(let m=0;m<p.length;++m){if(a!=null){let E=Bc().numTensors;E>a.maxNumTensors&&(a.maxNumTensors=E),E<a.minNumTensors&&(a.minNumTensors=E)}let f=p[m],g=f.sourceLayer;if(g instanceof tu)continue;let y=[],A=[],x=[],v=!1;for(let E of f.inputs){let _=h.getValue(E),$=h.getMask(E);y.push(_),A.push($),$!=null&&(v=!0),r||(c[E.name]--,c[E.name]===0&&!t.hasKey(E)&&o.indexOf(E.name)===-1&&!_.isDisposed&&E.sourceLayer.stateful!==!0&&x.push(_))}v&&(n=n||{},n.mask=A[0]);let b=yt(g.apply(y,n)),w=null;g.supportsMasking&&(w=g.computeMask(y,A));let N=yre(f),C=Array.isArray(N)?N:[N];for(let E=0;E<C.length;++E){h.hasKey(C[E])||h.add(C[E],b[E],Array.isArray(w)?w[0]:w);let _=o.indexOf(C[E].name);_!==-1&&(l[_]=b[E])}r||he(x)}return h.disposeMasks(),s?l:l[0]}function mre(e,t){k.assert(e!=null&&e.length>0,()=>"Expected at least one fetch, got none");let n=[],a={};if(e.length===1){let r=r8(e[0],t);n=r.sorted,a=r.recipientMap}else{let r=new Set;for(let s of e){let{sorted:i,recipientMap:o}=r8(s,t);for(let l of i)r.has(l.name)||(n.push(l),r.add(l.name));for(let l in o)a[l]==null&&(a[l]=new Set),o[l].forEach(u=>a[l].add(u))}}return{sorted:n,recipientCounts:gre(a)}}function gre(e){let t={};for(let n in e)t[n]=e[n].size;return t}function r8(e,t){let n=new Set,a=[],r={};for(let o of t.names())n.add(o);let s=[],i=[];for(s.push(e);s.length>0;){let o=s[s.length-1];if(n.has(o.name)){s.pop();continue}let l=i[i.length-1]===s.length-1;if(o.inputs.length===0||l)s.pop(),a.push(o),n.add(o.name),l&&i.pop();else{i.push(s.length-1);for(let u of o.inputs)r[u.name]==null&&(r[u.name]=new Set),r[u.name].add(o.name),!n.has(u.name)&&s.push(u)}}return{sorted:a,recipientMap:r}}function yre(e){let t;if(e.sourceLayer.inboundNodes.length===1)t=e.sourceLayer.output;else{let n=null;for(let a=0;a<e.sourceLayer.inboundNodes.length;++a)for(let r of e.sourceLayer.inboundNodes[a].outputTensors)if(r.id===e.id){n=a;break}t=e.sourceLayer.getOutputAt(n)}return t}var tr=class extends Xe{constructor(e){super({});if(this.containerNodes=new Set,this.name=e.name,this.name==null){let y=this.getClassName().toLowerCase();this.name=m0(y)}if(this.supportsMasking=!1,this.trainable_=!0,Array.isArray(e.inputs)?this.inputs=e.inputs.slice():this.inputs=[e.inputs],Array.isArray(e.outputs)?this.outputs=e.outputs.slice():this.outputs=[e.outputs],es(this.inputs).length!==this.inputs.length)throw new U(`The list of inputs passed to the model is redundant. All inputs should only appear once. Found: ${this.inputs.map(y=>y.name)}`);es(this.outputs).length!==this.outputs.length&&console.warn(`The list of outputs passed to the model is redundant. All outputs should only appear once. Found: ${this.outputs.map(y=>y.name)}`),this.inputLayers=[],this.inputLayersNodeIndices=[],this.inputLayersTensorIndices=[],this.outputLayers=[],this.outputLayersNodeIndices=[],this.outputLayersTensorIndices=[],this.layers=[],this.internalContainerRefs=[];for(let y of this.outputs){let A=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;this.outputLayers.push(A),this.outputLayersNodeIndices.push(x),this.outputLayersTensorIndices.push(v)}for(let y of this.inputs){let A=y.sourceLayer,x=y.nodeIndex,v=y.tensorIndex;Qa(x===0,"input layer has >1 nodes"),Qa(v===0,"input layer has >1 tensors"),this.inputLayers.push(A),this.inputLayersNodeIndices.push(x),this.inputLayersTensorIndices.push(v)}this.inputNames=[],this.outputNames=[],this.feedInputShapes=[],this.feedInputNames=[],this.feedOutputNames=[];for(let y=0;y<this.inputLayers.length;y++){let A=this.inputLayers[y];if(!(A instanceof tu))throw new TypeError(`Input layers to a LayersModel must be InputLayer objects. Received inputs: ${e.inputs}. Input ${y} (0-based) originates from layer type ${A.getClassName()}.`);this.inputNames.push(A.name),this.feedInputShapes.push(A.batchInputShape),this.feedInputNames.push(A.name)}for(let y of this.outputLayers)this.outputNames.push(y.name);this.internalInputShapes=this.inputs.map(y=>y.shape),this.internalOutputShapes=this.outputs.map(y=>y.shape);let t={},n={},a={},r={},s={},i=[],o=(y,A,x,v,b,w)=>{(v==null||b==null||w==null)&&(v=y.sourceLayer,b=y.nodeIndex,w=y.tensorIndex);let N=v.inboundNodes[b];if(x.indexOf(N)!==-1)throw new Ma(`The tensor ${y.name} at layer "${v.name}" is part of a cycle.`);if(A.indexOf(N)!==-1)return;this.containerNodes.add(tr.nodeKey(v,b)),v.id in s||(s[v.id]=Object.keys(s).length),x.indexOf(N)===-1&&x.push(N);let C=N.inboundLayers.length;for(let E=0;E<C;E++){let _=N.inputTensors[E],$=N.inboundLayers[E],S=N.nodeIndices[E],z=N.tensorIndices[E];o(_,A,x,$,S,z)}for(A.push(N);x.indexOf(N)>=0;)x.splice(x.indexOf(N),1);i.push(N)},l=[],u=[];for(let y of this.outputs)o(y,l,u);let d=i.slice().reverse();for(let y of d){n[y.id]=y,y.id in t||(t[y.id]=0);let A=t[y.id],x=a[y.outboundLayer.id]==null?0:a[y.outboundLayer.id];A=Math.max(A,x),a[y.outboundLayer.id]=A,r[y.outboundLayer.id]=y.outboundLayer,t[y.id]=A;for(let v=0;v<y.inboundLayers.length;v++){let b=y.inboundLayers[v],w=y.nodeIndices[v],N=b.inboundNodes[w],C=t[N.id]==null?0:t[N.id];t[N.id]=Math.max(A+1,C),n[N.id]=N}}let p={};for(let y in t){let A=t[y];A in p||(p[A]=[]),p[A].push(n[y])}let c={};for(let y in a){let A=a[y];A in c||(c[A]=[]),c[A].push(r[y])}let h=Object.keys(c).map(y=>parseInt(y,10)).sort(r0);this.layers=[];for(let y of h){let A=c[y];A.sort((x,v)=>{let b=s[x.id],w=s[v.id];return b<w?-1:b>w?1:0});for(let x of A)x instanceof tr&&this.internalContainerRefs.push(x),this.layers.push(x)}this.layersByDepth=c,h=Object.keys(p).map(y=>parseInt(y,10)).sort(r0);let m=this.inputs.slice(),f=[];for(let y of h)for(let A of p[y]){let x=A.outboundLayer;if(x!=null){for(let v of A.inputTensors)if(m.indexOf(v)===-1)throw new Ma(`Graph disconnected: cannot obtain value for tensor ${v} at layer "${x.name}". The following previous layers were accessed without issue: ${f}`);for(let v of A.outputTensors)m.push(v);f.push(x.name)}}this.nodesByDepth=p;let g=this.layers.map(y=>y.name);for(let y of g){let A=g.filter(x=>x===y).length;if(A!==1)throw new Ma(`The name "${y}" is used ${A} times in the model. All layer names should be unique. Layer names: `+JSON.stringify(g))}this.outboundNodes=[],this.inboundNodes=[],new A0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:this.inputs.map(y=>null),outputMasks:this.outputs.map(y=>null),inputShapes:this.inputs.map(y=>y.shape),outputShapes:this.outputs.map(y=>y.shape)}),this.built=!0,this._refCount=1}assertNotDisposed(){if(this._refCount===0)throw new Error(`Container '${this.name}' is already disposed.`)}dispose(){this.assertNotDisposed();let e={refCountAfterDispose:null,numDisposedVariables:0};if(--this._refCount==0){for(let t of this.layers)e.numDisposedVariables+=t.dispose().numDisposedVariables;for(let t of this.internalContainerRefs)e.numDisposedVariables+=t.dispose().numDisposedVariables}return e.refCountAfterDispose=this._refCount,e}get trainable(){return this.trainable_}set trainable(e){this.layers.forEach(t=>{t._trainableWeights.forEach(n=>n.trainable=e)}),this.trainable_=e}get trainableWeights(){if(this._trainableWeights.length>0)throw new U("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");if(!this.trainable)return[];let e=[];for(let t of this.layers)e=e.concat(t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.layers)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.layers)t.push(...n.trainableWeights);return t.concat(e)}return e}get weights(){return this.trainableWeights.concat(this.nonTrainableWeights)}loadWeights(e,t=!0){let n={},a=0;for(let s of this.layers)for(let i of s.weights){if(n[i.originalName]!=null)throw new U(`Duplicate weight name: ${i.originalName}`);n[i.originalName]=i,a++}let r=[];for(let s in e){let i=s;if(n[s]==null){let o=s.split("/");i=o.slice(0,-2).concat([o[o.length-1]]).join("/")}if(n[i]!=null)r.push([n[i],e[s]]);else if(t)throw new U(`Provided weight data has no target variable: ${s}`);delete n[i]}if(t){let s=[];for(let i in n)s.push(i);if(s.length>0)throw new U(`${s.length} of ${a} weights are not set: ${s}`)}Ty(r)}updatedConfig(){let e=this.getConfig(),t={};return t.className=this.getClassName(),t.config=e,t.kerasVersion=`tfjs-layers ${Oy}`,t.backend="TensorFlow.js",t}toJSON(e,t=!0){let n=Dy(this.updatedConfig());return t?JSON.stringify(n):n}call(e,t){return V(()=>{e=yt(e);let n=new qi;for(let a=0;a<this.inputs.length;++a)n.add(this.inputs[a],e[a]);return Yd(this.outputs,n,t)})}computeMask(e,t){return V(()=>{e=yt(e);let n;return t==null?n=Bi(null,e.length):n=yt(t),this.runInternalGraph(e,n)[1]})}computeOutputShape(e){let t=g0(e);if(t.length!==this.inputLayers.length)throw new U(`Invalid inputShape argument ${e}: model has ${this.inputLayers.length} tensor inputs.`);let n={};for(let i=0;i<t.length;i++){let o=this.inputLayers[i],l=t[i],u=o.name+"_0_0";n[u]=l}let a=Object.keys(this.nodesByDepth).map(i=>parseInt(i,10)).sort(r0);if(a.length>1)for(let i of a){let o=this.nodesByDepth[i];for(let l of o){let u=l.outboundLayer;if(this.inputLayers.map(m=>m.id).indexOf(u.id)!==-1)continue;let d=[];for(let m=0;m<l.inboundLayers.length;m++){let f=l.inboundLayers[m],g=l.nodeIndices[m],y=l.tensorIndices[m],A=`${f.name}_${g}_${y}`,x=n[A];d.push(x)}let p=u.computeOutputShape($n(d)),c=g0(p),h=u.inboundNodes.indexOf(l);for(let m=0;m<c.length;m++){let f=`${u.name}_${h}_${m}`;n[f]=c[m]}}}let r=[],s=[];for(let i=0;i<this.outputLayers.length;i++){let o=this.outputLayers[i],l=this.outputLayersNodeIndices[i],u=this.outputLayersTensorIndices[i],d=`${o.name}_${l}_${u}`;s.push(d)}for(let i=0;i<s.length;i++){let o=s[i];Qa(o in n),r.push(n[o])}return $n(r)}runInternalGraph(e,t){t==null&&(t=Bi(null,e.length));let n={};for(let o=0;o<this.inputs.length;++o){let l=this.inputs[o],u=e[o],d=t[o];n[l.id]=[u,d]}let a=Object.keys(this.nodesByDepth).map(o=>parseInt(o,10)).sort(r0);for(let o of a){let l=this.nodesByDepth[o];for(let u of l){let d=u.outboundLayer,p=u.inputTensors,c=u.outputTensors,h=new Array;for(let m of p)m.id in n&&h.push(n[m.id]);if(h.length===p.length){let m={},f,g,y,A;if(u.callArgs!=null&&(m=u.callArgs),h.length===1){let[x,v]=h[0];m.mask==null&&(m.mask=v),y=yt(d.call(x,m)),A=yt(d.computeMask(x,v)),f=[x],g=[v]}else f=h.map(x=>x[0]),g=h.map(x=>x[1]),m.mask==null&&(m.mask=g),y=yt(d.call(f,m)),A=yt(d.computeMask(f,g));if(d.activityRegularizer)throw new _e("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");for(let x=0;x<c.length;++x){let v=c[x],b=y[x],w=A[x];n[v.id]=[b,w]}}}}let r=[],s=[],i=[];for(let o of this.outputs){Qa(o.id in n,`Could not compute output ${o.name} : ${o.id}`);let[l,u]=n[o.id];i.push(l.shape),r.push(l),s.push(u)}return[r,s,i]}buildNodeConversionMap(e){let t={},n;for(let a of this.layers){n=a instanceof tr?1:0;for(let r=0;r<a.inboundNodes.length;r++){let s=tr.nodeKey(a,r);this.containerNodes.has(s)&&(t[s]=n,n+=1)}}return t}getLayer(e,t){if(t!=null){if(this.layers.length<=t)throw new U(`Was asked to retrieve layer at index ${t}, but model only has ${this.layers.length} layer(s).`);return this.layers[t]}else if(e==null)throw new U("Provide either a layer name or layer index");for(let n of this.layers)if(n.name===e)return n;throw new U(`No such layer: ${e}`)}calculateLosses(){return V(()=>{let e=[];for(let t of this.layers)for(let n=0;n<t.inboundNodes.length;++n){let a=tr.nodeKey(t,n);this.containerNodes.has(a)&&e.push(...t.calculateLosses())}return e})}getConfig(){let e={name:this.name},t=this.buildNodeConversionMap(this.layers),n=[];for(let s of this.layers){let i=s.getClassName(),o=s.getConfig(),l=[];for(let d=0;d<s.inboundNodes.length;d++){let p=s.inboundNodes[d],c=tr.nodeKey(s,d),h={};if(this.containerNodes.has(c)){if(p.callArgs)try{JSON.stringify(p.callArgs),h=p.callArgs}catch(m){console.warn(`Layer ${s.name} was passed non-serializable keyword arguments: ${p.callArgs}. They will not be included in the serialized model (and thus will be missing at deserialization time).`),h={}}if(p.inboundLayers.length>0){let m=[];for(let f=0;f<p.inboundLayers.length;f++){let g=p.inboundLayers[f],y=p.nodeIndices[f],A=p.tensorIndices[f],x=tr.nodeKey(g,y),v=t[x];v==null&&(v=0),m.push([g.name,v,A,h])}l.push(m)}}}let u={};u.name=s.name,u.className=i,u.config=o,u.inboundNodes=l,n.push(u)}e.layers=n;let a=[];for(let s=0;s<this.inputLayers.length;s++){let i=this.inputLayers[s],o=this.inputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.inputLayersTensorIndices[s];a.push([i.name,u,d])}e.inputLayers=a;let r=[];for(let s=0;s<this.outputLayers.length;s++){let i=this.outputLayers[s],o=this.outputLayersNodeIndices[s],l=tr.nodeKey(i,o);if(!this.containerNodes.has(l))continue;let u=t[l];u==null&&(u=0);let d=this.outputLayersTensorIndices[s];r.push([i.name,u,d])}return e.outputLayers=r,e}static fromConfig(e,t,n={},a=!1){let r={},s={};function i(f,g){f.name in s?s[f.name].push(g):s[f.name]=[g]}function o(f,g){let y=[],A;for(let x of g){let v=x[0],b=x[1],w=x[2];if(A=x[3]==null?{}:x[3],!(v in r)){i(f,g);return}let N=r[v];if(N.inboundNodes.length<=b){i(f,g);return}let C=N.inboundNodes[b];y.push(C.outputTensors[w])}y.length>0&&f.apply($n(y),A)}function l(f){let g=f.name,y=Oa(f,t.customObjects!=null?t.customObjects:{});y.setFastWeightInitDuringBuild(a),r[g]=y,f.inboundNodes.forEach(A=>{if(!(A instanceof Array))throw new U(`Corrupted configuration, expected array for nodeData: ${A}`);i(y,A)})}let u=t.name,d=t.layers;for(let f of d)l(f);for(;!Xne(s);)for(let f of d){let g=r[f.name];if(g.name in s){let y=s[g.name];delete s[g.name];for(let A of y)o(g,A)}}let p=[],c=[],h=t.inputLayers;for(let f of h){let g=f[0],y=f[1],A=f[2];Qa(g in r);let x=r[g].inboundNodes[y].outputTensors;p.push(x[A])}let m=t.outputLayers;for(let f of m){let g=f[0],y=f[1],A=f[2];Qa(g in r);let x=r[g].inboundNodes[y].outputTensors;c.push(x[A])}return new e({inputs:p,outputs:c,name:u})}get stateful(){if(this._stateful)throw new U("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");for(let e of this.layers)if(e.stateful)return!0;return!1}resetStates(){V(()=>{this.layers.forEach(e=>{e.stateful&&e.resetStates()})})}};function Are(e,t,n){let a=t.length;if(e==null||Array.isArray(e)&&e.length===0)return t.map(r=>null);if(a===1)return Array.isArray(e)&&e.length===1?e:typeof e=="object"&&t[0]in e?[e[t[0]]]:[e];if(Array.isArray(e)){if(e.length!==a)throw new Error(`Provided ${n} is an array of ${e.length} element(s), but the model has ${a} outputs. Make sure a set of weights is provided for each model output.`);return e}else if(typeof e=="object"&&Object.keys(e).length>0&&typeof e[Object.keys(e)[0]]=="object"){let r=[];return t.forEach(s=>{s in e?r.push(e[s]):r.push(null)}),r}else throw new Error(`The model has multiple (${a}) outputs, so ${n} must be either an array with ${a} elements or an object with ${t} keys. Provided ${n} not understood: ${JSON.stringify(e)}`)}function s8(e,t){return Are(e,t,"classWeight")}async function i8(e,t,n,a){if(t!=null||a!=null)throw new Error("Support sampleWeight is not implemented yet");if(n!=null){let r=V(()=>{if(e.shape.length===1)return e.clone();if(e.shape.length===2)if(e.shape[1]>1){let o=1;return e.argMax(o)}else{if(e.shape[1]===1)return e.reshape([e.shape[0]]);throw new Error(`Encountered unexpected last-dimension size (${e.shape[1]}) during handling of class weights. The size is expected to be >= 1.`)}else throw new Error(`Unexpected rank of target (y) tensor (${e.rank}) during handling of class weights. The rank is expected to be 1 or 2.`)}),s=Array.from(await r.data());he(r);let i=[];return s.forEach(o=>{if(n[o]==null)throw new Error(`classWeight must contain all classes in the training data. The class ${o} exists in the data but not in classWeight`);i.push(n[o])}),Dt(i,"float32")}else return null}function xre(e,t){return B(e,t)}var bre=32;function o8(e,t){let n,a,r=t;n=r.xs,a=r.ys,k.assert(n!=null&&a!=null,()=>`A Dataset iterator for fitDataset() is expected to generate objects of the form \`{xs: xVal, ys: yVal}\`, where the two values may be \`tf.Tensor\`, an array of Tensors, or a map of string to Tensor. The provided Dataset instead generates ${t}`);let s=l8("input",e.inputNames,n),i=l8("output",e.outputNames,a),o=s[0].shape[0];k.assert(s.length===e.inputs.length,()=>`LayersModel has ${e.inputs.length} inputs, but the dataset provides ${s.length} inputs. (Expected input keys: ${JSON.stringify(e.inputNames)})`),k.assert(i.length===e.outputs.length,()=>`LayersModel has ${e.outputs.length} outputs, but the dataset provides ${i.length} outputs. (Expected output keys: ${JSON.stringify(e.outputNames)})`);for(let l=0;l<s.length;l++)k.assert(s[l].shape[0]===o,()=>`Batch size mismatch: input ${e.inputNames[l]} has ${s[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);for(let l=0;l<i.length;l++)k.assert(i[l].shape[0]===o,()=>`Batch size mismatch: output ${e.outputNames[l]} has ${i[l].shape[0]}; expected ${o} based on input ${e.inputNames[0]}.`);return{xs:s,ys:i}}function l8(e,t,n){if(n instanceof Be)return[n];if(Array.isArray(n))return k.assert(n.length===t.length,()=>`Received an array of ${n.length} Tensors, but expected ${t.length} to match the ${e} keys ${t}.`),n;{let a=[];for(let r of t){if(n[r]==null)throw new U(`The feature data generated by the dataset lacks the required ${e} key '${r}'.`);a.push(n[r])}return a}}function vre(e){if(e.length===3)throw new _e("Validation with sample weights is not implemented yet.");return{xs:e[0],ys:e[1]}}async function wre(e,t,n){let a=n.batchesPerEpoch!=null;if(k.assert(e.optimizer!=null,()=>"You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig)."),k.assert(n!=null,()=>"For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call."),k.assert(n.epochs!=null&&n.epochs>0&&Number.isInteger(n.epochs),()=>`For fitDataset(), config.epochs is expected to be a positive integer, but got ${n.epochs}`),k.assert(!a||n.batchesPerEpoch>0&&Number.isInteger(n.batchesPerEpoch),()=>`For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got ${n.batchesPerEpoch}`),k.assert(n.validationSplit==null,()=>"`validationSplit` is not supported by `fitDataset()`. Use validationData instead."),e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;try{let r=n.validationData!=null,s,i;if(r)if(u8(n.validationData))k.assert(n.validationBatches==null||n.validationBatches>0&&Number.isInteger(n.validationBatches),()=>`For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got ${n.validationBatches}`);else{let g=vre(n.validationData);s=g.xs,i=g.ys}let o=e.makeTrainFunction(),l=e.getDedupedMetricsNames(),u;r?u=l.slice().concat(l.map(g=>"val_"+g)):u=l.slice();let d=q4(n.callbacks,n.yieldEvery),p=n.verbose==null?1:n.verbose,{callbackList:c,history:h}=X4(d,p,n.epochs,null,null,kre(t,n),null,r,u);c.setModel(e),e.history=h,await c.onTrainBegin(),e.stopTraining_=!1;let m=n.initialEpoch==null?0:n.initialEpoch,f=await t.iterator();for(;m<n.epochs;){let g={};await c.onEpochBegin(m);let y=0,A=0;for(a||(f=await t.iterator());a?y<n.batchesPerEpoch:!0;){let x=await f.next();if(a&&x.done){console.warn(`You provided \`batchesPerEpoch\` as ${n.batchesPerEpoch}, but your dataset iterator ran out of data after ${y} batches; interrupting training. Make sure that your dataset can generate at least \`batchesPerEpoch * epochs\` batches (in this case, ${n.batchesPerEpoch*n.epochs} batches). You may need to use the repeat() function when building your dataset.`);break}if(x.value!=null){let{xs:v,ys:b}=o8(e,x.value),w={};w.batch=A,w.size=v[0].shape[0],await c.onBatchBegin(A,w);let N=[];if(n.classWeight!=null){let _=s8(n.classWeight,e.outputNames);for(let $=0;$<_.length;++$)N.push(await i8(b[$],null,_[$]))}let C=v.concat(b).concat(N),E=o(C);he(C);for(let _=0;_<l.length;++_){let $=l[_],S=E[_];w[$]=S,Kt(S)}await c.onBatchEnd(A,w),V4(w),A++,y++}if(a?y>=n.batchesPerEpoch:x.done){if(r){let v;u8(n.validationData)?v=yt(await e.evaluateDataset(n.validationData,{batches:n.validationBatches})):v=yt(e.evaluate(s,i,{batchSize:n.validationBatchSize==null?bre:n.validationBatchSize,verbose:0}));for(let b=0;b<e.metricsNames.length;++b)g[`val_${e.metricsNames[b]}`]=v[b]}break}if(e.stopTraining_)break}if(await c.onEpochEnd(m,g),m++,e.stopTraining_)break}return await c.onTrainEnd(),await e.history.syncData(),e.history}finally{e.isTraining=!1}}function kre(e,t){let n=null;return t.batchesPerEpoch!=null?n=t.batchesPerEpoch:Number.isFinite(e.size)&&(n=e.size),n}function u8(e){return typeof e.iterator=="function"}function Ire(e){return typeof e.next=="function"}async function Sre(e,t,n){n=n||{};let a=n.batches!=null,r=e.testFunction,s=[];if(n.verbose>0)throw new _e("Verbose mode is not implemented yet.");k.assert(!a||n.batches>0&&Number.isInteger(n.batches),()=>`Test loop expects \`batches\` to be a positive integer, but received ${JSON.stringify(n.batches)}`);let i=Ire(t)?t:await t.iterator(),o=0,l=0;for(;a?l<n.batches:!0;){let u=await i.next();if(s=V(()=>{if(u.value){let{xs:d,ys:p}=o8(e,u.value),c=d.concat(p),h=V(()=>r(c));if(he(c),l===0)for(let f=0;f<h.length;++f)s.push(ke(0));let m=c[0].shape[0];for(let f=0;f<h.length;++f){let g=h[f],y=s[f];s[f]=V(()=>ie(s[f],B(m,g))),l>0&&he(y)}he(h),o+=m,++l}return s}),u.done){a&&console.warn(`Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least \`batches\` batches (in this case, ${n.batches} batches). You may need to use the repeat() function when building your dataset.`);break}}for(let u=0;u<s.length;++u){let d=s[u];s[u]=me(s[u],o),he(d)}return $n(s)}function _y(e){k.assert(e>0&&Number.isInteger(e),()=>`batchSize is required to be a positive integer, but got ${e}`)}function Jd(e,t,n){return e==null?[null]:Array.isArray(e)?e.map(a=>Hi(a,t,n-t)):Hi(e,t,n-t)}function Py(e,t){return V(()=>e==null?null:Array.isArray(e)?e.map(n=>Py(n,t)):F4(e,t.dtype==="int32"?t:t.toInt()))}function Ly(e,t){let n=[],a=0,r=null;for(;a<e;)r=a+t,r>=e&&(r=e),n.push([a,r]),a=r;return n}async function Nre(e,t,n,a,r,s,i,o,l,u,d,p,c,h,m){r==null&&(r=32),s==null&&(s=1),d==null&&(d=!0),c==null&&(c=0);let f=!1;if(l!=null&&u!=null&&(f=!0),m!=null&&(f=!0,h==null))throw new U("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");let g=e.checkNumSamples(n,r,h,"steps_per_epoch"),y;g!=null&&(y=Fa(0,g)),i==null&&(i=1);let{callbackList:A,history:x}=X4(o,i,s,c,g,h,r,f,p);A.setModel(e),e.history=x,await A.onTrainBegin(),e.stopTraining_=!1;for(let v=c;v<s;++v){await A.onEpochBegin(v);let b={};if(h!=null)throw new _e("stepsPerEpoch mode is not implemented yet.");{if(d==="batch")throw new _e("batch shuffling is not implemneted yet");d&&k.shuffle(y);let w=Dt(y),N=Ly(g,r);for(let C=0;C<N.length;++C){let E={};if(await A.onBatchBegin(C,E),V(()=>{let _=N[C][0],$=N[C][1],S=Hi(w,_,$-_);E.batch=C,E.size=$-_;let z=Py(n,S),O=t(z);for(let W=0;W<a.length;++W){let G=a[W],H=O[W];E[G]=H,Kt(H)}if(C===N.length-1&&f){let W=e.testLoop(l,u,r);for(let G=0;G<a.length;++G){let H=a[G],J=W[G];Kt(J),b["val_"+H]=J}}}),await A.onBatchEnd(C,E),V4(E),e.stopTraining_)break}w.dispose()}if(await A.onEpochEnd(v,b),e.stopTraining_)break}return await A.onTrainEnd(),await e.history.syncData(),e.history}async function Tre(e,t,n,a={}){if(e.isTraining)throw new Error("Cannot start training because another fit() call is ongoing.");e.isTraining=!0;let r,s,i,o,l,u,d;try{let p=a.batchSize==null?32:a.batchSize;_y(p);let c=!1,h=await e.standardizeUserData(t,n,a.sampleWeight,a.classWeight,c,p);r=h[0],s=h[1],d=h[2];let m=!1,f;if(a.validationData!=null&&a.validationData.length>0){if(m=!0,a.validationData.length===2)i=a.validationData[0],o=a.validationData[1];else throw a.validationData.length===3?new _e("validationData including sample weights is not supported yet."):new U(`When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; ${a.validationData} is invalid.`);let w=!0,N=await e.standardizeUserData(i,o,null,null,w,p);l=N[0],u=N[1],f=l.concat(u)}else if(a.validationSplit!=null&&a.validationSplit>0&&a.validationSplit<1){m=!0;let w=Math.floor(r[0].shape[0]*(1-a.validationSplit)),N=r[0].shape[0];l=Jd(r,w,N),r=Jd(r,0,w),u=Jd(s,w,N),s=Jd(s,0,w),f=l.concat(u)}else a.validationSteps!=null&&(m=!0);let g=r.concat(s).concat(d);e.checkTrainableWeightsConsistency();let y=e.makeTrainFunction(),A=e.getDedupedMetricsNames(),x,v;m?(e.makeTestFunction(),x=e.testFunction,v=A.slice().concat(A.map(w=>"val_"+w))):(x=null,f=[],v=A.slice());let b=q4(a.callbacks,a.yieldEvery);return await Nre(e,y,g,A,p,a.epochs,a.verbose,b,x,f,a.shuffle,v,a.initialEpoch,null,null)}finally{e.isTraining=!1,Xi(r,t),Xi(s,n),Xi(l,i),Xi(u,o),d!=null&&he(d)}}function d8(e){let t=[];e instanceof Be&&(e=[e]);for(let n=0;n<e.length;++n){let a=e[n];if(a.rank===1)t.push(Gd(a,1));else{if(a.rank===0)throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");t.push(a)}}return t}function Xi(e,t){if(e==null)return;let n=[];if(t instanceof Be)n.push(t.id);else if(Array.isArray(t))t.forEach(r=>n.push(r.id));else if(t!=null)for(let r in t){let s=t[r];n.push(s.id)}let a=[];if(e instanceof Be)n.indexOf(e.id)===-1&&a.push(e);else if(Array.isArray(e))e.forEach(r=>{n.indexOf(r.id)===-1&&a.push(r)});else if(e!=null)for(let r in e){let s=e[r];n.indexOf(s.id)===-1&&a.push(s)}a.forEach(r=>{r.isDisposed||r.dispose()})}function Cre(e){return e instanceof Be}function Wy(e){return Array.isArray(e)}function p8(e){return!Cre(e)&&!Wy(e)}function c8(e,t,n,a=!0,r=""){if(t==null||t.length===0){if(e!=null){let i=!1;if(Wy(e)&&e.length>0)i=!0;else if(p8(e)){for(let o in e)if(e.hasOwnProperty(o)){i=!0;break}}else i=!0;if(i)throw new U(`Error when checking model ${r} expected no data, but got ${e}`)}return[]}if(e==null)return t.map(i=>null);let s;if(p8(e)){e=e,s=[];for(let i of t){if(e[i]==null)throw new U(`No data provided for "${i}". Need data for each key in: ${t}`);s.push(e[i])}}else if(Wy(e)){if(e=e,e.length!==t.length)throw new U(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see ${t.length} Tensor(s), but instead got the following list of Tensor(s): ${e}`);s=e}else{if(e=e,t.length>1)throw new U(`The model ${r} expects ${t.length} Tensor(s), but only received one Tensor. Found: Tensor with shape ${e.shape}`);s=[e]}if(s=d8(s),n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s). but got array with shape ${o.shape}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d>=0&&u!==d)throw new U(`Error when checking ${r}: expected ${t[i]} to have shape [${n[i]}], but got array with shape [${o.shape}].`)}}return s}function Ere(e,t,n){let a=es(e.map(s=>s.shape[0]));a.sort();let r=es(t.map(s=>s.shape[0]));if(r.sort(),a.length>1)throw new U(`All input Tensors (x) should have the same number of samples. Got array shapes: ${JSON.stringify(e.map(s=>s.shape))}`);if(r.length>1)throw new U(`All target Tensors (y) should have the same number of samples. Got array shapes: ${JSON.stringify(t.map(s=>s.shape))}`);if(a.length>0&&r.length>0&&!k.arraysEqual(a,r))throw new U(`Input Tensors should have the same number of samples as target Tensors. Found ${a[0]} input sample(s) and ${r[0]} target sample(s).`)}function Rre(e,t,n){let a=[Gi,w0,Kd];for(let r=0;r<e.length;++r){let s=e[r],i=t[r],o=n[r];if(i!=null){if(i===Kd&&s.shape[s.shape.length-1]===1)throw new U(`You are passing a target array of shape ${s.shape} while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].`);if(a.indexOf(i)!==-1){let l=s.shape.slice(1),u=o.slice(1);for(let d=0;d<l.length;++d){let p=l[d],c=u[d];if(c!=null&&p!==c)throw new U(`A target Tensor with shape ${s.shape} was passed for an output of shape ${o}, while using a loss function that expects targets to have the same shape as the output.`)}}}}}function h8(e,t,n,a=!0,r=""){let s;if(Array.isArray(e)){if(e.length!==t.length)throw new U(`Error when checking model ${r}: the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see ${t.length} Tensor(s), but instead got ${e.length} Tensors(s).`);s=e}else{if(t.length>1)throw new U(`The model expects ${t.length} ${r} Tensors, but only received one Tensor. Found: array with shape ${JSON.stringify(e.shape)}.`);s=[e]}if(n!=null)for(let i=0;i<t.length;++i){if(n[i]==null)continue;let o=s[i];if(o.shape.length!==n[i].length)throw new U(`Error when checking ${r}: expected ${t[i]} to have ${n[i].length} dimension(s), but got array with shape ${JSON.stringify(o.shape)}`);for(let l=0;l<n[i].length;++l){if(l===0&&!a)continue;let u=o.shape[l],d=n[i][l];if(d!=null&&d!==u)throw new U(`Error when checking ${r}: expected ${t[i]} to have shape ${JSON.stringify(n[i])} but got array with shape ${JSON.stringify(o.shape)}.`)}}}function Mre(e,t){if(e==null||Array.isArray(e)&&e.length===0)return t.map(a=>[]);let n;if(typeof e=="string"||typeof e=="function")n=[e];else if(Array.isArray(e)||typeof e=="object")n=e;else throw new TypeError(`Type of metrics argument not understood. Expected an string,function, Array, or Object, found: ${e}`);if(Array.isArray(n))return t.map(a=>n);{let a=[];for(let r of t){let s=n.hasOwnProperty(r)?n[r]:[];Array.isArray(s)||(s=[s]),a.push(s)}return a}}var Fre="layers-model",kr=class extends tr{constructor(e){super(e);this.isTraining=!1}summary(e,t,n=console.log){if(!this.built)throw new U("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");ure(this,e,t,n)}compile(e){if(e.loss==null&&(e.loss=[]),this.loss=e.loss,typeof e.optimizer=="string")this.optimizer_=lre(e.optimizer),this.isOptimizerOwned=!0;else{if(!(e.optimizer instanceof xr))throw new U("User-defined optimizer must be an instance of tf.Optimizer.");this.optimizer_=e.optimizer,this.isOptimizerOwned=!1}let t=[];if(!Array.isArray(e.loss)&&typeof e.loss!="string"&&typeof e.loss!="function"){e.loss=e.loss;for(let s in e.loss)if(this.outputNames.indexOf(s)===-1)throw new U(`Unknown entry in loss dictionary: "${s}". Only expected the following keys: ${this.outputNames}`);for(let s of this.outputNames)e.loss[s]==null&&console.warn(`Output "${s}" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ${s} during training`),t.push(Ey(e.loss[s]))}else if(Array.isArray(e.loss)){if(e.loss.length!==this.outputs.length)throw new U(`When passing an Array as loss, it should have one entry per model output. The model has ${this.outputs.length} output(s), but you passed loss=${e.loss}.`);t=e.loss.map(s=>Ey(s))}else{let s=Ey(e.loss);this.outputs.forEach(i=>{t.push(s)})}this.lossFunctions=t,this.feedOutputNames=[],this.feedOutputShapes=[],this.feedLossFns=[];for(let s=0;s<this.outputs.length;++s){let i=this.internalOutputShapes[s],o=this.outputNames[s];this.feedOutputNames.push(o),this.feedOutputShapes.push(i),this.feedLossFns.push(this.lossFunctions[s])}let n=[];this.metrics=e.metrics,this.metricsNames=["loss"],this.metricsTensors=[],Ui("loss",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=this.lossFunctions[s];this.outputs.length>1&&(this.metricsTensors.push([i,s]),this.metricsNames.push(this.outputNames[s]+"_loss"))}});let a=Mre(e.metrics,this.outputNames),r=(s,i,o)=>{this.outputNames.length>1&&(i=this.outputNames[s]+"_"+i),this.metricsNames.push(i),this.metricsTensors.push([o,s])};Ui("metric",()=>{for(let s=0;s<this.outputs.length;++s){if(n.indexOf(s)!==-1)continue;let i=a[s];(o=>{let l="",u,d,p;for(let c of o){if(typeof c=="string"&&["accuracy","acc","crossentropy","ce"].indexOf(c)!==-1){let m=this.internalOutputShapes[s];m[m.length-1]===1||this.lossFunctions[s]===w0?["accuracy","acc"].indexOf(c)!==-1?d=Ry:["crossentropy","ce"].indexOf(c)!==-1&&(d=Y4):this.lossFunctions[s]===v0?["accuracy","acc"].indexOf(c)!==-1?d=J4:["crossentropy","ce"].indexOf(c)!==-1&&(d=Q4):["accuracy","acc"].indexOf(c)!==-1?d=My:["crossentropy","ce"].indexOf(c)!==-1&&(d=Fy);let f;["accuracy","acc"].indexOf(c)!==-1?f="acc":["crossentropy","ce"].indexOf(c)!==-1&&(f="ce"),p=d,u=l+f}else p=ore(c),u=l+S0(c);let h;Ui(u,()=>{h=p}),r(s,u,h)}})(i)}}),this.collectedTrainableWeights=this.trainableWeights}checkTrainableWeightsConsistency(){this.collectedTrainableWeights!=null&&this.trainableWeights.length!==this.collectedTrainableWeights.length&&console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?")}evaluate(e,t,n={}){let a=n.batchSize==null?32:n.batchSize;_y(a);let r=!0,s=this.standardizeUserDataXY(e,t,r,a);try{let i=s[0].concat(s[1]);this.makeTestFunction();let o=this.testFunction,l=this.testLoop(o,i,a,n.verbose,n.steps);return $n(l)}finally{Xi(s[0],e),Xi(s[1],t)}}async evaluateDataset(e,t){return this.makeTestFunction(),Sre(this,e,t)}checkNumSamples(e,t,n,a="steps"){let r;if(n!=null){if(r=null,t!=null)throw new U(`If ${a} is set, batchSize must be null or undefined.Got batchSize = ${t}`)}else if(e!=null)Array.isArray(e)?r=e[0].shape[0]:r=e.shape[0];else throw new U(`Either the input data should have a defined shape, or ${a} shoud be specified.`);return r}execute(e,t){if(Array.isArray(t)&&t.length===0)throw new U("`outputs` is an empty Array, which is not allowed.");let n=Array.isArray(t),a=n?t:[t],r=this.retrieveSymbolicTensors(a),s=new qi;if(e instanceof Be&&(e=[e]),Array.isArray(e)){if(e.length!==this.inputs.length)throw new U(`The number of inputs provided (${e.length}) does not match the number of inputs of this model (${this.inputs.length}).`);for(let o=0;o<this.inputs.length;++o)s.add(this.inputs[o],e[o])}else for(let o of this.inputs){let l=e[o.name];if(l==null)throw new U(`No value is provided for the model's input ${o.name}`);s.add(o,l)}let i=Yd(r,s);return n?i:i[0]}retrieveSymbolicTensors(e){let t=Bi(null,e.length),n=e.length;for(let a of this.layers){let r=Array.isArray(a.output)?a.output:[a.output],s=r.map(i=>i.name);for(let i=0;i<e.length;++i){let o=s.indexOf(e[i]);if(o!==-1&&(t[i]=r[o],n--),n===0)break}if(n===0)break}if(n>0){let a=[];throw t.forEach((r,s)=>{r==null&&a.push(e[s])}),new U(`Cannot find SymbolicTensors for output name(s): ${JSON.stringify(a)}`)}return t}predictLoop(e,t=32,n=!1){return V(()=>{let a=this.checkNumSamples(e);if(n)throw new _e("Verbose predictLoop() is not implemented yet.");let r=Ly(a,t),s=this.outputs.map(i=>[]);for(let i=0;i<r.length;++i)V(()=>{let o=r[i][0],l=r[i][1],u=Jd(e,o,l),d=[];if(Array.isArray(u))for(let c=0;c<u.length;++c)d.push({key:this.inputs[c],value:u[c]});else d.push({key:this.inputs[0],value:u});let p=new qi(d);return Yd(this.outputs,p)}).forEach((o,l)=>s[l].push(o));return $n(s.map(i=>lt(i,0)))})}predict(e,t={}){let n=d8(e);h8(n,this.inputNames,this.feedInputShapes,!1);try{let a=t.batchSize==null?32:t.batchSize;return _y(a),this.predictLoop(n,a)}finally{Xi(n,e)}}predictOnBatch(e){h8(e,this.inputNames,this.feedInputShapes,!0);let t=(Array.isArray(e)?e[0]:e).shape[0];return this.predictLoop(e,t)}standardizeUserDataXY(e,t,n=!0,a){if(this.optimizer_==null)throw new Ma("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");let r=[];for(let s=0;s<this.feedOutputShapes.length;++s){let i=this.feedOutputShapes[s];this.feedLossFns[s]===v0?r.push(i.slice(0,i.length-1).concat([1])):r.push(i)}if(e=c8(e,this.feedInputNames,this.feedInputShapes,!1,"input"),t=c8(t,this.feedOutputNames,r,!1,"target"),Ere(e,t,null),Rre(t,this.feedLossFns,this.feedOutputShapes),this.stateful&&a!=null&&a>0&&e[0].shape[0]%a!=0)throw new U(`In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size ${a}. Found: ${e[0].shape[0]} sample(s).`);return[e,t]}async standardizeUserData(e,t,n,a,r=!0,s){let[i,o]=this.standardizeUserDataXY(e,t,r,s);if(n!=null)throw new Error("sample weight is not supported yet.");let l=null;if(a!=null){let u=s8(a,this.outputNames);l=[];for(let d=0;d<u.length;++d)l.push(await i8(o[d],null,u[d]))}return[i,o,l]}testLoop(e,t,n,a=0,r){return V(()=>{let s=this.checkNumSamples(t,n,r,"steps"),i=[];if(a>0)throw new _e("Verbose mode is not implemented yet.");if(r!=null)throw new _e("steps mode in testLoop() is not implemented yet");{let o=Ly(s,n),l=Dt(Fa(0,s));for(let u=0;u<o.length;++u){let d=o[u][0],p=o[u][1],c=Hi(l,d,p-d),h=Py(t,c),m=e(h);if(u===0)for(let f=0;f<m.length;++f)i.push(ke(0));for(let f=0;f<m.length;++f){let g=m[f];i[f]=ie(i[f],B(p-d,g))}}for(let u=0;u<i.length;++u)i[u]=me(i[u],s)}return i})}getDedupedMetricsNames(){let e=this.metricsNames,t=[];for(let n=0;n<e.length;++n){let a=e[n],r=a;b4(e,a)>1&&(r+=`_${b4(e.slice(0,n),a)}`),t.push(r)}return t}makeTrainFunction(){return e=>{let t=[],n=e.slice(0,this.inputs.length),a=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),r=e.slice(this.inputs.length+this.outputs.length,this.inputs.length+this.outputs.length*2),s=[],i=()=>{let u=[];for(let h=0;h<this.inputs.length;++h)u.push({key:this.inputs[h],value:n[h]});let d=new qi(u),p=Yd(this.outputs,d,{training:!0}),c;for(let h=0;h<this.lossFunctions.length;++h){let m=this.lossFunctions[h](a[h],p[h]);r[h]!=null&&(m=xre(m,r[h]));let f=Nt(m);t.push(f),h===0?c=m:c=ie(c,m)}for(let h=0;h<this.metricsTensors.length;++h){let m;if(this.outputs.length>1&&h<this.outputs.length)m=t[h];else{let f=this.metricsTensors[h][0],g=this.metricsTensors[h][1];m=Nt(f(a[g],p[g]))}Kt(m),s.push(m)}return c=Nt(c),this.calculateLosses().forEach(h=>{c=ie(c,h)}),c},o=this.collectedTrainableWeights.map(u=>u.read()),l=!0;return[this.optimizer_.minimize(i,l,o)].concat(s)}}makeTestFunction(){this.testFunction=e=>V(()=>{let t=[],n,a=e.slice(0,this.inputs.length),r=e.slice(this.inputs.length,this.inputs.length+this.outputs.length),s=[];for(let l=0;l<this.inputs.length;++l)s.push({key:this.inputs[l],value:a[l]});let i=new qi(s),o=Yd(this.outputs,i);for(let l=0;l<this.lossFunctions.length;++l){let u=this.lossFunctions[l],d=Nt(u(r[l],o[l]));l===0?n=d:n=ie(n,d),t.push(n)}for(let l=0;l<this.metricsTensors.length;++l){let u=this.metricsTensors[l][0],d=this.metricsTensors[l][1],p=Nt(u(r[d],o[d]));t.push(p)}return t})}async fit(e,t,n={}){return Tre(this,e,t,n)}async fitDataset(e,t){return wre(this,e,t)}async trainOnBatch(e,t){let n=await this.standardizeUserData(e,t),a=n[0],r=n[1],s=this.makeTrainFunction()(a.concat(r)),i=[];for(let o of s){let l=await o.data();i.push(l[0])}return he(s),$n(i)}getNamedWeights(e){let t=[],n=e!=null&&e.trainableOnly,a=n?this.trainableWeights:this.weights,r=this.getWeights(n);for(let s=0;s<a.length;++s)n&&!a[s].trainable||t.push({name:a[s].originalName,tensor:r[s]});return t}set stopTraining(e){this.stopTraining_=e}get stopTraining(){return this.stopTraining_}get optimizer(){return this.optimizer_}set optimizer(e){this.optimizer_!==e&&(this.optimizer_=e,this.isOptimizerOwned=!1)}dispose(){let e=super.dispose();if(e.refCountAfterDispose===0&&this.optimizer!=null&&this.isOptimizerOwned){let t=Bc().numTensors;this.optimizer_.dispose(),e.numDisposedVariables+=t-Bc().numTensors}return e}getLossIdentifiers(){let e;if(typeof this.loss=="string")e=wr(this.loss);else if(Array.isArray(this.loss)){for(let t of this.loss)if(typeof t!="string")throw new Error("Serialization of non-string loss is not supported.");e=this.loss.map(t=>wr(t))}else{let t=Object.keys(this.loss);e={};let n=this.loss;for(let a of t)if(typeof n[a]=="string")e[a]=wr(n[a]);else throw new Error("Serialization of non-string loss is not supported.")}return e}getMetricIdentifiers(){if(typeof this.metrics=="string"||typeof this.metrics=="function")return[wr(S0(this.metrics))];if(Array.isArray(this.metrics))return this.metrics.map(e=>wr(S0(e)));{let e={};for(let t in this.metrics)e[t]=wr(S0(this.metrics[t]));return e}}getTrainingConfig(){return{loss:this.getLossIdentifiers(),metrics:this.getMetricIdentifiers(),optimizer_config:{class_name:this.optimizer.getClassName(),config:this.optimizer.getConfig()}}}loadTrainingConfig(e){if(e.weighted_metrics!=null)throw new Error("Loading weight_metrics is not supported yet.");if(e.loss_weights!=null)throw new Error("Loading loss_weights is not supported yet.");if(e.sample_weight_mode!=null)throw new Error("Loading sample_weight_mode is not supported yet.");let t=Zd(e.optimizer_config),n=Oa(t),a;if(typeof e.loss=="string")a=Vi(e.loss);else if(Array.isArray(e.loss))a=e.loss.map(s=>Vi(s));else if(e.loss!=null){a={};for(let s in e.loss)a[s]=Vi(e.loss[s])}let r;if(Array.isArray(e.metrics))r=e.metrics.map(s=>Vi(s));else if(e.metrics!=null){r={};for(let s in e.metrics)r[s]=Vi(e.metrics[s])}this.compile({loss:a,metrics:r,optimizer:n})}async save(e,t){if(typeof e=="string"){let i=En.getSaveHandlers(e);if(i.length===0)throw new U(`Cannot find any save handlers for URL '${e}'`);if(i.length>1)throw new U(`Found more than one (${i.length}) save handlers for URL '${e}'`);e=i[0]}if(e.save==null)throw new U("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");let n=await En.encodeWeights(this.getNamedWeights(t)),a=!1,r=null,s={modelTopology:this.toJSON(r,a),format:Fre,generatedBy:`TensorFlow.js tfjs-layers v${Oy}`,convertedBy:null};if((t==null?!1:t.includeOptimizer)&&this.optimizer!=null){s.trainingConfig=this.getTrainingConfig();let i="optimizer",{data:o,specs:l}=await En.encodeWeights(await this.optimizer.getWeights(),i);n.specs.push(...l),n.data=En.concatenateArrayBuffers([n.data,o])}if(this.userDefinedMetadata!=null){let i=!0;t8(this.userDefinedMetadata,this.name,i),s.userDefinedMetadata=this.userDefinedMetadata}return s.weightData=n.data,s.weightSpecs=n.specs,e.save(s)}setUserDefinedMetadata(e){t8(e,this.name),this.userDefinedMetadata=e}getUserDefinedMetadata(){return this.userDefinedMetadata}};kr.className="Model";re.registerClass(kr);var f8=class extends kr{};f8.className="Functional";re.registerClass(f8);async function $re(e,t){"modelTopology"in e||(e={modelTopology:e}),e=e;let n=e.modelTopology;n.model_config!=null&&(n=n.model_config);let a=Zd(n),r=Oa(a,t);if(e.weightsManifest!=null){let s=await En.loadWeights(e.weightsManifest,e.pathPrefix,r.weights.map(o=>o.originalName)),i={};for(let o of r.weights)i[o.originalName]=s[o.originalName];r.loadWeights(i),he(s)}return r}async function Dre(e,t){if(t==null&&(t={}),typeof e=="string"){let n=En.getLoadHandlers(e,t);if(n.length===0)n.push(En.browserHTTPRequest(e,t));else if(n.length>1)throw new U(`Found more than one (${n.length}) load handlers for URL '${e}'`);e=n[0]}return Ore(e,void 0,t)}async function Ore(e,t,n){if(n==null&&(n={}),e.load==null)throw new U("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let a=await e.load(),r=a.modelTopology;r.model_config!=null&&(r=r.model_config);let s=n.strict==null?!0:n.strict,i=a.weightData!=null&&a.weightSpecs!=null&&s,o=Oa(Zd(r),t,i),l=a.trainingConfig;if(l!=null&&o.loadTrainingConfig(l),a.userDefinedMetadata!=null&&o.setUserDefinedMetadata(a.userDefinedMetadata),a.weightData!=null){if(a.weightSpecs==null)throw new U("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");let{modelWeights:u,optimizerWeights:d}=zre(a.weightData,a.weightSpecs);o.loadWeights(u,s),o.optimizer!=null&&d.length>0&&await o.optimizer.setWeights(d),he(u),he(d.map(p=>p.tensor))}return o}function zre(e,t){let n=En.decodeWeights(e,t),a={},r=[];return t.forEach(s=>{s.group==="optimizer"?r.push({name:s.name,tensor:n[s.name]}):a[s.name]=n[s.name]}),{modelWeights:a,optimizerWeights:r}}var ru=class extends kr{constructor(e){super({inputs:[],outputs:[]});if(e=e||{},this.trainable=!0,this.built=!1,this.name=e.name!=null?e.name:m0("sequential_"),e.layers!=null)for(let t of e.layers)this.add(t)}checkShape(e){if(e.inboundNodes[0].outputTensors[0].shape.some(t=>t<0))throw new U(`Negative dimension size caused by adding layer ${e.name} with input shape [${e.inboundNodes[0].inputTensors[0].shape}]`)}add(e){let t=e instanceof ru||e instanceof kr,n;if(t){if(n=e,n.outputs.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");if(n.inputs.length!==1)throw new U("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.")}if(this.outputs.length===0){if(e.inboundNodes.length===0){if(e.batchInputShape==null)throw new U("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");let a=B4({batchShape:e.batchInputShape,dtype:e.dtype,name:e.name+"_input"});e.apply(a)}if(t)this.outputs=n.outputs,this.inputs=n.inputs;else{if(e.inboundNodes.length!==1)throw new U(`A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer ${e.name} which has ${e.inboundNodes.length} pre-existing inbound connections.`);if(e.inboundNodes[0].outputTensors.length!==1)throw new U("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[e.inboundNodes[0].outputTensors[0]],this.inputs=W4(this.outputs[0])}this.inboundNodes=[],new A0({outboundLayer:this,inboundLayers:[],nodeIndices:[],tensorIndices:[],inputTensors:this.inputs,outputTensors:this.outputs,inputMasks:Bi(null,this.inputs.length),outputMasks:[null],inputShapes:this.inputs.map(a=>a.shape),outputShapes:this.outputs[0].shape})}else{let a=e.apply(this.outputs[0]);if(Array.isArray(a))throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");this.checkShape(e),this.outputs=[a],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}this.layers.push(e),this.built=!1}pop(){if(this.layers.length===0)throw new TypeError("There are no layers in the model.");if(this.layers.pop(),this.layers.length===0)this.outputs=[],this.inboundNodes=[],this.outboundNodes=[];else{let e=this.layers.length-1;this.layers[e].outboundNodes=[],this.outputs=[this.layers[e].output],this.inboundNodes[0].outputTensors=this.outputs,this.inboundNodes[0].outputShapes=[this.outputs[0].shape]}}call(e,t){return this.model==null&&this.build(),this.model.call(e,t)}build(e){if(st(e),this.inputs.length===0||this.outputs.length===0)throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");this.model=new kr({inputs:this.inputs,outputs:this.outputs[0],name:this.name+"_model"}),this.model.trainable=this.trainable,this.supportsMasking=this.model.supportsMasking,this.inputLayers=this.model.inputLayers,this.inputLayersNodeIndices=this.model.inputLayersNodeIndices,this.inputLayersTensorIndices=this.model.inputLayersTensorIndices,this.outputLayers=this.model.outputLayers,this.outputLayersNodeIndices=this.model.outputLayersNodeIndices,this.outputLayersTensorIndices=this.model.outputLayersTensorIndices,this.nodesByDepth=this.model.nodesByDepth,this.containerNodes=this.model.containerNodes,this.outputNames=this.model.outputNames,this.inputNames=this.model.inputNames,this.built=!0}countParams(){return this.built||this.build(),super.countParams()}summary(e,t,n=console.log){this.built||this.build(),super.summary(e,t,n)}setWeights(e){this.model==null&&this.build(),this.model.setWeights(e)}evaluate(e,t,n={}){if(!this.built)throw new Ma("The model needs to be compiled before being used.");return this.model.evaluate(e,t,n)}async evaluateDataset(e,t){if(!this.built)throw new Ma("The model needs to be compiled before being used.");return this.model.evaluateDataset(e,t)}predict(e,t={}){return this.model==null&&this.build(),this.model.predict(e,t)}predictOnBatch(e){return this.model==null&&this.build(),this.model.predictOnBatch(e)}compile(e){this.build(),this.model.compile(e),this.optimizer_=this.model.optimizer,this.isOptimizerOwned=this.model.isOptimizerOwned,this.loss=this.model.loss,this.metrics=this.model.metrics,this.metricsTensors=this.model.metricsTensors,this.metricsNames=this.model.metricsNames}get optimizer(){return this.model==null?void 0:this.model.optimizer}set optimizer(e){this.model.optimizer=e}async fit(e,t,n={}){if(!this.built)throw new Ma("The model needs to be compiled before being used.");return this.model.fit(e,t,n)}async fitDataset(e,t){if(!this.built)throw new Ma("The model needs to be compiled before being used.");return this.model.fitDataset(e,t)}async trainOnBatch(e,t){return this.model.trainOnBatch(e,t)}static fromConfig(e,t,n={},a=!1){let r,s={};if(t instanceof Array){if(t[0].className==null||t[0].className==="Merge")throw new U("Legacy serialization format not supported yet.");r=t}else k.assert(t.layers!=null,()=>"When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field."),r=t.layers,delete t.layers,s=t;let i=new e(s);if(!(i instanceof ru))throw new _e(`Sequential.fromConfig called on non-Sequential input: ${i}`);for(let o of r){let l=Oa(o,void 0,a);a&&l.setFastWeightInitDuringBuild(!0),i.add(l)}return i}set stopTraining(e){if(this.model==null)throw new U("Cannot set the stopTraining property of a sequential model before it is compiled.");this.model.stopTraining=e}get stopTraining(){if(this.model==null)throw new U("Cannot get the stopTraining property of a sequential model before it is compiled.");return this.model.stopTraining}getConfig(){let e=[];for(let t of this.layers){let n={};n.className=t.getClassName(),n.config=t.getConfig(),e.push(n)}return{name:this.name,layers:e}}};ru.className="Sequential";re.registerClass(ru);function _re(e){return new kr(e)}function Pre(e){return new ru(e)}function Lre(e,t){return t==null&&(t={}),Dre(e,t)}function m8(e){return B4(e)}function Wre(e,t){wa.registerCallbackConstructor(e,t)}var On=class extends re.Serializable{getConfig(){return{}}},g8=class extends On{apply(e,t=1){return cae(e,t)}};g8.className="elu";re.registerClass(g8);var y8=class extends On{apply(e){return oh(e)}};y8.className="selu";re.registerClass(y8);var A8=class extends On{apply(e){return Ka(e)}};A8.className="relu";re.registerClass(A8);var x8=class extends On{apply(e){return V(()=>Fl(6,Ka(e)))}};x8.className="relu6";re.registerClass(x8);var b8=class extends On{apply(e){return e}};b8.className="linear";re.registerClass(b8);var v8=class extends On{apply(e){return Rn(e)}};v8.className="sigmoid";re.registerClass(v8);var w8=class extends On{apply(e){return fae(e)}};w8.className="hardSigmoid";re.registerClass(w8);var k8=class extends On{apply(e){return Ci(e)}};k8.className="softplus";re.registerClass(k8);var I8=class extends On{apply(e){return hae(e)}};I8.className="softsign";re.registerClass(I8);var S8=class extends On{apply(e){return Si(e)}};S8.className="tanh";re.registerClass(S8);var By=class extends On{apply(e,t=-1){return xd(e,t)}};By.className="softmax";re.registerClass(By);var N8=class extends On{apply(e,t=-1){return eh(e,t)}};N8.className="logSoftmax";re.registerClass(N8);var T8=class extends On{apply(e,t=1){return V(()=>Rn(e.mul(t)).mul(e))}};T8.className="swish";re.registerClass(T8);var C8=class extends On{apply(e){return V(()=>B(e,Si(Ci(e))))}};C8.className="mish";re.registerClass(C8);function rs(e){return e.getClassName()}function Vy(e,t={}){return Vd(e,re.SerializationMap.getMap().classNameMap,t,"activation")}function ss(e){if(e==null){let t={};return t.className="linear",t.config={},Vy(t)}if(typeof e=="string"){let t={};return t.className=e,t.config={},Vy(t)}else return e instanceof On?e:Vy(e)}function jy(e){if(e!=null&&typeof e!="object")throw new Error(`Argument to L1L2 regularizer's constructor is expected to be an object, but received: ${e}`)}var E8=class extends re.Serializable{},Qd=class extends E8{constructor(e){super();jy(e),this.l1=e==null||e.l1==null?.01:e.l1,this.l2=e==null||e.l2==null?.01:e.l2,this.hasL1=this.l1!==0,this.hasL2=this.l2!==0}apply(e){return V(()=>{let t=$t([1]);return this.hasL1&&(t=ie(t,Se(B(this.l1,Wt(e))))),this.hasL2&&(t=ie(t,Se(B(this.l2,qd(e))))),t.asScalar()})}getConfig(){return{l1:this.l1,l2:this.l2}}static fromConfig(e,t){return new e({l1:t.l1,l2:t.l2})}};Qd.className="L1L2";re.registerClass(Qd);function Bre(e){return jy(e),new Qd({l1:e!=null?e.l1:null,l2:0})}function Vre(e){return jy(e),new Qd({l2:e!=null?e.l2:null,l1:0})}var R8={l1l2:"L1L2"};function dt(e){return iy(e)}function M8(e,t={}){return Vd(e,re.SerializationMap.getMap().classNameMap,t,"regularizer")}function vt(e){if(e==null)return null;if(typeof e=="string"){let t={className:e in R8?R8[e]:e,config:{}};return M8(t)}else return e instanceof E8?e:M8(e)}var Uy=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null&&(this.maxValue=e.maxValue)}call(e,t){e=Le(e);let n=Ka(e);return this.maxValue!=null&&(n=Mn(n,0,this.maxValue)),n}computeOutputShape(e){return e}getConfig(){let e={maxValue:this.maxValue},t=super.getConfig();return Object.assign(e,t),e}};Uy.className="ReLU";re.registerClass(Uy);var Hy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_ALPHA=.3,e==null&&(e={}),this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return pd(n,this.alpha)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};Hy.className="LeakyReLU";re.registerClass(Hy);var Gy=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA_INITIALIZER="zeros",e==null&&(e={}),this.supportsMasking=!0,this.alphaInitializer=bt(e.alphaInitializer||this.DEFAULT_ALPHA_INITIALIZER),this.alphaRegularizer=vt(e.alphaRegularizer),this.alphaConstraint=Ht(e.alphaConstraint),e.sharedAxes==null)this.sharedAxes=null;else if(Array.isArray(e.sharedAxes))this.sharedAxes=e.sharedAxes;else if(typeof e.sharedAxes=="number")this.sharedAxes=[e.sharedAxes];else throw new U(`Expected sharedAxes to be a number or an array of numbers, but got ${e.sharedAxes}`)}build(e){e=st(e);let t=e.slice(1);if(this.sharedAxes!=null)for(let a of this.sharedAxes)t[a-1]=1;this.alpha=this.addWeight("alpha",t,"float32",this.alphaInitializer,this.alphaRegularizer,!0,this.alphaConstraint);let n={};if(this.sharedAxes!=null)for(let a=1;a<e.length;++a)n[a]=e[a];this.inputSpec=[new zt({ndim:e.length,axes:n})],this.built=!0}call(e,t){return e=Le(e),gd(e,this.alpha.read())}getConfig(){let e={alphaInitializer:Tt(this.alphaInitializer),alphaRegularizer:dt(this.alphaRegularizer),alphaConstraint:Ut(this.alphaConstraint),sharedAxes:this.sharedAxes},t=super.getConfig();return Object.assign(e,t),e}};Gy.className="PReLU";re.registerClass(Gy);var qy=class extends Xe{constructor(e){super(e==null?{}:e);if(this.DEFAULT_ALPHA=1,e==null&&(e={}),e.alpha!=null&&e.alpha!==this.DEFAULT_ALPHA)throw new _e(`Non-default alpha value (${e.alpha}) is not supported by the ELU layer yet.`);this.alpha=e.alpha==null?this.DEFAULT_ALPHA:e.alpha}call(e,t){let n=Le(e);return El(n)}computeOutputShape(e){return e}getConfig(){let e={alpha:this.alpha},t=super.getConfig();return Object.assign(e,t),e}};qy.className="ELU";re.registerClass(qy);var Xy=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_THETA=1,e==null&&(e={}),this.theta=e.theta==null?this.DEFAULT_THETA:e.theta}call(e,t){let n=Le(e);return n.mul(Hd(n.greater(this.theta),"float32"))}computeOutputShape(e){return e}getConfig(){let e={theta:this.theta},t=super.getConfig();return Object.assign(e,t),e}};Xy.className="ThresholdedReLU";re.registerClass(Xy);var Ky=class extends Xe{constructor(e){super(e==null?{}:e);this.DEFAULT_AXIS=1,e==null&&(e={}),this.softmax=new By().apply,this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis}call(e,t){let n=Le(e);return this.softmax(n,this.axis)}computeOutputShape(e){return e}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};Ky.className="Softmax";re.registerClass(Ky);function su(e,t,n){if(typeof e=="number")return Bi(e,t);if(e.length!==t)throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${e.length} elements.`);for(let a=0;a<t;++a){let r=e[a];if(!lae(r))throw new U(`The ${n} argument must be an integer or tuple of ${t} integers. Received: ${JSON.stringify(e)} including a non-integer number ${r}`)}return e}function za(e,t,n,a,r=1){if(e==null)return e;let s=t+(t-1)*(r-1),i;return n==="same"?i=e:i=e-s+1,Math.floor((i+a-1)/a)}function nr(e,t,n,a){if(e==null)return null;if(a==="valid")e=e*t+ns([n-t,0]);else if(a==="same")e=e*t;else throw new U(`Unsupport padding mode: ${a}.`);return e}function Zy(e,t){return V(()=>(Ft(t),t==="channelsFirst"?Qe(e,[0,2,3,1]):e))}function F8(e,t){return V(()=>(Ft(t),t==="channelsFirst"?Qe(e,[0,2,3,4,1]):e))}function jre(e,t,n,a=1,r="valid",s,i=1){return V(()=>{if(s==null&&(s=Ra()),Ft(s),e.shape.length!==3)throw new U(`The input of a conv1dWithBias operation should be 3, but is ${e.shape.length} instead.`);if(t.shape.length!==3)throw new U(`The kernel for a conv1dWithBias operation should be 3, but is ${t.shape.length} instead`);if(n!=null&&n.shape.length!==1)throw new U(`The bias for a conv1dWithBias operation should be 1, but is ${t.shape.length} instead`);if(s==="channelsFirst"&&(e=Qe(e,[0,2,1])),r==="causal")throw new _e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");let o=Gc(e,t,a,r==="same"?"same":"valid","NWC",i);return n!=null&&(o=$a(o,n)),o})}function $8(e,t,n,a=[1,1],r="valid",s,i,o=null){return V(()=>{if(s==null&&(s=Ra()),Ft(s),e.rank!==3&&e.rank!==4)throw new U(`conv2dWithBiasActivation expects input to be of rank 3 or 4, but received ${e.rank}.`);if(t.rank!==3&&t.rank!==4)throw new U(`conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received ${e.rank}.`);let l=Zy(e,s);if(r==="causal")throw new _e("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");return l=Kr.conv2d({x:l,filter:t,strides:a,pad:r==="same"?"same":"valid",dilations:i,dataFormat:"NHWC",bias:n,activation:o}),s==="channelsFirst"&&(l=Qe(l,[0,3,1,2])),l})}function Ure(e,t,n,a=[1,1,1],r="valid",s,i){return V(()=>{if(s==null&&(s=Ra()),Ft(s),e.rank!==4&&e.rank!==5)throw new U(`conv3dWithBias expects input to be of rank 4 or 5, but received ${e.rank}.`);if(t.rank!==4&&t.rank!==5)throw new U(`conv3dWithBias expects kernel to be of rank 4 or 5, but received ${e.rank}.`);let o=F8(e,s);if(r==="causal")throw new _e("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");return o=W1(o,t,a,r==="same"?"same":"valid","NDHWC",i),n!=null&&(o=$a(o,n)),s==="channelsFirst"&&(o=Qe(o,[0,4,1,2,3])),o})}var Yy=class extends Xe{constructor(e,t){super(t);if(this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",Yy.verifyArgs(t),this.rank=e,Jt(this.rank,"rank"),this.rank!==1&&this.rank!==2&&this.rank!==3)throw new _e(`Convolution layer for rank other than 1, 2, or 3 (${this.rank}) is not implemented yet.`);if(this.kernelSize=su(t.kernelSize,e,"kernelSize"),this.strides=su(t.strides==null?1:t.strides,e,"strides"),this.padding=t.padding==null?"valid":t.padding,ca(this.padding),this.dataFormat=t.dataFormat==null?"channelsLast":t.dataFormat,Ft(this.dataFormat),this.activation=ss(t.activation),this.useBias=t.useBias==null?!0:t.useBias,this.biasInitializer=bt(t.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.biasConstraint=Ht(t.biasConstraint),this.biasRegularizer=vt(t.biasRegularizer),this.activityRegularizer=vt(t.activityRegularizer),this.dilationRate=su(t.dilationRate==null?1:t.dilationRate,e,"dilationRate"),this.rank===1&&Array.isArray(this.dilationRate)&&this.dilationRate.length!==1)throw new U(`dilationRate must be a number or an array of a single number for 1D convolution, but received ${JSON.stringify(this.dilationRate)}`);if(this.rank===2){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==2)throw new U(`dilationRate must be a number or array of two numbers for 2D convolution, but received ${JSON.stringify(this.dilationRate)}`)}else if(this.rank===3){if(typeof this.dilationRate=="number")this.dilationRate=[this.dilationRate,this.dilationRate,this.dilationRate];else if(this.dilationRate.length!==3)throw new U(`dilationRate must be a number or array of three numbers for 3D convolution, but received ${JSON.stringify(this.dilationRate)}`)}}static verifyArgs(e){if(Qa("kernelSize"in e,"required key 'kernelSize' not in config"),typeof e.kernelSize!="number"&&!ly(e.kernelSize,"number",1,3))throw new U(`BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received ${JSON.stringify(e.kernelSize)}.`)}getConfig(){let e={kernelSize:this.kernelSize,strides:this.strides,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,activation:rs(this.activation),useBias:this.useBias,biasInitializer:Tt(this.biasInitializer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),biasConstraint:Ut(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}},ep=class extends Yy{constructor(e,t){super(e,t);this.kernel=null,ep.verifyArgs(t),this.filters=t.filters,Jt(this.filters,"filters"),this.kernelInitializer=bt(t.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.kernelConstraint=Ht(t.kernelConstraint),this.kernelRegularizer=vt(t.kernelRegularizer)}build(e){e=st(e);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[t]}`);let n=e[t],a=this.kernelSize.concat([n,this.filters]);this.kernel=this.addWeight("kernel",a,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[{ndim:this.rank+2,axes:{[t]:n}}],this.built=!0}call(e,t){return V(()=>{e=Le(e);let n,a=this.bias==null?null:this.bias.read(),r=w4(this.activation.getClassName());if(r!=null&&this.rank===2)n=$8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate,r);else{if(this.rank===1)n=jre(e,this.kernel.read(),a,this.strides[0],this.padding,this.dataFormat,this.dilationRate[0]);else if(this.rank===2)n=$8(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else if(this.rank===3)n=Ure(e,this.kernel.read(),a,this.strides,this.padding,this.dataFormat,this.dilationRate);else throw new _e("convolutions greater than 3D are not implemented yet.");this.activation!=null&&(n=this.activation.apply(n))}return n})}computeOutputShape(e){e=st(e);let t=[],n=this.dataFormat==="channelsLast"?e.slice(1,e.length-1):e.slice(2);for(let r=0;r<n.length;++r){let s=za(n[r],this.kernelSize[r],this.padding,this.strides[r],typeof this.dilationRate=="number"?this.dilationRate:this.dilationRate[r]);t.push(s)}let a=[e[0]];return this.dataFormat==="channelsLast"?(a=a.concat(t),a.push(this.filters)):(a.push(this.filters),a=a.concat(t)),a}getConfig(){let e={filters:this.filters,kernelInitializer:Tt(this.kernelInitializer),kernelRegularizer:dt(this.kernelRegularizer),kernelConstraint:Ut(this.kernelConstraint)},t=super.getConfig();return Object.assign(e,t),e}static verifyArgs(e){if(!("filters"in e)||typeof e.filters!="number"||e.filters<1)throw new U(`Convolution layer expected config.filters to be a 'number' > 0 but got ${JSON.stringify(e.filters)}`)}},tp=class extends ep{constructor(e){super(2,e);tp.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!ly(e.kernelSize,"number",1,2))throw new U(`Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received ${JSON.stringify(e.kernelSize)}.`)}};tp.className="Conv2D";re.registerClass(tp);var np=class extends ep{constructor(e){super(3,e);np.verifyArgs(e)}getConfig(){let e=super.getConfig();return delete e.rank,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!(Array.isArray(e.kernelSize)&&(e.kernelSize.length===1||e.kernelSize.length===3)))throw new U(`Conv3D expects config.kernelSize to be number or [number, number, number], but received ${JSON.stringify(e.kernelSize)}.`)}};np.className="Conv3D";re.registerClass(np);var Jy=class extends tp{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:4})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==4)throw new U("Input should have rank 4; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:4,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Le(e);if(n.shape.length!==4)throw new U(`Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i;this.dataFormat==="channelsFirst"?(s=2,i=3):(s=1,i=2);let o=a[s],l=a[i],u=this.kernelSize[0],d=this.kernelSize[1],p=this.strides[0],c=this.strides[1],h=nr(o,p,u,this.padding),m=nr(l,c,d,this.padding),f=[r,h,m,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,1]));let g=qc(n,this.kernel.read(),f,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(g=Qe(g,[0,3,1,2])),this.bias!=null&&(g=$a(g,this.bias.read(),this.dataFormat)),this.activation!=null&&(g=this.activation.apply(g)),g})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3):(n=3,a=1,r=2);let s=this.kernelSize[0],i=this.kernelSize[1],o=this.strides[0],l=this.strides[1];return t[n]=this.filters,t[a]=nr(t[a],o,s,this.padding),t[r]=nr(t[r],l,i,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Jy.className="Conv2DTranspose";re.registerClass(Jy);var Qy=class extends np{constructor(e){super(e);if(this.inputSpec=[new zt({ndim:5})],this.padding!=="same"&&this.padding!=="valid")throw new U(`Conv3DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode ${this.padding}`)}build(e){if(e=st(e),e.length!==5)throw new U("Input should have rank 5; Received input shape: "+JSON.stringify(e));let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null)throw new U("The channel dimension of the inputs should be defined. Found `None`.");let n=e[t],a=this.kernelSize.concat([this.filters,n]);this.kernel=this.addWeight("kernel",a,"float32",this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint)),this.inputSpec=[new zt({ndim:5,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{let n=Le(e);if(n.shape.length!==5)throw new U(`Conv3DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-${n.shape.length}`);let a=n.shape,r=a[0],s,i,o;this.dataFormat==="channelsFirst"?(o=2,s=3,i=4):(o=1,s=2,i=3);let l=a[o],u=a[s],d=a[i],p=this.kernelSize[0],c=this.kernelSize[1],h=this.kernelSize[2],m=this.strides[0],f=this.strides[1],g=this.strides[2],y=nr(l,m,p,this.padding),A=nr(u,f,c,this.padding),x=nr(d,g,h,this.padding),v=[r,y,A,x,this.filters];this.dataFormat!=="channelsLast"&&(n=Qe(n,[0,2,3,4,1]));let b=I3(n,this.kernel.read(),v,this.strides,this.padding);return this.dataFormat!=="channelsLast"&&(b=Qe(b,[0,4,1,2,3])),this.bias!==null&&(b=$a(b,this.bias.read(),this.dataFormat)),this.activation!==null&&(b=this.activation.apply(b)),b})}computeOutputShape(e){e=st(e);let t=e.slice(),n,a,r,s;this.dataFormat==="channelsFirst"?(n=1,a=2,r=3,s=4):(n=4,a=1,r=2,s=3);let i=this.kernelSize[0],o=this.kernelSize[1],l=this.kernelSize[2],u=this.strides[0],d=this.strides[1],p=this.strides[2];return t[n]=this.filters,t[a]=nr(t[a],u,i,this.padding),t[r]=nr(t[r],d,o,this.padding),t[s]=nr(t[s],p,l,this.padding),t}getConfig(){let e=super.getConfig();return delete e.dilationRate,e}};Qy.className="Conv3DTranspose";re.registerClass(Qy);var D8=class extends ep{constructor(e,t){super(e,t);if(this.DEFAULT_DEPTHWISE_INITIALIZER="glorotUniform",this.DEFAULT_POINTWISE_INITIALIZER="glorotUniform",this.depthwiseKernel=null,this.pointwiseKernel=null,t.filters==null)throw new U("The `filters` configuration field is required by SeparableConv, but is unspecified.");if(t.kernelInitializer!=null||t.kernelRegularizer!=null||t.kernelConstraint!=null)throw new U("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");if(t.padding!=null&&t.padding!=="same"&&t.padding!=="valid")throw new U(`SeparableConv${this.rank}D supports only padding modes: 'same' and 'valid', but received ${JSON.stringify(t.padding)}`);this.depthMultiplier=t.depthMultiplier==null?1:t.depthMultiplier,this.depthwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_DEPTHWISE_INITIALIZER),this.depthwiseRegularizer=vt(t.depthwiseRegularizer),this.depthwiseConstraint=Ht(t.depthwiseConstraint),this.pointwiseInitializer=bt(t.depthwiseInitializer||this.DEFAULT_POINTWISE_INITIALIZER),this.pointwiseRegularizer=vt(t.pointwiseRegularizer),this.pointwiseConstraint=Ht(t.pointwiseConstraint)}build(e){if(e=st(e),e.length<this.rank+2)throw new U(`Inputs to SeparableConv${this.rank}D should have rank ${this.rank+2}, but received input shape: ${JSON.stringify(e)}`);let t=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs should be defined, but found ${JSON.stringify(e[t])}`);let n=e[t],a=this.kernelSize.concat([n,this.depthMultiplier]),r=[];for(let i=0;i<this.rank;++i)r.push(1);r.push(n*this.depthMultiplier,this.filters);let s=!0;this.depthwiseKernel=this.addWeight("depthwise_kernel",a,"float32",this.depthwiseInitializer,this.depthwiseRegularizer,s,this.depthwiseConstraint),this.pointwiseKernel=this.addWeight("pointwise_kernel",r,"float32",this.pointwiseInitializer,this.pointwiseRegularizer,s,this.pointwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[this.filters],"float32",this.biasInitializer,this.biasRegularizer,s,this.biasConstraint):this.bias=null,this.inputSpec=[new zt({ndim:this.rank+2,axes:{[t]:n}})],this.built=!0}call(e,t){return V(()=>{e=Le(e);let n;if(this.rank===1)throw new _e("1D separable convolution is not implemented yet.");return this.rank===2&&(this.dataFormat==="channelsFirst"&&(e=Qe(e,[0,2,3,1])),n=rg(e,this.depthwiseKernel.read(),this.pointwiseKernel.read(),this.strides,this.padding,this.dilationRate,"NHWC")),this.useBias&&(n=$a(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),this.dataFormat==="channelsFirst"&&(n=Qe(n,[0,3,1,2])),n})}getConfig(){let e=super.getConfig();return delete e.rank,delete e.kernelInitializer,delete e.kernelRegularizer,delete e.kernelConstraint,e.depthwiseInitializer=Tt(this.depthwiseInitializer),e.pointwiseInitializer=Tt(this.pointwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.pointwiseRegularizer=dt(this.pointwiseRegularizer),e.depthwiseConstraint=Ut(this.depthwiseConstraint),e.pointwiseConstraint=Ut(this.pointwiseConstraint),e}};D8.className="SeparableConv";var eA=class extends D8{constructor(e){super(2,e)}};eA.className="SeparableConv2D";re.registerClass(eA);var T0=class extends ep{constructor(e){super(1,e);T0.verifyArgs(e),this.inputSpec=[{ndim:3}]}getConfig(){let e=super.getConfig();return delete e.rank,delete e.dataFormat,e}static verifyArgs(e){if(typeof e.kernelSize!="number"&&!ly(e.kernelSize,"number",1,1))throw new U(`Conv1D expects config.kernelSize to be number or number[] with length 1, but received ${JSON.stringify(e.kernelSize)}.`)}};T0.className="Conv1D";re.registerClass(T0);var tA=class extends Xe{constructor(e){super(e);typeof e.cropping=="number"?this.cropping=[[e.cropping,e.cropping],[e.cropping,e.cropping]]:typeof e.cropping[0]=="number"?this.cropping=[[e.cropping[0],e.cropping[0]],[e.cropping[1],e.cropping[1]]]:this.cropping=e.cropping,this.dataFormat=e.dataFormat===void 0?"channelsLast":e.dataFormat,this.inputSpec=[{ndim:4}]}computeOutputShape(e){return this.dataFormat==="channelsFirst"?[e[0],e[1],e[2]-this.cropping[0][0]-this.cropping[0][1],e[3]-this.cropping[1][0]-this.cropping[1][1]]:[e[0],e[1]-this.cropping[0][0]-this.cropping[0][1],e[2]-this.cropping[1][0]-this.cropping[1][1],e[3]]}call(e,t){return V(()=>{if(e=Le(e),this.dataFormat==="channelsLast"){let n=s0(e,this.cropping[0][0],e.shape[1]-this.cropping[0][0]-this.cropping[0][1],2);return s0(n,this.cropping[1][0],e.shape[2]-this.cropping[1][1]-this.cropping[1][0],3)}else{let n=s0(e,this.cropping[0][0],e.shape[2]-this.cropping[0][0]-this.cropping[0][1],3);return s0(n,this.cropping[1][0],e.shape[3]-this.cropping[1][1]-this.cropping[1][0],4)}})}getConfig(){let e={cropping:this.cropping,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};tA.className="Cropping2D";re.registerClass(tA);var nA=class extends Xe{constructor(e){super(e);this.DEFAULT_SIZE=[2,2],this.inputSpec=[{ndim:4}],this.size=e.size==null?this.DEFAULT_SIZE:e.size,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.interpolation=e.interpolation==null?"nearest":e.interpolation,sae(this.interpolation)}computeOutputShape(e){if(this.dataFormat==="channelsFirst"){let t=e[2]==null?null:this.size[0]*e[2],n=e[3]==null?null:this.size[1]*e[3];return[e[0],e[1],t,n]}else{let t=e[1]==null?null:this.size[0]*e[1],n=e[2]==null?null:this.size[1]*e[2];return[e[0],t,n,e[3]]}}call(e,t){return V(()=>{let n=Le(e),a=n.shape;if(this.dataFormat==="channelsFirst"){n=Qe(n,[0,2,3,1]);let r=this.size[0]*a[2],s=this.size[1]*a[3],i=this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s]);return Qe(i,[0,3,1,2])}else{let r=this.size[0]*a[1],s=this.size[1]*a[2];return this.interpolation==="nearest"?n.resizeNearestNeighbor([r,s]):n.resizeBilinear([r,s])}})}getConfig(){let e={size:this.size,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};nA.className="UpSampling2D";re.registerClass(nA);function Hre(e,t,n=[1,1],a="valid",r,s){return V(()=>{r==null&&(r=Ra()),Ft(r);let i=Zy(e,r);if(e.rank!==4)throw new U(`Input for depthwiseConv2d is required to be 4-D, but is instead ${e.rank}-D`);if(t.rank!==4)throw new U(`depthwiseKernel is required to be 4-D, but is instead ${t.rank}-D`);return i=Cl(i,t,n,a==="same"?"same":"valid","NHWC",s),r==="channelsFirst"&&(i=Qe(i,[0,3,1,2])),i})}var aA=class extends Yy{constructor(e){super(2,e);this.depthwiseKernel=null,this.depthMultiplier=e.depthMultiplier==null?1:e.depthMultiplier,this.depthwiseInitializer=bt(e.depthwiseInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.depthwiseConstraint=Ht(e.depthwiseConstraint),this.depthwiseRegularizer=vt(e.depthwiseRegularizer)}build(e){if(e=st(e),e.length<4)throw new U(`Inputs to DepthwiseConv2D should have rank 4. Received input shape: ${JSON.stringify(e)}.`);let t=this.dataFormat==="channelsFirst"?1:3;if(e[t]==null||e[t]<0)throw new U(`The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (${e[t]}).`);let n=e[t],a=[this.kernelSize[0],this.kernelSize[1],n,this.depthMultiplier];this.depthwiseKernel=this.addWeight("depthwise_kernel",a,null,this.depthwiseInitializer,this.depthwiseRegularizer,!0,this.depthwiseConstraint),this.useBias?this.bias=this.addWeight("bias",[n*this.depthMultiplier],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{e=Le(e);let n=Hre(e,this.depthwiseKernel.read(),this.strides,this.padding,this.dataFormat,null);return this.useBias&&(n=$a(n,this.bias.read(),this.dataFormat)),this.activation!=null&&(n=this.activation.apply(n)),n})}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[1]*this.depthMultiplier:e[3]*this.depthMultiplier,r=za(t,this.kernelSize[0],this.padding,this.strides[0]),s=za(n,this.kernelSize[1],this.padding,this.strides[1]);return this.dataFormat==="channelsFirst"?[e[0],a,r,s]:[e[0],r,s,a]}getConfig(){let e=super.getConfig();return e.depthMultiplier=this.depthMultiplier,e.depthwiseInitializer=Tt(this.depthwiseInitializer),e.depthwiseRegularizer=dt(this.depthwiseRegularizer),e.depthwiseConstraint=Ut(this.depthwiseRegularizer),e}};aA.className="DepthwiseConv2D";re.registerClass(aA);function O8(e,t,n,a){if(Array.isArray(e)){if(t!=null||n!=null)throw new U("When inputs is an array, neither initialState or constants should be provided");a!=null&&(n=e.slice(e.length-a,e.length),e=e.slice(0,e.length-a)),e.length>1&&(t=e.slice(1,e.length)),e=e[0]}function r(s){return s==null||Array.isArray(s)?s:[s]}return t=r(t),n=r(n),{inputs:e,initialState:t,constants:n}}function z8(e,t,n,a=!1,r,s,i=!1,o=!1){return V(()=>{let l=t.shape.length;if(l<3)throw new U(`Input should be at least 3D, but is ${l}D.`);let u=[1,0].concat(Fa(2,l));if(t=Qe(t,u),s!=null)throw new _e("The rnn() functoin of the deeplearn.js backend does not support constants yet.");i&&console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."),r!=null&&(r=r.asType("bool").asType("float32"),r.rank===l-1&&(r=mn(r,-1)),r=Qe(r,u)),a&&(t=Hn(t,0),r!=null&&(r=Hn(r,0)));let d=[],p,c=n,h=t.shape[0],m=Gn(t),f;r!=null&&(f=Gn(r));for(let y=0;y<h;++y){let A=m[y],x=V(()=>e(A,c));if(r==null)p=x[0],c=x[1];else{let v=V(()=>{let b=f[y],w=Un(b).sub(b),N=x[0].mul(b).add(c[0].mul(w)),C=c.map((E,_)=>x[1][_].mul(b).add(E.mul(w)));return{output:N,newStates:C}});p=v.output,c=v.newStates}o&&d.push(p)}let g;return o&&(g=gn(d,1)),[p,g,c]})}var ar=class extends Xe{constructor(e){super(e);let t;if(e.cell==null)throw new U("cell property is missing for the constructor of RNN.");if(Array.isArray(e.cell)?t=new R0({cells:e.cell}):t=e.cell,t.stateSize==null)throw new U("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");this.cell=t,this.returnSequences=e.returnSequences==null?!1:e.returnSequences,this.returnState=e.returnState==null?!1:e.returnState,this.goBackwards=e.goBackwards==null?!1:e.goBackwards,this._stateful=e.stateful==null?!1:e.stateful,this.unroll=e.unroll==null?!1:e.unroll,this.supportsMasking=!0,this.inputSpec=[new zt({ndim:3})],this.stateSpec=null,this.states_=null,this.numConstants=null,this.keptStates=[]}getStates(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;return Fa(0,e).map(t=>null)}else return this.states_}setStates(e){this.states_=e}computeOutputShape(e){Sy(e)&&(e=e[0]),e=e;let t=this.cell.stateSize;Array.isArray(t)||(t=[t]);let n=t[0],a;if(this.returnSequences?a=[e[0],e[1],n]:a=[e[0],n],this.returnState){let r=[];for(let s of t)r.push([e[0],s]);return[a].concat(r)}else return a}computeMask(e,t){return V(()=>{Array.isArray(t)&&(t=t[0]);let n=this.returnSequences?t:null;if(this.returnState){let a=this.states.map(r=>null);return[n].concat(a)}else return n})}get states(){if(this.states_==null){let e=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1,t=[];for(let n=0;n<e;++n)t.push(null);return t}else return this.states_}set states(e){this.states_=e}build(e){let t=null;if(this.numConstants!=null)throw new _e("Constants support is not implemented in RNN yet.");Sy(e)&&(e=e[0]),e=e;let n=this.stateful?e[0]:null,a=e.slice(2);this.inputSpec[0]=new zt({shape:[n,null,...a]});let r=[e[0]].concat(e.slice(2));if(t!=null)throw new _e("Constants support is not implemented in RNN yet.");this.cell.build(r);let s;if(Array.isArray(this.cell.stateSize)?s=this.cell.stateSize:s=[this.cell.stateSize],this.stateSpec!=null){if(!k.arraysEqual(this.stateSpec.map(i=>i.shape[i.shape.length-1]),s))throw new U(`An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=${this.stateSpec}; However cell.stateSize is ${this.cell.stateSize}`)}else this.stateSpec=s.map(i=>new zt({shape:[null,i]}));this.stateful&&this.resetStates()}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape[0];if(n==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.states_==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_=[$t([n,this.cell.stateSize])];else if(e==null)he(this.states_),this.keptStates!=null&&(he(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(a=>$t([n,a])):this.states_[0]=$t([n,this.cell.stateSize]);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t===!0?this.keptStates.push(this.states_.slice()):he(this.states_);for(let a=0;a<this.states_.length;++a){let r=e[a],s=Array.isArray(this.cell.stateSize)?this.cell.stateSize[a]:this.cell.stateSize,i=[n,s];if(!k.arraysEqual(r.shape,i))throw new U(`State ${a} is incompatible with layer ${this.name}: expected shape=${i}, received shape=${r.shape}`);this.states_[a]=r}}this.states_=this.states_.map(a=>Kt(a.clone()))})}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=O8(e,n,a,this.numConstants);e=r.inputs,n=r.initialState,a=r.constants;let s=[],i=[];if(n!=null){t.initialState=n,s=s.concat(n),this.stateSpec=[];for(let o of n)this.stateSpec.push(new zt({shape:o.shape}));i=i.concat(this.stateSpec)}if(a!=null&&(t.constants=a,s=s.concat(a),this.numConstants=a.length),s[0]instanceof Da){let o=[e].concat(s),l=this.inputSpec.concat(i),u=this.inputSpec;this.inputSpec=l;let d=super.apply(o,t);return this.inputSpec=u,d}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;e=Le(e),r==null&&(this.stateful?r=this.states_:r=this.getInitialState(e));let s=Array.isArray(this.cell.stateSize)?this.cell.stateSize.length:1;if(r.length!==s)throw new U(`RNN Layer has ${s} state(s) but was passed ${r.length} initial state(s).`);this.unroll&&console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");let i={training:a},o=z8((c,h)=>{let m=this.cell.call([c].concat(h),i);return[m[0],m.slice(1)]},e,r,this.goBackwards,n,null,this.unroll,this.returnSequences),l=o[0],u=o[1],d=o[2];this.stateful&&this.resetStates(d,a);let p=this.returnSequences?u:l;return this.returnState?[p].concat(d):p})}getInitialState(e){return V(()=>{let t=$t(e.shape);return t=Se(t,[1,2]),t=Gd(t),Array.isArray(this.cell.stateSize)?this.cell.stateSize.map(n=>n>1?gy(t,[1,n]):t):this.cell.stateSize>1?[gy(t,[1,this.cell.stateSize])]:[t]})}get trainableWeights(){return this.trainable?this.cell.trainableWeights:[]}get nonTrainableWeights(){return this.trainable?this.cell.nonTrainableWeights:this.cell.weights}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.cell!=null&&this.cell.setFastWeightInitDuringBuild(e)}getConfig(){let e=super.getConfig(),t={returnSequences:this.returnSequences,returnState:this.returnState,goBackwards:this.goBackwards,stateful:this.stateful,unroll:this.unroll};this.numConstants!=null&&(t.numConstants=this.numConstants);let n=this.cell.getConfig();return this.getClassName()===ar.className&&(t.cell={className:this.cell.getClassName(),config:n}),Object.assign({},n,e,t)}static fromConfig(e,t,n={}){let a=t.cell,r=Oa(a,n);return new e(Object.assign(t,{cell:r}))}};ar.className="RNN";re.registerClass(ar);var ap=class extends Xe{},C0=class extends ap{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=ss(e.activation==null?this.DEFAULT_ACTIVATION:e.activation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ht(e.kernelConstraint),this.recurrentConstraint=Ht(e.recurrentConstraint),this.biasConstraint=Ht(e.biasConstraint),this.dropout=eu([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e),this.kernel=this.addWeight("kernel",[e[e.length-1],this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new U(`SimpleRNNCell expects 2 input Tensors, got ${e.length}.`);let n=e[1];e=e[0];let a=t.training==null?!1:t.training;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Un(e),rate:this.dropout,training:a})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Un(n),rate:this.recurrentDropout,training:a}));let r,s=this.dropoutMask,i=this.recurrentDropoutMask;s!=null?r=er(B(e,s),this.kernel.read()):r=er(e,this.kernel.read()),this.bias!=null&&(r=$a(r,this.bias.read())),i!=null&&(n=B(n,i));let o=ie(r,er(n,this.recurrentKernel.read()));return this.activation!=null&&(o=this.activation.apply(o)),[o,o]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:Tt(this.kernelInitializer),recurrentInitializer:Tt(this.recurrentInitializer),biasInitializer:Tt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout};return Object.assign({},e,t)}};C0.className="SimpleRNNCell";re.registerClass(C0);var rA=class extends ar{constructor(e){e.cell=new C0(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(he(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(he(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return new e(t)}};rA.className="SimpleRNN";re.registerClass(rA);var E0=class extends ap{constructor(e){super(e);if(this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.resetAfter)throw new U("GRUCell does not support reset_after parameter set to true.");this.units=e.units,Jt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ht(e.kernelConstraint),this.recurrentConstraint=Ht(e.recurrentConstraint),this.biasConstraint=Ht(e.biasConstraint),this.dropout=eu([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=this.units,this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){e=st(e);let t=e[e.length-1];this.kernel=this.addWeight("kernel",[t,this.units*3],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*3],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias?this.bias=this.addWeight("bias",[this.units*3],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint):this.bias=null,this.built=!0}call(e,t){return V(()=>{if(e=e,e.length!==2)throw new U(`GRUCell expects 2 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training==null?!1:t.training,a=e[1];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Un(e),rate:this.dropout,training:n,count:3})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Un(a),rate:this.recurrentDropout,training:n,count:3}));let r=this.dropoutMask,s=this.recurrentDropoutMask,i,o,l;0<this.dropout&&this.dropout<1&&(e=B(e,r[0]));let u=er(e,this.kernel.read());this.useBias&&(u=$a(u,this.bias.read())),0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,s[0]));let d=this.recurrentKernel.read(),[p,c]=Zt(d,[2*this.units,this.units],d.rank-1),h=er(a,p),[m,f,g]=Zt(u,3,u.rank-1),[y,A]=Zt(h,2,h.rank-1);i=this.recurrentActivation.apply(ie(m,y)),o=this.recurrentActivation.apply(ie(f,A));let x=er(B(o,a),c);l=this.activation.apply(ie(g,x));let v=ie(B(i,a),B(ie(1,St(i)),l));return[v,v]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Tt(this.kernelInitializer),recurrentInitializer:Tt(this.recurrentInitializer),biasInitializer:Tt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation,resetAfter:!1};return Object.assign({},e,t)}};E0.className="GRUCell";re.registerClass(E0);var sA=class extends ar{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new E0(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(he(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(he(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};sA.className="GRU";re.registerClass(sA);var rp=class extends ap{constructor(e){super(e);this.DEFAULT_ACTIVATION="tanh",this.DEFAULT_RECURRENT_ACTIVATION="hardSigmoid",this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_RECURRENT_INITIALIZER="orthogonal",this.DEFAULT_BIAS_INITIALIZER="zeros",this.units=e.units,Jt(this.units,"units"),this.activation=ss(e.activation===void 0?this.DEFAULT_ACTIVATION:e.activation),this.recurrentActivation=ss(e.recurrentActivation===void 0?this.DEFAULT_RECURRENT_ACTIVATION:e.recurrentActivation),this.useBias=e.useBias==null?!0:e.useBias,this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.recurrentInitializer=bt(e.recurrentInitializer||this.DEFAULT_RECURRENT_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.unitForgetBias=e.unitForgetBias,this.kernelRegularizer=vt(e.kernelRegularizer),this.recurrentRegularizer=vt(e.recurrentRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.kernelConstraint=Ht(e.kernelConstraint),this.recurrentConstraint=Ht(e.recurrentConstraint),this.biasConstraint=Ht(e.biasConstraint),this.dropout=eu([1,ns([0,e.dropout==null?0:e.dropout])]),this.recurrentDropout=eu([1,ns([0,e.recurrentDropout==null?0:e.recurrentDropout])]),this.implementation=e.implementation,this.stateSize=[this.units,this.units],this.dropoutMask=null,this.recurrentDropoutMask=null}build(e){var t;e=st(e);let n=e[e.length-1];this.kernel=this.addWeight("kernel",[n,this.units*4],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.recurrentKernel=this.addWeight("recurrent_kernel",[this.units,this.units*4],null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint);let a;if(this.useBias){if(this.unitForgetBias){let r=this.biasInitializer,s=this.units;a=new(t=class extends va{apply(i,o){let l=r.apply([s]),u=new o0().apply([s]),d=r.apply([s*2]);return M4(M4(l,u),d)}},t.className="CustomInit",t)}else a=this.biasInitializer;this.bias=this.addWeight("bias",[this.units*4],null,a,this.biasRegularizer,!0,this.biasConstraint)}else this.bias=null;this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training;if(e=e,e.length!==3)throw new U(`LSTMCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let a=e[1],r=e[2];e=e[0],0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Un(e),rate:this.dropout,training:n,count:4})),0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Un(a),rate:this.recurrentDropout,training:n,count:4}));let s=this.dropoutMask,i=this.recurrentDropoutMask,o,l,u,d;0<this.dropout&&this.dropout<1&&(e=B(e,s[0]));let p=er(e,this.kernel.read());0<this.recurrentDropout&&this.recurrentDropout<1&&(a=B(a,i[0])),p=ie(p,er(a,this.recurrentKernel.read())),this.useBias&&(p=$a(p,this.bias.read()));let[c,h,m,f]=Zt(p,4,p.rank-1);o=this.recurrentActivation.apply(c),l=this.recurrentActivation.apply(h),u=ie(B(l,r),B(o,this.activation.apply(m))),d=this.recurrentActivation.apply(f);let g=B(d,this.activation.apply(u));return[g,g,u]})}getConfig(){let e=super.getConfig(),t={units:this.units,activation:rs(this.activation),recurrentActivation:rs(this.recurrentActivation),useBias:this.useBias,kernelInitializer:Tt(this.kernelInitializer),recurrentInitializer:Tt(this.recurrentInitializer),biasInitializer:Tt(this.biasInitializer),unitForgetBias:this.unitForgetBias,kernelRegularizer:dt(this.kernelRegularizer),recurrentRegularizer:dt(this.recurrentRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),recurrentConstraint:Ut(this.recurrentConstraint),biasConstraint:Ut(this.biasConstraint),dropout:this.dropout,recurrentDropout:this.recurrentDropout,implementation:this.implementation};return Object.assign({},e,t)}};rp.className="LSTMCell";re.registerClass(rp);var iA=class extends ar{constructor(e){e.implementation===0&&console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."),e.cell=new rp(e),super(e)}call(e,t){return V(()=>{this.cell.dropoutMask!=null&&(he(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(he(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null);let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}static fromConfig(e,t){return t.implmentation===0&&(t.implementation=1),new e(t)}};iA.className="LSTM";re.registerClass(iA);var R0=class extends ap{constructor(e){super(e);this.cells=e.cells}get stateSize(){let e=[];for(let t of this.cells.slice().reverse())Array.isArray(t.stateSize)?e.push(...t.stateSize):e.push(t.stateSize);return e}call(e,t){return V(()=>{e=e;let n=e.slice(1),a=[];for(let i of this.cells.slice().reverse())Array.isArray(i.stateSize)?a.push(n.splice(0,i.stateSize.length)):a.push(n.splice(0,1));a.reverse();let r=[],s;for(let i=0;i<this.cells.length;++i){let o=this.cells[i];n=a[i],i===0?s=[e[0]].concat(n):s=[s[0]].concat(n),s=o.call(s,t),r.push(s.slice(1))}n=[];for(let i of r.slice().reverse())n.push(...i);return[s[0]].concat(n)})}build(e){Sy(e)&&(e=e[0]),e=e;let t;this.cells.forEach((n,a)=>{Ui(`RNNCell_${a}`,()=>{n.build(e),Array.isArray(n.stateSize)?t=n.stateSize[0]:t=n.stateSize,e=[e[0],t]})}),this.built=!0}getConfig(){let e=super.getConfig(),t=a=>({className:a.getClassName(),config:a.getConfig()}),n={cells:this.cells.map(t)};return Object.assign({},e,n)}static fromConfig(e,t,n={}){let a=[];for(let r of t.cells)a.push(Oa(r,n));return new e({cells:a})}get trainableWeights(){if(!this.trainable)return[];let e=[];for(let t of this.cells)e.push(...t.trainableWeights);return e}get nonTrainableWeights(){let e=[];for(let t of this.cells)e.push(...t.nonTrainableWeights);if(!this.trainable){let t=[];for(let n of this.cells)t.push(...n.trainableWeights);return t.concat(e)}return e}getWeights(){let e=[];for(let t of this.cells)e.push(...t.weights);return Ny(e)}setWeights(e){let t=[];for(let n of this.cells){let a=n.weights.length,r=e.splice(a);for(let s=0;s<n.weights.length;++s)t.push([n.weights[s],r[s]])}Ty(t)}};R0.className="StackedRNNCells";re.registerClass(R0);function is(e){let{ones:t,rate:n,training:a=!1,count:r=1}=e,s=()=>$4(t(),n),i=()=>Xd(s,t,a);return!r||r<=1?Kt(i().clone()):Array(r).fill(void 0).map(i).map(o=>Kt(o.clone()))}var Gre=function(e,t){var n={};for(var a in e)Object.prototype.hasOwnProperty.call(e,a)&&t.indexOf(a)<0&&(n[a]=e[a]);if(e!=null&&typeof Object.getOwnPropertySymbols=="function")for(var r=0,a=Object.getOwnPropertySymbols(e);r<a.length;r++)t.indexOf(a[r])<0&&Object.prototype.propertyIsEnumerable.call(e,a[r])&&(n[a[r]]=e[a[r]]);return n},_8=class extends ar{constructor(e){if(e.unroll)throw new _e("Unrolling is not possible with convolutional RNNs.");if(Array.isArray(e.cell))throw new _e("It is not possible at the moment to stack convolutional cells.");super(e);this.inputSpec=[new zt({ndim:5})]}call(e,t){return V(()=>{if(this.cell.dropoutMask!=null&&(he(this.cell.dropoutMask),this.cell.dropoutMask=null),this.cell.recurrentDropoutMask!=null&&(he(this.cell.recurrentDropoutMask),this.cell.recurrentDropoutMask=null),t&&t.constants)throw new U("ConvRNN2D cell does not support constants");let n=t==null?null:t.mask,a=t==null?null:t.training,r=t==null?null:t.initialState;return super.call(e,{mask:n,training:a,initialState:r})})}computeOutputShape(e){let t=this.computeSingleOutputShape(e);return this.returnSequences||(t=[t[0],...t.slice(2)]),this.returnState&&(t=[t,...Array(2).fill([e[0],...t.slice(-3)])]),t}getInitialState(e){return V(()=>{let{stateSize:t}=this.cell,n=e.shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)],s=$t(r);return Array.isArray(t)?Array(t.length).fill(s):[s]})}resetStates(e,t=!1){V(()=>{if(!this.stateful)throw new vr("Cannot call resetStates() on an RNN Layer that is not stateful.");let n=this.inputSpec[0].shape,a=this.computeSingleOutputShape(n),r=[a[0],...a.slice(2)];if(n[0]==null)throw new U("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");if(this.getStates()==null)Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_=[$t(r)];else if(e==null)he(this.states_),this.keptStates!=null&&(he(this.keptStates),this.keptStates=[]),Array.isArray(this.cell.stateSize)?this.states_=this.cell.stateSize.map(()=>$t(r)):this.states_[0]=$t(r);else{if(Array.isArray(e)||(e=[e]),e.length!==this.states_.length)throw new U(`Layer ${this.name} expects ${this.states_.length} state(s), but it received ${e.length} state value(s). Input received: ${e}`);t?this.keptStates.push(this.states_.slice()):he(this.states_);for(let s=0;s<this.states_.length;++s){let i=e[s],o=r;if(!k.arraysEqual(i.shape,o))throw new U(`State ${s} is incompatible with layer ${this.name}: expected shape=${o}, received shape=${i.shape}`);this.states_[s]=i}}this.states_=this.states_.map(s=>Kt(s.clone()))})}computeSingleOutputShape(e){let{dataFormat:t,filters:n,kernelSize:a,padding:r,strides:s,dilationRate:i}=this.cell,o=t==="channelsFirst",l=e[o?3:2],u=e[o?4:3],d=za(l,a[0],r,s[0],i[0]),p=za(u,a[1],r,s[1],i[1]);return[...e.slice(0,2),...o?[n,d,p]:[d,p,n]]}};_8.className="ConvRNN2D";var M0=class extends rp{constructor(e){let{filters:t,kernelSize:n,strides:a,padding:r,dataFormat:s,dilationRate:i}=e;super(Object.assign({},e,{units:t}));this.filters=t,Jt(this.filters,"filters"),this.kernelSize=su(n,2,"kernelSize"),this.kernelSize.forEach(o=>Jt(o,"kernelSize")),this.strides=su(a||1,2,"strides"),this.strides.forEach(o=>Jt(o,"strides")),this.padding=r||"valid",ca(this.padding),this.dataFormat=s||"channelsLast",Ft(this.dataFormat),this.dilationRate=su(i||1,2,"dilationRate"),this.dilationRate.forEach(o=>Jt(o,"dilationRate"))}build(e){var t;e=st(e);let n=this.dataFormat==="channelsFirst"?1:e.length-1;if(e[n]==null)throw new U(`The channel dimension of the input should be defined. Found ${e[n]}`);let a=e[n],r=4,s=this.kernelSize.concat([a,this.filters*r]);this.kernel=this.addWeight("kernel",s,null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint);let i=this.kernelSize.concat([this.filters,this.filters*r]);if(this.recurrentKernel=this.addWeight("recurrent_kernel",i,null,this.recurrentInitializer,this.recurrentRegularizer,!0,this.recurrentConstraint),this.useBias){let o;if(this.unitForgetBias){let l=this.biasInitializer,u=this.filters;o=new(t=class extends va{apply(d,p){let c=l.apply([u]),h=jn([u]),m=l.apply([u*2]);return my([c,h,m])}},t.className="CustomInit",t)}else o=this.biasInitializer;this.bias=this.addWeight("bias",[this.filters*r],null,o,this.biasRegularizer,!0,this.biasConstraint)}this.built=!0}call(e,t){return V(()=>{if(e.length!==3)throw new U(`ConvLSTM2DCell expects 3 input Tensors (inputs, h, c), got ${e.length}.`);let n=t.training||!1,a=e[0],r=e[1],s=e[2],i=4;0<this.dropout&&this.dropout<1&&this.dropoutMask==null&&(this.dropoutMask=is({ones:()=>Un(a),rate:this.dropout,training:n,count:i}));let o=this.dropoutMask,l=(K,ne,Q)=>!ne||!ne[Q]?K:B(ne[Q],K),u=l(a,o,0),d=l(a,o,1),p=l(a,o,2),c=l(a,o,3);0<this.recurrentDropout&&this.recurrentDropout<1&&this.recurrentDropoutMask==null&&(this.recurrentDropoutMask=is({ones:()=>Un(r),rate:this.recurrentDropout,training:n,count:i}));let h=this.recurrentDropoutMask,m=l(r,h,0),f=l(r,h,1),g=l(r,h,2),y=l(r,h,3),A=3,[x,v,b,w]=Zt(this.kernel.read(),i,A),[N,C,E,_]=this.useBias?Zt(this.bias.read(),i):[null,null,null,null];u=this.inputConv(u,x,N,this.padding),d=this.inputConv(d,v,C,this.padding),p=this.inputConv(p,b,E,this.padding),c=this.inputConv(c,w,_,this.padding);let[$,S,z,O]=Zt(this.recurrentKernel.read(),i,A);m=this.recurrentConv(m,$),f=this.recurrentConv(f,S),g=this.recurrentConv(g,z),y=this.recurrentConv(y,O);let W=this.recurrentActivation.apply(ie(u,m)),G=this.recurrentActivation.apply(ie(d,f)),H=ie(B(G,s),B(W,this.activation.apply(ie(p,g)))),J=B(this.recurrentActivation.apply(ie(c,y)),this.activation.apply(H));return[J,J,H]})}getConfig(){let e=super.getConfig(),{units:t}=e,n=Gre(e,["units"]),a={filters:this.filters,kernelSize:this.kernelSize,padding:this.padding,dataFormat:this.dataFormat,dilationRate:this.dilationRate,strides:this.strides};return Object.assign({},n,a)}inputConv(e,t,n,a){let r=mr(e,t,this.strides,a||"valid",this.dataFormat==="channelsFirst"?"NCHW":"NHWC",this.dilationRate);return n?$a(r,n,this.dataFormat):r}recurrentConv(e,t){return mr(e,t,1,"same",this.dataFormat==="channelsFirst"?"NCHW":"NHWC")}};M0.className="ConvLSTM2DCell";re.registerClass(M0);var oA=class extends _8{constructor(e){let t=new M0(e);super(Object.assign({},e,{cell:t}))}static fromConfig(e,t){return new e(t)}};oA.className="ConvLSTM2D";re.registerClass(oA);var F0=class extends Xe{constructor(e){super(e);this.rate=Math.max(Math.min(e.rate,1),0),this.noiseShape=e.noiseShape,this.seed=e.seed,this.supportsMasking=!0}getNoiseShape(e){if(this.noiseShape==null)return this.noiseShape;let t=e.shape,n=[];for(let a=0;a<this.noiseShape.length;++a)n.push(this.noiseShape[a]==null?t[a]:this.noiseShape[a]);return n}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);if(0<this.rate&&this.rate<1){let a=t.training==null?!1:t.training,r=this.getNoiseShape(n);return Xd(()=>$4(n,this.rate,r,this.seed),()=>n,a)}return e})}getConfig(){let e={rate:this.rate,noiseShape:this.noiseShape,seed:this.seed},t=super.getConfig();return Object.assign(e,t),e}dispose(){return super.dispose()}};F0.className="Dropout";re.registerClass(F0);var lA=class extends F0{constructor(e){super(e);this.inputSpec=[{ndim:3}]}getNoiseShape(e){let t=e.shape;return[t[0],1,t[2]]}};lA.className="SpatialDropout1D";re.registerClass(lA);var uA=class extends Xe{constructor(e){super(e);if(this.activation=null,this.useBias=!0,this.kernel=null,this.bias=null,this.DEFAULT_KERNEL_INITIALIZER="glorotNormal",this.DEFAULT_BIAS_INITIALIZER="zeros",e.batchInputShape==null&&e.inputShape==null&&e.inputDim!=null){let t=null;e.batchSize!=null&&(t=e.batchSize),this.batchInputShape=[t,e.inputDim]}this.units=e.units,Jt(this.units,"units"),this.activation=ss(e.activation),e.useBias!=null&&(this.useBias=e.useBias),this.kernelInitializer=bt(e.kernelInitializer||this.DEFAULT_KERNEL_INITIALIZER),this.biasInitializer=bt(e.biasInitializer||this.DEFAULT_BIAS_INITIALIZER),this.kernelConstraint=Ht(e.kernelConstraint),this.biasConstraint=Ht(e.biasConstraint),this.kernelRegularizer=vt(e.kernelRegularizer),this.biasRegularizer=vt(e.biasRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.supportsMasking=!0,this.inputSpec=[{minNDim:2}]}build(e){e=st(e);let t=e[e.length-1];this.kernel==null&&(this.kernel=this.addWeight("kernel",[t,this.units],null,this.kernelInitializer,this.kernelRegularizer,!0,this.kernelConstraint),this.useBias&&(this.bias=this.addWeight("bias",[this.units],null,this.biasInitializer,this.biasRegularizer,!0,this.biasConstraint))),this.inputSpec=[{minNDim:2,axes:{[-1]:t}}],this.built=!0}computeOutputShape(e){e=st(e);let t=e.slice();return t[t.length-1]=this.units,t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e),a=w4(this.activation.getClassName()),r;return a!=null?r=er(n,this.kernel.read(),a,this.bias?this.bias.read():null):(r=er(n,this.kernel.read()),this.bias!=null&&(r=$a(r,this.bias.read())),this.activation!=null&&(r=this.activation.apply(r))),r})}getConfig(){let e={units:this.units,activation:rs(this.activation),useBias:this.useBias,kernelInitializer:Tt(this.kernelInitializer),biasInitializer:Tt(this.biasInitializer),kernelRegularizer:dt(this.kernelRegularizer),biasRegularizer:dt(this.biasRegularizer),activityRegularizer:dt(this.activityRegularizer),kernelConstraint:Ut(this.kernelConstraint),biasConstraint:Ut(this.biasConstraint)},t=super.getConfig();return Object.assign(e,t),e}};uA.className="Dense";re.registerClass(uA);var dA=class extends Xe{constructor(e){e=e||{},super(e),this.inputSpec=[{minNDim:3}],this.dataFormat=e.dataFormat}computeOutputShape(e){e=st(e);for(let t of e.slice(1))if(t==null)throw new U(`The shape of the input to "Flatten" is not fully defined (got ${e.slice(1)}). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.`);return[e[0],ts(e,1)]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);if(this.dataFormat==="channelsFirst"&&n.rank>1){let a=[0];for(let r=2;r<n.rank;++r)a.push(r);a.push(1),n=n.transpose(a)}return pae(n)})}getConfig(){let e={};this.dataFormat!=null&&(e.dataFormat=this.dataFormat);let t=super.getConfig();return Object.assign(e,t),e}};dA.className="Flatten";re.registerClass(dA);var pA=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.activation=ss(e.activation)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.activation.apply(n)})}getConfig(){let e={activation:rs(this.activation)},t=super.getConfig();return Object.assign(e,t),e}};pA.className="Activation";re.registerClass(pA);var cA=class extends Xe{constructor(e){super(e);this.n=e.n,this.inputSpec=[{ndim:2}]}computeOutputShape(e){return[e[0],this.n,e[1]]}call(e,t){return V(()=>(e=Le(e),uae(e,this.n)))}getConfig(){let e={n:this.n},t=super.getConfig();return Object.assign(e,t),e}};cA.className="RepeatVector";re.registerClass(cA);var hA=class extends Xe{constructor(e){super(e);this.targetShape=e.targetShape;for(let t=0;t<this.targetShape.length;++t)this.isUnknown(this.targetShape[t])&&(this.targetShape[t]=null)}isUnknown(e){return e<0||e==null}fixUnknownDimension(e,t){let n="Total size of new array must be unchanged.",a=t.slice(),r=1,s=null;for(let o=0;o<a.length;++o){let l=a[o];if(this.isUnknown(l))if(s===null)s=o;else throw new U("Can only specifiy one unknown dimension.");else r*=l}let i=ts(e);if(s!==null){if(r===0||i%r!=0)throw new U(n);a[s]=i/r}else if(i!==r)throw new U(n);return a}computeOutputShape(e){let t=!1;for(let n=0;n<e.length;++n)if(this.isUnknown(e[n])){t=!0;break}return t?e.slice(0,1).concat(this.targetShape):e.slice(0,1).concat(this.fixUnknownDimension(e.slice(1),this.targetShape))}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e),a=n.shape,r=a.slice(0,1).concat(this.fixUnknownDimension(a.slice(1),this.targetShape));return n.reshape(r)})}getConfig(){let e={targetShape:this.targetShape},t=super.getConfig();return Object.assign(e,t),e}};hA.className="Reshape";re.registerClass(hA);var fA=class extends Xe{constructor(e){super(e);if(e.dims==null)throw new Error("Required configuration field `dims` is missing during Permute constructor call.");if(!Array.isArray(e.dims))throw new Error(`Permute constructor requires \`dims\` to be an Array, but received ${e.dims} instead.`);let t=Fa(1,e.dims.length+1);if(!k.arraysEqual(e.dims.slice().sort(),t))throw new Error("Invalid permutation `dims`: "+JSON.stringify(e.dims)+" `dims` must contain consecutive integers starting from 1.");this.dims=e.dims,this.dimsIncludingBatch=[0].concat(this.dims),this.inputSpec=[new zt({ndim:this.dims.length+1})]}computeOutputShape(e){e=st(e);let t=e.slice();return this.dims.forEach((n,a)=>{t[a+1]=e[n]}),t}call(e,t){return Qe(Le(e),this.dimsIncludingBatch)}getConfig(){let e={dims:this.dims},t=super.getConfig();return Object.assign(e,t),e}};fA.className="Permute";re.registerClass(fA);var mA=class extends Xe{constructor(e){super(e==null?{}:e);this.supportsMasking=!0,e!=null?this.maskValue=e.maskValue==null?0:e.maskValue:this.maskValue=0}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={maskValue:this.maskValue};return Object.assign(t,e),t}computeMask(e,t){let n=Le(e),a=-1;return id(Ri(n,this.maskValue),a)}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e),a=-1,r=!0,s=id(Ri(n,this.maskValue),a,r);return n.mul(s.asType(n.dtype))})}};mA.className="Masking";re.registerClass(mA);var gA=class extends Xe{constructor(e){super(e);if(this.embeddings=null,this.DEFAULT_EMBEDDINGS_INITIALIZER="randomUniform",e.batchInputShape==null&&e.inputShape==null){let t=null;e.batchSize!=null&&(t=e.batchSize),e.inputLength==null?this.batchInputShape=[t,null]:this.batchInputShape=[t].concat(yt(e.inputLength))}this.inputDim=e.inputDim,Jt(this.inputDim,"inputDim"),this.outputDim=e.outputDim,Jt(this.outputDim,"outputDim"),this.embeddingsInitializer=bt(e.embeddingsInitializer||this.DEFAULT_EMBEDDINGS_INITIALIZER),this.embeddingsRegularizer=vt(e.embeddingsRegularizer),this.activityRegularizer=vt(e.activityRegularizer),this.embeddingsConstraint=Ht(e.embeddingsConstraint),this.maskZero=e.maskZero,this.supportsMasking=e.maskZero,this.inputLength=e.inputLength}build(e){this.embeddings=this.addWeight("embeddings",[this.inputDim,this.outputDim],this.dtype,this.embeddingsInitializer,this.embeddingsRegularizer,!0,this.embeddingsConstraint),this.built=!0}warnOnIncompatibleInputShape(e){}computeMask(e,t){return V(()=>this.maskZero?(e=Le(e),Ri(e,Ge(e))):null)}computeOutputShape(e){if(e=st(e),this.inputLength==null)return[...e,this.outputDim];let t=yt(this.inputLength);if(t.length!==e.length-1)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);{let n=0;for(let a=0;a<t.length;++a){let r=t[a],s=e[a+1];if(r!=null&&s!=null&&r!==s)throw new U(`"inputLength" is ${this.inputLength}, but received input shape has shape ${e}`);r==null&&(t[n]=s),n++}}return[e[0],...t,this.outputDim]}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);return n.dtype!=="int32"&&(n=Hd(n,"int32")),F4(this.embeddings.read(),n.as1D()).reshape(st(this.computeOutputShape(n.shape)))})}getConfig(){let e={inputDim:this.inputDim,outputDim:this.outputDim,embeddingsInitializer:Tt(this.embeddingsInitializer),embeddingsRegularizer:dt(this.embeddingsRegularizer),activityRegularizer:dt(this.activityRegularizer),embeddingsConstraint:Ut(this.embeddingsConstraint),maskZero:this.maskZero,inputLength:this.inputLength},t=super.getConfig();return Object.assign(e,t),e}};gA.className="Embedding";re.registerClass(gA);var Ki=class extends Xe{constructor(e){super(e||{});this.supportsMasking=!0}mergeFunction(e){throw new _e}computeElementwiseOpOutputShape(e,t){if(e==null||t==null)return null;if(e.length<t.length)return this.computeElementwiseOpOutputShape(t,e);if(t.length===0)return e;let n=e.slice(0,e.length-t.length);for(let a=0;a<t.length;++a){let r=e[e.length-t.length+a],s=t[a];if(r==null||s==null||r<0||s<0)n.push(null);else if(r===1)n.push(s);else if(s===1)n.push(r);else{if(r!==s)throw new U("Operands could not be broadcast together with shapes "+JSON.stringify(e)+" "+JSON.stringify(t));n.push(r)}}return n}build(e){if(Array.isArray(e)&&!Array.isArray(e[0])&&(e=[st(e)]),e=e,e.length<2)throw new U(`A merge layer should be called on an Array of at least 2 inputs. Got ${e.length} input(s).`);let t=[];for(let r of e)r!=null&&r[0]!==null&&t.push(r[0]);if(t=es(t),t.length>1)throw new U(`Can not merge tensors with different batch sizes. Got tensors with shapes: ${JSON.stringify(e)}.`);let n=e[0]==null?null:e[0].slice(1);for(let r=1;r<e.length;++r){let s=e[r]==null?null:e[r].slice(1);n=this.computeElementwiseOpOutputShape(n,s)}let a=e.map(r=>r.length);e.indexOf(null)===-1&&es(a).length===1?this.reshapeRequired=!1:this.reshapeRequired=!0}call(e,t){return V(()=>{if(e=e,this.reshapeRequired){let n=[],a=e.map(r=>r.rank);if(a.indexOf(null)===-1){let r=ns(a);for(let s of e){let i=s.rank;for(let o=0;o<r-i;++o)s=Gd(s,1);n.push(s)}return this.mergeFunction(n)}else{let r=!1;for(let o of e){let l=o.rank;if(l==null){let u=o.shape,d=u[0],p=u.slice(1).concat([d]),c=o.reshape([d].concat(ts(u.slice(1))));c=Qe(c,[1,0]),c=c.reshape(p),n.push(c),r=!0}else if(l>1){let u=Fa(1,l).concat([0]);n.push(Qe(o,u)),r=!0}else n.push(o)}let s=this.mergeFunction(n),i=s.rank;if(r){if(i==null){let o=s.shape,l=o.length,u=o[l-1],d=[u].concat(o.slice(0,o.length-1));s=Qe(s.reshape([-1,u]),[1,0]).reshape(d)}else if(i>1){let o=[i-1].concat(Fa(0,i-1));s=Qe(s,o)}}return s}}else return this.mergeFunction(e)})}computeOutputShape(e){e=e;let t;e[0]==null?t=null:t=e[0].slice(1);for(let a=1;a<e.length;++a){let r=e[a]==null?null:e[a].slice(1);t=this.computeElementwiseOpOutputShape(t,r)}let n=[];for(let a of e)a!=null&&a[0]!==null&&n.push(a[0]);return n=es(n),n.length===1?t=n.concat(t):t=[null].concat(t),t}computeMask(e,t){return V(()=>{if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an Array");if(!Array.isArray(e))throw new U("`inputs` should be an Array");if(t.length!==e.length)throw new U(`The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (${e.length} vs ${t.length})`);if(t.every(a=>a==null))return null;t=t.map(a=>a==null?a:mn(a,0));let n=t[0];for(let a=1;a<t.length-1;++a)n=xa(n,t[a]);return n})}},yA=class extends Ki{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return t})}};yA.className="Add";re.registerClass(yA);var AA=class extends Ki{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=B(t,e[n]);return t})}};AA.className="Multiply";re.registerClass(AA);var xA=class extends Ki{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0].clone();for(let n=1;n<e.length;++n)t=ie(t,e[n]);return B(1/e.length,t)})}};xA.className="Average";re.registerClass(xA);var bA=class extends Ki{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Xa(t,e[n]);return t})}};bA.className="Maximum";re.registerClass(bA);var vA=class extends Ki{constructor(e){super(e)}mergeFunction(e){return V(()=>{let t=e[0];for(let n=1;n<e.length;++n)t=Fl(t,e[n]);return t})}};vA.className="Minimum";re.registerClass(vA);var wA=class extends Ki{constructor(e){super(e);this.DEFAULT_AXIS=-1,e==null&&(e={}),this.axis=e.axis==null?this.DEFAULT_AXIS:e.axis,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){if(!(Array.isArray(e)&&Array.isArray(e[0]))||e.length===1)throw new U("A `Concatenate` layer should be called on a list of at least 2 inputs");e=e;let t=!0;for(let a of e)if(a!=null){t=!1;break}if(t)return;let n=[];for(let a=0;a<e.length;++a){let r=e[a].slice();r.splice(this.axis,1);let s=!1;for(let i of n)if(k.arraysEqual(i,r)){s=!0;break}s||n.push(r)}if(n.length>1)throw new U("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: "+JSON.stringify(e))}mergeFunction(e){return V(()=>my(e,this.axis))}computeOutputShape(e){if(!(Array.isArray(e)&&Array.isArray(e[0])))throw new U("A `Concatenate` layer should be called on a list of inputs.");let t=e,n=t[0].slice(),a=this.axis<0?n.length+this.axis:this.axis;for(let r of t.slice(1)){if(n[a]==null||r[a]==null){n[a]=null;break}n[a]+=r[a]}return n}computeMask(e,t){if(t==null)return null;if(!Array.isArray(t))throw new U("`mask` should be an array for Concatenate");if(!Array.isArray(e))throw new U("`inputs` should be an array for Concatenate");if(t.length!==e.length)throw new U(`Mismatch in the length of mask (${t.length}) and the legnth of inputs (${e.length})`);return V(()=>{let n=!0;if(t.forEach(s=>{if(s!=null){n=!1;return}}),n)return null;let a=[];for(let s=0;s<e.length;++s)t[s]==null?a.push(Un(e[s]).asType("bool")):t[s].rank<e[s].rank?a.push(mn(t[s],-1)):a.push(t[s]);let r=lt(a,this.axis);return Uc(r,-1,!1)})}getConfig(){let e={axis:this.axis},t=super.getConfig();return Object.assign(e,t),e}};wA.className="Concatenate";re.registerClass(wA);function sp(e,t){for(;e<0;)e+=t;return e}function qre(e,t,n){if(e.shape.length>3||t.shape.length>3)throw new _e("batchDot is not implemented for tensors of 4D or higher rank yet");if(k.assert(e.shape.length>=2,()=>`batchDot requires the rank of x to be >= 2, but got ${e.shape.length}`),k.assert(e.shape.length>=2,()=>`batchDot requires the rank of y to be >= 2, but got ${t.shape.length}`),typeof n=="number"&&(n=[n,n]),e.dtype==="complex64"||t.dtype==="complex64")throw new _e("batchDot is not implemented for complex64-type Tensors yet.");let a=e.shape.length,r=t.shape.length;n==null&&(n=[a-1,r-2]);let s=n;return V(()=>{let i;if(a>r){i=a-r;let l=[];for(let u=0;u<i;++u)l.push(1);t=t.reshape(t.shape.concat(l))}else if(r>a){i=r-a;let l=[];for(let u=0;u<i;++u)l.push(1);e=e.reshape(e.shape.concat(l))}else i=0;let o;if(e.shape.length===2&&t.shape.length===2)s[0]===s[1]?o=e.mul(t).sum(s[0]):o=e.transpose([1,0]).mul(t).sum(s[1]);else{let l=s[0]!==e.shape.length-1,u=s[1]===t.shape.length-1;o=e.matMul(t,l,u)}if(i>0){let l;a>r?l=a+r-3:l=a-1;let u=[];for(let d=l;d<l+i;++d)u.push(d);o=o.squeeze(u)}return o.shape.length===1&&(o=o.expandDims(1)),o})}var kA=class extends Ki{constructor(e){super(e);this.axes=e.axes,this.normalize=e.normalize==null?!1:e.normalize,this.supportsMasking=!0,this.reshapeRequired=!1}build(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0],n=e[1];if(t.length>3||n.length>3)throw new _e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);if(t[a[0]]!==n[a[1]])throw new U(`Dimension incompatibility: ${t[a[0]]} !== ${n[a[1]]}`)}mergeFunction(e){if(e.length!==2)throw new U(`A \`Dot\` layer must be called on exactly 2 inputs, but received ${e.length} input(s).`);let t=e[0],n=e[1],a;return Array.isArray(this.axes)?a=this.axes.map((r,s)=>sp(r,e[s].shape.length)):a=[sp(this.axes,t.shape.length),sp(this.axes,n.shape.length)],this.normalize&&(t=x0(t,a[0]),n=x0(n,a[1])),qre(t,n,a)}interpretAxes(e,t){let n;return Array.isArray(this.axes)?n=this.axes:n=[sp(this.axes,e.length),sp(this.axes,t.length)],n}computeOutputShape(e){k.assert(Array.isArray(e)&&e.length===2&&Array.isArray(e[0])&&Array.isArray(e[1]),()=>"A `Dot` layer should be called on a list of exactly 2 inputs.");let t=e[0].slice(),n=e[1].slice();if(t.length>3||n.length>3)throw new _e("Dot layer does not support tensors of 4D or higher rank yet.");let a=this.interpretAxes(t,n);t.splice(a[0],1),n.splice(a[1],1),n.splice(0,1);let r=t.concat(n);return r.length===1&&r.push(1),r}computeMask(e,t){return null}getConfig(){let e={axes:this.axes,normalize:this.normalize},t=super.getConfig();return Object.assign(e,t),e}};kA.className="Dot";re.registerClass(kA);var IA=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.stddev=e.stddev}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={stddev:this.stddev};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);return Xd(()=>i0(n.shape,0,this.stddev).add(n),()=>n,t.training||!1)})}};IA.className="GaussianNoise";re.registerClass(IA);var SA=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{this.invokeCallHook(e,t);let n=Le(e);return this.rate>0&&this.rate<1?Xd(()=>{let a=Math.sqrt(this.rate/(1-this.rate));return n.mul(i0(n.shape,1,a))},()=>n,t.training||!1):n})}};SA.className="GaussianDropout";re.registerClass(SA);var NA=class extends Xe{constructor(e){super(e);this.supportsMasking=!0,this.rate=e.rate,this.noiseShape=e.noiseShape}_getNoiseShape(e){return this.noiseShape||Le(e).shape}computeOutputShape(e){return e}getConfig(){let e=super.getConfig(),t={rate:this.rate};return Object.assign(t,e),t}call(e,t){return V(()=>{if(this.rate<1&&this.rate>0){let n=this._getNoiseShape(e);return Xd(()=>{let a=Le(e),r=1.6732632423543772,s=1.0507009873554805,i=-r*s,o=qr($l(n),this.rate);o=Hd(o,"float32");let l=((1-this.rate)*(1+this.rate*i**2))**-.5,u=-l*i*this.rate;return a.mul(o).add(o.add(-1).mul(i)).mul(l).add(u)},()=>Le(e),t.training||!1)}return e})}};NA.className="AlphaDropout";re.registerClass(NA);function ip(e,t,n,a,r,s=.001){let i;if(e.rank===2)i=y3(e,t,n,a,r,s);else if(e.rank===3)i=A3(e,t,n,a,r,s);else if(e.rank===4)i=x3(e,t,n,a,r,s);else throw new _e(`batchNormalization is not implemented for array of rank ${e.rank} yet`);return i}function Xre(e,t,n,a,r=.001){return V(()=>{let s=nh(e,a),i=s.mean,o=s.variance;return[ip(e,i,o,n,t,r),i,o]})}function Kre(e,t,n,a,r=.001){return V(()=>{let s=nh(e,a),i=s.mean,o=s.variance,l=[];for(let h of Fa(0,e.rank))a.indexOf(h)!==-1?l.push(1):l.push(e.shape[h]);let u=i.reshape(l),d=o.reshape(l),p=t==null?null:t.reshape(l),c=n==null?null:n.reshape(l);return[ip(e,u,d,c,p,r),i,o]})}function Zre(e,t,n,a,r=.001){return k.arraysEqual(a.slice().sort(),Fa(0,e.rank-1))?Xre(e,t,n,a,r):Kre(e,t,n,a,r)}var TA=class extends Xe{constructor(e){e==null&&(e={}),super(e),this.supportsMasking=!0,this.axis=e.axis==null?-1:e.axis,this.momentum=e.momentum==null?.99:e.momentum,this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.movingMeanInitializer=bt(e.movingMeanInitializer||"zeros"),this.movingVarianceInitializer=bt(e.movingVarianceInitializer||"ones"),this.betaConstraint=Ht(e.betaConstraint),this.gammaConstraint=Ht(e.gammaConstraint),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer)}build(e){e=st(e);let t=this.axis>=0?this.axis:this.axis+e.length,n=e[t];if(n==null)throw new U(`Axis ${t} of input tensor should have a defined dimension but the layer received an input with shape ${JSON.stringify(e)}.`);this.inputSpec=[new zt({ndim:e.length,axes:{[t]:n}})];let a=[n];this.scale&&(this.gamma=this.addWeight("gamma",a,null,this.gammaInitializer,this.gammaRegularizer,!0,this.gammaConstraint)),this.center&&(this.beta=this.addWeight("beta",a,null,this.betaInitializer,this.betaRegularizer,!0,this.betaConstraint)),this.movingMean=this.addWeight("moving_mean",a,null,this.movingMeanInitializer,null,!1),this.movingVariance=this.addWeight("moving_variance",a,null,this.movingVarianceInitializer,null,!1),this.built=!0}call(e,t){return V(()=>{let n=t.training==null?!1:t.training,a=Le(e),r=a.shape,s=r.length,i=Fa(0,s),o=this.axis>=0?this.axis:this.axis+s;i.splice(o,1);let l=Bi(1,s);l[o]=r[o];let u=i.slice();u.sort();let d=!k.arraysEqual(u,Fa(0,s).slice(0,s-1)),p=()=>{if(d){let g=this.movingMean.read().reshape(l),y=this.movingVariance.read().reshape(l),A=this.center?this.beta.read().reshape(l):null,x=this.scale?this.gamma.read().reshape(l):null;return ip(a,g,y,A,x,this.epsilon)}else return ip(a,this.movingMean.read(),this.movingVariance.read(),this.beta==null?null:this.beta.read(),this.gamma==null?null:this.gamma.read(),this.epsilon)};if(!n)return p();let[c,h,m]=Zre(a,this.gamma.read(),this.beta.read(),i,this.epsilon),f=(g,y,A)=>{V(()=>{let x=1-A,v=g.read(),b=v.sub(y).mul(x);g.write(v.sub(b))})};return(()=>{f(this.movingMean,h,this.momentum),f(this.movingVariance,m,this.momentum)})(),c})}getConfig(){let e={axis:this.axis,momentum:this.momentum,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Tt(this.betaInitializer),gammaInitializer:Tt(this.gammaInitializer),movingMeanInitializer:Tt(this.movingMeanInitializer),movingVarianceInitializer:Tt(this.movingVarianceInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer),betaConstraint:Ut(this.betaConstraint),gammaConstraint:Ut(this.gammaConstraint)},t=super.getConfig();return Object.assign(e,t),e}};TA.className="BatchNormalization";re.registerClass(TA);var CA=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.axis=e.axis==null?-1:e.axis,typeof this.axis=="number"){if(!Number.isInteger(this.axis))throw new Error(`Expected axis to be an integer, but received ${this.axis}`)}else if(Array.isArray(this.axis)){for(let t of this.axis)if(!Number.isInteger(t))throw new Error(`Expected axis to be an array of integers, but received ${JSON.stringify(this.axis)}`)}else throw new Error(`Expected axis to be an integer or an array of integers, but received ${JSON.stringify(this.axis)}`);this.epsilon=e.epsilon==null?.001:e.epsilon,this.center=e.center==null?!0:e.center,this.scale=e.scale==null?!0:e.scale,this.betaInitializer=bt(e.betaInitializer||"zeros"),this.gammaInitializer=bt(e.gammaInitializer||"ones"),this.betaRegularizer=vt(e.betaRegularizer),this.gammaRegularizer=vt(e.gammaRegularizer),this.supportsMasking=!0}build(e){e=st(e);let t=e.length;typeof this.axis=="number"&&(this.axis=[this.axis]);for(let r=0;r<this.axis.length;++r)this.axis[r]<0&&(this.axis[r]+=t);for(let r of this.axis)if(r<0||r>=t)throw new Error(`Invalid axis: ${r}`);if(this.axis.length!==es(this.axis).length)throw new Error(`Found duplicate axes in: ${this.axis}`);let n=this.axis.map(r=>e[r]),a=!0;this.scale?this.gamma=this.addWeight("gamma",n,"float32",this.gammaInitializer,this.gammaRegularizer,a):this.gamma=null,this.center?this.beta=this.addWeight("beta",n,"float32",this.betaInitializer,this.betaRegularizer,a):this.beta=null,this.built=!0}call(e,t){let n=Le(e),a=n.shape,r=a.length;return V(()=>{let s=!0,{mean:i,variance:o}=nh(n,this.axis,s),l=Bi(1,r);for(let m of this.axis)l[m]=a[m];let u=m=>m!=null&&m.shape.length!==r&&this.axis!==[r-1]?m.reshape(l):m,d=u(this.gamma.read()),p=u(this.beta.read()),c=[],h=[];for(let m=0;m<r;++m)this.axis.indexOf(m)!==-1?(c.push(a[m]),h.push(1)):(c.push(1),h.push(a[m]));return i=i.tile(c),o=o.tile(c),d=d.tile(h),p=p.tile(h),ip(n,i,o,p,d,this.epsilon)})}getConfig(){let e={axis:this.axis,epsilon:this.epsilon,center:this.center,scale:this.scale,betaInitializer:Tt(this.betaInitializer),gammaInitializer:Tt(this.gammaInitializer),betaRegularizer:dt(this.betaRegularizer),gammaRegularizer:dt(this.gammaRegularizer)},t=super.getConfig();return Object.assign(e,t),e}};CA.className="LayerNormalization";re.registerClass(CA);function Yre(e,t,n){return V(()=>{if(e.rank!==4)throw new U(`temporalPadding expects input tensor to be 4-D, but received a ${e.rank}-D tensor.`);if(t==null&&(t=[[1,1],[1,1]]),t.length!==2||t[0].length!==2||t[1].length!==2)throw new U("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");if(n==null&&(n=Ra()),n!=="channelsLast"&&n!=="channelsFirst")throw new U(`Unknown data format: ${n}. Supported data formats are 'channelsLast' and 'channelsFirst.`);let a;return n==="channelsFirst"?a=[[0,0],[0,0],t[0],t[1]]:a=[[0,0],t[0],t[1],[0,0]],gr(e,a)})}var EA=class extends Xe{constructor(e){if(e==null&&(e={}),super(e),this.dataFormat=e.dataFormat==null?Ra():e.dataFormat,e.padding==null)this.padding=[[1,1],[1,1]];else if(typeof e.padding=="number")this.padding=[[e.padding,e.padding],[e.padding,e.padding]];else{if(e.padding=e.padding,e.padding.length!==2)throw new U(`ZeroPadding2D expects padding to be a length-2 array, but received a length-${e.padding.length} array.`);let t,n;if(typeof e.padding[0]=="number")t=[e.padding[0],e.padding[0]],n=[e.padding[1],e.padding[1]];else{if(e.padding=e.padding,e.padding[0].length!==2)throw new U(`ZeroPadding2D expects height padding to be a length-2 array, but received a length-${e.padding[0].length} array.`);if(t=e.padding[0],e.padding[1].length!==2)throw new U(`ZeroPadding2D expects width padding to be a length-2 array, but received a length-${e.padding[1].length} array.`);n=e.padding[1]}this.padding=[t,n]}this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t,n;return this.dataFormat==="channelsFirst"?(e[2]!=null&&e[2]>=0?t=e[2]+this.padding[0][0]+this.padding[0][1]:t=null,e[3]!=null&&e[3]>=0?n=e[3]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],e[1],t,n]):(e[1]!=null&&e[1]>=0?t=e[1]+this.padding[0][0]+this.padding[0][1]:t=null,e[2]!=null&&e[2]>=0?n=e[2]+this.padding[1][0]+this.padding[1][1]:n=null,[e[0],t,n,e[3]])}call(e,t){return V(()=>Yre(Le(e),this.padding,this.dataFormat))}getConfig(){let e={padding:this.padding,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}};EA.className="ZeroPadding2D";re.registerClass(EA);function $0(e,t,n,a,r,s){return V(()=>{Ft(r),N4(s),ca(a),n==null&&(n=[1,1]),a==null&&(a="valid"),r==null&&(r=Ra()),s==null&&(s="max"),e=Zy(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=hd(e,t,n,o):i=ld(e,t,n,o),r==="channelsFirst"&&(i=Qe(i,[0,3,1,2])),i})}function P8(e,t,n,a,r,s){return V(()=>{Ft(r),N4(s),ca(a),n==null&&(n=[1,1,1]),a==null&&(a="valid"),r==null&&(r=Ra()),s==null&&(s="max"),e=F8(e,r);let i,o=a==="same"?"same":"valid";return s==="max"?i=J1(e,t,n,o):i=z1(e,t,n,o),r==="channelsFirst"&&(i=Qe(i,[0,4,1,2,3])),i})}var L8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=2),super(e),typeof e.poolSize=="number")this.poolSize=[e.poolSize];else if(Array.isArray(e.poolSize)&&e.poolSize.length===1&&typeof e.poolSize[0]=="number")this.poolSize=e.poolSize;else throw new U(`poolSize for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.poolSize)}`);if(Jt(this.poolSize,"poolSize"),e.strides==null)this.strides=this.poolSize;else if(typeof e.strides=="number")this.strides=[e.strides];else if(Array.isArray(e.strides)&&e.strides.length===1&&typeof e.strides[0]=="number")this.strides=e.strides;else throw new U(`strides for 1D convolutional layer must be a number or an Array of a single number, but received ${JSON.stringify(e.strides)}`);Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,ca(this.padding),this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){e=st(e);let t=za(e[1],this.poolSize[0],this.padding,this.strides[0]);return[e[0],t,e[2]]}call(e,t){return V(()=>{this.invokeCallHook(e,t),e=Gd(Le(e),2);let n=this.poolingFunction(Le(e),[this.poolSize[0],1],[this.strides[0],1],this.padding,"channelsLast");return Vt(n,[2])})}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides},t=super.getConfig();return Object.assign(e,t),e}},RA=class extends L8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),$0(e,t,n,a,r,"max")}};RA.className="MaxPooling1D";re.registerClass(RA);var MA=class extends L8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),$0(e,t,n,a,r,"avg")}};MA.className="AveragePooling1D";re.registerClass(MA);var W8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==2)throw new U(`If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),ca(this.padding),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2];return t=za(t,this.poolSize[0],this.padding,this.strides[0]),n=za(n,this.poolSize[1],this.padding,this.strides[1]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n]:[e[0],t,n,e[3]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},FA=class extends W8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),$0(e,t,n,a,r,"max")}};FA.className="MaxPooling2D";re.registerClass(FA);var $A=class extends W8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),$0(e,t,n,a,r,"avg")}};$A.className="AveragePooling2D";re.registerClass($A);var B8=class extends Xe{constructor(e){if(e.poolSize==null&&(e.poolSize=[2,2,2]),super(e),this.poolSize=Array.isArray(e.poolSize)?e.poolSize:[e.poolSize,e.poolSize,e.poolSize],e.strides==null)this.strides=this.poolSize;else if(Array.isArray(e.strides)){if(e.strides.length!==3)throw new U(`If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length ${e.strides.length}.`);this.strides=e.strides}else this.strides=[e.strides,e.strides,e.strides];Jt(this.poolSize,"poolSize"),Jt(this.strides,"strides"),this.padding=e.padding==null?"valid":e.padding,this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),ca(this.padding),this.inputSpec=[new zt({ndim:5})]}computeOutputShape(e){e=st(e);let t=this.dataFormat==="channelsFirst"?e[2]:e[1],n=this.dataFormat==="channelsFirst"?e[3]:e[2],a=this.dataFormat==="channelsFirst"?e[4]:e[3];return t=za(t,this.poolSize[0],this.padding,this.strides[0]),n=za(n,this.poolSize[1],this.padding,this.strides[1]),a=za(a,this.poolSize[2],this.padding,this.strides[2]),this.dataFormat==="channelsFirst"?[e[0],e[1],t,n,a]:[e[0],t,n,a,e[4]]}call(e,t){return V(()=>(this.invokeCallHook(e,t),this.poolingFunction(Le(e),this.poolSize,this.strides,this.padding,this.dataFormat)))}getConfig(){let e={poolSize:this.poolSize,padding:this.padding,strides:this.strides,dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},DA=class extends B8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),P8(e,t,n,a,r,"max")}};DA.className="MaxPooling3D";re.registerClass(DA);var OA=class extends B8{constructor(e){super(e)}poolingFunction(e,t,n,a,r){return Ft(r),ca(a),P8(e,t,n,a,r,"avg")}};OA.className="AveragePooling3D";re.registerClass(OA);var V8=class extends Xe{constructor(e){super(e);this.inputSpec=[new zt({ndim:3})]}computeOutputShape(e){return[e[0],e[2]]}call(e,t){throw new _e}},zA=class extends V8{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Le(e);return Nt(n,1)})}};zA.className="GlobalAveragePooling1D";re.registerClass(zA);var _A=class extends V8{constructor(e){super(e||{})}call(e,t){return V(()=>{let n=Le(e);return Vn(n,1)})}};_A.className="GlobalMaxPooling1D";re.registerClass(_A);var j8=class extends Xe{constructor(e){super(e);this.dataFormat=e.dataFormat==null?"channelsLast":e.dataFormat,Ft(this.dataFormat),this.inputSpec=[new zt({ndim:4})]}computeOutputShape(e){return e=e,this.dataFormat==="channelsLast"?[e[0],e[3]]:[e[0],e[1]]}call(e,t){throw new _e}getConfig(){let e={dataFormat:this.dataFormat},t=super.getConfig();return Object.assign(e,t),e}},PA=class extends j8{call(e,t){return V(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Nt(n,[1,2]):Nt(n,[2,3])})}};PA.className="GlobalAveragePooling2D";re.registerClass(PA);var LA=class extends j8{call(e,t){return V(()=>{let n=Le(e);return this.dataFormat==="channelsLast"?Vn(n,[1,2]):Vn(n,[2,3])})}};LA.className="GlobalMaxPooling2D";re.registerClass(LA);var U8=class extends Xe{constructor(e){super(e);this.layer=e.layer}build(e){this.built=!0}get trainable(){return this.layer!=null?this.layer.trainable:!1}set trainable(e){this.layer!=null&&(this.layer.trainable=e)}get trainableWeights(){return this.layer.trainableWeights}get nonTrainableWeights(){return this.layer.nonTrainableWeights}get updates(){return this.layer._updates}get losses(){return this.layer.losses}getWeights(){return this.layer.getWeights()}setWeights(e){this.layer.setWeights(e)}getConfig(){let e={layer:{className:this.layer.getClassName(),config:this.layer.getConfig()}},t=super.getConfig();return Object.assign(e,t),e}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.layer!=null&&this.layer.setFastWeightInitDuringBuild(e)}static fromConfig(e,t,n={}){let a=t.layer,r=Oa(a,n);delete t.layer;let s={layer:r};return Object.assign(s,t),new e(s)}},WA=class extends U8{constructor(e){super(e);this.supportsMasking=!0}build(e){if(e=st(e),e.length<3)throw new U(`TimeDistributed layer expects an input shape >= 3D, but received input shape ${JSON.stringify(e)}`);this.inputSpec=[{shape:e}];let t=[e[0]].concat(e.slice(2));this.layer.built||(this.layer.build(t),this.layer.built=!0),super.build(e)}computeOutputShape(e){e=st(e);let t=[e[0]].concat(e.slice(2)),n=this.layer.computeOutputShape(t),a=e[1];return[n[0],a].concat(n.slice(1))}call(e,t){return V(()=>(e=Le(e),z8((n,a)=>[Le(this.layer.call(n,t)),[]],e,[],!1,null,null,!1,!0)[1]))}};WA.className="TimeDistributed";re.registerClass(WA);function Jre(e){ji(rae,"BidirectionalMergeMode",e)}var Qre="concat",BA=class extends U8{constructor(e){super(e);let t=e.layer.getConfig(),n={};n.className=e.layer.getClassName(),n.config=t,this.forwardLayer=Oa(n),t.goBackwards=t.goBackwards!==!0;let a={};if(a.className=e.layer.getClassName(),a.config=t,this.backwardLayer=Oa(a),this.forwardLayer.name="forward_"+this.forwardLayer.name,this.backwardLayer.name="backward_"+this.backwardLayer.name,this.mergeMode=e.mergeMode===void 0?Qre:e.mergeMode,Jre(this.mergeMode),e.weights)throw new _e("weights support is not implemented for Bidirectional layer yet.");this._stateful=e.layer.stateful,this.returnSequences=e.layer.returnSequences,this.returnState=e.layer.returnState,this.supportsMasking=!0,this._trainable=!0,this.inputSpec=e.layer.inputSpec,this.numConstants=null}get trainable(){return this._trainable}set trainable(e){this._trainable=e,this.forwardLayer!=null&&(this.forwardLayer.trainable=e),this.backwardLayer!=null&&(this.backwardLayer.trainable=e)}getWeights(){return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights())}setWeights(e){let t=e.length,n=Math.floor(t/2);this.forwardLayer.setWeights(e.slice(0,n)),this.backwardLayer.setWeights(e.slice(n))}computeOutputShape(e){let t=this.forwardLayer.computeOutputShape(e);Array.isArray(t)&&Array.isArray(t[0])||(t=[t]),t=t;let n,a,r;return this.returnState&&(r=t.slice(1)),n=t[0],n=n,this.mergeMode==="concat"?(n[n.length-1]*=2,a=[n]):this.mergeMode==null?a=[n,n.slice()]:a=[n],this.returnState?this.mergeMode==null?a.concat(r).concat(r.slice()):[n].concat(r).concat(r.slice()):$n(a)}apply(e,t){let n=t==null?null:t.initialState,a=t==null?null:t.constants;t==null&&(t={});let r=O8(e,n,a,this.numConstants);if(e=r.inputs,n=r.initialState,a=r.constants,Array.isArray(e)&&(n=e.slice(1),e=e[0]),(n==null||n.length===0)&&a==null)return super.apply(e,t);let s=[],i=[];if(n!=null){let l=n.length;if(l%2>0)throw new U("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");t.initialState=n,s.push(...n);let u=n.map(d=>new zt({shape:d.shape}));this.forwardLayer.stateSpec=u.slice(0,l/2),this.backwardLayer.stateSpec=u.slice(l/2),i.push(...u)}if(a!=null)throw new _e("Support for constants in Bidirectional layers is not implemented yet.");let o=s[0]instanceof Da;for(let l of s)if(l instanceof Da!==o)throw new U("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");if(o){let l=[e].concat(s),u=this.inputSpec.concat(i),d=this.inputSpec;this.inputSpec=u;let p=super.apply(l,t);return this.inputSpec=d,p}else return super.apply(e,t)}call(e,t){return V(()=>{let n=t.initialState,a,r;if(n==null)a=this.forwardLayer.call(e,t),r=this.backwardLayer.call(e,t);else{let o=n.slice(0,n.length/2),l=n.slice(n.length/2);a=this.forwardLayer.call(e,Object.assign(t,{initialState:o})),r=this.backwardLayer.call(e,Object.assign(t,{initialState:l}))}let s;this.returnState&&(Array.isArray(a)&&(s=a.slice(1).concat(r.slice(1))),a=a[0],r=r[0]),this.returnSequences&&(r=Hn(r,1));let i;return this.mergeMode==="concat"?i=my([a,r]):this.mergeMode==="sum"?i=ie(a,r):this.mergeMode==="ave"?i=B(.5,ie(a,r)):this.mergeMode==="mul"?i=B(a,r):this.mergeMode==null&&(i=[a,r]),this.returnState?this.mergeMode==null?i.concat(s):[i].concat(s):i})}resetStates(e){this.forwardLayer.resetStates(),this.backwardLayer.resetStates()}build(e){Ui(this.forwardLayer.name,()=>{this.forwardLayer.build(e)}),Ui(this.backwardLayer.name,()=>{this.backwardLayer.build(e)}),this.built=!0}computeMask(e,t){Array.isArray(t)&&(t=t[0]);let n;if(this.returnSequences?this.mergeMode==null?n=[t,t]:n=t:this.mergeMode==null?n=[null,null]:n=null,this.returnState){let a=this.forwardLayer.states.map(r=>null);return Array.isArray(n)?n.concat(a).concat(a):[n].concat(a).concat(a)}else return n}get trainableWeights(){return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights)}get nonTrainableWeights(){return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights)}setFastWeightInitDuringBuild(e){super.setFastWeightInitDuringBuild(e),this.forwardLayer!=null&&this.forwardLayer.setFastWeightInitDuringBuild(e),this.backwardLayer!=null&&this.backwardLayer.setFastWeightInitDuringBuild(e)}getConfig(){let e={mergeMode:this.mergeMode},t=super.getConfig();return Object.assign(e,t),e}static fromConfig(e,t){let n=Oa(t.layer);if(delete t.layer,t.numConstants!=null)throw new _e("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");let a=t;return a.layer=n,new e(a)}};BA.className="Bidirectional";re.registerClass(BA);function ese(e){return new tu(e)}function tse(e){return new qy(e)}function nse(e){return new Uy(e)}function ase(e){return new Hy(e)}function rse(e){return new Gy(e)}function sse(e){return new Ky(e)}function ise(e){return new Xy(e)}function ose(e){return new T0(e)}function lse(e){return new tp(e)}function use(e){return new Jy(e)}function dse(e){return new np(e)}function pse(e){return new Qy(e)}function cse(e){return new eA(e)}function hse(e){return new tA(e)}function fse(e){return new nA(e)}function mse(e){return new aA(e)}function gse(e){return new pA(e)}function yse(e){return new uA(e)}function Ase(e){return new F0(e)}function xse(e){return new lA(e)}function bse(e){return new dA(e)}function vse(e){return new cA(e)}function wse(e){return new hA(e)}function kse(e){return new fA(e)}function Ise(e){return new gA(e)}function Sse(e){return new yA(e)}function Nse(e){return new xA(e)}function Tse(e){return new wA(e)}function Cse(e){return new bA(e)}function Ese(e){return new vA(e)}function Rse(e){return new AA(e)}function Mse(e){return new kA(e)}function Fse(e){return new TA(e)}function $se(e){return new CA(e)}function Dse(e){return new EA(e)}function VA(e){return new MA(e)}function Ose(e){return VA(e)}function zse(e){return VA(e)}function jA(e){return new $A(e)}function _se(e){return jA(e)}function Pse(e){return jA(e)}function UA(e){return new OA(e)}function Lse(e){return UA(e)}function Wse(e){return UA(e)}function Bse(e){return new zA(e)}function Vse(e){return new PA(e)}function H8(e){return new _A(e)}function G8(e){return new LA(e)}function q8(e){return new RA(e)}function X8(e){return new FA(e)}function jse(e){return new DA(e)}function Use(e){return new sA(e)}function Hse(e){return new E0(e)}function Gse(e){return new iA(e)}function qse(e){return new rp(e)}function Xse(e){return new rA(e)}function Kse(e){return new C0(e)}function Zse(e){return new oA(e)}function Yse(e){return new M0(e)}function Jse(e){return new ar(e)}function Qse(e){return new R0(e)}function eie(e){return new BA(e)}function tie(e){return new WA(e)}var nie=H8,aie=G8,rie=q8,sie=X8;function iie(e){return new IA(e)}function oie(e){return new SA(e)}function lie(e){return new NA(e)}function uie(e){return new mA(e)}var K8={};Fe(K8,{MAPE:()=>bie,MSE:()=>kie,binaryAccuracy:()=>die,binaryCrossentropy:()=>pie,categoricalAccuracy:()=>hie,categoricalCrossentropy:()=>fie,cosineProximity:()=>yie,mape:()=>vie,meanAbsoluteError:()=>Aie,meanAbsolutePercentageError:()=>xie,meanSquaredError:()=>wie,mse:()=>Iie,precision:()=>mie,recall:()=>gie,sparseCategoricalAccuracy:()=>cie});function die(e,t){return Ry(e,t)}function pie(e,t){return Y4(e,t)}function cie(e,t){return J4(e,t)}function hie(e,t){return My(e,t)}function fie(e,t){return Fy(e,t)}function mie(e,t){return Z4(e,t)}function gie(e,t){return Qae(e,t)}function yie(e,t){return Cy(e,t)}function Aie(e,t){return b0(e,t)}function xie(e,t){return au(e,t)}function bie(e,t){return au(e,t)}function vie(e,t){return au(e,t)}function wie(e,t){return Gi(e,t)}function kie(e,t){return Gi(e,t)}function Iie(e,t){return Gi(e,t)}var Z8={};Fe(Z8,{modelFromJSON:()=>$re});var Y8={};Fe(Y8,{l1:()=>Nie,l1l2:()=>Sie,l2:()=>Tie});function Sie(e){return new Qd(e)}function Nie(e){return Bre(e)}function Tie(e){return Vre(e)}var J8=class extends nu{constructor(){super(...arguments);this.model=null}setModel(e){if(!(e instanceof kr))throw new Error("model must be a LayersModel, not some other Container");this.model=e}};function D0(e,t){return e<t}function Q8(e,t){return e>t}var ek=class extends J8{constructor(e){super();if(e==null&&(e={}),e.restoreBestWeights)throw new _e("restoreBestWeights = True is not implemented in EarlyStopping yet.");this.monitor=e.monitor||"val_loss",this.minDelta=Math.abs(e.minDelta||0),this.patience=e.patience||0,this.verbose=e.verbose||0,this.mode=e.mode||"auto",this.baseline=e.baseline,["auto","min","max"].indexOf(this.mode)===-1&&(console.warn(`EarlyStopping mode '${this.mode}' is invalid. Falling back to mode 'auto'.`),this.mode="auto"),this.mode==="min"?this.monitorFunc=D0:this.mode==="max"?this.monitorFunc=Q8:this.monitor.indexOf("acc")!==-1?this.monitorFunc=Q8:this.monitorFunc=D0,this.monitorFunc===D0&&(this.minDelta*=-1)}async onTrainBegin(e){this.wait=0,this.stoppedEpoch=0,this.baseline!=null?this.best=this.baseline:this.best=this.monitorFunc===D0?Infinity:-Infinity}async onEpochEnd(e,t){await as(t);let n=this.getMonitorValue(t);n!=null&&(this.monitorFunc(n-this.minDelta,this.best)?(this.best=n,this.wait=0):(this.wait++,this.wait>=this.patience&&(this.stoppedEpoch=e,this.model.stopTraining=!0)))}async onTrainEnd(e){this.stoppedEpoch>0&&this.verbose&&console.log(`Epoch ${this.stoppedEpoch}: early stopping.`)}getMonitorValue(e){e==null&&(e={});let t=e[this.monitor];return t==null&&console.warn(`Metric for EarlyStopping ${this.monitor} is not available. Available metrics are: ${Object.keys(e)}`),t}};function Cie(e){return new ek(e)}var Eie={earlyStopping:Cie},_a;(function(e){e[e.DT_INVALID=0]="DT_INVALID",e[e.DT_FLOAT=1]="DT_FLOAT",e[e.DT_DOUBLE=2]="DT_DOUBLE",e[e.DT_INT32=3]="DT_INT32",e[e.DT_UINT8=4]="DT_UINT8",e[e.DT_INT16=5]="DT_INT16",e[e.DT_INT8=6]="DT_INT8",e[e.DT_STRING=7]="DT_STRING",e[e.DT_COMPLEX64=8]="DT_COMPLEX64",e[e.DT_INT64=9]="DT_INT64",e[e.DT_BOOL=10]="DT_BOOL",e[e.DT_QINT8=11]="DT_QINT8",e[e.DT_QUINT8=12]="DT_QUINT8",e[e.DT_QINT32=13]="DT_QINT32",e[e.DT_BFLOAT16=14]="DT_BFLOAT16",e[e.DT_FLOAT_REF=101]="DT_FLOAT_REF",e[e.DT_DOUBLE_REF=102]="DT_DOUBLE_REF",e[e.DT_INT32_REF=103]="DT_INT32_REF",e[e.DT_UINT8_REF=104]="DT_UINT8_REF",e[e.DT_INT16_REF=105]="DT_INT16_REF",e[e.DT_INT8_REF=106]="DT_INT8_REF",e[e.DT_STRING_REF=107]="DT_STRING_REF",e[e.DT_COMPLEX64_REF=108]="DT_COMPLEX64_REF",e[e.DT_INT64_REF=109]="DT_INT64_REF",e[e.DT_BOOL_REF=110]="DT_BOOL_REF",e[e.DT_QINT8_REF=111]="DT_QINT8_REF",e[e.DT_QUINT8_REF=112]="DT_QUINT8_REF",e[e.DT_QINT32_REF=113]="DT_QINT32_REF",e[e.DT_BFLOAT16_REF=114]="DT_BFLOAT16_REF"})(_a||(_a={}));var tk;(function(e){let t;(function(n){n[n.LEGACY=0]="LEGACY",n[n.V1=1]="V1",n[n.V2=2]="V2"})(t=e.CheckpointFormatVersion||(e.CheckpointFormatVersion={}))})(tk||(tk={}));var HA={};function Rie(e,t){let n={tfOpName:e,category:"custom",inputs:[],attrs:[],customExecutor:t};HA[e]=n}function nk(e){return HA[e]}function Mie(e){delete HA[e]}function I(e,t,n,a,r){let s=t.inputParams[e];if(s&&s.inputIndexStart!==void 0){let o=s.inputIndexStart,l=s.inputIndexEnd===0?void 0:s.inputIndexEnd===void 0?o+1:s.inputIndexEnd;if(s.type==="tensor")return kn(t.inputNames[s.inputIndexStart],n,a,r);if(s.type==="tensors")return t.inputNames.slice(o,l).map(p=>kn(p,n,a,r));let u=kn(t.inputNames.slice(o)[0],n,a,r),d=u.dataSync();return s.type==="number"?d[0]:k.toNestedArray(u.shape,d)}let i=t.attrParams[e];return i&&i.value}function kn(e,t,n,a){let[r,s]=Kn(e);if(a!=null){let o=a.getHashTableHandleByName(r);if(o!=null)return o}let i=n.currentContextIds.find(o=>!!t[O0(r,o)]);return i!==void 0?t[O0(r,i)][s]:void 0}function Fie(e,t,n){return t[O0(e,n.currentContextId)]}function Ir(e,t){let[n,a,r]=Kn(e);return[O0(n,t&&t.currentContextId),a,r]}function O0(e,t){return t?`${e}-${t}`:e}function Kn(e){let t=e.split(":");if(t.length===1)return[e,0,void 0];let n=t[0],a=t.length===3?t[1]:void 0,r=Number(t[t.length-1]);return[n,r,a]}function z0(e,t,n){let a=I("pad",e,t,n);if(a==="explicit"){a=I("explicitPaddings",e,t,n);let r=[[0,0],[0,0],[0,0],[0,0]];for(let s=0;s<4;s++)r[s][0]=a[s*2],r[s][1]=a[s*2+1];return r}return a}function Sr(e){return e.kept?e:Ha(e)}var ak={};Fe(ak,{json:()=>$ie});var $ie=[{tfOpName:"Add",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddV2",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AddN",category:"arithmetic",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"BiasAdd",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"Sub",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"RealDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Div",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"DivNoNan",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorDiv",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mul",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Maximum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Minimum",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Pow",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SquaredDifference",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Mod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"FloorMod",category:"arithmetic",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],rk={};Fe(rk,{json:()=>Die});var Die=[{tfOpName:"Abs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atan2",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ceil",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ClipByValue",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"clipValueMin",type:"number"},{start:2,name:"clipValueMax",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Complex",category:"basic_math",inputs:[{start:0,name:"real",type:"tensor"},{start:1,name:"imag",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ComplexAbs",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cos",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Cosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Elu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Exp",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Floor",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Imag",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Neg",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Real",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"Tout",name:"outputType",type:"dtype",notSupported:!0}]},{tfOpName:"Prelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"alpha",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Relu6",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Selu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sigmoid",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sin",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Rsqrt",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Square",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Tanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Sign",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Round",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Expm1",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Log1p",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Reciprocal",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Softplus",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Asinh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Acosh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Atanh",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Erf",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Prod",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axes",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LeakyRelu",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"alpha",name:"alpha",type:"number",defaultValue:.2},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"IsNan",category:"basic_math",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],sk={};Fe(sk,{json:()=>Oie});var Oie=[{tfOpName:"EmptyTensorList",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"maxNumElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"LoopCond",category:"control",inputs:[{start:0,name:"pred",type:"tensor"}]},{tfOpName:"Switch",category:"control",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"pred",type:"tensor"}]},{tfOpName:"Merge",category:"control",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}]},{tfOpName:"Enter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"frame_name",name:"frameName",type:"string"},{tfName:"is_constant",name:"isConstant",type:"bool"}]},{tfOpName:"Exit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NextIteration",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayV3",category:"control",inputs:[{start:0,name:"size",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"dynamic_size",name:"dynamicSize",type:"bool"},{tfName:"clear_after_read",name:"clearAfterRead",type:"bool"},{tfName:"identical_element_shapes",name:"identicalElementShapes",type:"bool"},{tfName:"tensor_array_name",name:"name",type:"string"}]},{tfOpName:"TensorArrayWriteV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayReadV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"TensorArrayGatherV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape",name:"elementShape",type:"shape"}]},{tfOpName:"TensorArrayScatterV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"tensor",type:"tensor"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArrayConcatV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"element_shape_except0",name:"elementShapeExcept0",type:"shape",notSupported:!0}]},{tfOpName:"TensorArraySplitV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"tensor",type:"tensor"},{start:2,name:"lengths",type:"number[]"},{start:3,name:"flowIn",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"TensorArraySizeV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"},{start:1,name:"flowIn",type:"number"}]},{tfOpName:"TensorArrayCloseV3",category:"control",inputs:[{start:0,name:"tensorArrayId",type:"tensor"}]},{tfOpName:"StatelessIf",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"If",category:"control",inputs:[{start:0,name:"cond",type:"tensor"},{start:1,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"then_branch",name:"thenBranch",type:"func"},{tfName:"else_branch",name:"elseBranch",type:"func"}]},{tfOpName:"StatelessWhile",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"While",category:"control",inputs:[{start:0,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"cond",name:"cond",type:"func"},{tfName:"body",name:"body",type:"func"}]},{tfOpName:"TensorListScatter",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListScatterV2",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"},{start:3,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGather",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"indices",type:"number[]"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListGetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListSetItem",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"index",type:"number"},{start:2,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListReserve",category:"control",inputs:[{start:0,name:"elementShape",type:"shape"},{start:1,name:"numElements",type:"number"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListFromTensor",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListStack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"},{tfName:"num_elements",name:"numElements",type:"dtype"}]},{tfOpName:"TensorListSplit",category:"control",inputs:[{start:0,name:"tensor",type:"tensor"},{start:1,name:"elementShape",type:"shape"},{start:2,name:"lengths",type:"number[]"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListConcat",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"}],attrs:[{tfName:"element_shape",name:"elementShape",type:"shape"},{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPopBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"elementShape",type:"shape"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]},{tfOpName:"TensorListPushBack",category:"control",inputs:[{start:0,name:"tensorListId",type:"tensor"},{start:1,name:"tensor",type:"tensor"}],attrs:[{tfName:"element_dtype",name:"elementDType",type:"dtype"}]}],ik={};Fe(ik,{json:()=>zie});var zie=[{tfOpName:"AvgPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[],notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPoolWithArgmax",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"include_batch_in_index",name:"includeBatchInIndex",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"AvgPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MaxPool3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"ksize",name:"kernelSize",type:"number[]"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Conv1D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"stride",name:"stride",type:"number"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NWC"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"dilation",name:"dilation",type:"number",defaultValue:1}]},{tfOpName:"Conv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"useCudnnOnGpu",name:"useCudnnOnGpu",type:"bool"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"_FusedConv2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"use_cudnn_on_gpu",name:"useCudnnOnGpu",type:"bool",defaultValue:!0},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"leakyrelu_alpha",name:"leakyreluAlpha",type:"number"}]},{tfOpName:"Conv2DBackpropInput",category:"convolution",inputs:[{start:2,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:0,name:"outputShape",type:"number[]"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]",notSupported:!0}]},{tfOpName:"DepthwiseConv2d",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"DepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"FusedDepthwiseConv2dNative",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]",defaultValue:[1,1,1,1]},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"explicit_paddings",name:"explicitPaddings",type:"number[]",defaultValue:[]}]},{tfOpName:"Conv3D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"padding",name:"pad",type:"string"},{tfName:"data_format",name:"dataFormat",type:"string",defaultValue:"NHWC"},{tfName:"dilations",name:"dilations",type:"number[]"}]},{tfOpName:"Dilation2D",category:"convolution",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"filter",type:"tensor"}],attrs:[{tfName:"strides",name:"strides",type:"number[]"},{tfName:"rates",name:"dilations",type:"number[]"},{tfName:"padding",name:"pad",type:"string"}]}],ok={};Fe(ok,{json:()=>_ie});var _ie=[{tfOpName:"Fill",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"},{start:1,name:"value",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"LinSpace",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"num",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"OneHot",category:"creation",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"depth",type:"number"},{start:2,name:"onValue",type:"number",defaultValue:1},{start:3,name:"offValue",type:"number",defaultValue:0}],attrs:[{tfName:"axis",name:"axis",type:"number",notSupported:!0},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Ones",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"OnesLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"RandomUniform",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"minval",name:"minval",type:"number",defaultValue:0},{tfName:"maxval",name:"maxval",type:"number",defaultValue:1},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"seed",name:"seed",type:"number",defaultValue:0},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Range",category:"creation",inputs:[{start:0,name:"start",type:"number"},{start:1,name:"stop",type:"number"},{start:2,name:"step",type:"number",defaultValue:0}],attrs:[{tfName:"Tidx",name:"dtype",type:"dtype"}]},{tfOpName:"TruncatedNormal",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"means",name:"mean",type:"number",defaultValue:0},{tfName:"stddev",name:"stdDev",type:"number",defaultValue:1},{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number",defaultValue:0,notSupported:!0},{tfName:"dtype",name:"dtype",type:"dtype"},{tfName:"T",name:"T",type:"number",notSupported:!0}]},{tfOpName:"Zeros",category:"creation",inputs:[{start:0,name:"shape",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"ZerosLike",category:"creation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype"}]},{tfOpName:"Multinomial",category:"creation",inputs:[{start:0,name:"logits",type:"tensor"},{start:1,name:"numSamples",type:"number"}],attrs:[{tfName:"seed",name:"seed",type:"number"},{tfName:"seed2",name:"seed2",type:"number"},{tfName:"T",name:"dtype",type:"dtype"},{tfName:"output_dtype",name:"output_dtype",type:"dtype"}]}],lk={};Fe(lk,{json:()=>Pie});var Pie=[{tfOpName:"NonMaxSuppressionV2",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV3",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}]},{tfOpName:"NonMaxSuppressionV4",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0},{tfName:"T_threshold",name:"threshold",type:"dtype",notSupported:!0},{tfName:"pad_to_max_output_size",name:"padToMaxOutputSize",type:"bool"}]},{tfOpName:"NonMaxSuppressionV5",category:"dynamic",inputs:[{start:0,name:"boxes",type:"tensor"},{start:1,name:"scores",type:"tensor"},{start:2,name:"maxOutputSize",type:"number"},{start:3,name:"iouThreshold",type:"number"},{start:4,name:"scoreThreshold",type:"number"},{start:5,name:"softNmsSigma",type:"number"}]},{tfOpName:"Where",category:"dynamic",inputs:[{start:0,name:"condition",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ListDiff",category:"dynamic",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"y",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],uk={};Fe(uk,{json:()=>Lie});var Lie=[{tfOpName:"TopKV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"k",type:"number"}],attrs:[{tfName:"sorted",name:"sorted",type:"bool"}]},{tfOpName:"Unique",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"UniqueV2",category:"evaluation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]}],dk={};Fe(dk,{json:()=>Wie});var Wie=[{tfOpName:"PlaceholderWithDefault",category:"graph",inputs:[{start:0,name:"default",type:"tensor"}],attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Placeholder",category:"graph",attrs:[{tfName:"shape",name:"shape",type:"shape"},{tfName:"dtype",name:"dtype",type:"dtype"}]},{tfOpName:"Const",category:"graph"},{tfOpName:"Identity",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IdentityN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Snapshot",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Rank",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Size",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"Shape",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"ShapeN",category:"graph",inputs:[{start:0,end:0,name:"x",type:"tensors"}]},{tfOpName:"Print",category:"graph",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"data",type:"tensors"}],attrs:[{tfName:"message",name:"message",type:"string"},{tfName:"first_n",name:"firstN",type:"number",notSupported:!0},{tfName:"summarize",name:"summarize",type:"number",defaultValue:3}]},{tfOpName:"NoOp",category:"graph",inputs:[]},{tfOpName:"StopGradient",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"FakeQuantWithMinMaxVars",category:"graph",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"min",name:"min",type:"number"},{tfName:"max",name:"max",type:"number"}]}],pk={};Fe(pk,{json:()=>Bie});var Bie=[{tfOpName:"HashTable",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"HashTableV2",category:"hash_table",inputs:[],attrs:[{tfName:"shared_name",name:"sharedName",type:"string"},{tfName:"use_node_name_sharing",name:"useNodeNameSharing",type:"bool"},{tfName:"key_dtype",name:"keyDType",type:"dtype"},{tfName:"value_dtype",name:"valueDType",type:"dtype"}]},{tfOpName:"LookupTableImport",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableImportV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"values",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFind",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableFindV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"},{start:1,name:"keys",type:"tensor"},{start:2,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"Tin",name:"tIn",type:"dtype",notSupported:!0},{tfName:"Tout",name:"tOut",type:"dtype",notSupported:!0}]},{tfOpName:"LookupTableSize",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]},{tfOpName:"LookupTableSizeV2",category:"hash_table",inputs:[{start:0,name:"tableHandle",type:"tensor"}]}],ck={};Fe(ck,{json:()=>Vie});var Vie=[{tfOpName:"ResizeBilinear",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"ResizeNearestNeighbor",category:"image",inputs:[{start:0,name:"images",type:"tensor"},{start:1,name:"size",type:"number[]"}],attrs:[{tfName:"align_corners",name:"alignCorners",type:"bool"},{tfName:"half_pixel_centers",name:"halfPixelCenters",type:"bool"},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"CropAndResize",category:"image",inputs:[{start:0,name:"image",type:"tensor"},{start:1,name:"boxes",type:"tensor"},{start:2,name:"boxInd",type:"tensor"},{start:3,name:"cropSize",type:"number[]"}],attrs:[{tfName:"method",name:"method",type:"string"},{tfName:"extrapolation_value",name:"extrapolationValue",type:"number"}]}],hk={};Fe(hk,{json:()=>jie});var jie=[{tfOpName:"Equal",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"NotEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Greater",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"GreaterEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Less",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LessEqual",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalAnd",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalNot",category:"logical",inputs:[{start:0,name:"a",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"LogicalOr",category:"logical",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Select",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SelectV2",category:"logical",inputs:[{start:0,name:"condition",type:"tensor"},{start:1,name:"a",type:"tensor"},{start:2,name:"b",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]}],fk={};Fe(fk,{json:()=>Uie});var Uie=[{tfOpName:"_FusedMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"},{start:2,end:0,name:"args",type:"tensors"}],attrs:[{tfName:"num_args",name:"numArgs",type:"number"},{tfName:"fused_ops",name:"fusedOps",type:"string[]",defaultValue:[]},{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:1e-4},{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"MatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"transpose_a",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"transpose_b",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMul",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"BatchMatMulV2",category:"matrices",inputs:[{start:0,name:"a",type:"tensor"},{start:1,name:"b",type:"tensor"}],attrs:[{tfName:"adj_x",name:"transposeA",type:"bool",defaultValue:!1},{tfName:"adj_y",name:"transposeB",type:"bool",defaultValue:!1},{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Transpose",category:"matrices",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"perm",type:"number[]"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"Einsum",category:"matrices",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"equation",name:"equation",type:"string"},{tfName:"N",name:"n",type:"number",defaultValue:2},{tfName:"T",name:"dtype",type:"dtype"}]}],mk={};Fe(mk,{json:()=>Hie});var Hie=[{tfOpName:"FusedBatchNorm",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV2",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"FusedBatchNormV3",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"scale",type:"tensor"},{start:2,name:"offset",type:"tensor"},{start:3,name:"mean",type:"tensor"},{start:4,name:"variance",type:"tensor"}],attrs:[{tfName:"epsilon",name:"epsilon",type:"number",defaultValue:.001},{tfName:"data_format",name:"dataFormat",type:"string",notSupported:!0}]},{tfOpName:"LRN",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"depth_radius",name:"radius",type:"number",defaultValue:5},{tfName:"bias",name:"bias",type:"number",defaultValue:1},{tfName:"alpha",name:"alpha",type:"number",defaultValue:1},{tfName:"beta",name:"beta",type:"number",defaultValue:.5}]},{tfOpName:"Softmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"LogSoftmax",category:"normalization",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"SparseToDense",category:"normalization",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!0,notSupported:!0}]}],gk={};Fe(gk,{json:()=>Gie});var Gie=[{tfOpName:"Bincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}]},{tfOpName:"DenseBincount",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"size",type:"number"},{start:2,name:"weights",type:"tensor"}],attrs:[{tfName:"binary_output",name:"binaryOutput",type:"bool"}]},{tfOpName:"Max",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Mean",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Min",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Sum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"All",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Any",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"ArgMax",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"ArgMin",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"Prod",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}],attrs:[{tfName:"keep_dims",name:"keepDims",type:"bool"}]},{tfOpName:"Cumsum",category:"reduction",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}],attrs:[{tfName:"exclusive",name:"exclusive",type:"bool"},{tfName:"reverse",name:"reverse",type:"bool"}]}],yk={};Fe(yk,{json:()=>qie});var qie=[{tfOpName:"ConcatV2",category:"slice_join",inputs:[{start:0,end:-1,name:"tensors",type:"tensors"},{start:-1,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"Concat",category:"slice_join",inputs:[{start:1,end:0,name:"tensors",type:"tensors"},{start:0,name:"axis",type:"number"}],attrs:[{tfName:"N",name:"n",type:"number",defaultValue:2}]},{tfOpName:"GatherV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"axis",type:"number",defaultValue:0}],attrs:[{tfName:"batch_dims",name:"batchDims",type:"number",defaultValue:0}]},{tfOpName:"Gather",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",notSupported:!0}]},{tfOpName:"Reverse",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"dims",type:"bool[]"}]},{tfOpName:"ReverseV2",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number[]"}]},{tfOpName:"Slice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"size",type:"number[]"}]},{tfOpName:"StridedSlice",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"begin",type:"number[]"},{start:2,name:"end",type:"number[]"},{start:3,name:"strides",type:"number[]"}],attrs:[{tfName:"begin_mask",name:"beginMask",type:"number",defaultValue:0},{tfName:"end_mask",name:"endMask",type:"number",defaultValue:0},{tfName:"new_axis_mask",name:"newAxisMask",type:"number",defaultValue:0},{tfName:"ellipsis_mask",name:"ellipsisMask",type:"number",defaultValue:0},{tfName:"shrink_axis_mask",name:"shrinkAxisMask",type:"number",defaultValue:0}]},{tfOpName:"Pack",category:"slice_join",inputs:[{start:0,end:0,name:"tensors",type:"tensors"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0}]},{tfOpName:"Unpack",category:"slice_join",inputs:[{start:0,name:"tensor",type:"tensor"}],attrs:[{tfName:"axis",name:"axis",type:"number",defaultValue:0},{tfName:"num",name:"num",type:"number",defaultValue:0,notSupported:!0}]},{tfOpName:"Tile",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"reps",type:"number[]"}]},{tfOpName:"Split",category:"slice_join",inputs:[{start:0,name:"axis",type:"number",defaultValue:0},{start:1,name:"x",type:"tensor"}],attrs:[{tfName:"num_split",name:"numOrSizeSplits",type:"number",defaultValue:1}]},{tfOpName:"SplitV",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"numOrSizeSplits",type:"number[]"},{start:2,name:"axis",type:"number",defaultValue:0}]},{tfOpName:"ScatterNd",category:"slice_join",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"shape",type:"number[]"}]},{tfOpName:"GatherNd",category:"slice_join",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"indices",type:"tensor"}]},{tfOpName:"SparseToDense",category:"slice_join",inputs:[{start:0,name:"sparseIndices",type:"tensor"},{start:1,name:"outputShape",type:"number[]"},{start:2,name:"sparseValues",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}],attrs:[{tfName:"validate_indices",name:"validateIndices",type:"bool",defaultValue:!1,notSupported:!0}]}],Ak={};Fe(Ak,{json:()=>Xie});var Xie=[{tfOpName:"SparseFillEmptyRows",category:"sparse",inputs:[{start:0,name:"indices",type:"tensor"},{start:1,name:"values",type:"tensor"},{start:2,name:"denseShape",type:"tensor"},{start:3,name:"defaultValue",type:"tensor"}]},{tfOpName:"SparseReshape",category:"sparse",inputs:[{start:0,name:"inputIndices",type:"tensor"},{start:1,name:"inputShape",type:"tensor"},{start:2,name:"newShape",type:"tensor"}],attrs:[{tfName:"T",name:"dtype",type:"dtype",notSupported:!0}]},{tfOpName:"SparseSegmentMean",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]},{tfOpName:"SparseSegmentSum",category:"sparse",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"indices",type:"tensor"},{start:2,name:"segmentIds",type:"tensor"}]}],xk={};Fe(xk,{json:()=>Kie});var Kie=[{tfOpName:"FFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"IFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"}]},{tfOpName:"RFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]},{tfOpName:"IRFFT",category:"spectral",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"fft_length",type:"number",notSupported:!0}]}],bk={};Fe(bk,{json:()=>Zie});var Zie=[{tfOpName:"StringNGrams",category:"string",inputs:[{start:0,name:"data",type:"tensor"},{start:1,name:"dataSplits",type:"tensor"}],attrs:[{tfName:"separator",name:"separator",type:"string"},{tfName:"ngram_widths",name:"nGramWidths",type:"number[]"},{tfName:"left_pad",name:"leftPad",type:"string"},{tfName:"right_pad",name:"rightPad",type:"string"},{tfName:"pad_width",name:"padWidth",type:"number"},{tfName:"preserve_short_sequences",name:"preserveShortSequences",type:"bool"}],outputs:["ngrams","ngrams_splits"]},{tfOpName:"StringSplit",category:"string",inputs:[{start:0,name:"input",type:"tensor"},{start:1,name:"delimiter",type:"tensor"}],attrs:[{tfName:"skip_empty",name:"skipEmpty",type:"bool"}],outputs:["indices","values","shape"]},{tfOpName:"StringToHashBucketFast",category:"string",inputs:[{start:0,name:"input",type:"tensor"}],attrs:[{tfName:"num_buckets",name:"numBuckets",type:"number"}]}],vk={};Fe(vk,{json:()=>Yie});var Yie=[{tfOpName:"Cast",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"SrcT",name:"sdtype",type:"dtype",notSupported:!0},{tfName:"DstT",name:"dtype",type:"dtype"}]},{tfOpName:"ExpandDims",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"axis",type:"number"}]},{tfOpName:"MirrorPad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"mode",name:"mode",type:"string"}]},{tfOpName:"Pad",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"}],attrs:[{tfName:"constant_value",name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"PadV2",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"padding",type:"number[]"},{start:2,name:"constantValue",type:"number",defaultValue:0}]},{tfOpName:"Reshape",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}]},{tfOpName:"Squeeze",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"axis",tfDeprecatedName:"squeeze_dims",name:"axis",type:"number[]"}]},{tfOpName:"SpaceToBatchND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"paddings",type:"number[]"}]},{tfOpName:"BatchToSpaceND",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"blockShape",type:"number[]"},{start:2,name:"crops",type:"number[]"}]},{tfOpName:"DepthToSpace",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"}],attrs:[{tfName:"block_size",name:"blockSize",type:"number"},{tfName:"data_format",name:"dataFormat",type:"string"}]},{tfOpName:"BroadcastTo",category:"transformation",inputs:[{start:0,name:"x",type:"tensor"},{start:1,name:"shape",type:"number[]"}],attrs:[]}],wk=class{static get Instance(){return this._instance||(this._instance=new this)}constructor(){let e=[ak,rk,sk,ik,ok,lk,uk,dk,pk,ck,hk,fk,mk,gk,yk,Ak,xk,bk,vk],t=[].concat(...e.map(n=>n.json));this.opMappers=t.reduce((n,a)=>(n[a.tfOpName]=a,n),{})}transformGraph(e,t={}){let n=e.node,a=[],r=[],s=[],i=n.reduce((m,f)=>(m[f.name]=this.mapNode(f),f.op.startsWith("Placeholder")?a.push(m[f.name]):f.op==="Const"?r.push(m[f.name]):(f.input==null||f.input.length===0)&&s.push(m[f.name]),m),{}),o=[],l=[],u={},d={};t!=null&&(u=this.mapSignatureEntries(t.inputs),d=this.mapSignatureEntries(t.outputs));let p=Object.keys(i);p.forEach(m=>{let f=i[m];f.inputNames.forEach((g,y)=>{let[A,,x]=Ir(g),v=i[A];if(v.outputs!=null){let b=v.outputs.indexOf(x);if(b!==-1){let w=`${A}:${b}`;f.inputNames[y]=w}}f.inputs.push(v),v.children.push(f)})}),Object.keys(d).length===0?p.forEach(m=>{let f=i[m];f.children.length===0&&l.push(f)}):Object.keys(d).forEach(m=>{let[f]=Ir(m),g=i[f];g!=null&&(g.signatureKey=d[m],l.push(g))}),Object.keys(u).length>0?Object.keys(u).forEach(m=>{let[f]=Ir(m),g=i[f];g&&(g.signatureKey=u[m],o.push(g))}):o=a;let c={};e.library!=null&&e.library.function!=null&&(c=e.library.function.reduce((m,f)=>(m[f.signature.name]=this.mapFunction(f),m),{}));let h={nodes:i,inputs:o,outputs:l,weights:r,placeholders:a,signature:t,functions:c};return s.length>0&&(h.initNodes=s),h}mapSignatureEntries(e){return Object.keys(e||{}).reduce((t,n)=>(t[e[n].name]=n,t),{})}mapNode(e){let t=nk(e.op)||this.opMappers[e.op]||{};e.attr==null&&(e.attr={});let n={name:e.name,op:e.op,category:t.category,inputNames:(e.input||[]).map(a=>a.startsWith("^")?a.substr(1):a),inputs:[],children:[],inputParams:{},attrParams:{},rawAttrs:e.attr,outputs:t.outputs};return t.inputs!=null&&(n.inputParams=t.inputs.reduce((a,r)=>(a[r.name]={type:r.type,inputIndexStart:r.start,inputIndexEnd:r.end},a),{})),t.attrs!=null&&(n.attrParams=t.attrs.reduce((a,r)=>{let s=r.type,i;switch(r.type){case"string":i=GA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=GA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"string[]":i=e2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=e2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number":i=XA(e.attr,r.tfName,r.defaultValue||0),i===void 0&&!!r.tfDeprecatedName&&(i=XA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"number[]":i=QA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=QA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool":i=qA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=qA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"bool[]":i=n2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=n2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape":i=JA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=JA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"shape[]":i=t2(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=t2(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype":i=ZA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=ZA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"dtype[]":i=YA(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=YA(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"func":i=Ik(e.attr,r.tfName,r.defaultValue),i===void 0&&!!r.tfDeprecatedName&&(i=Ik(e.attr,r.tfDeprecatedName,r.defaultValue));break;case"tensor":case"tensors":break;default:throw new Error(`Unsupported param type: ${r.type} for op: ${e.op}`)}return a[r.name]={value:i,type:s},a},{})),n}mapFunction(e){let t=e.nodeDef,n=[],a=[],r={};t!=null&&(r=t.reduce((u,d)=>(u[d.name]=this.mapNode(d),d.op==="Const"&&a.push(u[d.name]),u),{}));let s=[],i=[];e.signature.inputArg.forEach(u=>{let[d]=Ir(u.name),p={name:d,op:"Placeholder",inputs:[],inputNames:[],category:"graph",inputParams:{},attrParams:{dtype:{value:KA(u.type),type:"dtype"}},children:[]};p.signatureKey=u.name,s.push(p),r[d]=p}),Object.keys(r).forEach(u=>{let d=r[u];d.inputNames.forEach((p,c)=>{let[h,,m]=Ir(p),f=r[h];if(f.outputs!=null){let g=f.outputs.indexOf(m);if(g!==-1){let y=`${h}:${g}`;d.inputNames[c]=y}}d.inputs.push(f),f.children.push(d)})});let o=e.ret;e.signature.outputArg.forEach(u=>{let[d,p]=Ir(o[u.name]),c=r[d];c!=null&&(c.defaultOutput=p,i.push(c))});let l=this.mapArgsToSignature(e);return{nodes:r,inputs:s,outputs:i,weights:a,placeholders:n,signature:l}}mapArgsToSignature(e){return{methodName:e.signature.name,inputs:e.signature.inputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n),t),{}),outputs:e.signature.outputArg.reduce((t,n)=>(t[n.name]=this.mapArgToTensorInfo(n,e.ret),t),{})}}mapArgToTensorInfo(e,t){let n=e.name;return t!=null&&(n=t[n]),{name:n,dtype:e.type}}};function Jie(e){let t=te().global;if(typeof t.atob!="undefined")return t.atob(e);if(typeof Buffer!="undefined")return new Buffer(e,"base64").toString();throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()")}function kk(e,t){let n=Array.isArray(e)?String.fromCharCode.apply(null,e):Jie(e);return t?n:n.toLowerCase()}function GA(e,t,n,a=!1){let r=e[t];return r!=null?kk(r.s,a):n}function qA(e,t,n){let a=e[t];return a?a.b:n}function XA(e,t,n){let a=e[t]||{},r=a.i!=null?a.i:a.f!=null?a.f:n;return typeof r=="number"?r:parseInt(r,10)}function KA(e){switch(typeof e=="string"&&(e=_a[e]),e){case _a.DT_FLOAT:return"float32";case _a.DT_INT32:case _a.DT_INT64:case _a.DT_INT8:case _a.DT_UINT8:return"int32";case _a.DT_BOOL:return"bool";case _a.DT_DOUBLE:return"float32";case _a.DT_STRING:return"string";default:return null}}function Ik(e,t,n){let a=e[t];return a&&a.func?a.func.name:n}function ZA(e,t,n){let a=e[t];return a&&a.type?KA(a.type):n}function YA(e,t,n){let a=e[t];return a&&a.list&&a.list.type?a.list.type.map(r=>KA(r)):n}function Sk(e){if(!e.unknownRank)return e.dim!=null?e.dim.map(t=>typeof t.size=="number"?t.size:parseInt(t.size,10)):[]}function JA(e,t,n){let a=e[t];return a&&a.shape?Sk(a.shape):n}function QA(e,t,n){let a=e[t];return a?((a.list.f&&a.list.f.length?a.list.f:a.list.i)||[]).map(r=>typeof r=="number"?r:parseInt(r,10)):n}function e2(e,t,n,a=!1){let r=e[t];return r&&r.list&&r.list.s?r.list.s.map(s=>kk(s,a)):n}function t2(e,t,n){let a=e[t];return a&&a.list&&a.list.shape?a.list.shape.map(r=>Sk(r)):n}function n2(e,t,n){let a=e[t];return a&&a.list&&a.list.b?a.list.b:n}var Qie=class{constructor(e,t,n){this.node=e,this.tensorMap=t,this.context=n,this.inputs=[],this.attrs={},this.inputs=e.inputNames.map(a=>this.getInput(a)),e.rawAttrs!=null&&(this.attrs=Object.keys(e.rawAttrs).reduce((a,r)=>(a[r]=this.getAttr(r),a),{}))}getInput(e){return kn(e,this.tensorMap,this.context)}getAttr(e,t){let n=this.node.rawAttrs[e];if(n.tensor!=null)return kn(e,this.tensorMap,this.context);if(n.i!=null||n.f!=null)return XA(this.node.rawAttrs,e,t);if(n.s!=null)return GA(this.node.rawAttrs,e,t);if(n.b!=null)return qA(this.node.rawAttrs,e,t);if(n.shape!=null)return JA(this.node.rawAttrs,e,t);if(n.type!=null)return ZA(this.node.rawAttrs,e,t);if(n.list!=null){if(n.list.i!=null||n.list.f!=null)return QA(this.node.rawAttrs,e,t);if(n.list.s!=null)return e2(this.node.rawAttrs,e,t);if(n.list.shape!=null)return t2(this.node.rawAttrs,e,t);if(n.list.b!=null)return n2(this.node.rawAttrs,e,t);if(n.list.type!=null)return YA(this.node.rawAttrs,e,t)}return t}},eoe=(e,t,n)=>{switch(e.op){case"BiasAdd":case"AddV2":case"Add":return[ie(I("a",e,t,n),I("b",e,t,n))];case"AddN":return[jc(I("tensors",e,t,n))];case"FloorMod":case"Mod":return[eg(I("a",e,t,n),I("b",e,t,n))];case"Mul":return[B(I("a",e,t,n),I("b",e,t,n))];case"RealDiv":case"Div":return[me(I("a",e,t,n),I("b",e,t,n))];case"DivNoNan":return[j1(I("a",e,t,n),I("b",e,t,n))];case"FloorDiv":return[Vc(I("a",e,t,n),I("b",e,t,n))];case"Sub":return[ye(I("a",e,t,n),I("b",e,t,n))];case"Minimum":return[Fl(I("a",e,t,n),I("b",e,t,n))];case"Maximum":return[Xa(I("a",e,t,n),I("b",e,t,n))];case"Pow":return[yr(I("a",e,t,n),I("b",e,t,n))];case"SquaredDifference":return[hh(I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},toe=(e,t,n)=>{switch(e.op){case"Abs":case"ComplexAbs":return[Wt(I("x",e,t,n))];case"Acos":return[N1(I("x",e,t,n))];case"Acosh":return[T1(I("x",e,t,n))];case"Asin":return[E1(I("x",e,t,n))];case"Asinh":return[R1(I("x",e,t,n))];case"Atan":return[M1(I("x",e,t,n))];case"Atan2":return[F1(I("x",e,t,n),I("y",e,t,n))];case"Atanh":return[$1(I("x",e,t,n))];case"Ceil":return[P1(I("x",e,t,n))];case"Complex":return[Wr(I("real",e,t,n),I("imag",e,t,n))];case"Cos":return[dd(I("x",e,t,n))];case"Cosh":return[Xc(I("x",e,t,n))];case"Elu":return[El(I("x",e,t,n))];case"Erf":return[U1(I("x",e,t,n))];case"Exp":return[la(I("x",e,t,n))];case"Expm1":return[H1(I("x",e,t,n))];case"Floor":return[Ml(I("x",e,t,n))];case"Log":return[Bn(I("x",e,t,n))];case"Log1p":return[Jc(I("x",e,t,n))];case"Imag":return[Zc(I("x",e,t,n))];case"Neg":return[St(I("x",e,t,n))];case"Reciprocal":return[ag(I("x",e,t,n))];case"Real":return[yd(I("x",e,t,n))];case"Relu":return[Ka(I("x",e,t,n))];case"Round":return[sh(I("x",e,t,n))];case"Selu":return[oh(I("x",e,t,n))];case"Sigmoid":return[Rn(I("x",e,t,n))];case"Sin":return[lh(I("x",e,t,n))];case"Sign":return[sg(I("x",e,t,n))];case"Sinh":return[uh(I("x",e,t,n))];case"Softplus":return[Ci(I("x",e,t,n))];case"Sqrt":return[an(I("x",e,t,n))];case"Square":return[ot(I("x",e,t,n))];case"Tanh":return[Si(I("x",e,t,n))];case"Tan":return[lg(I("x",e,t,n))];case"ClipByValue":return[Mn(I("x",e,t,n),I("clipValueMin",e,t,n),I("clipValueMax",e,t,n))];case"Relu6":return[rh(I("x",e,t,n))];case"Rsqrt":return[ih(kn(e.inputNames[0],t,n))];case"Prod":return[ah(I("x",e,t,n),I("axes",e,t,n))];case"LeakyRelu":return[pd(I("x",e,t,n),I("alpha",e,t,n))];case"Prelu":return[gd(I("x",e,t,n),I("alpha",e,t,n))];case"IsNan":return[q1(kn(e.inputNames[0],t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function ka(e,t,n=""){if(!(typeof e=="number"||typeof t=="number")){k.assert(e.length===t.length,()=>n+` Shapes ${e} and ${t} must match`);for(let a=0;a<e.length;a++){let r=e[a],s=t[a];k.assert(r<0||s<0||r===s,()=>n+` Shapes ${e} and ${t} must match`)}}}function Nk(e){return!(typeof e=="number"||e.some(t=>t<0))}function op(e,t,n){let a=a2(e,n),r=!Nk(a);if(r&&t.length===0)throw new Error(`Tried to calculate elements of an empty list with non-fully-defined elementShape: ${a}`);if(r&&t.forEach(s=>{a=a2(s.shape,a)}),!Nk(a))throw new Error(`Non-fully-defined elementShape: ${a}`);return a}function a2(e,t){if(typeof e=="number")return t;if(typeof t=="number")return e;if(e.length!==t.length)throw new Error(`Incompatible ranks during merge: ${e} vs. ${t}`);let n=[];for(let a=0;a<e.length;++a){let r=e[a],s=t[a];if(r>=0&&s>=0&&r!==s)throw new Error(`Incompatible shape during merge: ${e} vs. ${t}`);n[a]=r>=0?r:s}return n}var noe=class{constructor(e,t,n,a,r,s,i){this.name=e,this.dtype=t,this.maxSize=n,this.elementShape=a,this.identicalElementShapes=r,this.dynamicSize=s,this.clearAfterRead=i,this.tensors=[],this.closed_=!1,this.idTensor=ke(0),Kt(this.idTensor)}get id(){return this.idTensor.id}get closed(){return this.closed_}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.tensor.id))&&t.tensor.dispose()}),this.tensors=[],this.closed_=!0,this.idTensor.dispose()}size(){return this.tensors.length}read(e){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||e>=this.size())throw new Error(`Tried to read from index ${e}, but array size is: ${this.size()}`);let t=this.tensors[e];if(t.cleared)throw new Error(`TensorArray ${this.name}: Could not read index ${e} twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).`);return this.clearAfterRead&&(t.cleared=!0),t.read=!0,t.tensor}readMany(e){return e.map(t=>this.read(t))}write(e,t){if(this.closed_)throw new Error(`TensorArray ${this.name} has already been closed.`);if(e<0||!this.dynamicSize&&e>=this.maxSize)throw new Error(`Tried to write to index ${e}, but array is not resizeable and size is: ${this.maxSize}`);let n=this.tensors[e]||{};if(t.dtype!==this.dtype)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e},
|
|
because the value dtype is ${t.dtype}, but TensorArray dtype is ${this.dtype}.`);if(this.size()===0&&(this.elementShape==null||this.elementShape.length===0)&&(this.elementShape=t.shape),ka(this.elementShape,t.shape,`TensorArray ${this.name}: Could not write to TensorArray index ${e}.`),n.read)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been read.`);if(n.written)throw new Error(`TensorArray ${this.name}: Could not write to TensorArray index ${e}, because it has already been written.`);n.tensor=t,Kt(t),n.written=!0,this.tensors[e]=n}writeMany(e,t){if(e.length!==t.length)throw new Error(`TensorArray ${this.name}: could not write multiple tensors,because the index size: ${e.length} is not the same as tensors size: ${t.length}.`);e.forEach((n,a)=>this.write(n,t[a]))}gather(e,t){if(!!t&&t!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but gather requested dtype ${t}`);if(e)e=e.slice(0,this.size());else{e=[];for(let a=0;a<this.size();a++)e.push(a)}if(e.length===0)return ln([],[0].concat(this.elementShape));let n=this.readMany(e);return ka(this.elementShape,n[0].shape,"TensorArray shape mismatch: "),gn(n,0)}concat(e){if(!!e&&e!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but concat requested dtype ${e}`);if(this.size()===0)return ln([],[0].concat(this.elementShape));let t=[];for(let a=0;a<this.size();a++)t.push(a);let n=this.readMany(t);return ka(this.elementShape,n[0].shape,`TensorArray shape mismatch: tensor array shape (${this.elementShape}) vs first tensor shape (${n[0].shape})`),lt(n,0)}scatter(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);if(e.length!==t.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${e.length} vs. ${t.shape[0]}`);let n=Math.max(...e);if(!this.dynamicSize&&n>=this.maxSize)throw new Error(`Max index must be < array size (${n} vs. ${this.maxSize})`);this.writeMany(e,Gn(t,0))}split(e,t){if(t.dtype!==this.dtype)throw new Error(`TensorArray dtype is ${this.dtype} but tensor has dtype ${t.dtype}`);let n=0,a=e.map(o=>(n+=o,n));if(n!==t.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${n}, and tensor's shape is: ${t.shape}`);if(!this.dynamicSize&&e.length!==this.maxSize)throw new Error(`TensorArray's size is not equal to the size of lengths (${this.maxSize} vs. ${e.length}), and the TensorArray is not marked as dynamically resizeable`);let r=n===0?0:t.size/n,s=[];V(()=>{t=q(t,[1,n,r]);for(let o=0;o<e.length;++o){let l=o===0?0:a[o-1],u=[0,l,0],d=[1,e[o],r];s[o]=q(Re(t,u,d),this.elementShape)}return s});let i=[];for(let o=0;o<e.length;o++)i[o]=o;this.writeMany(i,s)}},lp=class{constructor(e,t,n,a=-1){this.tensors=e,this.elementShape=t,this.elementDtype=n,e!=null&&e.forEach(r=>{if(n!==r.dtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${r.dtype}`);ka(t,r.shape,"TensorList shape mismatch: "),Kt(r)}),this.idTensor=ke(0),this.maxNumElements=a,Kt(this.idTensor)}get id(){return this.idTensor.id}copy(){return new lp([...this.tensors],this.elementShape,this.elementDtype)}clearAndClose(e){this.tensors.forEach(t=>{(e==null||!e.has(t.id))&&t.dispose()}),this.tensors.length=0,this.idTensor.dispose()}size(){return this.tensors.length}stack(e,t,n=-1){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(n!==-1&&this.tensors.length!==n)throw new Error(`Operation expected a list with ${n} elements but got a list with ${this.tensors.length} elements.`);ka(e,this.elementShape,"TensorList shape mismatch: ");let a=op(this.elementShape,this.tensors,e);return V(()=>{let r=this.tensors.map(s=>q(s,a));return gn(r,0)})}popBack(e,t){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);if(this.size()===0)throw new Error("Trying to pop from an empty list.");let n=op(this.elementShape,this.tensors,e),a=this.tensors.pop();return ka(a.shape,e,"TensorList shape mismatch: "),q(a,n)}pushBack(e){if(e.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${this.elementDtype}`);if(ka(e.shape,this.elementShape,"TensorList shape mismatch: "),this.maxNumElements===this.size())throw new Error("Trying to push element into a full list.");Kt(e),this.tensors.push(e)}resize(e){if(e<0)throw new Error(`TensorListResize expects size to be non-negative. Got: ${e}`);if(this.maxNumElements!==-1&&e>this.maxNumElements)throw new Error(`TensorListResize input size ${e} is greater maxNumElement ${this.maxNumElements}.`);this.tensors.length=e}getItem(e,t,n){if(n!==this.elementDtype)throw new Error(`Invalid data types; op elements ${n}, but list elements ${this.elementDtype}`);if(e<0||e>this.tensors.length)throw new Error(`Trying to access element ${e} in a list with ${this.tensors.length} elements.`);if(this.tensors[e]==null)throw new Error(`element at index ${e} is null.`);ka(this.tensors[e].shape,t,"TensorList shape mismatch: ");let a=op(this.elementShape,this.tensors,t);return q(this.tensors[e],a)}setItem(e,t){if(t.dtype!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t.dtype}, but list elements ${this.elementDtype}`);if(e<0||this.maxNumElements!==-1&&e>=this.maxNumElements)throw new Error(`Trying to set element ${e} in a list with max ${this.maxNumElements} elements.`);ka(this.elementShape,t.shape,"TensorList shape mismatch: "),Kt(t),this.tensors[e]=t}gather(e,t,n){if(t!==this.elementDtype)throw new Error(`Invalid data types; op elements ${t}, but list elements ${this.elementDtype}`);ka(this.elementShape,n,"TensorList shape mismatch: "),e=e.slice(0,this.size());let a=op(this.elementShape,this.tensors,n);return e.length===0?ln([],[0].concat(a)):V(()=>{let r=e.map(s=>q(this.tensors[s],a));return gn(r,0)})}concat(e,t){if(!!e&&e!==this.elementDtype)throw new Error(`TensorList dtype is ${this.elementDtype} but concat requested dtype ${e}`);ka(this.elementShape,t,"TensorList shape mismatch: ");let n=op(this.elementShape,this.tensors,t);return this.size()===0?ln([],[0].concat(n)):V(()=>{let a=this.tensors.map(r=>q(r,n));return lt(a,0)})}};function aoe(e,t,n){let a=e.dtype;if(e.shape.length<1)throw new Error(`Tensor must be at least a vector, but saw shape: ${e.shape}`);if(e.dtype!==n)throw new Error(`Invalid data types; op elements ${e.dtype}, but list elements ${n}`);let r=e.shape.slice(1);ka(r,t,"TensorList shape mismatch: ");let s=Gn(e);return new lp(s,t,a)}function roe(e,t,n){return new lp([],e,t,n)}function soe(e,t,n,a){if(t.length!==e.shape[0])throw new Error(`Expected len(indices) == tensor.shape[0], but saw: ${t.length} vs. ${e.shape[0]}`);let r=Math.max(...t);if(a!=null&&a!==-1&&r>=a)throw new Error(`Max index must be < array size (${r} vs. ${a})`);let s=new lp([],n,e.dtype,a),i=Gn(e,0);return t.forEach((o,l)=>{s.setItem(o,i[l])}),s}function ioe(e,t,n){let a=0,r=t.map(d=>(a+=d,a));if(a!==e.shape[0])throw new Error(`Expected sum of lengths to be equal to
|
|
tensor.shape[0], but sum of lengths is
|
|
${a}, and tensor's shape is: ${e.shape}`);let s=e.shape.slice(1),i=a2(s,n),o=a===0?0:e.size/a,l=V(()=>{let d=[];e=q(e,[1,a,o]);for(let p=0;p<t.length;++p){let c=p===0?0:r[p-1],h=[0,c,0],m=[1,t[p],o];d[p]=q(Re(e,h,m),i)}return e.dispose(),d}),u=new lp([],n,e.dtype,t.length);for(let d=0;d<l.length;d++)u.setItem(d,l[d]);return u}var ooe=async(e,t,n)=>{switch(e.op){case"If":case"StatelessIf":{let a=I("thenBranch",e,t,n),r=I("elseBranch",e,t,n),s=I("cond",e,t,n),i=I("args",e,t,n);return(await s.data())[0]?n.functionMap[a].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap):n.functionMap[r].executeFunctionAsync(i,n.tensorArrayMap,n.tensorListMap)}case"While":case"StatelessWhile":{let a=I("body",e,t,n),r=I("cond",e,t,n),s=I("args",e,t,n),i=await n.functionMap[r].executeFunctionAsync(s,n.tensorArrayMap,n.tensorListMap),o=s.map(d=>d.id),l=await i[0].data();i.forEach(d=>{!d.kept&&o.indexOf(d.id)===-1&&d.dispose()});let u=s;for(;l[0];){let d=u;u=await n.functionMap[a].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);let p=u.map(h=>h.id);d.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()});let c=await n.functionMap[r].executeFunctionAsync(u,n.tensorArrayMap,n.tensorListMap);l=await c[0].data(),c.forEach(h=>{!h.kept&&o.indexOf(h.id)===-1&&p.indexOf(h.id)===-1&&h.dispose()})}return u}case"LoopCond":{let a=I("pred",e,t,n);return[Sr(a)]}case"Switch":{let a=I("pred",e,t,n),r=I("data",e,t,n);return r.kept||(r=Sr(r)),(await a.data())[0]?[void 0,r]:[r,void 0]}case"Merge":{let a=e.inputNames.find(r=>kn(r,t,n)!==void 0);if(a){let r=kn(a,t,n);return[Sr(r)]}return}case"Enter":{let a=I("frameName",e,t,n),r=I("tensor",e,t,n);return n.enterFrame(a),[Sr(r)]}case"Exit":{let a=I("tensor",e,t,n);return n.exitFrame(),[Sr(a)]}case"NextIteration":{let a=I("tensor",e,t,n);return n.nextIteration(),[Sr(a)]}case"TensorArrayV3":{let a=I("size",e,t,n),r=I("dtype",e,t,n),s=I("elementShape",e,t,n),i=I("dynamicSize",e,t,n),o=I("clearAfterRead",e,t,n),l=I("identicalElementShapes",e,t,n),u=I("name",e,t,n),d=new noe(u,r,a,s,l,i,o);return n.addTensorArray(d),[d.idTensor,ke(1)]}case"TensorArrayWriteV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.write(r,s),[i.idTensor]}case"TensorArrayReadV3":{let a=I("tensorArrayId",e,t,n),r=I("index",e,t,n);return[n.getTensorArray(a.id).read(r)]}case"TensorArrayGatherV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("dtype",e,t,n);return[n.getTensorArray(a.id).gather(r,s)]}case"TensorArrayScatterV3":{let a=I("tensorArrayId",e,t,n),r=I("indices",e,t,n),s=I("tensor",e,t,n),i=n.getTensorArray(a.id);return i.scatter(r,s),[i.idTensor]}case"TensorArrayConcatV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id),s=I("dtype",e,t,n);return[r.concat(s)]}case"TensorArraySplitV3":{let a=I("tensorArrayId",e,t,n),r=I("tensor",e,t,n),s=I("lengths",e,t,n),i=n.getTensorArray(a.id);return i.split(s,r),[i.idTensor]}case"TensorArraySizeV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return[ke(r.size(),"int32")]}case"TensorArrayCloseV3":{let a=I("tensorArrayId",e,t,n),r=n.getTensorArray(a.id);return r.clearAndClose(),[r.idTensor]}case"TensorListSetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("tensor",e,t,n),i=n.getTensorList(a.id);return i.setItem(r,s),[i.idTensor]}case"TensorListGetItem":{let a=I("tensorListId",e,t,n),r=I("index",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).getItem(r,s,i)]}case"TensorListScatterV2":case"TensorListScatter":{let a=I("indices",e,t,n),r=I("tensor",e,t,n),s=I("elementShape",e,t,n),i=I("numElements",e,t,n),o=soe(r,a,s,i);return n.addTensorList(o),[o.idTensor]}case"TensorListReserve":case"EmptyTensorList":{let a=I("elementShape",e,t,n),r=I("elementDType",e,t,n),s;e.op==="TensorListReserve"?s="numElements":s="maxNumElements";let i=I(s,e,t,n),o=roe(a,r,i);return n.addTensorList(o),[o.idTensor]}case"TensorListGather":{let a=I("tensorListId",e,t,n),r=I("indices",e,t,n),s=I("elementShape",e,t,n),i=I("elementDType",e,t,n);return[n.getTensorList(a.id).gather(r,i,s)]}case"TensorListStack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=I("numElements",e,t,n);return[n.getTensorList(a.id).stack(r,s,i)]}case"TensorListFromTensor":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n),i=aoe(a,r,s);return n.addTensorList(i),[i.idTensor]}case"TensorListConcat":{let a=I("tensorListId",e,t,n),r=n.getTensorList(a.id),s=I("dtype",e,t,n),i=I("elementShape",e,t,n);return[r.concat(s,i)]}case"TensorListPushBack":{let a=I("tensorListId",e,t,n),r=I("tensor",e,t,n),s=n.getTensorList(a.id);return s.pushBack(r),[s.idTensor]}case"TensorListPopBack":{let a=I("tensorListId",e,t,n),r=I("elementShape",e,t,n),s=I("elementDType",e,t,n);return[n.getTensorList(a.id).popBack(r,s)]}case"TensorListSplit":{let a=I("tensor",e,t,n),r=I("elementShape",e,t,n),s=I("lengths",e,t,n),i=ioe(a,s,r);return n.addTensorList(i),[i.idTensor]}default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Tk(e,t,n){let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=!s,o=r==="prelu",l=a==="fusedbatchnorm",u=I("numArgs",e,t,n);if(s){if(o&&u!==2)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!o&&s&&u!==1)throw new Error("FusedConv2d and DepthwiseConv2d with BiasAdd must have one extra argument: bias.")}if(l)throw new Error("FusedConv2d and DepthwiseConv2d with FusedBatchNorm is not supported");let d=I("strides",e,t,n),p=z0(e,t,n),c=I("dataFormat",e,t,n).toUpperCase(),h=I("dilations",e,t,n),[m,f]=I("args",e,t,n);i&&(f=m,m=void 0);let g=I("leakyreluAlpha",e,t,n);return{stride:d,pad:p,dataFormat:c,dilations:h,biasArg:m,preluArg:f,activationFunc:r,leakyreluAlpha:g}}var loe=(e,t,n)=>{switch(e.op){case"Conv1D":{let a=I("stride",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilation",e,t,n);return[Gc(I("x",e,t,n),I("filter",e,t,n),a,r,s,i)]}case"Conv2D":{let a=I("strides",e,t,n),r=z0(e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[mr(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,s,[i[1],i[2]])]}case"_FusedConv2D":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=Tk(e,t,n);return[Kr.conv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"FusedDepthwiseConv2dNative":{let{stride:a,pad:r,dataFormat:s,dilations:i,biasArg:o,preluArg:l,activationFunc:u,leakyreluAlpha:d}=Tk(e,t,n);return[Kr.depthwiseConv2d({x:I("x",e,t,n),filter:I("filter",e,t,n),strides:[a[1],a[2]],pad:r,dataFormat:s,dilations:[i[1],i[2]],bias:o,activation:u,preluActivationWeights:l,leakyreluAlpha:d})]}case"Conv2DBackpropInput":case"Conv2dTranspose":{let a=I("outputShape",e,t,n),r=I("strides",e,t,n),s=z0(e,t,n);return[qc(I("x",e,t,n),I("filter",e,t,n),a,[r[1],r[2]],s)]}case"DepthwiseConv2dNative":case"DepthwiseConv2d":{let a=I("strides",e,t,n),r=z0(e,t,n),s=I("dilations",e,t,n),i=I("dataFormat",e,t,n).toUpperCase();return[Cl(I("input",e,t,n),I("filter",e,t,n),[a[1],a[2]],r,i,[s[1],s[2]])]}case"Conv3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dataFormat",e,t,n).toUpperCase(),i=I("dilations",e,t,n);return[W1(I("x",e,t,n),I("filter",e,t,n),[a[1],a[2],a[3]],r,s,[i[1],i[2],i[3]])]}case"AvgPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[ld(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPool":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[hd(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r)]}case"MaxPoolWithArgmax":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n),i=I("includeBatchInIndex",e,t,n),{result:o,indexes:l}=_3(I("x",e,t,n),[s[1],s[2]],[a[1],a[2]],r,i);return[o,l]}case"AvgPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[z1(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"MaxPool3D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("kernelSize",e,t,n);return[J1(I("x",e,t,n),[s[1],s[2],s[3]],[a[1],a[2],a[3]],r)]}case"Dilation2D":{let a=I("strides",e,t,n),r=I("pad",e,t,n),s=I("dilations",e,t,n),i=a[1],o=a[2],l=s[1],u=s[2];return[V1(I("x",e,t,n),I("filter",e,t,n),[i,o],r,[l,u],"NHWC")]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},uoe=(e,t,n)=>{switch(e.op){case"Fill":{let a=I("shape",e,t,n),r=I("dtype",e,t,n),s=I("value",e,t,n);return[Rl(a,s,r)]}case"LinSpace":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("num",e,t,n);return[R3(a,r,s)]}case"Multinomial":{let a=I("logits",e,t,n),r=I("numSamples",e,t,n),s=I("seed",e,t,n);return[P3(a,r,s)]}case"OneHot":{let a=I("indices",e,t,n),r=I("depth",e,t,n),s=I("onValue",e,t,n),i=I("offValue",e,t,n);return[wl(a,r,s,i)]}case"Ones":return[jn(I("shape",e,t,n),I("dtype",e,t,n))];case"OnesLike":return[Un(I("x",e,t,n))];case"RandomUniform":return[$l(I("shape",e,t,n),I("minval",e,t,n),I("maxval",e,t,n),I("dtype",e,t,n))];case"Range":{let a=I("start",e,t,n),r=I("stop",e,t,n),s=I("step",e,t,n);return[Dl(a,r,s,I("dtype",e,t,n))]}case"TruncatedNormal":{let a=I("shape",e,t,n),r=I("mean",e,t,n),s=I("stdDev",e,t,n),i=I("seed",e,t,n);return[fh(a,r,s,I("dtype",e,t,n),i)]}case"Zeros":return[$t(I("shape",e,t,n),I("dtype",e,t,n))];case"ZerosLike":return[Ge(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function r2(e,t,n){let a=I("boxes",e,t,n),r=I("scores",e,t,n),s=I("maxOutputSize",e,t,n),i=I("iouThreshold",e,t,n),o=I("scoreThreshold",e,t,n),l=I("softNmsSigma",e,t,n);return{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}}var doe=async(e,t,n)=>{switch(e.op){case"NonMaxSuppressionV5":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o,softNmsSigma:l}=r2(e,t,n),u=await De.nonMaxSuppressionWithScoreAsync(a,r,s,i,o,l);return[u.selectedIndices,u.selectedScores]}case"NonMaxSuppressionV4":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=r2(e,t,n),l=I("padToMaxOutputSize",e,t,n),u=await De.nonMaxSuppressionPaddedAsync(a,r,s,i,o,l);return[u.selectedIndices,u.validOutputs]}case"NonMaxSuppressionV3":case"NonMaxSuppressionV2":{let{boxes:a,scores:r,maxOutputSize:s,iouThreshold:i,scoreThreshold:o}=r2(e,t,n);return[await De.nonMaxSuppressionAsync(a,r,s,i,o)]}case"Where":{let a=ge(I("condition",e,t,n),"bool"),r=[await pg(a)];return a.dispose(),r}case"ListDiff":return B3(I("x",e,t,n),I("y",e,t,n));default:throw TypeError(`Node type ${e.op} is not implemented`)}},poe=(e,t,n)=>{switch(e.op){case"TopKV2":{let a=I("x",e,t,n),r=I("k",e,t,n),s=I("sorted",e,t,n),i=ug(a,r,s);return[i.values,i.indices]}case"Unique":{let a=I("x",e,t,n),r=mh(a);return[r.values,r.indices]}case"UniqueV2":{let a=I("x",e,t,n),r=I("axis",e,t,n),s=mh(a,r);return[s.values,s.indices]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},coe=(e,t,n)=>{switch(e.op){case"Const":return t[e.name];case"PlaceholderWithDefault":let a=I("default",e,t,n);return[kn(e.name,t,n)||a];case"Placeholder":return[kn(e.name,t,n)];case"Identity":case"StopGradient":case"FakeQuantWithMinMaxVars":{let u=I("x",e,t,n);return[Sr(u)]}case"IdentityN":return I("x",e,t,n).map(u=>Sr(u));case"Snapshot":let r=I("x",e,t,n);return[Sr(r)];case"Shape":return[Dt(I("x",e,t,n).shape,"int32")];case"ShapeN":return I("x",e,t,n).map(u=>Dt(u.shape));case"Size":return[ke(I("x",e,t,n).size,"int32")];case"Rank":return[ke(I("x",e,t,n).rank,"int32")];case"NoOp":return[ke(1)];case"Print":let s=I("x",e,t,n),i=I("data",e,t,n),o=I("message",e,t,n),l=I("summarize",e,t,n);console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."),console.log(o);for(let u=0;u<i.length;u++)console.log(Array.prototype.slice.call(i[u].dataSync()).slice(0,l));return[s];default:throw TypeError(`Node type ${e.op} is not implemented`)}},hoe=class{constructor(e,t){this.keyDType=e,this.valueDType=t,this.handle=ke(0),this.tensorMap=new Map,Kt(this.handle)}get id(){return this.handle.id}clearAndClose(){this.tensorMap.forEach(e=>e.dispose()),this.tensorMap.clear(),this.handle.dispose()}size(){return this.tensorMap.size}tensorSize(){return ke(this.size(),"int32")}async import(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return this.tensorMap.forEach(a=>a.dispose()),this.tensorMap.clear(),V(()=>{let a=Gn(t),r=n.length,s=a.length;k.assert(r===s,()=>`The number of elements doesn't match, keys has ${r} elements, the values has ${s} elements.`);for(let i=0;i<r;i++){let o=n[i],l=a[i];Kt(l),this.tensorMap.set(o,l)}return this.handle})}async find(e,t){this.checkKeyAndValueTensor(e,t);let n=await e.data();return V(()=>{let a=[];for(let r=0;r<n.length;r++){let s=n[r],i=this.findWithDefault(s,t);a.push(i)}return gn(a)})}findWithDefault(e,t){let n=this.tensorMap.get(e);return n!=null?n:t}checkKeyAndValueTensor(e,t){if(e.dtype!==this.keyDType)throw new Error(`Expect key dtype ${this.keyDType}, but got ${e.dtype}`);if(t.dtype!==this.valueDType)throw new Error(`Expect value dtype ${this.valueDType}, but got ${t.dtype}`)}},foe=async(e,t,n,a)=>{switch(e.op){case"HashTable":case"HashTableV2":{let r=I("keyDType",e,t,n),s=I("valueDType",e,t,n),i=new hoe(r,s);return a.addHashTable(e.name,i),[i.handle]}case"LookupTableImport":case"LookupTableImportV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("values",e,t,n);return[await a.getHashTableById(r.id).import(s,i)]}case"LookupTableFind":case"LookupTableFindV2":{let r=I("tableHandle",e,t,n,a),s=I("keys",e,t,n),i=I("defaultValue",e,t,n);return[await a.getHashTableById(r.id).find(s,i)]}case"LookupTableSize":case"LookupTableSizeV2":{let r=I("tableHandle",e,t,n,a);return[a.getHashTableById(r.id).tensorSize()]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},moe=(e,t,n)=>{switch(e.op){case"ResizeBilinear":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[De.resizeBilinear(a,[r[0],r[1]],s,i)]}case"ResizeNearestNeighbor":{let a=I("images",e,t,n),r=I("size",e,t,n),s=I("alignCorners",e,t,n),i=I("halfPixelCenters",e,t,n);return[De.resizeNearestNeighbor(a,[r[0],r[1]],s,i)]}case"CropAndResize":{let a=I("image",e,t,n),r=I("boxes",e,t,n),s=I("boxInd",e,t,n),i=I("cropSize",e,t,n),o=I("method",e,t,n),l=I("extrapolationValue",e,t,n);return[De.cropAndResize(a,r,s,i,o,l)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},goe=(e,t,n)=>{switch(e.op){case"Equal":return[Hr(I("a",e,t,n),I("b",e,t,n))];case"NotEqual":return[Ri(I("a",e,t,n),I("b",e,t,n))];case"Greater":return[Wn(I("a",e,t,n),I("b",e,t,n))];case"GreaterEqual":return[qr(I("a",e,t,n),I("b",e,t,n))];case"Less":return[Yc(I("a",e,t,n),I("b",e,t,n))];case"LessEqual":return[Xr(I("a",e,t,n),I("b",e,t,n))];case"LogicalAnd":return[xa(I("a",e,t,n),I("b",e,t,n))];case"LogicalNot":return[cd(I("a",e,t,n))];case"LogicalOr":return[th(I("a",e,t,n),I("b",e,t,n))];case"Select":case"SelectV2":return[un(I("condition",e,t,n),I("a",e,t,n),I("b",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},yoe=(e,t,n)=>{switch(e.op){case"BatchMatMul":case"BatchMatMulV2":case"MatMul":return[je(I("a",e,t,n),I("b",e,t,n),I("transposeA",e,t,n),I("transposeB",e,t,n))];case"Einsum":return[T3(I("equation",e,t,n),...I("tensors",e,t,n))];case"Transpose":return[Qe(I("x",e,t,n),I("perm",e,t,n))];case"_FusedMatMul":let[a,r]=I("fusedOps",e,t,n),s=a==="biasadd",i=r==="prelu",o=I("numArgs",e,t,n),l=I("leakyreluAlpha",e,t,n);if(s){if(i&&o!==2)throw new Error("Fused MatMul with BiasAdd and Prelu must have two extra arguments: bias and alpha.");if(!i&&o!==1)throw new Error("Fused MatMul with BiasAdd must have one extra argument: bias.")}let[u,d]=I("args",e,t,n);return[Kr.matMul({a:I("a",e,t,n),b:I("b",e,t,n),transposeA:I("transposeA",e,t,n),transposeB:I("transposeB",e,t,n),bias:u,activation:r,preluActivationWeights:d,leakyreluAlpha:l})];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Aoe=(e,t,n)=>{switch(e.op){case"FusedBatchNorm":case"FusedBatchNormV2":return[Ni(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"FusedBatchNormV3":return[Ni(I("x",e,t,n),I("mean",e,t,n),I("variance",e,t,n),I("offset",e,t,n),I("scale",e,t,n),I("epsilon",e,t,n))];case"LRN":return[X1(I("x",e,t,n),I("radius",e,t,n),I("bias",e,t,n),I("alpha",e,t,n),I("beta",e,t,n))];case"Softmax":return[xd(I("x",e,t,n))];case"LogSoftmax":return[eh(I("x",e,t,n))];case"SparseToDense":return[cg(I("sparseIndices",e,t,n),I("outputShape",e,t,n),I("sparseValues",e,t,n),I("defaultValue",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},xoe=(e,t,n)=>{switch(e.op){case"Max":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Vn(I("x",e,t,n),i,o)]}case"Mean":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Nt(I("x",e,t,n),i,o)]}case"Min":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[fd(I("x",e,t,n),i,o)]}case"Sum":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Se(I("x",e,t,n),i,o)]}case"All":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[Uc(I("x",e,t,n),i,o)]}case"Any":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[id(I("x",e,t,n),i,o)]}case"ArgMax":{let i=I("axis",e,t,n);return[ki(I("x",e,t,n),i)]}case"ArgMin":{let i=I("axis",e,t,n);return[C1(I("x",e,t,n),i)]}case"Prod":{let i=I("axis",e,t,n),o=I("keepDims",e,t,n);return[ah(I("x",e,t,n),i,o)]}case"Cumsum":{let i=I("axis",e,t,n),o=I("exclusive",e,t,n),l=I("reverse",e,t,n);return[Kc(I("x",e,t,n),i,o,l)]}case"Bincount":let a=I("x",e,t,n),r=I("weights",e,t,n),s=I("size",e,t,n);return[_1(a,r,s)];case"DenseBincount":{let i=I("x",e,t,n),o=I("weights",e,t,n),l=I("size",e,t,n),u=I("binaryOutput",e,t,n);return[S3(i,o,l,u)]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},boe=(e,t,n)=>{switch(e.op){case"ConcatV2":case"Concat":{let a=I("n",e,t,n),r=I("axis",e,t,n),s=I("tensors",e,t,n);return s=s.slice(0,a),[lt(s,r)]}case"Gather":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[Ti(a,ge(r,"int32"),0)]}case"GatherV2":{let a=I("axis",e,t,n),r=I("batchDims",e,t,n),s=I("x",e,t,n),i=I("indices",e,t,n);return[Ti(s,ge(i,"int32"),a,r)]}case"Reverse":{let a=I("dims",e,t,n),r=[];for(let i=0;i<a.length;i++)a[i]&&r.push(i);let s=I("x",e,t,n);return[Hn(s,r)]}case"ReverseV2":{let a=I("axis",e,t,n),r=I("x",e,t,n);return[Hn(r,a)]}case"Slice":{let a=I("begin",e,t,n),r=I("size",e,t,n);return[Re(I("x",e,t,n),a,r)]}case"StridedSlice":{let a=I("begin",e,t,n),r=I("end",e,t,n),s=I("strides",e,t,n),i=I("beginMask",e,t,n),o=I("endMask",e,t,n),l=I("ellipsisMask",e,t,n),u=I("newAxisMask",e,t,n),d=I("shrinkAxisMask",e,t,n),p=I("x",e,t,n);return[og(p,a,r,s,i,o,l,u,d)]}case"Pack":return V(()=>{let a=I("axis",e,t,n),r=I("tensors",e,t,n),s=r[0].shape,i=Vt(r[0]).shape,o=r.map(l=>{let u=k.arraysEqual(l.shape,s);if(!u&&!k.arraysEqual(Vt(l).shape,i))throw new Error("the input tensors shape does not match");return u?l:q(l,s)});return[gn(o,a)]});case"Unpack":{let a=I("axis",e,t,n),r=I("tensor",e,t,n);return Gn(r,a)}case"Tile":{let a=I("reps",e,t,n);return[Gr(I("x",e,t,n),a)]}case"Split":case"SplitV":{let a=I("axis",e,t,n),r=I("numOrSizeSplits",e,t,n),s=I("x",e,t,n);return Zt(s,r,a)}case"ScatterNd":{let a=I("indices",e,t,n),r=I("values",e,t,n),s=I("shape",e,t,n);return[H3(a,r,s)]}case"GatherNd":{let a=I("x",e,t,n),r=I("indices",e,t,n);return[G3(a,r)]}case"SparseToDense":{let a=I("sparseIndices",e,t,n),r=I("outputShape",e,t,n),s=I("sparseValues",e,t,n),i=I("defaultValue",e,t,n);return[cg(a,s,r,s.dtype===i.dtype?i:ge(i,s.dtype))]}default:throw TypeError(`Node type ${e.op} is not implemented`)}},voe=(e,t,n)=>{switch(e.op){case"SparseFillEmptyRows":{let{outputIndices:a,outputValues:r,emptyRowIndicator:s,reverseIndexMap:i}=wd.sparseFillEmptyRows(I("indices",e,t,n),I("values",e,t,n),I("denseShape",e,t,n),I("defaultValue",e,t,n));return[a,r,s,i]}case"SparseReshape":{let{outputIndices:a,outputShape:r}=wd.sparseReshape(I("inputIndices",e,t,n),I("inputShape",e,t,n),I("newShape",e,t,n));return[a,r]}case"SparseSegmentMean":return[wd.sparseSegmentMean(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];case"SparseSegmentSum":return[wd.sparseSegmentSum(I("data",e,t,n),I("indices",e,t,n),I("segmentIds",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},woe=(e,t,n)=>{switch(e.op){case"FFT":return[bd(I("x",e,t,n))];case"IFFT":return[Ol(I("x",e,t,n))];case"RFFT":return[vd(I("x",e,t,n))];case"IRFFT":return[ch(I("x",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},koe=(e,t,n)=>{switch(e.op){case"StringNGrams":{let{nGrams:a,nGramsSplits:r}=vh.stringNGrams(I("data",e,t,n),I("dataSplits",e,t,n),I("separator",e,t,n),I("nGramWidths",e,t,n),I("leftPad",e,t,n),I("rightPad",e,t,n),I("padWidth",e,t,n),I("preserveShortSequences",e,t,n));return[a,r]}case"StringSplit":{let{indices:a,values:r,shape:s}=vh.stringSplit(I("input",e,t,n),I("delimiter",e,t,n),I("skipEmpty",e,t,n));return[a,r,s]}case"StringToHashBucketFast":return[vh.stringToHashBucketFast(I("input",e,t,n),I("numBuckets",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}},Ioe=(e,t,n)=>{switch(e.op){case"Cast":return[ge(I("x",e,t,n),I("dtype",e,t,n))];case"ExpandDims":{let a=I("axis",e,t,n);return[mn(I("x",e,t,n),a)]}case"Squeeze":{let a=I("axis",e,t,n);return[Vt(I("x",e,t,n),a)]}case"Reshape":return[q(I("x",e,t,n),I("shape",e,t,n))];case"MirrorPad":return[Q1(I("x",e,t,n),I("padding",e,t,n),I("mode",e,t,n))];case"PadV2":case"Pad":return[gr(I("x",e,t,n),I("padding",e,t,n),I("constantValue",e,t,n))];case"SpaceToBatchND":{let a=I("blockShape",e,t,n),r=I("paddings",e,t,n);return[md(I("x",e,t,n),a,r)]}case"BatchToSpaceND":{let a=I("blockShape",e,t,n),r=I("crops",e,t,n);return[ud(I("x",e,t,n),a,r)]}case"DepthToSpace":{let a=I("blockSize",e,t,n),r=I("dataFormat",e,t,n).toUpperCase();return[B1(I("x",e,t,n),a,r)]}case"BroadcastTo":return[Nl(I("x",e,t,n),I("shape",e,t,n))];default:throw TypeError(`Node type ${e.op} is not implemented`)}};function Ck(e,t,n,a){let r=((s,i,o)=>{switch(s.category){case"arithmetic":return V(()=>eoe(s,i,o));case"basic_math":return V(()=>toe(s,i,o));case"control":return ooe(s,i,o);case"convolution":return V(()=>loe(s,i,o));case"creation":return V(()=>uoe(s,i,o));case"dynamic":return doe(s,i,o);case"evaluation":return V(()=>poe(s,i,o));case"image":return V(()=>moe(s,i,o));case"graph":return V(()=>coe(s,i,o));case"logical":return V(()=>goe(s,i,o));case"matrices":return V(()=>yoe(s,i,o));case"normalization":return V(()=>Aoe(s,i,o));case"reduction":return V(()=>xoe(s,i,o));case"slice_join":return V(()=>boe(s,i,o));case"sparse":return V(()=>voe(s,i,o));case"spectral":return V(()=>woe(s,i,o));case"string":return V(()=>koe(s,i,o));case"transformation":return V(()=>Ioe(s,i,o));case"hash_table":return foe(s,i,o,a);case"custom":let l=nk(s.op);if(l&&l.customExecutor)return l.customExecutor(new Qie(s,i,o));throw TypeError(`Custom op ${s.op} is not registered.`);default:throw TypeError(`Unknown op '${s.op}'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()`)}})(e,t,n);return k.isPromise(r)?r.then(s=>[].concat(s)):[].concat(r)}var Ek=class{constructor(e={},t={},n={},a={}){this.weightMap=e,this.tensorArrayMap=t,this.tensorListMap=n,this.functionMap=a,this.rootContext={id:0,frameName:"",iterationId:0},this.contexts=[this.rootContext],this.lastId=0,this.generateCurrentContextIds()}newFrame(e,t){return{id:e,frameName:t,iterationId:0}}set currentContext(e){this.contexts!==e&&(this.contexts=e,this.generateCurrentContextIds())}get currentContext(){return this.contexts}get currentContextId(){return this._currentContextIds[0]}get currentContextIds(){return this._currentContextIds}generateCurrentContextIds(){let e=[];for(let t=0;t<this.contexts.length-1;t++){let n=this.contexts.slice(0,this.contexts.length-t);e.push(this.contextIdforContexts(n))}e.push(""),this._currentContextIds=e}contextIdforContexts(e){return e?e.map(t=>t.id===0&&t.iterationId===0?"":`${t.frameName}-${t.iterationId}`).join("/"):""}enterFrame(e){this.contexts&&(this.lastId++,this.contexts=this.contexts.slice(),this.contexts.push(this.newFrame(this.lastId,e)),this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)))}exitFrame(){if(this.contexts&&this.contexts.length>1)this.contexts=this.contexts.slice(),this.contexts.splice(-1),this.currentContextIds.shift();else throw new Error("Cannot exit frame, the context is empty")}nextIteration(){if(this.contexts&&this.contexts.length>0){this.contexts=this.contexts.slice(),this.lastId++;let e=Object.assign({},this.contexts[this.contexts.length-1]);e.iterationId+=1,e.id=this.lastId,this.contexts.splice(-1,1,e),this._currentContextIds.splice(0,1,this.contextIdforContexts(this.contexts))}else throw new Error("Cannot increase frame iteration, the context is empty")}getWeight(e){return this.weightMap[e]}addTensorArray(e){this.tensorArrayMap[e.id]=e}getTensorArray(e){return this.tensorArrayMap[e]}addTensorList(e){this.tensorListMap[e.id]=e}getTensorList(e){return this.tensorListMap[e]}dispose(e){for(let t in this.tensorArrayMap)this.tensorArrayMap[t].clearAndClose(e);for(let t in this.tensorListMap)this.tensorListMap[t].clearAndClose(e)}};function Rk(e,t,n,a){let r=new Set,s=[],i=null,o=null,l=new Set,u=Object.keys(e).map(c=>Kn(c)[0]),d=[];a!=null&&(d=a.map(c=>Kn(c.name)[0]));let p=[...t];for(;p.length>0;){let c=p.pop();if((Mk(c)||Eoe(c)||Roe(c))&&i==null&&(i=c,o=i.children.map(h=>h.name).filter(h=>r.has(h))),r.add(c.name),n[c.name]==null&&u.indexOf(c.name)===-1&&d.indexOf(c.name)===-1){if(c.inputs.length===0){s.push(c.name);continue}c.inputs.forEach(h=>{l.has(h.name)||(l.add(h.name),p.push(h))})}}return{inputs:e,outputs:t,usedNodes:r,missingInputs:s,dynamicNode:i,syncInputs:o}}function Soe(e,t,n){let{usedNodes:a,inputs:r}=n,s=[],i=Object.keys(r).map(d=>Kn(d)[0]).map(d=>e.nodes[d]),o=e.initNodes;i.forEach(d=>{a.has(d.name)&&s.push(d)}),e.weights.forEach(d=>{a.has(d.name)&&s.push(d)}),o!=null&&o.forEach(d=>{a.has(d.name)&&s.push(d)});let l=new Set,u=[];for(;s.length>0;){let d=s.pop();l.add(d.name),t[d.name]||u.push(d),d.children.forEach(p=>{!l.has(p.name)&&a.has(p.name)&&p.inputs.every(c=>l.has(c.name))&&s.push(p)})}return u}var Noe=["Switch","Merge","Enter","Exit","NextIteration","StatelessIf","StatelessWhile","if","While"],Toe=["NonMaxSuppressionV2","NonMaxSuppressionV3","NonMaxSuppressionV5","Where"],Coe=["HashTable","HashTableV2","LookupTableImport","LookupTableImportV2","LookupTableFind","LookupTableFindV2","LookupTableSize","LookupTableSizeV2"];function Mk(e){return Noe.indexOf(e.op)>=0}function Eoe(e){return Toe.indexOf(e.op)>=0}function Roe(e){return Coe.indexOf(e.op)>=0}var s2=class{constructor(e,t){this.graph=e,this.parent=t,this.compiledMap=new Map,this._weightMap={},this.SEPERATOR=",",this._functions={},this._functionExecutorMap={},this._outputs=e.outputs,this._inputs=e.inputs,this._initNodes=e.initNodes,this._signature=e.signature,this._functions=e.functions,e.functions!=null&&Object.keys(e.functions).forEach(n=>{this._functionExecutorMap[n]=new s2(e.functions[n],this)})}get weightIds(){return this.parent?this.parent.weightIds:this._weightIds}get functionExecutorMap(){return this.parent?this.parent.functionExecutorMap:this._functionExecutorMap}get weightMap(){return this.parent?this.parent.weightMap:this._weightMap}set weightMap(e){let t=Object.keys(e).map(n=>e[n].map(a=>a.id));this._weightIds=[].concat(...t),this._weightMap=e}set resourceManager(e){this._resourceManager=e}get inputs(){return this._inputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get outputs(){return this._outputs.map(e=>({name:e.name,shape:e.attrParams.shape?e.attrParams.shape.value:void 0,dtype:e.attrParams.dtype?e.attrParams.dtype.value:void 0}))}get inputNodes(){return this._inputs.map(e=>e.signatureKey||e.name)}get outputNodes(){return this._outputs.map(e=>{let t=e.signatureKey||e.name;return e.defaultOutput?`${t}:${e.defaultOutput}`:t})}get functions(){return Object.keys(this._functions).reduce((e,t)=>(e[t]=this._functions[t].signature,e),{})}getCompilationKey(e,t){let n=e.map(r=>r.name).sort(),a=t.map(r=>r.name).sort();return n.join(this.SEPERATOR)+"--"+a.join(this.SEPERATOR)}compile(e,t){let n=Rk(e,t,this.weightMap,this._initNodes),{missingInputs:a,dynamicNode:r,syncInputs:s}=n;if(r!=null)throw new Error(`This execution contains the node '${r.name}', which has the dynamic op '${r.op}'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [${s}]`);if(a.length>0){let i=t.map(l=>l.name),o=Object.keys(e);throw new Error(`Cannot compute the outputs [${i}] from the provided inputs [${o}]. Missing the following inputs: [${a}]`)}return Soe(this.graph,this.weightMap,n)}execute(e,t){e=this.mapInputs(e);let n=Object.keys(e).sort();this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t);let a=n.map(d=>this.graph.nodes[Kn(d)[0]]),r=t.map(d=>Kn(d)[0]),s=r.map(d=>this.graph.nodes[d]);s.length===0&&(s=this._outputs);let i=this.getCompilationKey(a,s),o=this.compiledMap.get(i);o==null&&(o=this.compile(e,s),this.compiledMap.set(i,o));let l={},u={};return V(()=>{let d=new Ek(this.weightMap,l,u,this.functionExecutorMap),p=Object.assign({},this.weightMap);Object.keys(e).forEach(m=>{let[f,g]=Kn(m),y=[];y[g]=e[m],p[f]=y});let c=this.getFrozenTensorIds(p),h={};for(let m=0;m<o.length;m++){let f=o[m];if(!p[f.name]){let g=Ck(f,p,d,this._resourceManager);if(k.isPromise(g))throw new Error(`The execution of the op '${f.op}' returned a promise. Please use model.executeAsync() instead.`);p[f.name]=g,this.checkTensorForDisposal(f.name,f,p,d,c,r,h)}}return this.parent==null&&d.dispose(c),t.map(m=>kn(m,p,d))})}getFrozenTensorIds(e){let t=[].concat.apply([],Object.keys(e).map(n=>e[n]).map(n=>n.map(a=>a.id)));return new Set(t)}checkTensorForDisposal(e,t,n,a,r,s,i){t.category==="control"||s.indexOf(e)!==-1||(n[e].forEach(o=>{o!=null&&(i[o.id]=(i[o.id]||0)+t.children.length)}),t.inputs.forEach(o=>{if(o.category!=="control"){let l=Fie(o.name,n,a);l!=null&&l.forEach(u=>{if(u&&!u.kept&&!r.has(u.id)){let d=i[u.id];d===1?(u.dispose(),delete i[u.id]):d!=null&&i[u.id]--}})}}))}async executeAsync(e,t){return this._executeAsync(e,t)}async _executeAsync(e,t,n=!1,a={},r={}){n||(e=this.mapInputs(e),this.checkInputs(e),this.checkInputShapeAndType(e),t=this.mapOutputs(t),this.checkOutputs(t));let s=new Ek(this.weightMap,a,r,this.functionExecutorMap),i=await this.executeWithControlFlow(e,s,t,n),o=t.map(p=>kn(p,i,s)),l=o.map(p=>p.id),u=Object.keys(e).map(p=>e[p].id),d=new Set([...l,...u,...this.weightIds]);return Object.keys(i).forEach(p=>{i[p].forEach(c=>{c&&!c.kept&&!c.isDisposed&&!d.has(c.id)&&c.dispose()})}),this.parent==null&&s.dispose(d),o}async executeFunctionAsync(e,t,n){let a=e.reduce((r,s,i)=>(r[this.inputs[i].name]=s,r),{});return this._executeAsync(a,this.outputNodes,!0,t,n)}async executeWithControlFlow(e,t,n,a){let r=Object.keys(e),s=r.map(A=>this.graph.nodes[Kn(A)[0]]),i=n.map(A=>Kn(A)[0]),o=i.map(A=>this.graph.nodes[A]);o.length===0&&(o=this._outputs);let{usedNodes:l,missingInputs:u,dynamicNode:d,syncInputs:p}=Rk(e,o,this.weightMap,this._initNodes),c=[...s,...this.graph.weights,...this._initNodes||[]].map(A=>({node:A,contexts:t.currentContext})),h=Object.assign({},this.weightMap);Object.keys(e).forEach(A=>{let[x,v]=Kn(A),b=[];b[v]=e[A],h[x]=b});let m={},f=this.getFrozenTensorIds(h),g={};for(;c.length>0;){let A=this.processStack(s,c,t,h,g,f,i,m,l);await Promise.all(A)}d==null&&!a&&console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead.");let y=o.filter(A=>!Mk(A)&&!kn(A.name,h,t)).map(A=>A.name);if(y.length>0){let A="";throw d!=null&&(A=`Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [${p}]`),new Error(`Cannot compute the outputs [${y}] from the provided inputs [${r}]. Consider providing the following inputs: [${u}]. ${A}`)}return h}processStack(e,t,n,a,r,s,i,o,l){let u=[];for(;t.length>0;){let d=t.pop();n.currentContext=d.contexts;let p="";if(d.node.op==="Enter"&&I("isConstant",d.node,a,n)&&([p]=Ir(d.node.name,n)),a[d.node.name]==null){let c=Ck(d.node,a,n,this._resourceManager);p||([p]=Ir(d.node.name,n));let h=n.currentContext;k.isPromise(c)?u.push(c.then(m=>(a[p]=m,n.currentContext=h,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l),m))):(a[p]=c,this.checkTensorForDisposal(p,d.node,a,n,s,i,o),this.processChildNodes(d.node,t,n,a,r,l))}else this.processChildNodes(d.node,t,n,a,r,l)}return u}processChildNodes(e,t,n,a,r,s){e.children.forEach(i=>{let[o]=Ir(i.name,n);r[o]||!s.has(i.name)||(i.op==="Merge"?i.inputNames.some(l=>!!kn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})):i.inputNames.every(l=>!!kn(l,a,n))&&(r[o]=!0,t.push({contexts:n.currentContext,node:i})))})}dispose(){Object.keys(this.weightMap).forEach(e=>this.weightMap[e].forEach(t=>t.dispose()))}checkInputShapeAndType(e){Object.keys(e).forEach(t=>{let n=e[t],[a]=Kn(t),r=this.graph.nodes[a];if(r.attrParams.shape&&r.attrParams.shape.value){let s=r.attrParams.shape.value,i=s.length===n.shape.length&&n.shape.every((o,l)=>s[l]===-1||s[l]===o);k.assert(i,()=>`The shape of dict['${r.name}'] provided in model.execute(dict) must be [${s}], but was [${n.shape}]`)}r.attrParams.dtype&&r.attrParams.dtype.value&&k.assert(n.dtype===r.attrParams.dtype.value,()=>`The dtype of dict['${r.name}'] provided in model.execute(dict) must be ${r.attrParams.dtype.value}, but was ${n.dtype}`)})}mapInputs(e){let t={};for(let n in e)if(this._signature!=null&&this._signature.inputs!=null&&this._signature.inputs[n]!=null){let a=this._signature.inputs[n];t[a.name]=e[n]}else t[n]=e[n];return t}checkInputs(e){let t=Object.keys(e).filter(n=>{let[a]=Kn(n);return this.graph.nodes[a]==null});if(t.length>0)throw new Error(`The dict provided in model.execute(dict) has keys: [${t}] that are not part of graph`)}mapOutputs(e){return e.map(t=>this._signature!=null&&this._signature.outputs!=null&&this._signature.outputs[t]!=null?this._signature.outputs[t].name:t,{})}checkOutputs(e){e.forEach(t=>{let[n]=Kn(t);if(!this.graph.nodes[n])throw new Error(`The output '${t}' is not found in the graph`)})}},Moe=class{constructor(e={},t={}){this.hashTableNameToHandle=e,this.hashTableMap=t}addHashTable(e,t){this.hashTableNameToHandle[e]=t.handle,this.hashTableMap[t.id]=t}getHashTableHandleByName(e){return this.hashTableNameToHandle[e]}getHashTableById(e){return this.hashTableMap[e]}dispose(){for(let e in this.hashTableMap)this.hashTableMap[e].clearAndClose(),delete this.hashTableMap[e];for(let e in this.hashTableNameToHandle)this.hashTableNameToHandle[e].dispose(),delete this.hashTableNameToHandle[e]}},Foe="?tfjs-format=file",$oe="model.json",Fk=class{constructor(e,t={}){this.modelUrl=e,this.loadOptions=t,this.version="n/a",t==null&&(this.loadOptions={}),this.resourceManager=new Moe}get modelVersion(){return this.version}get inputNodes(){return this.executor.inputNodes}get outputNodes(){return this.executor.outputNodes}get inputs(){return this.executor.inputs}get outputs(){return this.executor.outputs}get weights(){return this.executor.weightMap}get metadata(){return this.artifacts.userDefinedMetadata}get modelSignature(){return this.signature}findIOHandler(){let e=this.modelUrl;if(e.load!=null)this.handler=e;else if(this.loadOptions.requestInit!=null)this.handler=En.browserHTTPRequest(e,this.loadOptions);else{let t=En.getLoadHandlers(e,this.loadOptions);if(t.length===0)t.push(En.browserHTTPRequest(e,this.loadOptions));else if(t.length>1)throw new Error(`Found more than one (${t.length}) load handlers for URL '${[e]}'`);this.handler=t[0]}}async load(){if(this.findIOHandler(),this.handler.load==null)throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");let e=await this.handler.load();return this.loadSync(e)}loadSync(e){this.artifacts=e;let t=this.artifacts.modelTopology,n;this.artifacts.userDefinedMetadata!=null&&this.artifacts.userDefinedMetadata.signature!=null?n=this.artifacts.userDefinedMetadata.signature:n=this.artifacts.signature,this.signature=n,this.version=`${t.versions.producer}.${t.versions.minConsumer}`;let a=En.decodeWeights(this.artifacts.weightData,this.artifacts.weightSpecs);if(this.executor=new s2(wk.Instance.transformGraph(t,this.signature)),this.executor.weightMap=this.convertTensorMapToTensorsMap(a),this.executor.resourceManager=this.resourceManager,e.modelInitializer!=null&&e.modelInitializer.node!=null){let r=wk.Instance.transformGraph(e.modelInitializer);this.initializer=new s2(r),this.initializer.weightMap=this.executor.weightMap,this.initializer.resourceManager=this.resourceManager,this.initializer.executeAsync({},[])}return!0}async save(e,t){if(typeof e=="string"){let n=En.getSaveHandlers(e);if(n.length===0)throw new Error(`Cannot find any save handlers for URL '${e}'`);if(n.length>1)throw new Error(`Found more than one (${n.length}) save handlers for URL '${e}'`);e=n[0]}if(e.save==null)throw new Error("GraphModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");return e.save(this.artifacts)}predict(e,t){return this.execute(e,this.outputNodes)}normalizeInputs(e){if(!(e instanceof Be)&&!Array.isArray(e))return e;if(e=Array.isArray(e)?e:[e],e.length!==this.inputNodes.length)throw new Error(`Input tensor count mismatch,the graph model has ${this.inputNodes.length} placeholders, while there are ${e.length} input tensors.`);return this.inputNodes.reduce((t,n,a)=>(t[n]=e[a],t),{})}normalizeOutputs(e){return e=e||this.outputNodes,Array.isArray(e)?e:[e]}execute(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=this.executor.execute(e,t);return n.length>1?n:n[0]}async executeAsync(e,t){e=this.normalizeInputs(e),t=this.normalizeOutputs(t);let n=await this.executor.executeAsync(e,t);return n.length>1?n:n[0]}convertTensorMapToTensorsMap(e){return Object.keys(e).reduce((t,n)=>(t[n]=[e[n]],t),{})}dispose(){this.executor.dispose(),this.initializer&&this.initializer.dispose(),this.resourceManager.dispose()}};async function ct(e,t={}){if(e==null)throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");t==null&&(t={}),t.fromTFHub&&e.load==null&&(e.endsWith("/")||(e=e+"/"),e=`${e}${$oe}${Foe}`);let n=new Fk(e,t);return await n.load(),n}var Doe="3.7.0",$k={};Fe($k,{CSVDataset:()=>Hk,Dataset:()=>ou,FileDataSource:()=>Jk,TextLineDataset:()=>Vk,URLDataSource:()=>Qk,array:()=>ale,csv:()=>fle,func:()=>mle,generator:()=>gle,microphone:()=>Ale,version_data:()=>xle,webcam:()=>yle,zip:()=>rle});var Ooe=gs(T5()),zoe=gs(T5());function _oe(e,t){return _0(e,t)}function _0(e,t,n=new Map,a=new Set){if(e==null)return null;if(a.has(e))throw new Error("Circular references are not supported.");if(n.has(e))return n.get(e);let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep map function may not return both a value and recurse=true.");if(r.recurse)if(iu(e)){let s=Array.isArray(e)?[]:{};a.add(e);for(let i in e){let o=e[i],l=_0(o,t,n,a);s[i]=l}return a.delete(e),s}else throw new Error(`Can't recurse into non-iterable type: ${e}`);else return n.set(e,r.value),r.value}function Poe(e,t=Ok){return Dk(e,t)}function Dk(e,t,n=new Set){let a=e[0];if(n.has(a))throw new Error("Circular references are not supported.");let r=t(e);if(r.recurse&&r.value!==null)throw new Error("A deep zip function may not return both a value and recurse=true.");if(r.recurse)if(iu(a)){let s=Array.isArray(a)?[]:{};n.add(a);for(let i in a){let o=e.map(u=>u[i]),l=Dk(o,t,n);s[i]=l}return n.delete(a),s}else throw new Error(`Can't recurse into non-iterable type: ${a}`);else return r.value}function Ok(e){return e===null?null:iu(e[0])?{value:null,recurse:!0}:{value:e,recurse:!1}}async function zk(e,t){let n=new Map;_0(e,t,n);for(let a of Array.from(n.keys())){let r=n.get(a);if(k.isPromise(r)){let s=await r;n.set(a,s)}}return _0(e,t,n)}function iu(e){return e!=null&&!ArrayBuffer.isView(e)&&(Array.isArray(e)||typeof e=="object"&&!(e instanceof Be))}function Loe(e){return e==null||Woe(e)||Array.isArray(e)||typeof e=="object"&&e instanceof Be||k.isTypedArray(e)}function Woe(e){return e===null||typeof e!="object"&&typeof e!="function"}function Boe(e){return _oe(e,Voe)}function Voe(e){return e instanceof Be?{value:e.clone(),recurse:!1}:iu(e)?{value:null,recurse:!0}:{value:e,recurse:!1}}var _k=class{constructor(e){if(this.capacity=e,this.begin=0,this.end=0,e==null)throw new RangeError("Can't create a ring buffer of unknown capacity.");if(e<1)throw new RangeError("Can't create ring buffer of capacity < 1.");this.data=new Array(e),this.doubledCapacity=2*e}wrap(e){for(;e<0;)e+=this.doubledCapacity;return e%this.doubledCapacity}get(e){if(e<0)throw new RangeError("Can't get item at a negative index.");return this.data[e%this.capacity]}set(e,t){if(e<0)throw new RangeError("Can't set item at a negative index.");this.data[e%this.capacity]=t}length(){let e=this.end-this.begin;return e<0&&(e=this.doubledCapacity+e),e}isFull(){return this.length()===this.capacity}isEmpty(){return this.length()===0}push(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.set(this.end,e),this.end=this.wrap(this.end+1)}pushAll(e){for(let t of e)this.push(t)}pop(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");this.end=this.wrap(this.end-1);let e=this.get(this.end);return this.set(this.end,void 0),e}unshift(e){if(this.isFull())throw new RangeError("Ring buffer is full.");this.begin=this.wrap(this.begin-1),this.set(this.begin,e)}shift(){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let e=this.get(this.begin);return this.set(this.begin,void 0),this.begin=this.wrap(this.begin+1),e}shuffleExcise(e){if(this.isEmpty())throw new RangeError("Ring buffer is empty.");let t=this.wrap(this.begin+e),n=this.get(t);return this.set(t,this.pop()),n}},i2=class extends _k{constructor(){super(i2.INITIAL_CAPACITY)}isFull(){return!1}push(e){super.isFull()&&this.expand(),super.push(e)}unshift(e){super.isFull()&&this.expand(),super.unshift(e)}expand(){let e=this.capacity*2,t=new Array(e),n=this.length();for(let a=0;a<n;a++)t[a]=this.get(this.wrap(this.begin+a));this.data=t,this.capacity=e,this.doubledCapacity=2*this.capacity,this.begin=0,this.end=n}};i2.INITIAL_CAPACITY=32;function Pk(e){return new Hoe(e)}function o2(e){return new Goe(e)}function joe(e,t){return new Wk(e,t)}function Uoe(e,t=os.FAIL){return new tle(e,t)}var Qt=class{async toArray(){let e=[],t=await this.next();for(;!t.done;)e.push(t.value),t=await this.next();return e}async toArrayForTest(){let e=this.prefetch(100),t=[],n=await e.next();for(;!n.done;)t.push(n.value),n=await e.next();return t}async resolveFully(){let e=await this.next();for(;!e.done;)e=await this.next()}async resolveWhile(e){let t=await this.next(),n=e(t.value);for(;!t.done&&n;)t=await this.next(),n=e(t.value)}handleErrors(e){return new Qoe(this,e)}filter(e){return new Yoe(this,e)}map(e){return new Joe(this,e)}mapAsync(e){return new Lk(this,e)}serialMapAsync(e){return new Lk(this,e).serial()}flatmap(e){return new ele(this,e)}async forEachAsync(e){return this.map(e).resolveFully()}async serialForEach(e){return this.serialMapAsync(e).resolveWhile(t=>t===!0)}rowMajorBatch(e,t=!0){return new Zoe(this,e,t)}columnMajorBatch(e,t=!0,n=Ok){return this.rowMajorBatch(e,t).map(a=>Poe(a,n))}concatenate(e,t){return new Wk(Pk([this,e]),t)}take(e){return e<0||e==null?this:new Koe(this,e)}skip(e){return e<0||e==null?this:new Xoe(this,e)}prefetch(e){return new Bk(this,e)}shuffle(e,t){return new nle(this,e,t)}serial(){return new qoe(this)}},Hoe=class extends Qt{constructor(e){super();this.items=e,this.trav=0}summary(){return`Array of ${this.items.length} items`}async next(){if(this.trav>=this.items.length)return{value:null,done:!0};let e=this.items[this.trav];return this.trav++,{value:Boe(e),done:!1}}},Goe=class extends Qt{constructor(e){super();this.nextFn=e}summary(){return"Function call"}async next(){try{return this.nextFn()}catch(e){throw e.message=`Error thrown while iterating through a dataset: ${e.message}`,e}}},qoe=class extends Qt{constructor(e){super();this.upstream=e,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Serial`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){return this.upstream.next()}},Xoe=class extends Qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Skip`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.count++<this.maxCount;){let e=await this.upstream.next();if(e.done)return e;he(e.value)}return this.upstream.next()}},Koe=class extends Qt{constructor(e,t){super();this.upstream=e,this.maxCount=t,this.count=0}summary(){return`${this.upstream.summary()} -> Take`}async next(){return this.count++>=this.maxCount?{value:null,done:!0}:this.upstream.next()}},Zoe=class extends Qt{constructor(e,t,n=!0){super();this.upstream=e,this.batchSize=t,this.enableSmallLastBatch=n,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> RowMajorBatch`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){let e=[];for(;e.length<this.batchSize;){let t=await this.upstream.next();if(t.done)return this.enableSmallLastBatch&&e.length>0?{value:e,done:!1}:{value:null,done:!0};e.push(t.value)}return{value:e,done:!1}}},Yoe=class extends Qt{constructor(e,t){super();this.upstream=e,this.predicate=t,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> Filter`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;){let e=await this.upstream.next();if(e.done||this.predicate(e.value))return e;he(e.value)}}},Joe=class extends Qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Map`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Sa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Sa.getTensorsInContainer(n);for(let r of t)Sa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},Qoe=class extends Qt{constructor(e,t){super();this.upstream=e,this.handler=t,this.count=0,this.lastRead=Promise.resolve({value:null,done:!1})}summary(){return`${this.upstream.summary()} -> handleErrors`}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;;)try{return await this.upstream.next()}catch(e){if(!this.handler(e))return{value:null,done:!0}}}},Lk=class extends Qt{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> AsyncMap`}async next(){let e=await this.upstream.next();if(e.done)return{value:null,done:!0};let t=Sa.getTensorsInContainer(e.value),n=await this.transform(e.value),a=Sa.getTensorsInContainer(n);for(let r of t)Sa.isTensorInList(r,a)||r.dispose();return{value:n,done:!1}}},l2=class extends Qt{constructor(){super();this.outputQueue=new i2,this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}async serialNext(){for(;this.outputQueue.length()===0;)if(!await this.pump())return{value:null,done:!0};return{value:this.outputQueue.shift(),done:!1}}},ele=class extends l2{constructor(e,t){super();this.upstream=e,this.transform=t}summary(){return`${this.upstream.summary()} -> Flatmap`}async pump(){let e=await this.upstream.next();if(e.done)return!1;let t=Sa.getTensorsInContainer(e.value),n=this.transform(e.value),a=Sa.getTensorsInContainer(n);this.outputQueue.pushAll(n);for(let r of t)Sa.isTensorInList(r,a)||r.dispose();return!0}},Wk=class extends Qt{constructor(e,t){super();this.baseErrorHandler=t,this.lastRead=null,this.iterator=null,this.moreIterators=e}summary(){return"TODO: fill in upstream of chained summaries -> Chained"}async next(){return this.lastRead=this.readFromChain(this.lastRead),this.lastRead}async readFromChain(e){if(await e,this.iterator==null){let n=await this.moreIterators.next();if(n.done)return{value:null,done:!0};this.iterator=n.value,this.baseErrorHandler!=null&&(this.iterator=this.iterator.handleErrors(this.baseErrorHandler))}let t=await this.iterator.next();return t.done?(this.iterator=null,this.readFromChain(e)):t}},os;(function(e){e[e.FAIL=0]="FAIL",e[e.SHORTEST=1]="SHORTEST",e[e.LONGEST=2]="LONGEST"})(os||(os={}));var tle=class extends Qt{constructor(e,t=os.FAIL){super();this.iterators=e,this.mismatchMode=t,this.count=0,this.currentPromise=null}summary(){return"{TODO: fill in upstream of zip summaries} -> Zip"}async nextState(e){await e;let t=0,n=0;function a(s){return s instanceof Qt?{value:s.next().then(i=>(t++,i.done&&n++,i.value)),recurse:!1}:{value:null,recurse:!0}}let r=await zk(this.iterators,a);if(t===n)return{value:null,done:!0};if(n>0)switch(this.mismatchMode){case os.FAIL:throw new Error(`Zipped streams should have the same length. Mismatched at element ${this.count}.`);case os.SHORTEST:return{value:null,done:!0};case os.LONGEST:default:}return this.count++,{value:r,done:!1}}async next(){return this.currentPromise=this.nextState(this.currentPromise),this.currentPromise}},Bk=class extends Qt{constructor(e,t){super();this.upstream=e,this.bufferSize=t,this.buffer=new _k(t)}summary(){return`${this.upstream.summary()} -> Prefetch`}refill(){for(;!this.buffer.isFull();){let e=this.upstream.next();this.buffer.push(e)}}next(){return this.refill(),this.buffer.shift()}},nle=class extends Bk{constructor(e,t,n){super(e,t);this.upstream=e,this.windowSize=t,this.upstreamExhausted=!1,this.random=zoe.alea(n||k.now().toString()),this.lastRead=Promise.resolve({value:null,done:!1})}async next(){return this.lastRead=this.lastRead.then(()=>this.serialNext()),this.lastRead}randomInt(e){return Math.floor(this.random()*e)}chooseIndex(){return this.randomInt(this.buffer.length())}async serialNext(){for(this.upstreamExhausted||this.refill();!this.buffer.isEmpty();){let e=this.chooseIndex(),t=await this.buffer.shuffleExcise(e);if(t.done)this.upstreamExhausted=!0;else return this.refill(),t}return{value:null,done:!0}}},ou=class{constructor(){this.size=null}batch(e,t=!0){let n=this;k.assert(e>0,()=>`batchSize needs to be positive, but it is
|
|
${e}`);let a;return this.size===Infinity||this.size==null?a=this.size:t?a=Math.ceil(this.size/e):a=Math.floor(this.size/e),Zn(async()=>(await n.iterator()).columnMajorBatch(e,t,sle),a)}concatenate(e){let t=this,n;return this.size===Infinity||e.size===Infinity?n=Infinity:this.size!=null&&e.size!=null?n=this.size+e.size:n=null,Zn(async()=>(await t.iterator()).concatenate(await e.iterator()),n)}filter(e){let t=this,n;return this.size===Infinity?n=Infinity:n=null,Zn(async()=>(await t.iterator()).filter(a=>V(()=>e(a))),n)}async forEachAsync(e){return(await this.iterator()).forEachAsync(e)}map(e){let t=this;return Zn(async()=>(await t.iterator()).map(n=>V(()=>e(n))),this.size)}mapAsync(e){let t=this;return Zn(async()=>(await t.iterator()).mapAsync(e),this.size)}prefetch(e){if(e==null)throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");let t=this;return Zn(async()=>(await t.iterator()).prefetch(e),this.size)}repeat(e){let t=this,n;return this.size!=null&&e>0?n=this.size*e:e===0?n=0:this.size!=null&&(e===void 0||e<0)?n=Infinity:n=null,Zn(async()=>{let a=o2(async()=>({value:await t.iterator(),done:!1}));return joe(a.take(e))},n)}skip(e){let t=this,n;return this.size!=null&&e>=0&&this.size>=e?n=this.size-e:this.size!=null&&(this.size<e||e===void 0||e<0)?n=0:n=null,Zn(async()=>(await t.iterator()).skip(e),n)}shuffle(e,t,n=!0){if(e==null||e<0)throw this.size==null?new RangeError("`Dataset.shuffle()` requires bufferSize to be specified."):new RangeError(`\`Dataset.shuffle()\` requires bufferSize to be specified. If your data fits in main memory (for regular JS objects), and/or GPU memory (for \`tf.Tensor\`s), consider setting bufferSize to the dataset size (${this.size} elements)`);let a=this,r=Ooe.alea(t||k.now().toString());return Zn(async()=>{let s=r.int32();return n&&(s+=r.int32()),(await a.iterator()).shuffle(e,s.toString())},this.size)}take(e){let t=this,n;return this.size!=null&&this.size>e?n=e:this.size!=null&&this.size<=e?n=this.size:n=null,Zn(async()=>(await t.iterator()).take(e),n)}async toArray(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArray()}async toArrayForTest(){if(this.size===Infinity)throw new Error("Can not convert infinite data stream to array.");return(await this.iterator()).toArrayForTest()}};ou.MAX_BUFFER_SIZE=1e4;function Zn(e,t=null){return new class extends ou{constructor(){super(...arguments);this.size=t}async iterator(){return e()}}}function ale(e){return Zn(async()=>Pk(e),e.length)}function rle(e){if(!iu(e))throw new Error("The argument to zip() must be an object or array.");let t;if(Array.isArray(e))for(let n=0;n<e.length;n++)t=t==null?e[n].size:Math.min(t,e[n].size);else if(e instanceof Object)for(let n in e)t=t==null?e[n].size:Math.min(t,e[n].size);return Zn(async()=>{let n=await zk(e,a=>{if(a instanceof ou)return{value:a.iterator(),recurse:!1};if(iu(a))return{value:null,recurse:!0};throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.")});return Uoe(n,os.SHORTEST)},t)}function sle(e){if(e===null)return null;let t=e[0];return Loe(t)?{value:ile(e),recurse:!1}:{value:null,recurse:!0}}function ile(e){if(e.length===0)throw new Error("Can't make a batch of zero elements.");return e[0]instanceof Be?gn(e):ln(e)}var Vk=class extends ou{constructor(e){super();this.input=e}async iterator(){return(await this.input.iterator()).decodeUTF8().split(`
|
|
`).map(e=>(e.endsWith("\r")&&(e=e.slice(0,-1)),e))}},P0='"',up=Symbol("out"),jk=Symbol("field"),L0=Symbol("quote"),u2=Symbol("quoteafterquote"),Uk=Symbol("quoteinquote"),Hk=class extends ou{constructor(e,t){super();this.input=e,this.hasHeader=!0,this.fullColumnNames=null,this.columnNamesValidated=!1,this.columnConfigs=null,this.configuredColumnsOnly=!1,this.delimiter=",",this.delimWhitespace=!1,this.base=new Vk(e),t||(t={}),this.hasHeader=t.hasHeader!==!1,this.fullColumnNames=t.columnNames,this.columnConfigs=t.columnConfigs,this.configuredColumnsOnly=t.configuredColumnsOnly,t.delimWhitespace?(k.assert(t.delimiter==null,()=>"Delimiter should not be provided when delimWhitespace is true."),this.delimWhitespace=!0,this.delimiter=" "):this.delimiter=t.delimiter?t.delimiter:","}async columnNames(){return this.columnNamesValidated||await this.setColumnNames(),this.configuredColumnsOnly?Object.keys(this.columnConfigs):this.fullColumnNames}async setColumnNames(){let e=await this.maybeReadHeaderLine();if(!this.fullColumnNames&&!e)throw new Error("Column names must be provided if there is no header line.");this.fullColumnNames&&e&&k.assert(e.length===this.fullColumnNames.length,()=>"The length of provided columnNames ("+this.fullColumnNames.length.toString()+") does not match the length of the header line read from file ("+e.length.toString()+")."),this.fullColumnNames||(this.fullColumnNames=e);let t=this.fullColumnNames.reduce((a,r)=>(a[r]=a[r]+1||1,a),{}),n=Object.keys(t).filter(a=>t[a]>1);if(k.assert(n.length===0,()=>"Duplicate column names found: "+n.toString()),this.columnConfigs){for(let a of Object.keys(this.columnConfigs))if(this.fullColumnNames.indexOf(a)===-1)throw new Error('The key "'+a+'" provided in columnConfigs does not match any of the column names ('+this.fullColumnNames.toString()+").")}this.columnNamesValidated=!0}async maybeReadHeaderLine(){if(this.hasHeader){let e=await(await this.base.iterator()).next();if(e.done)throw new Error("No data was found for CSV parsing.");let t=e.value;return this.parseRow(t,!1)}else return null}async iterator(){this.columnNamesValidated||await this.setColumnNames();let e=await this.base.iterator();return this.hasHeader&&(e=e.skip(1)),e.map(t=>this.makeDataElement(t))}makeDataElement(e){let t=this.parseRow(e),n={},a={};for(let r=0;r<this.fullColumnNames.length;r++){let s=this.fullColumnNames[r],i=this.columnConfigs?this.columnConfigs[s]:null;if(!(this.configuredColumnsOnly&&!i)){let o=t[r],l=null;if(o==="")if(i&&i.default!==void 0)l=i.default;else{if(i&&(i.required||i.isLabel))throw new Error(`Required column ${s} is empty in this line: ${e}`);l=void 0}else{let u=Number(o);if(isNaN(u))i&&i.dtype==="bool"?l=this.getBoolean(o):l=o;else if(!i||!i.dtype)l=u;else switch(i.dtype){case"float32":l=u;break;case"int32":l=Math.floor(u);break;case"bool":l=this.getBoolean(o);break;default:l=u}}i&&i.isLabel?a[s]=l:n[s]=l}}return Object.keys(a).length===0?n:{xs:n,ys:a}}getBoolean(e){return e==="1"||e.toLowerCase()==="true"?1:0}parseRow(e,t=!0){let n=[],a=0,r=e.length,s=up;for(let i=0;i<r;i++)switch(s){case up:switch(e.charAt(i)){case P0:a=i+1,s=L0;break;case this.delimiter:if(a=i+1,this.delimiter===" "&&this.delimWhitespace)break;n.push(""),s=up;break;default:s=jk,a=i;break}break;case jk:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i)),s=up,a=i+1;break;default:}break;case L0:switch(e.charAt(i)){case P0:s=u2;break;default:}break;case u2:switch(e.charAt(i)){case this.delimiter:n.push(e.substring(a,i-1)),s=up,a=i+1;break;case P0:s=L0;break;default:s=Uk;break}break;case Uk:switch(e.charAt(i)){case P0:s=L0;break;default:}break;default:}if(s===u2?n.push(e.substring(a,r-1)):n.push(e.substring(a)),t&&n.length!==this.fullColumnNames.length)throw new Error(`Invalid row in csv file. Should have ${this.fullColumnNames.length} elements in a row, but got ${n}`);return n}},Gk=class extends Qt{constructor(e){super();this.microphoneConfig=e,this.isClosed=!1,this.fftSize=e.fftSize||1024;let t=Math.log2(this.fftSize);if(this.fftSize<0||t<4||t>14||!Number.isInteger(t))throw new Error(`Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got ${this.fftSize}`);if(this.numFrames=e.numFramesPerSpectrogram||43,this.sampleRateHz=e.sampleRateHz,this.columnTruncateLength=e.columnTruncateLength||this.fftSize,this.audioTrackConstraints=e.audioTrackConstraints,this.smoothingTimeConstant=e.smoothingTimeConstant||0,this.includeSpectrogram=e.includeSpectrogram!==!1,this.includeWaveform=e.includeWaveform===!0,!this.includeSpectrogram&&!this.includeWaveform)throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.")}summary(){return"microphone"}static async create(e={}){if(te().get("IS_NODE"))throw new Error("microphone API is only supported in browser environment.");let t=new Gk(e);return await t.start(),t}async start(){try{this.stream=await navigator.mediaDevices.getUserMedia({audio:this.audioTrackConstraints==null?!0:this.audioTrackConstraints,video:!1})}catch(n){throw new Error(`Error thrown while initializing video stream: ${n.message}`)}if(!this.stream)throw new Error("Could not obtain audio from microphone.");let e=window.AudioContext||window.webkitAudioContext;if(this.audioContext=new e,!this.sampleRateHz)this.sampleRateHz=this.audioContext.sampleRate;else if(this.audioContext.sampleRate!==this.sampleRateHz)throw new Error(`Mismatch in sampling rate: Expected: ${this.sampleRateHz}; Actual: ${this.audioContext.sampleRate}`);let t=this.audioContext.createMediaStreamSource(this.stream);this.analyser=this.audioContext.createAnalyser(),this.analyser.fftSize=this.fftSize*2,this.analyser.smoothingTimeConstant=this.smoothingTimeConstant,t.connect(this.analyser),this.freqData=new Float32Array(this.fftSize),this.timeData=new Float32Array(this.fftSize)}async next(){if(this.isClosed)return{value:null,done:!0};let e,t,n=await this.getAudioData();if(this.includeSpectrogram){let a=this.flattenQueue(n.freqDataQueue);e=this.getTensorFromAudioDataArray(a,[this.numFrames,this.columnTruncateLength,1])}if(this.includeWaveform){let a=this.flattenQueue(n.timeDataQueue);t=this.getTensorFromAudioDataArray(a,[this.numFrames*this.fftSize,1])}return{value:{spectrogram:e,waveform:t},done:!1}}async capture(){return(await this.next()).value}async getAudioData(){let e=[],t=[],n=0;return new Promise(a=>{let r=setInterval(()=>{this.includeSpectrogram&&(this.analyser.getFloatFrequencyData(this.freqData),this.freqData[0]===-Infinity&&a({freqDataQueue:e,timeDataQueue:t}),e.push(this.freqData.slice(0,this.columnTruncateLength))),this.includeWaveform&&(this.analyser.getFloatTimeDomainData(this.timeData),t.push(this.timeData.slice())),++n===this.numFrames&&(clearInterval(r),a({freqDataQueue:e,timeDataQueue:t}))},this.fftSize/this.sampleRateHz*1e3)})}stop(){this.isClosed||(this.isClosed=!0,this.analyser.disconnect(),this.audioContext.close(),this.stream!=null&&this.stream.getTracks().length>0&&this.stream.getTracks()[0].stop())}toArray(){throw new Error("Can not convert infinite audio stream to array.")}getSampleRate(){return this.sampleRateHz}flattenQueue(e){let t=e[0].length,n=new Float32Array(e.length*t);return e.forEach((a,r)=>n.set(a,r*t)),n}getTensorFromAudioDataArray(e,t){let n=new Float32Array(k.sizeFromShape(t));return n.set(e,n.length-e.length),ln(n,t)}},qk=class extends Qt{constructor(e,t){super();if(this.webcamVideoElement=e,this.webcamConfig=t,this.isClosed=!0,this.resize=!1,this.needToResize())if(this.resize=!0,this.cropSize=[this.webcamConfig.resizeHeight,this.webcamConfig.resizeWidth],this.cropBoxInd=Dt([0],"int32"),this.webcamConfig.centerCrop){let n=this.webcamConfig.resizeWidth*1/this.webcamVideoElement.width,a=this.webcamConfig.resizeHeight*1/this.webcamVideoElement.height,r=(1-n)/2,s=(1-a)/2,i=r+n,o=a+s;this.cropBox=Ta([s,r,o,i],[1,4])}else this.cropBox=Ta([0,0,1,1],[1,4])}summary(){return"webcam"}static async create(e,t={}){if(te().get("IS_NODE"))throw new Error("tf.data.webcam is only supported in browser environment.");if(!e){if(e=document.createElement("video"),!t.resizeWidth||!t.resizeHeight)throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");e.width=t.resizeWidth,e.height=t.resizeHeight}let n=new qk(e,t);return await n.start(),n}async start(){this.webcamConfig.facingMode&&k.assert(this.webcamConfig.facingMode==="user"||this.webcamConfig.facingMode==="environment",()=>`Invalid webcam facing mode: ${this.webcamConfig.facingMode}. Please provide 'user' or 'environment'`);try{this.stream=await navigator.mediaDevices.getUserMedia({video:{deviceId:this.webcamConfig.deviceId,facingMode:this.webcamConfig.facingMode?this.webcamConfig.facingMode:"user",width:this.webcamVideoElement.width,height:this.webcamVideoElement.height}})}catch(e){throw e.message=`Error thrown while initializing video stream: ${e.message}`,e}if(!this.stream)throw new Error("Could not obtain video from webcam.");try{this.webcamVideoElement.srcObject=this.stream}catch(e){console.log(e),this.webcamVideoElement.src=window.URL.createObjectURL(this.stream)}return this.webcamVideoElement.play(),this.isClosed=!1,new Promise(e=>{this.webcamVideoElement.onloadedmetadata=()=>{e()}})}async next(){if(this.isClosed)return{value:null,done:!0};let e;try{e=oa.fromPixels(this.webcamVideoElement)}catch(t){throw new Error(`Error thrown converting video to pixels: ${JSON.stringify(t)}`)}if(this.resize)try{return{value:this.cropAndResizeFrame(e),done:!1}}catch(t){throw new Error(`Error thrown cropping the video: ${t.message}`)}finally{e.dispose()}else return{value:e,done:!1}}needToResize(){return!!(this.webcamConfig.resizeWidth&&this.webcamConfig.resizeHeight&&(this.webcamVideoElement.width!==this.webcamConfig.resizeWidth||this.webcamVideoElement.height!==this.webcamConfig.resizeHeight))}cropAndResizeFrame(e){return V(()=>{let t=mn(ge(e,"float32"),0),n;n=De.cropAndResize(t,this.cropBox,this.cropBoxInd,this.cropSize,"bilinear");let a=n.shape;return q(n,a.slice(1))})}async capture(){return(await this.next()).value}stop(){this.stream.getTracks().forEach(e=>e.stop());try{this.webcamVideoElement.srcObject=null}catch(e){console.log(e),this.webcamVideoElement.src=null}this.isClosed=!0}toArray(){throw new Error("Can not convert infinite video stream to array.")}},Xk=class{},Kk=class extends Qt{split(e){return new ole(this,e)}},ole=class extends Kk{constructor(e,t){super();this.upstream=e,this.impl=new lle(e,t)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},lle=class extends l2{constructor(e,t){super();this.upstream=e,this.separator=t,this.carryover=""}summary(){return`${this.upstream.summary()} -> Split('${this.separator}')`}async pump(){let e=await this.upstream.next();if(e.done)return this.carryover===""?!1:(this.outputQueue.push(this.carryover),this.carryover="",!0);let t=e.value.split(this.separator);t[0]=this.carryover+t[0];for(let n of t.slice(0,-1))this.outputQueue.push(n);return this.carryover=t[t.length-1],!0}},ule=class extends Qt{decodeUTF8(){return new dle(this)}},dle=class extends Kk{constructor(e){super();this.upstream=e,this.impl=new ple(e)}summary(){return this.impl.summary()}async next(){return this.impl.next()}},ple=class extends l2{constructor(e){super();if(this.upstream=e,te().get("IS_BROWSER"))this.decoder=new TextDecoder("utf-8");else{let{StringDecoder:t}=yS();this.decoder=new t("utf8")}}summary(){return`${this.upstream.summary()} -> Utf8`}async pump(){let e=await this.upstream.next(),t;if(e.done)return!1;t=e.value;let n;return te().get("IS_BROWSER")?n=this.decoder.decode(t,{stream:!0}):n=this.decoder.write(Buffer.from(t.buffer)),this.outputQueue.push(n),!0}},Zk=class extends ule{constructor(e,t={}){super();this.file=e,this.options=t,k.assert(e instanceof Uint8Array||(te().get("IS_BROWSER")?e instanceof File||e instanceof Blob:!1),()=>"FileChunkIterator only supports File, Blob and Uint8Array right now."),this.offset=t.offset||0,this.chunkSize=t.chunkSize||1024*1024}summary(){return`FileChunks ${this.file}`}async next(){return this.offset>=(this.file instanceof Uint8Array?this.file.byteLength:this.file.size)?{value:null,done:!0}:{value:await new Promise((e,t)=>{let n=this.offset+this.chunkSize;if(this.file instanceof Uint8Array)e(new Uint8Array(this.file.slice(this.offset,n)));else{let a=new FileReader;a.onload=s=>{let i=a.result;if(i instanceof ArrayBuffer&&(i=new Uint8Array(i)),!(i instanceof Uint8Array))return t(new TypeError("FileReader returned unknown type."));e(i)},a.onabort=s=>t(new Error("Aborted")),a.onerror=s=>t(new Error(s.type));let r=this.file.slice(this.offset,n);a.readAsArrayBuffer(r)}this.offset=n}),done:!1}}};async function cle(e,t={}){let n,a;typeof e=="string"?n=e:(n=e.url,a=hle(e));let r=await k.fetch(n,a);if(r.ok){let s=new Uint8Array(await r.arrayBuffer());return new Zk(s,t)}else throw new Error(r.statusText)}var hle=e=>({method:e.method,headers:e.headers,body:e.body,mode:e.mode,credentials:e.credentials,cache:e.cache,redirect:e.redirect,referrer:e.referrer,integrity:e.integrity});function Yk(e){return typeof e=="string"&&e.substr(0,7)==="file://"}var Jk=class extends Xk{constructor(e,t={}){super();this.input=e,this.options=t}async iterator(){if(Yk(this.input)&&te().get("IS_NODE")){let e=co("fs");this.input=e.readFileSync(this.input.substr(7))}return new Zk(this.input,this.options)}},Qk=class extends Xk{constructor(e,t={}){super();this.url=e,this.fileOptions=t}async iterator(){return Yk(this.url)?new Jk(this.url,this.fileOptions).iterator():cle(this.url,this.fileOptions)}};function fle(e,t={}){return new Hk(new Qk(e),t)}function mle(e){let t=o2(e);return Zn(async()=>t)}function gle(e){return Zn(async()=>{let t=await e();return o2(()=>t.next())})}async function yle(e,t){return qk.create(e,t)}async function Ale(e){return Gk.create(e)}var xle="3.7.0",ble={tfjs:(Pm==null?void 0:Pm.version)||void 0,"tfjs-core":(Lm==null?void 0:Lm.version)||void 0,"tfjs-data":(Wm==null?void 0:Wm.version)||void 0,"tfjs-layers":(Bm==null?void 0:Bm.version)||void 0,"tfjs-converter":(Vm==null?void 0:Vm.version)||void 0,"tfjs-backend-cpu":X7||void 0,"tfjs-backend-webgl":yw||void 0,"tfjs-backend-wasm":u4||void 0};var Yn={name:"humangl",priority:99,canvas:null,gl:null,width:1024,height:1024,webGLattr:{alpha:!1,antialias:!1,premultipliedAlpha:!1,preserveDrawingBuffer:!1,depth:!1,stencil:!1,failIfMajorPerformanceCaveat:!1,desynchronized:!0}};function e9(){if(!S1(Yn.name)){de("backend registration:",Yn.name);try{Yn.canvas=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Yn.width,Yn.height):document.createElement("canvas")}catch(e){de("error: cannot create canvas:",e);return}try{Yn.gl=Yn.canvas.getContext("webgl2",Yn.webGLattr)}catch(e){de("error: cannot get WebGL2 context:",e);return}try{Oh(2,Yn.gl)}catch(e){de("error: cannot set WebGL2 context:",e);return}try{let e=new Vh(Yn.gl);Il(Yn.name,()=>new Kl(e),Yn.priority)}catch(e){de("error: cannot register WebGL backend:",e);return}try{yl("webgl").forEach(t=>{let n={...t,backendName:Yn.name};gi(n)})}catch(e){de("error: cannot update WebGL backend registration:",e);return}try{sa.set("WEBGL_VERSION",2)}catch(e){de("error: cannot set WebGL backend flags:",e);return}de("backend registered:",Yn.name)}}function t9(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]];return{startPoint:n,endPoint:a}}function pp(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function lu(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function uu(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return De.cropAndResize(t,s,[0],n)}function W0(e,t=1.5){let n=lu(e),a=pp(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function B0(e){let t=lu(e),n=pp(e),r=Math.max(...n)/2,s=[Math.round(t[0]-r),Math.round(t[1]-r)],i=[Math.round(t[0]+r),Math.round(t[1]+r)];return{startPoint:s,endPoint:i,landmarks:e.landmarks}}function d2(e){let t=e.map(s=>s[0]),n=e.map(s=>s[1]),a=[Math.min(...t),Math.min(...n)],r=[Math.max(...t),Math.max(...n)];return{startPoint:a,endPoint:r,landmarks:e}}var n9=e=>({startPoint:Re(e,[0,0],[-1,2]),endPoint:Re(e,[0,2],[-1,2])});var V0=[[1,0,0],[0,1,0],[0,0,1]];function vle(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function p2(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return vle(n)}function a9(e,t){return[[1,0,e],[0,1,t],[0,0,1]]}function ls(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function wle(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function r9(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(ls(e[r],wle(t,s)))}return n}function j0(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=a9(t[0],t[1]),i=r9(s,r),o=a9(-t[0],-t[1]);return r9(i,o)}function s9(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-ls(t[0],n),-ls(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function i9(e,t){return[ls(e,t[0]),ls(e,t[1])]}function o9(e){let t={strides:[e/16,e/8],anchors:[2,6]},n=[];for(let a=0;a<t.strides.length;a++){let r=t.strides[a],s=Math.floor((e+r-1)/r),i=Math.floor((e+r-1)/r),o=t.anchors[a];for(let l=0;l<s;l++){let u=r*(l+.5);for(let d=0;d<i;d++){let p=r*(d+.5);for(let c=0;c<o;c++)n.push([p,u])}}}return n}var l9=6;function kle(e,t,n){let a=Re(e,[0,1],[-1,2]),r=ie(a,t),s=Re(e,[0,3],[-1,2]),i=me(s,n),o=me(r,n),l=me(i,2),u=ye(o,l),d=ie(o,l),p=B(u,n),c=B(d,n);return Tl([p,c],1)}var u9=class{constructor(t,n){this.model=t,this.anchorsData=o9(t.inputs[0].shape[1]),this.anchors=Ta(this.anchorsData),this.inputSize=t.inputs[0].shape[2],this.config=n}async getBoundingBoxes(t){if(!t||t.isDisposedInternal||t.shape.length!==4||t.shape[1]<1||t.shape[2]<1)return null;let[n,a,r]=V(()=>{let u=De.resizeBilinear(t,[this.inputSize,this.inputSize]).div(127.5).sub(.5),d=this.model.execute(u),p;if(Array.isArray(d)){let f=d.sort((x,v)=>x.size-v.size),g=lt([f[0],f[2]],2),y=lt([f[1],f[3]],2);p=lt([y,g],1).squeeze(0)}else p=Vt(d);let c=kle(p,this.anchors,[this.inputSize,this.inputSize]),h=Re(p,[0,0],[-1,1]),m=Rn(h).squeeze().dataSync();return[p,c,m]}),s=await De.nonMaxSuppressionAsync(a,r,this.config.face.detector.maxDetected,this.config.face.detector.iouThreshold,this.config.face.detector.minConfidence),i=s.arraySync();s.dispose();let o=[];for(let l=0;l<i.length;l++){let u=r[i[l]];if(u>this.config.face.detector.minConfidence){let d=Re(a,[i[l],0],[1,-1]),p=n9(d);d.dispose();let c=this.anchorsData[i[l]],h=V(()=>Re(n,[i[l],l9-1],[1,-1]).squeeze().reshape([l9,-1]));o.push({box:p,landmarks:h,anchor:c,confidence:u})}}return n.dispose(),a.dispose(),{boxes:o,scaleFactor:[t.shape[2]/this.inputSize,t.shape[1]/this.inputSize]}}};async function d9(e){let t=await ct(ft(e.modelBasePath,e.face.detector.modelPath),{fromTFHub:e.face.detector.modelPath.includes("tfhub.dev")}),n=new u9(t,e);return!t||!t.modelUrl?de("load model failed:",e.face.detector.modelPath):e.debug&&de("load model:",t.modelUrl),n}var rr={silhouette:[10,338,297,332,284,251,389,356,454,323,361,288,397,365,379,378,400,377,152,148,176,149,150,136,172,58,132,93,234,127,162,21,54,103,67,109],lipsUpperOuter:[61,185,40,39,37,0,267,269,270,409,291],lipsLowerOuter:[146,91,181,84,17,314,405,321,375,291],lipsUpperInner:[78,191,80,81,82,13,312,311,310,415,308],lipsLowerInner:[78,95,88,178,87,14,317,402,318,324,308],rightEyeUpper0:[246,161,160,159,158,157,173],rightEyeLower0:[33,7,163,144,145,153,154,155,133],rightEyeUpper1:[247,30,29,27,28,56,190],rightEyeLower1:[130,25,110,24,23,22,26,112,243],rightEyeUpper2:[113,225,224,223,222,221,189],rightEyeLower2:[226,31,228,229,230,231,232,233,244],rightEyeLower3:[143,111,117,118,119,120,121,128,245],rightEyebrowUpper:[156,70,63,105,66,107,55,193],rightEyebrowLower:[35,124,46,53,52,65],rightEyeIris:[473,474,475,476,477],leftEyeUpper0:[466,388,387,386,385,384,398],leftEyeLower0:[263,249,390,373,374,380,381,382,362],leftEyeUpper1:[467,260,259,257,258,286,414],leftEyeLower1:[359,255,339,254,253,252,256,341,463],leftEyeUpper2:[342,445,444,443,442,441,413],leftEyeLower2:[446,261,448,449,450,451,452,453,464],leftEyeLower3:[372,340,346,347,348,349,350,357,465],leftEyebrowUpper:[383,300,293,334,296,336,285,417],leftEyebrowLower:[265,353,276,283,282,295],leftEyeIris:[468,469,470,471,472],midwayBetweenEyes:[168],noseTip:[1],noseBottom:[2],noseRightCorner:[98],noseLeftCorner:[327],rightCheek:[205],leftCheek:[425]},c2=[{key:"EyeUpper0",indices:[9,10,11,12,13,14,15]},{key:"EyeUpper1",indices:[25,26,27,28,29,30,31]},{key:"EyeUpper2",indices:[41,42,43,44,45,46,47]},{key:"EyeLower0",indices:[0,1,2,3,4,5,6,7,8]},{key:"EyeLower1",indices:[16,17,18,19,20,21,22,23,24]},{key:"EyeLower2",indices:[32,33,34,35,36,37,38,39,40]},{key:"EyeLower3",indices:[54,55,56,57,58,59,60,61,62]}],cp=[[.499976992607117,.652534008026123],[.500025987625122,.547487020492554],[.499974012374878,.602371990680695],[.482113003730774,.471979022026062],[.500150978565216,.527155995368958],[.499909996986389,.498252987861633],[.499523013830185,.40106201171875],[.289712011814117,.380764007568359],[.499954998493195,.312398016452789],[.499987006187439,.269918978214264],[.500023007392883,.107050001621246],[.500023007392883,.666234016418457],[.5000159740448,.679224014282227],[.500023007392883,.692348003387451],[.499976992607117,.695277988910675],[.499976992607117,.70593398809433],[.499976992607117,.719385027885437],[.499976992607117,.737019002437592],[.499967992305756,.781370997428894],[.499816000461578,.562981009483337],[.473773002624512,.573909997940063],[.104906998574734,.254140973091125],[.365929991006851,.409575998783112],[.338757991790771,.41302502155304],[.311120003461838,.409460008144379],[.274657994508743,.389131009578705],[.393361985683441,.403706014156342],[.345234006643295,.344011008739471],[.370094001293182,.346076011657715],[.319321990013123,.347265005111694],[.297903001308441,.353591024875641],[.24779200553894,.410809993743896],[.396889001131058,.842755019664764],[.280097991228104,.375599980354309],[.106310002505779,.399955987930298],[.2099249958992,.391353011131287],[.355807989835739,.534406006336212],[.471751004457474,.65040397644043],[.474155008792877,.680191993713379],[.439785003662109,.657229006290436],[.414617002010345,.66654098033905],[.450374007225037,.680860996246338],[.428770989179611,.682690978050232],[.374971002340317,.727805018424988],[.486716985702515,.547628998756409],[.485300987958908,.527395009994507],[.257764995098114,.314490020275116],[.401223003864288,.455172002315521],[.429818987846375,.548614978790283],[.421351999044418,.533740997314453],[.276895999908447,.532056987285614],[.483370006084442,.499586999416351],[.33721199631691,.282882988452911],[.296391993761063,.293242990970612],[.169294998049736,.193813979625702],[.447580009698868,.302609980106354],[.392390012741089,.353887975215912],[.354490011930466,.696784019470215],[.067304998636246,.730105042457581],[.442739009857178,.572826027870178],[.457098007202148,.584792017936707],[.381974011659622,.694710969924927],[.392388999462128,.694203019142151],[.277076005935669,.271932005882263],[.422551989555359,.563233017921448],[.385919004678726,.281364023685455],[.383103013038635,.255840003490448],[.331431001424789,.119714021682739],[.229923993349075,.232002973556519],[.364500999450684,.189113974571228],[.229622006416321,.299540996551514],[.173287004232407,.278747975826263],[.472878992557526,.666198015213013],[.446828007698059,.668527007102966],[.422762006521225,.673889994621277],[.445307999849319,.580065965652466],[.388103008270264,.693961024284363],[.403039008378983,.706539988517761],[.403629004955292,.693953037261963],[.460041999816895,.557139039039612],[.431158006191254,.692366003990173],[.452181994915009,.692366003990173],[.475387006998062,.692366003990173],[.465828001499176,.779190003871918],[.472328990697861,.736225962638855],[.473087012767792,.717857003211975],[.473122000694275,.704625964164734],[.473033010959625,.695277988910675],[.427942007780075,.695277988910675],[.426479011774063,.703539967536926],[.423162013292313,.711845993995667],[.4183090031147,.720062971115112],[.390094995498657,.639572978019714],[.013953999616206,.560034036636353],[.499913990497589,.58014702796936],[.413199990987778,.69539999961853],[.409626007080078,.701822996139526],[.468080013990402,.601534962654114],[.422728985548019,.585985004901886],[.463079988956451,.593783974647522],[.37211999297142,.47341400384903],[.334562003612518,.496073007583618],[.411671012639999,.546965003013611],[.242175996303558,.14767599105835],[.290776997804642,.201445996761322],[.327338010072708,.256527006626129],[.399509996175766,.748921036720276],[.441727995872498,.261676013469696],[.429764986038208,.187834024429321],[.412198007106781,.108901023864746],[.288955003023148,.398952007293701],[.218936994671822,.435410976409912],[.41278201341629,.398970007896423],[.257135003805161,.355440020561218],[.427684992551804,.437960982322693],[.448339998722076,.536936044692993],[.178560003638268,.45755398273468],[.247308000922203,.457193970680237],[.286267012357712,.467674970626831],[.332827985286713,.460712015628815],[.368755996227264,.447206974029541],[.398963987827301,.432654976844788],[.476410001516342,.405806005001068],[.189241006970406,.523923993110657],[.228962004184723,.348950982093811],[.490725994110107,.562400996685028],[.404670000076294,.485132992267609],[.019469000399113,.401564002037048],[.426243007183075,.420431017875671],[.396993011236191,.548797011375427],[.266469985246658,.376977026462555],[.439121007919312,.51895797252655],[.032313998788595,.644356966018677],[.419054001569748,.387154996395111],[.462783008813858,.505746960639954],[.238978996872902,.779744982719421],[.198220998048782,.831938028335571],[.107550002634525,.540755033493042],[.183610007166862,.740257024765015],[.134409993886948,.333683013916016],[.385764002799988,.883153975009918],[.490967005491257,.579378008842468],[.382384985685349,.508572995662689],[.174399003386497,.397670984268188],[.318785011768341,.39623498916626],[.343364000320435,.400596976280212],[.396100014448166,.710216999053955],[.187885001301765,.588537991046906],[.430987000465393,.944064974784851],[.318993002176285,.898285031318665],[.266247987747192,.869701027870178],[.500023007392883,.190576016902924],[.499976992607117,.954452991485596],[.366169989109039,.398822009563446],[.393207013607025,.39553701877594],[.410373002290726,.391080021858215],[.194993004202843,.342101991176605],[.388664990663528,.362284004688263],[.365961998701096,.355970978736877],[.343364000320435,.355356991291046],[.318785011768341,.35834002494812],[.301414996385574,.363156020641327],[.058132998645306,.319076001644135],[.301414996385574,.387449026107788],[.499987989664078,.618434011936188],[.415838003158569,.624195992946625],[.445681989192963,.566076993942261],[.465844005346298,.620640993118286],[.49992299079895,.351523995399475],[.288718998432159,.819945991039276],[.335278987884521,.852819979190826],[.440512001514435,.902418971061707],[.128294005990028,.791940987110138],[.408771991729736,.373893976211548],[.455606997013092,.451801002025604],[.499877005815506,.908990025520325],[.375436991453171,.924192011356354],[.11421000212431,.615022003650665],[.448662012815475,.695277988910675],[.4480200111866,.704632043838501],[.447111994028091,.715808033943176],[.444831997156143,.730794012546539],[.430011987686157,.766808986663818],[.406787008047104,.685672998428345],[.400738000869751,.681069016456604],[.392399996519089,.677703022956848],[.367855995893478,.663918972015381],[.247923001646996,.601333022117615],[.452769994735718,.420849978923798],[.43639200925827,.359887003898621],[.416164010763168,.368713974952698],[.413385987281799,.692366003990173],[.228018000721931,.683571994304657],[.468268007040024,.352671027183533],[.411361992359161,.804327011108398],[.499989002943039,.469825029373169],[.479153990745544,.442654013633728],[.499974012374878,.439637005329132],[.432112008333206,.493588984012604],[.499886006116867,.866917014122009],[.49991300702095,.821729004383087],[.456548988819122,.819200992584229],[.344549000263214,.745438992977142],[.37890899181366,.574010014533997],[.374292999505997,.780184984207153],[.319687992334366,.570737957954407],[.357154995203018,.604269981384277],[.295284003019333,.621580958366394],[.447750002145767,.862477004528046],[.410986006259918,.508723020553589],[.31395098567009,.775308012962341],[.354128003120422,.812552988529205],[.324548006057739,.703992962837219],[.189096003770828,.646299958229065],[.279776990413666,.71465802192688],[.1338230073452,.682700991630554],[.336768001317978,.644733011722565],[.429883986711502,.466521978378296],[.455527991056442,.548622965812683],[.437114000320435,.558896005153656],[.467287987470627,.529924988746643],[.414712011814117,.335219979286194],[.37704598903656,.322777986526489],[.344107985496521,.320150971412659],[.312875986099243,.32233202457428],[.283526003360748,.333190023899078],[.241245999932289,.382785975933075],[.102986000478268,.468762993812561],[.267612010240555,.424560010433197],[.297879010438919,.433175981044769],[.333433985710144,.433878004550934],[.366427004337311,.426115989685059],[.396012008190155,.416696012020111],[.420121014118195,.41022801399231],[.007561000064015,.480777025222778],[.432949006557465,.569517970085144],[.458638995885849,.479089021682739],[.473466008901596,.545744001865387],[.476087987422943,.563830018043518],[.468472003936768,.555056989192963],[.433990985155106,.582361996173859],[.483518004417419,.562983989715576],[.482482999563217,.57784903049469],[.42645001411438,.389798998832703],[.438998997211456,.39649498462677],[.450067013502121,.400434017181396],[.289712011814117,.368252992630005],[.276670008897781,.363372981548309],[.517862021923065,.471948027610779],[.710287988185883,.380764007568359],[.526226997375488,.573909997940063],[.895093023777008,.254140973091125],[.634069979190826,.409575998783112],[.661242008209229,.41302502155304],[.688880026340485,.409460008144379],[.725341975688934,.389131009578705],[.606630027294159,.40370500087738],[.654766023159027,.344011008739471],[.629905998706818,.346076011657715],[.680678009986877,.347265005111694],[.702096998691559,.353591024875641],[.75221198797226,.410804986953735],[.602918028831482,.842862963676453],[.719901978969574,.375599980354309],[.893692970275879,.399959981441498],[.790081977844238,.391354024410248],[.643998026847839,.534487962722778],[.528249025344849,.65040397644043],[.525849997997284,.680191040039062],[.560214996337891,.657229006290436],[.585384011268616,.66654098033905],[.549625992774963,.680860996246338],[.57122802734375,.682691991329193],[.624852001667023,.72809898853302],[.513050019741058,.547281980514526],[.51509702205658,.527251958847046],[.742246985435486,.314507007598877],[.598631024360657,.454979002475739],[.570338010787964,.548575043678284],[.578631997108459,.533622980117798],[.723087012767792,.532054007053375],[.516445994377136,.499638974666595],[.662801027297974,.282917976379395],[.70362401008606,.293271005153656],[.830704987049103,.193813979625702],[.552385985851288,.302568018436432],[.607609987258911,.353887975215912],[.645429015159607,.696707010269165],[.932694971561432,.730105042457581],[.557260990142822,.572826027870178],[.542901992797852,.584792017936707],[.6180260181427,.694710969924927],[.607590973377228,.694203019142151],[.722943007946014,.271963000297546],[.577413976192474,.563166975975037],[.614082992076874,.281386971473694],[.616907000541687,.255886018276215],[.668509006500244,.119913995265961],[.770092010498047,.232020974159241],[.635536015033722,.189248979091644],[.77039098739624,.299556016921997],[.826722025871277,.278755009174347],[.527121007442474,.666198015213013],[.553171992301941,.668527007102966],[.577238023281097,.673889994621277],[.554691970348358,.580065965652466],[.611896991729736,.693961024284363],[.59696102142334,.706539988517761],[.596370995044708,.693953037261963],[.539958000183105,.557139039039612],[.568841993808746,.692366003990173],[.547818005084991,.692366003990173],[.52461302280426,.692366003990173],[.534089982509613,.779141008853912],[.527670979499817,.736225962638855],[.526912987232208,.717857003211975],[.526877999305725,.704625964164734],[.526966989040375,.695277988910675],[.572058022022247,.695277988910675],[.573521018028259,.703539967536926],[.57683801651001,.711845993995667],[.581691026687622,.720062971115112],[.609944999217987,.639909982681274],[.986046016216278,.560034036636353],[.5867999792099,.69539999961853],[.590372025966644,.701822996139526],[.531915009021759,.601536989212036],[.577268004417419,.585934996604919],[.536915004253387,.593786001205444],[.627542972564697,.473352015018463],[.665585994720459,.495950996875763],[.588353991508484,.546862006187439],[.757824003696442,.14767599105835],[.709249973297119,.201507985591888],[.672684013843536,.256581008434296],[.600408971309662,.74900496006012],[.55826598405838,.261672019958496],[.570303976535797,.187870979309082],[.588165998458862,.109044015407562],[.711045026779175,.398952007293701],[.781069993972778,.435405015945435],[.587247014045715,.398931980133057],[.742869973182678,.355445981025696],[.572156012058258,.437651991844177],[.55186802148819,.536570012569427],[.821442008018494,.457556009292603],[.752701997756958,.457181990146637],[.71375697851181,.467626988887787],[.66711300611496,.460672974586487],[.631101012229919,.447153985500336],[.6008620262146,.432473003864288],[.523481011390686,.405627012252808],[.810747981071472,.523926019668579],[.771045982837677,.348959028720856],[.509127020835876,.562718033790588],[.595292985439301,.485023975372314],[.980530977249146,.401564002037048],[.573499977588654,.420000016689301],[.602994978427887,.548687994480133],[.733529984951019,.376977026462555],[.560611009597778,.519016981124878],[.967685997486115,.644356966018677],[.580985009670258,.387160003185272],[.537728011608124,.505385041236877],[.760966002941132,.779752969741821],[.801778972148895,.831938028335571],[.892440974712372,.54076099395752],[.816350996494293,.740260004997253],[.865594983100891,.333687007427216],[.614073991775513,.883246004581451],[.508952975273132,.579437971115112],[.617941975593567,.508316040039062],[.825608015060425,.397674977779388],[.681214988231659,.39623498916626],[.656635999679565,.400596976280212],[.603900015354156,.710216999053955],[.81208598613739,.588539004325867],[.56801301240921,.944564998149872],[.681007981300354,.898285031318665],[.733752012252808,.869701027870178],[.633830010890961,.398822009563446],[.606792986392975,.39553701877594],[.589659988880157,.391062021255493],[.805015981197357,.342108011245728],[.611334979534149,.362284004688263],[.634037971496582,.355970978736877],[.656635999679565,.355356991291046],[.681214988231659,.35834002494812],[.698584973812103,.363156020641327],[.941866993904114,.319076001644135],[.698584973812103,.387449026107788],[.584177017211914,.624107003211975],[.554318010807037,.566076993942261],[.534153997898102,.62064003944397],[.711217999458313,.819975018501282],[.664629995822906,.852871000766754],[.559099972248077,.902631998062134],[.871706008911133,.791940987110138],[.591234028339386,.373893976211548],[.544341027736664,.451583981513977],[.624562978744507,.924192011356354],[.88577002286911,.615028977394104],[.551338016986847,.695277988910675],[.551980018615723,.704632043838501],[.552887976169586,.715808033943176],[.555167973041534,.730794012546539],[.569944024085999,.767035007476807],[.593203008174896,.685675978660583],[.599261999130249,.681069016456604],[.607599973678589,.677703022956848],[.631937980651855,.663500010967255],[.752032995223999,.601315021514893],[.547226011753082,.420395016670227],[.563543975353241,.359827995300293],[.583841025829315,.368713974952698],[.586614012718201,.692366003990173],[.771915018558502,.683578014373779],[.531597018241882,.352482974529266],[.588370978832245,.804440975189209],[.52079701423645,.442565023899078],[.567984998226166,.493479013442993],[.543282985687256,.819254994392395],[.655317008495331,.745514988899231],[.621008992195129,.574018001556396],[.625559985637665,.78031200170517],[.680198013782501,.570719003677368],[.64276397228241,.604337990283966],[.704662978649139,.621529996395111],[.552012026309967,.862591981887817],[.589071989059448,.508637011051178],[.685944974422455,.775357007980347],[.645735025405884,.812640011310577],[.675342977046967,.703978002071381],[.810858011245728,.646304965019226],[.72012197971344,.714666962623596],[.866151988506317,.682704985141754],[.663187026977539,.644596993923187],[.570082008838654,.466325998306274],[.544561982154846,.548375964164734],[.562758982181549,.558784961700439],[.531987011432648,.530140042304993],[.585271000862122,.335177004337311],[.622952997684479,.32277899980545],[.655896008014679,.320163011550903],[.687132000923157,.322345972061157],[.716481983661652,.333200991153717],[.758756995201111,.382786989212036],[.897013008594513,.468769013881683],[.732392013072968,.424547016620636],[.70211398601532,.433162987232208],[.66652500629425,.433866024017334],[.633504986763,.426087975502014],[.603875994682312,.416586995124817],[.579657971858978,.409945011138916],[.992439985275269,.480777025222778],[.567192018032074,.569419980049133],[.54136598110199,.478899002075195],[.526564002037048,.546118021011353],[.523913025856018,.563830018043518],[.531529009342194,.555056989192963],[.566035985946655,.582329034805298],[.51631098985672,.563053965568542],[.5174720287323,.577877044677734],[.573594987392426,.389806985855103],[.560697972774506,.395331978797913],[.549755990505219,.399751007556915],[.710287988185883,.368252992630005],[.723330020904541,.363372981548309]],Zi=[127,34,139,11,0,37,232,231,120,72,37,39,128,121,47,232,121,128,104,69,67,175,171,148,157,154,155,118,50,101,73,39,40,9,151,108,48,115,131,194,204,211,74,40,185,80,42,183,40,92,186,230,229,118,202,212,214,83,18,17,76,61,146,160,29,30,56,157,173,106,204,194,135,214,192,203,165,98,21,71,68,51,45,4,144,24,23,77,146,91,205,50,187,201,200,18,91,106,182,90,91,181,85,84,17,206,203,36,148,171,140,92,40,39,193,189,244,159,158,28,247,246,161,236,3,196,54,68,104,193,168,8,117,228,31,189,193,55,98,97,99,126,47,100,166,79,218,155,154,26,209,49,131,135,136,150,47,126,217,223,52,53,45,51,134,211,170,140,67,69,108,43,106,91,230,119,120,226,130,247,63,53,52,238,20,242,46,70,156,78,62,96,46,53,63,143,34,227,173,155,133,123,117,111,44,125,19,236,134,51,216,206,205,154,153,22,39,37,167,200,201,208,36,142,100,57,212,202,20,60,99,28,158,157,35,226,113,160,159,27,204,202,210,113,225,46,43,202,204,62,76,77,137,123,116,41,38,72,203,129,142,64,98,240,49,102,64,41,73,74,212,216,207,42,74,184,169,170,211,170,149,176,105,66,69,122,6,168,123,147,187,96,77,90,65,55,107,89,90,180,101,100,120,63,105,104,93,137,227,15,86,85,129,102,49,14,87,86,55,8,9,100,47,121,145,23,22,88,89,179,6,122,196,88,95,96,138,172,136,215,58,172,115,48,219,42,80,81,195,3,51,43,146,61,171,175,199,81,82,38,53,46,225,144,163,110,246,33,7,52,65,66,229,228,117,34,127,234,107,108,69,109,108,151,48,64,235,62,78,191,129,209,126,111,35,143,163,161,246,117,123,50,222,65,52,19,125,141,221,55,65,3,195,197,25,7,33,220,237,44,70,71,139,122,193,245,247,130,33,71,21,162,153,158,159,170,169,150,188,174,196,216,186,92,144,160,161,2,97,167,141,125,241,164,167,37,72,38,12,145,159,160,38,82,13,63,68,71,226,35,111,158,153,154,101,50,205,206,92,165,209,198,217,165,167,97,220,115,218,133,112,243,239,238,241,214,135,169,190,173,133,171,208,32,125,44,237,86,87,178,85,86,179,84,85,180,83,84,181,201,83,182,137,93,132,76,62,183,61,76,184,57,61,185,212,57,186,214,207,187,34,143,156,79,239,237,123,137,177,44,1,4,201,194,32,64,102,129,213,215,138,59,166,219,242,99,97,2,94,141,75,59,235,24,110,228,25,130,226,23,24,229,22,23,230,26,22,231,112,26,232,189,190,243,221,56,190,28,56,221,27,28,222,29,27,223,30,29,224,247,30,225,238,79,20,166,59,75,60,75,240,147,177,215,20,79,166,187,147,213,112,233,244,233,128,245,128,114,188,114,217,174,131,115,220,217,198,236,198,131,134,177,132,58,143,35,124,110,163,7,228,110,25,356,389,368,11,302,267,452,350,349,302,303,269,357,343,277,452,453,357,333,332,297,175,152,377,384,398,382,347,348,330,303,304,270,9,336,337,278,279,360,418,262,431,304,408,409,310,415,407,270,409,410,450,348,347,422,430,434,313,314,17,306,307,375,387,388,260,286,414,398,335,406,418,364,367,416,423,358,327,251,284,298,281,5,4,373,374,253,307,320,321,425,427,411,421,313,18,321,405,406,320,404,405,315,16,17,426,425,266,377,400,369,322,391,269,417,465,464,386,257,258,466,260,388,456,399,419,284,332,333,417,285,8,346,340,261,413,441,285,327,460,328,355,371,329,392,439,438,382,341,256,429,420,360,364,394,379,277,343,437,443,444,283,275,440,363,431,262,369,297,338,337,273,375,321,450,451,349,446,342,467,293,334,282,458,461,462,276,353,383,308,324,325,276,300,293,372,345,447,382,398,362,352,345,340,274,1,19,456,248,281,436,427,425,381,256,252,269,391,393,200,199,428,266,330,329,287,273,422,250,462,328,258,286,384,265,353,342,387,259,257,424,431,430,342,353,276,273,335,424,292,325,307,366,447,345,271,303,302,423,266,371,294,455,460,279,278,294,271,272,304,432,434,427,272,407,408,394,430,431,395,369,400,334,333,299,351,417,168,352,280,411,325,319,320,295,296,336,319,403,404,330,348,349,293,298,333,323,454,447,15,16,315,358,429,279,14,15,316,285,336,9,329,349,350,374,380,252,318,402,403,6,197,419,318,319,325,367,364,365,435,367,397,344,438,439,272,271,311,195,5,281,273,287,291,396,428,199,311,271,268,283,444,445,373,254,339,263,466,249,282,334,296,449,347,346,264,447,454,336,296,299,338,10,151,278,439,455,292,407,415,358,371,355,340,345,372,390,249,466,346,347,280,442,443,282,19,94,370,441,442,295,248,419,197,263,255,359,440,275,274,300,383,368,351,412,465,263,467,466,301,368,389,380,374,386,395,378,379,412,351,419,436,426,322,373,390,388,2,164,393,370,462,461,164,0,267,302,11,12,374,373,387,268,12,13,293,300,301,446,261,340,385,384,381,330,266,425,426,423,391,429,355,437,391,327,326,440,457,438,341,382,362,459,457,461,434,430,394,414,463,362,396,369,262,354,461,457,316,403,402,315,404,403,314,405,404,313,406,405,421,418,406,366,401,361,306,408,407,291,409,408,287,410,409,432,436,410,434,416,411,264,368,383,309,438,457,352,376,401,274,275,4,421,428,262,294,327,358,433,416,367,289,455,439,462,370,326,2,326,370,305,460,455,254,449,448,255,261,446,253,450,449,252,451,450,256,452,451,341,453,452,413,464,463,441,413,414,258,442,441,257,443,442,259,444,443,260,445,444,467,342,445,459,458,250,289,392,290,290,328,460,376,433,435,250,290,392,411,416,433,341,463,464,453,464,465,357,465,412,343,412,399,360,363,440,437,399,456,420,456,363,401,435,288,372,383,353,339,255,249,448,261,255,133,243,190,133,155,112,33,246,247,33,130,25,398,384,286,362,398,414,362,463,341,263,359,467,263,249,255,466,467,260,75,60,166,238,239,79,162,127,139,72,11,37,121,232,120,73,72,39,114,128,47,233,232,128,103,104,67,152,175,148,173,157,155,119,118,101,74,73,40,107,9,108,49,48,131,32,194,211,184,74,185,191,80,183,185,40,186,119,230,118,210,202,214,84,83,17,77,76,146,161,160,30,190,56,173,182,106,194,138,135,192,129,203,98,54,21,68,5,51,4,145,144,23,90,77,91,207,205,187,83,201,18,181,91,182,180,90,181,16,85,17,205,206,36,176,148,140,165,92,39,245,193,244,27,159,28,30,247,161,174,236,196,103,54,104,55,193,8,111,117,31,221,189,55,240,98,99,142,126,100,219,166,218,112,155,26,198,209,131,169,135,150,114,47,217,224,223,53,220,45,134,32,211,140,109,67,108,146,43,91,231,230,120,113,226,247,105,63,52,241,238,242,124,46,156,95,78,96,70,46,63,116,143,227,116,123,111,1,44,19,3,236,51,207,216,205,26,154,22,165,39,167,199,200,208,101,36,100,43,57,202,242,20,99,56,28,157,124,35,113,29,160,27,211,204,210,124,113,46,106,43,204,96,62,77,227,137,116,73,41,72,36,203,142,235,64,240,48,49,64,42,41,74,214,212,207,183,42,184,210,169,211,140,170,176,104,105,69,193,122,168,50,123,187,89,96,90,66,65,107,179,89,180,119,101,120,68,63,104,234,93,227,16,15,85,209,129,49,15,14,86,107,55,9,120,100,121,153,145,22,178,88,179,197,6,196,89,88,96,135,138,136,138,215,172,218,115,219,41,42,81,5,195,51,57,43,61,208,171,199,41,81,38,224,53,225,24,144,110,105,52,66,118,229,117,227,34,234,66,107,69,10,109,151,219,48,235,183,62,191,142,129,126,116,111,143,7,163,246,118,117,50,223,222,52,94,19,141,222,221,65,196,3,197,45,220,44,156,70,139,188,122,245,139,71,162,145,153,159,149,170,150,122,188,196,206,216,92,163,144,161,164,2,167,242,141,241,0,164,37,11,72,12,144,145,160,12,38,13,70,63,71,31,226,111,157,158,154,36,101,205,203,206,165,126,209,217,98,165,97,237,220,218,237,239,241,210,214,169,140,171,32,241,125,237,179,86,178,180,85,179,181,84,180,182,83,181,194,201,182,177,137,132,184,76,183,185,61,184,186,57,185,216,212,186,192,214,187,139,34,156,218,79,237,147,123,177,45,44,4,208,201,32,98,64,129,192,213,138,235,59,219,141,242,97,97,2,141,240,75,235,229,24,228,31,25,226,230,23,229,231,22,230,232,26,231,233,112,232,244,189,243,189,221,190,222,28,221,223,27,222,224,29,223,225,30,224,113,247,225,99,60,240,213,147,215,60,20,166,192,187,213,243,112,244,244,233,245,245,128,188,188,114,174,134,131,220,174,217,236,236,198,134,215,177,58,156,143,124,25,110,7,31,228,25,264,356,368,0,11,267,451,452,349,267,302,269,350,357,277,350,452,357,299,333,297,396,175,377,381,384,382,280,347,330,269,303,270,151,9,337,344,278,360,424,418,431,270,304,409,272,310,407,322,270,410,449,450,347,432,422,434,18,313,17,291,306,375,259,387,260,424,335,418,434,364,416,391,423,327,301,251,298,275,281,4,254,373,253,375,307,321,280,425,411,200,421,18,335,321,406,321,320,405,314,315,17,423,426,266,396,377,369,270,322,269,413,417,464,385,386,258,248,456,419,298,284,333,168,417,8,448,346,261,417,413,285,326,327,328,277,355,329,309,392,438,381,382,256,279,429,360,365,364,379,355,277,437,282,443,283,281,275,363,395,431,369,299,297,337,335,273,321,348,450,349,359,446,467,283,293,282,250,458,462,300,276,383,292,308,325,283,276,293,264,372,447,346,352,340,354,274,19,363,456,281,426,436,425,380,381,252,267,269,393,421,200,428,371,266,329,432,287,422,290,250,328,385,258,384,446,265,342,386,387,257,422,424,430,445,342,276,422,273,424,306,292,307,352,366,345,268,271,302,358,423,371,327,294,460,331,279,294,303,271,304,436,432,427,304,272,408,395,394,431,378,395,400,296,334,299,6,351,168,376,352,411,307,325,320,285,295,336,320,319,404,329,330,349,334,293,333,366,323,447,316,15,315,331,358,279,317,14,316,8,285,9,277,329,350,253,374,252,319,318,403,351,6,419,324,318,325,397,367,365,288,435,397,278,344,439,310,272,311,248,195,281,375,273,291,175,396,199,312,311,268,276,283,445,390,373,339,295,282,296,448,449,346,356,264,454,337,336,299,337,338,151,294,278,455,308,292,415,429,358,355,265,340,372,388,390,466,352,346,280,295,442,282,354,19,370,285,441,295,195,248,197,457,440,274,301,300,368,417,351,465,251,301,389,385,380,386,394,395,379,399,412,419,410,436,322,387,373,388,326,2,393,354,370,461,393,164,267,268,302,12,386,374,387,312,268,13,298,293,301,265,446,340,380,385,381,280,330,425,322,426,391,420,429,437,393,391,326,344,440,438,458,459,461,364,434,394,428,396,262,274,354,457,317,316,402,316,315,403,315,314,404,314,313,405,313,421,406,323,366,361,292,306,407,306,291,408,291,287,409,287,432,410,427,434,411,372,264,383,459,309,457,366,352,401,1,274,4,418,421,262,331,294,358,435,433,367,392,289,439,328,462,326,94,2,370,289,305,455,339,254,448,359,255,446,254,253,449,253,252,450,252,256,451,256,341,452,414,413,463,286,441,414,286,258,441,258,257,442,257,259,443,259,260,444,260,467,445,309,459,250,305,289,290,305,290,460,401,376,435,309,250,392,376,411,433,453,341,464,357,453,465,343,357,412,437,343,399,344,360,440,420,437,456,360,420,363,361,401,288,265,372,353,390,339,249,339,448,255];var Ile=[127,234,132,58,172,150,149,148,152,377,378,379,397,288,361,454,356,70,63,105,66,107,336,296,334,293,300,168,6,195,4,98,97,2,326,327,33,160,158,133,153,144,362,385,387,263,373,380,57,40,37,0,267,270,287,321,314,17,84,91,78,81,13,311,308,402,14,178],Sle=[33,133,362,263,1,62,308,159,145,386,374,6,102,331,2,13,14,70,105,107,336,334,300,54,10,284,50,280,234,454,58,288,152],Nle=[33,133,362,263,1,78,308],mue=Ile.map(e=>cp[e]),gue=Sle.map(e=>cp[e]),yue=Nle.map(e=>cp[e]);var h2=rr.leftEyeLower0,f2=rr.rightEyeLower0,du={leftBounds:[h2[0],h2[h2.length-1]],rightBounds:[f2[0],f2[f2.length-1]]},U0={count:468,mouth:13,symmetryLine:[13,rr.midwayBetweenEyes[0]]},p9={leftEye:0,rightEye:1,nose:2,mouth:3,leftEar:4,rightEar:5,symmetryLine:[3,2]},pu={upperCenter:3,lowerCenter:4,index:71,numCoordinates:76};function H0(e,t,n,a){for(let r=0;r<c2.length;r++){let{key:s,indices:i}=c2[r],o=rr[`${n}${s}`];if(!a||a.includes(s))for(let l=0;l<i.length;l++){let u=i[l];e[o[l]]=[t[u][0],t[u][1],(t[u][2]+e[o[l]][2])/2]}}}var m2=class{constructor(t,n,a){var r,s;this.storedBoxes=[],this.boundingBoxDetector=t,this.meshDetector=n,this.irisModel=a,this.boxSize=((r=t==null?void 0:t.model)==null?void 0:r.inputs[0].shape[2])||0,this.meshSize=(n==null?void 0:n.inputs[0].shape[2])||((s=t==null?void 0:t.model)==null?void 0:s.inputs[0].shape[2]),this.irisSize=(a==null?void 0:a.inputs[0].shape[1])||0,this.irisEnlarge=2.3,this.skipped=0,this.detectedFaces=0}transformRawCoords(t,n,a,r){let s=pp({startPoint:n.startPoint,endPoint:n.endPoint}),i=t.map(p=>[s[0]/this.meshSize*(p[0]-this.meshSize/2),s[1]/this.meshSize*(p[1]-this.meshSize/2),p[2]]),o=a!==0?j0(a,[0,0]):V0,l=a!==0?i.map(p=>[...i9(p,o),p[2]]):i,u=a!==0?s9(r):V0,d=[...lu({startPoint:n.startPoint,endPoint:n.endPoint}),1];return l.map(p=>[Math.round(p[0]+ls(d,u[0])),Math.round(p[1]+ls(d,u[1])),Math.round(p[2])])}getLeftToRightEyeDepthDifference(t){let n=t[du.leftBounds[0]][2],a=t[du.rightBounds[0]][2];return n-a}getEyeBox(t,n,a,r,s=!1){let i=B0(W0(d2([t[a],t[r]]),this.irisEnlarge)),o=pp(i),l=De.cropAndResize(n,[[i.startPoint[1]/this.meshSize,i.startPoint[0]/this.meshSize,i.endPoint[1]/this.meshSize,i.endPoint[0]/this.meshSize]],[0],[this.irisSize,this.irisSize]);return s&&sa.flags.IS_BROWSER&&(l=De.flipLeftRight(l)),{box:i,boxSize:o,crop:l}}getEyeCoords(t,n,a,r=!1){let s=[];for(let i=0;i<pu.numCoordinates;i++){let o=t[i*3],l=t[i*3+1],u=t[i*3+2];s.push([(r?1-o/this.irisSize:o/this.irisSize)*a[0]+n.startPoint[0],l/this.irisSize*a[1]+n.startPoint[1],u])}return{rawCoords:s,iris:s.slice(pu.index)}}getAdjustedIrisCoords(t,n,a){let r=t[rr[`${a}EyeUpper0`][pu.upperCenter]][2],s=t[rr[`${a}EyeLower0`][pu.lowerCenter]][2],i=(r+s)/2;return n.map((o,l)=>{let u=i;return l===2?u=r:l===4&&(u=s),[o[0],o[1],u]})}async predict(t,n){let a=!1,r;if((this.skipped===0||this.skipped>n.face.detector.skipFrames||!n.face.mesh.enabled||!n.skipFrame)&&(r=await this.boundingBoxDetector.getBoundingBoxes(t),this.skipped=0),n.skipFrame&&this.skipped++,!n.skipFrame||r&&r.boxes&&(!n.face.mesh.enabled||r.boxes.length!==this.detectedFaces&&this.detectedFaces!==n.face.detector.maxDetected)){this.storedBoxes=[],this.detectedFaces=0;for(let i of r.boxes)this.storedBoxes.push({startPoint:i.box.startPoint.dataSync(),endPoint:i.box.endPoint.dataSync(),landmarks:i.landmarks.arraySync(),confidence:i.confidence});this.storedBoxes.length>0&&(a=!0)}if(a){if(!r||!r.boxes||r.boxes.length===0)return this.storedBoxes=[],this.detectedFaces=0,null;for(let i=0;i<this.storedBoxes.length;i++){let o=t9({startPoint:this.storedBoxes[i].startPoint,endPoint:this.storedBoxes[i].endPoint},r.scaleFactor),l=W0(o),u=B0(l),d=this.storedBoxes[i].landmarks,p=this.storedBoxes[i].confidence;this.storedBoxes[i]={...u,confidence:p,landmarks:d}}}r&&r.boxes&&r.boxes.forEach(i=>{i.box.startPoint.dispose(),i.box.endPoint.dispose(),i.landmarks.dispose()});let s=V(()=>this.storedBoxes.map((i,o)=>{let l,u=0,d;if(n.face.detector.rotation&&n.face.mesh.enabled&&sa.flags.IS_BROWSER){let[x,v]=i.landmarks.length>=U0.count?U0.symmetryLine:p9.symmetryLine;u=p2(i.landmarks[x],i.landmarks[v]);let b=lu({startPoint:i.startPoint,endPoint:i.endPoint}),w=[b[0]/t.shape[2],b[1]/t.shape[1]],N=De.rotateWithOffset(t,u,0,w);d=j0(-u,b),n.face.mesh.enabled?l=uu({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255):l=uu({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.boxSize,this.boxSize]).div(255)}else{d=V0;let x=t.clone();n.face.mesh.enabled?l=uu({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.meshSize,this.meshSize]).div(255):l=uu({startPoint:i.startPoint,endPoint:i.endPoint},x,[this.boxSize,this.boxSize]).div(255)}if(!n.face.mesh.enabled)return{mesh:[],box:i,faceConfidence:null,boxConfidence:i.confidence,confidence:i.confidence,image:l};let[,p,c]=this.meshDetector.execute(l),h=p.dataSync()[0];if(h<n.face.detector.minConfidence)return this.storedBoxes[o].confidence=h,null;let f=q(c,[-1,3]).arraySync();if(n.face.iris.enabled){let{box:x,boxSize:v,crop:b}=this.getEyeBox(f,l,du.leftBounds[0],du.leftBounds[1],!0),{box:w,boxSize:N,crop:C}=this.getEyeBox(f,l,du.rightBounds[0],du.rightBounds[1]),_=this.irisModel.predict(lt([b,C])).dataSync(),$=_.slice(0,pu.numCoordinates*3),{rawCoords:S,iris:z}=this.getEyeCoords($,x,v,!0),O=_.slice(pu.numCoordinates*3),{rawCoords:W,iris:G}=this.getEyeCoords(O,w,N),H=this.getLeftToRightEyeDepthDifference(f);Math.abs(H)<30?(H0(f,S,"left",null),H0(f,W,"right",null)):H<1?H0(f,S,"left",["EyeUpper0","EyeLower0"]):H0(f,W,"right",["EyeUpper0","EyeLower0"]);let J=this.getAdjustedIrisCoords(f,z,"left"),K=this.getAdjustedIrisCoords(f,G,"right");f=f.concat(J).concat(K)}let g=this.transformRawCoords(f,i,u,d),y=i.confidence;if(i=W0(d2(g),1.5),i.confidence=y,n.face.detector.rotation&&n.face.mesh.enabled&&n.face.description.enabled&&sa.flags.IS_BROWSER){let[x,v]=i.landmarks.length>=U0.count?U0.symmetryLine:p9.symmetryLine;u=p2(i.landmarks[x],i.landmarks[v]);let b=lu({startPoint:i.startPoint,endPoint:i.endPoint}),w=[b[0]/t.shape[2],b[1]/t.shape[1]],N=De.rotateWithOffset(t.toFloat(),u,0,w);d=j0(-u,b),l=uu({startPoint:i.startPoint,endPoint:i.endPoint},N,[this.meshSize,this.meshSize]).div(255)}let A={mesh:g,box:i,faceConfidence:h,boxConfidence:i.confidence,image:l};return this.storedBoxes[o]={...B0(i),confidence:i.confidence,faceConfidence:h},A}));return n.face.mesh.enabled&&(this.storedBoxes=this.storedBoxes.filter(i=>i.confidence>n.face.detector.minConfidence)),this.detectedFaces=s.length,s}};var Rt=[null,null,null],g2;async function c9(e,t){let n=await g2.predict(e,t),a=[],r=0;for(let s of n||[]){if(!s||s.isDisposedInternal)continue;let i=s.mesh.map(d=>[d[0]/(e.shape[2]||0),d[1]/(e.shape[1]||0),d[2]/g2.meshSize]),o={};if(s.mesh&&s.mesh.length>0)for(let d of Object.keys(rr))o[d]=rr[d].map(p=>s.mesh[p]);let l=s.box?[Math.trunc(Math.max(0,s.box.startPoint[0])),Math.trunc(Math.max(0,s.box.startPoint[1])),Math.trunc(Math.min(e.shape[2]||0,s.box.endPoint[0])-Math.max(0,s.box.startPoint[0])),Math.trunc(Math.min(e.shape[1]||0,s.box.endPoint[1])-Math.max(0,s.box.startPoint[1]))]:[0,0,0,0],u=s.box?[s.box.startPoint[0]/(e.shape[2]||0),s.box.startPoint[1]/(e.shape[1]||0),(s.box.endPoint[0]-s.box.startPoint[0])/(e.shape[2]||0),(s.box.endPoint[1]-s.box.startPoint[1])/(e.shape[1]||0)]:[0,0,0,0];a.push({id:r++,score:Math.round(100*s.faceConfidence||100*s.boxConfidence||0)/100,boxScore:Math.round(100*s.boxConfidence)/100,faceScore:Math.round(100*s.faceConfidence)/100,box:l,boxRaw:u,mesh:s.mesh,meshRaw:i,annotations:o,image:s.image,tensor:s.image}),s.coords&&s.coords.dispose()}return a}async function y2(e){return!Rt[0]&&e.face.enabled||!Rt[1]&&e.face.mesh.enabled||!Rt[2]&&e.face.iris.enabled?(Rt=await Promise.all([!Rt[0]&&e.face.enabled?d9(e):null,!Rt[1]&&e.face.mesh.enabled?ct(ft(e.modelBasePath,e.face.mesh.modelPath),{fromTFHub:e.face.mesh.modelPath.includes("tfhub.dev")}):null,!Rt[2]&&e.face.iris.enabled?ct(ft(e.modelBasePath,e.face.iris.modelPath),{fromTFHub:e.face.iris.modelPath.includes("tfhub.dev")}):null]),e.face.mesh.enabled&&(!Rt[1]||!Rt[1].modelUrl?de("load model failed:",e.face.mesh.modelPath):e.debug&&de("load model:",Rt[1].modelUrl)),e.face.iris.enabled&&(!Rt[2]||!Rt[2].modelUrl?de("load model failed:",e.face.iris.modelPath):e.debug&&de("load model:",Rt[2].modelUrl))):e.debug&&(Rt[0]&&de("cached model:",Rt[0].model.modelUrl),Rt[1]&&de("cached model:",Rt[1].modelUrl),Rt[2]&&de("cached model:",Rt[2].modelUrl)),g2=new m2(Rt[0],Rt[1],Rt[2]),Rt}var h9=Zi,f9=cp;var Tle=["angry","disgust","fear","happy","sad","surprise","neutral"],Pa,G0=[],m9=0,A2=Number.MAX_SAFE_INTEGER,x2=[.2989,.587,.114];async function b2(e){return Pa?e.debug&&de("cached model:",Pa.modelUrl):(Pa=await ct(ft(e.modelBasePath,e.face.emotion.modelPath)),!Pa||!Pa.modelUrl?de("load model failed:",e.face.emotion.modelPath):e.debug&&de("load model:",Pa.modelUrl)),Pa}async function v2(e,t,n,a){return Pa?A2<t.face.emotion.skipFrames&&t.skipFrame&&m9===a&&G0[n]&&G0[n].length>0?(A2++,G0[n]):(A2=0,new Promise(async r=>{let s=De.resizeBilinear(e,[Pa.inputs[0].shape[2],Pa.inputs[0].shape[1]],!1),[i,o,l]=Zt(s,3,3);s.dispose();let u=B(i,x2[0]),d=B(o,x2[1]),p=B(l,x2[2]);i.dispose(),o.dispose(),l.dispose();let c=jc([u,d,p]);u.dispose(),d.dispose(),p.dispose();let h=V(()=>c.sub(.5).mul(2));c.dispose();let m=[];if(t.face.emotion.enabled){let f=await Pa.predict(h),g=f.dataSync();he(f);for(let y=0;y<g.length;y++)g[y]>t.face.emotion.minConfidence&&m.push({score:Math.min(.99,Math.trunc(100*g[y])/100),emotion:Tle[y]});m.sort((y,A)=>A.score-y.score)}h.dispose(),G0[n]=m,m9=a,r(m)})):null}var La,q0=[],g9=0,w2=Number.MAX_SAFE_INTEGER;async function k2(e){let t=ft(e.modelBasePath,e.face.description.modelPath);return La?e.debug&&de("cached model:",t):(La=await ct(t),La?e.debug&&de("load model:",t):de("load model failed:",e.face.description.modelPath)),La}function I2(e,t,n=2){if(!e||!t||(e==null?void 0:e.length)===0||(t==null?void 0:t.length)===0||(e==null?void 0:e.length)!==(t==null?void 0:t.length))return 0;let a=5*e.map((s,i)=>Math.abs(e[i]-t[i])**n).reduce((s,i)=>s+i,0)**(1/n);return Math.max(0,100-a)/100}function y9(e,t,n=0){let a={similarity:0,name:"",source:"",embedding:[]};if(!e||!t||!Array.isArray(e)||!Array.isArray(t))return a;for(let r of t)if(r.embedding&&r.name){let s=I2(e,r.embedding);s>n&&s>a.similarity&&(a={...r,similarity:s})}return a}function S2(e){return V(()=>{let n=e.image||e.tensor||e;if(!(n instanceof Be))return null;let a=[[.05,.15,.85,.85]];return La.inputs[0].shape?(n.shape.length===3?De.cropAndResize(mn(n,0),a,[0],[La.inputs[0].shape[2],La.inputs[0].shape[1]]):De.cropAndResize(n,a,[0],[La.inputs[0].shape[2],La.inputs[0].shape[1]])).mul(255):null})}async function N2(e,t,n,a){var r,s;return La?w2<t.face.description.skipFrames&&t.skipFrame&&g9===a&&((r=q0[n])==null?void 0:r.age)&&((s=q0[n])==null?void 0:s.age)>0?(w2++,q0[n]):(w2=0,new Promise(async i=>{let o=S2(e),l,u={age:0,gender:"unknown",genderScore:0,descriptor:[]};t.face.description.enabled&&(l=await La.predict(o)),he(o),l&&(V(()=>{let d=l.find(f=>f.shape[1]===1).dataSync(),p=Math.trunc(200*Math.abs(d[0]-.5))/100;p>t.face.description.minConfidence&&(u.gender=d[0]<=.5?"female":"male",u.genderScore=Math.min(.99,p));let c=l.find(f=>f.shape[1]===100).argMax(1).dataSync()[0],h=l.find(f=>f.shape[1]===100).dataSync();u.age=Math.round(h[c-1]>h[c+1]?10*c-100*h[c-1]:10*c+100*h[c+1])/10;let m=l.find(f=>f.shape[1]===1024);u.descriptor=[...m.dataSync()]}),l.forEach(d=>he(d))),q0[n]=u,g9=a,i(u)})):null}var Cle=e=>{let t=(p,c)=>Math.atan2(p[1]-c[1],p[0]-c[0]);if(!e.annotations.rightEyeIris||!e.annotations.leftEyeIris)return{bearing:0,strength:0};let n=[0,-.1],a=1,r=e.mesh[33][2]>e.mesh[263][2],s=r?e.mesh[473]:e.mesh[468],i=r?[(e.mesh[133][0]+e.mesh[33][0])/2,(e.mesh[133][1]+e.mesh[33][1])/2]:[(e.mesh[263][0]+e.mesh[362][0])/2,(e.mesh[263][1]+e.mesh[362][1])/2],o=r?[e.mesh[133][0]-e.mesh[33][0],e.mesh[23][1]-e.mesh[27][1]]:[e.mesh[263][0]-e.mesh[362][0],e.mesh[253][1]-e.mesh[257][1]],l=[(i[0]-s[0])/o[0]-n[0],a*(s[1]-i[1])/o[1]-n[1]],u=Math.sqrt(l[0]**2+l[1]**2);return u=Math.min(u,e.boxRaw[2]/2,e.boxRaw[3]/2),{bearing:(t([0,0],l)+Math.PI/2)%Math.PI,strength:u}},Ele=(e,t)=>{let n=g=>{let y=Math.sqrt(g[0]*g[0]+g[1]*g[1]+g[2]*g[2]);return g[0]/=y,g[1]/=y,g[2]/=y,g},a=(g,y)=>{let A=g[0]-y[0],x=g[1]-y[1],v=g[2]-y[2];return[A,x,v]},r=(g,y)=>{let A=g[1]*y[2]-g[2]*y[1],x=g[2]*y[0]-g[0]*y[2],v=g[0]*y[1]-g[1]*y[0];return[A,x,v]},s=g=>{let[y,A,x,v,b,w,N,C,E]=g,_,$,S;return v<1?v>-1?(S=Math.asin(v),$=Math.atan2(-N,y),_=Math.atan2(-w,b)):(S=-Math.PI/2,$=-Math.atan2(C,E),_=0):(S=Math.PI/2,$=Math.atan2(C,E),_=0),{pitch:2*-_,yaw:2*-$,roll:2*-S}},i=g=>{let y=(x,v,b,w)=>Math.atan2(w-v,b-x);return{pitch:y(g[10][1],g[10][2],g[152][1],g[152][2]),yaw:y(g[33][0],g[33][2],g[263][0],g[263][2]),roll:y(g[33][0],g[33][1],g[263][0],g[263][1])}},o=e.meshRaw;if(!o||o.length<300)return{angle:{pitch:0,yaw:0,roll:0},matrix:[1,0,0,0,1,0,0,0,1],gaze:{bearing:0,strength:0}};let l=Math.max(e.boxRaw[2]*t[0],e.boxRaw[3]*t[1])/1.5,u=[o[10],o[152],o[234],o[454]].map(g=>[g[0]*t[0]/l,g[1]*t[1]/l,g[2]]),d=n(a(u[1],u[0])),p=n(a(u[3],u[2])),c=n(r(p,d));p=r(d,c);let h=[p[0],p[1],p[2],d[0],d[1],d[2],c[0],c[1],c[2]],m=s(h),f=o.length===478?Cle(e):{bearing:0,strength:0};return{angle:m,matrix:h,gaze:f}},T2=async(e,t)=>{var d,p,c,h,m,f;let n,a,r,s,i,o,l=[];e.state="run:face",n=Ke();let u=await c9(t,e.config);if(e.performance.face=Math.trunc(Ke()-n),!t.shape||t.shape.length!==4)return[];if(!u)return[];for(let g=0;g<u.length;g++){if(e.analyze("Get Face"),!u[g].image||u[g].image.isDisposedInternal){de("Face object is disposed:",u[g].image);continue}let y=Ele(u[g],[t.shape[2],t.shape[1]]);e.analyze("Start Emotion:"),e.config.async?s=e.config.face.emotion.enabled?v2(u[g].image||ln([]),e.config,g,u.length):{}:(e.state="run:emotion",n=Ke(),s=e.config.face.emotion.enabled?await v2(u[g].image||ln([]),e.config,g,u.length):{},e.performance.emotion=Math.trunc(Ke()-n)),e.analyze("End Emotion:"),e.analyze("Start Description:"),e.config.async?o=e.config.face.description.enabled?N2(u[g].image||ln([]),e.config,g,u.length):[]:(e.state="run:description",n=Ke(),o=e.config.face.description.enabled?await N2(u[g].image||ln([]),e.config,g,u.length):[],e.performance.embedding=Math.trunc(Ke()-n)),e.analyze("End Description:"),e.config.async&&([a,r,s,i,o]=await Promise.all([a,r,s,i,o])),e.analyze("Finish Face:"),!e.config.face.iris.enabled&&((p=(d=u[g])==null?void 0:d.annotations)==null?void 0:p.leftEyeIris)&&((h=(c=u[g])==null?void 0:c.annotations)==null?void 0:h.rightEyeIris)&&(delete u[g].annotations.leftEyeIris,delete u[g].annotations.rightEyeIris);let A=((m=u[g].annotations)==null?void 0:m.leftEyeIris)&&((f=u[g].annotations)==null?void 0:f.rightEyeIris)?Math.max(Math.abs(u[g].annotations.leftEyeIris[3][0]-u[g].annotations.leftEyeIris[1][0]),Math.abs(u[g].annotations.rightEyeIris[4][1]-u[g].annotations.rightEyeIris[2][1]))/t.shape[2]:0;l.push({...u[g],id:g,age:o.age,gender:o.gender,genderScore:o.genderScore,embedding:o.descriptor,emotion:s,iris:A!==0?Math.trunc(500/A/11.7)/100:0,rotation:y,tensor:e.config.face.detector.return?Vt(u[g].image):null}),he(u[g].image),u[g].image&&delete u[g].image,e.analyze("End Face")}return e.analyze("End FaceMesh:"),e.config.async&&(e.performance.face&&delete e.performance.face,e.performance.age&&delete e.performance.age,e.performance.gender&&delete e.performance.gender,e.performance.emotion&&delete e.performance.emotion),l};var hp=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"],A9=hp.length,fp=hp.reduce((e,t,n)=>(e[t]=n,e),{}),Rle=[["leftHip","leftShoulder"],["leftElbow","leftShoulder"],["leftElbow","leftWrist"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["rightHip","rightShoulder"],["rightElbow","rightShoulder"],["rightElbow","rightWrist"],["rightHip","rightKnee"],["rightKnee","rightAnkle"],["leftShoulder","rightShoulder"],["leftHip","rightHip"]],Mle=Rle.map(([e,t])=>[fp[e],fp[t]]),x9=[["nose","leftEye"],["leftEye","leftEar"],["nose","rightEye"],["rightEye","rightEar"],["nose","leftShoulder"],["leftShoulder","leftElbow"],["leftElbow","leftWrist"],["leftShoulder","leftHip"],["leftHip","leftKnee"],["leftKnee","leftAnkle"],["nose","rightShoulder"],["rightShoulder","rightElbow"],["rightElbow","rightWrist"],["rightShoulder","rightHip"],["rightHip","rightKnee"],["rightKnee","rightAnkle"]];function b9(e){let t=e.reduce(({maxX:n,maxY:a,minX:r,minY:s},{position:{x:i,y:o}})=>({maxX:Math.max(n,i),maxY:Math.max(a,o),minX:Math.min(r,i),minY:Math.min(s,o)}),{maxX:Number.NEGATIVE_INFINITY,maxY:Number.NEGATIVE_INFINITY,minX:Number.POSITIVE_INFINITY,minY:Number.POSITIVE_INFINITY});return[t.minX,t.minY,t.maxX-t.minX,t.maxY-t.minY]}function v9(e,[t,n],[a,r]){let s=t/a,i=n/r,o=(u,d)=>({id:d,score:u.score,boxRaw:[u.box[0]/r,u.box[1]/a,u.box[2]/r,u.box[3]/a],box:[Math.trunc(u.box[0]*i),Math.trunc(u.box[1]*s),Math.trunc(u.box[2]*i),Math.trunc(u.box[3]*s)],keypoints:u.keypoints.map(({score:p,part:c,position:h})=>({score:p,part:c,position:[Math.trunc(h.x*i),Math.trunc(h.y*s)],positionRaw:[h.x/a,h.y/a]}))});return e.map((u,d)=>o(u,d))}var C2=class{constructor(t,n){this.priorityQueue=new Array(t),this.numberOfElements=-1,this.getElementValue=n}enqueue(t){this.priorityQueue[++this.numberOfElements]=t,this.swim(this.numberOfElements)}dequeue(){let t=this.priorityQueue[0];return this.exchange(0,this.numberOfElements--),this.sink(0),this.priorityQueue[this.numberOfElements+1]=null,t}empty(){return this.numberOfElements===-1}size(){return this.numberOfElements+1}all(){return this.priorityQueue.slice(0,this.numberOfElements+1)}max(){return this.priorityQueue[0]}swim(t){for(;t>0&&this.less(Math.floor(t/2),t);)this.exchange(t,Math.floor(t/2)),t=Math.floor(t/2)}sink(t){for(;2*t<=this.numberOfElements;){let n=2*t;if(n<this.numberOfElements&&this.less(n,n+1)&&n++,!this.less(t,n))break;this.exchange(t,n),t=n}}getValueAt(t){return this.getElementValue(this.priorityQueue[t])}less(t,n){return this.getValueAt(t)<this.getValueAt(n)}exchange(t,n){let a=this.priorityQueue[t];this.priorityQueue[t]=this.priorityQueue[n],this.priorityQueue[n]=a}};function E2(e,t,n,a){return{y:a.get(e,t,n),x:a.get(e,t,n+A9)}}function R2(e,t,n){let{heatmapY:a,heatmapX:r,id:s}=e,{y:i,x:o}=E2(a,r,s,n);return{x:e.heatmapX*t+o,y:e.heatmapY*t+i}}function M2(e,t,n){return e<t?t:e>n?n:e}function w9(e,t,n,a){let r=n-e,s=a-t;return r*r+s*s}function F2(e,t){return{x:e.x+t.x,y:e.y+t.y}}var X0=1,cu=16,Fle=50**2;function k9(e,t,n,a,r,s,i=2){let o=y=>({y:s.get(y.y,y.x,e),x:s.get(y.y,y.x,s.shape[2]/2+e)}),l=(y,A,x)=>({y:M2(Math.round(y.y/cu),0,A-1),x:M2(Math.round(y.x/cu),0,x-1)}),[u,d]=a.shape,p=l(t.position,u,d),c=o(p),m=F2(t.position,c);for(let y=0;y<i;y++){let A=l(m,u,d),x=E2(A.y,A.x,n,r);m=F2({x:A.x*cu,y:A.y*cu},{x:x.x,y:x.y})}let f=l(m,u,d),g=a.get(f.y,f.x,n);return{position:m,part:hp[n],score:g}}function $le(e,t,n,a,r){let s=x9.map(([c,h])=>[fp[c],fp[h]]),i=s.map(([,c])=>c),o=s.map(([c])=>c),l=t.shape[2],u=i.length,d=new Array(l),p=R2(e.part,cu,n);d[e.part.id]={score:e.score,part:hp[e.part.id],position:p};for(let c=u-1;c>=0;--c){let h=i[c],m=o[c];d[h]&&!d[m]&&(d[m]=k9(c,d[h],m,t,n,r))}for(let c=0;c<u;++c){let h=o[c],m=i[c];d[h]&&!d[m]&&(d[m]=k9(c,d[h],m,t,n,a))}return d}function Dle(e,t,n,a,r){let[s,i]=r.shape,o=!0,l=Math.max(n-X0,0),u=Math.min(n+X0+1,s);for(let d=l;d<u;++d){let p=Math.max(a-X0,0),c=Math.min(a+X0+1,i);for(let h=p;h<c;++h)if(r.get(d,h,e)>t){o=!1;break}if(!o)break}return o}function Ole(e,t){let[n,a,r]=t.shape,s=new C2(n*a*r,({score:i})=>i);for(let i=0;i<n;++i)for(let o=0;o<a;++o)for(let l=0;l<r;++l){let u=t.get(i,o,l);u<e||Dle(l,u,i,o,t)&&s.enqueue({score:u,part:{heatmapY:i,heatmapX:o,id:l}})}return s}function I9(e,{x:t,y:n},a){return e.some(({keypoints:r})=>{var i;let s=(i=r[a])==null?void 0:i.position;return s?w9(n,t,s.y,s.x)<=Fle:!1})}function zle(e,t){return t.reduce((a,{position:r,score:s},i)=>(I9(e,r,i)||(a+=s),a),0)/t.length}function S9(e,t,n,a,r,s){let i=[],o=Ole(s,t);for(;i.length<r&&!o.empty();){let l=o.dequeue(),u=R2(l.part,cu,e);if(I9(i,u,l.part.id))continue;let d=$le(l,t,e,n,a);d=d.filter(h=>h.score>s);let p=zle(i,d),c=b9(d);p>s&&i.push({keypoints:d,box:c,score:Math.round(100*p)/100})}return i}var Jn,_le=["MobilenetV1/offset_2/BiasAdd","MobilenetV1/heatmap_2/BiasAdd","MobilenetV1/displacement_fwd_2/BiasAdd","MobilenetV1/displacement_bwd_2/BiasAdd"];async function $2(e,t){let n=V(()=>{if(!Jn.inputs[0].shape)return[];let o=De.resizeBilinear(e,[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]).toFloat().div(127.5).sub(1),u=Jn.execute(o,_le).map(d=>Vt(d,[0]));return u[1]=u[1].sigmoid(),u}),a=await Promise.all(n.map(i=>i.buffer()));for(let i of n)i.dispose();let r=await S9(a[0],a[1],a[2],a[3],t.body.maxDetected,t.body.minConfidence);return Jn.inputs[0].shape?v9(r,[e.shape[1],e.shape[2]],[Jn.inputs[0].shape[2],Jn.inputs[0].shape[1]]):[]}async function D2(e){return Jn?e.debug&&de("cached model:",Jn.modelUrl):(Jn=await ct(ft(e.modelBasePath,e.body.modelPath)),!Jn||!Jn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Jn.modelUrl)),Jn}function K0(e){return[Math.abs(e.endPoint[0]-e.startPoint[0]),Math.abs(e.endPoint[1]-e.startPoint[1])]}function mp(e){return[e.startPoint[0]+(e.endPoint[0]-e.startPoint[0])/2,e.startPoint[1]+(e.endPoint[1]-e.startPoint[1])/2]}function N9(e,t,n){let a=t.shape[1],r=t.shape[2],s=[[e.startPoint[1]/a,e.startPoint[0]/r,e.endPoint[1]/a,e.endPoint[0]/r]];return De.cropAndResize(t,s,[0],n)}function T9(e,t){let n=[e.startPoint[0]*t[0],e.startPoint[1]*t[1]],a=[e.endPoint[0]*t[0],e.endPoint[1]*t[1]],r=e.palmLandmarks.map(s=>[s[0]*t[0],s[1]*t[1]]);return{startPoint:n,endPoint:a,palmLandmarks:r,confidence:e.confidence}}function Z0(e,t=1.5){let n=mp(e),a=K0(e),r=[t*a[0]/2,t*a[1]/2],s=[n[0]-r[0],n[1]-r[1]],i=[n[0]+r[0],n[1]+r[1]];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}function Y0(e){let t=mp(e),n=K0(e),r=Math.max(...n)/2,s=[t[0]-r,t[1]-r],i=[t[0]+r,t[1]+r];return{startPoint:s,endPoint:i,palmLandmarks:e.palmLandmarks}}var C9=[{x:.015625,y:.015625},{x:.015625,y:.015625},{x:.046875,y:.015625},{x:.046875,y:.015625},{x:.078125,y:.015625},{x:.078125,y:.015625},{x:.109375,y:.015625},{x:.109375,y:.015625},{x:.140625,y:.015625},{x:.140625,y:.015625},{x:.171875,y:.015625},{x:.171875,y:.015625},{x:.203125,y:.015625},{x:.203125,y:.015625},{x:.234375,y:.015625},{x:.234375,y:.015625},{x:.265625,y:.015625},{x:.265625,y:.015625},{x:.296875,y:.015625},{x:.296875,y:.015625},{x:.328125,y:.015625},{x:.328125,y:.015625},{x:.359375,y:.015625},{x:.359375,y:.015625},{x:.390625,y:.015625},{x:.390625,y:.015625},{x:.421875,y:.015625},{x:.421875,y:.015625},{x:.453125,y:.015625},{x:.453125,y:.015625},{x:.484375,y:.015625},{x:.484375,y:.015625},{x:.515625,y:.015625},{x:.515625,y:.015625},{x:.546875,y:.015625},{x:.546875,y:.015625},{x:.578125,y:.015625},{x:.578125,y:.015625},{x:.609375,y:.015625},{x:.609375,y:.015625},{x:.640625,y:.015625},{x:.640625,y:.015625},{x:.671875,y:.015625},{x:.671875,y:.015625},{x:.703125,y:.015625},{x:.703125,y:.015625},{x:.734375,y:.015625},{x:.734375,y:.015625},{x:.765625,y:.015625},{x:.765625,y:.015625},{x:.796875,y:.015625},{x:.796875,y:.015625},{x:.828125,y:.015625},{x:.828125,y:.015625},{x:.859375,y:.015625},{x:.859375,y:.015625},{x:.890625,y:.015625},{x:.890625,y:.015625},{x:.921875,y:.015625},{x:.921875,y:.015625},{x:.953125,y:.015625},{x:.953125,y:.015625},{x:.984375,y:.015625},{x:.984375,y:.015625},{x:.015625,y:.046875},{x:.015625,y:.046875},{x:.046875,y:.046875},{x:.046875,y:.046875},{x:.078125,y:.046875},{x:.078125,y:.046875},{x:.109375,y:.046875},{x:.109375,y:.046875},{x:.140625,y:.046875},{x:.140625,y:.046875},{x:.171875,y:.046875},{x:.171875,y:.046875},{x:.203125,y:.046875},{x:.203125,y:.046875},{x:.234375,y:.046875},{x:.234375,y:.046875},{x:.265625,y:.046875},{x:.265625,y:.046875},{x:.296875,y:.046875},{x:.296875,y:.046875},{x:.328125,y:.046875},{x:.328125,y:.046875},{x:.359375,y:.046875},{x:.359375,y:.046875},{x:.390625,y:.046875},{x:.390625,y:.046875},{x:.421875,y:.046875},{x:.421875,y:.046875},{x:.453125,y:.046875},{x:.453125,y:.046875},{x:.484375,y:.046875},{x:.484375,y:.046875},{x:.515625,y:.046875},{x:.515625,y:.046875},{x:.546875,y:.046875},{x:.546875,y:.046875},{x:.578125,y:.046875},{x:.578125,y:.046875},{x:.609375,y:.046875},{x:.609375,y:.046875},{x:.640625,y:.046875},{x:.640625,y:.046875},{x:.671875,y:.046875},{x:.671875,y:.046875},{x:.703125,y:.046875},{x:.703125,y:.046875},{x:.734375,y:.046875},{x:.734375,y:.046875},{x:.765625,y:.046875},{x:.765625,y:.046875},{x:.796875,y:.046875},{x:.796875,y:.046875},{x:.828125,y:.046875},{x:.828125,y:.046875},{x:.859375,y:.046875},{x:.859375,y:.046875},{x:.890625,y:.046875},{x:.890625,y:.046875},{x:.921875,y:.046875},{x:.921875,y:.046875},{x:.953125,y:.046875},{x:.953125,y:.046875},{x:.984375,y:.046875},{x:.984375,y:.046875},{x:.015625,y:.078125},{x:.015625,y:.078125},{x:.046875,y:.078125},{x:.046875,y:.078125},{x:.078125,y:.078125},{x:.078125,y:.078125},{x:.109375,y:.078125},{x:.109375,y:.078125},{x:.140625,y:.078125},{x:.140625,y:.078125},{x:.171875,y:.078125},{x:.171875,y:.078125},{x:.203125,y:.078125},{x:.203125,y:.078125},{x:.234375,y:.078125},{x:.234375,y:.078125},{x:.265625,y:.078125},{x:.265625,y:.078125},{x:.296875,y:.078125},{x:.296875,y:.078125},{x:.328125,y:.078125},{x:.328125,y:.078125},{x:.359375,y:.078125},{x:.359375,y:.078125},{x:.390625,y:.078125},{x:.390625,y:.078125},{x:.421875,y:.078125},{x:.421875,y:.078125},{x:.453125,y:.078125},{x:.453125,y:.078125},{x:.484375,y:.078125},{x:.484375,y:.078125},{x:.515625,y:.078125},{x:.515625,y:.078125},{x:.546875,y:.078125},{x:.546875,y:.078125},{x:.578125,y:.078125},{x:.578125,y:.078125},{x:.609375,y:.078125},{x:.609375,y:.078125},{x:.640625,y:.078125},{x:.640625,y:.078125},{x:.671875,y:.078125},{x:.671875,y:.078125},{x:.703125,y:.078125},{x:.703125,y:.078125},{x:.734375,y:.078125},{x:.734375,y:.078125},{x:.765625,y:.078125},{x:.765625,y:.078125},{x:.796875,y:.078125},{x:.796875,y:.078125},{x:.828125,y:.078125},{x:.828125,y:.078125},{x:.859375,y:.078125},{x:.859375,y:.078125},{x:.890625,y:.078125},{x:.890625,y:.078125},{x:.921875,y:.078125},{x:.921875,y:.078125},{x:.953125,y:.078125},{x:.953125,y:.078125},{x:.984375,y:.078125},{x:.984375,y:.078125},{x:.015625,y:.109375},{x:.015625,y:.109375},{x:.046875,y:.109375},{x:.046875,y:.109375},{x:.078125,y:.109375},{x:.078125,y:.109375},{x:.109375,y:.109375},{x:.109375,y:.109375},{x:.140625,y:.109375},{x:.140625,y:.109375},{x:.171875,y:.109375},{x:.171875,y:.109375},{x:.203125,y:.109375},{x:.203125,y:.109375},{x:.234375,y:.109375},{x:.234375,y:.109375},{x:.265625,y:.109375},{x:.265625,y:.109375},{x:.296875,y:.109375},{x:.296875,y:.109375},{x:.328125,y:.109375},{x:.328125,y:.109375},{x:.359375,y:.109375},{x:.359375,y:.109375},{x:.390625,y:.109375},{x:.390625,y:.109375},{x:.421875,y:.109375},{x:.421875,y:.109375},{x:.453125,y:.109375},{x:.453125,y:.109375},{x:.484375,y:.109375},{x:.484375,y:.109375},{x:.515625,y:.109375},{x:.515625,y:.109375},{x:.546875,y:.109375},{x:.546875,y:.109375},{x:.578125,y:.109375},{x:.578125,y:.109375},{x:.609375,y:.109375},{x:.609375,y:.109375},{x:.640625,y:.109375},{x:.640625,y:.109375},{x:.671875,y:.109375},{x:.671875,y:.109375},{x:.703125,y:.109375},{x:.703125,y:.109375},{x:.734375,y:.109375},{x:.734375,y:.109375},{x:.765625,y:.109375},{x:.765625,y:.109375},{x:.796875,y:.109375},{x:.796875,y:.109375},{x:.828125,y:.109375},{x:.828125,y:.109375},{x:.859375,y:.109375},{x:.859375,y:.109375},{x:.890625,y:.109375},{x:.890625,y:.109375},{x:.921875,y:.109375},{x:.921875,y:.109375},{x:.953125,y:.109375},{x:.953125,y:.109375},{x:.984375,y:.109375},{x:.984375,y:.109375},{x:.015625,y:.140625},{x:.015625,y:.140625},{x:.046875,y:.140625},{x:.046875,y:.140625},{x:.078125,y:.140625},{x:.078125,y:.140625},{x:.109375,y:.140625},{x:.109375,y:.140625},{x:.140625,y:.140625},{x:.140625,y:.140625},{x:.171875,y:.140625},{x:.171875,y:.140625},{x:.203125,y:.140625},{x:.203125,y:.140625},{x:.234375,y:.140625},{x:.234375,y:.140625},{x:.265625,y:.140625},{x:.265625,y:.140625},{x:.296875,y:.140625},{x:.296875,y:.140625},{x:.328125,y:.140625},{x:.328125,y:.140625},{x:.359375,y:.140625},{x:.359375,y:.140625},{x:.390625,y:.140625},{x:.390625,y:.140625},{x:.421875,y:.140625},{x:.421875,y:.140625},{x:.453125,y:.140625},{x:.453125,y:.140625},{x:.484375,y:.140625},{x:.484375,y:.140625},{x:.515625,y:.140625},{x:.515625,y:.140625},{x:.546875,y:.140625},{x:.546875,y:.140625},{x:.578125,y:.140625},{x:.578125,y:.140625},{x:.609375,y:.140625},{x:.609375,y:.140625},{x:.640625,y:.140625},{x:.640625,y:.140625},{x:.671875,y:.140625},{x:.671875,y:.140625},{x:.703125,y:.140625},{x:.703125,y:.140625},{x:.734375,y:.140625},{x:.734375,y:.140625},{x:.765625,y:.140625},{x:.765625,y:.140625},{x:.796875,y:.140625},{x:.796875,y:.140625},{x:.828125,y:.140625},{x:.828125,y:.140625},{x:.859375,y:.140625},{x:.859375,y:.140625},{x:.890625,y:.140625},{x:.890625,y:.140625},{x:.921875,y:.140625},{x:.921875,y:.140625},{x:.953125,y:.140625},{x:.953125,y:.140625},{x:.984375,y:.140625},{x:.984375,y:.140625},{x:.015625,y:.171875},{x:.015625,y:.171875},{x:.046875,y:.171875},{x:.046875,y:.171875},{x:.078125,y:.171875},{x:.078125,y:.171875},{x:.109375,y:.171875},{x:.109375,y:.171875},{x:.140625,y:.171875},{x:.140625,y:.171875},{x:.171875,y:.171875},{x:.171875,y:.171875},{x:.203125,y:.171875},{x:.203125,y:.171875},{x:.234375,y:.171875},{x:.234375,y:.171875},{x:.265625,y:.171875},{x:.265625,y:.171875},{x:.296875,y:.171875},{x:.296875,y:.171875},{x:.328125,y:.171875},{x:.328125,y:.171875},{x:.359375,y:.171875},{x:.359375,y:.171875},{x:.390625,y:.171875},{x:.390625,y:.171875},{x:.421875,y:.171875},{x:.421875,y:.171875},{x:.453125,y:.171875},{x:.453125,y:.171875},{x:.484375,y:.171875},{x:.484375,y:.171875},{x:.515625,y:.171875},{x:.515625,y:.171875},{x:.546875,y:.171875},{x:.546875,y:.171875},{x:.578125,y:.171875},{x:.578125,y:.171875},{x:.609375,y:.171875},{x:.609375,y:.171875},{x:.640625,y:.171875},{x:.640625,y:.171875},{x:.671875,y:.171875},{x:.671875,y:.171875},{x:.703125,y:.171875},{x:.703125,y:.171875},{x:.734375,y:.171875},{x:.734375,y:.171875},{x:.765625,y:.171875},{x:.765625,y:.171875},{x:.796875,y:.171875},{x:.796875,y:.171875},{x:.828125,y:.171875},{x:.828125,y:.171875},{x:.859375,y:.171875},{x:.859375,y:.171875},{x:.890625,y:.171875},{x:.890625,y:.171875},{x:.921875,y:.171875},{x:.921875,y:.171875},{x:.953125,y:.171875},{x:.953125,y:.171875},{x:.984375,y:.171875},{x:.984375,y:.171875},{x:.015625,y:.203125},{x:.015625,y:.203125},{x:.046875,y:.203125},{x:.046875,y:.203125},{x:.078125,y:.203125},{x:.078125,y:.203125},{x:.109375,y:.203125},{x:.109375,y:.203125},{x:.140625,y:.203125},{x:.140625,y:.203125},{x:.171875,y:.203125},{x:.171875,y:.203125},{x:.203125,y:.203125},{x:.203125,y:.203125},{x:.234375,y:.203125},{x:.234375,y:.203125},{x:.265625,y:.203125},{x:.265625,y:.203125},{x:.296875,y:.203125},{x:.296875,y:.203125},{x:.328125,y:.203125},{x:.328125,y:.203125},{x:.359375,y:.203125},{x:.359375,y:.203125},{x:.390625,y:.203125},{x:.390625,y:.203125},{x:.421875,y:.203125},{x:.421875,y:.203125},{x:.453125,y:.203125},{x:.453125,y:.203125},{x:.484375,y:.203125},{x:.484375,y:.203125},{x:.515625,y:.203125},{x:.515625,y:.203125},{x:.546875,y:.203125},{x:.546875,y:.203125},{x:.578125,y:.203125},{x:.578125,y:.203125},{x:.609375,y:.203125},{x:.609375,y:.203125},{x:.640625,y:.203125},{x:.640625,y:.203125},{x:.671875,y:.203125},{x:.671875,y:.203125},{x:.703125,y:.203125},{x:.703125,y:.203125},{x:.734375,y:.203125},{x:.734375,y:.203125},{x:.765625,y:.203125},{x:.765625,y:.203125},{x:.796875,y:.203125},{x:.796875,y:.203125},{x:.828125,y:.203125},{x:.828125,y:.203125},{x:.859375,y:.203125},{x:.859375,y:.203125},{x:.890625,y:.203125},{x:.890625,y:.203125},{x:.921875,y:.203125},{x:.921875,y:.203125},{x:.953125,y:.203125},{x:.953125,y:.203125},{x:.984375,y:.203125},{x:.984375,y:.203125},{x:.015625,y:.234375},{x:.015625,y:.234375},{x:.046875,y:.234375},{x:.046875,y:.234375},{x:.078125,y:.234375},{x:.078125,y:.234375},{x:.109375,y:.234375},{x:.109375,y:.234375},{x:.140625,y:.234375},{x:.140625,y:.234375},{x:.171875,y:.234375},{x:.171875,y:.234375},{x:.203125,y:.234375},{x:.203125,y:.234375},{x:.234375,y:.234375},{x:.234375,y:.234375},{x:.265625,y:.234375},{x:.265625,y:.234375},{x:.296875,y:.234375},{x:.296875,y:.234375},{x:.328125,y:.234375},{x:.328125,y:.234375},{x:.359375,y:.234375},{x:.359375,y:.234375},{x:.390625,y:.234375},{x:.390625,y:.234375},{x:.421875,y:.234375},{x:.421875,y:.234375},{x:.453125,y:.234375},{x:.453125,y:.234375},{x:.484375,y:.234375},{x:.484375,y:.234375},{x:.515625,y:.234375},{x:.515625,y:.234375},{x:.546875,y:.234375},{x:.546875,y:.234375},{x:.578125,y:.234375},{x:.578125,y:.234375},{x:.609375,y:.234375},{x:.609375,y:.234375},{x:.640625,y:.234375},{x:.640625,y:.234375},{x:.671875,y:.234375},{x:.671875,y:.234375},{x:.703125,y:.234375},{x:.703125,y:.234375},{x:.734375,y:.234375},{x:.734375,y:.234375},{x:.765625,y:.234375},{x:.765625,y:.234375},{x:.796875,y:.234375},{x:.796875,y:.234375},{x:.828125,y:.234375},{x:.828125,y:.234375},{x:.859375,y:.234375},{x:.859375,y:.234375},{x:.890625,y:.234375},{x:.890625,y:.234375},{x:.921875,y:.234375},{x:.921875,y:.234375},{x:.953125,y:.234375},{x:.953125,y:.234375},{x:.984375,y:.234375},{x:.984375,y:.234375},{x:.015625,y:.265625},{x:.015625,y:.265625},{x:.046875,y:.265625},{x:.046875,y:.265625},{x:.078125,y:.265625},{x:.078125,y:.265625},{x:.109375,y:.265625},{x:.109375,y:.265625},{x:.140625,y:.265625},{x:.140625,y:.265625},{x:.171875,y:.265625},{x:.171875,y:.265625},{x:.203125,y:.265625},{x:.203125,y:.265625},{x:.234375,y:.265625},{x:.234375,y:.265625},{x:.265625,y:.265625},{x:.265625,y:.265625},{x:.296875,y:.265625},{x:.296875,y:.265625},{x:.328125,y:.265625},{x:.328125,y:.265625},{x:.359375,y:.265625},{x:.359375,y:.265625},{x:.390625,y:.265625},{x:.390625,y:.265625},{x:.421875,y:.265625},{x:.421875,y:.265625},{x:.453125,y:.265625},{x:.453125,y:.265625},{x:.484375,y:.265625},{x:.484375,y:.265625},{x:.515625,y:.265625},{x:.515625,y:.265625},{x:.546875,y:.265625},{x:.546875,y:.265625},{x:.578125,y:.265625},{x:.578125,y:.265625},{x:.609375,y:.265625},{x:.609375,y:.265625},{x:.640625,y:.265625},{x:.640625,y:.265625},{x:.671875,y:.265625},{x:.671875,y:.265625},{x:.703125,y:.265625},{x:.703125,y:.265625},{x:.734375,y:.265625},{x:.734375,y:.265625},{x:.765625,y:.265625},{x:.765625,y:.265625},{x:.796875,y:.265625},{x:.796875,y:.265625},{x:.828125,y:.265625},{x:.828125,y:.265625},{x:.859375,y:.265625},{x:.859375,y:.265625},{x:.890625,y:.265625},{x:.890625,y:.265625},{x:.921875,y:.265625},{x:.921875,y:.265625},{x:.953125,y:.265625},{x:.953125,y:.265625},{x:.984375,y:.265625},{x:.984375,y:.265625},{x:.015625,y:.296875},{x:.015625,y:.296875},{x:.046875,y:.296875},{x:.046875,y:.296875},{x:.078125,y:.296875},{x:.078125,y:.296875},{x:.109375,y:.296875},{x:.109375,y:.296875},{x:.140625,y:.296875},{x:.140625,y:.296875},{x:.171875,y:.296875},{x:.171875,y:.296875},{x:.203125,y:.296875},{x:.203125,y:.296875},{x:.234375,y:.296875},{x:.234375,y:.296875},{x:.265625,y:.296875},{x:.265625,y:.296875},{x:.296875,y:.296875},{x:.296875,y:.296875},{x:.328125,y:.296875},{x:.328125,y:.296875},{x:.359375,y:.296875},{x:.359375,y:.296875},{x:.390625,y:.296875},{x:.390625,y:.296875},{x:.421875,y:.296875},{x:.421875,y:.296875},{x:.453125,y:.296875},{x:.453125,y:.296875},{x:.484375,y:.296875},{x:.484375,y:.296875},{x:.515625,y:.296875},{x:.515625,y:.296875},{x:.546875,y:.296875},{x:.546875,y:.296875},{x:.578125,y:.296875},{x:.578125,y:.296875},{x:.609375,y:.296875},{x:.609375,y:.296875},{x:.640625,y:.296875},{x:.640625,y:.296875},{x:.671875,y:.296875},{x:.671875,y:.296875},{x:.703125,y:.296875},{x:.703125,y:.296875},{x:.734375,y:.296875},{x:.734375,y:.296875},{x:.765625,y:.296875},{x:.765625,y:.296875},{x:.796875,y:.296875},{x:.796875,y:.296875},{x:.828125,y:.296875},{x:.828125,y:.296875},{x:.859375,y:.296875},{x:.859375,y:.296875},{x:.890625,y:.296875},{x:.890625,y:.296875},{x:.921875,y:.296875},{x:.921875,y:.296875},{x:.953125,y:.296875},{x:.953125,y:.296875},{x:.984375,y:.296875},{x:.984375,y:.296875},{x:.015625,y:.328125},{x:.015625,y:.328125},{x:.046875,y:.328125},{x:.046875,y:.328125},{x:.078125,y:.328125},{x:.078125,y:.328125},{x:.109375,y:.328125},{x:.109375,y:.328125},{x:.140625,y:.328125},{x:.140625,y:.328125},{x:.171875,y:.328125},{x:.171875,y:.328125},{x:.203125,y:.328125},{x:.203125,y:.328125},{x:.234375,y:.328125},{x:.234375,y:.328125},{x:.265625,y:.328125},{x:.265625,y:.328125},{x:.296875,y:.328125},{x:.296875,y:.328125},{x:.328125,y:.328125},{x:.328125,y:.328125},{x:.359375,y:.328125},{x:.359375,y:.328125},{x:.390625,y:.328125},{x:.390625,y:.328125},{x:.421875,y:.328125},{x:.421875,y:.328125},{x:.453125,y:.328125},{x:.453125,y:.328125},{x:.484375,y:.328125},{x:.484375,y:.328125},{x:.515625,y:.328125},{x:.515625,y:.328125},{x:.546875,y:.328125},{x:.546875,y:.328125},{x:.578125,y:.328125},{x:.578125,y:.328125},{x:.609375,y:.328125},{x:.609375,y:.328125},{x:.640625,y:.328125},{x:.640625,y:.328125},{x:.671875,y:.328125},{x:.671875,y:.328125},{x:.703125,y:.328125},{x:.703125,y:.328125},{x:.734375,y:.328125},{x:.734375,y:.328125},{x:.765625,y:.328125},{x:.765625,y:.328125},{x:.796875,y:.328125},{x:.796875,y:.328125},{x:.828125,y:.328125},{x:.828125,y:.328125},{x:.859375,y:.328125},{x:.859375,y:.328125},{x:.890625,y:.328125},{x:.890625,y:.328125},{x:.921875,y:.328125},{x:.921875,y:.328125},{x:.953125,y:.328125},{x:.953125,y:.328125},{x:.984375,y:.328125},{x:.984375,y:.328125},{x:.015625,y:.359375},{x:.015625,y:.359375},{x:.046875,y:.359375},{x:.046875,y:.359375},{x:.078125,y:.359375},{x:.078125,y:.359375},{x:.109375,y:.359375},{x:.109375,y:.359375},{x:.140625,y:.359375},{x:.140625,y:.359375},{x:.171875,y:.359375},{x:.171875,y:.359375},{x:.203125,y:.359375},{x:.203125,y:.359375},{x:.234375,y:.359375},{x:.234375,y:.359375},{x:.265625,y:.359375},{x:.265625,y:.359375},{x:.296875,y:.359375},{x:.296875,y:.359375},{x:.328125,y:.359375},{x:.328125,y:.359375},{x:.359375,y:.359375},{x:.359375,y:.359375},{x:.390625,y:.359375},{x:.390625,y:.359375},{x:.421875,y:.359375},{x:.421875,y:.359375},{x:.453125,y:.359375},{x:.453125,y:.359375},{x:.484375,y:.359375},{x:.484375,y:.359375},{x:.515625,y:.359375},{x:.515625,y:.359375},{x:.546875,y:.359375},{x:.546875,y:.359375},{x:.578125,y:.359375},{x:.578125,y:.359375},{x:.609375,y:.359375},{x:.609375,y:.359375},{x:.640625,y:.359375},{x:.640625,y:.359375},{x:.671875,y:.359375},{x:.671875,y:.359375},{x:.703125,y:.359375},{x:.703125,y:.359375},{x:.734375,y:.359375},{x:.734375,y:.359375},{x:.765625,y:.359375},{x:.765625,y:.359375},{x:.796875,y:.359375},{x:.796875,y:.359375},{x:.828125,y:.359375},{x:.828125,y:.359375},{x:.859375,y:.359375},{x:.859375,y:.359375},{x:.890625,y:.359375},{x:.890625,y:.359375},{x:.921875,y:.359375},{x:.921875,y:.359375},{x:.953125,y:.359375},{x:.953125,y:.359375},{x:.984375,y:.359375},{x:.984375,y:.359375},{x:.015625,y:.390625},{x:.015625,y:.390625},{x:.046875,y:.390625},{x:.046875,y:.390625},{x:.078125,y:.390625},{x:.078125,y:.390625},{x:.109375,y:.390625},{x:.109375,y:.390625},{x:.140625,y:.390625},{x:.140625,y:.390625},{x:.171875,y:.390625},{x:.171875,y:.390625},{x:.203125,y:.390625},{x:.203125,y:.390625},{x:.234375,y:.390625},{x:.234375,y:.390625},{x:.265625,y:.390625},{x:.265625,y:.390625},{x:.296875,y:.390625},{x:.296875,y:.390625},{x:.328125,y:.390625},{x:.328125,y:.390625},{x:.359375,y:.390625},{x:.359375,y:.390625},{x:.390625,y:.390625},{x:.390625,y:.390625},{x:.421875,y:.390625},{x:.421875,y:.390625},{x:.453125,y:.390625},{x:.453125,y:.390625},{x:.484375,y:.390625},{x:.484375,y:.390625},{x:.515625,y:.390625},{x:.515625,y:.390625},{x:.546875,y:.390625},{x:.546875,y:.390625},{x:.578125,y:.390625},{x:.578125,y:.390625},{x:.609375,y:.390625},{x:.609375,y:.390625},{x:.640625,y:.390625},{x:.640625,y:.390625},{x:.671875,y:.390625},{x:.671875,y:.390625},{x:.703125,y:.390625},{x:.703125,y:.390625},{x:.734375,y:.390625},{x:.734375,y:.390625},{x:.765625,y:.390625},{x:.765625,y:.390625},{x:.796875,y:.390625},{x:.796875,y:.390625},{x:.828125,y:.390625},{x:.828125,y:.390625},{x:.859375,y:.390625},{x:.859375,y:.390625},{x:.890625,y:.390625},{x:.890625,y:.390625},{x:.921875,y:.390625},{x:.921875,y:.390625},{x:.953125,y:.390625},{x:.953125,y:.390625},{x:.984375,y:.390625},{x:.984375,y:.390625},{x:.015625,y:.421875},{x:.015625,y:.421875},{x:.046875,y:.421875},{x:.046875,y:.421875},{x:.078125,y:.421875},{x:.078125,y:.421875},{x:.109375,y:.421875},{x:.109375,y:.421875},{x:.140625,y:.421875},{x:.140625,y:.421875},{x:.171875,y:.421875},{x:.171875,y:.421875},{x:.203125,y:.421875},{x:.203125,y:.421875},{x:.234375,y:.421875},{x:.234375,y:.421875},{x:.265625,y:.421875},{x:.265625,y:.421875},{x:.296875,y:.421875},{x:.296875,y:.421875},{x:.328125,y:.421875},{x:.328125,y:.421875},{x:.359375,y:.421875},{x:.359375,y:.421875},{x:.390625,y:.421875},{x:.390625,y:.421875},{x:.421875,y:.421875},{x:.421875,y:.421875},{x:.453125,y:.421875},{x:.453125,y:.421875},{x:.484375,y:.421875},{x:.484375,y:.421875},{x:.515625,y:.421875},{x:.515625,y:.421875},{x:.546875,y:.421875},{x:.546875,y:.421875},{x:.578125,y:.421875},{x:.578125,y:.421875},{x:.609375,y:.421875},{x:.609375,y:.421875},{x:.640625,y:.421875},{x:.640625,y:.421875},{x:.671875,y:.421875},{x:.671875,y:.421875},{x:.703125,y:.421875},{x:.703125,y:.421875},{x:.734375,y:.421875},{x:.734375,y:.421875},{x:.765625,y:.421875},{x:.765625,y:.421875},{x:.796875,y:.421875},{x:.796875,y:.421875},{x:.828125,y:.421875},{x:.828125,y:.421875},{x:.859375,y:.421875},{x:.859375,y:.421875},{x:.890625,y:.421875},{x:.890625,y:.421875},{x:.921875,y:.421875},{x:.921875,y:.421875},{x:.953125,y:.421875},{x:.953125,y:.421875},{x:.984375,y:.421875},{x:.984375,y:.421875},{x:.015625,y:.453125},{x:.015625,y:.453125},{x:.046875,y:.453125},{x:.046875,y:.453125},{x:.078125,y:.453125},{x:.078125,y:.453125},{x:.109375,y:.453125},{x:.109375,y:.453125},{x:.140625,y:.453125},{x:.140625,y:.453125},{x:.171875,y:.453125},{x:.171875,y:.453125},{x:.203125,y:.453125},{x:.203125,y:.453125},{x:.234375,y:.453125},{x:.234375,y:.453125},{x:.265625,y:.453125},{x:.265625,y:.453125},{x:.296875,y:.453125},{x:.296875,y:.453125},{x:.328125,y:.453125},{x:.328125,y:.453125},{x:.359375,y:.453125},{x:.359375,y:.453125},{x:.390625,y:.453125},{x:.390625,y:.453125},{x:.421875,y:.453125},{x:.421875,y:.453125},{x:.453125,y:.453125},{x:.453125,y:.453125},{x:.484375,y:.453125},{x:.484375,y:.453125},{x:.515625,y:.453125},{x:.515625,y:.453125},{x:.546875,y:.453125},{x:.546875,y:.453125},{x:.578125,y:.453125},{x:.578125,y:.453125},{x:.609375,y:.453125},{x:.609375,y:.453125},{x:.640625,y:.453125},{x:.640625,y:.453125},{x:.671875,y:.453125},{x:.671875,y:.453125},{x:.703125,y:.453125},{x:.703125,y:.453125},{x:.734375,y:.453125},{x:.734375,y:.453125},{x:.765625,y:.453125},{x:.765625,y:.453125},{x:.796875,y:.453125},{x:.796875,y:.453125},{x:.828125,y:.453125},{x:.828125,y:.453125},{x:.859375,y:.453125},{x:.859375,y:.453125},{x:.890625,y:.453125},{x:.890625,y:.453125},{x:.921875,y:.453125},{x:.921875,y:.453125},{x:.953125,y:.453125},{x:.953125,y:.453125},{x:.984375,y:.453125},{x:.984375,y:.453125},{x:.015625,y:.484375},{x:.015625,y:.484375},{x:.046875,y:.484375},{x:.046875,y:.484375},{x:.078125,y:.484375},{x:.078125,y:.484375},{x:.109375,y:.484375},{x:.109375,y:.484375},{x:.140625,y:.484375},{x:.140625,y:.484375},{x:.171875,y:.484375},{x:.171875,y:.484375},{x:.203125,y:.484375},{x:.203125,y:.484375},{x:.234375,y:.484375},{x:.234375,y:.484375},{x:.265625,y:.484375},{x:.265625,y:.484375},{x:.296875,y:.484375},{x:.296875,y:.484375},{x:.328125,y:.484375},{x:.328125,y:.484375},{x:.359375,y:.484375},{x:.359375,y:.484375},{x:.390625,y:.484375},{x:.390625,y:.484375},{x:.421875,y:.484375},{x:.421875,y:.484375},{x:.453125,y:.484375},{x:.453125,y:.484375},{x:.484375,y:.484375},{x:.484375,y:.484375},{x:.515625,y:.484375},{x:.515625,y:.484375},{x:.546875,y:.484375},{x:.546875,y:.484375},{x:.578125,y:.484375},{x:.578125,y:.484375},{x:.609375,y:.484375},{x:.609375,y:.484375},{x:.640625,y:.484375},{x:.640625,y:.484375},{x:.671875,y:.484375},{x:.671875,y:.484375},{x:.703125,y:.484375},{x:.703125,y:.484375},{x:.734375,y:.484375},{x:.734375,y:.484375},{x:.765625,y:.484375},{x:.765625,y:.484375},{x:.796875,y:.484375},{x:.796875,y:.484375},{x:.828125,y:.484375},{x:.828125,y:.484375},{x:.859375,y:.484375},{x:.859375,y:.484375},{x:.890625,y:.484375},{x:.890625,y:.484375},{x:.921875,y:.484375},{x:.921875,y:.484375},{x:.953125,y:.484375},{x:.953125,y:.484375},{x:.984375,y:.484375},{x:.984375,y:.484375},{x:.015625,y:.515625},{x:.015625,y:.515625},{x:.046875,y:.515625},{x:.046875,y:.515625},{x:.078125,y:.515625},{x:.078125,y:.515625},{x:.109375,y:.515625},{x:.109375,y:.515625},{x:.140625,y:.515625},{x:.140625,y:.515625},{x:.171875,y:.515625},{x:.171875,y:.515625},{x:.203125,y:.515625},{x:.203125,y:.515625},{x:.234375,y:.515625},{x:.234375,y:.515625},{x:.265625,y:.515625},{x:.265625,y:.515625},{x:.296875,y:.515625},{x:.296875,y:.515625},{x:.328125,y:.515625},{x:.328125,y:.515625},{x:.359375,y:.515625},{x:.359375,y:.515625},{x:.390625,y:.515625},{x:.390625,y:.515625},{x:.421875,y:.515625},{x:.421875,y:.515625},{x:.453125,y:.515625},{x:.453125,y:.515625},{x:.484375,y:.515625},{x:.484375,y:.515625},{x:.515625,y:.515625},{x:.515625,y:.515625},{x:.546875,y:.515625},{x:.546875,y:.515625},{x:.578125,y:.515625},{x:.578125,y:.515625},{x:.609375,y:.515625},{x:.609375,y:.515625},{x:.640625,y:.515625},{x:.640625,y:.515625},{x:.671875,y:.515625},{x:.671875,y:.515625},{x:.703125,y:.515625},{x:.703125,y:.515625},{x:.734375,y:.515625},{x:.734375,y:.515625},{x:.765625,y:.515625},{x:.765625,y:.515625},{x:.796875,y:.515625},{x:.796875,y:.515625},{x:.828125,y:.515625},{x:.828125,y:.515625},{x:.859375,y:.515625},{x:.859375,y:.515625},{x:.890625,y:.515625},{x:.890625,y:.515625},{x:.921875,y:.515625},{x:.921875,y:.515625},{x:.953125,y:.515625},{x:.953125,y:.515625},{x:.984375,y:.515625},{x:.984375,y:.515625},{x:.015625,y:.546875},{x:.015625,y:.546875},{x:.046875,y:.546875},{x:.046875,y:.546875},{x:.078125,y:.546875},{x:.078125,y:.546875},{x:.109375,y:.546875},{x:.109375,y:.546875},{x:.140625,y:.546875},{x:.140625,y:.546875},{x:.171875,y:.546875},{x:.171875,y:.546875},{x:.203125,y:.546875},{x:.203125,y:.546875},{x:.234375,y:.546875},{x:.234375,y:.546875},{x:.265625,y:.546875},{x:.265625,y:.546875},{x:.296875,y:.546875},{x:.296875,y:.546875},{x:.328125,y:.546875},{x:.328125,y:.546875},{x:.359375,y:.546875},{x:.359375,y:.546875},{x:.390625,y:.546875},{x:.390625,y:.546875},{x:.421875,y:.546875},{x:.421875,y:.546875},{x:.453125,y:.546875},{x:.453125,y:.546875},{x:.484375,y:.546875},{x:.484375,y:.546875},{x:.515625,y:.546875},{x:.515625,y:.546875},{x:.546875,y:.546875},{x:.546875,y:.546875},{x:.578125,y:.546875},{x:.578125,y:.546875},{x:.609375,y:.546875},{x:.609375,y:.546875},{x:.640625,y:.546875},{x:.640625,y:.546875},{x:.671875,y:.546875},{x:.671875,y:.546875},{x:.703125,y:.546875},{x:.703125,y:.546875},{x:.734375,y:.546875},{x:.734375,y:.546875},{x:.765625,y:.546875},{x:.765625,y:.546875},{x:.796875,y:.546875},{x:.796875,y:.546875},{x:.828125,y:.546875},{x:.828125,y:.546875},{x:.859375,y:.546875},{x:.859375,y:.546875},{x:.890625,y:.546875},{x:.890625,y:.546875},{x:.921875,y:.546875},{x:.921875,y:.546875},{x:.953125,y:.546875},{x:.953125,y:.546875},{x:.984375,y:.546875},{x:.984375,y:.546875},{x:.015625,y:.578125},{x:.015625,y:.578125},{x:.046875,y:.578125},{x:.046875,y:.578125},{x:.078125,y:.578125},{x:.078125,y:.578125},{x:.109375,y:.578125},{x:.109375,y:.578125},{x:.140625,y:.578125},{x:.140625,y:.578125},{x:.171875,y:.578125},{x:.171875,y:.578125},{x:.203125,y:.578125},{x:.203125,y:.578125},{x:.234375,y:.578125},{x:.234375,y:.578125},{x:.265625,y:.578125},{x:.265625,y:.578125},{x:.296875,y:.578125},{x:.296875,y:.578125},{x:.328125,y:.578125},{x:.328125,y:.578125},{x:.359375,y:.578125},{x:.359375,y:.578125},{x:.390625,y:.578125},{x:.390625,y:.578125},{x:.421875,y:.578125},{x:.421875,y:.578125},{x:.453125,y:.578125},{x:.453125,y:.578125},{x:.484375,y:.578125},{x:.484375,y:.578125},{x:.515625,y:.578125},{x:.515625,y:.578125},{x:.546875,y:.578125},{x:.546875,y:.578125},{x:.578125,y:.578125},{x:.578125,y:.578125},{x:.609375,y:.578125},{x:.609375,y:.578125},{x:.640625,y:.578125},{x:.640625,y:.578125},{x:.671875,y:.578125},{x:.671875,y:.578125},{x:.703125,y:.578125},{x:.703125,y:.578125},{x:.734375,y:.578125},{x:.734375,y:.578125},{x:.765625,y:.578125},{x:.765625,y:.578125},{x:.796875,y:.578125},{x:.796875,y:.578125},{x:.828125,y:.578125},{x:.828125,y:.578125},{x:.859375,y:.578125},{x:.859375,y:.578125},{x:.890625,y:.578125},{x:.890625,y:.578125},{x:.921875,y:.578125},{x:.921875,y:.578125},{x:.953125,y:.578125},{x:.953125,y:.578125},{x:.984375,y:.578125},{x:.984375,y:.578125},{x:.015625,y:.609375},{x:.015625,y:.609375},{x:.046875,y:.609375},{x:.046875,y:.609375},{x:.078125,y:.609375},{x:.078125,y:.609375},{x:.109375,y:.609375},{x:.109375,y:.609375},{x:.140625,y:.609375},{x:.140625,y:.609375},{x:.171875,y:.609375},{x:.171875,y:.609375},{x:.203125,y:.609375},{x:.203125,y:.609375},{x:.234375,y:.609375},{x:.234375,y:.609375},{x:.265625,y:.609375},{x:.265625,y:.609375},{x:.296875,y:.609375},{x:.296875,y:.609375},{x:.328125,y:.609375},{x:.328125,y:.609375},{x:.359375,y:.609375},{x:.359375,y:.609375},{x:.390625,y:.609375},{x:.390625,y:.609375},{x:.421875,y:.609375},{x:.421875,y:.609375},{x:.453125,y:.609375},{x:.453125,y:.609375},{x:.484375,y:.609375},{x:.484375,y:.609375},{x:.515625,y:.609375},{x:.515625,y:.609375},{x:.546875,y:.609375},{x:.546875,y:.609375},{x:.578125,y:.609375},{x:.578125,y:.609375},{x:.609375,y:.609375},{x:.609375,y:.609375},{x:.640625,y:.609375},{x:.640625,y:.609375},{x:.671875,y:.609375},{x:.671875,y:.609375},{x:.703125,y:.609375},{x:.703125,y:.609375},{x:.734375,y:.609375},{x:.734375,y:.609375},{x:.765625,y:.609375},{x:.765625,y:.609375},{x:.796875,y:.609375},{x:.796875,y:.609375},{x:.828125,y:.609375},{x:.828125,y:.609375},{x:.859375,y:.609375},{x:.859375,y:.609375},{x:.890625,y:.609375},{x:.890625,y:.609375},{x:.921875,y:.609375},{x:.921875,y:.609375},{x:.953125,y:.609375},{x:.953125,y:.609375},{x:.984375,y:.609375},{x:.984375,y:.609375},{x:.015625,y:.640625},{x:.015625,y:.640625},{x:.046875,y:.640625},{x:.046875,y:.640625},{x:.078125,y:.640625},{x:.078125,y:.640625},{x:.109375,y:.640625},{x:.109375,y:.640625},{x:.140625,y:.640625},{x:.140625,y:.640625},{x:.171875,y:.640625},{x:.171875,y:.640625},{x:.203125,y:.640625},{x:.203125,y:.640625},{x:.234375,y:.640625},{x:.234375,y:.640625},{x:.265625,y:.640625},{x:.265625,y:.640625},{x:.296875,y:.640625},{x:.296875,y:.640625},{x:.328125,y:.640625},{x:.328125,y:.640625},{x:.359375,y:.640625},{x:.359375,y:.640625},{x:.390625,y:.640625},{x:.390625,y:.640625},{x:.421875,y:.640625},{x:.421875,y:.640625},{x:.453125,y:.640625},{x:.453125,y:.640625},{x:.484375,y:.640625},{x:.484375,y:.640625},{x:.515625,y:.640625},{x:.515625,y:.640625},{x:.546875,y:.640625},{x:.546875,y:.640625},{x:.578125,y:.640625},{x:.578125,y:.640625},{x:.609375,y:.640625},{x:.609375,y:.640625},{x:.640625,y:.640625},{x:.640625,y:.640625},{x:.671875,y:.640625},{x:.671875,y:.640625},{x:.703125,y:.640625},{x:.703125,y:.640625},{x:.734375,y:.640625},{x:.734375,y:.640625},{x:.765625,y:.640625},{x:.765625,y:.640625},{x:.796875,y:.640625},{x:.796875,y:.640625},{x:.828125,y:.640625},{x:.828125,y:.640625},{x:.859375,y:.640625},{x:.859375,y:.640625},{x:.890625,y:.640625},{x:.890625,y:.640625},{x:.921875,y:.640625},{x:.921875,y:.640625},{x:.953125,y:.640625},{x:.953125,y:.640625},{x:.984375,y:.640625},{x:.984375,y:.640625},{x:.015625,y:.671875},{x:.015625,y:.671875},{x:.046875,y:.671875},{x:.046875,y:.671875},{x:.078125,y:.671875},{x:.078125,y:.671875},{x:.109375,y:.671875},{x:.109375,y:.671875},{x:.140625,y:.671875},{x:.140625,y:.671875},{x:.171875,y:.671875},{x:.171875,y:.671875},{x:.203125,y:.671875},{x:.203125,y:.671875},{x:.234375,y:.671875},{x:.234375,y:.671875},{x:.265625,y:.671875},{x:.265625,y:.671875},{x:.296875,y:.671875},{x:.296875,y:.671875},{x:.328125,y:.671875},{x:.328125,y:.671875},{x:.359375,y:.671875},{x:.359375,y:.671875},{x:.390625,y:.671875},{x:.390625,y:.671875},{x:.421875,y:.671875},{x:.421875,y:.671875},{x:.453125,y:.671875},{x:.453125,y:.671875},{x:.484375,y:.671875},{x:.484375,y:.671875},{x:.515625,y:.671875},{x:.515625,y:.671875},{x:.546875,y:.671875},{x:.546875,y:.671875},{x:.578125,y:.671875},{x:.578125,y:.671875},{x:.609375,y:.671875},{x:.609375,y:.671875},{x:.640625,y:.671875},{x:.640625,y:.671875},{x:.671875,y:.671875},{x:.671875,y:.671875},{x:.703125,y:.671875},{x:.703125,y:.671875},{x:.734375,y:.671875},{x:.734375,y:.671875},{x:.765625,y:.671875},{x:.765625,y:.671875},{x:.796875,y:.671875},{x:.796875,y:.671875},{x:.828125,y:.671875},{x:.828125,y:.671875},{x:.859375,y:.671875},{x:.859375,y:.671875},{x:.890625,y:.671875},{x:.890625,y:.671875},{x:.921875,y:.671875},{x:.921875,y:.671875},{x:.953125,y:.671875},{x:.953125,y:.671875},{x:.984375,y:.671875},{x:.984375,y:.671875},{x:.015625,y:.703125},{x:.015625,y:.703125},{x:.046875,y:.703125},{x:.046875,y:.703125},{x:.078125,y:.703125},{x:.078125,y:.703125},{x:.109375,y:.703125},{x:.109375,y:.703125},{x:.140625,y:.703125},{x:.140625,y:.703125},{x:.171875,y:.703125},{x:.171875,y:.703125},{x:.203125,y:.703125},{x:.203125,y:.703125},{x:.234375,y:.703125},{x:.234375,y:.703125},{x:.265625,y:.703125},{x:.265625,y:.703125},{x:.296875,y:.703125},{x:.296875,y:.703125},{x:.328125,y:.703125},{x:.328125,y:.703125},{x:.359375,y:.703125},{x:.359375,y:.703125},{x:.390625,y:.703125},{x:.390625,y:.703125},{x:.421875,y:.703125},{x:.421875,y:.703125},{x:.453125,y:.703125},{x:.453125,y:.703125},{x:.484375,y:.703125},{x:.484375,y:.703125},{x:.515625,y:.703125},{x:.515625,y:.703125},{x:.546875,y:.703125},{x:.546875,y:.703125},{x:.578125,y:.703125},{x:.578125,y:.703125},{x:.609375,y:.703125},{x:.609375,y:.703125},{x:.640625,y:.703125},{x:.640625,y:.703125},{x:.671875,y:.703125},{x:.671875,y:.703125},{x:.703125,y:.703125},{x:.703125,y:.703125},{x:.734375,y:.703125},{x:.734375,y:.703125},{x:.765625,y:.703125},{x:.765625,y:.703125},{x:.796875,y:.703125},{x:.796875,y:.703125},{x:.828125,y:.703125},{x:.828125,y:.703125},{x:.859375,y:.703125},{x:.859375,y:.703125},{x:.890625,y:.703125},{x:.890625,y:.703125},{x:.921875,y:.703125},{x:.921875,y:.703125},{x:.953125,y:.703125},{x:.953125,y:.703125},{x:.984375,y:.703125},{x:.984375,y:.703125},{x:.015625,y:.734375},{x:.015625,y:.734375},{x:.046875,y:.734375},{x:.046875,y:.734375},{x:.078125,y:.734375},{x:.078125,y:.734375},{x:.109375,y:.734375},{x:.109375,y:.734375},{x:.140625,y:.734375},{x:.140625,y:.734375},{x:.171875,y:.734375},{x:.171875,y:.734375},{x:.203125,y:.734375},{x:.203125,y:.734375},{x:.234375,y:.734375},{x:.234375,y:.734375},{x:.265625,y:.734375},{x:.265625,y:.734375},{x:.296875,y:.734375},{x:.296875,y:.734375},{x:.328125,y:.734375},{x:.328125,y:.734375},{x:.359375,y:.734375},{x:.359375,y:.734375},{x:.390625,y:.734375},{x:.390625,y:.734375},{x:.421875,y:.734375},{x:.421875,y:.734375},{x:.453125,y:.734375},{x:.453125,y:.734375},{x:.484375,y:.734375},{x:.484375,y:.734375},{x:.515625,y:.734375},{x:.515625,y:.734375},{x:.546875,y:.734375},{x:.546875,y:.734375},{x:.578125,y:.734375},{x:.578125,y:.734375},{x:.609375,y:.734375},{x:.609375,y:.734375},{x:.640625,y:.734375},{x:.640625,y:.734375},{x:.671875,y:.734375},{x:.671875,y:.734375},{x:.703125,y:.734375},{x:.703125,y:.734375},{x:.734375,y:.734375},{x:.734375,y:.734375},{x:.765625,y:.734375},{x:.765625,y:.734375},{x:.796875,y:.734375},{x:.796875,y:.734375},{x:.828125,y:.734375},{x:.828125,y:.734375},{x:.859375,y:.734375},{x:.859375,y:.734375},{x:.890625,y:.734375},{x:.890625,y:.734375},{x:.921875,y:.734375},{x:.921875,y:.734375},{x:.953125,y:.734375},{x:.953125,y:.734375},{x:.984375,y:.734375},{x:.984375,y:.734375},{x:.015625,y:.765625},{x:.015625,y:.765625},{x:.046875,y:.765625},{x:.046875,y:.765625},{x:.078125,y:.765625},{x:.078125,y:.765625},{x:.109375,y:.765625},{x:.109375,y:.765625},{x:.140625,y:.765625},{x:.140625,y:.765625},{x:.171875,y:.765625},{x:.171875,y:.765625},{x:.203125,y:.765625},{x:.203125,y:.765625},{x:.234375,y:.765625},{x:.234375,y:.765625},{x:.265625,y:.765625},{x:.265625,y:.765625},{x:.296875,y:.765625},{x:.296875,y:.765625},{x:.328125,y:.765625},{x:.328125,y:.765625},{x:.359375,y:.765625},{x:.359375,y:.765625},{x:.390625,y:.765625},{x:.390625,y:.765625},{x:.421875,y:.765625},{x:.421875,y:.765625},{x:.453125,y:.765625},{x:.453125,y:.765625},{x:.484375,y:.765625},{x:.484375,y:.765625},{x:.515625,y:.765625},{x:.515625,y:.765625},{x:.546875,y:.765625},{x:.546875,y:.765625},{x:.578125,y:.765625},{x:.578125,y:.765625},{x:.609375,y:.765625},{x:.609375,y:.765625},{x:.640625,y:.765625},{x:.640625,y:.765625},{x:.671875,y:.765625},{x:.671875,y:.765625},{x:.703125,y:.765625},{x:.703125,y:.765625},{x:.734375,y:.765625},{x:.734375,y:.765625},{x:.765625,y:.765625},{x:.765625,y:.765625},{x:.796875,y:.765625},{x:.796875,y:.765625},{x:.828125,y:.765625},{x:.828125,y:.765625},{x:.859375,y:.765625},{x:.859375,y:.765625},{x:.890625,y:.765625},{x:.890625,y:.765625},{x:.921875,y:.765625},{x:.921875,y:.765625},{x:.953125,y:.765625},{x:.953125,y:.765625},{x:.984375,y:.765625},{x:.984375,y:.765625},{x:.015625,y:.796875},{x:.015625,y:.796875},{x:.046875,y:.796875},{x:.046875,y:.796875},{x:.078125,y:.796875},{x:.078125,y:.796875},{x:.109375,y:.796875},{x:.109375,y:.796875},{x:.140625,y:.796875},{x:.140625,y:.796875},{x:.171875,y:.796875},{x:.171875,y:.796875},{x:.203125,y:.796875},{x:.203125,y:.796875},{x:.234375,y:.796875},{x:.234375,y:.796875},{x:.265625,y:.796875},{x:.265625,y:.796875},{x:.296875,y:.796875},{x:.296875,y:.796875},{x:.328125,y:.796875},{x:.328125,y:.796875},{x:.359375,y:.796875},{x:.359375,y:.796875},{x:.390625,y:.796875},{x:.390625,y:.796875},{x:.421875,y:.796875},{x:.421875,y:.796875},{x:.453125,y:.796875},{x:.453125,y:.796875},{x:.484375,y:.796875},{x:.484375,y:.796875},{x:.515625,y:.796875},{x:.515625,y:.796875},{x:.546875,y:.796875},{x:.546875,y:.796875},{x:.578125,y:.796875},{x:.578125,y:.796875},{x:.609375,y:.796875},{x:.609375,y:.796875},{x:.640625,y:.796875},{x:.640625,y:.796875},{x:.671875,y:.796875},{x:.671875,y:.796875},{x:.703125,y:.796875},{x:.703125,y:.796875},{x:.734375,y:.796875},{x:.734375,y:.796875},{x:.765625,y:.796875},{x:.765625,y:.796875},{x:.796875,y:.796875},{x:.796875,y:.796875},{x:.828125,y:.796875},{x:.828125,y:.796875},{x:.859375,y:.796875},{x:.859375,y:.796875},{x:.890625,y:.796875},{x:.890625,y:.796875},{x:.921875,y:.796875},{x:.921875,y:.796875},{x:.953125,y:.796875},{x:.953125,y:.796875},{x:.984375,y:.796875},{x:.984375,y:.796875},{x:.015625,y:.828125},{x:.015625,y:.828125},{x:.046875,y:.828125},{x:.046875,y:.828125},{x:.078125,y:.828125},{x:.078125,y:.828125},{x:.109375,y:.828125},{x:.109375,y:.828125},{x:.140625,y:.828125},{x:.140625,y:.828125},{x:.171875,y:.828125},{x:.171875,y:.828125},{x:.203125,y:.828125},{x:.203125,y:.828125},{x:.234375,y:.828125},{x:.234375,y:.828125},{x:.265625,y:.828125},{x:.265625,y:.828125},{x:.296875,y:.828125},{x:.296875,y:.828125},{x:.328125,y:.828125},{x:.328125,y:.828125},{x:.359375,y:.828125},{x:.359375,y:.828125},{x:.390625,y:.828125},{x:.390625,y:.828125},{x:.421875,y:.828125},{x:.421875,y:.828125},{x:.453125,y:.828125},{x:.453125,y:.828125},{x:.484375,y:.828125},{x:.484375,y:.828125},{x:.515625,y:.828125},{x:.515625,y:.828125},{x:.546875,y:.828125},{x:.546875,y:.828125},{x:.578125,y:.828125},{x:.578125,y:.828125},{x:.609375,y:.828125},{x:.609375,y:.828125},{x:.640625,y:.828125},{x:.640625,y:.828125},{x:.671875,y:.828125},{x:.671875,y:.828125},{x:.703125,y:.828125},{x:.703125,y:.828125},{x:.734375,y:.828125},{x:.734375,y:.828125},{x:.765625,y:.828125},{x:.765625,y:.828125},{x:.796875,y:.828125},{x:.796875,y:.828125},{x:.828125,y:.828125},{x:.828125,y:.828125},{x:.859375,y:.828125},{x:.859375,y:.828125},{x:.890625,y:.828125},{x:.890625,y:.828125},{x:.921875,y:.828125},{x:.921875,y:.828125},{x:.953125,y:.828125},{x:.953125,y:.828125},{x:.984375,y:.828125},{x:.984375,y:.828125},{x:.015625,y:.859375},{x:.015625,y:.859375},{x:.046875,y:.859375},{x:.046875,y:.859375},{x:.078125,y:.859375},{x:.078125,y:.859375},{x:.109375,y:.859375},{x:.109375,y:.859375},{x:.140625,y:.859375},{x:.140625,y:.859375},{x:.171875,y:.859375},{x:.171875,y:.859375},{x:.203125,y:.859375},{x:.203125,y:.859375},{x:.234375,y:.859375},{x:.234375,y:.859375},{x:.265625,y:.859375},{x:.265625,y:.859375},{x:.296875,y:.859375},{x:.296875,y:.859375},{x:.328125,y:.859375},{x:.328125,y:.859375},{x:.359375,y:.859375},{x:.359375,y:.859375},{x:.390625,y:.859375},{x:.390625,y:.859375},{x:.421875,y:.859375},{x:.421875,y:.859375},{x:.453125,y:.859375},{x:.453125,y:.859375},{x:.484375,y:.859375},{x:.484375,y:.859375},{x:.515625,y:.859375},{x:.515625,y:.859375},{x:.546875,y:.859375},{x:.546875,y:.859375},{x:.578125,y:.859375},{x:.578125,y:.859375},{x:.609375,y:.859375},{x:.609375,y:.859375},{x:.640625,y:.859375},{x:.640625,y:.859375},{x:.671875,y:.859375},{x:.671875,y:.859375},{x:.703125,y:.859375},{x:.703125,y:.859375},{x:.734375,y:.859375},{x:.734375,y:.859375},{x:.765625,y:.859375},{x:.765625,y:.859375},{x:.796875,y:.859375},{x:.796875,y:.859375},{x:.828125,y:.859375},{x:.828125,y:.859375},{x:.859375,y:.859375},{x:.859375,y:.859375},{x:.890625,y:.859375},{x:.890625,y:.859375},{x:.921875,y:.859375},{x:.921875,y:.859375},{x:.953125,y:.859375},{x:.953125,y:.859375},{x:.984375,y:.859375},{x:.984375,y:.859375},{x:.015625,y:.890625},{x:.015625,y:.890625},{x:.046875,y:.890625},{x:.046875,y:.890625},{x:.078125,y:.890625},{x:.078125,y:.890625},{x:.109375,y:.890625},{x:.109375,y:.890625},{x:.140625,y:.890625},{x:.140625,y:.890625},{x:.171875,y:.890625},{x:.171875,y:.890625},{x:.203125,y:.890625},{x:.203125,y:.890625},{x:.234375,y:.890625},{x:.234375,y:.890625},{x:.265625,y:.890625},{x:.265625,y:.890625},{x:.296875,y:.890625},{x:.296875,y:.890625},{x:.328125,y:.890625},{x:.328125,y:.890625},{x:.359375,y:.890625},{x:.359375,y:.890625},{x:.390625,y:.890625},{x:.390625,y:.890625},{x:.421875,y:.890625},{x:.421875,y:.890625},{x:.453125,y:.890625},{x:.453125,y:.890625},{x:.484375,y:.890625},{x:.484375,y:.890625},{x:.515625,y:.890625},{x:.515625,y:.890625},{x:.546875,y:.890625},{x:.546875,y:.890625},{x:.578125,y:.890625},{x:.578125,y:.890625},{x:.609375,y:.890625},{x:.609375,y:.890625},{x:.640625,y:.890625},{x:.640625,y:.890625},{x:.671875,y:.890625},{x:.671875,y:.890625},{x:.703125,y:.890625},{x:.703125,y:.890625},{x:.734375,y:.890625},{x:.734375,y:.890625},{x:.765625,y:.890625},{x:.765625,y:.890625},{x:.796875,y:.890625},{x:.796875,y:.890625},{x:.828125,y:.890625},{x:.828125,y:.890625},{x:.859375,y:.890625},{x:.859375,y:.890625},{x:.890625,y:.890625},{x:.890625,y:.890625},{x:.921875,y:.890625},{x:.921875,y:.890625},{x:.953125,y:.890625},{x:.953125,y:.890625},{x:.984375,y:.890625},{x:.984375,y:.890625},{x:.015625,y:.921875},{x:.015625,y:.921875},{x:.046875,y:.921875},{x:.046875,y:.921875},{x:.078125,y:.921875},{x:.078125,y:.921875},{x:.109375,y:.921875},{x:.109375,y:.921875},{x:.140625,y:.921875},{x:.140625,y:.921875},{x:.171875,y:.921875},{x:.171875,y:.921875},{x:.203125,y:.921875},{x:.203125,y:.921875},{x:.234375,y:.921875},{x:.234375,y:.921875},{x:.265625,y:.921875},{x:.265625,y:.921875},{x:.296875,y:.921875},{x:.296875,y:.921875},{x:.328125,y:.921875},{x:.328125,y:.921875},{x:.359375,y:.921875},{x:.359375,y:.921875},{x:.390625,y:.921875},{x:.390625,y:.921875},{x:.421875,y:.921875},{x:.421875,y:.921875},{x:.453125,y:.921875},{x:.453125,y:.921875},{x:.484375,y:.921875},{x:.484375,y:.921875},{x:.515625,y:.921875},{x:.515625,y:.921875},{x:.546875,y:.921875},{x:.546875,y:.921875},{x:.578125,y:.921875},{x:.578125,y:.921875},{x:.609375,y:.921875},{x:.609375,y:.921875},{x:.640625,y:.921875},{x:.640625,y:.921875},{x:.671875,y:.921875},{x:.671875,y:.921875},{x:.703125,y:.921875},{x:.703125,y:.921875},{x:.734375,y:.921875},{x:.734375,y:.921875},{x:.765625,y:.921875},{x:.765625,y:.921875},{x:.796875,y:.921875},{x:.796875,y:.921875},{x:.828125,y:.921875},{x:.828125,y:.921875},{x:.859375,y:.921875},{x:.859375,y:.921875},{x:.890625,y:.921875},{x:.890625,y:.921875},{x:.921875,y:.921875},{x:.921875,y:.921875},{x:.953125,y:.921875},{x:.953125,y:.921875},{x:.984375,y:.921875},{x:.984375,y:.921875},{x:.015625,y:.953125},{x:.015625,y:.953125},{x:.046875,y:.953125},{x:.046875,y:.953125},{x:.078125,y:.953125},{x:.078125,y:.953125},{x:.109375,y:.953125},{x:.109375,y:.953125},{x:.140625,y:.953125},{x:.140625,y:.953125},{x:.171875,y:.953125},{x:.171875,y:.953125},{x:.203125,y:.953125},{x:.203125,y:.953125},{x:.234375,y:.953125},{x:.234375,y:.953125},{x:.265625,y:.953125},{x:.265625,y:.953125},{x:.296875,y:.953125},{x:.296875,y:.953125},{x:.328125,y:.953125},{x:.328125,y:.953125},{x:.359375,y:.953125},{x:.359375,y:.953125},{x:.390625,y:.953125},{x:.390625,y:.953125},{x:.421875,y:.953125},{x:.421875,y:.953125},{x:.453125,y:.953125},{x:.453125,y:.953125},{x:.484375,y:.953125},{x:.484375,y:.953125},{x:.515625,y:.953125},{x:.515625,y:.953125},{x:.546875,y:.953125},{x:.546875,y:.953125},{x:.578125,y:.953125},{x:.578125,y:.953125},{x:.609375,y:.953125},{x:.609375,y:.953125},{x:.640625,y:.953125},{x:.640625,y:.953125},{x:.671875,y:.953125},{x:.671875,y:.953125},{x:.703125,y:.953125},{x:.703125,y:.953125},{x:.734375,y:.953125},{x:.734375,y:.953125},{x:.765625,y:.953125},{x:.765625,y:.953125},{x:.796875,y:.953125},{x:.796875,y:.953125},{x:.828125,y:.953125},{x:.828125,y:.953125},{x:.859375,y:.953125},{x:.859375,y:.953125},{x:.890625,y:.953125},{x:.890625,y:.953125},{x:.921875,y:.953125},{x:.921875,y:.953125},{x:.953125,y:.953125},{x:.953125,y:.953125},{x:.984375,y:.953125},{x:.984375,y:.953125},{x:.015625,y:.984375},{x:.015625,y:.984375},{x:.046875,y:.984375},{x:.046875,y:.984375},{x:.078125,y:.984375},{x:.078125,y:.984375},{x:.109375,y:.984375},{x:.109375,y:.984375},{x:.140625,y:.984375},{x:.140625,y:.984375},{x:.171875,y:.984375},{x:.171875,y:.984375},{x:.203125,y:.984375},{x:.203125,y:.984375},{x:.234375,y:.984375},{x:.234375,y:.984375},{x:.265625,y:.984375},{x:.265625,y:.984375},{x:.296875,y:.984375},{x:.296875,y:.984375},{x:.328125,y:.984375},{x:.328125,y:.984375},{x:.359375,y:.984375},{x:.359375,y:.984375},{x:.390625,y:.984375},{x:.390625,y:.984375},{x:.421875,y:.984375},{x:.421875,y:.984375},{x:.453125,y:.984375},{x:.453125,y:.984375},{x:.484375,y:.984375},{x:.484375,y:.984375},{x:.515625,y:.984375},{x:.515625,y:.984375},{x:.546875,y:.984375},{x:.546875,y:.984375},{x:.578125,y:.984375},{x:.578125,y:.984375},{x:.609375,y:.984375},{x:.609375,y:.984375},{x:.640625,y:.984375},{x:.640625,y:.984375},{x:.671875,y:.984375},{x:.671875,y:.984375},{x:.703125,y:.984375},{x:.703125,y:.984375},{x:.734375,y:.984375},{x:.734375,y:.984375},{x:.765625,y:.984375},{x:.765625,y:.984375},{x:.796875,y:.984375},{x:.796875,y:.984375},{x:.828125,y:.984375},{x:.828125,y:.984375},{x:.859375,y:.984375},{x:.859375,y:.984375},{x:.890625,y:.984375},{x:.890625,y:.984375},{x:.921875,y:.984375},{x:.921875,y:.984375},{x:.953125,y:.984375},{x:.953125,y:.984375},{x:.984375,y:.984375},{x:.984375,y:.984375},{x:.03125,y:.03125},{x:.03125,y:.03125},{x:.09375,y:.03125},{x:.09375,y:.03125},{x:.15625,y:.03125},{x:.15625,y:.03125},{x:.21875,y:.03125},{x:.21875,y:.03125},{x:.28125,y:.03125},{x:.28125,y:.03125},{x:.34375,y:.03125},{x:.34375,y:.03125},{x:.40625,y:.03125},{x:.40625,y:.03125},{x:.46875,y:.03125},{x:.46875,y:.03125},{x:.53125,y:.03125},{x:.53125,y:.03125},{x:.59375,y:.03125},{x:.59375,y:.03125},{x:.65625,y:.03125},{x:.65625,y:.03125},{x:.71875,y:.03125},{x:.71875,y:.03125},{x:.78125,y:.03125},{x:.78125,y:.03125},{x:.84375,y:.03125},{x:.84375,y:.03125},{x:.90625,y:.03125},{x:.90625,y:.03125},{x:.96875,y:.03125},{x:.96875,y:.03125},{x:.03125,y:.09375},{x:.03125,y:.09375},{x:.09375,y:.09375},{x:.09375,y:.09375},{x:.15625,y:.09375},{x:.15625,y:.09375},{x:.21875,y:.09375},{x:.21875,y:.09375},{x:.28125,y:.09375},{x:.28125,y:.09375},{x:.34375,y:.09375},{x:.34375,y:.09375},{x:.40625,y:.09375},{x:.40625,y:.09375},{x:.46875,y:.09375},{x:.46875,y:.09375},{x:.53125,y:.09375},{x:.53125,y:.09375},{x:.59375,y:.09375},{x:.59375,y:.09375},{x:.65625,y:.09375},{x:.65625,y:.09375},{x:.71875,y:.09375},{x:.71875,y:.09375},{x:.78125,y:.09375},{x:.78125,y:.09375},{x:.84375,y:.09375},{x:.84375,y:.09375},{x:.90625,y:.09375},{x:.90625,y:.09375},{x:.96875,y:.09375},{x:.96875,y:.09375},{x:.03125,y:.15625},{x:.03125,y:.15625},{x:.09375,y:.15625},{x:.09375,y:.15625},{x:.15625,y:.15625},{x:.15625,y:.15625},{x:.21875,y:.15625},{x:.21875,y:.15625},{x:.28125,y:.15625},{x:.28125,y:.15625},{x:.34375,y:.15625},{x:.34375,y:.15625},{x:.40625,y:.15625},{x:.40625,y:.15625},{x:.46875,y:.15625},{x:.46875,y:.15625},{x:.53125,y:.15625},{x:.53125,y:.15625},{x:.59375,y:.15625},{x:.59375,y:.15625},{x:.65625,y:.15625},{x:.65625,y:.15625},{x:.71875,y:.15625},{x:.71875,y:.15625},{x:.78125,y:.15625},{x:.78125,y:.15625},{x:.84375,y:.15625},{x:.84375,y:.15625},{x:.90625,y:.15625},{x:.90625,y:.15625},{x:.96875,y:.15625},{x:.96875,y:.15625},{x:.03125,y:.21875},{x:.03125,y:.21875},{x:.09375,y:.21875},{x:.09375,y:.21875},{x:.15625,y:.21875},{x:.15625,y:.21875},{x:.21875,y:.21875},{x:.21875,y:.21875},{x:.28125,y:.21875},{x:.28125,y:.21875},{x:.34375,y:.21875},{x:.34375,y:.21875},{x:.40625,y:.21875},{x:.40625,y:.21875},{x:.46875,y:.21875},{x:.46875,y:.21875},{x:.53125,y:.21875},{x:.53125,y:.21875},{x:.59375,y:.21875},{x:.59375,y:.21875},{x:.65625,y:.21875},{x:.65625,y:.21875},{x:.71875,y:.21875},{x:.71875,y:.21875},{x:.78125,y:.21875},{x:.78125,y:.21875},{x:.84375,y:.21875},{x:.84375,y:.21875},{x:.90625,y:.21875},{x:.90625,y:.21875},{x:.96875,y:.21875},{x:.96875,y:.21875},{x:.03125,y:.28125},{x:.03125,y:.28125},{x:.09375,y:.28125},{x:.09375,y:.28125},{x:.15625,y:.28125},{x:.15625,y:.28125},{x:.21875,y:.28125},{x:.21875,y:.28125},{x:.28125,y:.28125},{x:.28125,y:.28125},{x:.34375,y:.28125},{x:.34375,y:.28125},{x:.40625,y:.28125},{x:.40625,y:.28125},{x:.46875,y:.28125},{x:.46875,y:.28125},{x:.53125,y:.28125},{x:.53125,y:.28125},{x:.59375,y:.28125},{x:.59375,y:.28125},{x:.65625,y:.28125},{x:.65625,y:.28125},{x:.71875,y:.28125},{x:.71875,y:.28125},{x:.78125,y:.28125},{x:.78125,y:.28125},{x:.84375,y:.28125},{x:.84375,y:.28125},{x:.90625,y:.28125},{x:.90625,y:.28125},{x:.96875,y:.28125},{x:.96875,y:.28125},{x:.03125,y:.34375},{x:.03125,y:.34375},{x:.09375,y:.34375},{x:.09375,y:.34375},{x:.15625,y:.34375},{x:.15625,y:.34375},{x:.21875,y:.34375},{x:.21875,y:.34375},{x:.28125,y:.34375},{x:.28125,y:.34375},{x:.34375,y:.34375},{x:.34375,y:.34375},{x:.40625,y:.34375},{x:.40625,y:.34375},{x:.46875,y:.34375},{x:.46875,y:.34375},{x:.53125,y:.34375},{x:.53125,y:.34375},{x:.59375,y:.34375},{x:.59375,y:.34375},{x:.65625,y:.34375},{x:.65625,y:.34375},{x:.71875,y:.34375},{x:.71875,y:.34375},{x:.78125,y:.34375},{x:.78125,y:.34375},{x:.84375,y:.34375},{x:.84375,y:.34375},{x:.90625,y:.34375},{x:.90625,y:.34375},{x:.96875,y:.34375},{x:.96875,y:.34375},{x:.03125,y:.40625},{x:.03125,y:.40625},{x:.09375,y:.40625},{x:.09375,y:.40625},{x:.15625,y:.40625},{x:.15625,y:.40625},{x:.21875,y:.40625},{x:.21875,y:.40625},{x:.28125,y:.40625},{x:.28125,y:.40625},{x:.34375,y:.40625},{x:.34375,y:.40625},{x:.40625,y:.40625},{x:.40625,y:.40625},{x:.46875,y:.40625},{x:.46875,y:.40625},{x:.53125,y:.40625},{x:.53125,y:.40625},{x:.59375,y:.40625},{x:.59375,y:.40625},{x:.65625,y:.40625},{x:.65625,y:.40625},{x:.71875,y:.40625},{x:.71875,y:.40625},{x:.78125,y:.40625},{x:.78125,y:.40625},{x:.84375,y:.40625},{x:.84375,y:.40625},{x:.90625,y:.40625},{x:.90625,y:.40625},{x:.96875,y:.40625},{x:.96875,y:.40625},{x:.03125,y:.46875},{x:.03125,y:.46875},{x:.09375,y:.46875},{x:.09375,y:.46875},{x:.15625,y:.46875},{x:.15625,y:.46875},{x:.21875,y:.46875},{x:.21875,y:.46875},{x:.28125,y:.46875},{x:.28125,y:.46875},{x:.34375,y:.46875},{x:.34375,y:.46875},{x:.40625,y:.46875},{x:.40625,y:.46875},{x:.46875,y:.46875},{x:.46875,y:.46875},{x:.53125,y:.46875},{x:.53125,y:.46875},{x:.59375,y:.46875},{x:.59375,y:.46875},{x:.65625,y:.46875},{x:.65625,y:.46875},{x:.71875,y:.46875},{x:.71875,y:.46875},{x:.78125,y:.46875},{x:.78125,y:.46875},{x:.84375,y:.46875},{x:.84375,y:.46875},{x:.90625,y:.46875},{x:.90625,y:.46875},{x:.96875,y:.46875},{x:.96875,y:.46875},{x:.03125,y:.53125},{x:.03125,y:.53125},{x:.09375,y:.53125},{x:.09375,y:.53125},{x:.15625,y:.53125},{x:.15625,y:.53125},{x:.21875,y:.53125},{x:.21875,y:.53125},{x:.28125,y:.53125},{x:.28125,y:.53125},{x:.34375,y:.53125},{x:.34375,y:.53125},{x:.40625,y:.53125},{x:.40625,y:.53125},{x:.46875,y:.53125},{x:.46875,y:.53125},{x:.53125,y:.53125},{x:.53125,y:.53125},{x:.59375,y:.53125},{x:.59375,y:.53125},{x:.65625,y:.53125},{x:.65625,y:.53125},{x:.71875,y:.53125},{x:.71875,y:.53125},{x:.78125,y:.53125},{x:.78125,y:.53125},{x:.84375,y:.53125},{x:.84375,y:.53125},{x:.90625,y:.53125},{x:.90625,y:.53125},{x:.96875,y:.53125},{x:.96875,y:.53125},{x:.03125,y:.59375},{x:.03125,y:.59375},{x:.09375,y:.59375},{x:.09375,y:.59375},{x:.15625,y:.59375},{x:.15625,y:.59375},{x:.21875,y:.59375},{x:.21875,y:.59375},{x:.28125,y:.59375},{x:.28125,y:.59375},{x:.34375,y:.59375},{x:.34375,y:.59375},{x:.40625,y:.59375},{x:.40625,y:.59375},{x:.46875,y:.59375},{x:.46875,y:.59375},{x:.53125,y:.59375},{x:.53125,y:.59375},{x:.59375,y:.59375},{x:.59375,y:.59375},{x:.65625,y:.59375},{x:.65625,y:.59375},{x:.71875,y:.59375},{x:.71875,y:.59375},{x:.78125,y:.59375},{x:.78125,y:.59375},{x:.84375,y:.59375},{x:.84375,y:.59375},{x:.90625,y:.59375},{x:.90625,y:.59375},{x:.96875,y:.59375},{x:.96875,y:.59375},{x:.03125,y:.65625},{x:.03125,y:.65625},{x:.09375,y:.65625},{x:.09375,y:.65625},{x:.15625,y:.65625},{x:.15625,y:.65625},{x:.21875,y:.65625},{x:.21875,y:.65625},{x:.28125,y:.65625},{x:.28125,y:.65625},{x:.34375,y:.65625},{x:.34375,y:.65625},{x:.40625,y:.65625},{x:.40625,y:.65625},{x:.46875,y:.65625},{x:.46875,y:.65625},{x:.53125,y:.65625},{x:.53125,y:.65625},{x:.59375,y:.65625},{x:.59375,y:.65625},{x:.65625,y:.65625},{x:.65625,y:.65625},{x:.71875,y:.65625},{x:.71875,y:.65625},{x:.78125,y:.65625},{x:.78125,y:.65625},{x:.84375,y:.65625},{x:.84375,y:.65625},{x:.90625,y:.65625},{x:.90625,y:.65625},{x:.96875,y:.65625},{x:.96875,y:.65625},{x:.03125,y:.71875},{x:.03125,y:.71875},{x:.09375,y:.71875},{x:.09375,y:.71875},{x:.15625,y:.71875},{x:.15625,y:.71875},{x:.21875,y:.71875},{x:.21875,y:.71875},{x:.28125,y:.71875},{x:.28125,y:.71875},{x:.34375,y:.71875},{x:.34375,y:.71875},{x:.40625,y:.71875},{x:.40625,y:.71875},{x:.46875,y:.71875},{x:.46875,y:.71875},{x:.53125,y:.71875},{x:.53125,y:.71875},{x:.59375,y:.71875},{x:.59375,y:.71875},{x:.65625,y:.71875},{x:.65625,y:.71875},{x:.71875,y:.71875},{x:.71875,y:.71875},{x:.78125,y:.71875},{x:.78125,y:.71875},{x:.84375,y:.71875},{x:.84375,y:.71875},{x:.90625,y:.71875},{x:.90625,y:.71875},{x:.96875,y:.71875},{x:.96875,y:.71875},{x:.03125,y:.78125},{x:.03125,y:.78125},{x:.09375,y:.78125},{x:.09375,y:.78125},{x:.15625,y:.78125},{x:.15625,y:.78125},{x:.21875,y:.78125},{x:.21875,y:.78125},{x:.28125,y:.78125},{x:.28125,y:.78125},{x:.34375,y:.78125},{x:.34375,y:.78125},{x:.40625,y:.78125},{x:.40625,y:.78125},{x:.46875,y:.78125},{x:.46875,y:.78125},{x:.53125,y:.78125},{x:.53125,y:.78125},{x:.59375,y:.78125},{x:.59375,y:.78125},{x:.65625,y:.78125},{x:.65625,y:.78125},{x:.71875,y:.78125},{x:.71875,y:.78125},{x:.78125,y:.78125},{x:.78125,y:.78125},{x:.84375,y:.78125},{x:.84375,y:.78125},{x:.90625,y:.78125},{x:.90625,y:.78125},{x:.96875,y:.78125},{x:.96875,y:.78125},{x:.03125,y:.84375},{x:.03125,y:.84375},{x:.09375,y:.84375},{x:.09375,y:.84375},{x:.15625,y:.84375},{x:.15625,y:.84375},{x:.21875,y:.84375},{x:.21875,y:.84375},{x:.28125,y:.84375},{x:.28125,y:.84375},{x:.34375,y:.84375},{x:.34375,y:.84375},{x:.40625,y:.84375},{x:.40625,y:.84375},{x:.46875,y:.84375},{x:.46875,y:.84375},{x:.53125,y:.84375},{x:.53125,y:.84375},{x:.59375,y:.84375},{x:.59375,y:.84375},{x:.65625,y:.84375},{x:.65625,y:.84375},{x:.71875,y:.84375},{x:.71875,y:.84375},{x:.78125,y:.84375},{x:.78125,y:.84375},{x:.84375,y:.84375},{x:.84375,y:.84375},{x:.90625,y:.84375},{x:.90625,y:.84375},{x:.96875,y:.84375},{x:.96875,y:.84375},{x:.03125,y:.90625},{x:.03125,y:.90625},{x:.09375,y:.90625},{x:.09375,y:.90625},{x:.15625,y:.90625},{x:.15625,y:.90625},{x:.21875,y:.90625},{x:.21875,y:.90625},{x:.28125,y:.90625},{x:.28125,y:.90625},{x:.34375,y:.90625},{x:.34375,y:.90625},{x:.40625,y:.90625},{x:.40625,y:.90625},{x:.46875,y:.90625},{x:.46875,y:.90625},{x:.53125,y:.90625},{x:.53125,y:.90625},{x:.59375,y:.90625},{x:.59375,y:.90625},{x:.65625,y:.90625},{x:.65625,y:.90625},{x:.71875,y:.90625},{x:.71875,y:.90625},{x:.78125,y:.90625},{x:.78125,y:.90625},{x:.84375,y:.90625},{x:.84375,y:.90625},{x:.90625,y:.90625},{x:.90625,y:.90625},{x:.96875,y:.90625},{x:.96875,y:.90625},{x:.03125,y:.96875},{x:.03125,y:.96875},{x:.09375,y:.96875},{x:.09375,y:.96875},{x:.15625,y:.96875},{x:.15625,y:.96875},{x:.21875,y:.96875},{x:.21875,y:.96875},{x:.28125,y:.96875},{x:.28125,y:.96875},{x:.34375,y:.96875},{x:.34375,y:.96875},{x:.40625,y:.96875},{x:.40625,y:.96875},{x:.46875,y:.96875},{x:.46875,y:.96875},{x:.53125,y:.96875},{x:.53125,y:.96875},{x:.59375,y:.96875},{x:.59375,y:.96875},{x:.65625,y:.96875},{x:.65625,y:.96875},{x:.71875,y:.96875},{x:.71875,y:.96875},{x:.78125,y:.96875},{x:.78125,y:.96875},{x:.84375,y:.96875},{x:.84375,y:.96875},{x:.90625,y:.96875},{x:.90625,y:.96875},{x:.96875,y:.96875},{x:.96875,y:.96875},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.0625,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.1875,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.3125,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.4375,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.5625,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.6875,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.8125,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.9375,y:.0625},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.0625,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.1875,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.3125,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.4375,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.5625,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.6875,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.8125,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.9375,y:.1875},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.0625,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.1875,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.3125,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.4375,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.5625,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.6875,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.8125,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.9375,y:.3125},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.0625,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.1875,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.3125,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.4375,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.5625,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.6875,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.8125,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.9375,y:.4375},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.0625,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.1875,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.3125,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.4375,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.5625,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.6875,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.8125,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.9375,y:.5625},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.0625,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.1875,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.3125,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.4375,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.5625,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.6875,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.8125,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.9375,y:.6875},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.0625,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.1875,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.3125,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.4375,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.5625,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.6875,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.8125,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.9375,y:.8125},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.0625,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.1875,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.3125,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.4375,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.5625,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.6875,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.8125,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375},{x:.9375,y:.9375}];var O2=class{constructor(t){var n;this.model=t,this.anchors=C9.map(a=>[a.x,a.y]),this.anchorsTensor=Ta(this.anchors),this.inputSize=(n=this.model)==null?void 0:n.inputs[0].shape[2],this.inputSizeTensor=Dt([this.inputSize,this.inputSize]),this.doubleInputSizeTensor=Dt([this.inputSize*2,this.inputSize*2])}normalizeBoxes(t){return V(()=>{let n=Re(t,[0,0],[-1,2]),a=Re(t,[0,2],[-1,2]),r=ie(me(n,this.inputSizeTensor),this.anchorsTensor),s=me(a,this.doubleInputSizeTensor),i=B(ye(r,s),this.inputSizeTensor),o=B(ie(r,s),this.inputSizeTensor);return Tl([i,o],1)})}normalizeLandmarks(t,n){return V(()=>{let a=ie(me(t.reshape([-1,7,2]),this.inputSizeTensor),this.anchors[n]);return B(a,this.inputSizeTensor)})}async getBoxes(t,n){let a=this.model.predict(t),r=Vt(a);a.dispose();let s=V(()=>Rn(Re(r,[0,0],[-1,1])).squeeze()),i=s.dataSync(),o=Re(r,[0,1],[-1,4]),l=this.normalizeBoxes(o);o.dispose();let u=await De.nonMaxSuppressionAsync(l,i,n.hand.maxDetected,n.hand.iouThreshold,n.hand.minConfidence),d=u.arraySync();s.dispose(),u.dispose();let p=[];for(let c of d)if(i[c]>=n.hand.minConfidence){let h=Re(l,[c,0],[1,-1]),m=Re(r,[c,5],[1,14]),f=V(()=>this.normalizeLandmarks(m,c).reshape([-1,2]));m.dispose(),p.push({box:h,palmLandmarks:f,confidence:i[c]})}return r.dispose(),l.dispose(),p}async estimateHandBounds(t,n){let a=t.shape[1],r=t.shape[2],s=V(()=>t.resizeBilinear([this.inputSize,this.inputSize]).div(127.5).sub(1)),i=await this.getBoxes(s,n);s.dispose();let o=[];if(!i||i.length===0)return o;for(let l of i){let u=l.box.dataSync(),d=u.slice(0,2),p=u.slice(2,4),c=l.palmLandmarks.arraySync();l.box.dispose(),l.palmLandmarks.dispose(),o.push(T9({startPoint:d,endPoint:p,palmLandmarks:c,confidence:l.confidence},[r/this.inputSize,a/this.inputSize]))}return o}};function Ple(e){return e-2*Math.PI*Math.floor((e+Math.PI)/(2*Math.PI))}function E9(e,t){let n=Math.PI/2-Math.atan2(-(t[1]-e[1]),t[0]-e[0]);return Ple(n)}var R9=(e,t)=>[[1,0,e],[0,1,t],[0,0,1]];function us(e,t){let n=0;for(let a=0;a<e.length;a++)n+=e[a]*t[a];return n}function Lle(e,t){let n=[];for(let a=0;a<e.length;a++)n.push(e[a][t]);return n}function M9(e,t){let n=[],a=e.length;for(let r=0;r<a;r++){n.push([]);for(let s=0;s<a;s++)n[r].push(us(e[r],Lle(t,s)))}return n}function z2(e,t){let n=Math.cos(e),a=Math.sin(e),r=[[n,-a,0],[a,n,0],[0,0,1]],s=R9(t[0],t[1]),i=M9(s,r),o=R9(-t[0],-t[1]);return M9(i,o)}function F9(e){let t=[[e[0][0],e[1][0]],[e[0][1],e[1][1]]],n=[e[0][2],e[1][2]],a=[-us(t[0],n),-us(t[1],n)];return[t[0].concat(a[0]),t[1].concat(a[1]),[0,0,1]]}function _2(e,t){return[us(e,t[0]),us(e,t[1])]}var Wle=5,$9=1.65,D9=[0,5,9,13,17,1,2],Ble=0,Vle=2,P2=class{constructor(t,n){var a;this.handDetector=t,this.handPoseModel=n,this.inputSize=(a=this.handPoseModel)==null?void 0:a.inputs[0].shape[2],this.storedBoxes=[],this.skipped=0,this.detectedHands=0}calculateLandmarksBoundingBox(t){let n=t.map(i=>i[0]),a=t.map(i=>i[1]),r=[Math.min(...n),Math.min(...a)],s=[Math.max(...n),Math.max(...a)];return{startPoint:r,endPoint:s}}getBoxForPalmLandmarks(t,n){let a=t.map(s=>_2([...s,1],n)),r=this.calculateLandmarksBoundingBox(a);return Z0(Y0(r),Wle)}getBoxForHandLandmarks(t){let n=this.calculateLandmarksBoundingBox(t),a=Z0(Y0(n),$9);a.palmLandmarks=[];for(let r=0;r<D9.length;r++)a.palmLandmarks.push(t[D9[r]].slice(0,2));return a}transformRawCoords(t,n,a,r){let s=K0(n),i=[s[0]/this.inputSize,s[1]/this.inputSize,(s[0]+s[1])/this.inputSize/2],o=t.map(h=>[i[0]*(h[0]-this.inputSize/2),i[1]*(h[1]-this.inputSize/2),i[2]*h[2]]),l=z2(a,[0,0]),u=o.map(h=>[..._2(h,l),h[2]]),d=F9(r),p=[...mp(n),1],c=[us(p,d[0]),us(p,d[1])];return u.map(h=>[Math.trunc(h[0]+c[0]),Math.trunc(h[1]+c[1]),Math.trunc(h[2])])}async estimateHands(t,n){let a=!1,r;(this.skipped===0||this.skipped>n.hand.skipFrames||!n.hand.landmarks||!n.skipFrame)&&(r=await this.handDetector.estimateHandBounds(t,n),this.skipped=0),n.skipFrame&&this.skipped++,r&&r.length>0&&(r.length!==this.detectedHands&&this.detectedHands!==n.hand.maxDetected||!n.hand.landmarks)&&(this.detectedHands=0,this.storedBoxes=[...r],this.storedBoxes.length>0&&(a=!0));let s=[];for(let i=0;i<this.storedBoxes.length;i++){let o=this.storedBoxes[i];if(!!o)if(n.hand.landmarks){let l=n.hand.rotation?E9(o.palmLandmarks[Ble],o.palmLandmarks[Vle]):0,u=mp(o),d=[u[0]/t.shape[2],u[1]/t.shape[1]],p=n.hand.rotation&&sa.flags.IS_BROWSER?De.rotateWithOffset(t,l,0,d):t.clone(),c=z2(-l,u),h=a?this.getBoxForPalmLandmarks(o.palmLandmarks,c):o,m=N9(h,p,[this.inputSize,this.inputSize]),f=m.div(255);m.dispose(),p.dispose();let[g,y]=await this.handPoseModel.predict(f);f.dispose();let A=g.dataSync()[0];if(g.dispose(),A>=n.hand.minConfidence){let x=q(y,[-1,3]),v=x.arraySync();y.dispose(),x.dispose();let b=this.transformRawCoords(v,h,l,c),w=this.getBoxForHandLandmarks(b);this.storedBoxes[i]={...w,confidence:A};let N={landmarks:b,confidence:A,box:{topLeft:w.startPoint,bottomRight:w.endPoint}};s.push(N)}else this.storedBoxes[i]=null;y.dispose()}else{let l=Z0(Y0(o),$9),u={confidence:o.confidence,box:{topLeft:l.startPoint,bottomRight:l.endPoint}};s.push(u)}}return this.storedBoxes=this.storedBoxes.filter(i=>i!==null),this.detectedHands=s.length,s}};var O9={thumb:[1,2,3,4],indexFinger:[5,6,7,8],middleFinger:[9,10,11,12],ringFinger:[13,14,15,16],pinky:[17,18,19,20],palmBase:[0]},ds,ps,z9;async function L2(e,t){let n=await z9.estimateHands(e,t);if(!n)return[];let a=[];for(let r=0;r<n.length;r++){let s={};if(n[r].landmarks)for(let u of Object.keys(O9))s[u]=O9[u].map(d=>n[r].landmarks[d]);let i=n[r].landmarks,o=[Number.MAX_SAFE_INTEGER,Number.MAX_SAFE_INTEGER,0,0],l=[0,0,0,0];if(i&&i.length>0){for(let u of i)u[0]<o[0]&&(o[0]=u[0]),u[1]<o[1]&&(o[1]=u[1]),u[0]>o[2]&&(o[2]=u[0]),u[1]>o[3]&&(o[3]=u[1]);o[2]-=o[0],o[3]-=o[1],l=[o[0]/(e.shape[2]||0),o[1]/(e.shape[1]||0),o[2]/(e.shape[2]||0),o[3]/(e.shape[1]||0)]}else o=n[r].box?[Math.trunc(Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.max(0,n[r].box.topLeft[1])),Math.trunc(Math.min(e.shape[2]||0,n[r].box.bottomRight[0])-Math.max(0,n[r].box.topLeft[0])),Math.trunc(Math.min(e.shape[1]||0,n[r].box.bottomRight[1])-Math.max(0,n[r].box.topLeft[1]))]:[0,0,0,0],l=[n[r].box.topLeft[0]/(e.shape[2]||0),n[r].box.topLeft[1]/(e.shape[1]||0),(n[r].box.bottomRight[0]-n[r].box.topLeft[0])/(e.shape[2]||0),(n[r].box.bottomRight[1]-n[r].box.topLeft[1])/(e.shape[1]||0)];a.push({id:r,score:Math.round(100*n[r].confidence)/100,box:o,boxRaw:l,keypoints:i,annotations:s})}return a}async function W2(e){!ds||!ps?([ds,ps]=await Promise.all([e.hand.enabled?ct(ft(e.modelBasePath,e.hand.detector.modelPath),{fromTFHub:e.hand.detector.modelPath.includes("tfhub.dev")}):null,e.hand.landmarks?ct(ft(e.modelBasePath,e.hand.skeleton.modelPath),{fromTFHub:e.hand.skeleton.modelPath.includes("tfhub.dev")}):null]),e.hand.enabled&&(!ds||!ds.modelUrl?de("load model failed:",e.hand.detector.modelPath):e.debug&&de("load model:",ds.modelUrl),!ps||!ps.modelUrl?de("load model failed:",e.hand.skeleton.modelPath):e.debug&&de("load model:",ps.modelUrl))):(e.debug&&de("cached model:",ds.modelUrl),e.debug&&de("cached model:",ps.modelUrl));let t=new O2(ds);return z9=new P2(t,ps),[ds,ps]}var _9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftPalm","rightPalm","leftIndex","rightIndex","leftPinky","rightPinky","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle","leftHeel","rightHeel","leftFoot","rightFoot","midHip","forehead","leftThumb","leftHand","rightThumb","rightHand"],P9=["nose","leftEyeInside","leftEye","leftEyeOutside","rightEyeInside","rightEye","rightEyeOutside","leftEar","rightEar","leftMouth","rightMouth","leftShoulder","rightShoulder","leftElbow","rightElbow","left:15","right:16","left:17","right:18","left:19","right:20","left:21","right:22","leftChest","rightChest","neck","forehead","left:27","right:28","left:29","right:30"];var zn;async function J0(e){return zn?e.debug&&de("cached model:",zn.modelUrl):(zn=await ct(ft(e.modelBasePath,e.body.modelPath)),zn.width=parseInt(zn.signature.inputs["input_1:0"].tensorShape.dim[2].size),zn.height=parseInt(zn.signature.inputs["input_1:0"].tensorShape.dim[1].size),!zn||!zn.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",zn.modelUrl)),zn}async function B2(e,t){var f;if(!zn)return[];if(!t.body.enabled)return[];let n={width:e.shape[2]||0,height:e.shape[1]||0},a=De.resizeBilinear(e,[zn.width,zn.height],!1),r=me(a,[255]);a.dispose();let s=await zn.predict(r),i=((f=s.find(g=>g.size===195||g.size===155))==null?void 0:f.dataSync())||[];s.forEach(g=>g.dispose()),r.dispose();let o=[],l=(i==null?void 0:i.length)===195?_9:P9,u=5;for(let g=0;g<i.length/u;g++)o.push({id:g,part:l[g],position:[Math.trunc(n.width*i[u*g+0]/255),Math.trunc(n.height*i[u*g+1]/255),Math.trunc(i[u*g+2])+0],positionRaw:[i[u*g+0]/255,i[u*g+1]/255,i[u*g+2]+0],score:(100-Math.trunc(100/(1+Math.exp(i[u*g+3]))))/100,presence:(100-Math.trunc(100/(1+Math.exp(i[u*g+4]))))/100});let d=o.map(g=>g.position[0]),p=o.map(g=>g.position[1]),c=[Math.min(...d),Math.min(...p),Math.max(...d)-Math.min(...d),Math.max(...p)-Math.min(...d)],h=[0,0,0,0],m=o.reduce((g,y)=>y.score>g?y.score:g,0);return[{id:0,score:m,box:c,boxRaw:h,keypoints:o}]}var _n,sr=[],V2=[0,0,0,0],j2=[0,0,0,0],Q0=0,U2=Number.MAX_SAFE_INTEGER,jle=["head","neck","rightShoulder","rightElbow","rightWrist","chest","leftShoulder","leftElbow","leftWrist","pelvis","rightHip","rightKnee","rightAnkle","leftHip","leftKnee","leftAnkle"];async function L9(e){return _n?e.debug&&de("cached model:",_n.modelUrl):(_n=await ct(ft(e.modelBasePath,e.body.modelPath)),!_n||!_n.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",_n.modelUrl)),_n}function Ule(e,t){let[n,a]=e.shape;return V(()=>{let r=(o,l)=>ye(o,B(me(o,ke(l,"int32")),ke(l,"int32"))),s=q(e,[a*n]),i=Vn(s,0).dataSync()[0];if(i>t){let o=ki(s,0),l=r(o,n).dataSync()[0],u=me(o,ke(n,"int32")).dataSync()[0];return[l,u,i]}return[0,0,i]})}async function H2(e,t){return U2<t.body.skipFrames&&t.skipFrame&&Object.keys(sr).length>0?(U2++,[{id:0,score:Q0,box:V2,boxRaw:j2,keypoints:sr}]):(U2=0,new Promise(async n=>{let a=V(()=>{if(!_n.inputs[0].shape)return null;let u=De.resizeBilinear(e,[_n.inputs[0].shape[2],_n.inputs[0].shape[1]],!1);return B(u,2).sub(1)}),r;if(t.body.enabled&&(r=await _n.predict(a)),a.dispose(),r){sr.length=0;let u=r.squeeze();he(r);let d=u.unstack(2);he(u);for(let p=0;p<d.length;p++){let[c,h,m]=Ule(d[p],t.body.minConfidence);Q0>t.body.minConfidence&&sr.push({score:Math.round(100*m)/100,part:jle[p],positionRaw:[c/_n.inputs[0].shape[2],h/_n.inputs[0].shape[1]],position:[Math.round(e.shape[2]*c/_n.inputs[0].shape[2]),Math.round(e.shape[1]*h/_n.inputs[0].shape[1])]})}d.forEach(p=>he(p))}Q0=sr.reduce((u,d)=>d.score>u?d.score:u,0);let s=sr.map(u=>u.position[0]),i=sr.map(u=>u.position[1]);V2=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=sr.map(u=>u.positionRaw[0]),l=sr.map(u=>u.positionRaw[1]);j2=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:Q0,box:V2,boxRaw:j2,keypoints:sr}])}))}var Wa,ir=[],G2=[0,0,0,0],q2=[0,0,0,0],hu=0,X2=Number.MAX_SAFE_INTEGER,Hle=["nose","leftEye","rightEye","leftEar","rightEar","leftShoulder","rightShoulder","leftElbow","rightElbow","leftWrist","rightWrist","leftHip","rightHip","leftKnee","rightKnee","leftAnkle","rightAnkle"];async function K2(e){return Wa?e.debug&&de("cached model:",Wa.modelUrl):(Wa=await ct(ft(e.modelBasePath,e.body.modelPath)),!Wa||!Wa.modelUrl?de("load model failed:",e.body.modelPath):e.debug&&de("load model:",Wa.modelUrl)),Wa}async function Z2(e,t){return X2<t.body.skipFrames&&t.skipFrame&&Object.keys(ir).length>0?(X2++,[{id:0,score:hu,box:G2,boxRaw:q2,keypoints:ir}]):(X2=0,new Promise(async n=>{let a=V(()=>{if(!Wa.inputs[0].shape)return null;let u=De.resizeBilinear(e,[Wa.inputs[0].shape[2],Wa.inputs[0].shape[1]],!1);return ge(u,"int32")}),r;if(t.body.enabled&&(r=await Wa.predict(a)),a.dispose(),r){ir.length=0;let u=r.arraySync();he(r);let d=u[0][0];for(let p=0;p<d.length;p++)hu=d[p][2],hu>t.body.minConfidence&&ir.push({score:Math.round(100*hu)/100,part:Hle[p],positionRaw:[d[p][1],d[p][0]],position:[Math.round((e.shape[2]||0)*d[p][1]),Math.round((e.shape[1]||0)*d[p][0])]})}hu=ir.reduce((u,d)=>d.score>u?d.score:u,0);let s=ir.map(u=>u.position[0]),i=ir.map(u=>u.position[1]);G2=[Math.min(...s),Math.min(...i),Math.max(...s)-Math.min(...s),Math.max(...i)-Math.min(...i)];let o=ir.map(u=>u.positionRaw[0]),l=ir.map(u=>u.positionRaw[1]);q2=[Math.min(...o),Math.min(...l),Math.max(...o)-Math.min(...o),Math.max(...l)-Math.min(...l)],n([{id:0,score:hu,box:G2,boxRaw:q2,keypoints:ir}])}))}var fu=[{class:1,label:"person"},{class:2,label:"bicycle"},{class:3,label:"car"},{class:4,label:"motorcycle"},{class:5,label:"airplane"},{class:6,label:"bus"},{class:7,label:"train"},{class:8,label:"truck"},{class:9,label:"boat"},{class:10,label:"traffic light"},{class:11,label:"fire hydrant"},{class:12,label:"stop sign"},{class:13,label:"parking meter"},{class:14,label:"bench"},{class:15,label:"bird"},{class:16,label:"cat"},{class:17,label:"dog"},{class:18,label:"horse"},{class:19,label:"sheep"},{class:20,label:"cow"},{class:21,label:"elephant"},{class:22,label:"bear"},{class:23,label:"zebra"},{class:24,label:"giraffe"},{class:25,label:"backpack"},{class:26,label:"umbrella"},{class:27,label:"handbag"},{class:28,label:"tie"},{class:29,label:"suitcase"},{class:30,label:"frisbee"},{class:31,label:"skis"},{class:32,label:"snowboard"},{class:33,label:"sports ball"},{class:34,label:"kite"},{class:35,label:"baseball bat"},{class:36,label:"baseball glove"},{class:37,label:"skateboard"},{class:38,label:"surfboard"},{class:39,label:"tennis racket"},{class:40,label:"bottle"},{class:41,label:"wine glass"},{class:42,label:"cup"},{class:43,label:"fork"},{class:44,label:"knife"},{class:45,label:"spoon"},{class:46,label:"bowl"},{class:47,label:"banana"},{class:48,label:"apple"},{class:49,label:"sandwich"},{class:50,label:"orange"},{class:51,label:"broccoli"},{class:52,label:"carrot"},{class:53,label:"hot dog"},{class:54,label:"pizza"},{class:55,label:"donut"},{class:56,label:"cake"},{class:57,label:"chair"},{class:58,label:"couch"},{class:59,label:"potted plant"},{class:60,label:"bed"},{class:61,label:"dining table"},{class:62,label:"toilet"},{class:63,label:"tv"},{class:64,label:"laptop"},{class:65,label:"mouse"},{class:66,label:"remote"},{class:67,label:"keyboard"},{class:68,label:"cell phone"},{class:69,label:"microwave"},{class:70,label:"oven"},{class:71,label:"toaster"},{class:72,label:"sink"},{class:73,label:"refrigerator"},{class:74,label:"book"},{class:75,label:"clock"},{class:76,label:"vase"},{class:77,label:"scissors"},{class:78,label:"teddy bear"},{class:79,label:"hair drier"},{class:80,label:"toothbrush"}];var Qn,Y2=[],J2=Number.MAX_SAFE_INTEGER,ef=2.5;async function Q2(e){if(Qn)e.debug&&de("cached model:",Qn.modelUrl);else{Qn=await ct(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(Qn.modelSignature.inputs);if(Qn.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!Qn.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!Qn||!Qn.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",Qn.modelUrl)}return Qn}async function Gle(e,t,n,a){let r=0,s=[];for(let u of[1,2,4])V(()=>{var g,y;let d=u*13,p=(g=e.find(A=>A.shape[1]===d**2&&A.shape[2]===fu.length))==null?void 0:g.squeeze(),c=(y=e.find(A=>A.shape[1]===d**2&&A.shape[2]<fu.length))==null?void 0:y.squeeze(),m=c.reshape([-1,4,c.shape[1]/4]).argMax(2).arraySync(),f=p.arraySync();for(let A=0;A<p.shape[0];A++)for(let x=0;x<p.shape[1];x++){let v=f[A][x];if(v>a.object.minConfidence&&x!==61){let b=(.5+Math.trunc(A%d))/d,w=(.5+Math.trunc(A/d))/d,N=m[A].map(W=>W*(d/u/t)),[C,E]=[b-ef/u*N[0],w-ef/u*N[1]],[_,$]=[b+ef/u*N[2]-C,w+ef/u*N[3]-E],S=[C,E,_,$];S=S.map(W=>Math.max(0,Math.min(W,1)));let z=[S[0]*n[0],S[1]*n[1],S[2]*n[0],S[3]*n[1]],O={id:r++,score:Math.round(100*v)/100,class:x+1,label:fu[x].label,box:z.map(W=>Math.trunc(W)),boxRaw:S};s.push(O)}}});e.forEach(u=>he(u));let i=s.map(u=>[u.boxRaw[1],u.boxRaw[0],u.boxRaw[3],u.boxRaw[2]]),o=s.map(u=>u.score),l=[];if(i&&i.length>0){let u=await De.nonMaxSuppressionAsync(i,o,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);l=u.dataSync(),he(u)}return s=s.filter((u,d)=>l.includes(d)).sort((u,d)=>d.score-u.score),s}async function e5(e,t){return J2<t.object.skipFrames&&t.skipFrame&&Y2.length>0?(J2++,Y2):(J2=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[Qn.inputSize,Qn.inputSize],!1),s=r.div(255),i=s.transpose([0,3,1,2]);s.dispose(),r.dispose();let o;t.object.enabled&&(o=await Qn.predict(i)),i.dispose();let l=await Gle(o,Qn.inputSize,a,t);Y2=l,n(l)}))}var ea,t5=[],n5=Number.MAX_SAFE_INTEGER;async function a5(e){if(ea)e.debug&&de("cached model:",ea.modelUrl);else{ea=await ct(ft(e.modelBasePath,e.object.modelPath));let t=Object.values(ea.modelSignature.inputs);if(ea.inputSize=Array.isArray(t)?parseInt(t[0].tensorShape.dim[2].size):null,!ea.inputSize)throw new Error(`Human: Cannot determine model inputSize: ${e.object.modelPath}`);!ea||!ea.modelUrl?de("load model failed:",e.object.modelPath):e.debug&&de("load model:",ea.modelUrl)}return ea}async function qle(e,t,n,a){if(!e)return[];let r=[],s=e.arraySync(),i=Vt(e);e.dispose();let o=Zt(i,6,1);i.dispose();let u=gn([o[1],o[0],o[3],o[2]],1).squeeze(),d=o[4].squeeze(),p=o[5].squeeze();o.forEach(f=>f.dispose());let c=await De.nonMaxSuppressionAsync(u,d,a.object.maxDetected,a.object.iouThreshold,a.object.minConfidence);u.dispose(),d.dispose(),p.dispose();let h=c.dataSync();c.dispose();let m=0;for(let f of h){let g=Math.trunc(100*s[0][f][4])/100,y=s[0][f][5],A=fu[y].label,x=[s[0][f][0]/t,s[0][f][1]/t,s[0][f][2]/t,s[0][f][3]/t],v=[Math.trunc(x[0]*n[0]),Math.trunc(x[1]*n[1]),Math.trunc(x[2]*n[0]),Math.trunc(x[3]*n[1])];r.push({id:m++,score:g,class:y,label:A,box:v,boxRaw:x})}return r}async function r5(e,t){return n5<t.object.skipFrames&&t.skipFrame&&t5.length>0?(n5++,t5):(n5=0,new Promise(async n=>{let a=[e.shape[2],e.shape[1]],r=De.resizeBilinear(e,[ea.inputSize,ea.inputSize]),s=t.object.enabled?ea.execute(r,["tower_0/detections"]):null;r.dispose();let i=await qle(s,ea.inputSize,a,t);t5=i,n(i)}))}var W9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=e[n].keypoints.find(l=>l.part==="leftWrist"),r=e[n].keypoints.find(l=>l.part==="rightWrist"),s=e[n].keypoints.find(l=>l.part==="nose");s&&a&&r&&a.position.y<s.position.y&&r.position.y<s.position.y?t.push({body:n,gesture:"i give up"}):s&&a&&a.position.y<s.position.y?t.push({body:n,gesture:"raise left hand"}):s&&r&&r.position.y<s.position.y&&t.push({body:n,gesture:"raise right hand"});let i=e[n].keypoints.find(l=>l.part==="leftShoulder"),o=e[n].keypoints.find(l=>l.part==="rightShoulder");i&&o&&t.push({body:n,gesture:`leaning ${i.position.y>o.position.y?"left":"right"}`})}return t},B9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++)if(e[n].mesh&&e[n].mesh.length>0){let a=e[n].mesh[33][2]-e[n].mesh[263][2];Math.abs(a)<10?t.push({face:n,gesture:"facing center"}):t.push({face:n,gesture:`facing ${a<0?"left":"right"}`}),Math.abs(e[n].mesh[374][1]-e[n].mesh[386][1])/Math.abs(e[n].mesh[443][1]-e[n].mesh[450][1])<.2&&t.push({face:n,gesture:"blink left eye"}),Math.abs(e[n].mesh[145][1]-e[n].mesh[159][1])/Math.abs(e[n].mesh[223][1]-e[n].mesh[230][1])<.2&&t.push({face:n,gesture:"blink right eye"});let i=Math.min(100,500*Math.abs(e[n].mesh[13][1]-e[n].mesh[14][1])/Math.abs(e[n].mesh[10][1]-e[n].mesh[152][1]));i>10&&t.push({face:n,gesture:`mouth ${Math.trunc(i)}% open`});let o=e[n].mesh[152][2];Math.abs(o)>10&&t.push({face:n,gesture:`head ${o<0?"up":"down"}`})}return t},V9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){if(!e[n].annotations||!e[n].annotations.leftEyeIris||!e[n].annotations.rightEyeIris)continue;let a=e[n].annotations.leftEyeIris[3][0]-e[n].annotations.leftEyeIris[1][0],r=e[n].annotations.leftEyeIris[4][1]-e[n].annotations.leftEyeIris[2][1],s=Math.abs(a*r),i=e[n].annotations.rightEyeIris[3][0]-e[n].annotations.rightEyeIris[1][0],o=e[n].annotations.rightEyeIris[4][1]-e[n].annotations.rightEyeIris[2][1],l=Math.abs(i*o),u=!1;Math.abs(s-l)/Math.max(s,l)<.25&&(u=!0,t.push({iris:n,gesture:"facing center"}));let p=Math.abs(e[n].mesh[33][0]-e[n].annotations.rightEyeIris[0][0])/e[n].box[2],c=Math.abs(e[n].mesh[263][0]-e[n].annotations.leftEyeIris[0][0])/e[n].box[2];(c>.06||p>.06)&&(u=!1),c>.06&&t.push({iris:n,gesture:"looking right"}),p>.06&&t.push({iris:n,gesture:"looking left"});let h=Math.abs(e[n].mesh[145][1]-e[n].annotations.rightEyeIris[0][1])/e[n].box[3],m=Math.abs(e[n].mesh[374][1]-e[n].annotations.leftEyeIris[0][1])/e[n].box[3];(m<.01||h<.01||m>.022||h>.022)&&(u=!1),(m<.01||h<.01)&&t.push({iris:n,gesture:"looking down"}),(m>.022||h>.022)&&t.push({iris:n,gesture:"looking up"}),u&&t.push({iris:n,gesture:"looking center"})}return t},j9=e=>{if(!e)return[];let t=[];for(let n=0;n<e.length;n++){let a=[];for(let[r,s]of Object.entries(e[n].annotations))r!=="palmBase"&&Array.isArray(s)&&a.push({name:r.toLowerCase(),position:s[0]});if(a&&a.length>0){let r=a.reduce((i,o)=>i.position[2]<o.position[2]?i:o),s=a.reduce((i,o)=>i.position[1]<o.position[1]?i:o);t.push({hand:n,gesture:`${r.name} forward ${s.name} up`})}}return t};function Xle(e,t,n){let a=function(o,l,u){let d=new RegExp("\\b"+l+" \\w+ (\\w+)","ig");o.replace(d,(p,c)=>(u[c]=0,p))},r=function(o,l){let u=e.createShader(l);if(e.shaderSource(u,o),e.compileShader(u),!e.getShaderParameter(u,e.COMPILE_STATUS))throw new Error("Filter: GL compile failed",e.getShaderInfoLog(u));return u};this.uniform={},this.attribute={};let s=r(t,e.VERTEX_SHADER),i=r(n,e.FRAGMENT_SHADER);if(this.id=e.createProgram(),e.attachShader(this.id,s),e.attachShader(this.id,i),e.linkProgram(this.id),!e.getProgramParameter(this.id,e.LINK_STATUS))throw new Error("Filter: GL link failed",e.getProgramInfoLog(this.id));e.useProgram(this.id),a(t,"attribute",this.attribute);for(let o in this.attribute)this.attribute[o]=e.getAttribLocation(this.id,o);a(t,"uniform",this.uniform),a(n,"uniform",this.uniform);for(let o in this.uniform)this.uniform[o]=e.getUniformLocation(this.id,o)}function U9(e){e||(e={});let t=0,n=null,a=!1,r=-1,s=[null,null],i=[],o=-1,l=-1,u=null,d=null,p={},c=e.canvas||document.createElement("canvas"),h={},m={INTERMEDIATE:1},f=c.getContext("webgl");if(!f)throw new Error("Filter: getContext() failed");this.addFilter=function(b){let w=Array.prototype.slice.call(arguments,1),N=p[b];i.push({func:N,args:w})},this.reset=function(){i=[]};let g=function(b,w){if(!(b===o&&w===l)){if(c.width=b,o=b,c.height=w,l=w,!u){let N=new Float32Array([-1,-1,0,1,1,-1,1,1,-1,1,0,0,-1,1,0,0,1,-1,1,1,1,1,1,0]);u=f.createBuffer(),f.bindBuffer(f.ARRAY_BUFFER,u),f.bufferData(f.ARRAY_BUFFER,N,f.STATIC_DRAW),f.pixelStorei(f.UNPACK_PREMULTIPLY_ALPHA_WEBGL,!0)}f.viewport(0,0,o,l),s=[null,null]}},y=function(b,w){let N=f.createFramebuffer();f.bindFramebuffer(f.FRAMEBUFFER,N);let C=f.createRenderbuffer();f.bindRenderbuffer(f.RENDERBUFFER,C);let E=f.createTexture();return f.bindTexture(f.TEXTURE_2D,E),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,b,w,0,f.RGBA,f.UNSIGNED_BYTE,null),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.LINEAR),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.framebufferTexture2D(f.FRAMEBUFFER,f.COLOR_ATTACHMENT0,f.TEXTURE_2D,E,0),f.bindTexture(f.TEXTURE_2D,null),f.bindFramebuffer(f.FRAMEBUFFER,null),{fbo:N,texture:E}},A=function(b){return s[b]=s[b]||y(o,l),s[b]},x=function(b=null){var E,_;let w=null,N=null,C=!1;t===0?w=n:w=(E=A(r))==null?void 0:E.texture,t++,a&&!(b&m.INTERMEDIATE)?(N=null,C=t%2==0):(r=(r+1)%2,N=(_=A(r))==null?void 0:_.fbo),f.bindTexture(f.TEXTURE_2D,w),f.bindFramebuffer(f.FRAMEBUFFER,N),f.uniform1f(d.uniform.flipY,C?-1:1),f.drawArrays(f.TRIANGLES,0,6)};this.apply=function(b){if(g(b.width,b.height),t=0,n||(n=f.createTexture()),f.bindTexture(f.TEXTURE_2D,n),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_S,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_WRAP_T,f.CLAMP_TO_EDGE),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MIN_FILTER,f.NEAREST),f.texParameteri(f.TEXTURE_2D,f.TEXTURE_MAG_FILTER,f.NEAREST),f.texImage2D(f.TEXTURE_2D,0,f.RGBA,f.RGBA,f.UNSIGNED_BYTE,b),i.length===0)return x(),c;for(let w=0;w<i.length;w++){a=w===i.length-1;let N=i[w];N.func.apply(this,N.args||[])}return c};let v=function(b){if(h[b])return d=h[b],f.useProgram(d.id),d;let w={};w.VERTEX_IDENTITY=["precision highp float;","attribute vec2 pos;","attribute vec2 uv;","varying vec2 vUv;","uniform float flipY;","void main(void) {","vUv = uv;","gl_Position = vec4(pos.x, pos.y*flipY, 0.0, 1.);","}"].join(`
|
|
`),w.FRAGMENT_IDENTITY=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","void main(void) {","gl_FragColor = texture2D(texture, vUv);","}"].join(`
|
|
`),d=new Xle(f,w.VERTEX_IDENTITY,b);let N=Float32Array.BYTES_PER_ELEMENT,C=4*N;return f.enableVertexAttribArray(d.attribute.pos),f.vertexAttribPointer(d.attribute.pos,2,f.FLOAT,!1,C,0*N),f.enableVertexAttribArray(d.attribute.uv),f.vertexAttribPointer(d.attribute.uv,2,f.FLOAT,!1,C,2*N),h[b]=d,d};p.colorMatrix=function(b){let w=new Float32Array(b);w[4]/=255,w[9]/=255,w[14]/=255,w[19]/=255;let N=w[18]===1&&w[3]===0&&w[8]===0&&w[13]===0&&w[15]===0&&w[16]===0&&w[17]===0&&w[19]===0?p.colorMatrix.SHADER.WITHOUT_ALPHA:p.colorMatrix.SHADER.WITH_ALPHA,C=v(N);f.uniform1fv(C.uniform.m,w),x()},p.colorMatrix.SHADER={},p.colorMatrix.SHADER.WITH_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[3] * c.a + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[8] * c.a + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[13] * c.a + m[14];","gl_FragColor.a = m[15] * c.r + m[16] * c.g + m[17] * c.b + m[18] * c.a + m[19];","}"].join(`
|
|
`),p.colorMatrix.SHADER.WITHOUT_ALPHA=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform float m[20];","void main(void) {","vec4 c = texture2D(texture, vUv);","gl_FragColor.r = m[0] * c.r + m[1] * c.g + m[2] * c.b + m[4];","gl_FragColor.g = m[5] * c.r + m[6] * c.g + m[7] * c.b + m[9];","gl_FragColor.b = m[10] * c.r + m[11] * c.g + m[12] * c.b + m[14];","gl_FragColor.a = c.a;","}"].join(`
|
|
`),p.brightness=function(b){let w=(b||0)+1;p.colorMatrix([w,0,0,0,0,0,w,0,0,0,0,0,w,0,0,0,0,0,1,0])},p.saturation=function(b){let w=(b||0)*2/3+1,N=(w-1)*-.5;p.colorMatrix([w,N,N,0,0,N,w,N,0,0,N,N,w,0,0,0,0,0,1,0])},p.desaturate=function(){p.saturation(-1)},p.contrast=function(b){let w=(b||0)+1,N=-128*(w-1);p.colorMatrix([w,0,0,0,N,0,w,0,0,N,0,0,w,0,N,0,0,0,1,0])},p.negative=function(){p.contrast(-2)},p.hue=function(b){b=(b||0)/180*Math.PI;let w=Math.cos(b),N=Math.sin(b),C=.213,E=.715,_=.072;p.colorMatrix([C+w*(1-C)+N*-C,E+w*-E+N*-E,_+w*-_+N*(1-_),0,0,C+w*-C+N*.143,E+w*(1-E)+N*.14,_+w*-_+N*-.283,0,0,C+w*-C+N*-(1-C),E+w*-E+N*E,_+w*(1-_)+N*_,0,0,0,0,0,1,0])},p.desaturateLuminance=function(){p.colorMatrix([.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,.2764723,.929708,.0938197,0,-37.1,0,0,0,1,0])},p.sepia=function(){p.colorMatrix([.393,.7689999,.18899999,0,0,.349,.6859999,.16799999,0,0,.272,.5339999,.13099999,0,0,0,0,0,1,0])},p.brownie=function(){p.colorMatrix([.5997023498159715,.34553243048391263,-.2708298674538042,0,47.43192855600873,-.037703249837783157,.8609577587992641,.15059552388459913,0,-36.96841498319127,.24113635128153335,-.07441037908422492,.44972182064877153,0,-7.562075277591283,0,0,0,1,0])},p.vintagePinhole=function(){p.colorMatrix([.6279345635605994,.3202183420819367,-.03965408211312453,0,9.651285835294123,.02578397704808868,.6441188644374771,.03259127616149294,0,7.462829176470591,.0466055556782719,-.0851232987247891,.5241648018700465,0,5.159190588235296,0,0,0,1,0])},p.kodachrome=function(){p.colorMatrix([1.1285582396593525,-.3967382283601348,-.03992559172921793,0,63.72958762196502,-.16404339962244616,1.0835251566291304,-.05498805115633132,0,24.732407896706203,-.16786010706155763,-.5603416277695248,1.6014850761964943,0,35.62982807460946,0,0,0,1,0])},p.technicolor=function(){p.colorMatrix([1.9125277891456083,-.8545344976951645,-.09155508482755585,0,11.793603434377337,-.3087833385928097,1.7658908555458428,-.10601743074722245,0,-70.35205161461398,-.231103377548616,-.7501899197440212,1.847597816108189,0,30.950940869491138,0,0,0,1,0])},p.polaroid=function(){p.colorMatrix([1.438,-.062,-.062,0,0,-.122,1.378,-.122,0,0,-.016,-.016,1.483,0,0,0,0,0,1,0])},p.shiftToBGR=function(){p.colorMatrix([0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,1,0])},p.convolution=function(b){let w=new Float32Array(b),N=1/o,C=1/l,E=v(p.convolution.SHADER);f.uniform1fv(E.uniform.m,w),f.uniform2f(E.uniform.px,N,C),x()},p.convolution.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","uniform float m[9];","void main(void) {","vec4 c11 = texture2D(texture, vUv - px);","vec4 c12 = texture2D(texture, vec2(vUv.x, vUv.y - px.y));","vec4 c13 = texture2D(texture, vec2(vUv.x + px.x, vUv.y - px.y));","vec4 c21 = texture2D(texture, vec2(vUv.x - px.x, vUv.y) );","vec4 c22 = texture2D(texture, vUv);","vec4 c23 = texture2D(texture, vec2(vUv.x + px.x, vUv.y) );","vec4 c31 = texture2D(texture, vec2(vUv.x - px.x, vUv.y + px.y) );","vec4 c32 = texture2D(texture, vec2(vUv.x, vUv.y + px.y) );","vec4 c33 = texture2D(texture, vUv + px );","gl_FragColor = ","c11 * m[0] + c12 * m[1] + c22 * m[2] +","c21 * m[3] + c22 * m[4] + c23 * m[5] +","c31 * m[6] + c32 * m[7] + c33 * m[8];","gl_FragColor.a = c22.a;","}"].join(`
|
|
`),p.detectEdges=function(){p.convolution.call(this,[0,1,0,1,-4,1,0,1,0])},p.sobelX=function(){p.convolution.call(this,[-1,0,1,-2,0,2,-1,0,1])},p.sobelY=function(){p.convolution.call(this,[-1,-2,-1,0,0,0,1,2,1])},p.sharpen=function(b){let w=b||1;p.convolution.call(this,[0,-1*w,0,-1*w,1+4*w,-1*w,0,-1*w,0])},p.emboss=function(b){let w=b||1;p.convolution.call(this,[-2*w,-1*w,0,-1*w,1,1*w,0,1*w,2*w])},p.blur=function(b){let w=b/7/o,N=b/7/l,C=v(p.blur.SHADER);f.uniform2f(C.uniform.px,0,N),x(m.INTERMEDIATE),f.uniform2f(C.uniform.px,w,0),x()},p.blur.SHADER=["precision highp float;","varying vec2 vUv;","uniform sampler2D texture;","uniform vec2 px;","void main(void) {","gl_FragColor = vec4(0.0);","gl_FragColor += texture2D(texture, vUv + vec2(-7.0*px.x, -7.0*px.y))*0.0044299121055113265;","gl_FragColor += texture2D(texture, vUv + vec2(-6.0*px.x, -6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2(-5.0*px.x, -5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2(-4.0*px.x, -4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2(-3.0*px.x, -3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2(-2.0*px.x, -2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2(-1.0*px.x, -1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv )*0.159576912161;","gl_FragColor += texture2D(texture, vUv + vec2( 1.0*px.x, 1.0*px.y))*0.147308056121;","gl_FragColor += texture2D(texture, vUv + vec2( 2.0*px.x, 2.0*px.y))*0.115876621105;","gl_FragColor += texture2D(texture, vUv + vec2( 3.0*px.x, 3.0*px.y))*0.0776744219933;","gl_FragColor += texture2D(texture, vUv + vec2( 4.0*px.x, 4.0*px.y))*0.0443683338718;","gl_FragColor += texture2D(texture, vUv + vec2( 5.0*px.x, 5.0*px.y))*0.0215963866053;","gl_FragColor += texture2D(texture, vUv + vec2( 6.0*px.x, 6.0*px.y))*0.00895781211794;","gl_FragColor += texture2D(texture, vUv + vec2( 7.0*px.x, 7.0*px.y))*0.0044299121055113265;","}"].join(`
|
|
`),p.pixelate=function(b){let w=b/o,N=b/l,C=v(p.pixelate.SHADER);f.uniform2f(C.uniform.size,w,N),x()},p.pixelate.SHADER=["precision highp float;","varying vec2 vUv;","uniform vec2 size;","uniform sampler2D texture;","vec2 pixelate(vec2 coord, vec2 size) {","return floor( coord / size ) * size;","}","void main(void) {","gl_FragColor = vec4(0.0);","vec2 coord = pixelate(vUv, size);","gl_FragColor += texture2D(texture, coord);","}"].join(`
|
|
`)}var tf=2048,Ee,wt,_t;function Yi(e,t){let n;if(!e)throw new Error("Human: Input is missing");if(!(e instanceof Be)&&!(typeof Image!="undefined"&&e instanceof Image)&&!(typeof ImageData!="undefined"&&e instanceof ImageData)&&!(typeof ImageBitmap!="undefined"&&e instanceof ImageBitmap)&&!(typeof HTMLImageElement!="undefined"&&e instanceof HTMLImageElement)&&!(typeof HTMLMediaElement!="undefined"&&e instanceof HTMLMediaElement)&&!(typeof HTMLVideoElement!="undefined"&&e instanceof HTMLVideoElement)&&!(typeof HTMLCanvasElement!="undefined"&&e instanceof HTMLCanvasElement)&&!(typeof OffscreenCanvas!="undefined"&&e instanceof OffscreenCanvas))throw new Error("Human: Input type is not recognized");if(e instanceof Be)if(e.shape&&e.shape.length===4&&e.shape[0]===1&&e.shape[3]===3)n=Ha(e);else throw new Error(`Human: Input tensor shape must be [1, height, width, 3] and instead was ${e.shape}`);else{let r=e.naturalWidth||e.videoWidth||e.width||e.shape&&e.shape[1]>0,s=e.naturalHeight||e.videoHeight||e.height||e.shape&&e.shape[2]>0;if(!r||!s)return{tensor:null,canvas:Ee};let i=r,o=s;if(i>tf&&(i=tf,o=i*s/r),o>tf&&(o=tf,i=o*r/s),t.filter.width>0?i=t.filter.width:t.filter.height>0&&(i=r*(t.filter.height/s)),t.filter.height>0?o=t.filter.height:t.filter.width>0&&(o=s*(t.filter.width/r)),!i||!o)throw new Error("Human: Input cannot determine dimension");(!Ee||(Ee==null?void 0:Ee.width)!==i||(Ee==null?void 0:Ee.height)!==o)&&(Ee=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas"),(Ee==null?void 0:Ee.width)!==i&&(Ee.width=i),(Ee==null?void 0:Ee.height)!==o&&(Ee.height=o));let l=Ee.getContext("2d");if(e instanceof ImageData?l.putImageData(e,0,0):t.filter.flip&&typeof l.translate!="undefined"?(l.translate(r,0),l.scale(-1,1),l.drawImage(e,0,0,r,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),l.setTransform(1,0,0,1,0,0)):l.drawImage(e,0,0,r,s,0,0,Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height),t.filter.enabled){if((!_t||!wt||Ee.width!==wt.width||(Ee==null?void 0:Ee.height)!==(wt==null?void 0:wt.height))&&(wt=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(Ee==null?void 0:Ee.width,Ee==null?void 0:Ee.height):document.createElement("canvas"),(wt==null?void 0:wt.width)!==(Ee==null?void 0:Ee.width)&&(wt.width=Ee==null?void 0:Ee.width),(wt==null?void 0:wt.height)!==(Ee==null?void 0:Ee.height)&&(wt.height=Ee==null?void 0:Ee.height),_t=sa.flags.IS_BROWSER?new U9({canvas:wt}):null),!_t)return{tensor:null,canvas:Ee};_t.reset(),_t.addFilter("brightness",t.filter.brightness),t.filter.contrast!==0&&_t.addFilter("contrast",t.filter.contrast),t.filter.sharpness!==0&&_t.addFilter("sharpen",t.filter.sharpness),t.filter.blur!==0&&_t.addFilter("blur",t.filter.blur),t.filter.saturation!==0&&_t.addFilter("saturation",t.filter.saturation),t.filter.hue!==0&&_t.addFilter("hue",t.filter.hue),t.filter.negative&&_t.addFilter("negative"),t.filter.sepia&&_t.addFilter("sepia"),t.filter.vintage&&_t.addFilter("brownie"),t.filter.sepia&&_t.addFilter("sepia"),t.filter.kodachrome&&_t.addFilter("kodachrome"),t.filter.technicolor&&_t.addFilter("technicolor"),t.filter.polaroid&&_t.addFilter("polaroid"),t.filter.pixelate!==0&&_t.addFilter("pixelate",t.filter.pixelate),_t.apply(Ee)}else wt=Ee,_t&&(_t=null);let u;if(wt.data){let d=[wt.height,wt.width,3];u=Lc(wt.data,d,"int32")}else if(wt instanceof ImageData)u=oa?oa.fromPixels(wt):null;else if(t.backend==="webgl"||t.backend==="humangl"){let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let p=d.getContext("2d");p==null||p.drawImage(wt,0,0),u=oa?oa.fromPixels(d):null}else{let d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(i,o):document.createElement("canvas");d.width=i,d.height=o;let p=d.getContext("2d");p==null||p.drawImage(wt,0,0);let c=p==null?void 0:p.getImageData(0,0,i,o);u=oa?oa.fromPixels(c):null}if(u){let d=u.toFloat();n=d.expandDims(0),u.dispose(),d.dispose()}}let a=t.filter.return?wt:null;return{tensor:n,canvas:a}}var o5={};_m(o5,{all:()=>Yle,body:()=>q9,canvas:()=>Zle,face:()=>G9,gesture:()=>H9,hand:()=>X9,object:()=>K9,options:()=>cs,person:()=>Kle});var cs={color:"rgba(173, 216, 230, 0.6)",labelColor:"rgba(173, 216, 230, 1)",shadowColor:"black",font:'small-caps 14px "Segoe UI"',lineHeight:24,lineWidth:6,pointSize:2,roundRect:28,drawPoints:!1,drawLabels:!0,drawBoxes:!0,drawPolygons:!0,drawGaze:!0,fillPolygons:!1,useDepth:!0,useCurves:!1,bufferedOutput:!0},nf=e=>Math.round(e*180/Math.PI);function s5(e,t,n,a=0,r){e.fillStyle=r.useDepth&&a?`rgba(${127.5+2*a}, ${127.5-2*a}, 255, 0.3)`:r.color,e.beginPath(),e.arc(t,n,r.pointSize,0,2*Math.PI),e.fill()}function gp(e,t,n,a,r,s){if(e.beginPath(),s.useCurves){let i=(t+t+a)/2,o=(n+n+r)/2;e.ellipse(i,o,a/2,r/2,0,0,2*Math.PI)}else e.lineWidth=s.lineWidth,e.moveTo(t+s.roundRect,n),e.lineTo(t+a-s.roundRect,n),e.quadraticCurveTo(t+a,n,t+a,n+s.roundRect),e.lineTo(t+a,n+r-s.roundRect),e.quadraticCurveTo(t+a,n+r,t+a-s.roundRect,n+r),e.lineTo(t+s.roundRect,n+r),e.quadraticCurveTo(t,n+r,t,n+r-s.roundRect),e.lineTo(t,n+s.roundRect),e.quadraticCurveTo(t,n,t+s.roundRect,n),e.closePath();e.stroke()}function i5(e,t=[],n){if(!(t===void 0||t.length===0)){e.beginPath(),e.moveTo(t[0][0],t[0][1]);for(let a of t){let r=a[2]||0;e.strokeStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.fillStyle=n.useDepth&&r?`rgba(${127.5+2*r}, ${127.5-2*r}, 255, 0.3)`:n.color,e.lineTo(a[0],Math.round(a[1]))}e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}function yp(e,t=[],n){if(!(t===void 0||t.length===0)){if(!n.useCurves||t.length<=2){i5(e,t,n);return}e.moveTo(t[0][0],t[0][1]);for(let a=0;a<t.length-2;a++){let r=(t[a][0]+t[a+1][0])/2,s=(t[a][1]+t[a+1][1])/2;e.quadraticCurveTo(t[a][0],t[a][1],r,s)}e.quadraticCurveTo(t[t.length-2][0],t[t.length-2][1],t[t.length-1][0],t[t.length-1][1]),e.stroke(),n.fillPolygons&&(e.closePath(),e.fill())}}async function H9(e,t,n){let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!r)return;r.font=a.font,r.fillStyle=a.color;let s=1;for(let i=0;i<t.length;i++){let o=[],l=[];if([o,l]=Object.entries(t[i]),l.length>1&&l[1].length>0){let u=o[1]>0?`#${o[1]}`:"",d=`${o[0]} ${u}: ${l[1]}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d,8,2+s*a.lineHeight)),r.fillStyle=a.labelColor,r.fillText(d,6,0+s*a.lineHeight),s+=1}}}async function G9(e,t,n){var s,i,o,l;let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r)for(let u of t){r.font=a.font,r.strokeStyle=a.color,r.fillStyle=a.color,a.drawBoxes&&gp(r,u.box[0],u.box[1],u.box[2],u.box[3],a);let d=[];if(d.push(`face: ${Math.trunc(100*u.score)}%`),u.genderScore&&d.push(`${u.gender||""} ${Math.trunc(100*u.genderScore)}%`),u.age&&d.push(`age: ${u.age||""}`),u.iris&&d.push(`distance: ${u.iris}`),u.emotion&&u.emotion.length>0){let p=u.emotion.map(c=>`${Math.trunc(100*c.score)}% ${c.emotion}`);p.length>3&&(p.length=3),d.push(p.join(" "))}u.rotation&&u.rotation.angle&&u.rotation.gaze&&(u.rotation.angle.roll&&d.push(`roll: ${nf(u.rotation.angle.roll)}\xB0 yaw:${nf(u.rotation.angle.yaw)}\xB0 pitch:${nf(u.rotation.angle.pitch)}\xB0`),u.rotation.gaze.bearing&&d.push(`gaze: ${nf(u.rotation.gaze.bearing)}\xB0`)),d.length===0&&d.push("face"),r.fillStyle=a.color;for(let p=d.length-1;p>=0;p--){let c=Math.max(u.box[0],0),h=p*a.lineHeight+u.box[1];a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(d[p],c+5,h+16)),r.fillStyle=a.labelColor,r.fillText(d[p],c+4,h+15)}if(r.lineWidth=1,u.mesh&&u.mesh.length>0){if(a.drawPoints)for(let p of u.mesh)s5(r,p[0],p[1],p[2],a);if(a.drawPolygons){r.lineWidth=1;for(let p=0;p<Zi.length/3;p++){let c=[Zi[p*3+0],Zi[p*3+1],Zi[p*3+2]].map(h=>u.mesh[h]);i5(r,c,a)}if(u.annotations&&u.annotations.leftEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.leftEyeIris[3][0]-u.annotations.leftEyeIris[1][0])/2,c=Math.abs(u.annotations.leftEyeIris[4][1]-u.annotations.leftEyeIris[2][1])/2;r.ellipse(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(u.annotations&&u.annotations.rightEyeIris){r.strokeStyle=a.useDepth?"rgba(255, 200, 255, 0.3)":a.color,r.beginPath();let p=Math.abs(u.annotations.rightEyeIris[3][0]-u.annotations.rightEyeIris[1][0])/2,c=Math.abs(u.annotations.rightEyeIris[4][1]-u.annotations.rightEyeIris[2][1])/2;r.ellipse(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1],p,c,0,0,2*Math.PI),r.stroke(),a.fillPolygons&&(r.fillStyle=a.useDepth?"rgba(255, 255, 200, 0.3)":a.color,r.fill())}if(a.drawGaze&&((i=(s=u.rotation)==null?void 0:s.gaze)==null?void 0:i.strength)&&((l=(o=u.rotation)==null?void 0:o.gaze)==null?void 0:l.bearing)&&u.annotations.leftEyeIris&&u.annotations.rightEyeIris&&u.annotations.leftEyeIris[0]&&u.annotations.rightEyeIris[0]){r.strokeStyle="pink",r.beginPath();let p=[u.annotations.leftEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.leftEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.leftEyeIris[0][0],u.annotations.leftEyeIris[0][1]),r.lineTo(p[0],p[1]);let c=[u.annotations.rightEyeIris[0][0]+Math.sin(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[3],u.annotations.rightEyeIris[0][1]+Math.cos(u.rotation.gaze.bearing)*u.rotation.gaze.strength*u.box[2]];r.moveTo(u.annotations.rightEyeIris[0][0],u.annotations.rightEyeIris[0][1]),r.lineTo(c[0],c[1]),r.stroke()}}}}}async function q9(e,t,n){var s;let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round";for(let i=0;i<t.length;i++){if(r.strokeStyle=a.color,r.fillStyle=a.color,r.lineWidth=a.lineWidth,r.font=a.font,a.drawBoxes&&t[i].box&&((s=t[i].box)==null?void 0:s.length)===4&&(gp(r,t[i].box[0],t[i].box[1],t[i].box[2],t[i].box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+3,1+t[i].box[1]+a.lineHeight,t[i].box[2])),r.fillStyle=a.labelColor,r.fillText(`body ${100*t[i].score}%`,t[i].box[0]+2,0+t[i].box[1]+a.lineHeight,t[i].box[2]))),a.drawPoints)for(let o=0;o<t[i].keypoints.length;o++)r.fillStyle=a.useDepth&&t[i].keypoints[o].position[2]?`rgba(${127.5+2*(t[i].keypoints[o].position[2]||0)}, ${127.5-2*(t[i].keypoints[o].position[2]||0)}, 255, 0.5)`:a.color,s5(r,t[i].keypoints[o].position[0],t[i].keypoints[o].position[1],0,a);if(a.drawLabels&&(r.font=a.font,t[i].keypoints))for(let o of t[i].keypoints)r.fillStyle=a.useDepth&&o.position[2]?`rgba(${127.5+2*o.position[2]}, ${127.5-2*o.position[2]}, 255, 0.5)`:a.color,r.fillText(`${o.part} ${Math.trunc(100*o.score)}%`,o.position[0]+4,o.position[1]+4);if(a.drawPolygons&&t[i].keypoints){let o,l=[];l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),yp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),l.length===4&&i5(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftFoot"),o&&l.push([o.position[0],o.position[1]]),yp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightHip"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightKnee"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightAnkle"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightHeel"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightFoot"),o&&l.push([o.position[0],o.position[1]]),yp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="leftShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="leftPalm"),o&&l.push([o.position[0],o.position[1]]),yp(r,l,a),l.length=0,o=t[i].keypoints.find(u=>u.part==="rightShoulder"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightElbow"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightWrist"),o&&l.push([o.position[0],o.position[1]]),o=t[i].keypoints.find(u=>u.part==="rightPalm"),o&&l.push([o.position[0],o.position[1]]),yp(r,l,a)}}}}async function X9(e,t,n){let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t){if(a.drawBoxes&&(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels&&(a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText("hand",s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText("hand",s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])),r.stroke()),a.drawPoints&&s.keypoints&&s.keypoints.length>0)for(let i of s.keypoints)r.fillStyle=a.useDepth?`rgba(${127.5+2*i[2]}, ${127.5-2*i[2]}, 255, 0.5)`:a.color,s5(r,i[0],i[1],0,a);if(a.drawLabels){let i=(o,l)=>{r.fillStyle=a.useDepth?`rgba(${127.5+2*o[o.length-1][2]}, ${127.5-2*o[o.length-1][2]}, 255, 0.5)`:a.color,r.fillText(l,o[o.length-1][0]+4,o[o.length-1][1]+4)};r.font=a.font,i(s.annotations.indexFinger,"index"),i(s.annotations.middleFinger,"middle"),i(s.annotations.ringFinger,"ring"),i(s.annotations.pinky,"pinky"),i(s.annotations.thumb,"thumb"),i(s.annotations.palmBase,"palm")}if(a.drawPolygons){let i=o=>{if(!!o)for(let l=0;l<o.length;l++)r.beginPath(),r.strokeStyle=a.useDepth?`rgba(${127.5+2*o[l][2]}, ${127.5-2*o[l][2]}, 255, 0.5)`:a.color,r.moveTo(o[l>0?l-1:0][0],o[l>0?l-1:0][1]),r.lineTo(o[l][0],o[l][1]),r.stroke()};r.lineWidth=a.lineWidth,i(s.annotations.indexFinger),i(s.annotations.middleFinger),i(s.annotations.ringFinger),i(s.annotations.pinky),i(s.annotations.thumb)}}}}async function K9(e,t,n){let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s of t)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,s.box[0],s.box[1],s.box[2],s.box[3],a),a.drawLabels){let i=`${Math.round(100*s.score)}% ${s.label}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,s.box[0]+3,1+s.box[1]+a.lineHeight,s.box[2])),r.fillStyle=a.labelColor,r.fillText(i,s.box[0]+2,0+s.box[1]+a.lineHeight,s.box[2])}r.stroke()}}}async function Kle(e,t,n){let a=Ln(cs,n);if(!t||!e||!(e instanceof HTMLCanvasElement))return;let r=e.getContext("2d");if(!!r){r.lineJoin="round",r.font=a.font;for(let s=0;s<t.length;s++)if(a.drawBoxes){if(r.strokeStyle=a.color,r.fillStyle=a.color,gp(r,t[s].box[0],t[s].box[1],t[s].box[2],t[s].box[3],a),a.drawLabels){let i=`person #${s}`;a.shadowColor&&a.shadowColor!==""&&(r.fillStyle=a.shadowColor,r.fillText(i,t[s].box[0]+3,1+t[s].box[1]+a.lineHeight,t[s].box[2])),r.fillStyle=a.labelColor,r.fillText(i,t[s].box[0]+2,0+t[s].box[1]+a.lineHeight,t[s].box[2])}r.stroke()}}}async function Zle(e,t){if(!e||!t||!(e instanceof HTMLCanvasElement)||!(t instanceof HTMLCanvasElement))return;let n=e.getContext("2d");n==null||n.drawImage(e,0,0)}async function Yle(e,t,n){let a=Ke(),r=Ln(cs,n);!t||!e||e instanceof HTMLCanvasElement&&(G9(e,t.face,r),q9(e,t.body,r),X9(e,t.hand,r),K9(e,t.object,r),H9(e,t.gesture,r),t.performance.draw=Math.trunc(Ke()-a))}function Z9(e,t,n,a,r){var o,l,u,d,p,c,h,m,f,g,y,A,x,v,b,w;let s=0,i=[];for(let N of e){let C={id:s++,face:N,body:null,hands:{left:null,right:null},gestures:[],box:[0,0,0,0]};for(let O of t)N.box[0]>O.box[0]&&N.box[0]<O.box[0]+O.box[2]&&N.box[1]+N.box[3]>O.box[1]&&N.box[1]+N.box[3]<O.box[1]+O.box[3]&&(C.body=O);if(C.body)for(let O of n)O.box[0]+O.box[2]>C.body.box[0]&&O.box[0]+O.box[2]<C.body.box[0]+C.body.box[2]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.left=O),O.box[0]<C.body.box[0]+C.body.box[2]&&O.box[0]>C.body.box[0]&&O.box[1]+O.box[3]>C.body.box[1]&&O.box[1]+O.box[3]<C.body.box[1]+C.body.box[3]&&C.hands&&(C.hands.right=O);for(let O of a)O.face!==void 0&&O.face===N.id?(o=C.gestures)==null||o.push(O):O.iris!==void 0&&O.iris===N.id?(l=C.gestures)==null||l.push(O):O.body!==void 0&&O.body===((u=C.body)==null?void 0:u.id)?(d=C.gestures)==null||d.push(O):O.hand!==void 0&&O.hand===((c=(p=C.hands)==null?void 0:p.left)==null?void 0:c.id)?(h=C.gestures)==null||h.push(O):O.hand!==void 0&&O.hand===((f=(m=C.hands)==null?void 0:m.right)==null?void 0:f.id)&&((g=C.gestures)==null||g.push(O));let E=[],_=[],$=O=>{O&&O.length===4&&(E.push(O[0],O[0]+O[2]),_.push(O[1],O[1]+O[3]))};$((y=C.face)==null?void 0:y.box),$((A=C.body)==null?void 0:A.box),$((v=(x=C.hands)==null?void 0:x.left)==null?void 0:v.box),$((w=(b=C.hands)==null?void 0:b.right)==null?void 0:w.box);let S=Math.min(...E),z=Math.min(..._);C.box=[S,z,Math.max(...E)-S,Math.max(..._)-z],r&&r.length===4&&(C.boxRaw=[C.box[0]/r[2],C.box[1]/r[1],C.box[2]/r[2],C.box[3]/r[1]]),i.push(C)}return i}var $e={face:[],body:[],hand:[],gesture:[],object:[],persons:[],performance:{},timestamp:0};function Y9(e){var r,s,i,o,l,u,d,p,c,h,m,f,g,y,A,x,v,b,w,N,C;let t=Date.now()-e.timestamp,n=t<1e3?8-Math.log(t):1;if($e.canvas=e.canvas,!$e.body||e.body.length!==$e.body.length)$e.body=JSON.parse(JSON.stringify(e.body));else for(let E=0;E<e.body.length;E++){let _=e.body[E].box.map((z,O)=>((n-1)*$e.body[E].box[O]+z)/n),$=e.body[E].boxRaw.map((z,O)=>((n-1)*$e.body[E].boxRaw[O]+z)/n),S=e.body[E].keypoints.map((z,O)=>({score:z.score,part:z.part,position:[$e.body[E].keypoints[O]?((n-1)*$e.body[E].keypoints[O].position[0]+z.position[0])/n:z.position[0],$e.body[E].keypoints[O]?((n-1)*$e.body[E].keypoints[O].position[1]+z.position[1])/n:z.position[1]],positionRaw:[$e.body[E].keypoints[O]?((n-1)*$e.body[E].keypoints[O].positionRaw[0]+z.positionRaw[0])/n:z.position[0],$e.body[E].keypoints[O]?((n-1)*$e.body[E].keypoints[O].positionRaw[1]+z.positionRaw[1])/n:z.position[1]]}));$e.body[E]={...e.body[E],box:_,boxRaw:$,keypoints:S}}if(!$e.hand||e.hand.length!==$e.hand.length)$e.hand=JSON.parse(JSON.stringify(e.hand));else for(let E=0;E<e.hand.length;E++){let _=e.hand[E].box.map((W,G)=>((n-1)*$e.hand[E].box[G]+W)/n),$=e.hand[E].boxRaw.map((W,G)=>((n-1)*$e.hand[E].boxRaw[G]+W)/n),S=e.hand[E].keypoints.map((W,G)=>W.map((H,J)=>((n-1)*$e.hand[E].keypoints[G][J]+H)/n)),z=Object.keys(e.hand[E].annotations),O={};for(let W of z)O[W]=e.hand[E].annotations[W].map((G,H)=>G.map((J,K)=>((n-1)*$e.hand[E].annotations[W][H][K]+J)/n));$e.hand[E]={...e.hand[E],box:_,boxRaw:$,keypoints:S,annotations:O}}if(!$e.face||e.face.length!==$e.face.length)$e.face=JSON.parse(JSON.stringify(e.face));else for(let E=0;E<e.face.length;E++){let _=e.face[E].box.map((z,O)=>((n-1)*$e.face[E].box[O]+z)/n),$=e.face[E].boxRaw.map((z,O)=>((n-1)*$e.face[E].boxRaw[O]+z)/n),S={matrix:[0,0,0,0,0,0,0,0,0],angle:{roll:0,yaw:0,pitch:0},gaze:{bearing:0,strength:0}};S.matrix=(r=e.face[E].rotation)==null?void 0:r.matrix,S.angle={roll:((n-1)*(((i=(s=$e.face[E].rotation)==null?void 0:s.angle)==null?void 0:i.roll)||0)+(((l=(o=e.face[E].rotation)==null?void 0:o.angle)==null?void 0:l.roll)||0))/n,yaw:((n-1)*(((d=(u=$e.face[E].rotation)==null?void 0:u.angle)==null?void 0:d.yaw)||0)+(((c=(p=e.face[E].rotation)==null?void 0:p.angle)==null?void 0:c.yaw)||0))/n,pitch:((n-1)*(((m=(h=$e.face[E].rotation)==null?void 0:h.angle)==null?void 0:m.pitch)||0)+(((g=(f=e.face[E].rotation)==null?void 0:f.angle)==null?void 0:g.pitch)||0))/n},S.gaze={bearing:((n-1)*(((A=(y=$e.face[E].rotation)==null?void 0:y.gaze)==null?void 0:A.bearing)||0)+(((v=(x=e.face[E].rotation)==null?void 0:x.gaze)==null?void 0:v.bearing)||0))/n,strength:((n-1)*(((w=(b=$e.face[E].rotation)==null?void 0:b.gaze)==null?void 0:w.strength)||0)+(((C=(N=e.face[E].rotation)==null?void 0:N.gaze)==null?void 0:C.strength)||0))/n},$e.face[E]={...e.face[E],rotation:S,box:_,boxRaw:$}}if(!$e.object||e.object.length!==$e.object.length)$e.object=JSON.parse(JSON.stringify(e.object));else for(let E=0;E<e.object.length;E++){let _=e.object[E].box.map((S,z)=>((n-1)*$e.object[E].box[z]+S)/n),$=e.object[E].boxRaw.map((S,z)=>((n-1)*$e.object[E].boxRaw[z]+S)/n);$e.object[E]={...e.object[E],box:_,boxRaw:$}}let a=e.persons;if(!$e.persons||a.length!==$e.persons.length)$e.persons=JSON.parse(JSON.stringify(a));else for(let E=0;E<a.length;E++)$e.persons[E].box=a[E].box.map((_,$)=>((n-1)*$e.persons[E].box[$]+_)/n);return $e.gesture=e.gesture,$e.performance=e.performance,$e}var ha,l5=!1;async function af(e){return ha?e.debug&&de("cached model:",ha.modelUrl):(ha=await ct(ft(e.modelBasePath,e.segmentation.modelPath)),!ha||!ha.modelUrl?de("load model failed:",e.segmentation.modelPath):e.debug&&de("load model:",ha.modelUrl)),ha}async function u5(e){var m,f;let t=((m=e.tensor)==null?void 0:m.shape[1])||0,n=((f=e.tensor)==null?void 0:f.shape[2])||0;if(!e.tensor||!ha||!ha.inputs[0].shape)return null;let a=De.resizeBilinear(e.tensor,[ha.inputs[0].shape[1],ha.inputs[0].shape[2]],!1),r=a.div(255),s=ha.predict(r);he(a),he(r);let i=Vt(s,0),o;if(i.shape[2]===2){let g=i.softmax(),[y,A]=Gn(g,2),x=A.expandDims(2),v=x.expandDims(0);he(g),he(y),he(A);let b=De.cropAndResize(v,[[0,0,.5,.5]],[0],[t,n]);o=b.squeeze(0),he(b),he(x),he(v)}else o=De.resizeBilinear(i,[t,n]);if(typeof document=="undefined")return o.dataSync();let l=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");l.width=t,l.height=n,oa&&await oa.toPixels(o,l),he(o),he(i),he(s);let u=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");u.width=t,u.height=n;let d=u.getContext("2d");d.filter="blur(8px",await d.drawImage(l,0,0);let p=d.getImageData(0,0,t,n).data,c=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(t,n):document.createElement("canvas");c.width=t,c.height=n;let h=c.getContext("2d");return e.canvas&&await h.drawImage(e.canvas,0,0),h.globalCompositeOperation="darken",h.filter="blur(8px)",await h.drawImage(l,0,0),h.globalCompositeOperation="source-over",h.filter="none",e.canvas=c,p}async function J9(e,t,n){var s;if(l5)return null;l5=!0,ha||await af(n);let a=Yi(e,n),r=await u5(a);if(he(a.tensor),t&&r){let i=Yi(t,n),o=i.canvas;he(i.tensor);let l=a.canvas,u=(s=l.getContext("2d"))==null?void 0:s.getImageData(0,0,l.width,l.height).data,d=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(l.width,l.height):document.createElement("canvas");d.width=l.width,d.height=l.height;let p=d.getContext("2d");p.globalCompositeOperation="copy",p.drawImage(o,0,0,d.width,d.height);let c=p.getImageData(0,0,d.width,d.height);for(let h=0;h<d.width*d.height;h++)c.data[4*h+0]=(255-r[4*h+0])/255*c.data[4*h+0]+r[4*h+0]/255*u[4*h+0],c.data[4*h+1]=(255-r[4*h+1])/255*c.data[4*h+1]+r[4*h+1]/255*u[4*h+1],c.data[4*h+2]=(255-r[4*h+2])/255*c.data[4*h+2]+r[4*h+2]/255*u[4*h+2],c.data[4*h+3]=(255-r[4*h+3])/255*c.data[4*h+3]+r[4*h+3]/255*u[4*h+3];p.putImageData(c,0,0),a.canvas=d}return l5=!1,a.canvas}var rf=`
|
|
/9j/4AAQSkZJRgABAQEAYABgAAD/4QBoRXhpZgAATU0AKgAAAAgABAEaAAUAAAABAAAAPgEbAAUA
|
|
AAABAAAARgEoAAMAAAABAAIAAAExAAIAAAARAAAATgAAAAAAAABgAAAAAQAAAGAAAAABcGFpbnQu
|
|
bmV0IDQuMi4xMwAA/9sAQwAGBAUGBQQGBgUGBwcGCAoQCgoJCQoUDg8MEBcUGBgXFBYWGh0lHxob
|
|
IxwWFiAsICMmJykqKRkfLTAtKDAlKCko/9sAQwEHBwcKCAoTCgoTKBoWGigoKCgoKCgoKCgoKCgo
|
|
KCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgoKCgo/8AAEQgBAAEAAwEhAAIRAQMRAf/E
|
|
AB8AAAEFAQEBAQEBAAAAAAAAAAABAgMEBQYHCAkKC//EALUQAAIBAwMCBAMFBQQEAAABfQECAwAE
|
|
EQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH
|
|
SElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1
|
|
tre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+v/EAB8BAAMBAQEBAQEB
|
|
AQEAAAAAAAABAgMEBQYHCAkKC//EALURAAIBAgQEAwQHBQQEAAECdwABAgMRBAUhMQYSQVEHYXET
|
|
IjKBCBRCkaGxwQkjM1LwFWJy0QoWJDThJfEXGBkaJicoKSo1Njc4OTpDREVGR0hJSlNUVVZXWFla
|
|
Y2RlZmdoaWpzdHV2d3h5eoKDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXG
|
|
x8jJytLT1NXW19jZ2uLj5OXm5+jp6vLz9PX29/j5+v/aAAwDAQACEQMRAD8A+qaKACigApGOKAML
|
|
Xp8xlF5A7V4X8RtYs7PzfNImnx8sa8Kp9z3q2tEgp6angWs62ZZ5CTGoJ6DArGNz5p+UrID6EUrF
|
|
PUlW1EuN0XNW7PQ2L5j3JnoKXN0KijqNP0eYoqXBdgPuuo+ZPeupisWn2Jd4+0r924XgsQOCff3/
|
|
AJ1FzRKxDqGii6m3siiQ8F1XGfXI6YNWLfRbiRQMkcZI9fpTDluT2/h6Qy8gDPbtmtG38JeY480Z
|
|
5zSLUTZg8M28YwYxjAArXtdPt402qgHbpSaLWhma3o0Uqk7Nx9DWLaaVblgPs6qRyds2M/gRSQp9
|
|
zZOni2iWS2hlQ+kjYz9OMGrdjq89vIPPVhj+8M/lQyDq9P1WOYBlMZz1AOD+VdDaTiReOKulK0jO
|
|
tHmi0WDTlr0TyxRVhT8tJjIX+9SUxHXUV553BRQAVBcPhSBTSuxPY86+IGti0s5I7dsORy9fM3i6
|
|
8e8mfDO5P90ZrWWiJicNPpZZtxV/xrW0jQt4DOv6Vk2dEEdTY6BHuB25rpbPSo0QARjP0qTRI17W
|
|
wA/hFaMWmoQMgflQXYsDS142rU9tpqqenfNA7GgtihxkdKuRW6qMY/GkDZY8sY4Ap4hXbyB+VArk
|
|
EtuH4wPyrk/EGkOm+a3jw3suRQLc5i38SX9hJ9nnY+XnBUdPyNdFY6pa3KkkAE9l6f8AfJ/pSJT6
|
|
GhDmI+Zb4ZRycdv6ium0nUhKFydrelTsNnS2829RnrVgV6NKXNG55lWPLIM81Op+WrZkRMfmNNzT
|
|
A7GivPO4KKAEY4XNYWt3vkwPg4OK0giJdjw/xrqhm87Zs8tc7pX5A+leSajf6aHYJ50kn4AZpTep
|
|
rBWRm2Vobm4BXfyehPFdnpmnBFUY5rI2SN63tlToK0YI+KZpFF+3QdavwoKTLtoW0Toaswpk5pCb
|
|
LCxipAhoIuP2dKevHXoaYDylRyxhlwRQI4nxVoCXWZI1GfpXGtbSWjYPGP73+NIGupt6TqMsLruZ
|
|
ih4xnP5V09mQ+JLd8gn0xSYJnVaVdkook69K34zuUGunDS3Rx4qOzHVIp4rrOMY3NJQI7GivPO8K
|
|
KAILt9kZrz3xlebYiu8KCCWb0XvW0NFch6ysfO3jLVjfXLIn+pQkKorl7WxNxIPl71g2dUUdpo+l
|
|
pBGvHPet23iC8ihFosrxirkHQUFo0IF4FXI1O726CpKLacCrMJoJLYHAPpTwucHpSRJJ5e4AZI9x
|
|
UqpxzVpCuOC8cUpQUMRnXttuB4rjNdsYyeVwfXpmpGmcvcQyafMCFJjPY10eg34BUg4DcZP8jUO4
|
|
HaRq3lLNF+IHet7R7jz7c56rwa2wz9+xhiVeFy/T1PFegeaNPWigDsc0ZrzzvDNIaAM7VpNqdegr
|
|
xL4l6kywyRhseZ19lrdfAZL4jxYg3Fw20d63tJsdrDI5rm3Z3R0R0Mce1eKnQYAplIkWrMJ45oZS
|
|
NO3PHbNXIyfpSGWowSOasxLUiZdjFSqtNEMkUemKlAGKsRJjAppFAiORMjmsTVrNZEO4cfSoZSOD
|
|
1eJ7WXBUzQZ+7nkfSo7e2Ei+ZaMzxntjBX2NSU1Y6/wxqojiEFzkA8KTXYaUoWRyv3W5rSjpNHPX
|
|
+BmpSg8V6J5gUUAdhRXnneFFAGHrTfu5PpXzj8S70/aZtxzztXFbv4DKHxHI+H4GZiz9zxXXW8G3
|
|
GBXMjvLRXAx0oPGPSmMVeOnWrMTYpFI0bcg1fh54xmgovRcD3qxETSIZcRvzp+/BpEkqsBUqsM9K
|
|
q4Em4Gkxk0yRGXrVW6i8yFhkg+tJjRxGsWrxllkUMh9eK5uMz6bcebbnfG33kPcVkay2OntPKuo0
|
|
nhXI67c8qa7Lw3c+adjcEDGK1paSRhVV4s6A0or0jyRRQ1AHX0V553hRQBz+vNtt5z3xXzX8Qbdm
|
|
uic5YnOMdK3l8JnTXvlbwpYl+WySOgrp5YfLOOB9O1c62O7qQkc+9RsKChFPWp4DluOlSykaNruH
|
|
ArUgHShFNF2NT1qxGO3NBmyxGcE1N2560CFzjrUysO9JAPDDjFOVuKoQuSRTWouBkazbCa3cd8cV
|
|
wF7IISQccHBzUSWpV9C3o1x5b5GAjdQD1rs9DjC3kckbEhqKfxIzn8LOupRXqnkPccBSkUAzraK8
|
|
87wooA5rxMSI3HqK8B8bQl9Q8sffY5b/AAraXwkUviNrw9pH2W1ViMMRTdRjw4HpWNtDti9TPc4P
|
|
FQs2M5qdyyMHLcfjV63HTAoBGtap0wK0YxigpsuRDtVhVYd6GQydVwwIqdRnqKCR23I5pCMUW6gD
|
|
YNKuetAEise9KTxQBWuFyhrznxNZkXjFeN3I+tTIZg2OqmzmxNF0PO3vXp/g2+hukVl4zyPanTXv
|
|
JmVR+60dpThXpnlPceopWFAbnV0V553hSGgRynjC5FujOey14Ssp1HxNmTnc+a3kvcIpv37HoEYQ
|
|
QmMdVHSsnVbYJF5jVk0dsNzlruVIsl2wKxbjWrVHILjg1CRbZJb+ILHPzyhfStODWLQgFJFYd+el
|
|
UJM27HUIXxhga1Y5lLVLKLkMnoauxnPPrSEx7ShF+Y/n2qrc6xBbhizDAqkK1zJuvG9nbg8ZA681
|
|
ly/Ei052RO3uKAsZlx8QGd8xxvt9Aa1NH8dK7AXMcip64zigdkdrZX8F7EJLdwwNXMkrz1qRMRly
|
|
CK4TxmpidWI49felPYSOMmi80NIoOV6qRzXYeA5SskYPfirpfEjGr8LPWVHyD6U4CvQPL3ZItOYc
|
|
UDOoNFeed4Uhpks4H4iE/Z5MeleMeGULeLgjds10S+BGdL+Jc9OSBU2Huc5Nc74yvUtrcDBrJnZF
|
|
63PJdXvLy/lKWw46bvQVz82jXhkLO5Y+9ZlsYthcRnbIjY9R3q3awTRkEM3WmJI6C0ea3dGRsr1x
|
|
XY6TqW9FLHnjrUs0izpLK5DDjofSta3ckH09KRUkZuuTvFGdvPauE1Y3U6Mqbssf/rUxHPTaJPK2
|
|
ZmJPbBqzY6DCZh5xJC9s9aBJHU6dpemJjfEmfetJtI0+VPkUr/unFOxdiextHs33W07YHQHk11mk
|
|
Xb3KbZ1xIvcd6LEyWho4Nct41sTPYb16ipexCPPZN+wYGCvH1rrPAEJmvkPoc1VL4kZVvgZ6yFwK
|
|
cBXoHkkqinFaVyzo80GuE7WJRQSziPiGdthK5HQV4x4J/wBI8WPIewNdEvgRNL42emO/yj1UHNef
|
|
eNpRczbC+I17DvWT2OqJxc0sMK4TCisy41q0hfEkqj8aixdwTXNOlwvmqD9anS9tXH7uVG+hosO4
|
|
/wC0oOhrR0+6G4YNIEzsNEuCxAPNdjZruA4xxUmjINSjURksOlcbqFykbnjFA1sYGoassaknCqO5
|
|
rl7rxhGm7yBnBxuJq0rkSlYpw+NLlsfd5P8AerVsvHEqSBHwPVgcgVpyMyVXU3rXxcHYETAk+hru
|
|
/DWti6ZSTyOKzZqndHaxvvUGq2rQ+dYyqR24qWI8dvbr7LqDxyDAzXpvw6FvIxePGSM06Xxoyr/A
|
|
zviKFHNegeX1J41zUhXioGbuaSuM6wpCaBHG/EcA6HN/exxXjXw2jL67cv8A3Qa6H8CFR+NnoWpO
|
|
I4XI44rxLxrqjQzSEsQM1gdSPM9U1uR1YbmWIdXHf2rmpIb67YS28UrRlsLI3c/jW0VZGUpO5pW1
|
|
jfLNOjahawzwReYI5cjzMkDavHJ5/SrVv9uhtPtVxCPLBwzxnlT9KGghLU3tKvvPjHzbl7EGuisJ
|
|
GRxWLOg7nRXJEbDjmvSNK+aFSfSoZr0KutRkphc4NcRrdkVjL9aVio7Hk3iqS8ubhrWzUlsZY9kG
|
|
cZNc5D4aee5MclzJIFTzHAO0MfatqSOWu7bFS1srDUZEis0vIZoUxPvfcC+4/dx2xjr712XiTwXb
|
|
WmlQ6hol3cRhoFd4rlg3zY5wR0GelavQwjq7GD4etdVvSnk2wAB+9v8A8mvcfA2kXiRo0/UdcDis
|
|
ZnTTulqeoWqbUAJqWUb42X1FZlnjfjSwlGrr5S/eNdD4RkvLAAQ4yRyaUZcruVKl7TQ9I0G+mnzH
|
|
ckFwM8VuIK7ac3KF2eXiKapz5UWYxipNtMyNejNch0jSar3cjR27uoyQCRVRWom9DxTx54gu5fMi
|
|
lbKdMVjfCZPNlv5v9rFbVHpYqjGzbOn8SzFI9o715L4u0r7arYzk+lYdTqSujy7U/C0u4vHk+WwO
|
|
xuh9q3J9dgvbdVukMV1EwbDDgn04rZMwlHoZ+orZ6hfQ3RWVnQYCgZAq+8U0ln5NtBsV2yxYcfgK
|
|
JtW0CnB31LlroVwJ1nQLGDjeP7w+lb0dsFxjrWB0tHS6NuWPJ6A16ToUm63T3Gallr4S7cxiTjrX
|
|
PaxaF7dlVeSMUhxZ5jd+H7qCa4eF3DSE5x3zXN3Wk6jbyeaiFWUY6ZyPStYS5SalPmVipFbX0E4c
|
|
W0alvmPHJrag0rVvEE6LdljGpG2NRtQD+tW5XMI0uU9M8NeFo9PiQhecDIIrtrOMIoG3H4VlJm9t
|
|
C6CB06VPGM1IHLeItGS6uw+ORT7e3jsbQvj7gzUNam0JaWE+HN7NqOqX80n3FO1RXo8YzXdS+BHk
|
|
4z+KyzGPapcU2YIv7qQtiuaxvcaWqG4O6FwfSrS1JbPnrxoxkv7qIfejcitj4V2f2exumI+8+aKn
|
|
xHTT+G5d8Txlm4rjLxMsQwzWT3OiK0Mm6sEkVsAcjFc1d+FEmlGwEDPQVopaEuOpr6f4ZWNAu3tW
|
|
vHpAj5ZQcUFIWaDjGMVUMQ3cVDBmvbhY7QAV2nh+T/R1yeKhlrY31+b61FcQK6nIoJMi401WblRi
|
|
qr6PCw5UYq9y+YgOgWzNkRrx3xWjp+nx2v3FQcelAbmko9anQ4GBUNisPHWr1qMrQhS2K11HvmYV
|
|
hamcxSRZ5xRIqluS/DKAQQXZxyXrvo2FdlL4EeZjH+/ZbjNSZpswLNBrE1Gt7VE4ODVIlnh/j61F
|
|
j4lmeTGyUbq6LwdEqWbeX0YbhSqfEddP4Bddj4JIrhL5d8h7VjI6oLQqKNzelWre3yc4/ClFjaL6
|
|
wqBxxUUxwCKu5BmXRA6c+9ZjP83FSBoQuPs4BrsNBlUW659KmRrDY6G1lyQtW3Hy0lqQ1qVJnAbm
|
|
oy3b9KYJCqRj3o4zRctIlhjLHmpSuOBRbQOpLGpPFaES7UqkZzKN1KsEc87/AHUUmvPLTVGv72aQ
|
|
k7WJwKmRrQ3ud74Ltilgz4++2a6iNDXdS0gjyMU71my7GpqTbxSbMki3SViajTTHqkSeR/GeyZmg
|
|
nQHkEE1S+F+oPPavBL96I4/Cia1udVF+4dVrkW+Fq8+v4tjMDWUkdVJ6WM0cNV+F+MVmjUcZgqnP
|
|
1qpNNnkcVRLiZtxIS1UzzIF7mghlxUZpVQdq6nTVdAoAOKzkbQWhvwM6gMM1twOJYx3NOJE11Kt1
|
|
H1/pVVlwBkk+9NocXoOQ45FPj+fkUJFF2NSB700v/hTEty5ZpkjvVyUgcCq6GM9zC14/8Se6GcZQ
|
|
1574Xs5WkI2HBPHFQ1dm1KSSZ7Rotn9l0+KPHIHNacae1dy0Vjxaj5ptlhVp+2s2CJ9ppCKzuWNx
|
|
zSFc1SYrHNeNdIGpaYw25ZeRXmvheyk0jVpEdcLJ0q3ZxNKTa0O3vQHg/DNcHrsJDmsmjspnNzNt
|
|
fFIJ24GazOhC+azDmgZIOOKBsp3J2qSaZodubq58yQ4QAnmhGT3NO18pb7BORmu205LfYpyKVkWp
|
|
Oxr5gKYWoIZWgfGfloFq1qTPLubnGO1RPtxg4P0oBAkY/hBz6VNDDkZ6AU0W2WSdqkdKr9ZOaGSj
|
|
VtcLHmnOcgmmYvcz7mBLy3MbdD1q9ouiRK6bUAVeelOC1InPlidSsWMDFOCEdq3uefykqrinYqGy
|
|
rFvApMVka2DAowKAsMkRXQqwyDXn/iWyitNQ3qPl6itIvRoF8RXinW4tQ6HI6GuW8SIVBPalc6qe
|
|
5x9x97r3qruwTjrWZ0ksZ9TUmcDNAmZ9/wAoao63rR0+w22MLPtAzt6mghmfofiB76LdJBJBIp5D
|
|
d/oa7bSdWLIPnpDi9TM8TeKdas51XTbIyxd3J/pXS+E/EFxqNoFu7do5OmD60maHWrnZyDRkn/69
|
|
MlEyOR0xntVoNx+FUgYjPxg4FLCuWDZyKQr2RoRnP0qO+nEFpJITgAUzLqZnhu6+0rknOTXpOmwJ
|
|
Fbrt5yMmnHYyr6Oxb2ijaKLnPYMClwKQWK3n0hn+lachHOJ9pNNN0apQFzsY10a4v4hXQh0xpieQ
|
|
MA1XLZNjhK80cT8OdV+3Wl3A7ZZJCw+hrR1qLcjZ/CsbnfHRnFXseHJArOYYbrUs1uPhYbuatqFP
|
|
ByfSkMq3UIINYkto+87Tx6GkSxfsDbflGD7CtTw/pk4nzITtPIFMFudsukh4Rxz71paTpKwP5jcn
|
|
0qTRy0NORMDgVCqewoJTJgAoxjntTiTu7fWmFxAcnn1q3EPl+X8KZMi4gKqB1Peob/Tv7Us5bfeU
|
|
yOoq4R5nYxqT5I8xieH9J1DTbvyJELRg8ODwa9Ms5mSFV9BWiptbnNVrKdmif7Q1KLg96XIZc5Is
|
|
pNL5pqeUrmMtZs0jzV08phchaY00zH1p2ZNxjS1g+LdJOt6U9ssmxjyGp2urDjLlaZzng/wUPDqz
|
|
TSTmWeTrjpVjVk3Rvjr2rnqQ5dDvo1XUd2cTqSNk9OKxXGCeKxZ1DAxHTr2q5C/y8GokUhsz54qu
|
|
uCxzSQjQ0+FZblR2ro4bZYiMVQ0dBb7Qi5x0qzuG5QOh71LYErDufpSeWrHnimIXbjkUjLkH1Hem
|
|
gGxryc+tXI19KYmWegq9YLiLJ7mtqS945cS7QsWehqxA9dEjz4krPSxyZqbFFhGxUm6smjRM55Lk
|
|
HvSvNxXTY57kLT+9MNwKdhXGm5FIbkU7Bca1wMEVhaiuQcVhXWiZ14R6tHGanGBI2OtYkqEHjgVy
|
|
s9ErEeo6UBsHipKEZs5qpPdRxcbhx70NCSuybTNWihc5brW9Fq6vjMnFSdEIdDRi8RRKygZbHFbu
|
|
m6nb3RA3gMegNJhOm0jbXGOoxTuCc1Rz3FyoGKawz9KaAVcZqeMgCmIkB4FaUTbYwB6V00Fuzixb
|
|
0SFMuDU8Mlbs4UPeXHeiOXkUrDuXYnyKk3cVk0ap6HMxxketSMhrcwRC0dMMZFMQ3yzSeVQAeUaz
|
|
9Vj8uPd271nVV4m+GdpnHX67pCeKyLtBtNcR6xlk9RVeWTb3qRnO6trgttyIfm71z7ai8j7/AJmN
|
|
DNqUVa5Yi1AnjynHuBV+11YJhWWXcP8AZNSzqgmaEerSsf3NtIQP4mGKtRavdRgMIpVI9KjU0a7n
|
|
R6T43uYQI7qN2Tpkqciu503VVuQGAYZHQjFVc4alPlZrpKGAznpTwxOc9+lWjIlUACnM4XApiLNk
|
|
nmvnsK0NvpXZRVonmYqV52GsmanhXitTmFkSiJTSAvwrxUxXIrJ7miOfjf1pzNWxkRlqYWpgJupu
|
|
6gQbuahvIxPA6eo4pNXVioS5WmefakGhndH4INZs5DJXA10PaTurmLO21uKpSZqGMoXGnRzBiyjd
|
|
9Kx5rcQS428fSkjanLoaOliHGZFB56VswW+mtPufcBsGOAfmxz+tFkd8HpoaUx09FAtFY8DO71qb
|
|
Sms/Nb7RbecG6AEjFLS5c78t+p0djpVs9wsyQiJAdyr1rW+zqjErzSe559Sbk9S3C+MA1bjbgE1S
|
|
MSXzMVG0vNUI2tPKrAuCMnrVzNd0PhR49W/O2xrHmp4TxVMzQshpIzzQBehqesnuaI5VGzT2bitz
|
|
FEbNTC1ADS1JupgG6l3UAc14s04yR/aYRll+8BXCtLncDXFWjys9TCz5oW7GddH5qqNzWDOgQnC8
|
|
VSuo1kHzAGkPYopEY2+RWxV23Vzj5G/Kg3jWaNazhZuqNXS6TaKhB2c0jR1nJWOlhOxRxU4YkCgx
|
|
Y0OQatQyDbyaaFYe8uF4NY3iC9ltbVGj43NTIL3h7WzMihjzXVQXYYDdW9Cf2WcOJpfaRZ3g9KsQ
|
|
mupnCLIabGeaAL0LcVY3cVmzRHIxtUhetzEjZqjLUAIWpN1ArhupwagAfDKQ3Q1594v0c2bm6tx+
|
|
5Y8j+6ayrR5onThp8s7dzkZjuqAAmuBnqC7c0iwgtzSA0rWzjfGRW3ZadDu4AoNYo2rfS4v7orSh
|
|
05UA2r0pDbsTm29KRottBNyJ0wpJ9KhD7f6U0ikNWffIFBz60zVUW52ow4UcUN6EPcx44WsbgOmd
|
|
ua7TT5Bd24KHnFKnLlZFSN4koluLdueRWvp14swweG9DXoxldHlTjYtzGoo25qzEvwtUxas2jRPQ
|
|
5CNqkLVsYoYzUzdQA3dSFqBBmnqaBhuqhriCXTpVIzxUz+Fl03aSPI9QTypW2/dz0qKNw3SvOPZR
|
|
Mqin8VLKRcs3O4Cuk0w/MDjt1NBtHY6O2IIHY1pxgFaETIRwMkjtVSUEk4570MlFW5bap6dKzWm8
|
|
1tqH8aY+hp2FvGoGayNevVt7/ap4xzUvYjqTLtvLPcvJxSaVcyWsxTnFZlnT2t15xHmCtOBYwQy4
|
|
B9q7cPO+jPPxFO2qLEj5HWo42+aus4HpoX4W4FTF+KlotbHII9SFuK0MUNZqiLUDE3UbqBBupwag
|
|
Bc1DefPbyD/ZND2KjujyPWlKzuPesRZjHJXms9lMuw3StjnmphKDSLTJ7OfE3JrpbO4GQc9qlnRA
|
|
3LO82k5NbFvdADkjBoCSHyXIIIzgVQvdRigT7wzjgUzO1jHknlvG7qnp61etYFQDIpCZoqVijzXn
|
|
3iC8EmsOuaCGb/heR/s0ijkVv6fbxy3QMg5xmsnuX0Ldzut3+UYTPWk+2GJSe+M1pFtamcldalmx
|
|
1eO4XaThhWnC+TXqR2PHqL3maUJ4qRjxSEjj42qXdxVmaGs1MJoATfSbqBAG5p6mgAzTJTmNvpQU
|
|
tzzHXY83D/U1zF5FhjgV5r3Pa6FMsV5HWnLe7RhqBRdmTwagN2d2K2rPU1C5LAnPrUs6Iysbdrq6
|
|
f3gK0BrUKj/WClY05iM6xLOcQAj3NT29uznfKSzHuadzNu7NSBFjHNSm5VO9IRnajqoWMhTzXFtA
|
|
bvUfMduSeg702Qz0rS7FbTToQFwzjJqaGTFyfK5PQViyzUuFmuIdgGABya5u/vTaN5cnUHFUmLoZ
|
|
zyskwlgJweSK6zQdUEwVJeGr0aUrxPLxEfe0OrhPAqVjxWhznGRtUwatDK4jNxURbmkAm6jNABup
|
|
6tQAFqhupNtu59qUnZFwV5JHnWsHdIx96w5lz15rzT2uhRmt85xWbcxMnUGmZlB0bdxmrNvFIcfM
|
|
350mWjbs7YkDJY/jW5ZWW4jikWkdNp9mqYJFaJdEHHakUULu/VB1rLn1Ld/FgetMGYd/qWSQmSa0
|
|
/AemS32pfa7piLeLkg9z6UmQtz0W7uQ2cZx0A9BVzR7cAea6j2rPqX0L99KRat5A6Dk1wOoKZ52a
|
|
YfMORTYRLujiGWEq6/NWza2yKQVHNdOHerRy4laJo6TTnbbtb8KuM3Fdh5z3OJjbmpt3FaMxAtUZ
|
|
agBN1GaQBzTwaAAms3VbjERUGsa07RsdeFpuUuY4jUjljWTKK4j02RE4IpJYFk6imQkVl0xWarsO
|
|
mAEcUi0bNnZBR0rWtoguMCkUi21wI161mXuocEKaYXMS4u+pY/hVCSWSY4HT0pEmlouiSahdpEBl
|
|
mOceleiwWcNjClvHgJH97Hc1EmVFFi3Czy7mwIl/WtJbjP7uLgd/apQ2VNVvtsBhiPzdK5S4nAuR
|
|
nqOCaTGi9pcytPlU+XpmumtWII44rah8ZjiNIXRuWeNvvViQ/LXpJWPJbu7nCRvVkNxVsxBmqJmo
|
|
EPiXca0YLMuOlJsuKuPlsSi5IrNuG8s4HWs5VEkbwoOTKsk+FJY4rC1K53k1xTk5O7PSpwVNWRzt
|
|
4cms+WpKICtSLTETQj5q0YeBSGiys23pUguGxQMq3E59ayrm4x3yaAKiRtO2WPHcmhruKFxFajzZ
|
|
ScA44qRHoXhuMaLpxaUg6hcDLMf4F9KlhuDeXGASIl+8azZslYma68y48m1+7nFW5rtbRNhb5z1p
|
|
iMKbUg0zuW4A4rPgb7VdKXOMmpA7HRbMS7nUYiUda0lkQOBngVrS+JGdbWLRt2bAx5BqeQ/LXpnj
|
|
PQ4GJ+ashuK0MhWaoWcA0AaOmASMK7jRNPWYBmHyiuepO2x10qfcv6vYxCzYqoGK4HVYVTJrmb5l
|
|
c6oaM5TUJ8EgGsG4kLNUHT0M64OaqMMikSRsuKbnFMRLG3zVehOaGNE445NNlnVFpDMu6uie9Vo1
|
|
8z5mOAOST2pDK91cNN+5tsrH3PrW54a06KxT7fdrlh/q1Pc+tJ6IUdZGvHPLezMcnBOWbsPap5r3
|
|
ylFtbdT1xUWNWzU0/Zbwlgfmx8zGsHWtRHmMqE59aAMyNifvHPc1f0gtPdqkY5JosJHeNci2tktY
|
|
euPnNY+oXWZEVJNrZ9aun8SIq/CzodHuriIokhDIR1ronbKZr0o6o8ipoz//2Q==`,sf=`
|
|
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAsICAoIBwsKCQoNDAsNERwSEQ8PESIZGhQcKSQrKigk
|
|
JyctMkA3LTA9MCcnOEw5PUNFSElIKzZPVU5GVEBHSEX/2wBDAQwNDREPESESEiFFLicuRUVFRUVF
|
|
RUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUVFRUX/wAARCASwBLADASIA
|
|
AhEBAxEB/8QAGwABAAIDAQEAAAAAAAAAAAAAAAEDAgQFBgf/xABDEAEAAgECBAMECQIDBgUFAQAA
|
|
AQIDBBEFEiExE0FRBiJhcRQjMkJSgZGhsWLBJDNyFSVTY3OSNEPR4fAHFjWCokT/xAAYAQEAAwEA
|
|
AAAAAAAAAAAAAAAAAQIDBP/EACARAQEBAQADAQEBAQEBAAAAAAABAhEDITFBEjJRIhP/2gAMAwEA
|
|
AhEDEQA/APqYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAKNTq8OkxzfNkisQC8eb1XtRNbzXT4q7eU2nu0MntRq/D8StMccvW29ZmdvgjsTyvZjxOLj
|
|
+s8WLxn8TFPXs6Oj9oct7c14rkxz22nrB2I49KOdTjelmszfmpMeUxv/AA28OqwZ4icWWtt/SUi4
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmdo3nsPNe0Pt
|
|
Fh09Z0+DNWL7+9O/7A3eJcZppsV5raI27esvH6jX5ddM25p79Ilo59VbUZOe2Tm/PeGvfPfT2iKR
|
|
PLv1+DO678XmW/a97U6TtOyzTbTF538/T9WjTNecm9a7126tqk3rSYxY5ta1plRZqZNXGjyZcPXl
|
|
mZmsx+qjBrsuO16xM7eXRt04JrdTltk5OWJnfaWf0a2lty5MdZnfzSn+WOHiOutFpjHa9e8bQ2fp
|
|
+alYy462pk7zXbuxjPesbRS0f6ZZV1ET1tErzXFLHo+A+1ddZf6NrI8PJHa1vN6iJi0bxMTHwfOa
|
|
zhzd61v1846utwniM6DUdb3nBaNrVmd9vjC/ZVePYirBqMWppz4rxaPgtEAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAItaK1m09ojcHnvarjM8P0vh49+a/eY8ng9D
|
|
h1fGM1rxjtGPfvbzdbjuTJxHX48cTPNltM/KsS9Dw7S49Jp6UpHaGe2vjz1y9J7LYK13vHWe7bj2
|
|
ex1tvM80ekuxW3RnW3Vm6P5jRx8H0+OYmMcb+bapo8GKPdpC6bQwtdHU8JpWkdJ/JweL6e23iU67
|
|
d4dubSqyVi9Zi0bwIs68XGp36TtEq7ZJmZmevzdbifCKWtbJinkt6eTgZPFw32t+sRurbWVzxs1y
|
|
Rv6T8V1NZNPtfq0seTm+Kevr+SZuxXjvaPiV8N4viycto9HseG6+uu08W6Rkj7UPmFck1tE1nlmP
|
|
Ld3eA8V8HVVi1pjq6Ma/pnqce/ERMTETHaUrKgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAADW19+TQ5p/p2bLS4v04Zmt5VjeQeJ4bjnLqsupv+Ka1+ERLv4reTmcNxcuC
|
|
vy3l0qdI2hlr66sT02ot0ZV7qqrInruzrVZLGSZ37JjqgYTG0K5lbaFVhDT1Ub456RPweY4hixWi
|
|
eSdpjvD1eWejz3FNHWYtkpvFo9EIseb3tS3SerOms22rfpPqZKzvvHSYUz70TExG6Gdbs2rljeJ/
|
|
Mx5L0vEzPaelnOi98c9J2bFNTFpit47+a+PVUvx9T9nOIfT+GV5p3yY/ds67wvsXqpxau+G09Lx+
|
|
r3TqrEAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADV4ljnLw3U0jvO
|
|
O0fs2lWqyUw6XLkyfYrWZkHldBEV09eveG3Fq1mI3jd4vPrOIaid8G9MP3Y38k6fNrt/rMk9Ou8s
|
|
tfXXn49rGWInuy8SO/k5Gl1E3rG/fzbOe94wTy99mbRvTrMOOvNfJWsesywniukrG/jU6fF43WYN
|
|
TmtEeJtEQ06aSmK2+bNtEd+qfSO17unF9Hmvy1y13XWyVmN4tExLxVK8PmNq5NrT58zawam+m/yc
|
|
0Xj8NpRYSvQZ7xEOdqI3rPozxayNRXe0ct/ON03jmrKB5nV4q1yTO20Obmv4c+cx8HoeI6WZpNoj
|
|
q83niYmYscU0r8aJ6T1n49zeJ+Meqm1drb9J+Kd5p136StGVem9l9TbHxLDFp7W7+sS+q1nesT6w
|
|
+PcAzVjiGHftzQ+v4f8AJpv6On8jH9ZgIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAABp8VrW/C9TW0ztOO3b5Nxp8VmI4bn37TWYB8f1HFtTfUfR9FWJmsdZ9I7MtJxDX5s
|
|
d8ta1y0xzteaR2277rcuhycP12SceLxMeWNpjttHwlu8I0mfQ1y+D7k5YmJmY36T36Ka43z/AF1t
|
|
cI1ds+qxVj7/AEej19PCw9HJ4NoK4OIU5Y35YmZdzVTGebVZabx5jJS+Tmns81rNLm1Wrzc9rVw4
|
|
Yibbem72mXTTS0w0M3BvEta1bWrM95ie5EanY87wXgNOL6XPfxraXLhra/W28bR/dzYzarBqJxRe
|
|
bzE7Rt5vWU9n8mPHOGmS0Ypnea1naJb+k9ncNLR7u2y/WcxXO4TOoyUrN6zD0FaW5Y3hu49FiwUi
|
|
KxCvLMR0hlW0jn6ukWw3iXjOJzbDlneOj3GaN6zDzfFOH+LE7SRGo83XNSZ2lbG2/WfdlvaT2cy6
|
|
rNFInlrv1mfJ37cK4PwTTxOoidRm2+/2/KFuyMp47XB4LivXiunrH2b2iH2qn2K/J8x4fGDNxTSZ
|
|
9Nh8OviRvTyfT6xtWI+DeXs9MNZubypASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAOZx6/LoOWPvWiHTcf2hiZ0e8fc2mf1E5+vP/AEeuSd7RC2uKtI6QjHfeINTfwtPf
|
|
Jvty9WPfbt/lucP03gxfJf7d/wBoReYpm97zaNeLb4Ims9Nt94auDjem1Wo5PFi1onylS+1o7l8V
|
|
bxvtupjDMdNkYtXS1+Stt+m63xImEJ4xjHER2ZxMUjeUTO3VRmydBbjLJqPi08mbeVOXJPq1sl5Q
|
|
Vbkz9+rRy35rxHqzmZlVEe/Ez5LRlW5iyfR6zffaIjq1OSNZps2a21rZInafSPJhxGMl9LStLRWM
|
|
lorM/A4dkrWbYfLZC2W/7K6eubX6b4RzT+W76K8b7G6X62cu3Sten59nsm3j+OXz3/0ANGIAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0OIYfpOHPijvNNo+fdvtXJO18k/
|
|
/OwPFYbz2ls3jx8VqW6xMdWPEdP9D4lkx/dt79flLLHbkxTPwY6nt2512ORTRzE2x4/dpE7cvkme
|
|
E4IrW3hRMxO8THRtU1FKWtvtvK2upx22rzRCtXkqzh2jtF7ZbT122b01ndnpuWuP3Z3+Ky20qDVv
|
|
fauzVy3mejZzNK8dVjqi87KLRLYtXruqvXzkQp7Qoid88R6rcl+WGlW0/Sa22mfhCZOq2x082ix6
|
|
jkm822pO8VrPdr4dNObVeDo8XW3uzMbzK+mvxT7szE27cvnu9j7PcNjSaXx8mOIzZevbrEeic5tN
|
|
+SZnpt8J4fHD9HXHO3PPW0x/DeBtJxx29vaAJQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAKNRim9Z5e89Nl4DzXtVh5babURHrSf7f3ec1+qnDorWrvvt5Pccb0n0zhmWk
|
|
Rvevv1+cPE2rGTFNZU26PFfxwa5dVkjelI2772nZnX6bbrEUq3o0d678u8wmuDL2ittvVjXdneeK
|
|
cGv4jpJ6U56+kS7+j118+GLXpakzHaWlp9NNY3tv+bbiYiNoQy1y30uyZJlrWmZnuym6q1iIJnop
|
|
yW2Te8bdWnnypQqzZOadokiIpSZntWN5lrxki19vNRxrUeBwnNNd+fJEY6/OejXLn3Xe/wDp9wyn
|
|
E8uo4lqqxblv7lJ26T6vpD5X7G8QycKzeBMbzMRM1/FH/wA/h9QwZ6ajDXLitvWzRgsAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAeL45w+dDrZvWv1OWd4+E+j2jX
|
|
12jx67TWw5Y6T2nzifU+rZ1y9eHwzDYxxEy18+DJodXfT5o96vafWPVbjyxDn1OOzHudbM0rt2UW
|
|
iI69mVtRXZq5tREb9VUoy2iIlRbJ0UX1VZ6btTLrI7V6yk62M2oisT1c7JmtkttVMUyZp6x0beDS
|
|
RWOvdKijDimvWd3G9pNRMfRcNfvZOb9Hpb0itJeP47k/3hgjaZnbaP1XxWW3T0movbNS0W645nbf
|
|
0nrMPpXs3xamoxdJiLbe/X1n8Uf3fKsOTw4jbaXo+EarJhtGTHMxeJ6xH7Sti9Zaj6x3HM4NxXFx
|
|
DS1mtoi8dJrv2l011QAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AGjxLhODieOIye7kr9m8d4eM4to9RwjPXFa0ZIvG9bR0fQXmPbDFvTTZPOJmEWS/V8bs9R43NxLL
|
|
G8eFbePg1bajU5/s0l1ceKLx1hbjwRE9mOpx0y2uRTSZsm3PMw2aaKtIjo6kYo9EXpET0hVLXxYK
|
|
xC6MZvyx1lFs0RHfaPiCnU12pLyHGNDbUajBekWma2npWN3p8+opa20e9LSyZLxExTlpM+vdOdcZ
|
|
a9tPS8MyUvFrzWlI6727u1pYxYrbVmb7x+TQx6au3Nqcl7/0rcmW9axGnwZJj1novmxnZXV0fFp4
|
|
ZxLBPgTGK8xzXr5fOH0bFlpmxVyY7Rato3iYfNuG2x56Wrqa8s2jz+7Lu8O12bS6jkwzN6THNNI6
|
|
tvrN68Y4rxlx1vHa0bskAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAA4XtTTm0OKfTJ/aXdcL2pyRGjwU362yb7fkJz9eTxxyZJjyltRXzUZK7TFtl9Lbwy06YzrHwa+
|
|
fJFd/wCVt8m0bQ0eS2qzcm+1K/an+zNZFL5M1pjFXeI72ky48eGnPkvNp27+TPU6nHpMfLXaIjpE
|
|
erk5dRMxOfN1mPeisfshW1ne1a1577Y6x5R3U0zze31FOWI6ze0byU098kRlzbxM9qrMlPDpyRMR
|
|
Md5Vt/Ihp5898mWZm1pjftE91uCt7fCI7dWeHDEW3t723l6rslqxWZnasR+SYhFbzhnfxJ2jyeq9
|
|
lcGXWZcmW0zWKxHLaI7794eJx5fpfEKabT8t8l5isddo3l9S4VjrwrRUwzSJt3tav3pdOL6Y6dXD
|
|
j8HFWm+/KsU4NRXPvtWazHquWVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAa+fXYNP9u8b+kdZBsDkZOO135cWOZn4y5Wu4xqctbe9y19Kp4njt6vi+PDm8DFMWybbzPlV
|
|
5PiGtz67UxbNbeKTtWIjaIXYpnwuaftT5tXJT3vmi1pMsrU5qIrG1V1a+5DCa7b9GFbRr5J6Wnbt
|
|
Cu+Wmk0m8956z8ZWZNorbfzcbX5rZslazPux3hUt41NTntktObJ13+zX1bek01r4/HzVm0bxPXy/
|
|
+bNfDgjVa2uOY92kdfg6ufJOKvLXtttVVSqbcta2vM7zXtHpLQy5ZtMd+vWd+7Zy3mdJHXra3f0c
|
|
vUarw7zFY5rT2hH1Lavnrgx81p3U49Pk4nE5L35MO/StfNRXR5tXnrS8W67WvfyiPSPi7uLHFK1p
|
|
jrtSsbR5Lc4RzsXBaYreP4l45esRD2HD9fnw6evvWvO3Tfr0aGk0U55ra0TFInv6uzgrXFXlx0i0
|
|
77RPlC83Yj+JW7oddqr6vHzTTw9/f6dod+L1t9m0T8pcbFSmPHER3892W0zPuz+jSbVvidkcqmfP
|
|
Sel7bekrI4n4dZnPWIrHeYnZee2Wpy8dEaml4npNZblw5qzb8M9JbYgAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAABEzFYmZnaI7yCXL1XGa0jJXT0571nbee27DiXEprp8nhbxG20W8
|
|
5cbD0ikfnKO+urTPvjoZdXqctdsmTaPSvRpWmsdZ6yztfaGplvv3lWW1tyRlz1x0vkn7Vo5atTNe
|
|
Y0+1o79V2KsZsvX7Ne5mwxnyTNvsx2iGneM/rCdRSuOsTasTt5kRFtpjqmOH4t4nk7estiMNa97R
|
|
Hwhna0iuKTEdmGWa4672nZtRele1N59Zlq6vLOSsYorEc07qcW65euzRvtXvPZy52naZ7ujr6fXV
|
|
rWdukREK8+njHgmZmPc67bq6ivVWhxxgxZLztNrT1mZ/SP4VZs0zaOvfp84WUtNsXLvtv3699+rU
|
|
z7+Jtt5qURqMnPpctaR1rMSw4ZoK57eNk6xHaJRh97Ltt7lo5Z+L1HAPZvVauZ2nFTSzMTzeJEz8
|
|
to6xPfvsZntPZ9rXxabmxzefdrv0j1dXh/BcmstW1qxTHHasR3+b0GPhGl+kWmd64dNEVjf73T7X
|
|
y8vy+Ddx6O3iRakxTH5RXrMw1/lX+3Itw2MFIraN48qRHdZi0cUjmmPen9noox1iO0fNzdXEYrTt
|
|
stcmd9aX0bJ+HePmiKTitO8TMLZ1cVjrMfqpz6ys4pjfrPRWZ9rXXptUit6zO+23VyaRHEc05L1/
|
|
w9J9ys/en1ljqdVbwYw452tlnl3jyjzbmmiMeKtYjpEbLeTXPUU8ee/+qjJpsV5rbkrFqzE1tEbT
|
|
DpYNbW21Mnu29fKWna0KbqTdjXXjld0cvQ63ltGHNPSfs2n+HUbS9c2s2UASqAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAOVxPWe99HpP8ArmP4b+r1EabT3yT3iOkesvMVtN7za07zad5l
|
|
XV5GmM9vVfEstvDx0jtaVVMlq+UJ18b5cMRvPeSuK87bUt+i2Z3PtG7zXpjkzXt6R+TXyTMzvM7t
|
|
ydHqZ+zhv1+Cv/ZuqvPTHMfOYaTMil1a1K2vHSLTELq2v+KWzThGo84rH5rq8JzedqR+ZeI7WnOS
|
|
34pYTafWXR/2Pln/AMyrKOCWnvmiPyR6O1y9585lhWJvl557Q6eo4T4dYiMvW3b3UanhldHpJtGX
|
|
e09unmjsT7eb1l4trI2t0hsZfrdNO0bzy+nzU20/+NmkzO9esz+TZxWis9dttvPv+Tn21jjaW8zn
|
|
26bTG3mp1M/Wzv3t0jyWXiKZJmsTERaZhXXDbNl8WaztWenxZLstPp5pau8frDtVrNMM5cfTfpMf
|
|
3aunxxbes9d/R09Dp8ebJi09ptFr3jtt2WyrW9wy1Jx132mK+Xq9PotT0iIU19ntLtExa3T47T+q
|
|
6nBaYvsZstZ+cT/LeMnUi0TXffo1s2m8Ws2/OIMWk5Jib5L328rS2t94Sh5TV4ppklpW6PT6rh+P
|
|
NbebTHyas8E081mZy5P2W6OFhjxNTE/hr/LoRO0Kvo9dPqctKzMxEx1la5t3tdnjnMs4noievcrO
|
|
yZjeFF1OSnNV0OG62cn1GWffj7Mz5w05joovzY7xes7TE7w0xrjPeex6Ua+j1UarBFu1o6Wj0lsN
|
|
3JfQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACrU5o0+nvlt92P3BxuM6nxNRGCs+7Tv8
|
|
2hToxm1r3m9utrTvMsonqyt7XTmcja0u3O6FMfi5t/u0/lzdJM81p9O3zdvHTwsUR5+bfPqOfX1h
|
|
dqV+3O7bs1+T31oqmI3TEM4rvCdkDGIIhlFd2daboS0NXG2bD6bufxXU1vlmu/u4us/N0+L1tTSx
|
|
kr9qk7w89j1FNZMV3jxLzvaJ8mer+LSOZqK2xZotbvljfr/89U453rXt9lse081xZtNjx7TGKu0t
|
|
DHlrevSevaN5Y6+tJ8c7VRNMt63n3ub+6/R54rERMztDYy4a5omclYmfxKcenrjtHLvtPrCnVmdb
|
|
eFe3JXmjy6eS/DrMuLVYsta9Mdt++6qLxO+0dEc8UmInr18iUfReHcXrqccb9Z27Q61Lb13eJ9nc
|
|
1Z35rTvE9avY4bTkpG8xEfB05vYxqybc07R281naGMREdoT5JQqy9mply7Q3bV3iXG1eXw7TWSka
|
|
c258t7+tpT5/BjT7MfHqndz12Z+M4lMMKyziUJJiN1WSu9fku23RaOgKNJqbaTU1t9yelo+D0cTE
|
|
xEx1iXmM1Nt3W4PqvFweDaffx9vjDbGvxz+TP66QDRiAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAOJxzU73rp6z296zsZMkYsdr2naKxvLyObNOfNfJbvad1dXkaeOdpvsc2yuZVzfbfqybutwu
|
|
s5s8R92J3dvJb3tnO4HSMegtmt3nfZvYp8SZl0z45NfSK7onH1bNcfRFqnUKJr0Y7dVtq7prjEsK
|
|
0XVpEM6028mW20IHK41aPo3J6zs4ODhdcvPnvExFevNXpMOrxi/PlrTee7PLX6Pwa09uaNlKtHg9
|
|
dM3z5d7ReOu02nu0JzZMfblrv5R5uvrcdImZ26T1mYhxs1Os7RH93PZ7axuafNfLitvbaYU3yZYt
|
|
PXs9NwHhui1HBa5LVicsb81onrEuVqNNSuS8Y67dZ6xPZa59Il9uX41vEitImZme3q2Kxbxora0T
|
|
Md/ROSa4Ztkj7c9OafL5LuGYubmyX3iu/TfbdSfVnpvZLT/XZK233+Mbbva1xRXyiPk8pwbH4N6T
|
|
adq5a71n0tD1WDL4tPe6Xr0tDpz8YVnJHWEXYxbqlBedoef4tW0XraO09HdyztSZcbUz43C+ee9b
|
|
SVMaeOfqq7+jGckQ1Yz7+7v2RN/WXPXZPjci2+2yyJaVMuy+uSJlA2d+pNoVRbeDcSxyTE+TDDlt
|
|
pdRXLTynrHrDOyiyZeVFnY9TjvXJjres71tG8MnJ4Nqt4tp7T1jrV1nRL1x2cvABKAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAHJ49qfD09cNZ97JPX5PPw2uI6j6Vrsl/ux7tfk1mWr7dOM8iLdm
|
|
vfebREefRsWldw7SxqNbWbR7lPesrn3Vteo7dYjDpMGCvfbeXQ0uLlxRLRxROfUc34p6fCHYrXlr
|
|
EejqrjY8uzCYW7MZjdVKqK9VlaxCYrsnYExBMRMJRPZA8/xPHtmpP9W2xx76vhWOInvt/C7ike7N
|
|
vwzE9kcapGfhlevTaFbFo8RqJ5vy8/RoW09ek0msxHfp3dzNoLzp4zUmZpMbT8HJyYJi20X2n0lh
|
|
ZY1li/RaidBF4w2mK3jrHaFGp1lN+tptPp5IjBkid5mIp16TKu0abBPv33vPlM7z+iPdFNcWXU5I
|
|
tkrNce/b1W5db1nTaf3ax9q0fxDW1ebNk2phty1mOu09VOm8W19orEz23j1TwfSeERFuEYMddptW
|
|
d43dvBn21eKJ75KbW+cf/JcTgMxXTb3nbljz+TpcPmc2uyZO1KRtVtGVdi0bx07qJnllsRO6rNTe
|
|
N4XVamsy8mnvPwc3R2jPwe8TPbdlxXNOPSZfhWWpwO85OFzv57qrODkzeHntSe8Sn6Rv0a3EZ218
|
|
8nXekfr1a0ZLVnqx19dWb6demXybOO7lYMvNMdW9S/VVLo0us7tPHdtUtEwJiZU3jq2Jhham8CVG
|
|
PNODNTJXvWd3qcWSubFXJWd4tG8PK3pPd1OB6veLaa89Y61/u2xfxh5c/rsgNHOAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAANLimq+i6O0xPv392rdeZ4rq/pOqnlnelOkIt5F8Z7Wj27I2I6sb25YY
|
|
V1ImY3dbQ08LRc23vZp2j5OJG+XJWle9p2h6HHtbJXFT7OOIpX+7TxT31j5rycdTh+Dpz+XaG/sw
|
|
w18PHWseULN2trBE9UcrJKBhFU7JAQi0dEomegNDUYovM7x3jb5tO1ZvpbaTLtzRExWfWPJ08kbT
|
|
Ex5NXWYYyV5omYtHWJieyeDzuizfRs19Jn6TM7Ru1uMcJxZqTkw+5f4ebqa7SV1MR4tdrx2vEfy1
|
|
axqsNOTLjnLXytVXi3Xj8+nmsxTLM16d5npPyUzpekTtSK+U7vS6vQ/SYmK1vWPS1HOn2dvvvvE/
|
|
tDO5XlcO+LbfHSd/W3o6/BdDOXPTnj3Kz38rS6Wm4FNrRyRzTH3p6RH/AKvR8L4dXSzE3jmtHn5I
|
|
mbfqLV+m4dbLSsZInHjr3iI6zLpYaxS01rHuxHRHiT9mv6s67Vj1aqL6326MrWiYa+/Q54BxPaGe
|
|
XRZpj8MquB4+Xg8zPnB7SX30to379GxpK1xcHiKz5IS8xr8PLPixH2bftLTy05o6dHYyVjLhy0t1
|
|
izjZa3pMVv3iO/qz1G2L+NbSajbNyW7xLsY8kTDz+fJXFqKZN4iZnafi6WHL0iYlStI7OO+7axW2
|
|
crFl7dW9jvE9ULN+J3ZbdFGOy+AYWpEqN7afNXLj+1Wd23KrJVMvCzseh0+auow1yU7WhY4fCdV4
|
|
OadPefcvPuz6S7jol649Tl4AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAV581NPhtkvO0R+4NPi2
|
|
r8DB4dJ9+/7Q83Po2NTqLanNbLfvPaPSFDHV66sZ5ET0hRknyW2lTtMyouz0c8usx2n7s7vScKwx
|
|
zc1vu/y85p+maJh6Th+SOWeveXR4/wDLm8v+nX5mUWa9bbrInolmu5jdTNkxYFk2Isr3TuCzeGMz
|
|
+THdEyDDJO9Ja823rt2XWnya946pGvktDXta0ztWu/ybvLE9dkcoOf4GbJPWK1j49VmLh9JtE33v
|
|
Mevb9G7WsW8l1ccREISophiJ2jpDYpijbaOjOuOJ8ujOdqxsgVcsUjaETYvbaFFrgu5lVsm0yUtu
|
|
ryg43H5m+GIj1XcJzePoL4pnrWGtxmfchr8JvfHS1622if3QljzTTLes+qrNjrkiYtCzPMxnm095
|
|
YZJ6boS5teB49Tqscza97VtvWvlv8V/FOF34RrIxTM2xXjelp/eHoeA6XnzReY3ivX/0dfivDcfE
|
|
9HbDbaLx1pb0lOs+jO7K8Lis3cN+0NKcd9PmthzV5clJ2mF9J9GHHVL108dm1SznYr/Ft0tuhLb8
|
|
mNohFbMhLWy0mJ3rPXvDvcO1karBG8/WV6Wj+7kWrvDDBlvpdRGSnbzj1hpjX4z8mOx6UYYstc2O
|
|
uSk71tG7Ns5AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeXneJ62dVl5KT9VTt8Z9W9xbWclPo+O
|
|
fft9qfSHEU1pv48ftYST23ZTDC/p0YtlVuvVjMbM5+LCZjYGWGdrTPxiHY4ffaf3cjTxz1v6xMS6
|
|
Olty2iXVj/Dk8n+ndrkhnGRo1v8AFdW3RCrZ5uiYsqrboncSu508yjmZRYQt50TfowYTbYGVrKrT
|
|
uTZjvukQnYhMIGVY2ZxPVWyrHVCWzXpVXkt3TE7Va+W4K7X3jv1auTNy3jdba0RZpamfroQN7Hk3
|
|
6wr1GTaN2OOJiu6Mu98NvgDi8Wy74d/yZ8PiPAiO2zU4nb6qIn1bugjfFE/ASp1ke9u15mbbRDZ1
|
|
Mb823kx0Ontn1OOkedoJCvT8I03gaKsz9q/WW+isRWsVjtHRKyrhe0XCfpWL6Vgr9fjjrEfeh5fF
|
|
feH0V5Dj3DPoOo+k4a/U5J6xH3ZZ7z3228evytOk7NvFbo0cdols47bSybt7HbddHVqUs2aW3Qnq
|
|
xVeu8LILR3SlZw3V/R8nhXn6u0/pLuPMXjeHT4Zruf6jLPvR9mZ8/g1xrvpz+TH7HUAaMAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAABRq9VXSYJyW79qx6yvmdo3l5viGs+maqYrO+OnSvx+KLeLZz2te1rZL2v
|
|
ed7WneZYWnZl5K72YV1xEyxmeqJljzIEWlVkszvbZp5soN3h2SJz3pP3odCnuWmPRxuERfJrZmtZ
|
|
mtY96fR28kbX3dXj/wAuTyf6bmK+9YX1s0cNtm3Sd4LFY2K23W1s16StiUJW7bp22RW3RluBuruz
|
|
mWEgrmCGWyNkoExKE1QlPmsqRDKeyBjaejWy2W3ttDUyz1QKslvehVqKTNosyyTvELabXptIJpaP
|
|
B39Ia2mz+JGpr51jdZefDx2hzuHZObNq58poJaGtjxJ2+LoaKP8ADRPo5+T3skx5OhpOmC0fBNQ0
|
|
5yTbn+bt8A0u9raiY6RHLVwY62mI6zMvaaHBGn0mPHt1iN5+aYVsACBXqMFNTgviyxvW0bSsAeE1
|
|
mkvw7V2w5Ote9besJx2er4rw2nEdNNekZa9aW9JeQjnxZLYskTW9Z2mJY7zz26fHrrdpbZsY7NGt
|
|
mxjvso1b9NmUwpx33XRO4K7VUTE1nmrvEx1bVo2VWiJE/XY4frY1WPlt0y17x6/FuPM0m+HJGTHO
|
|
1qu9pNVXVYt46Xj7VfRtnXXL5MfzexsALsgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHM4jxOMFJphmJv529Dq
|
|
ZLfjDjPEIx450+K3v2+1MeUOHSOWFc3nJkmZnf4yujpVlqunOeFpV2nctLCZUXRM7MJtsWlRkv3Q
|
|
ky5NmpWt9RnrixVm17TtEQnJabXisRMzPSIew9n+CRoccajURvqLx5/chfOest642OGcIpoOG2w7
|
|
ROW9d72+LQvXevyejcPUU5M+SvpLeOataraw2a0dLbLqTtK1G3Es4lVWWUSoldFtmcXUbpidgXzK
|
|
GEW3TuCUSncnsDFMMLSms9EC6J6FpVzbZE5ALy0809ZbFr9GtfrEoFMzuuwz0Ueey3HbaBLDXe7i
|
|
tMOfwWnP9I+NZbuttvhs1uBRtXPb4SDm3iIvf57N7Dbl0VrS5+XrltEd+Z1Jx7cNms9N4TURRw3T
|
|
+PrcO3WszEvZOD7P6aYiMlvu16S7y1QAIAABxOPcLnUY/pWCv1tI96I+9DtgmXl68Biy7/NtUu3+
|
|
O8HnFa2s0tfd75KR5fFyMWTdhrPHVnX9R0cd21S3Rzsdm1iuqs256wrmGcT0RYSx5d047X02SMmO
|
|
esd49YRE9WcdSXhZ2O1p89NRji9J+cei1xMc3wXi+KZj1j1dTTaqmor06WjvWW+ddcu8XK8BZmAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAMMmWmKu952UZ9XFZmuP3revlDTtzWnmvO8q3XGmfHb9ZanV3yxtWeWn7y4es
|
|
vPNtDqZJ6Ts5mppvdl/XXRMyfGvSNlu/RVvtOzLfoipLT1VTKbSpvfogRkvtDVyZOhkyvQcA4Dzz
|
|
XV6yvTvTHMfvK+c9U3rkW+zvA/D21urr789cdZ8vi9KDb45rejl8Rry6iJ/FV1HP4vXbBTJEfYt1
|
|
+UpiHM295bXsqrO9l8QkZ0lZEqqLeyBZHZLGvZkhIndADKJ3TMoqWQMZ6pjsxll2jsCLSrmU2lFY
|
|
36gieyu0LJk3jbsga0wdqzK20QpyztQGprL/AFMrOE05NLkt6qdVWZxNrSe5o9vWBLiUjnzXn0vL
|
|
q555dHt8HOwV928/1z/LpzXxbYccRvzTB+jucOwxh0dI22mY3ltIrHLWIjyjZKyoAAAAACJiJjaY
|
|
3iXleM8InR5J1GniZw2n3oj7s/8Ao9Wi9a3rNbRE1mNpifNFnVs65XhcWTdt47bnFuF24dm8TFEz
|
|
p7T0/pn0a+HJux1OOrOux08d1ndqY7tillVkzExLOk7yd4YxGwluViJhE45raL0na0dtlWO0+bZr
|
|
1TKi+2zptZGTamT3b/tLacvJjiY3XaTWdYxZZ6/dtPm1zrv1z78fPcbwC7EAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABhkyV
|
|
xUm152iAZWtFazNp2iGhm1Vss8uP3aevnKrNntqLdelI7VRHRnrX/HRjx/tZREVjZXeybW6KbWZt
|
|
pCZ6S08tN7Nmbb7zCrJtyoS5145bSx5mWafelr3tsKmS/o08uXyhlly7RPV2+AcBnPNdZrK+53pS
|
|
fP4ytnPVda4y4BwHxOXV6uvu96Unz+MvVxG0bQRG0bR2G0nHLb2gCUDX12LxtFmpHeazt82wT1gH
|
|
mMN4tWs+rcr2aEV8DU5sM/cvO3yb+O0csLUTSdrLphRE8tlkZI7Atr2ZMazDJVKTYSCawi7Ksq7z
|
|
1QERvLK3ZGPrKbyCrbdnMcsbeaa18/RhvvM7oGEwTG0JmYYTIML22a2e28xELM19oURPNO4lOem+
|
|
n3ZY5+prVnMc2GYU4/L4A0a15cNf6rz/AC6fC6+NxCPOuOu/5tHJTbHj+F5/l1+BYumXJMd9o3/d
|
|
MRXYASgAAAAAAABhlxUz4rY8lYtS0bTEvH8R4ffhmo6bzhtPu29Pg9mq1Gnx6rDbFmrzVsizq2df
|
|
zXkMWTeIbNL7tbXaHLwzUctvexWn3bmPL8WFnHVL326VZ91MfFVjvvVlz79kLrcf2m7j7bNHH3bl
|
|
J2SirLQoy4t1++7G0dBC/RanxI8PJPv18/WG241+alovSdrV6w6mDNGfFF4/OPSW2b1zeTPL1aAs
|
|
zAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAVZ9RXBTe3WZ7R6iZOpzZq4ac1p+UermZMl89+a/byj0Ra9815ted59PQ32hlrXXRjH
|
|
DpCLX6ML5NlNsm/ZRqstfdXzbsZt06sLZNvNB1Za8RDWyZdo7q8udq5Mu/mIMt4md2lmy7JzZuWJ
|
|
dHgfBL8RvGo1MTXTxPSPx/8AstJ1XWpIs4BwSdbeNVqq/URPu0n73/s9hEREbRG0QUpWlYrWIisR
|
|
tER5JbSccur2gCUAAAAPM8Sry8Uyz67fwuxbzVPGsE49XGbvF42V4M0TEL33ERnktsxpk3sumK2j
|
|
admFdPFZ33VS2Mdui2J3UU6LYlFSsN2O5NkCyJ6K7T1TEsbAsxdpReerKkTFGMxvYEz0rsqtbbpC
|
|
b2VT1QEzuwtbaGUxspuJU3neWdKoiu8rq12gCI92YatLcublnzbEz1aOptyZqTuDHLfxN6R0+t5X
|
|
qdJhjBp6UiPLeXl9NSMnEKxHa1+bb8nrlvxUAAAAAAAAAAABTqtNj1eC2LLXeto/R43VabJw/VTh
|
|
ydY+7b1h7ho8V4dXiGlmvbJXrS3xRZ1fGv5rzeHN02bEW3cys3xZJx5ImtqztMS3MeTeGFjqlb2O
|
|
8btql3NpbZtYsnSBLeiWfdTjtutid+ghherHS5p0+f3vsX6T8Fkw181d4lMvEWdnHaGnw/UeNh5L
|
|
T7+PpPxbjdyWcvAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAo1Oprgr63ntAmTqdRqK4K9etp7Q5d7Wy2m953lNrWyWm953mVd77R0
|
|
Za1104xxlN9lV8qnJl2a9s3xUXX2ybsJyRDWtl3YWydEC+2VRkzeW6q+T4tbJm+KRdfK1cmWZnlr
|
|
vNp7RC/R6HU8SycmCk7ed57Q9ZwvgOn4fEXtHi5/O9o7fJaZ6z1uRyOEezVstq6jiEbV71xevzer
|
|
rWtKxWsRFY6REeSRrJxz22gCUAAAAAANbX6aNVpL0npMRvWfSXlKamsRMVvXm+EvZXjmpaPWHzfL
|
|
oNRjzXicfWJ8phfPxFejx72x7xMzK+sXiNoiXlq+Pi6fWV/VfTNqfLJl/WTg9Pji8R70LqvMV1Gq
|
|
j/zcv6yz+lanzzZP1lWpelTET6S81Gp1P/Gyf90s412rjtnyfqql6asREdWM9+jz9eJ6yP8Az7uh
|
|
odZqMt458tpB1JvEViI3/RhzRt13/R1MNaziiZiJn5K9ZNceKZiIiQcu/WekT+iYrWI3lzdTrs+8
|
|
8uW0fJzcur1Np/zsn6g79phVaIeetqNR/wAXJ/3SwnUaj/i5P+6UD0ldonum161h5mNRqP8Ai5P1
|
|
lNtRqJjacuT9Qd22WN5aGeZyZd/KHJy59RHbLf8AVq31Gp/4uT9ZEvS8Lr/vSs2npzRtL1z53wK+
|
|
oza/HW2XJNd99pmX0Rb8VAAAAAAAAAAAAAAcHj/C5yV+l4I9+v24jzj1cLFk8nu5jeNpeW41wmdL
|
|
knU6ev1Vp96sfdn/ANFdTrXG+eq1q5F2LLtbZoY8m8d11bbSydErsYsm+zZrO/zcnBm226uhiyRK
|
|
EtrvCrJDOJTeu8A1MWX6Lqq5N/dnpb5O5ExMbx2cPNTeJb/DM/iYPDtPvY+nzhri/jDy5/W6AuwA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAa2p1UYo5adbz+xbxMlvqJ1OqjDHLXree0ejmzNrWm953tPmTPWbWneZ7yoy5YhjrXXTjH8s75N
|
|
mtkyxt0VZM2/m175N1V03yTKubMLXVXybeYLLX2VXy7eam+b0bOg4VquJW+rry4/O9uyZOq3UjVm
|
|
9r25axMzPaIdvhns1kzbZddM0p5Y47z8/R2+HcF03Doi1a8+Xzvbv+TotJnjDXkt+K8ODHp8cY8N
|
|
IpSO0RCwF2YAAAAAAAAACvUZYw6fJkntWN3k8dfHz2vLucdz8mkjFE9bz1+UOZosX1UzPm0nqI/W
|
|
MYo9FlcPNklfFGeH/NshLGun+Cz6PtHZtVZWlRLS+jxPkRpIn7rdoupHTdA5s6SI+7H6Mfo+32Y2
|
|
+To3neSIiZ7A0IjPXpXLePlMotGW3272t85datKzHZjbTVnsDj+FG/2Y/RlGP4R+jo20u7H6N1Ql
|
|
o+H8I/REY957R+jpfReiK6eOYHLtj2tttH6KrY/6Y/R2c+kjeJiFVtLG24hxpw7/AHY/RRkw9O37
|
|
O99Hrt1YX0tfOBLjcGp4XF8c+u8fs9c4dcVcGemSI61nd3IneN1orQAAAAAAAAAAAAABFqxes1tE
|
|
TE9JiUgPKcX4RbRXnNgiZwWnrH4XPi28PdXpW9JraImsxtMS8pxXhF9DecuGJtgmf+1TWW2N/la1
|
|
L7N7T5e3Vy6W3hsYcvLbqzbO9jvvCzvDR0+XeO7crO6FmGSvRThy/RtVXJ92elvk2rRvDUzU7pl4
|
|
izsd2J3jeBpcNz+Lg5LT7+Pp+Xk3W7js5eAAgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADs0NTrN96Yp6edkW8Wzm6+LNTq4pvTHO9vOfRoWtt
|
|
1mes95YWvs1s2fZldddOczLPLn2ju0MmebT3YZc2/mpm3qqllN1drsbZIhr3yzvtHf4AsvlYYseb
|
|
V5Yx4KTe0+UQ6nDvZ3UazbJqd8OKeu33peq0eh0+hxcmnxxWPOfOfm0mP+steT/ji8N9mKY9suum
|
|
L37+HHaPm9DSlaVitKxWsdohI0Y22gAgAAAAAAAAAABXnyRhw3yT92Nwef4xm8bVzET0rPJH5d12
|
|
CvLhho3rN9RWs9Z23n5y6O21YhrVYbdGOCfrrLPJRpv863zVS6FS09SvZj3lVZZRdPSqmnSWdrIE
|
|
ebOkK4ldTsgW1WKqd1oMZhEVZyRAImOjGI6rJ7IiATNd46qL02bHkiaxaoNGY2n4ImPgtyV2n0Vo
|
|
Gvlx7x2beiyTk08RPevSVUxux00+Fn2n7N+n5rRFb4AAAAAAAAAAAAAAACLVres1tETWekxKQHlu
|
|
L8InR2nPp43wz3j8P/s5dLveWrFqzW0bxPeJeV4xwmdFec+CJnDM9Y/CrY1xv8qvTZ+WYdbDk5oh
|
|
5zHk283U0eo3jaZZ2N5XYjrCnLSJhOK+8d1kxvCqzSwZvousrb7k9LfJ3nB1OLeJdLhufx9LEWn3
|
|
6e7LXN9Ofy5/W4AuxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAETaKxMzO0Qi9646Ta07RDmZ9VbPbaOlI7Qi3i+c3TPUaqcu9adKfy0722ZXvFa9
|
|
XO1OrjrESxt66ZJmcjPUanlidmhkzTZVfLN5VWvsC2b7R3U3yqrZZtO1esz2h2+F+zWTUcuXXTNM
|
|
feKR3n5+iZLVbqRzNJo9TxHLyaekz62ntD1fDOA6fQbZL7Zc/wCKY6R8odLBgxabFGPDSKUjyiFj
|
|
SZkYa3aALKAAAAAAAAAAAAAADQ4pl2pTFH3p3n5Q33E12Tn1eSfKscsLZ+orS00eJqbW+Lfnu1tF
|
|
XaJnZsz3WpCfsyp00fWSvmPdVYOmSUDd8kR3InoQosy7JmUX7MdwZ17ro7KKT1XRPRAsrO0rYndr
|
|
79V1ZBaQiJ6JgCSIJASwrO07MpV2nqBlrv1a1o2bf2qtfLXaQUTO0sb05o3jv3ZXhjS20xEphW5h
|
|
yeJjjf7UdJWNKLziyRePsz0lux1SgAQAAAAAAAAAAAAAADG9K5KTS8Rato2mJZAPIcU4ZbQZuekT
|
|
OC3afT4NXFkmlntc2GmoxWx5K71tG0vHa/RX0GpmlutJ61t6wrY2xr8dXS5uesN+tt4ef0eaa223
|
|
2dnHk3juyreM81OaFGiy/RtZET9jJ7s/2bdutd2jqKeic3iNTsd8a2h1H0jTVtP2o6W+bZbOO+gA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABje9cdJt
|
|
adohGTLXFTmvO0fy52bJfU23t0pHaqLeL5xdK9Rnvqb+cUjtCi94xxvK3JetKuHrdZvaa1ljb10y
|
|
cnIs1Wt3naJc++TmVWvMz1YWybfMGdsm3eWek0mo4jm8PT0mfW3lDf4V7P5tdMZdRviwfvZ6/TaX
|
|
DpMMYsFIpWPTzXmf+steT8jn8L4Dp+HxF77Zc/4pjpHydYGjC3oAAAAAAAAAAAAAAAAADG9opS1p
|
|
7RG7zszN6WtPe0zLua+3Joss/wBOzhzG2OsL5+IrY09dsSyYRijbHEMvOChb7KjF0yS2LQ169Mso
|
|
S24noyrPVXWejNVKbTuw3T3REdQWU6LYlVvsyiUDPfqupPRr79VuOQX1lZEqoZxIMksd0gT2VT0l
|
|
bPZVbuCaW8i8bwr32WxbcGnkjaZa9p2ndv5qbw5+aNugLItF6TEtvTX5sMb969HMpfazc0d9stqe
|
|
vVZDdAQAAAAAAAAAAAAAAAADV1+iprtPOO/2u9bektoB4TJTJpNRbHkja1Z6uto8viVht+0HDvpG
|
|
H6Tjj6zHHvbecONw7Ltfkmeqmo6Ma69DXbbZTkr1mGWO3RneOaGbZRoM30fVzSelMnT83aef1FZ7
|
|
x3h1tBqfpGnjmn369LNc3sc3kzy9bQCzIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAa+q1dNNXr7157VhGp1Xh70x+9f9ocy283m1p5rz3mVbrjXHjt91lz
|
|
5c9+fJ1nyjyhdM8lZlOOIiqrUXikd+kMreunnI5XEdX4dZiZcG+XmtNl/F83PeeWWHDOGanieSKY
|
|
q+5H2rz2hMzWd1Iqx1yajJXHhrNrW6REeb1nCPZumn2z62Ivl7xTyr/6uhwzhGn4Zj2xxzZJ+1kn
|
|
vLoNJnjHW7TbbsAszAAAAAAAAAAAAAAAAAAAAaPFrbaSK/itEOXt0rDf4xb/ACa/GZacRvaF58Q2
|
|
IjasQnzPIhCU92tMbZGzHmotG10C6nZkwpPRmipIllEbMIZIE7solgmJBnCyk9VMM6z1BtVllEqK
|
|
z0WRILYlluriWcSDJVbusV27gwInaSWM9ECyZ3hqamnSWxFmOSOaqRx725bNnSZNs9J+OynVY+WZ
|
|
YYr7TE+nVaIr0Ais81Yn1hKAAAAAAAAAAAAAAAAAABExvG09peU4nov9n66L0j6q/WPg9Y1OJaON
|
|
ZpL0+9HWs/EWzeVz9PbmrEtnyc3h9reHy26TWdnSr2YX6657ijLXpLX0+onSamL/AHJ6W+Tbv2aW
|
|
ekTv16JzeI1Ox6KJiYiY7Slz+E6jxdN4dp3vj6fl5Og2clnKACAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACZ2jeQRMxEbzO0Q08uqtkma4ulfO3r8lefUePMxWf
|
|
cjy9WvlzVxV6T1Z61/x0Y8f7Wc7Ur1lqVy+LqOWJ2hp6rXddon5rOF1tfmz5OkT0qzb8dWbxjp1c
|
|
biuuilJ5Z6r+IcQrixzEy8zl1E6rNt1tMztFY81sztU1eRucN4ffi2p5esRM72n0h7rS6XFo8FcO
|
|
CkVpX082nwXh3+z9FWLxHi36328vg6TZyW9ABAAAAAAAAAAAAAAAAAAAAAADj8Unm1tK/hqppHvw
|
|
y1k8/EMk+m0GOPeafiFpCZYwolnXspvHvLa9mF46gmnZmwozRUiUCBKYYsoBLOFbKAX0llEqqyzi
|
|
QXRLOJVRLOOwLIljZMEgrlhKyYYTAK5nZPN0RZjugUanHzVlz6xtLq361c+9eXItPpXX0dubTU+E
|
|
bL2lw2++O1fSW6m/VYAISAAAAAAAAAAAAAAAAAp1GbwcfTreelYEydcuMcRrM/L9nnlsV6wqpi2r
|
|
tv133mfWVkRyRtEdGFva7MzkYZNoamWN4bV4mYa9qztKIujhVppxGI8r1mJegeZpknBqKZY+7L0t
|
|
LRekWrO8TG8Ns/HJ5ZypAWZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAADS12fp4VJ6z9qVuq1HgUiI+3bpDl589cOKZmevqprXPTbx477rDJlrhr1nq4+s182tMRP
|
|
RqaziXiZJrWekNG17ZbxWJ336M5LXRbI3dLTJrs07RMY6fan1dHLrowY+X7MVjt6N3R6Kul0EbWm
|
|
s7bz8Z+LnabQX43r7Y53php/mXj+Dnv0f1JO1x/8ZxbUzj02O15mfLtD13AvZqnDds+pmMmo26el
|
|
XX0Wh0/D8EYtNjilY7+s/NstpOOTW7QBKgAAAAAAAAAAAAAAAAAAAAAADG88tLW9I3BwJtz6nNf1
|
|
vK/DHVqYJ3pzT5y3MPZeojOWMQylEKpTVjZnDCwkqzYQyRRICATCITAJZQxhMAshnEq4ZQC2srKq
|
|
qrIBZCWNZZgwswmFloVyCu0dFcx1WyrtCBhv5NTPHXds2U5o3hIz4ffbPt+KHUcTSW5c9Jme0u2v
|
|
VYAKpAAAAAAAAAAAAAAAAYZctcVOa35R6tLrltN795/YvknNqrfhpPLH92V5isd9mWq6fHjk6rn0
|
|
ZxG8KK5Jm/wbVZiYZtqrmkqL023bkxvCiY3lJHNyRG81mHS4Rn5sNsNp64+3yaWaNrzOzHBl+i6q
|
|
mT7s9J+S+ay8mex6EIneN47SNXKAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAImYiJme0JafEs3h6fkidrZOn5eaLeJk7eOdm1Hi2vmtPTry/CHmOJcUvmvOPF1n09Pm
|
|
6HF9ZGm01qxO3R5vSY7XwzmzTy47zzTEd7en5Mfvt2/PURWdo3tvPrPlKymbktFqTtMTvHzbOLDG
|
|
f63JXbFX7FdnoODcDprZpq9TjiMMTvSn4vj8l5fxnrk91saPSa7i2hpOfbTVt5x1m0fLydzR6PDo
|
|
dPGHBXasd585n1lsRERG0dIF5OOe6tAEqgAAAAAAAAAAAAAAAAAAAAAAADX11+TRZrf0y2Gjxe22
|
|
gtH4piP3TPpXKwxtjhuYo9xq442iIblI2pC1RET2ILd9kxCqRjZmwlCSEohIJAQAAJZISDKGUd2M
|
|
MoBnVbVVCyAWVWeSuqyOwIlXZZKue4MJV2WWYT2QKbKL9YlfdRdIo35b7/Hd3KTzUrPrDh27uxpb
|
|
c2mpPwX/ABX9XAKpAAAAAAAAAAAAAACekTIp1eTwtJmv+GkyJn1oafeazbfpMzLR4jq/o8b823zX
|
|
6XNF8ERCvTcNpxLV5LauvPhx9Irv3lhztdtv8TtaWLicXrt03jzjzb2k1nid56ty3s/w+a7Uwzjn
|
|
1raejlarhmbhl/FpbxMO/fzj5p/ixSeXOvTtRfeI280ZI26tfDm3pWe63LaZx7qtGvniJ6tPLvOK
|
|
fOa9WzbJvTbza02jl3n5SSljscK1MajSxWZ96nSW88xw/VfQ9XMT9nfa3yemid43jtLeXsce88qQ
|
|
EqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADia3UTm1l4j7OP3Y/u
|
|
7Vp2rM+kPJW1PhYcmS0+9MzKm/jbwz31weMzbV8UppazPL9q0/BF4rk1GLDSNqxPWPhCnHmnNrtT
|
|
qPKteWPm6U6OdHaZvO+SaRNvhv12Ub/q3FhtrNVj0uKOt56z6R5y9zix1w4qY6RtWsREOJ7L6OKa
|
|
S2rvX6zNM7T6Vh3mmZyOfya7eACzIAAAAAAAAAAAAAAAAAAAAAAAAAAczjVvqMVfW/8AZ03I41bf
|
|
Lp6/OVs/UVrY47NyOzUxd4bUJpEbb3Z7IiOrKIVSjZhMLJYyhKIgmGUQSDESIEbJEgQmCITEAmGU
|
|
IiGUAyhZVhDOoM4Wx2VQtqBKuyyWEgqlhKyyuyBVaGtkbNmvk7A15l1eH2300R6TMORPSXT4ZO+O
|
|
8fFefEX63gEAAAAAAAAAAAAAAAq1WPxdLlp+Kkx+y1Fvsz8gjhaDauGK8sx07y3OE3m1tT6RaP4c
|
|
vU6yMNKUx73zT0ilY3l2eF6a+m0kRl/zbzz3+Ez5M8z26fJruW6wzYq5sV8d43raNpZjRzPPaTmx
|
|
5b6bJ9rHO3zb2WJ8GWPEscY9bgzxH2t62n19GWW0eHOzHU5XbjXZ1x8WTnz2iZ7S2M1IjH2+LX0V
|
|
KTqs8zO9ot0j8nUthi1J3UaOFMTfLFo6xMbS9BwHWTqdHOO8+/hnln5eTjYMFo1WTH5VnePzXcIm
|
|
2k4zlpPSmXy/hfF5eMfJns69OA2cgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAADG/2LfJ874rW845mubliY7bPoto5qzHrDz0+yePNF41OotaJ7RWNtpV1OtfHqZ715fhu
|
|
j8adNpcVfeyzE2/vLuanhOu1nEctIxTTFa/+ZPbZ3eHcF0vDbTfFE2yzG03t32+DokynXl9+leDB
|
|
TTYKYccbUpWIhYCzEAAAAAAAAAAAAAAAAAAAAAAAAAAAAcXjE/4zDH9M/wAu04XF5/3jj/0f3Wz9
|
|
RUYmzDWxS2I7FSyjuzY1ZKpRKEygEwiWUIkGIk2QJNhKQhMIhkCYZQxhlAMoZwwZwgWQshVCyATL
|
|
CWc9ldpBhZXLOVdpQK7NfJPRdaWvknoDVvPvOnwuel4+TlXn3nS4VPvXj4QtEV0wAAAAAAAAAAAA
|
|
AAAAAVV02CmTxK4qRf8AFFeq0AAAanEsfPpZmO9Ji0NDLfkwdOsulrumiyzHlVzJrz4Ovoy26vB8
|
|
cTBa9NffLtMY77Rv8Yegx5ImkKdJoY1HC81Y+3OSbVn0mGGkmbY45u6tnrrTOu2xGO0RxCd+nNVj
|
|
qKxTV1vH2pjaGtnyzXXYdo96ZmGXEMk15b7/AGZiVerWPTYckZcNbx5wzc7hGbnxXxzPWk7x8pdF
|
|
0S9jh1OXgAlUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAcPjEf4/FP9H93ccXjMf4vDP9Mx+62fqKrx+S+GvibEFSsqyYwlVK
|
|
ZYsmIMoRKYJQIPIEiQ2ATCUQygCGUIhMAyhnDCGUIFkLIV1ZxIMpVWWSrsCuyqyyyq09ECq8tfJK
|
|
66jJ2Bp5J6upwn7dv9Lk5J951uE/av8AJaIrqAAAAAAAAAAAAAAAAAAAAAAq1Mc2myxPnWf4cmtu
|
|
XT9fR0tffk0WSe28bfq5Wbamm3326MtunwfK6PCv/AxPraZ/dz9PO97/AOqf5dHhdZrw7Dv3mOb9
|
|
XOxRFM+avpe38mvkPHf/AFWlrKba7Tzt99ZxKkfR7euyNXMTrtPHfa0z+zPiM/UR8Zj+Wbdu8HpN
|
|
M2bfzrV13M4dO2pyR61dNvj44/J/oAWZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADj8bj63BPzdhyeNx0wz8ZWz9RWri7Nmv
|
|
VrYu0NmqaRZHZlDGGSiwxZSgCEkCBCQSCQBMJRCYgEsoYx3Z17AlMIhlCBnDOGEM4AlhZZKq4KrK
|
|
7LLKrIFN2vdfZReAaObu6/CO9vk5OePR1uEd7fJeIrqAIAAAAAAAAAAAAAAAAAAAAGtxCk5NFliI
|
|
3mI32+XVyNTyZOHTee946PQKPoeDffw4777eW/yVs60xv+ZxOnr4Okx1t05KRv8Ao41Z5q3yed5m
|
|
XY1szXRZ5jvFJ/hxItP0aOSN9q7yrtr4f2tHFM5+KT16Yq/vK/iGSbXw4vO14UcPx5MGfNbPG18m
|
|
1oj4THRsTw7VanPXVYpi3gzMcnrvCnG11JOupwuN8+a3pEQ6jT4divjxWnJExa09pbjbM5HHu90A
|
|
JUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAHM41H1GOf6nTc/jEf4Ws+lls/UX45uGekNujTwdm5RNIthKIZKLDFlsiQIShIC
|
|
EgCUJ7AmGTGO7IDzZQhMSDJMMYZQgZwzhhDOATuqssmVdgVWVWWyqtCBTeVF19lF+wNLNG7q8I+9
|
|
8nLyupwnt+S8RXUAQAAAAAAAAAAAAAAAAAAAAAAItWL1mto3iY2lyrcLyUxzix2ia2nvPeK+jrCL
|
|
OrTVnxpanhuPPemSs8l6RtE7dJj0ldpNP9GwRSZ3neZmV4cR/Vs4AJQAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANHi1d9H
|
|
M+kt5ra+vPoskfDdOfqK4mn7Q3aNHBPZu0W0RdDOGFWcKLCJZeTGQQlCQSgASBsCYZQxhlAJTAmA
|
|
TsmAgGcM4YQyjsgRLC3VnaVcgwsrt3Z2V2QK7tbJ1bN5a9waeWO7p8Knt8nNyebpcK8vkvlFdQBA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAK9RXmwZI+ErEWjesx6wQeZwejeo0cccuW8
|
|
elpblJaaRGxVnCuss4ZrMvJEgCAASISCQIBlCYYpieoM0wx8k7gzIRueYM4Z79FcSy3QEsLJmWFp
|
|
BjaVVpZWlXMoGNmvkXXlr3kGtknu6XCf7OXkl1OEdl8orqgIAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAHmskcmtzV/rls0U62OXiWX4zErcc9GmkRfWVkSqqziWayxCPIANwBIhIJSxS
|
|
CRG6dwZwlhEs4BluMdzfqgZxLLdXuy3AmVdpZTKuZBjaVVpWWV2QlhZRdfZRcGpl7urwfrzfJy8r
|
|
rcH61vPyWitdMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHA4nHLxKZ9awnH2ZcY
|
|
jbW459aq8fZpfiI2IZwrqzhmsz3Ebm4JN0AMhCQSIASndiAziWUSriWcAyRujc80DM3RCfIETLCW
|
|
UsZEsJYSslXZAwlTddPZTkBp5e7r8Gj6rJPxhx8k9Xa4PG2C8/FaK10QAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAcfjcbZMFvnDWx9m5x2PqcNvS+zSxT7sNPxH62YZQwqzhRZO6UCB
|
|
KUAJTux3SDIRuAncQAmJZRLBMSgZ7iIAZRKd2DICUSlAljLCYWMLIFVukNfI2bNbIDTyT7zu8Ijb
|
|
Sz/qcG/2nf4T/wCE/wD2WnxWt4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHL9oL
|
|
+Hw2cm28VvEuPptfgyVj6yIn0no7/FtJfW8NzYMe3PaPd39d3iMug1WktNc2C9dvPbeP1aZ9xF+v
|
|
T471tHu2iflK2HkqWmvaZj5Surqc9Ps5bx+alTHqYHm68S1Vf/NmfnC2vGNTXvyT84Ql6A3cSvHM
|
|
sfaxVn5Ssrxyv3sM/lKB1xza8bwT3pePyWV4tpZ+/MfOEjfGrXiGlt2zV/PotrqcN/s5aT/+wLRj
|
|
FontMSlAlKEgndO6IAZQljDIEgeQljLCzOVdkCu/SGrkbF56NPNeKxMzMRHxENe0+89DwuNtHHzl
|
|
5PJr8NcnLW3Pbf7r1nCZm2gpae8zMrz4i/W6AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAETETG0xukB4HVaeMHEtRi26RedvkyjBSfX9W77QYvC4xz7dMlYlrU7M929dWJLFc6aPK0q
|
|
7YLxPS0S22FlP6q38Zac0yR92s/KVc3tHfFf8tpbcsLRvB/dR/8ALLVnU0r9uL1+dZI1mnmdvGpv
|
|
6TOy6ym+Oto2tWJ+cJ/tW+KLK5KW+zes/KU7tG+h01p64qx8Y6NXNo6Y+uPJlp8rLf0rfG7MXtHa
|
|
0x8pZxqs9e2a8f8A7Oj7HaTHn0+f6RWM23LETfr6vRW4PoL99NT8ui7F4+vEdXXtnt+fVbXjGsr/
|
|
AOZE/OsPS29nuH27YrV+VpeV9pdPXhOtw49NG9Mld55+vXcTPd42I47qo7xSfyWV9oM8d8VJ/VxM
|
|
d8l46xWF9cV7en6o/qLfxp2I9ob+eCv/AHMo9op89P8A/wBORGmyT5R+qfo2X8P7n9Q/jTsx7RR5
|
|
6ef+4/8AuHftg/8A6cWcOSO9J/WEbWr3pY7Efzp2Lcfv5YK/9zWy8d1E/ZpSv5Oba1/+Hb9lc+LP
|
|
bFt87I7E/wAabWbiurvEx4nL/pjZzc2bJkn372t85ZXx55/BX85lucC0vPxnTxlnnjm32mOiZqUu
|
|
LJ2p4TwnVavNWaYbRTfre0bQ99pcH0bT0xb78vmtiIiNojaErMwAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAHnfarF7umzRHaZrLjYrdIen9ocPi8JyTt1xzF4eUw23rCm3R4r6bMy
|
|
wt6kdTaWLdjswmNoZontsCm0K5XWjopnuDC0dGpqG5bs08/daKV672MjbSaif6oh6Z5f2LtvptRX
|
|
0tEvUN3Jfo8f7cYve0eX4zV7B5z20xc/C8eSPuZIRficfXlcPaG7ino08HWIbePpLF2NuiyOyrHK
|
|
3fZFSwuovHVfaVF4QK5YWTM9UT0EKry6Ps1Tn4zjn8NZn9nOtLseydObiWW34cf918fWfk+PYANn
|
|
KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAq1WKM+ly4p+/WYeBxTNd6zG0xO0
|
|
vobw3FcP0bi2em20Tbmj5Srr418V9sa2Z7qKyzi07MXUylhaU7yjqhLCeiq3ddaFNxFYW7NLNG8t
|
|
zya+WO6Va9J7FW66mvwidnrXiPY3Ny8RyUn71Jj9Ht3RPjk19HK9pMHj8D1ER3rHN+jqqtTjjNps
|
|
uOe16zAifXzfTz7kNyndpYazS9qT0mszDdoxrsi6m8LazMq6zDOsq1ZEyrt1WWlXaUCqyq0rbKbi
|
|
Fdp6PReyFd8uqv8ACsfy83aXrPZHHto89/xX2/SP/dpj6y8vx6EBq5gAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAB5n2q03LfDqqx39y39npmlxbS/TOG5se29tuavzgWzeV4mtui2
|
|
O3RRSY2hdVhqO2MvI36iu9lUsrSrvDHn6spnmSiq5jooyV6tq1VV69RC32byTh43h8otMx+r6I+Z
|
|
aK/g8TwX7bXh9Mid4iW+fjl8n1ICWb57xLBOm4zqse20Tbmj8+qKdnS9q8PhcTw5tumSm0/OHMxz
|
|
0Za+uzx3sX1t0Zxurr1ZxvspWiZYWZbsbT0QK7KLrZVZJFaqt5vbezNOTg9J/FaZeJns93wCvLwb
|
|
T/GJn92uGHldIBowAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADuAPA67F9H4l
|
|
qMW20VvO3yRWW97T4fC4rXJHSMtI/WGhVlue3b473K2KzMML4+62tujG9pnozXaOSOVFMnVbmq1t
|
|
trJRW5E7wwvUxTvCyY6CHOt7moxz6Wh9PxTzYaT61h8x1MbZK/OH0zTf+Fxf6I/htj45vL9WgLMn
|
|
mvbPFvocGWO9L7fq85p5maw9d7VYvE4JkmPu2if3eW0+PasdFNOnxfF1Y2hlykRsmY+LJ0MZjZXa
|
|
eq2eyi8oQTO0KLdZWzPRjWu6VaqtHR73g0bcI0sf0Q8Nkq93wqNuFaWP+XDTDDytwBowAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAef9q8HNpcGaI60vtPyl56k9Iew49j8ThGe
|
|
PwxFv0l4zH2U26fDfTYiyJljvsjf4sm6vJ1hrXjq2MkqLdZEVbgbMx0auGdmzNt6iHN1Ub5af6of
|
|
TdPG2nxx6Vj+HzaaTm1+nx/iyVj930ysbViPRrj45vL9SAuyc7j1efguqj+jd4/T33rD3HEcPj8O
|
|
1GP8WOY/Z4TTT7sKadHhbcsZnaCJ3TPZk6VdrKbTutmP0U2nqgrGOsr8deiuI2X09EqKM1dt3uuG
|
|
f/jdN/06/wAPE546S9rwud+Gaaf+XH8NMMPK2wGjAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAABrcRp4nDtRWPPHP8PCYusPoWSvNjtX1iYfPuWaXtX8MzCuvjfw32siu8ptXoxi
|
|
0wy5t4YulReqmazu2skbquURWFInddM7VYRGyL291KFnCcfj8e0le/Lbmn8n0N4b2Ur4nHLWmPsY
|
|
5e5a5+OXyXugBZmiY3iY9Xz7NjnTa3Ph/BeYj5PoTxftFg8Hjk2iOmWkW/Psrr418V5WrWd2faFc
|
|
V2jdnEMXWxntupmN7NiYU27iWML6dVMVnddjgVqMsdHr+CW5uE6f4Rt+7yuSsTDv+zWXn0WTHP3L
|
|
/tK+GHl+O0A1c4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8Dn93W56/wDM
|
|
t/L3z59qp24jn+OS38lnpr4r7ZxHQ2TEstt3PXUrt27K57rr1VT0BjKnJPRbMqMs7QlV2fYvHvrd
|
|
VknyrEfu9m8f7FZI8fVU85iJewbT45NfQBKo817W4eulzxHaZrL0rje09ItwqbfhtBVs3leai8RD
|
|
KLw1sduesL606dWFdsZT1jdhNeq6K9DlhCVUU6s4jZnt1YzAhnM71dH2bycmszY/K1d/0c6OzY4R
|
|
fwuK4p8rTstn6z8k7HrwGzkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHz3
|
|
Vxvr80/8y38voTwGpj/F5/8AqT/JfjTx/WVeyY6FPspc9dZPVXaOq2WEwIUTVRmjo2rNfLHRI3vZ
|
|
DJycXtX8dZh7t879nsnhcbwz23tt+r6I2nxyb+gCVBzuPY/E4PqI9K7ui19fTxNBnp60n+Aj5/pJ
|
|
3jZu1aOnnltMNussdfXbm+l3ZM9URHREdZVXTuT1Nk7boQiOkJw28PU47/htEp5eivJPLMTCZ9Vv
|
|
x7mJ3iJ9UqNHk8XR4b+tIXuhxAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAD
|
|
weqjbWZ4/wCZP8vePCaz/wDIaiP+Zb+UX408f0r9lOxWOifJhXWjfyYWllPRXYQxnrCrJHRd3YZI
|
|
6A1NJecHEsN/S0T+76bE7xE+r5dk93LW3pL6ZpMni6PDf8VIn9m2fjm8s9rgFmQxvHNS0esbMiew
|
|
PnHLyai9fS0w2aNfUTtrs3+uf5bGPqy068fF227KtSsdFlKqNGMV6myyY6sbdIQI8tlOWOi6Jhhk
|
|
j3RD0vA8nicMx9etZmHRcT2Zyb6XNT8N9/2dt0T449T2AJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAHhdfG3E9TH9cvdPEcXjk4zqI/q3L8aeP6xr2TsxpLOekMK6mFo6qpXSrm
|
|
OqBixvHSVmzC4OfqK7S9/wAByeLwbTW9K7fo8Fqo6Paeyl+fglI/Da0NcMPK7QC7AAB8313TiOf/
|
|
AKk/y2MHWrX4jG3E9R/1Lfyv0/aFNOrHxuU7LI7MMayGTVlHWUXhNe6Z6wIUsb9d1m20q7dkDpez
|
|
N9tRqKT5xEvRvKez9+Xis1/FSYerb5+OTyf6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAB43j9eXjN/jWJ/Z7J5L2mry8Upb8VIF8f6aGOey2eynHvOy7bowrrYSxZSwQJ2YXZ
|
|
92N4BoanrEvVexmTm4blr+HJ/aHltRHSXofYm/1Wrp5RaJaYY+X49WA0c4AD51xONuKan/qW/lbp
|
|
+0MOLRtxbU/9SU4J7KadWPjep2WQrr2WRPRk1TvsndXMpiRCb9FNu0rbTuqvKBscCjfi9PhWZeue
|
|
V9n434rafTHL1TfPxy+T/QAszAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHmv
|
|
avHtfTZfnV6VxPajHzcNrf8ABeJFs/XnMcr4no18c+6vr2YadkY2YM57sEDLyY37Mo7MMnYGlqO0
|
|
vQ+xNfqNVb1tEfs87qZ2rL0/sVX/AHdnt65P7Q0wx8vx6UBo5wAHz/jUbcX1PT78qtO2vaCnJxjP
|
|
8Zif2amnnspp04+OjWejKJ6MKdmcMmyJn4m5ZHzEVPMwtJv0VZLbQDqezcb8RzT6Y/7vUPM+ytZt
|
|
n1OTyiIh6Ztn45N/6AFlAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABocbxeLw
|
|
nUR5xXm/Rvq8+OMuDJjntaswEeBxT0bNZ6NatZpNqz3rO0rqsdO3PxlaWEMpY+aqWXkryT0ZT2V3
|
|
7A0dVPuy9f7G124NM/iyT/Z4zWT7sw957MYfB4Fp4/FE2/WWmGHldcBowAAeM9qKcvFeb8VIly9P
|
|
0nq7ntbTbVYL+tJj93CwT76unR4/jo0nozhhTsy3Y1sWljM9Ce7HyQIm3RRlttVbaWrnt0Sh6n2U
|
|
x8vD8mSfv3/h3XN4Bi8Lg2nj8Uc36y6TeOPXugCUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAPD8RxeBxXUU26Tbmj8+quro+02Lw+I4ssdslNvzhzazvDPbq8d7GW7Dfqz2VzG
|
|
0s2qd+iu/Zn5Ksk9BVztX1mI8930zh2LwOHabH+HHWP2fNYp4+vwYvxXiP3fUqxtWIjyjZtj45/L
|
|
faQFmQADzftfj3w6fJ6WmHmsP23rvaqnNwqLfhvEvIYZ+sV038bo0noy36MK9oZQxrdMyrlnMbMZ
|
|
QKrS1M07zEestq/RRjr4utwY/wAV4j91p9V18fQdJj8LR4ccfdpEfsuREbREJbuMAAAAAAAAAAAA
|
|
BAJAAAAEAJEAJQAJQAJEAJQAJQAJEACUJAQlAJEAJQAJQJAAAEAJEAJBAAAJAABAJEJAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABwvanDzaPFmjvjv8A
|
|
tLztJ3h7HjGHx+FainnFeaPnHV4vFbeIU038VbHeGF+kso7Mb9mTdhKnLK3dRm7SIrHhGPxeP6Sv
|
|
9cT/AHfSnz72Zx+J7Q45/BWZ/Z9BbZ+OXyfQBZQABzeP4/E4NqI9Ii36S8Ng/wAx9C4jTxOH6ivr
|
|
jn+Hz3B/mQi/GvjdCnWNlsdI2V07LIlg6USrt2ZzZXMoFV+zPhGLxeOaavpbm/RVltEN72Yx+Jxm
|
|
b7dKUmf7L5+s9/HtRA2cqRACRACRACRACUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAACQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQCQQCRACRACRCQBCQBCQB
|
|
ACRACRACRACRACL1i9LVntMbPATTwdRkxT3pea/u+gPE8Xx+DxrPHlaYt+qNfGvjvtXXsi0dOrKk
|
|
dEXjZg6VMtbP2bMtXUdpEV0/Y2nNxbNf8OP+727xvsXH+N1U/wBEfy9k3nxyb+gCVQAGOWvNivX1
|
|
rMPnGGOXNNfOJ2fSZ6w+dZKeHxDPX8N7R+6L8a+L63KdoZ7q6zvEMpnowdKJ6ywmWUyqvIKM0vQ+
|
|
x+D6rU55+9aKx+TzWa36vbezmDwODYenW+95/Nphj5L6dQBo5wAAAAAAAAAAAAAAAAAAAAAAAAAA
|
|
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAEiAAAEoA
|
|
AAAAAAAAAAAAAEAkEAkRuAkQbgkQAkQAkQAkQAl5T2nx8nEMOT8dNv0l6pwfarHvpcGWPu32/WCr
|
|
YvK4mOem6b9mGKd4Z3idmFdka0y1c892zfpMtLPaNpEV6D2Kj/Eauf6YeweQ9ieuTVz8K/3evbT4
|
|
5NfQBKoAA8FxCvJxrUx/XMvevD8Zry8fz/Haf2RfjTx/6RSOnRMyypHu9kXjowrqVSrvPRnZVl6V
|
|
kK0775MsUjvadn0nT4ow6bFijtSsVfPuFYvpPGtNTy54mfy6vorXDm8l9pEC7JIgBIgBIgBIgBIg
|
|
BIgBIhIAgBIhIAgBIgBIIBIAAhIAhIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAAAAAAAAAAAAAAA
|
|
AAAAAAAAABAJQkAEAAAAAAAAAAjc3BIjdG4Mkbo5kcwMjdhzHMDPc3V8xzAs3N1fMjmBZubq+Y5g
|
|
Wbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmOYFm5ur5jmBZubq+Y5gWbm6vmTzAz3N2HMnmBlu5ftFTx
|
|
OEZJ/DMW/d0t2rxKni8N1FPWkiZ9eS08e7Cy8dGGn6UhZaJljXZGnmc3UT3dPP2cnUT78xCIV6j2
|
|
H/8A9c/6f7vXPI+w8bU1U+vL/d63du5NfUiDcVSIAS8b7RV5eOb/AIqRL2TyXtNX/e2KfXH/AHlF
|
|
+NPH/pr4+2xcxx0hFpY11K7R16KM32ZWz3UaidqSgrc9kcPicWyZJjfw6T+727y3sXh2xarN+K0V
|
|
h6lvPjj3e0ASqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJQAAAAAkQAkQAkAAAAAAAAAAAAAAA
|
|
EgAAAAAAAAAAAAAAAAAAAAAgAAABKDcAN0bgkY8xzAyRux5kcwM9zdXNkTcFm6OZXzMeYFvMibKu
|
|
ZHMC2bo51U2RuC2bom6rc3BZzom6sBZzI52ADPnOdggFnMc6skFnMc6rc3BbznOp3RzAv50c6nml
|
|
HMC/nOf4qOY5wX85zqOc5wbHOc7X5znBsc6edr85zg2ec52vzpi4NjmY5bROG+/bllVzsNTk5dLl
|
|
n0pP8BHmMHWNmzt0aum8obm08vVjfrtnxztR0mXHzTvaZdjVRMTLkZo6yiFen9iZ2pqY/wBP93rN
|
|
3kPY+/LfPX1rE/u9XzN3HfqzdO6vmTuIZ7m7Hc3Bnu8t7TR/vHBP9E/y9Pu837SV31umn+if5Rfi
|
|
/j/01MMb1hjkrtKzBG0bMsmOZY11tOYamr6Und0LUc7XT7u3rJPqL8er9lcPhcFpbzyWm39v7O00
|
|
+FYvA4Zpsc94xxu227jv1IAgAAAAAAAAABKAAAASgASgBIgBIgBIgBIhIAAAAAAAAAAAAAAAAAAC
|
|
UACUJAAAAAAAAAAAABIAAAAAAAAAAAAAAAAAAAAg3AEbomQZbo3YzLGbAz3RNlc3YzcFs2YzdVN2
|
|
M2Bdzom6nmNwW86JurTAMuY3REJ2BB1ZRVMVBhsbSsiqeUFXLucq3lTygp5TlXcpygp5TlXcpygp
|
|
5TlXcqOUFXKjlXcrGYBXysdlswiYBVMdUTCyY6sZBWxlnMMZgGLGZZSwkDdHMiWO4MuY5mEyjcFn
|
|
N1OdVzHMC3nTzqeY5gX85zqOZPMC+Lqdbk20eb/RKOZr8QybaK/XvtH7iZ9aGlp2luzT3fg19NHS
|
|
OjbmPcYX67XH1XSZ9XIzRvMuzrK7zLkZYmYnciunb9lZ5dTk+OP+71cXeP8AZnJ/ip2nf3J/l6iL
|
|
/Fu5L9bMWZczXi6YuIbEWTzKIuyiwLt3nuO25uI4a/hx7/rLuczg8TicvFLbfdpEK6+NPH/phhjo
|
|
stLGkctUWnoxrrU3j1cnWTzZq1jzl1clo5Zcu8c+txR63iP3Tn6pv4+g4o5cVI9IiGe7CJ2iE7t3
|
|
GyN2O6dwSINwSISAlAAlACRAAlAAlACRACRCQAAAAAAAAAASgASISAAAAAAAAAAAAACQAAAAAAAA
|
|
AAAAAASAAAAAAAAAAAAAAAAIAAAQCAJljuljsCJlhMs9mOwMJYys5TkBVsjZdyHICrZPKt5E8oK4
|
|
qmKrOVOwMIqyirPY2Bjyp2ZbAI2NmSARsbMgEbI2ZAMdjZICNkbMkSCNmOzJEgx2YyzljMAwlhKy
|
|
WEwCuWErJhhMArlhLOWEgxljMpljIImWMyTKJA3N0IBO5vux3NwZbnMx3NwZczT4jf3MdPW27a3a
|
|
fJOq1XNP2KdIRfi+J2trSYfcjeF+Wm1OicVeWIiN9kai8xjY12ORqultnI1Ecsujq79XP1FovWYI
|
|
rTgeq+j8QrWZ+3Mx+r2UXeC0WG2Ti2kiN5mL807eUREvbzbaejefHJv62Iv8WUXa0WTFhVtRdlF2
|
|
rz9WUXBtc7jR9dqc2T1ttHyhvZMvJitb0jdq6XHNcNenWVN3028U99WRj6Kb02be3Tq18/SN2Lpc
|
|
3UdN9nOmZrqKX/DaJ/d0svvTLRzV3jomK6+Pd1vvWJj0ZczT0mXxNJht60hfFnQ4qu3N1cWTEgs3
|
|
Tur5k7gz3N2O5uDM3Y7m4MtxBuCQASIASIASAAAAAAACRCQAAAAAAAAEoSAAAAAAAAAAAlAAlCQA
|
|
AAAAAAAAAAASAAAAAAAAAAAAIASgAAAEJAQJQCNkbMgGOyOVnsAw5TlZ7GwMOVPKy2NgY7GzIBGx
|
|
skA2AAAAAAAAAAQkBAEghEskAxYzDPZGwK5hjMLJhjMAqmGEwumrCagomFcw2JqqtUFEsLLrV82F
|
|
o7gqljKyYYTGwMZRKUSCAQAboJnaN5Bjkneu0d5W4ccViIiOzHFWbTzNumP1Zarr8eeRMbxDW1Mx
|
|
NO67NbkhzNVnmInqzaOZrL93JyZeV0M1++7S02jvxDWxhxx033tPpC8Z6rrezWjmZyazJG2/u03h
|
|
2vFibTHoqvamiwVwY+nLGzV0+SZ1Mx8G0/45tOhzJ5lXMc3UVXRdlF1HP+iYsDPLPPy49/tz1+Te
|
|
pSIr0ho6ak5Ms5J8o2q6NImOrHV7XX488ypzTtHXo0s9t6zG7c1G1qz6ubeZiZ3UatXJG3yauSO7
|
|
cvMTEx5tPLb3prPRMVr0HB8vicNxf0+7+kt+LOJwTJyY/Bnz3tH93X36N58cWvq6LSyiyndMSlC7
|
|
mZcymLJiwLosmJVRLKLAtiU7q4lMSCzc3YxJuDMRuAlKAEgAAAlAkAAAAAABKAEgAAAAAJAAAAAA
|
|
AAAAAAAEgAAAAAAAAAAAAAkAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAhIAAACAAAASgAAAAAAEAAAA
|
|
hGzJAImGMwzQDDZjNVuyNgUTVhNGxysZqDVmiu1G5NN2M4waM0+DCaN2cbGcQNGaMZq3JxMJxA1J
|
|
qx2bU4kU09slorWNwa20z02RXHbJbl26QvtFovbHWkxEdJt5y2MOHlr2U1W3jx+1hiw8vSO63lmI
|
|
XRTaEWmtY6snRHO1VpmJ+DjavpSZl2s8b7y4HFcnh0n0gha5ebJN55KRM2mdoiPN6fh+kpwXh0Wy
|
|
RHj5Otp/s5Ps1p62y31+em9aTMYt/OfVfxTiPjZ52naI7fBrI5t66xz5+a1rW7yx0eSL6iZjtEOX
|
|
qNbSletom3lENjh2fbHzbbWt3iVozruc+5ztWubf4M4ybpQ2Oboyrva0Vjza8WdDR4OkXt3n9ldX
|
|
kaePP9VtYqctYhdvt5oivTeCZ2YOxXk6ubqMfV0b9mrljfqlFcq88k7z2U5axeItDa1OPessuC8P
|
|
ya7XRWYnwqdbT/ZMilvIu4dpslNdixXja8Y5tt85djZdbDWnGOesRtXFtuw6T27No5Kx2OrKYQlC
|
|
ExKJgBnEpiyvdlEgsizKLKollFgWxLKJVRLKJBbEp3VxLKJBnuMWQJEbpBIAAAJAAAABIAAAAAAA
|
|
lAJAAAAAAAAAAAAAASAAAAAAAAAAAAAJAAAABAJABAlAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAA
|
|
AAABAJQAAAAgAABAAI2EoBGyJhkgGPKxmqxAKpownHC+YRMdN5BrTj67R3bOn01o7p01Iv71u89o
|
|
b9a7LfBTfS1vWI2jf12VfQPSW8KX2mas+NC2iv6xMNfJpMnLtEbuuxtMRCtzF55NR5rPps1N/ctP
|
|
y6uHreE6nXZ4pak48X3rT06fB7fNeI33cbX6mI32R/MWu7XF116aDSRhxbRERs8f499bkyZeeKae
|
|
kzE2mdon81/tfxDLGOunwbzlzbx08oaHBvZHJlx48mrvaa94pu04y617576rNGLRRM0397JEd/lu
|
|
9Dw/S3x4qxffo6mm4NjwUiKY4iI9Ib1dHFY6QIaNabbrYrLfrpJtaK1rMzPZb/s+05IpP59OyLeJ
|
|
k7eNfRaOc1ue32I7fGXYpi5Y77M8OGMeOKxHSFsU3Y29deZMzirl6dlVvhLatCjJHeYQv1rXnps1
|
|
8k9/VsW6qLVmZIi1rzitlvFKRvaZ2h6TSaenC9FFY+3brM+sqeG8Prp4+kZ+lvuxPkr1mqm95nfp
|
|
DXM459676a2q1dsV7XietvNno78+CJn1cjX6mOeIm0bR33dfRU5NJjidt9t5afjG/V6JZ7I2QMNh
|
|
nyo2BhsMuVG3wAhMSbbQRAMolnE+iuGUSCyJZRKuGUSCyJZK4llEgyZMYTuCUsYSCQASISAAAlCQ
|
|
AAAAAAEoASCASAAAAAAAAAAAAlACRACQAAAAAAAAAEgCEoASCAAAAAAAAAAAAAAAAAAAAAAABAAA
|
|
AAAAAAAISAIAAAAAAQAAACASgAAAQJAQAAhIDHZhln3do7z0WS18mWsajHjmes7pg3dNi5aRMNqO
|
|
yvDHTpPRaigHZhN4hHRlaVN59JY3zRENLUavaO+yq0iNVlitJ6vNcR1MVi0zO0era1/Ea0rPvbz5
|
|
PM5MWp45qvo2GZrhmfrsnpHpHzTCseEcM/2vrr8Q1Eb4qzy44nziPN63HpYiIiI7LNHoqabBTFii
|
|
IpSNohuVxrKtWMEejPwY9G1FFmHB4mWJn7MdfnIM9JpIx15to5pbUaas/a6rqViI7MxPxqX0UT1r
|
|
O3wVzpbR2hviP5i03Y5s6a879FNtHljydhExCv8AMTPJXBnRZbz0iG5ptFjwe/l96zctMVamTJtE
|
|
yTMibu1VrdTzRMR0j0ed4lr64MVpm0RERvMz5NvX62uOJ69XhOKX1HH9bHDtFvNYnfJeOy0Z2ojX
|
|
6jjnEq6fRUmccTvN/J9H0eKcOnx45neaxEbubwHgOHg+milI3vP2resu3Wu0JQmITsmISDHZHKz2
|
|
JgFc1RMLJhGwK9iIZ7MZgEdgmAEwyiWCdwWRLKJVxKYsC2JTuriWUSDNlEsIlMAySx3SCRCQSIAS
|
|
AAACRACQAAAAAAASIASAAAAAAAAAAAAAAACRACRACQASIAAAAAAAAAAAAAAAAAAAAAAAAQCUAAAA
|
|
AAAAAAIAAAAAAAAQAAAAAACBICBICAAEJAQJQCJcLjuS2ny6fPG/LWdpd1o8T0X07SXx/e7wCdJx
|
|
Wa0jmneHQpxPDMdZmJfNtZm49weZrh0/j4o7VtSZ2+Uw0/8A7o49k92vBLc/ntFohFW9PqGXimOI
|
|
6Tu1L8T3eCx6r2t1O3JwvHjifO99v7t/Bwf2l1PXU6rS6eJ8qUm8x+so5TsekzcSjbvs4mt4rzW5
|
|
K2mbT0itesy2cHsvbvqtbmyz5xERWP2jd1tJwrTaONsOKtZ8585+cnDrzmn4Rq+IZObUROHD32n7
|
|
Vv8A0ej0uhxaXFGPFSK1j0bkY4jyZRVZVXFGUVWbGwKsk8mObekNrSW3pWf1a2aYjHbm7bNnQ1id
|
|
PW0TvuDdhJEbQABMsLW2R0ZTMQrvfbz2YWzVhpanUxEd0dWkW5c8R5uXxDX1w4pnfr5Q19XxKuOJ
|
|
2neXltVqtVxbV/RdJ715+1bypANfiOu1HENV9C0MTfNeesx2rD1PAeBYuE6aKx72W3W9/WVnBuB4
|
|
eF4dqRzZbdb5J72l160WVK02ZxCYhOwI23TsnY2BGxsnYBjsiYZsZBjMMZZSgGEolMsQDdG6NwZ7
|
|
piVe6YkFsSziVMWZRILolMSriWUSCyJTuwhMSDMRCQSI3SAlACRCQAAEoAEoASAAAAAAAAACUACR
|
|
ACQAAAAAAAAAAAAASAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAABAAAAAAAAAAAAACBKAAAAAAAQ
|
|
JQAAAhICEbJAYTWJ7wx8KvpC0BV4ceieWGewDHlNmWwCNjZICNhIDmcZredBecdpiY69FXCOLW+i
|
|
UiZidukulmxxlx2paN4mNng+K4+I8Hy2yaTfl37TXetoCPfRxfp1qi3F48ofKMvtvxak8s6LDv61
|
|
rZji9rPaLUf5PC+bfttS0q8q3p9W/wBrRMdpUZuKdN99nzvFqPbTVz7nD8OKs+do2/mW3h4D7Xaq
|
|
ZnPrtNpqz35aRaYOHY9Zk4pNt9rR+rl6zi+OnS+WN57Rv1lXp/YrNaYtruL6zNPnGO3hxP6O5w/2
|
|
f0HDuun09Yv55Le9afznqcOvO4tBreMTHu30unnva0bWt8on+70nDuE4OHYYx4Kbesz3tPrMuhGO
|
|
IjpDOKrK9YVpsyiGUQnYGOyUgI2SlAIEmwMWMs9kTAMJYzDOYRMArmGErZhhMArlHmzmGMwDE3Ts
|
|
bAbs4swj5pgFkSziVcM4BZEsolXDKAZwyhjCYBkACQhIAAAAAAAJAAAAAAAAAAAAAAAAAAAShIAA
|
|
AAAAAAJAAAAAAAAAAAAAABAJEAAAAAAAAAAAAAAAIEoBKAAAAAAAAAAAAAAABAlAAAAAAAIAAAAA
|
|
BAkBAkBAkBAlACEgMZjdjbFW8bWrEx8YWANb6Fp+bfwab+vLDKMFK9qxH5L0bAr8OPRPKz2AY7J2
|
|
SbAjYZAI2E7AIEgIEgIEgMdkSy2NgY7MdlmyNoBXsxmFuyNgVTVjNV3KjlBRNTlXTVHKCrlIqt5T
|
|
lBhEMohlFerLlBjEMohMVTEARDKCITsAk2AEgAAAkAAAAAAAAAAAAAAAAAAAAAAAASAAAAAAAAD/
|
|
2Q==`;var Q9="2.0.0";var mu,Ap,xp,Ji,Qi,gu,of,bp,lf,uf,df,pf,eI=class{constructor(t){ra(this,mu,void 0);ra(this,Ap,void 0);ra(this,xp,void 0);ra(this,Ji,void 0);ra(this,Qi,void 0);ra(this,gu,void 0);this.analyze=(...t)=>{if(!pn(this,Ap))return;let n=this.tf.engine().state.numTensors,a=pn(this,mu);Ia(this,mu,n);let r=n-a;r!==0&&de(...t,r)};ra(this,of,t=>{if(!pn(this,xp))return null;if(!t)return"input is not defined";if(this.tf.ENV.flags.IS_NODE&&!(t instanceof Be))return"input must be a tensor";try{this.tf.getBackend()}catch(n){return"backend not loaded"}return null});ra(this,bp,async(t=!1)=>{var n;if(this.config.backend&&this.config.backend.length>0&&t||this.tf.getBackend()!==this.config.backend){let a=Ke();if(this.state="backend",this.config.backend&&this.config.backend.length>0){if(typeof window=="undefined"&&typeof WorkerGlobalScope!="undefined"&&this.config.debug&&de("running inside web worker"),this.tf.ENV.flags.IS_BROWSER&&this.config.backend==="tensorflow"&&(this.config.backend="webgl"),this.tf.ENV.flags.IS_NODE&&(this.config.backend==="webgl"||this.config.backend==="humangl")&&(this.config.backend="tensorflow"),this.config.debug&&de("setting backend:",this.config.backend),this.config.backend==="wasm"){if(this.config.debug&&de("wasm path:",this.config.wasmPath),typeof((n=this.tf)==null?void 0:n.setWasmPaths)!="undefined")this.tf.setWasmPaths(this.config.wasmPath);else throw new Error("Human: WASM backend is not loaded");let r=await this.tf.env().getAsync("WASM_HAS_SIMD_SUPPORT"),s=await this.tf.env().getAsync("WASM_HAS_MULTITHREAD_SUPPORT");this.config.debug&&de(`wasm execution: ${r?"SIMD":"no SIMD"} ${s?"multithreaded":"singlethreaded"}`),this.config.debug&&!r&&de("warning: wasm simd support is not enabled")}this.config.backend==="humangl"&&e9();try{await this.tf.setBackend(this.config.backend)}catch(r){de("error: cannot set backend:",this.config.backend,r)}}if(this.tf.enableProdMode(),this.tf.getBackend()==="webgl"||this.tf.getBackend()==="humangl"){this.tf.ENV.set("CHECK_COMPUTATION_FOR_ERRORS",!1),this.tf.ENV.set("WEBGL_CPU_FORWARD",!0),this.tf.ENV.set("WEBGL_PACK_DEPTHWISECONV",!0),typeof this.config.deallocate!="undefined"&&this.config.deallocate&&(de("changing webgl: WEBGL_DELETE_TEXTURE_THRESHOLD:",!0),this.tf.ENV.set("WEBGL_DELETE_TEXTURE_THRESHOLD",0));let r=await this.tf.backend().getGPGPUContext().gl;this.config.debug&&de(`gl version:${r.getParameter(r.VERSION)} renderer:${r.getParameter(r.RENDERER)}`)}await this.tf.ready(),this.performance.backend=Math.trunc(Ke()-a)}});this.next=t=>Y9(t||this.result);ra(this,lf,async t=>{if(this.config.cacheSensitivity===0)return!1;let n=32,a=t.resizeBilinear([Math.trunc(t.shape[1]/n),Math.trunc(t.shape[2]/n)]),r=a.dataSync(),s=0;for(let l=0;l<r.length/3;l++)s+=r[3*l+2];a.dispose();let i=100*(Math.max(s,pn(this,Qi))/Math.min(s,pn(this,Qi))-1);Ia(this,Qi,s);let o=i<Math.max(this.config.cacheSensitivity,pn(this,gu));return Ia(this,gu,i>10*this.config.cacheSensitivity?0:i),o});ra(this,uf,async()=>{let t=(r,s="application/octet-stream")=>fetch(`data:${s};base64,${r}`).then(i=>i.blob()),n,a;switch(this.config.warmup){case"face":n=await t(rf);break;case"full":n=await t(sf);break;default:n=null}if(n){let r=await createImageBitmap(n);a=await this.detect(r,this.config),r.close()}return a});ra(this,df,async()=>new Promise(t=>{let n,a=0;switch(this.config.warmup){case"face":a=256,n="data:image/jpeg;base64,"+rf;break;case"full":case"body":a=1200,n="data:image/jpeg;base64,"+sf;break;default:n=null}let r=new Image;r.onload=async()=>{let s=typeof OffscreenCanvas!="undefined"?new OffscreenCanvas(a,a):document.createElement("canvas");s.width=r.naturalWidth,s.height=r.naturalHeight;let i=s.getContext("2d");i==null||i.drawImage(r,0,0);let o=await this.detect(s,this.config);t(o)},n?r.src=n:t(null)}));ra(this,pf,async()=>{let t=r=>Buffer.from(r,"base64"),n;if(this.config.warmup==="face"&&(n=t(rf)),(this.config.warmup==="body"||this.config.warmup==="full")&&(n=t(sf)),!n)return null;let a;if(typeof void 0!="undefined"){let r=(void 0).decodeJpeg(n),s=r.expandDims(0);this.tf.dispose(r),a=await this.detect(s,this.config),this.tf.dispose(s)}else this.config.debug&&de("Warmup tfjs-node not loaded");return a});this.config=Ln(k5,t||{}),this.tf=dp,this.draw=o5,this.version=Q9,this.state="idle",Ia(this,mu,0),Ia(this,Ap,!1),Ia(this,xp,!1),Ia(this,Ji,!0),Ia(this,gu,0),this.performance={backend:0,load:0,image:0,frames:0,cached:0,changed:0,total:0,draw:0},this.models={face:null,posenet:null,blazepose:null,efficientpose:null,movenet:null,handpose:null,age:null,gender:null,emotion:null,embedding:null,nanodet:null,centernet:null,faceres:null,segmentation:null},this.image=n=>Yi(n,this.config),this.faceTriangulation=h9,this.faceUVMap=f9,this.sysinfo=I5(),Ia(this,Qi,1)}similarity(t,n){return I2(t,n)}segmentation(t,n){return J9(t,n,this.config)}enhance(t){return S2(t)}match(t,n,a=0){return y9(t,n,a)}async load(t){this.state="load";let n=Ke();t&&(this.config=Ln(this.config,t)),pn(this,Ji)&&(this.config.debug&&de(`version: ${this.version}`),this.config.debug&&de(`tfjs version: ${this.tf.version_core}`),this.config.debug&&de("platform:",this.sysinfo.platform),this.config.debug&&de("agent:",this.sysinfo.agent),await pn(this,bp).call(this,!0),this.tf.ENV.flags.IS_BROWSER&&(this.config.debug&&de("configuration:",this.config),this.config.debug&&de("tf flags:",this.tf.ENV.flags))),this.config.async?[this.models.face,this.models.emotion,this.models.handpose,this.models.posenet,this.models.blazepose,this.models.efficientpose,this.models.movenet,this.models.nanodet,this.models.centernet,this.models.faceres,this.models.segmentation]=await Promise.all([this.models.face||(this.config.face.enabled?y2(this.config):null),this.models.emotion||(this.config.face.enabled&&this.config.face.emotion.enabled?b2(this.config):null),this.models.handpose||(this.config.hand.enabled?W2(this.config):null),this.models.posenet||(this.config.body.enabled&&this.config.body.modelPath.includes("posenet")?D2(this.config):null),this.models.blazepose||(this.config.body.enabled&&this.config.body.modelPath.includes("blazepose")?J0(this.config):null),this.models.efficientpose||(this.config.body.enabled&&this.config.body.modelPath.includes("efficientpose")?L9(this.config):null),this.models.movenet||(this.config.body.enabled&&this.config.body.modelPath.includes("movenet")?K2(this.config):null),this.models.nanodet||(this.config.object.enabled&&this.config.object.modelPath.includes("nanodet")?Q2(this.config):null),this.models.centernet||(this.config.object.enabled&&this.config.object.modelPath.includes("centernet")?a5(this.config):null),this.models.faceres||(this.config.face.enabled&&this.config.face.description.enabled?k2(this.config):null),this.models.segmentation||(this.config.segmentation.enabled?af(this.config):null)]):(this.config.face.enabled&&!this.models.face&&(this.models.face=await y2(this.config)),this.config.face.enabled&&this.config.face.emotion.enabled&&!this.models.emotion&&(this.models.emotion=await b2(this.config)),this.config.hand.enabled&&!this.models.handpose&&(this.models.handpose=await W2(this.config)),this.config.body.enabled&&!this.models.posenet&&this.config.body.modelPath.includes("posenet")&&(this.models.posenet=await D2(this.config)),this.config.body.enabled&&!this.models.blazepose&&this.config.body.modelPath.includes("blazepose")&&(this.models.blazepose=await J0(this.config)),this.config.body.enabled&&!this.models.efficientpose&&this.config.body.modelPath.includes("efficientpose")&&(this.models.efficientpose=await J0(this.config)),this.config.body.enabled&&!this.models.movenet&&this.config.body.modelPath.includes("movenet")&&(this.models.movenet=await K2(this.config)),this.config.object.enabled&&!this.models.nanodet&&this.config.object.modelPath.includes("nanodet")&&(this.models.nanodet=await Q2(this.config)),this.config.object.enabled&&!this.models.centernet&&this.config.object.modelPath.includes("centernet")&&(this.models.centernet=await a5(this.config)),this.config.face.enabled&&this.config.face.description.enabled&&!this.models.faceres&&(this.models.faceres=await k2(this.config)),this.config.segmentation.enabled&&!this.models.segmentation&&(this.models.segmentation=await af(this.config))),pn(this,Ji)&&(this.config.debug&&de("tf engine state:",this.tf.engine().state.numBytes,"bytes",this.tf.engine().state.numTensors,"tensors"),Ia(this,Ji,!1));let a=Math.trunc(Ke()-n);a>(this.performance.load||0)&&(this.performance.load=a)}async detect(t,n){return new Promise(async a=>{this.state="config";let r,s;this.config=Ln(this.config,n),this.state="check";let i=pn(this,of).call(this,t);i&&(de(i,t),a({error:i}));let o=Ke();await pn(this,bp).call(this),await this.load(),r=Ke();let l=Yi(t,this.config);if(this.performance.image=Math.trunc(Ke()-r),this.analyze("Get Image:"),this.config.segmentation.enabled&&l&&l.tensor&&(this.analyze("Start Segmentation:"),this.state="run:segmentation",r=Ke(),await u5(l),s=Math.trunc(Ke()-r),s>0&&(this.performance.segmentation=s),l.canvas&&(l.tensor.dispose(),l=Yi(l.canvas,this.config)),this.analyze("End Segmentation:")),!l||!l.tensor){de("could not convert input to tensor"),a({error:"could not convert input to tensor"});return}r=Ke(),this.config.skipFrame=await pn(this,lf).call(this,l.tensor),this.performance.frames||(this.performance.frames=0),this.performance.cached||(this.performance.cached=0),this.performance.frames++,this.config.skipFrame&&this.performance.cached++,this.performance.changed=Math.trunc(Ke()-r),this.analyze("Check Changed:");let u,d,p,c;this.config.async?(u=this.config.face.enabled?T2(this,l.tensor):[],this.performance.face&&delete this.performance.face):(this.state="run:face",r=Ke(),u=this.config.face.enabled?await T2(this,l.tensor):[],s=Math.trunc(Ke()-r),s>0&&(this.performance.face=s)),this.analyze("Start Body:"),this.config.async?(this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?$2(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?B2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?H2(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?Z2(l.tensor,this.config):[]),this.performance.body&&delete this.performance.body):(this.state="run:body",r=Ke(),this.config.body.modelPath.includes("posenet")?d=this.config.body.enabled?await $2(l.tensor,this.config):[]:this.config.body.modelPath.includes("blazepose")?d=this.config.body.enabled?await B2(l.tensor,this.config):[]:this.config.body.modelPath.includes("efficientpose")?d=this.config.body.enabled?await H2(l.tensor,this.config):[]:this.config.body.modelPath.includes("movenet")&&(d=this.config.body.enabled?await Z2(l.tensor,this.config):[]),s=Math.trunc(Ke()-r),s>0&&(this.performance.body=s)),this.analyze("End Body:"),this.analyze("Start Hand:"),this.config.async?(p=this.config.hand.enabled?L2(l.tensor,this.config):[],this.performance.hand&&delete this.performance.hand):(this.state="run:hand",r=Ke(),p=this.config.hand.enabled?await L2(l.tensor,this.config):[],s=Math.trunc(Ke()-r),s>0&&(this.performance.hand=s)),this.analyze("End Hand:"),this.analyze("Start Object:"),this.config.async?(this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?e5(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?r5(l.tensor,this.config):[]),this.performance.object&&delete this.performance.object):(this.state="run:object",r=Ke(),this.config.object.modelPath.includes("nanodet")?c=this.config.object.enabled?await e5(l.tensor,this.config):[]:this.config.object.modelPath.includes("centernet")&&(c=this.config.object.enabled?await r5(l.tensor,this.config):[]),s=Math.trunc(Ke()-r),s>0&&(this.performance.object=s)),this.analyze("End Object:"),this.config.async&&([u,d,p,c]=await Promise.all([u,d,p,c]));let h=[];this.config.gesture.enabled&&(r=Ke(),h=[...B9(u),...W9(d),...j9(p),...V9(u)],this.config.async?this.performance.gesture&&delete this.performance.gesture:this.performance.gesture=Math.trunc(Ke()-r)),this.performance.total=Math.trunc(Ke()-o),this.state="idle",this.result={face:u,body:d,hand:p,gesture:h,object:c,performance:this.performance,canvas:l.canvas,timestamp:Date.now(),get persons(){var m;return Z9(u,d,p,h,(m=l==null?void 0:l.tensor)==null?void 0:m.shape)}},he(l.tensor),a(this.result)})}async warmup(t){let n=Ke();if(t&&(this.config=Ln(this.config,t)),!this.config.warmup||this.config.warmup==="none")return{error:"null"};let a;typeof createImageBitmap=="function"?a=await pn(this,uf).call(this):typeof Image!="undefined"?a=await pn(this,df).call(this):a=await pn(this,pf).call(this);let r=Ke();return this.config.debug&&de("Warmup",this.config.warmup,Math.round(r-n),"ms",a),a}};mu=new WeakMap,Ap=new WeakMap,xp=new WeakMap,Ji=new WeakMap,Qi=new WeakMap,gu=new WeakMap,of=new WeakMap,bp=new WeakMap,lf=new WeakMap,uf=new WeakMap,df=new WeakMap,pf=new WeakMap;return Qle;})();
|
|
/**
|
|
* @license
|
|
* Copyright 2017 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2018 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2019 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google Inc. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC
|
|
*
|
|
* Use of this source code is governed by an MIT-style
|
|
* license that can be found in the LICENSE file or at
|
|
* https://opensource.org/licenses/MIT.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2020 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the License);
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/**
|
|
* @license
|
|
* Copyright 2021 Google LLC. All Rights Reserved.
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* https://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
* =============================================================================
|
|
*/
|
|
/** @license See the LICENSE file. */
|